Please use this identifier to cite or link to this item: doi:10.22028/D291-46454
Title: Simply interpolating and Carleson sequences for Hardy spaces in the polydisc
Author(s): Chalmoukis, Nikolaos
Dayan, Alberto
Language: English
Title: The Journal of Geometric Analysis
Volume: 35
Issue: 10
Publisher/Platform: Springer Nature
Year of Publication: 2025
Free key words: Holomorphic Hardy spaces
Polydisc
Bidisc
Carleson-Newmann sequences
Simply interpolating sequences
Universally interpolating sequences
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Abstract We study the relation between simply and universally interpolating sequences for the holomorphic Hardy spaces H p(Dd ) on the polydisc. In dimension d = 1 a sequence is simply interpolating if and only if it is universally interpolating, due to a classical theorem of Shapiro and Shields. In dimension d ≥ 2, Amar showed that Shapiro and Shields’ theorem holds for H p(Dd ) when p ≥ 4. In contrast, we show that if 1 ≤ p ≤ 2 there exist simply interpolating sequences which are not universally interpolating.
DOI of the first publication: 10.1007/s12220-025-02155-5
URL of the first publication: https://link.springer.com/article/10.1007/s12220-025-02155-5
Link to this record: urn:nbn:de:bsz:291--ds-464546
hdl:20.500.11880/40733
http://dx.doi.org/10.22028/D291-46454
ISSN: 1559-002X
1050-6926
Date of registration: 24-Oct-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s12220-025-02155-5.pdf318 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons