Please use this identifier to cite or link to this item:
doi:10.22028/D291-37414
Title: | Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications |
Author(s): | Recktenwald, Steffen M. Lopes, Marcelle G. M. Peter, Stephana Hof, Sebastian Simionato, Greta Peikert, Kevin Hermann, Andreas Danek, Adrian van Bentum, Kai Eichler, Hermann Wagner, Christian Quint, Stephan Kästner, Lars |
Language: | English |
Title: | Frontiers in Physiology |
Volume: | 13 |
Publisher/Platform: | Frontiers |
Year of Publication: | 2022 |
Free key words: | erythrocyte microfluidics shape classification artificial capillary neuroacanthocytosis syndrome hemodiafiltration red cell storage phase diagram |
DDC notations: | 500 Science 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | In many medical disciplines, red blood cells are discovered to be biomarkers since they “experience” various conditions in basically all organs of the body. Classical examples are diabetes and hypercholesterolemia. However, recently the red blood cell distribution width (RDW), is often referred to, as an unspecific parameter/marker (e.g., for cardiac events or in oncological studies). The measurement of RDW requires venous blood samples to perform the complete blood cell count (CBC). Here, we introduce Erysense, a lab-on-a-chip-based point-of-care device, to evaluate red blood cell flow properties. The capillary chip technology in combination with algorithms based on artificial neural networks allows the detection of very subtle changes in the red blood cell morphology. This flow-based method closely resembles in vivo conditions and blood sample volumes in the sub-microliter range are sufficient. We provide clinical examples for potential applications of Erysense as a diagnostic tool [here: neuroacanthocytosis syndromes (NAS)] and as cellular quality control for red blood cells [here: hemodiafiltration (HDF) and erythrocyte concentrate (EC) storage]. Due to the wide range of the applicable flow velocities (0.1–10 mm/s) different mechanical properties of the red blood cells can be addressed with Erysense providing the opportunity for differential diagnosis/judgments. Due to these versatile properties, we anticipate the value of Erysense for further diagnostic, prognostic, and theragnostic applications including but not limited to diabetes, iron deficiency, COVID-19, rheumatism, various red blood cell disorders and anemia, as well as inflammation-based diseases including sepsis. |
DOI of the first publication: | 10.3389/fphys.2022.884690 |
URL of the first publication: | https://www.frontiersin.org/articles/10.3389/fphys.2022.884690 |
Link to this record: | urn:nbn:de:bsz:291--ds-374148 hdl:20.500.11880/33844 http://dx.doi.org/10.22028/D291-37414 |
ISSN: | 1664-042X |
Date of registration: | 27-Sep-2022 |
Description of the related object: | Supplementary Material |
Related object: | https://www.frontiersin.org/articles/file/downloadfile/884690_supplementary-materials_datasheets_1_pdf/octet-stream/Data%20Sheet%201.PDF/1/884690 |
Faculty: | M - Medizinische Fakultät NT - Naturwissenschaftlich- Technische Fakultät |
Department: | M - Chirurgie NT - Physik |
Professorship: | M - Prof. Dr. Hermann Eichler NT - Prof. Dr. Christian Wagner |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
fphys-13-884690.pdf | 1,9 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License