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Abstract
We study the relation between simply and universally interpolating sequences for the
holomorphic Hardy spaces H p(Dd) on the polydisc. In dimension d = 1 a sequence
is simply interpolating if and only if it is universally interpolating, due to a classical
theorem of Shapiro and Shields. In dimension d ≥ 2, Amar showed that Shapiro
and Shields’ theorem holds for H p(Dd) when p ≥ 4. In contrast, we show that if
1 ≤ p ≤ 2 there exist simply interpolating sequences which are not universally
interpolating.
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1 Introduction

Let f be a holomorphic function in the d-dimensional polydisc D
d . We say that f

belongs to the Hardy space H p(Dd), if

‖ f ‖p
p := sup

0<r<1

∫
Td

| f (r z)|pdm(z) < +∞,
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where T
d is the d-dimensional torus and m is its probability Haar measure. We will

also occasionally use the notation | | to denotem.The spaces of bounded holomorphic
functions H∞(Dd) is defined analogously.

The present paper grew out of the attempt to better understand interpolating
sequences for Hardy spaces in the higher dimensional polydisc. In dimension one,
the work of Carleson [6] and Shapiro and Shields [18] provides a solid understanding
of interpolating sequences. Let us spend a few words to recall the basic definitions
and results in this simpler case.

Consider � = (λn)n a sequence of points in the unit disc D. Then

(1 − |λn|2)
1
p | f (λn)| ≤ ‖ f ‖p, f ∈ H p(D),

hence for 1 ≤ p < ∞ the restriction operator at � on H p(D) is naturally defined as

T p
�( f ) = (

f (λn)(1 − |λn|2)
1
p
)
, f ∈ H p(D).

A sequence is called simply interpolating if T p
�(H p(D)) ⊇ �p. Explicitly, if for every

sequence of data (an) ∈ �p there exists an interpolating function f ∈ H p(D), in the
sense that

f (λn) = an(1 − |λn|2)−
1
p , n = 1, 2, . . . (1.1)

It is worth mentioning that, since all Hardy spaces contain the polynomials, an
interpolation problem like (1.1) always has a solution if the number of nodes is finite.
If � is a simply interpolating, an application of the open mapping theorem yields that
there exists a constantC , depending only on� and p, such that one can find a solution
f for (1.1) such that ‖ f ‖p ≤ C‖(an)‖�p (see Lemma 2.1).
A sequence is called universally interpolating if it is simply interpolating and T p

�

maps boundedly H p(D) into �p. In other words a sequence is universally interpolating
if for every �p data the interpolation problem (1.1) has a solution and there exists
M > 0 such that

∞∑
n=1

| f (λn)|p(1 − |λn|2) ≤ M‖ f ‖p
p, ∀ f ∈ H p(D). (1.2)

Sequences that satisfy (1.2), are usually calledCarleson sequences. Ifμ is a positive
Borel measure inDwe say that it is an H p(D)-Carlesonmeasure if there existsM > 0
such that ∫

D

| f |pdμ ≤ M‖ f ‖p
p, ∀ f ∈ H p(D). (1.3)

Hence � is a Carleson sequence if and only if the atomic measure μ� := ∑
n(1 −

|λn|2) δλn supported on � is a Carleson measure. It is a classical theorem of Carleson
that the class of the homonymous measures is the same for every p ≥ 1 and a measure
is such if and only if there exists C > 0 such that

μ(S(I )) ≤ C |I |, (1.4)
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for every arc I ⊆ T and every region S(I ) of the form

S(I ) = {z ∈ D \ {0} : 1 − |z| ≤ |I |, z/|z| ∈ I }.

Furthermore, Shapiro and Shields showed that a sequence is universally interpolating
for H p(D) if it is hyperbolically separated, that is

inf
n 
=m

∣∣∣ λn − λm

1 − λmλn

∣∣∣ > 0

and it is a Carleson sequence. Evenmore surprisingly, they proved that simply interpo-
lating sequences are the same for all p ≥ 1 and that a simply interpolating sequence for
H p(D) is automatically universally interpolating. In other words, if for some sequence
� ⊆ D we have T p

�(H p(D)) ⊇ �p then T p
�(H p(D)) = �p.

In dimension d ≥ 2 the analogous problems concerning H p(Dd) functions can
be stated using the following restriction operator. Let � = (λn) ⊆ D

d , λn =
(λ1n, . . . , λ

d
n). Then define

T p
�( f ) =

(
f (λn)

d∏
i=1

(1 − |λin|2)
1
p

)
, f ∈ H p(Dd). (1.5)

If p = ∞, T∞
� is the unweighted restriction operator on H∞(Dd). We say that a

sequence � is;

(SI) simply interpolating for H p(Dd) if T p
�(H p(Dd)) ⊇ �p,

(UI) universally interpolating for H p(Dd) if T p
�(H p(Dd)) = �p,

(CS) a Carleson sequence for H p(Dd) if T p
�(H p(Dd)) ⊆ �p.

Similarly, a positive Borel measure on D
d is called Carleson if H p(Dd) ⊆

L p(Dd , μ). Then � is a Carleson sequence if and only if the atomic measure

μ� :=
∑
n

(
d∏

i=1

1 − |λin|2
)

δλn (1.6)

is a Carleson measure. As in the one dimensional case if � is a simply interpolating
sequence there exists C > 0 such that for every a ∈ �p, there exists f ∈ H p(Dd)

such that T p
�( f ) = a and ‖ f ‖p ≤ C‖a‖�p . The infimum of such C is the simple

interpolation constant of �. Similarly, given a Carleson sequence � we define its
Carleson constant as the norm of T p

� : H p(Dd) → �p. The corresponding separation
condition, also called weak separation becomes

inf
n 
=m

max
1≤i≤d

∣∣∣ λin − λim

1 − λinλ
i
m

∣∣∣ > 0.

A first hint for how two or more dimensions are different than one came again
from Carleson [7]. He considered the Hardy space h p(Dd) of separately harmonic
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functions, which consists of functions u ∈ C∞(Dd) such that

∂2u

∂zi∂zi
= 0, 1 ≤ i ≤ d and ‖u‖p

p = sup
0<r<1

∫
Td

|u(r z)|pdm(z) < +∞.

In d = 1, it is an immediate consequence of the M. Riesz Theorem that if p > 1,
then H p(D) ⊆ L p(D, μ) if and only if h p(D) ⊆ L p(D, μ). Consequently, a quite
natural conjecturewould be that h p(Dd) ⊆ L p(Dd , μ) if and only if the d-dimensional
version of (1.4), namely

μ(S(I1) × . . . S(Id)) ≤ C |I1| · · · |Id |,

holds for all arcs I1, . . . Id ⊆ D and some fixed constant C > 0. Often this condition
is referred to as the one box condition. It turns out that this is not the case. In fact,
there exists a measure μ satisfying the one box condition but h p(D2) � L p(D2, μ)

for any p > 1. M
As an intermediate step towards our results on interpolation, via a quite elementary

modification of Carleson’s example, we can show a little bit more; there exists a
measure μ in D

2 satisfying the one box condition but H p(D2) � L p(D2, μ) for any
p ≥ 1. The details are given in Section 5.

Nonetheless, a complete characterization of Carlesonmeasures for the holomorphic
Hardy spaces in higher dimensions has yet to emerge. In particular it is not clear
whether the sufficient condition of Chang - Stein [11] is also necessary, or if the
class of H p(Dd) Carleson measures is the same for every p ≥ 1 for that matter.
We remark that often in the literature the necessity of the Chang - Stein condition
has been assumed to be true, but to the best of our knowledge a proof is not known.
The Chang-Stein condition characterizes Carleson measures for all Hardy spaces of
separately harmonic functions on the polydisc. By inclusions, any Carleson measure
for a separately harmonic space is Carleson for its holomorphic counterpart, but the
converse implication is not known in dimension d ≥ 2. More details are provided in
Section 3, where we show the equivalence of the two notion of Carlerson measures
for a class of reflection-invariant measures.

Regarding interpolating sequences when d ≥ 2 , the state of affairs is simi-
larly unclear. Varopoulos showed in [21] that an interpolating sequence for H∞(Dd)

generates a measure that satisfies the Chang-Stein condition via (1.6). Nonetheless,
Berndtsson et al. [5] gave a counterexample for the converse implication and Amar [2]
showed that a simply interpolating sequence for H2(Dd) needs not to be inteprolating
for H∞(Dd), in contrast with the one dimensional case. Finally, in [3] the author
studies the relation between interpolating sequences for different Hardy spaces. On
the other hand, a much greater deal is known about the interpolating properties of
sequences which are realizations of a certain random point process in the polydisc
(see [9, 13] and [10]).

The question that motivated this work has been to which extend the Shapiro and
Shields’ theorem extends to the polydisc. That is, is it true that a simply interpolating
sequence is also Carleson, and hence automatically universally interpolating? This is
known to be false for the Dirichlet space in the unit disc [16], and for a large class of
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spaces in the unit disc and the unit ball in [8]. In this context we prove the following
theorem.

Theorem 1.1 Let d ≥ 2. There exists a sequence�0 ⊆ D
2 that is simply interpolating

for H p(D2) for all 1 ≤ p ≤ 2, yet it is not a Carleson sequence for Hr (D2) for any
r ≥ 1.

On the other hand, Amar showed that if p > 2 and � is simply interpolating for
H p(Dd), then there exists a value of r for which � is Carleson for Hr (Dd).

Theorem 1.2 ([4]) Let p > 2. If � is simply interpolating for H p(Dd), then � is a
Carleson sequence for Hr (Dd), where 1/p + 1/r = 1/2.

If p ≥ 4 and 1/p + 1/r = 1/2, then r ≤ 4. Moreover, in Lemma 3.4 we will
observe that if � is a Carleson sequence for H p(Dd) and q > p, then � is a Carleson
sequence also for Hq(Dd). Therefore from Theorem 1.1 and Theorem 1.2 we deduce
the following.

Corollary 1.3 Let d ≥ 2. If p ≥ 4 and � ⊆ D
d is a simply interpolating sequence for

H p(Dd), then � is also universally interpolating for H p(Dd).
On the other hand, for all 1 ≤ p ≤ 2 there exists a sequence that is simply

interpolating for H p
(
D
d
)
but that is not universally interpolating for H p(Dd).

It is evident that the theorem leaves the gap 2 < p < 4 for which we can not answer
the question on universal interpolating sequences completely. This deficiency stems
once again from our poor understanding of Carleson measures for the polydisc.

The construction of the sequence�0 is intimately connected to the counterexample
of Carleson for measures which satisfy the one box condition but are not Carleson
for h p(D2). The details of the construction are provided in Section 5. In Section
3 we discuss the relation between Carleson measures for separately harmonic and
holomorphic Hardy spaces, while Section 4 contains the necessary tools to show that
�0 is simply interpolating for 1 ≤ p ≤ 2. This will lead to the proof of Theorem
1.1, which is discussed in Section 6. A simplified version of Amar’s argument for the
proof of Theorem 1.2 is contained in Section 2.

2 Proof of Theorem 1.2

In what follows a recurring object is the Szegö kernel in the polydisc. That is, the
following function;

S(z, w) =
d∏

i=1

1

1 − wi zi
z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ D

d . (2.1)

When considering S as a (holomorphic) function of z for fixed w we will write Sw

instead. In fact S is exactly the reproducing kernel of the reproducing kernel Hilbert
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space H2(Dd)with the standard inner product which we denote by 〈 , 〉. In particular

‖Sw‖22 =
d∏

i=1

1

1 − |wi |2 , w ∈ D
d .

We will also denote by gw the normalized Szegö kernel at w, that is

gw = Sw/‖Sw‖2. (2.2)

The argument in [4, Theorem 2.2] makes implicitly use of the existence of a constant
of interpolation, whose existence follows from the following standard lemma in func-
tional analysis. Notice that since pointwise evaluations are bounded linear functionals
on Hardy spaces the restriction operator T p

� is always closed.

Lemma 2.1 Let T : X → Y a closed and surjective linear operator between two
Banach spaces X ,Y . Then there exists C > 0 such that for every y ∈ Y there exists
x ∈ X such that

‖x‖X ≤ C‖y‖Y , and T x = y.

Proof Let DT the linear submanifold of X where the operator T is defined. By the fact
that T is closed T : DT → Y becomes a bounded surjective operator if we equip DT

with the graph norm. Then the lemma follows by an application of the open mapping
theorem. ��

The proof of [4, Theorem 2.2] can be summarized as follows. Fix N in N, and
consider the normalized kernel functions (gn)Nn=1 in H2(Dd) associated to the points
(λn)

N
n=1. Let (hn)

N
n=1 be the minimal dual system of (gn)Nn=1 in H2(Dd). Namely, each

hn belongs to the linear span of (gn)Nn=1, and 〈gn, hm〉 = δn,m . Since the normalized
kernel are linearly independent, then so is the collection of their dual system.Moreover,
the projection PN of H2(Dd) onto the linear span of (gn)Nn=1 can be written as

PN ( f ) :=
N∑

n=1

〈 f , gn〉 hn =
N∑

n=1

f (λn)‖Sλn‖−1
2 hn f ∈ H2(Dd).

