Please use this identifier to cite or link to this item: doi:10.22028/D291-24204
Title: Electrochromism of NiO-TiO2 sol gel layers
Author(s): Al-Kahlout, Amal
Heusing, Sabine
Aegerter, Michel A.
Language: English
Year of Publication: 2006
OPUS Source: Journal of sol gel science and technology. - 39. 2006, S. 195—206
SWD key words: Tauchbeschichten
Elektrochromie
Dünne Schicht
Acetate
Röntgendiffraktometrie
Rasterelektronenmikroskop
DDC notations: 620 Engineering and machine engineering
Publikation type: Journal Article
Abstract: Films of NiO-TiO2 with Ni concentration of 100, 90, 87, 83, 75, 66, 50 and 33 mol% have been obtained via the sol-gel route by dip coating technique and sintered in air between 250 and 500°C using ethanolic sols of nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O) and titanium n-propoxide (Ti(O-CH(CH3)2)4) precursors. Xerogels obtained by drying the sols have been studied up to 900°C by thermal analysis (DTA/TG) coupled to mass and IR spectroscopy. The crystalline structure and morphology of the layers in the as deposited, bleached and colored states were determined by X-ray diffractometry, scanning electron microscopy and transmission electron microscopy Their electrochromic properties have been studied in 1 M KOH aqueous electrolyte as a function of the layer composition, thickness and sintering temperature. Deep brown colour with reversible transmittance changes have been obtained using cycling voltammetry and chronoamperometry processes. The best composition to get stable sols, a high reversible transmittance change and fast switching times (<10 s) was obtained with double NiO-TiO2 layers 160 nm thick having 75% Ni molar concentration, and sintered between 300 and 350°C. The mechanism of coloration and morphology transformation of the layer during cycling are discussed in terms of an activation and degradation period. The results are in agreement with the accepted Bode model.
Link to this record: urn:nbn:de:bsz:291-scidok-25491
hdl:20.500.11880/24260
http://dx.doi.org/10.22028/D291-24204
Date of registration: 11-Nov-2009
Faculty: SE - Sonstige Einrichtungen
Department: SE - INM Leibniz-Institut für Neue Materialien
Collections:INM
SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
aeg200608.pdf627,73 kBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.