Please use this identifier to cite or link to this item: doi:10.22028/D291-31068
Title: Classification of Bainitic Structures Using Textural Parameters and Machine Learning Techniques
Author(s): Müller, Martin
Britz, Dominik
Ulrich, Laura
Staudt, Thorsten
Mücklich, Frank
Language: English
Title: Metals
Volume: 10
Issue: 5
Publisher/Platform: MDPI
Year of Publication: 2020
Free key words: bainite
microstructure classification
textural parameters
Haralick parameters
local binary pattern
machine learning
support vector machine
DDC notations: 600 Technology
Publikation type: Journal Article
Abstract: Bainite is an essential constituent of modern high strength steels. In addition to the still great challenge of characterization, the classification of bainite poses difficulties. Challenges when dealing with bainite are the variety and amount of involved phases, the fineness and complexity of the structures and that there is often no consensus among human experts in labeling and classifying those. Therefore, an objective and reproducible characterization and classification is crucial. To achieve this, it is necessary to analyze the substructure of bainite using scanning electron microscope (SEM). This work will present how textural parameters (Haralick features and local binary pattern) calculated from SEM images, taken from specifically produced benchmark samples with defined structures, can be used to distinguish different bainitic microstructures by using machine learning techniques (support vector machine). For the classification task of distinguishing pearlite, granular, degenerate upper, upper and lower bainite as well as martensite a classification accuracy of 91.80% was achieved, by combining Haralick features and local binary pattern.
DOI of the first publication: 10.3390/met10050630
Link to this record: urn:nbn:de:bsz:291--ds-310680
hdl:20.500.11880/29460
http://dx.doi.org/10.22028/D291-31068
ISSN: 2075-4701
Date of registration: 24-Jul-2020
Description of the related object: Supplementary Material
Related object: https://www.mdpi.com/2075-4701/10/5/630/s1
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Frank Mücklich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
metals-10-00630-v2.pdf9,61 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons