Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35037
Titel: High-Performance VOC Quantification for IAQ Monitoring Using Advanced Sensor Systems and Deep Learning
VerfasserIn: Robin, Yannick
Amann, Johannes
Baur, Tobias
Goodarzi, Payman
Schultealbert, Caroline
Schneider, Tizian
Schütze, Andreas
Sprache: Englisch
Titel: Atmosphere
Bandnummer: 12
Heft: 11
Verlag/Plattform: MDPI
Erscheinungsjahr: 2021
Freie Schlagwörter: volatile organic compounds (VOCs)
indoor air quality (IAQ)
deep neural networks
neural network architecture search
temperature-cycled operation (TCO)
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: With air quality being one target in the sustainable development goals set by the United Nations, accurate monitoring also of indoor air quality is more important than ever. Chemiresistive gas sensors are an inexpensive and promising solution for the monitoring of volatile organic com pounds, which are of high concern indoors. To fully exploit the potential of these sensors, advanced operating modes, calibration, and data evaluation methods are required. This contribution outlines a systematic approach based on dynamic operation (temperature-cycled operation), randomized calibration (Latin hypercube sampling), and the use of advances in deep neural networks originally developed for natural language processing and computer vision, applying this approach to volatile organic compound measurements for indoor air quality monitoring. This paper discusses the pros and cons of deep neural networks for volatile organic compound monitoring in a laboratory en vironment by comparing the quantification accuracy of state-of-the-art data evaluation methods with a 10-layer deep convolutional neural network (TCOCNN). The overall performance of both methods was compared for complex gas mixtures with several volatile organic compounds, as well as interfering gases and changing ambient humidity in a comprehensive lab evaluation. Furthermore, both were tested under realistic conditions in the field with additional release tests of volatile organic compounds. The results obtained during field testing were compared with analytical measurements, namely the gold standard gas chromatography mass spectrometry analysis based on Tenax sampling, as well as two mobile systems, a gas chromatograph with photo-ionization detection for volatile organic compound monitoring and a gas chromatograph with a reducing compound photometer for the monitoring of hydrogen. The results showed that the TCOCNN outperforms state-of-the-art data evaluation methods, for example for critical pollutants such as formaldehyde, achieving an uncertainty of around 11 ppb even in complex mixtures, and offers a more robust volatile organic compound quantification in a laboratory environment, as well as in real ambient air for most targets.
DOI der Erstveröffentlichung: 10.3390/atmos12111487
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-350376
hdl:20.500.11880/32030
http://dx.doi.org/10.22028/D291-35037
ISSN: 2073-4433
Datum des Eintrags: 8-Dez-2021
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Andreas Schütze
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
atmosphere-12-01487.pdf2,83 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons