Please use this identifier to cite or link to this item:
doi:10.22028/D291-32384
Title: | Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity |
Author(s): | Schultealbert, Caroline Uzun, Iklim Baur, Tobias Sauerwald, Tilman Schütze, Andreas |
Language: | English |
Title: | Journal of Sensors and Sensor Systems |
Volume: | 9 |
Issue: | 2 |
Startpage: | 283 |
Endpage: | 292 |
Publisher/Platform: | Copernicus Publications |
Year of Publication: | 2020 |
DDC notations: | 500 Science 600 Technology 620 Engineering and machine engineering 660 Chemical engineering |
Publikation type: | Journal Article |
Abstract: | The impact of a hexamethyldisiloxane (HMDSO) treatment on the response of doped SnO2 sensors is investigated for acetone, carbon monoxide and hydrogen. The sensor was operated in temperature cycles based on the DSR concept (differential surface reduction). According to this concept, the rate constants for the reduction and oxidation of the surface after fast temperature changes can be evaluated and used for quantification of reducing gases as well as quantification and compensation of sensor poisoning by siloxanes, which is shown in this work. Increasing HMDSO exposure reduces the rate constants and therefore the sensitivity of the sensor more and more for all processes. On the other hand, while the rate constants for acetone and carbon monoxide are reduced nearly to zero already for short treatments, the hydrogen sensitivity remains fairly stable, which greatly increases the selectivity. During repeated HMDSO treatment the quasistatic sensitivity, i.e. equilibrium sensitivity at one point during the temperature cycle, rises at first for all gases but then drops rapidly for acetone and carbon monoxide, which can also be explained by reduced rate constants for oxygen chemisorption on the sensor surface when considering the generation of surface charge. |
DOI of the first publication: | 10.5194/jsss-9-283-2020 |
Link to this record: | urn:nbn:de:bsz:291--ds-323849 hdl:20.500.11880/30168 http://dx.doi.org/10.22028/D291-32384 |
ISSN: | 2194-8771 |
Date of registration: | 9-Dec-2020 |
Description of the related object: | Data sets and Supplement |
Related object: | https://jsss.copernicus.org/articles/9/283/2020/ |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Systems Engineering |
Professorship: | NT - Prof. Dr. Andreas Schütze |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
jsss-9-283-2020.pdf | 2,71 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License