Please use this identifier to cite or link to this item:
doi:10.22028/D291-46226
Title: | Homogeneous Multigrid for Hybrid Discretizations: Application to HHO Methods |
Author(s): | Di Pietro, Daniele A. Dong, Zhaonan Kanschat, Guido Matalon, Pierre Rupp, Andreas |
Language: | English |
Title: | Numerical Methods for Partial Differential Equations |
Volume: | 41 |
Issue: | 5 |
Publisher/Platform: | Wiley |
Year of Publication: | 2025 |
Free key words: | geometric multigrid homogeneous multigrid hybrid high-order methods skeleton methods |
DDC notations: | 510 Mathematics |
Publikation type: | Journal Article |
Abstract: | We prove the uniform convergence of the geometric multigrid V-cycle for hybrid high-order (HHO) and other discontinuous skeletal methods. Our results generalize previously established results for HDG methods, and our multigrid method uses standard smoothers and local solvers that are bounded, convergent, and consistent. We use a weak version of elliptic regularity in our proofs. Numerical experiments confirm our theoretical results. |
DOI of the first publication: | 10.1002/num.70023 |
URL of the first publication: | https://doi.org/10.1002/num.70023 |
Link to this record: | urn:nbn:de:bsz:291--ds-462265 hdl:20.500.11880/40519 http://dx.doi.org/10.22028/D291-46226 |
ISSN: | 1098-2426 0749-159X |
Date of registration: | 9-Sep-2025 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Prof. Dr. Andreas Rupp |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Numerical Methods Partial - 2025 - Di Pietro - Homogeneous Multigrid for Hybrid Discretizations Application to HHO Methods.pdf | 320,93 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License