Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-29121
Title: | A carbon nanopore model to quantify structure and kinetics of ion electrosorption with in situ small-angle X-ray scattering |
Author(s): | Prehal, Christian Koczwara, Christian Jäckel, Nicolas Amenitsch, Heinz Presser, Volker Paris, Oskar |
Language: | English |
Title: | Physical chemistry, chemical physics : PCCP |
Volume: | 19 |
Issue: | 23 |
Startpage: | 15549 |
Endpage: | 15561 |
Publisher/Platform: | RSC |
Year of Publication: | 2017 |
Publikation type: | Journal Article |
Abstract: | A new carbon model derived from in situ small-angle X-ray scattering (SAXS) enables a quantitative description of the voltage-dependent arrangement and transport of ions within the nanopores of carbon-based electric double-layer capacitors. In the first step, ex situ SAXS data for nanoporous carbon-based electrodes are used to generate a three-dimensional real-space model of the nanopore structure using the concept of Gaussian random fields. This pore model is used to derive important pore size characteristics, which are cross-validated against the corresponding values from gas sorption analysis. In the second step, simulated in situ SAXS patterns are generated after filling the model pore structure with an aqueous electrolyte and rearranging the ions via a Monte Carlo simulation for different applied electrical potentials. These simulated SAXS patterns are compared with in situ SAXS patterns recorded during voltage cycling. Experiments with different cyclic voltammetry scan rates revealed a systematic time lag between ion transport processes and the applied voltage signal. Global transport into and out of nanopores was found to be faster than the accommodation of the local equilibrium arrangement in favor of sites with a high degree of confinement. |
DOI of the first publication: | 10.1039/C7CP00736A |
URL of the first publication: | https://pubs.rsc.org/en/content/articlelanding/2017/cp/c7cp00736a#!divAbstract |
Link to this record: | hdl:20.500.11880/28003 http://dx.doi.org/10.22028/D291-29121 |
ISSN: | 1463-9084 1463-9076 |
Date of registration: | 2-Oct-2019 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Materialwissenschaft und Werkstofftechnik |
Professorship: | NT - Prof. Dr. Volker Presser |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.