Please use this identifier to cite or link to this item:
doi:10.22028/D291-45492 | Title: | On von Neumann’s inequality on the polydisc |
| Author(s): | Hartz, Michael |
| Language: | English |
| Title: | Mathematische Annalen |
| Volume: | 391 (2025) |
| Issue: | 4 |
| Pages: | 5235-5264 |
| Publisher/Platform: | Springer Nature |
| Year of Publication: | 2024 |
| Free key words: | Primary 47A13 Secondary 47A30 47A60 |
| DDC notations: | 510 Mathematics |
| Publikation type: | Journal Article |
| Abstract: | Given a d-tuple T of commuting contractions on Hilbert space and a polynomial p in d-variables, we seek upper bounds for the norm of the operator p(T ). Results of von Neumann and Andô show that if d = 1 or d = 2, the upper bound p(T ) ≤ p∞, holds, where the supremum norm is taken over the polydisc Dd . We show that for d = 3, there exists a universal constant C such that p(T ) ≤ Cp∞ for every homogeneous polynomial p. We also show that for general d and arbitrary polynomials, the norm p(T ) is dominated by a certain Besov-type norm of p. |
| DOI of the first publication: | 10.1007/s00208-024-03040-2 |
| URL of the first publication: | https://link.springer.com/article/10.1007/s00208-024-03040-2 |
| Link to this record: | urn:nbn:de:bsz:291--ds-454921 hdl:20.500.11880/40071 http://dx.doi.org/10.22028/D291-45492 |
| ISSN: | 1432-1807 0025-5831 |
| Date of registration: | 2-Jun-2025 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Professorship: | MI - Junior Professor Michael Hartz |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| s00208-024-03040-2.pdf | 408,02 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License