Fix some g ∈ Hr (Dd). Since ‖hn‖2 ≥ 1 for all n, by Orlicz’s Lemma (see [17,
Theorem 3.1.5]) one can find (εn)

N
n=1 ⊆ T such that

N∑
n=1

|g(λn)|r‖Sλn‖−2
2 ≤

N∑
n=1

|g(λn)|r‖Sλn‖−2
2 ‖hn‖22 ≤

∥∥∥∥∥
N∑

n=1

εn|g(λn)| r2 ‖Sλn‖−1
2 hn

∥∥∥∥∥
2

2

.

Since� is a simply interpolating sequence for H p(Dd), by Lemma 2.1 we can find
a function f ∈ H p(Dd) such that

f (zn) = εn|g(λn)| r2 g(λn)−1, ‖ f ‖p
p ≤ C

N∑
n=1

|g(λn)|r‖Sλn‖−2
2 ,
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where C does not depend on N . Combining the above relations we have that

N∑
n=1

|g(λn)|r‖Sλn‖−2
2 ≤

∥∥∥∥∥
N∑

n=1

f (λn)g(λn)‖Sλn‖−1
2 hn

∥∥∥∥∥
2

2

= ‖PN ( f g)‖22
≤ ‖ f g‖22
≤ ‖ f ‖2p‖g‖2r

≤ C
( N∑
n=1

|g(λn)|r‖Sλn‖−2
2

) 2
p ‖g‖2r .

Rearranging the above inequality the claim follows, since C is independent of N .

3 Carlesonmeasures and the separately harmonic Hardy space in the
bidisc

In the introduction we alluded to the Chang - Stein characterization of Carleson mea-
sures for the separately harmonic Hardy spaces h p(Dd). We shall take a closer look
now. A rectangle R ⊆ T

d for us is going to be just a set of the form I1 × · · · × Id
where Im ⊆ T are arcs. The corresponding product of regions S(I1) × · · · × S(Id)
will be denoted by S(R) and we will call it a box. More generally, if U ⊆ T

d is an
open set then

S(U ) :=
⋃

rectangles R⊆U

S(R).

As noted by Chang [11] the following theorem can be extracted from [19, p. 236].

Theorem 3.1 Let 1 < p < ∞ and μ a positive finite Borel measure on D
d . Then

h p(Dd) ⊆ L p(Dd , μ) if and only if there exists a constant C > 0 such that for every
open set U ⊆ T

d

μ(U ) ≤ C |U |.
To the best of our knowledge, it is not known if this characterization remains true

for the holomorphic Hardy spaces. The sufficiency of the Chang-Stein condition is
clear by inclusions.

In this part we will settle for a more modest objective. Consider the map σ : D
2 →

D
2, σ (z1, z1) = (z1, z2).Givenμ ∈ M+(D2)wewill denote by σ∗μ the pushforward

of μ via the map σ. That is, for every ϕ ∈ L1(D2, μ)

∫
D2

ϕdσ∗μ =
∫
D2

ϕ ◦ σdμ.

Lemma 3.2 Suppose that μ ∈ M+(D2) and 1 < p < ∞. If μ and σ∗μ are Carleson
for H p(D2) then μ satisfies the Chang-Stein condition.
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319 Page 8 of 17 N. Chalmoukis, A. Dayan

Proof Consider the densely defined operator in h p(D2) given by the formula

P

( ∑
(n,m)∈Z2

anmr
n
1 r

m
2 ei(θ1n+θ2m)

)
=

1

4
a00 + 1

2

∑
n∈N

an0r
n
1 e

iθ1n + 1

2

∑
m∈N

a0mr
m
2 eiθ2m +

∑
(n,m)∈N2

anmr
n
1 r

m
2 ei(θ1n+θ2m),

when anm are all but finitely many equal to zero. Due to the M. Riesz theorem this
operator extends to a bounded operator from h p(D2) onto H p(D2). Furthermore, for
any u ∈ h p(D2) we have that

u = Pu + Pu + (P(u ◦ σ)) ◦ σ + (P(u ◦ σ)) ◦ σ .

In order to finish the proof it remains to notice the obvious fact that σ preserves the
Lebesgue measure. Therefore for the third term for example we have

∫
D2

|(Pu ◦ σ) ◦ σ |pdμ =
∫
D2

|Pu ◦ σ |pdσ∗μ

≤C‖P(u ◦ σ)‖p
p

≤C‖u ◦ σ‖p
p

=C‖u‖p
p.

Here and in the sequel the constant C might change from appearance to appearance.
Similarly all four terms are bounded by ‖u‖p

p times a multiplicative constant that
depends only on p and μ. Therefore μ is a Carleson measure for the separately
harmonic Hardy space h p(D2) and hence it satisfies the Chang-Stein condition. ��

Remark 3.3 A straightforward adaptation of the argument above yields the same result
for all d > 2. Namely, if μ is a measure on D

d such that μ, σ1∗μ, . . . , σd−1∗μ are
Carleson for H p(Dd), then μ is Carleson for h p(Dd). Here σi denotes the map the
conjugates the i-th variable.

Next we shall need another elementary observation.

Lemma 3.4 Let 1 < p < q < ∞, then any Carleson measure for H p(Dd) is a
Carleson measure for Hq(Dd).

Proof Notice that if 0 < θ < 1 and we denote by (H p(Dd), Hq(Dd))θ the θ inter-
polating space constructed with the complex method, it coincides, with equivalence
of norms with the Hardy space Hs(Dd) where (1 − θ)p−1 + θq−1 = s−1. That is
because the compatible pair of Hardy spaces can be identified isometrically with a
compatible pair of subspaces of L1(Td ,m), and because the Riesz projection on the
first quadrant is a bounded operator on all L p(Td ,m) for p > 1.
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To finish the proof if suffices to notice that if under the hypothesis of the theorem,
and for any n ∈ N we have

∫
Dd

| f |npdμ =
∫
Dd

| f n|pdμ ≤ Cμ‖ f ‖npnp.

Consequently, the identity operator I : Hnp(Dd) → Lnp(Dd , μ) is bounded for every
n ∈ N and therefore by interpolation it is bounded for ever q > p. ��
Corollary 3.5 A sequence � = (λn)n in the bidisc is Carleson for h p(D2) if and only
if both Z and σ(�) := (σ (λn))n are Carleson sequences for H p(D2). In particular,
if σ(�) = � and q, p > 1, then � is a Carleson measure for H p(D2) if and only if
it is a Carleson measure for Hq(D2).

Remark 3.6 (Random Carleson Sequences) The Kolmogorov 0 − 1 law for random
Carleson sequences for H2(Dd)was described in [9], where a random sequence in the
polydisc is chosen by picking deterministic radii and independent random arguments
distributed uniformly on T

d . Since the distribution law of such random arguments
is unchanged under the transformation σ , Carleson sequences for the separately har-
monic and holomorphic Hardy spaces coincide for all d almost surely.

4 Modified Szegö kernels in the bidisc

In this section we will develop the idea which is necessary in order to show that �0
in Theorem 1.1 is simply interpolating for all 1 ≤ p ≤ 2.

For our purposes it is convenient to consider a simple modification of the Szegö
kernel S in (2.1). Given a parameter t > 0 and w ∈ D

2 we define

ψw,t := S1+t
w

‖Sw‖1+2t
2

.

Almost orthogonality properties for collections of such modified Szegö kernels have
been studied in [14] in the setting of the Drury-Arveson space on the unit ball. In
particular, as a corollary of [14, Lemma 5.1] one deduces the following result for the
Hardy space on the polydisc, which can also be obtained by direct computation.

Lemma 4.1 For all t > 0 there exists a constant C = C(d, t) > 0 such that

|〈ψz,t , ψw,t 〉| ≤ C |〈gz, gw〉|1+t

The idea that will guide us from this point on is that the sequence �0 in Theorem
1.1 is going to be constructed as a union of finite collections of points which are
sufficiently disjoint from each other so that the properties of one collection do not
essentially affect the properties of the other. Furthermore, each such finite collection
of points will have uniformly controlled simply interpolating constant while it is going
to have increasingly large Carleson constant.
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In order to do so, we will show that if our sequence is of a very particular form, then
we can use the modified kernelsψz,t in order to construct an approximate right inverse
of the restriction operator T p

� . If the approximation is good enough a Neumann series
argument allows us to find an exact right inverse of the restriction operator with good
control of its norm.

Our next proposition will contain the basic idea of our construction. It will be
necessary to introduce some more notation before discussing it. If � = (λn) is a
sequence of points in the bidisc we will write gn instead of gλn for brevity, where gλn

is the normalized Szegö kernel from (2.2). Furthermore, the matrix G = 〈gn, gm〉will
be called the Gram matrix of the sequence or the Gramian of �.

It can be shown [1, Chapter 9] that a sequence is weakly separated if and only if
supn 
=m |〈gn, gm〉| < 1. We shall call the quantity

γ =
√
1 − sup

n 
=m
|〈gn, gm〉|2 > 0

the constant of weak separation. A related notion, is that of column boundedness of a
sequence. � is called column bounded if the columns of the corresponding Gramian
form a bounded set in �2(N). As before the constant


 := sup
m

∞∑
n:n 
=m

|〈gn, gm〉|2 < +∞,

will be called the column boundedness constant of �. We will say that a sequence is
γ weakly separated if the weak separation constant of the sequence is less or equal to
γ . The phrase 
 column bounded has a similar meaning.

This leads us to the following proposition.

Proposition 4.2 For all γ,
 > 0 there exists a constant C = C(γ,
) > 0 such that,
if 1 ≤ p ≤ 2 and � ⊆ D

2 is a finite collection of points which is γ weakly separated
and 
 column bounded and also satisfies

‖Sλ‖2 = constant on �,

then there exists a bounded linear operator R : �p → H p(D2)which is a right inverse
of T p

� : H p(D2) → �p and ‖R‖�p→H p(D2) ≤ C .

Proof Let t > 0 to be determined later and notice that

∑
n:n 
=m

|〈gn, gm〉|1+t ≤ (1 − γ 2)
t−1
2

∑
n:n 
=m

|〈gn, gm〉|2 ≤ 
(1 − γ 2)
t−1
2 . (4.1)

Since no confusion arises, we will continue to denote by �p the space C
N , where N is

the number of points of the sequence�, equipped with the �p norm. Then we consider
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the operator Bt : �p → H p(D2) defined as

Bt (a) =
N∑

n=1

anψn,t , a = (a1, . . . , aN ) ∈ �p,

where ψn,t = ψλn ,t .

Let us start by estimating ‖Bt‖�2→H2(D2). We apply first Lemma 4.1 and sub-
sequently Cauchy-Schwarz and the estimate (4.1) in order to get that, for some C
depending on t , we have

‖Bt (a)‖22 =
N∑

n,m=1

anam〈ψn,t , ψm,t 〉

≤ C
N∑

n,m=1

|anam ||〈gn, gm〉|1+t

≤ C sup
m

( ∞∑
n=1

|〈gn, gm〉|1+t
)
‖a‖2

�2

≤ C(1 + 
(1 − γ 2)
t−1
2 )‖a‖2

�2
.

In order to estimate ‖Bt‖�1→H1(D2) set s := p/2(1+ t) − 1 and notice that, s > 0
for all t > 1 and that

‖ψz,t‖p
p = ‖ψ

p
2
z,t‖22

=
∥∥∥∥∥∥

S1+s
z

‖Sz‖
p
2 (1+2t)
2

∥∥∥∥∥∥
2

2

= ‖ψz,s‖22 · ‖Sz‖−p(1+2t)+2+4s

≤ C‖Sz‖p−2
2

(4.2)

thanks to Lemma 4.1, z = w. In particular for a ∈ �1

‖Bt (a)‖�1 ≤ ‖a‖�1 sup
1≤n≤N

‖ψn,t‖1 ≤ C‖Sλ1‖−1
2 ‖a‖�1 ,

since ‖Sλn‖2 is constant on �. Notice that by considering H p(D2) as a subspace
of L p(T2,m) we can apply the Riesz-Thorin interpolation theorem to conclude that

‖Bt‖�p→H p(D2) ≤ C‖Sλ1‖
1− 2

p
2 , where C depends only on 
, γ and t .

Next we consider the operator T p
� Bt : �p → �p, which for a ∈ �p acts as follows

T p
� Bt (a) = T p

�

( N∑
n=1

anψn,t

)
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=
( N∑
n=1

anψn,t (λm)‖Sλm‖− 2
p

2

)N

m=1

=
( N∑
n=1

an
Sλn (λm)1+t

‖Sλn‖
1+2t+ 2

p
2

)N

m=1

=
(
‖Sλ1‖

1− 2
p

2

N∑
n=1

an〈gn, gm〉1+t
)N

m=1
,

where we have used the fact that the norm of the Szegö kernel vectors is constant on
the sequence.

Therefore we conclude that

‖‖Sλ1‖
2
p −1

2 T p
� Bt − I d‖�p→�p ≤ ‖(〈gn, gm〉1+t )Nn,m=1‖�p→�p ≤ 
(1 − γ 2)

t−1
2

via an applicarion of (4.1) and Riesz’s interpolation theorem. Choosing t > 0 such
that the latter expression equals 1

2 we conclude that the operator T p
� Bt is invertible on

�p. Moreover, the norm of its inverse is controlled by ‖Sλ1‖
2
p −1

2 , up to a constant that
is independent of p. Hence R := Bt (T

p
� Bt )

−1 : �p → H p(D2) is a right inverse of
T p

� and
‖R‖�p→H p(D2) ≤ ‖Bt‖�p→H p(D2)‖(T�Bt )

−1‖�p→�p ≤ C,

where C does not depend on p. This concludes the proof. ��

5 Carleson’s quilt construction revisited

In this section we are going to provide the second main tool for the proof of Theorem
1.1, by using Carleson’s example of a measure on the bidisc which satisfies the one
box condition but it is not Carleson for h p(D2) for any p > 1.

First we shall describe briefly Carleson’s construction. For convenience we will
identify T

2 with (R/Z)2. In these coordinates the map σ is give by σ(θ1, θ2) =
(1− θ1, θ2). We will generally follow the notation and terminology as in [20] but also
one can consult the original exposition [7].

For us an interval I ⊆ (R/Z)2 is dyadic if its end points are consecutive points
of the set D := { j

2N
: j ∈ Z, N ∈ N ∪ {0}}. Let R be a finite collection of dyadic

rectangles in the unit square (0, 1)2 such that

∑
R∈R

|R| = 1 (5.1)

and also ∑
R∈R:R⊆Q

|R| ≤ |Q| (5.2)
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for every dyadic rectangle Q ⊆ T
2. We will call such a collection a quilt [20, Section

7]. The total area of the quilt is simply
∣∣∣ ⋃R∈R R

∣∣∣.Wewill say that a quilt is σ invariant

ifR = {σ(R) : R ∈ R} and that it is equiareal if every R ∈ R has the same area.
The singleton {[0, 1)2} is trivially a quilt, but it is not obvious that quilts with

arbitrarily small area exist. This is the content of the following theorem.

Theorem 5.1 (Carleson [7]) Given ε > 0 there exists an equiareal quilt of total area
smaller than ε.

Although the fact that the rectangles in Carleson’s construction have the same area
is not explicitly stated, it is immediate after an inspection of the proof, since the
rectangles are obtained by applying iteratively linear maps of constant determinant to
the square [0, 1)2.

Finally, to the quilt R we associate a finite collection of points in the bidisc in the
following way. To any R = I × J ∈ R, we associate the point

zR := (
√
1 − |I |eiθ1 ,√1 − |J |eiθ2), (5.3)

where θ1, θ2 are the midpoints of I , J respectively. Set �(R) = {zR : R ∈ R}. One
can verify that if R is the collection of all dyadic rectangles then �(R) is a weakly
separated sequence. Therefore any sequence associated to a quilt is in particularweakly
separated, provided that all the rectangles in the quilt are different.

The next proposition is going to connect the quilt property (5.2) with the column
boundedness property.

Lemma 5.2 There exists an absolute constant C > 0 such that for every positive Borel
measure μ on D

2 we have

sup
z∈D2

‖gz‖L2(D2,μ) ≤ C sup
μ(S(R))

|R| ,

where the second supremum is taken over all dyadic rectangles.

Proof Let us call M = sup{μ(S(R))|R|−1 : R dyadic rectangle}. First notice that any
rectangle I × J can be covered by 4 = 22 disjoint dyadic rectangles Ii × Ji so that
|I | ≤ |Ii | ≤ 2|I | and |J | ≤ |Ji | ≤ 2|J |. Therefore for a general rectangle Q ⊆ T

2

μ(S(Q))

|Q| ≤ 22 · 22M .

Next, fix z ∈ D
2 and consider the rectangle Q = I × J so that zQ as in (5.3) concides

with z. Define, for any multi-index j = ( j1, j2) ∈ N
2 the dilated rectangle 2 j Q as

the rectangle with the same center point as R, and having sides of lengths 2 j1 |I | and
2 j2 |J |. Set for all m ∈ N,

Am :=
⋃

| j |≤m

S(2 j Q).
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319 Page 14 of 17 N. Chalmoukis, A. Dayan

For m large enough, Am = D
2. If A◦

m := Am \ Am−1, it is then an elementary
calculation to prove that

|S(z, w)| ≤ C
1

2m |Q| , ∀w ∈ A◦
m .

Also
μ(A◦

m) ≤ μ(Am) ≤ M |Q|
∑

| j |≤m

2| j | ≤ CM |Q|m2m .

Thus

‖Sz‖2L2(D2,μ)
≤ C

1

|Q|2
∑
m∈N

μ(A◦
m)

22m
≤ CM |Q|−1 ≤ CM‖Sz‖22.

��
Summarizing the above lemmata we have proved the following proposition

Corollary 5.3 There exist a 0 < γ < 1 and a 
 > 0 such that, given any ε > 0, there
exists a finite σ invariant sequence of points � ⊂ D

2 such that

(a) � is γ weakly separated
(b) � is 
 column bounded
(c) We have that

sup
V⊆T2, open

μ�(S(V ))

|V | ≥ ε−1.

(d) The norm of the Szegö kernel ‖Sλ‖2 is constant on �.

Proof Consider an equiareal quilt R of total area less or equal to ε and let � :=
�(σ(R)∪R).By construction, the sequence� is σ invariant. Recall that any sequence
� constructed in this manner is weakly separated by a uniform constant γ , hence (a)

follows. Let μ� the measure associated to the sequence and notice that by Lemma 5.2
and the quilt property (5.2) we have

∞∑
n=1

|〈gn, gm〉|2 = ‖gm‖2L2(D2,μ�)
≤ 
 + 1,

where 
 depends only on the one-box constant of the measure μ�. In order to prove
(c) let V = ⋃

R∈R R. Then

μ�(S(V ))

|V | ≥ ε−1
∑
λ∈�

‖Sλ‖22 = ε−1
∑
R∈R

|R| = ε−1.

Finally, property (d) comes from the fact that the quilt is equiareal. ��
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6 Proof of Theorem 1.1

Clearly, it is enough to argue in the case d = 2. Let, for all L ∈ R+,

ϕL(ξ) := (1/2, 1/2) + ξ − (1/2, 1/2)

L
ξ ∈ T

2

be the homothety that rescales T
2 onto a square centered at (1/2, 1/2) of side parallel

to the ones ofT2 of length 1/L . Let�M be the finite collection of points fromCorollary
5.3, εM = 1/M , and let RM be its associated rectangles. Consider the collection of
rectangles

� :=
⋃
M∈N

ϕLM (RM ),

where (LM )M is a positive sequence to be chosen later. Set �0 := �(�). Then
by Corollary 5.3 (c), �0 does not satisfy the Chang-Stein condition. Moreover, by
construction � is σ -invariant, hence it is not a Carleson sequence for all H p(D2), via
an application of Lemma 3.2. We are then left to show that �0 is simply interpolating
for H p(D2) for all 1 ≤ p ≤ 2, provided that (LM )M diverges fast enough. First note
that the simply interpolation constant of each finte collection �M := �(ϕLM (RM ))

is bounded by a constant C uniformly, thanks to Proposition 4.2.
Let, for all i ∈ N, Zi ⊂ D be the collection of the projection on the first variables

of all points in �i , and set

�i (z) :=
∏
λ∈Zi

λ − z

1 − λz
z ∈ D.

Note that the number of points in each RM is independent of the sequence (LM )M .
Hence if (LM )M diverges fast enough, one has

inf
z∈D,i∈N

⎧⎨
⎩|�i (z)| +

∏
j 
=i

|� j (z)|
⎫⎬
⎭ ≥ δ > 0.

Hence, [17, Theorem 3.2.14], for all bounded sequences (wn)n there exists a
bounded analytic function ϕ on the unit disc such that

ϕ|Zi = wi i ∈ N,

and once we set φ(z1, z2) := ϕ(z1) we obtain

φ|�i = wi i ∈ N.

The argument in [15, Theorem 2.2, p. 288] ( see [12, Theorem 4.1] for an adaptation to
similar generalized interpolation problems) yields the existence, for allM , of functions
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φ1, . . . , φM on D
2 such that φi |� j

= δi, j and

sup
z∈D2

M∑
i=1

|φi (z)| ≤ B, (6.1)

where B = Bδ is independent of M . Let CM denote the simply interpolation constant
of the collection

⋃M
i=1 �i . We are left to show that

sup
M

CM < ∞ (6.2)

To this end, let (an)
| ⋃M

i=1 �i |
n=1 be a collection of targets, and set Ai := ∑

λn∈�i
|an|p.

Thanks to Proposition 4.2, for all i = 1, . . . , M there exists a function fi on the bidisc

so that ‖ fi‖H p(D2) ≤ CA
1
p
i , and fi (λn) = an(1 − |λn|2)−

1
p for all λn ∈ �i . Hence

the function

f =
M∑
i=1

φi fi

interpolates the values an(1− |λn|2) at the points of ⋃M
i=1 �i , and thanks to (6.1) one

has that

‖ f ‖H p(D2) ≤ B

(
M∑
i=1

‖ fi‖p
H p(D2)

) 1
p

≤ BC‖a‖�p ,

showing (6.2). This concludes the proof of Theorem 1.1.
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