Please use this identifier to cite or link to this item:
doi:10.22028/D291-36728
Title: | Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements |
Author(s): | Webel, Johannes Mohrbacher, Hardy Detemple, Eric Britz, Dominik Mücklich, Frank |
Language: | English |
Title: | Journal of Materials Research and Technology |
Volume: | 18 |
Pages: | 2048-2063 |
Publisher/Platform: | Elsevier |
Year of Publication: | 2022 |
Free key words: | High-strength low-alloy steel Nb-Ti-Mixed carbonitrides Solubility Electrical resistivity measurements Atom probe tomography |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | Solubility of mixed niobium-titanium carbonitrides in commercially relevant High Strength Low-Alloy (HSLA) steel was investigated by combined use of electrical re sistivity measurements and APT after interrupted quenching from soaking temperatures between 950 and 1250 C. Increasing electrical resistivity of the bulk material towards higher soaking temperatures was proportional to the nominal niobium addition which was varied between 0.002 and 0.022e0.043e0.085 wt.-%. Correlative APT analysis of the solutes in the steel matrix showed good agreement with electrical resistivity. Investigating numerous precipitate particles, APT also derived a precise composition for mixed niobium titanium-carbonitrides which constitute the steel microstructure after casting/before soaking. The scavenging of microalloy elements by insoluble titanium nitrides was cor rected by means of combined APT analysis of such precipitate and a quantitative image analysis for the estimation of the total volume fraction of titanium nitrides. For the first time, solute and precipitate composition together were used for solubility calculations of such mixed carbonitrides to derive an experimental solubility product. This was compared to solubility products of well-established simple carbides and nitrides and theoretical calculations of the solubility of multicomponent carbonitrides. The large discrepancy between experimentally derived and modelled solubility emphasizes the ne cessity of a robust methodology for the quantification of microalloy precipitation in HSLA steels. |
DOI of the first publication: | 10.1016/j.jmrt.2022.03.098 |
URL of the first publication: | https://www.sciencedirect.com/science/article/pii/S2238785422004057 |
Link to this record: | urn:nbn:de:bsz:291--ds-367281 hdl:20.500.11880/33374 http://dx.doi.org/10.22028/D291-36728 |
ISSN: | 2214-0697 2238-7854 |
Date of registration: | 11-Jul-2022 |
Description of the related object: | Supplementary data |
Related object: | https://ars.els-cdn.com/content/image/1-s2.0-S2238785422004057-mmc1.docx |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Materialwissenschaft und Werkstofftechnik |
Professorship: | NT - Prof. Dr. Frank Mücklich |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2238785422004057-main.pdf | 2,78 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License