Please use this identifier to cite or link to this item: doi:10.22028/D291-44935
Title: Distributive properties of division points and discriminants of Drinfeld modules
Author(s): Gekeler, Ernst-Ulrich
Language: English
Title: Journal of Algebra
Volume: 667
Pages: 165-202
Publisher/Platform: Elsevier
Year of Publication: 2025
Free key words: Drinfeld modules
Drinfeld modular forms
Distributions and derived
distributions
Product formulas
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We present a new notion of distribution and derived distribution of rank r ∈ N for a global function field K with a distinguished place ∞. It allows to describe the relations between division points, isogenies, and discriminants both for a fixed Drinfeld module of rank r for the above data, or for the corresponding modular forms. We introduce and study three basic distributions with values in Q, in the group μ(K) of roots of unity in the algebraic closure K of K, and in the group U(1)(C∞) of 1-units of the completed algebraic closure C∞ of K∞, respectively. There result product formulas for division points and discriminants that encompass known results (e.g. analogues of Wallis’ formula for (2πı)2 in the rank-1 case, of Jacobi’s formula Δ = (2πı)12q (1−qn)24 in the rank-2 case, and similar boundary expansions for r > 2) and several new ones: the definition of a canonical discriminant for the most general case of Drinfeld modules and the description of the sizes of division and discriminant forms. In the now classical case where (K, ∞)=(Fq(T),∞) and r = 1, 2 or 3, we give explicit values for the logarithms of such forms.
DOI of the first publication: 10.1016/j.jalgebra.2024.12.016
URL of the first publication: https://doi.org/10.1016/j.jalgebra.2024.12.016
Link to this record: urn:nbn:de:bsz:291--ds-449355
hdl:20.500.11880/39891
http://dx.doi.org/10.22028/D291-44935
ISSN: 0021-8693
Date of registration: 2-Apr-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S0021869324006896-main.pdf817,67 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons