Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-33579
Titel: | Random gas mixtures for efficient gas sensor calibration |
VerfasserIn: | Baur, Tobias Bastuck, Manuel Schultealbert, Caroline Sauerwald, Tilman Schütze, Andreas |
Sprache: | Englisch |
Titel: | Journal of Sensors and Sensor Systems |
Bandnummer: | 9 |
Heft: | 2 |
Seiten: | 411-424 |
Verlag/Plattform: | Copernicus Publications |
Erscheinungsjahr: | 2020 |
DDC-Sachgruppe: | 600 Technik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Applications like air quality, fire detection and detection of explosives require selective and quantitative measurements in an ever-changing background of interfering gases. One main issue hindering the successful implementation of gas sensors in real-world applications is the lack of appropriate calibration procedures for advanced gas sensor systems. This article presents a calibration scheme for gas sensors based on statistically distributed gas profiles with unique randomized gas mixtures. This enables a more realistic gas sensor calibration including masking effects and other gas interactions which are not considered in classical sequential calibration. The calibration scheme is tested with two different metal oxide semiconductor sensors in temperature-cycled operation using indoor air quality as an example use case. The results are compared to a classical calibration strategy with sequentially increasing gas concentrations. While a model trained with data from the sequential calibration performs poorly on the more realistic mixtures, our randomized calibration achieves significantly better results for the prediction of both sequential and randomized measurements for, for example, acetone, benzene and hydrogen. Its statistical nature makes it robust against overfitting and well suited for machine learning algorithms. Our novel method is a promising approach for the successful transfer of gas sensor systems from the laboratory into the field. Due to the generic approach using concentration distributions the resulting performance tests are versatile for various applications. |
DOI der Erstveröffentlichung: | 10.5194/jsss-9-411-2020 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-335792 hdl:20.500.11880/30910 http://dx.doi.org/10.22028/D291-33579 |
ISSN: | 2194-878X |
Datum des Eintrags: | 17-Mär-2021 |
Bezeichnung des in Beziehung stehenden Objekts: | Data availability |
In Beziehung stehendes Objekt: | https://doi.org/10.5281/zenodo.4264224 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Systems Engineering |
Professur: | NT - Prof. Dr. Andreas Schütze |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
jsss-9-411-2020.pdf | 5,02 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons