Please use this identifier to cite or link to this item: doi:10.22028/D291-46226
Title: Homogeneous Multigrid for Hybrid Discretizations: Application to HHO Methods
Author(s): Di Pietro, Daniele A.
Dong, Zhaonan
Kanschat, Guido
Matalon, Pierre
Rupp, Andreas
Language: English
Title: Numerical Methods for Partial Differential Equations
Volume: 41
Issue: 5
Publisher/Platform: Wiley
Year of Publication: 2025
Free key words: geometric multigrid
homogeneous multigrid
hybrid high-order methods
skeleton methods
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We prove the uniform convergence of the geometric multigrid V-cycle for hybrid high-order (HHO) and other discontinuous skeletal methods. Our results generalize previously established results for HDG methods, and our multigrid method uses standard smoothers and local solvers that are bounded, convergent, and consistent. We use a weak version of elliptic regularity in our proofs. Numerical experiments confirm our theoretical results.
DOI of the first publication: 10.1002/num.70023
URL of the first publication: https://doi.org/10.1002/num.70023
Link to this record: urn:nbn:de:bsz:291--ds-462265
hdl:20.500.11880/40519
http://dx.doi.org/10.22028/D291-46226
ISSN: 1098-2426
0749-159X
Date of registration: 9-Sep-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Andreas Rupp
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



This item is licensed under a Creative Commons License Creative Commons