Please use this identifier to cite or link to this item: doi:10.22028/D291-24705
Title: TiO2 nanoparticle coatings for self-cleaning and antimicrobial application
Author(s): Niegisch, Nico
Akarsu, Murat
Csögör, Zsuzsa
Ehses, Markus
Schmidt, Helmut K.
Language: English
Year of Publication: 2002
OPUS Source: Hygienic coatings : Brussels, Belgium, 8 - 9 July 2002 ; conference papers / [The First Global Conference Dedicated to Hygienic Coatings. The International Centre for Coatings Technology, Paint Research Association]. - Teddington, Middlesex : Paint Research Association, 2002, Paper 26
SWD key words: Nanopartikel
Photokatalyse
Hydrophobie
DDC notations: 620 Engineering and machine engineering
Publikation type: Conference Paper
Abstract: The photocatalytic effect of TiO2 (especially anatase) is very well known. For the utilization of this effect for hygienic surfaces, especially on plastic surfaces, a wet coating technology has been developed. To enhance the photocatalytic effect of TiO2, anatase nanoparticles with a narrow volume particle size distribution (d1=7nm, d50=9nm, d90=11nm) have been synthesized and surface modified by hydrophobic components in order to disperse them in organic solvents. Since the photocatalytic effect is a non-specific one, and all organic materials are oxidized, a buffer layer stable against oxidation has been used between plastic substrates and TiO2 top layer. The selfcleaning behaviour was determined by the degradation of bovine serum albumin. After 8 h under irradiation (1200 W/m2) in a sun tester the concentration was decreased from 0.3 mg/cm2 under the limit of detection. To show the antimicrobial effect colony forming bacteria (E. coli) were determined after 10 min irradiation (1200 W/m2) leading to an inactivation of about 50% of 1000 CFU/cm2. Additionally the coated plastic surface shows an antifogging behaviour.
Link to this record: urn:nbn:de:bsz:291-scidok-30296
hdl:20.500.11880/24761
http://dx.doi.org/10.22028/D291-24705
ISBN: 0-9543164-0-1
Date of registration: 12-Nov-2010
Faculty: SE - Sonstige Einrichtungen
Department: SE - INM Leibniz-Institut für Neue Materialien
Collections:INM
SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
sm200206.pdf663,35 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.