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Abstract
Using a Caccioppoli-type inequality involving negative exponents for a directional
weight we establish variants of Bernstein’s theorem for variational integrals with
linear and nearly linear growth. We give some mild conditions for entire solutions of
the equation

div
[
Df (∇u)

]
= 0 ,

under which solutions have to be affine functions. Here f is a smooth energy density
satisfying D2 f > 0 together with a natural growth condition for D2 f .

Keywords Bernstein’s theorem · Non-parametric minimal surfaces · Variational
problems with (nearly) linear growth · Equations in two variables

Mathematical Subject Classification 49Q20 · 49Q05 · 53A10 · 35J20

1 Introduction

In [1] Bernstein proved that every C2-solution u = u(x) = u(x1, x2) of the non-
parametric minimal surface equation

div

[ ∇u√
1 + |∇u|2

]
= 0 (1.1)
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2912 M. Bildhauer, M. Fuchs

over the entire plane must be an affine function, which means that with real numbers
a, b, c it holds

u(x1, x2) = ax1 + bx2 + c .

For a detailed discussion of this classical result the interested reader is referred for
instance to [2–5] and the more recent contributions [6, 7] as well as the references
quoted therein.

Starting fromBernstein’s result the question arises to which classes of second order
equations the Bernstein-property extends. More precisely, we replace (1.1) through
the equation

L[u] = 0 (1.2)

for a second order elliptic operator L and assume that u ∈ C2(R2) is an entire solution
of (1.2) asking if u is affine. To our knowledge a complete answer to this problem
is open, however we have the explicit “Nitsche-criterion” established by Nitsche and
Nitsche [8].

In our note we discuss Eq. (1.2) assuming that L is the Euler-operator associated
to the variational integral

J [u,�] :=
∫

�

f (∇u) dx

with density f : R2 → R and for domains � ⊂ R
2, i.e. (1.2) is replaced by

div
[
Df (∇u)

]
= 0 , (1.3)

where in the minimal surface case (1.1) we have f (p) = √
1 + |p|2, p ∈ R

2, being
an integrand of linear growth with repect to ∇u. For this particular class of energy
densities and under the additional assumption that f is of type f (p) = g(|p|), p ∈ R

2,
for a function g ∈ C2([0,∞)) such that

0 < g′′(t) ≤ c(1 + t)−μ , t ≥ 0 ,

with exponent μ ≥ 3 (including the minimal surface case) we proved the Bernstein-
property in Theorem 1.2 of [9] benefiting from the work [10] of Farina, Sciunzi and
Valdinoci.

Bernstein-type theorems under natural additional conditions to be imposed on the
entire solutions of the Euler-equations for splitting-type variational integrals of linear
growth have been established in the recent paper [11].

One of the main tools used in [11] is a Caccioppoli-inequality involving negative
exponents which was already exploited in different variants in the papers [12–15].

In fact we used this inequality to show that ∂1∇u ≡ 0 which follows by considering
the bilinear form D2 f (∇u) with suitable weights. Since we are in two dimensions,
the use of Eq. (1.3) then completes the proof of the splitting-type results in [11].
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In the manuscript at hand we observe that even without splitting-structure it is
possible to discuss the Caccioppoli-inequality with a directional weight obtaining
∂1∇u ≡ 0 and to argue similar as before. We note that considering directional weights
gives much more flexibility in choosing exponents than arguing with a full gradient
(see Propositions 6.1 and 6.2 of [15]). We here already note that we also include
a logarithmic variant of the Caccioppli-inequality as an approach to the limit case
α = −1/2.

Before going into these details let us have a brief look at power growth energy
densities as for example

f (p) = (1 + |p|2) s
2 , p ∈ R

2 ,

with exponent s > 1. Then the Nitsche-criterion (compare [8], Satz) shows the exis-
tence of non-affine entire solutions to Eq. (1.3), and as we will shortly discuss in the
Appendix the same reasoning applies to the nearly linear growth model

f (p) = |p| ln(1 + |p|) , p ∈ R
2 , (1.4)

which means that we do not have the Bernstein-property for Eq. (1.3) with density of
the form (1.4).

However, as indicated above, we can establish a mild condition under which any
entire solution is an affine function being valid for a large class of densities f including
the nearly linear and even the linear case.

Let us formulate our

Assumptions The density f : R2 → R is of class C2 such that

D2 f (p)(q, q) > 0 for all p, q ∈ R
2, q �= 0. (1.5)

For a constant λ > 0 it holds

D2 f (p)(q, q) ≤ λ
ln(2 + |p|)
1 + |p| |q|2 , p,q ∈ R

2. (1.6)

Remark 1.1 Condition (1.5) implies the strict convexity of f , whereas from (1.6) we
obtain

| f (p)| ≤ c
(|p| ln(1 + |p|) + 1

)
, p ∈ R

2 ,

with some constant c > 0.

We have the following result:

Theorem 1.1 Let f satisfy (1.5) and (1.6) and consider an entire solution u ∈ C2(R2)

of Eq. (1.3). Suppose that with numbers 0 ≤ m < 1, K > 0 the solution satisfies

|∂1u(x)| ≤ K
(
|∂2u(x)|m + 1

)
, x ∈ R

2 , (1.7)
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2914 M. Bildhauer, M. Fuchs

or

|∂2u(x)| ≤ K
(
|∂1u(x)|m + 1

)
, x ∈ R

2 . (1.8)

Then u is affine.

Remark 1.2 Since the density f from (1.4) fulfills the the conditions (1.5) and (1.6)
and since in this case non-affine entire solutions exist, the requirements (1.7) and (1.8)
single out a class of entire solutions of Bernstein-type.

Of course we know nothing concerning the optimality of (1.7) and (1.8). Another
unsolved problem is the question, if in the case of linear growth with radial structure,
i.e. f (∇u) = g(|∇u|), Bernstein’s theorem holds without extra conditions on the
entire solution u.

Remark 1.3 The conditions (1.7) and (1.8) are in some sense related to the “balancing
conditions” used in [11] in order to exclude entire solutions of the form u(x1, x2) =
x1x2 for densities f of splitting type.

Let us pass to the linear growth case replacing (1.6) by

|D2 f (p)| ≤ �
1

1 + |p| , p ∈ R
2 , (1.9)

with a positive constant�. Here the notion of linear growth just expresses the fact that
from (1.9) it follows that

| f (p)| ≤ c
(|p| + 1

)
, p ∈ R

2 ,

with some number c > 0. In this situation we have

Theorem 1.2 Let f satisfy (1.5) together with (1.9) and let u ∈ C2(R2) denote an
entire solution of Eq. (1.3) for which we have

|∂1u(x)| ln2 (
1 + |∂1u(x)|) ≤ K

(|∂2u(x)| + 1
)
, x ∈ R

2 , (1.10)

or

|∂2u(x)| ln2 (
1 + |∂2u(x)|) ≤ K

(|∂1u(x)| + 1
)
, x ∈ R

2 , (1.11)

with some number K ∈ (0,∞). Then u is an affine function.

The results of Theorems 1.1 and 1.2 are not limited to the particular coordinate
directions e1 = (1, 0) and e2 = (0, 1), more precisely it holds:

Theorem 1.3 Let f satisfy either the assumptions of Theorem 1.1 (“case 1”) or of
Theorem 1.2 (“case 2”) and suppose that u ∈ C2(R2) is an entire solution of (1.3).
Assume that there exist two linearly independent vectors E1, E2 ∈ R

2 such that

In case 1: (1.7) holds with ∂αu being replaced by ∂Eαu, α = 1, 2,
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In case 2: (1.10) is true again with ∂αu being replaced by ∂Eαu, α = 1, 2.

Then u is an affine function.

The proof of this result follows from the observation that the function u is a local
minimizer of the energy

∫
f (∇u) dx combined with a suitable linear transformation.

If we let

T : R
2 → R

2 , Eα = T (eα) , α = 1, 2 ,

Eαβ := Eα · Eβ , α, β = 1, 2 ,

ũ(x) := u
(
T (x)

)
, x ∈ R

2 ,

f̃ (p) := f

(
T

((
Eαβ

)−1
1≤α,β≤2 p

))
, p ∈ R

2 ,

then it holds

∂α ũ(x) = ∂Eαu
(
T (x)

)
, x ∈ R

2 , α = 1, 2 ,

and ũ is an entire solution of Eq. (1.3) with f being replaced by f̃ , which follows
from the local minimality of ũ with respect to the energy

∫
f̃ (∇w) dx . Obviously the

properties of f̃ required in Theorems 1.1 and 1.2, respectively, are consequences of
the corresponding assumptions imposed on f , thus we can apply our previous results
to ũ (and f̃ ).

Our paper is organized as follows: in Sect. 2 we present the proof of Theorem 1.1
based on aCaccioppoli-inequality involving negative exponents,which has been estab-
lished, for instance, in [15], Proposition 6.1.

Sect. 3 is devoted to the discussion of Theorem 1.2. We will make use of some
kind of a limit version of Caccioppoli’s inequality, whose proof will be presented
below. With the help of this result the claim of Theorem 1.2 follows along the lines of
Sect. 2. We finish Sect. 3 by presenting a technical extension of Theorem 1.2, which
just follows from an inspection of the arguments (compare Theorem 3.1).

For the reader’s convenience we discuss in an appendix Eq. (1.3) for the nearly
linear growth case (1.4) and show that the Nitsche-criterion applies yielding non-
affine solutions defined on the whole plane.

2 Proof of Theorem 1.1

Let f satisfy (1.5) and (1.6), let u denote an entire solution of (1.3) and assume
w.l.o.g. that (1.7) holds. We apply inequality (107) from Proposition 6.1 in [15] with
the choices l = 1, i = 1 and

� = B2R = {
x ∈ R

2 : |x | < 2R
}
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2916 M. Bildhauer, M. Fuchs

to obtain for any α > −1/2 and η ∈ C∞
0 (B2R), 0 ≤ η < 1,

∫

B2R
η2D2 f (∇u)

(∇∂1u,∇∂1u
)
	α
1 dx

≤ c
∫

B2R
D2 f (∇u)(∇η,∇η)	α+1

1 dx , 	1 := 1 + |∂1u|2 , (2.1)

with a finite constant independent of R.
Letting η = 1 on BR and assuming |∇η| ≤ c/R we apply (1.6) to the r.h.s. of (2.1)

and get

∫

BR

D2 f (∇u)
(∇∂1u,∇∂1u)	α

1 dx

≤ cR−2
∫

R<|x |<2R
	1+α
1 ln

(
2 + |∇u|)(1 + |∇u|)−1 dx . (2.2)

On account of (1.7) we deduce for any ε > 0

	1+α
1 ln

(
2 + |∇u|)(1 + |∇u|)−1 ≤ c(ε)

(
1 + |∂2u|2)m(1+α)(1 + |∇u|)ε−1

≤ c̃(ε)
(
1 + |∂2u|)2m(1+α)(1 + |∂2u|)ε−1

= c̃(ε)
(
1 + |∂2u|)2m(1+α)−1+ε

.

Recall that m < 1, hence 2m(1 + α) − 1 < 0 for α > −1/2 sufficiently close to
−1/2.Wefixαwith this property and finally select ε > 0 such that 2m(1+α)−1+ε ≤
0 to obtain

	1+α
1 ln

(
2 + |∇u|)(1 + |∇u|)−1 ≤ const < ∞ . (2.3)

Combining (2.2) with (2.3) it is shown that

∫

R2
D2 f (∇u)

(∇∂1u,∇∂1u
)
	α
1 dx < ∞ . (2.4)

We quote equation (108) from [15] again with the previous choices l = 1, i = 1,
� = B2R , η ∈ C∞

0 (B2R), 0 ≤ η ≤ 1, andwithα as fixed above. The same calculations
as carried out after (108) then yield

∫

B2R
D2 f (∇u)

(∇∂1u,∇∂1u
)
η2	α

1 dx

≤ c

∣∣∣∣
∫

B2R−BR

D2 f (∇u)
(∇∂1u,∇η2

)
∂1u	α

1 dx

∣∣∣∣ . (2.5)
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On the r.h.s. of (2.5) we apply the Cauchy–Schwarz inequality to the bilinear form
D2 f (∇u), hence

l.h.s. of (2.5) ≤
[ ∫

B2R−BR

D2 f (∇u)
(∇∂1u,∇∂1u

)
	α
1 η2 dx

] 1
2

·
[ ∫

B2R−BR

D2 f (∇u)(∇η,∇η)	1+α
1 dx

] 1
2

=: T1(R)
1
2 · T2(R)

1
2 . (2.6)

Here η has been chosen in such a way that η ≡ 1 on BR and therefore spt(∇η) ⊂
B2R − BR . By (2.4) we have

lim
R→∞ T1(R) = 0 ,

whereas the calculations carried out after (2.2) imply the boundedness of T2(R). Thus
(2.5) and (2.6) imply

∫

R2
D2 f (∇u)

(∇∂1u,∇∂1u
)
	α
1 dx = 0 ,

hence ∇∂1u = 0 on account of (1.5). This shows ∂1u = a for some number a ∈ R

and since

u(x1, x2) − u(0, x2) =
∫ x1

0

d

dt
u(t, x2) dt = ax1

we can write

u(x1, x2) = ϕ(x2) + ax1 , ϕ(x2) := u(0, x2) .

Equation (1.3) gives

d

dt

∂ f

∂ p2

(
a, ϕ′(t)

) = 0

so that

∂ f

∂ p2

(
a, ϕ′(t)

) = c

for a constant c. Finally we observe that the function

y �→ ∂ f

∂ p2
(a, y)
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2918 M. Bildhauer, M. Fuchs

is strictly increasing (recall (1.5)), which shows the constancy of ϕ′ and therefore

u(0, x2) = bx2 + c

for some numbers b, c ∈ R. Altogether we have shown that u is affine finishing the
proof of Theorem 1.1. �

3 Proof of Theorem 1.2

Let the assumptions of Theorem 1.2 hold and consider an entire solution u ∈ C2(R2)

of (1.3) without requiring (1.10) or (1.11) for the moment. If we use condition (1.9)
in inequality (2.1) and if we assume that the choice α = −1/2 is admissible in (2.1),
then the calculations of Sect. 2 would immediately imply that ∇2u = 0 yielding
Bernstein’s theorem, i.e. the entire solution u is an affine function without adding
further hypotheses on u.

However, we do not have (2.1) in the case that α = −1/2 and hence we provide a
weaker version involving conditions like (1.10) or (1.11) in order to conclude that u
is affine.

To be precise, we assume the validity of (1.10), let l, i , � and η as stated in front
of (2.1) recalling

∫

B2R
D2 f (∇u)

(∇∂1u,∇ψ
)
dx = 0

for the choice ψ := η2∂1u(	1), where

(t) := ln(e2 − 1 + t)√
t

, t ≥ 1 . (3.1)

Note that the choiceα = −1/2 is compensated by the logarithm.Obviously(1) = 2,
(∞) = 0 together with

′(t) = −1

2

1

t
3
2

ln(e2 − 1 + t) + 1√
t(e2 − 1 + t)

< 0 , t ≥ 1 , (3.2)

where the negative sign for ′(t) follows from ln(e2 − 1 + t) ≥ 2 for t ≥ 1.
With ψ from above and  defined according to (3.1) we obtain

∫

B2R
η2D2 f (∇u)

(∇∂1u,∇∂1u
)
(	1) dx

+
∫

B2R
η2D2 f (∇u)

(∇∂1u, ∂1u∇(	1)
)
dx

= −2
∫

B2R
ηD2 f (∇u)

(∇∂1u,∇η
)
∂1u(	1) dx . (3.3)

123



Variants of Bernstein’s theorem... 2919

Using the identity

∂1u∇(	1) = 2∇∂1u(∂1u)2′(	1)

= 2∇∂1u

[
	1

′(	1) − ′(	1)

]
,

the left-hand side of (3.3) equals

∫

B2R
η2D2 f (∇u)

(∇∂1u,∇∂1u
)[

(	1) + 2	1
′(	1) − 2′(	1)

]
dx .

From (3.2) it follows (recalling ′(t) ≤ 0 for t ≥ 1)

(	1) + 2	1
′(	1) − 2′(	1)

≥ (	1) + 2	1
′(	1)

= ln(e2 − 1 + 	1)√
	1

+ 2	1

[
− 1

2

ln(e2 − 1 + 	1)

	
3
2
1

+ 1√
	1(e2 − 1 + 	1)

]

= 2

√
	1

e2 − 1 + 	1
≥ c

1√
	1

for some constant c > 0. Altogether we deduce from (3.3) the inequality of
Caccioppoli-type

∫

B2R
η2D2 f (∇u)

(∇∂1u,∇∂1u
)
	

− 1
2

1 dx

≤ −2
∫

B2R
ηD2 f (∇u)

(∇∂1u,∇η
)
∂1u	

− 1
2

1 ln(e2 − 1 + 	1) dx

=: −2S . (3.4)

To the quantity S we apply the Cauchy–Schwarz inequality valid for the bilinear form
D2 f (∇u) and get

|S| ≤
∫

B2R

∣∣∣∣D2 f (∇u)
(
η	

− 1
4

1 ∇∂1u, ∂1u	
− 1

4
1 ln(e2 − 1 + 	1)∇η

)∣∣∣∣ dx

≤
[ ∫

B2R
D2 f (∇u)

(∇∂1u,∇∂1u
)
η2	

− 1
2

1 dx

] 1
2

·
[ ∫

B2R
D2 f (∇u)(∇η,∇η)	

1
2
1 ln2(e2 − 1 + 	1) dx

] 1
2

. (3.5)
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On the right-hand side of (3.5) we make use of Young’s inequality yielding for any
ε > 0

|S| ≤ ε

∫

B2R
η2	

− 1
2

1 D2 f (∇u)
(∇∂1u,∇∂1u

)
dx

+c(ε)
∫

B2R
D2 f (∇u)(∇η,∇η)	

1
2
1 ln2(e2 − 1 + 	1) dx . (3.6)

Finally we combine (3.6) and (3.4), thus for a fixed ε being sufficiently small it holds

∫

B2R
D2 f (∇u)

(∇∂1u,∇∂1u
)
η2	

− 1
2

1 dx

≤ c
∫

B2R
D2 f (∇u)(∇η,∇η)	

1
2
1 ln2(e2 − 1 + 	1) dx . (3.7)

The properties of η as stated after (2.1) imply that the right-hand side of (3.7) is
bounded by (recall (1.9))

cR−2
∫

B2R
|D2 f (∇u)|	

1
2
1 ln2(e2 − 1 + 	1) dx

≤ cR−2
∫

B2R

1

1 + |∇u|	
1
2
1 ln2(e2 − 1 + 	1) dx

≤ cR−2
∫

B2R

1

1 + |∂2u| (1 + |∂1u|) ln2(1 + |∂1u|) dx .

Quoting (1.10) and returning to (3.7) we find that

∫

R2
D2 f (∇u)

(∇∂1u,∇∂1u
)
η2	

− 1
2

1 dx < ∞ . (3.8)

With (3.8) and on account of estimate (3.5) it is immediate (recall (3.4)) that actually

∫

R2
D2 f (∇u)

(∇∂1u,∇∂1u
)
	

− 1
2

1 = 0 ,

hence ∇∂1u = 0 and we can follow the lines of Sect. 2 to prove our claim. �
An inspection of our previous arguments shows that we can replace the function

ln(e2 − 1+ t) used before by any function ρ: [1,∞) → R
+ of class C1 such that we

have for all t ≥ 1

ρ′(t) > 0 ,
d

dt

[ 1√
t
ρ(t)

]
≤ 0 . (3.9)

Replacing (3.1) by

(t) := 1√
t
ρ(t) t ≥ 1 , (3.10)
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and letting as before ψ := η2∂1u(	1) now with  defined in (3.10) we obtain

Theorem 3.1 Let f satisfy (1.5) together with (1.9) and choose ρ according to (3.9).
Suppose that u ∈ C2(R2) is an entire solution of (1.3) such that

	
− 1

2
1

ρ2(	1)

ρ′(	1)
≤ c	

1
2
2 , 	i := 1 + |∂i u|2 , i = 1, 2 ,

or

sup
R>0

R−2
∫

BR

	−1
1

ρ2(	1)

ρ′(	1)
dx < ∞

holds with some finite constant c. Then u is an affine function.

We leave the details to the reader just adding the obvious remark that clearly we can
interchange the roles of the partial derivatives ∂1u and ∂2u or even work with arbitrary
directional derivatives as done in Theorem 1.3.
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4 Appendix

We shortly discuss the Nitsche-criterion (see [8], Satz) for the model case

∫
|∇u| ln (

1 + |∇u|) dx .

With a slight abuse of notation but in accordance with the terminology of [8] we let

g(t) := t ln(1 + t) , t ≥ 0 , f (t) := g
(√

t
)
,

so that

J [u] :=
∫

|∇u| ln (
1 + |∇u|) dx =

∫
f
(|∇u|2) dx .
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Introducing the function λ(t) := 2 f ′′(t)/ f ′(t) again for t ≥ 0 we claim

∫ ∞

1

1 + tλ(t)

2 + tλ(t)

1

t
dt = ∞ . (4.1)

From (4.1) it follows that the Euler-equation associated to the functional J admits
entire non-affine solutions.

For (4.1) we observe the formula

1

t

1 + tλ(t)

2 + tλ(t)
= 1

1 +
√
t

g′′(
√
t)
g′(

√
t)

=: �(t)

and remark that for t � 1 it holds

c1t ln
(
1 + √

t
) ≤

√
tg′(

√
t)

g′′(
√
t)

≤ c2t ln
(
1 + √

t
)

as well as t ≤ c3t ln
(
1 + √

t
)
, hence

�(t) ≥ c4
1

t ln
(
1 + √

t
) ≥ c5

1

t ln
(
1 + t

)

again for t � 1. Since

∫ ∞

1

dt

t ln
(
1 + t

) = ∞ ,

the claim (4.1) follows. �
Remark 4.1 Formally the above model case of nearly linear growth should satisfy the
C3,α-condition posed in [8]. Since the integral occurring in (4.1) is not depending on
the energy density for small values of t , we may easily adjust the example to obtain a
C3,α-density of nearly linear growth. For example we just let fε(t) := √

ε + t ln(1+√
ε + t), t ≥ 0, with some ε > 0.
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