Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-33579
Titel: Random gas mixtures for efficient gas sensor calibration
VerfasserIn: Baur, Tobias
Bastuck, Manuel
Schultealbert, Caroline
Sauerwald, Tilman
Schütze, Andreas
Sprache: Englisch
Titel: Journal of Sensors and Sensor Systems
Bandnummer: 9
Heft: 2
Seiten: 411-424
Verlag/Plattform: Copernicus Publications
Erscheinungsjahr: 2020
DDC-Sachgruppe: 600 Technik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Applications like air quality, fire detection and detection of explosives require selective and quantitative measurements in an ever-changing background of interfering gases. One main issue hindering the successful implementation of gas sensors in real-world applications is the lack of appropriate calibration procedures for advanced gas sensor systems. This article presents a calibration scheme for gas sensors based on statistically distributed gas profiles with unique randomized gas mixtures. This enables a more realistic gas sensor calibration including masking effects and other gas interactions which are not considered in classical sequential calibration. The calibration scheme is tested with two different metal oxide semiconductor sensors in temperature-cycled operation using indoor air quality as an example use case. The results are compared to a classical calibration strategy with sequentially increasing gas concentrations. While a model trained with data from the sequential calibration performs poorly on the more realistic mixtures, our randomized calibration achieves significantly better results for the prediction of both sequential and randomized measurements for, for example, acetone, benzene and hydrogen. Its statistical nature makes it robust against overfitting and well suited for machine learning algorithms. Our novel method is a promising approach for the successful transfer of gas sensor systems from the laboratory into the field. Due to the generic approach using concentration distributions the resulting performance tests are versatile for various applications.
DOI der Erstveröffentlichung: 10.5194/jsss-9-411-2020
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-335792
hdl:20.500.11880/30910
http://dx.doi.org/10.22028/D291-33579
ISSN: 2194-878X
Datum des Eintrags: 17-Mär-2021
Bezeichnung des in Beziehung stehenden Objekts: Data availability
In Beziehung stehendes Objekt: https://doi.org/10.5281/zenodo.4264224
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
jsss-9-411-2020.pdf5,02 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons