Please use this identifier to cite or link to this item: -no DOI; please use other URI
Title: Variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Title: Ricerche di Matematica
Volume: 73
Issue: 5
Pages: 2911-2923
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Bernstein’s theorem
Non-parametric minimal surfaces
Variational problems with (nearly) linear growth
Equations in two variables
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Using a Caccioppoli-type inequality involving negative exponents for a directional weight we establish variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth. We give some mild conditions for entire solutions of the equation.
DOI of the first publication: 10.1007/s11587-024-00857-6
URL of the first publication: https://link.springer.com/article/10.1007/s11587-024-00857-6
Link to this record: urn:nbn:de:bsz:291--ds-436139
hdl:20.500.11880/39068
ISSN: 1827-3491
0035-5038
Date of registration: 29-Nov-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Martin Fuchs
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File SizeFormat 
s11587-024-00857-6.pdf256,58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons