Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46432
Titel: Learning from the Data to Predict the Process : Generalization Capabilities of Next Activity Prediction Algorithms
VerfasserIn: Pfeiffer, Peter
Abb, Luka
Fettke, Peter
Rehse, Jana-Rebecca
Sprache: Englisch
Titel: Business & Information Systems Engineering
Bandnummer: 67
Heft: 3
Seiten: 357-383
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2025
Freie Schlagwörter: Process prediction
Predictive process monitoring
Next activity prediction
Generalization
Validity issues
DDC-Sachgruppe: 330 Wirtschaft
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Predictive process monitoring (PPM) aims to forecast how a running process instance will unfold in the future, e.g., which activity will be executed next. For this purpose, PPM techniques rely on machine learning models trained on historical event log data. Such models are assumed to learn an implicit representation of the process that accurately reflects the behavior contained in the data, so that they can be used to make correct predictions for new traces with unseen behavior. This capability, called generalization, is fundamental to any machine learning application. However, researchers currently have a limited understanding of what generalization means in a PPM context and how it relates to the characteristics of event logs. In the paper, the authors discuss the generalization capabilities of PPM approaches, focusing on next activity prediction. They develop a framework for generalization in PPM, derived from the understanding of the term in general machine learning. The framework is applied to next activity prediction by developing concrete prediction scenarios, creating corresponding event logs, and using these logs to empirically evaluate the generalization capabilities of state-of-theart models. The evaluation shows that next activity prediction models generalize well in almost all scenarios.
DOI der Erstveröffentlichung: 10.1007/s12599-025-00936-4
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s12599-025-00936-4
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-464329
hdl:20.500.11880/40714
http://dx.doi.org/10.22028/D291-46432
ISSN: 1867-0202
2363-7005
Datum des Eintrags: 21-Okt-2025
Fakultät: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Fachrichtung: HW - Wirtschaftswissenschaft
Professur: HW - Prof. Dr. Peter Loos
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s12599-025-00936-4.pdf997,84 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons