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Abstract

Machine learning has driven significant advancements across diverse domains. However,
models often experience performance degradation when applied to data distributions that
differ from those encountered during training, a challenge known as domain shift. This
issue is particularly relevant in industrial condition monitoring, where data originate from
heterogeneous sensors operating under varying conditions, hardware configurations, or
environments. Domain adaptation is a well-known method to address this problem; how-
ever, the proposed methods are not directly applicable in real-world condition monitoring
scenarios. This study addresses such challenges by introducing a Normal-Class Test-Time
Domain Adaptation (NC-TTDA) framework tailored for condition monitoring applications.
The proposed framework detects distributional shifts in sensor data and adapts pretrained
models to new operating conditions by exploiting readily available normal-class samples,
without requiring labeled target data. Furthermore, it integrates seamlessly with automated
machine learning (AutoML) workflows to support hyperparameter optimization, model
selection, and test-time adaptation within an end-to-end pipeline. Experiments conducted
on six publicly available condition monitoring datasets demonstrate that the proposed ap-
proach achieves robust generalization under domain shift, yielding average AUROC scores
above 99% and low false positive rates across all target domains. This work emphasizes
the need for practical solutions to address domain adaptation in condition monitoring and
highlights the effectiveness of NC-TTDA for real-world industrial monitoring applications.

Keywords: domain shift; AutoML; deep learning; condition monitoring; domain adaptation;
fault detection; multi-sensor

1. Introduction
Machine learning (ML) has established itself as a valuable tool in daily life, with appli-

cations ranging from entertainment and healthcare to industrial automation. ML-based
tools demonstrate strong performance across various applications; however, their effec-
tiveness often drops when the data distribution deviates from that of the training set. This
phenomenon, known as domain shift or distribution shift, poses a significant challenge to
real-world deployments [1]. For example, a model trained to classify handwritten digits
using the MNIST [2] dataset (source domain) may perform poorly when tested on street
view house numbers (SVHN [3]) dataset (target domain), despite both tasks involving digit
recognition. This is because the visual characteristics of the digits (e.g., font, background
noise, resolution) vary significantly between the two domains.

Sensors 2025, 25, 7614 https://doi.org/10.3390/s25247614

https://doi.org/10.3390/s25247614
https://doi.org/10.3390/s25247614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3937-1752
https://orcid.org/0000-0003-3060-5177
https://doi.org/10.3390/s25247614
https://www.mdpi.com/article/10.3390/s25247614?type=check_update&version=2


Sensors 2025, 25, 7614 2 of 19

The distribution of the target domain may differ from that of the source (training) data.
Ideally, models should maintain robustness against such domain shifts. This is especially
important in industrial settings, where collecting and labeling new data is costly and in
many cases impractical [4,5]. In these cases, the ideal approach is to train a model on one
or multiple source domains so that it can generalize to other unseen, but similar domains.

Although numerous methods have been proposed to enhance ML model robustness
against domain shift [6–8], achieving full invariance to all domain shifts remains challeng-
ing [9]. Nevertheless, models can often be made robust to specific types of shifts, such as
linear shifts or those confined within a limited range [7]. For instance, in a bearing fault
diagnosis system, it may be possible to generalize a model across different rotational speeds
within a specific range [10,11]. However, adapting that model to a completely different
bearing type or operational condition can be significantly more difficult [12].

Recent advances in addressing domain shift for fault diagnosis have introduced
specialized contrastive and graph-based methods to handle challenging industrial scenarios.
Chen et al. [13] address surface defect detection on aluminum substrates under dynamic
industrial conditions, where traditional CCD/CMOS cameras struggle with minute defects.
They propose a Progressive Contrastive Representation Learning framework that combines
novel event stream imaging with a four-stage contrastive loss to handle both known and
unknown fault classes effectively. Qi et al. [14] propose a multi-task graph isomorphism
network enhanced with an attention mechanism that jointly performs fault diagnosis
and RUL prediction, leveraging parameter sharing and self-attention to capture common
features between different tasks.

Transfer learning in ML refers to the process of applying knowledge gained from one
task or domain to another related task or domain. For example, in fault detection, a model
trained to detect faults in a milling machine could be adapted to predict the remaining
useful life of a different machine operating in another factory. Standard transfer learning
scenarios need labeled data from the target domain [15]. When transfer is successful,
referred to as positive transfer, the requirement for labeled data is significantly reduced
compared to training a model from scratch [16].

Domain adaptation is a specialized form of transfer learning that specifically addresses
the problem of domain shift. In a domain adaptation setting, the source and target tasks are
identical, but their data distributions differ across domains [6]. For instance, a condition
monitoring model trained on data from a gearbox operating under one set of conditions
might need to be adapted to a different force or speed level for the same gearbox. Unsuper-
vised domain adaptation (UDA) refers to methods that do not require labeled data from
the target domain [17]. UDA methods are particularly useful in industrial applications,
where obtaining target domain labels is often difficult or infeasible.

UDA is a common strategy for adapting trained models to new domains [6]. These
methods often build on transductive learning principles, leveraging unlabeled data from
the target domain to adjust the model specifically for the test set, rather than aiming for
generalization to unseen target domains. UDA methods have demonstrated effectiveness
across various applications, including classification and regression tasks [18]. A common
example of UDA in multi-class classification is training a model on handwritten digits
from the MNIST dataset (source domain) and then adapting it to recognize digits in the
SVHN dataset (target domain) without relying on labeled data from SVHN. While this
example is illustrative, UDA methods have been successfully extended to domains far
beyond computer vision [7,8,19].

UDA methods can be classified according to whether source domain training data
is accessible during the adaptation process. In conventional UDA, both source data and
unlabeled target data are available [18]. However, in source-free domain adaptation (SFDA),
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only a pre-trained source model is accessible, with no access to the source data itself [20].
SFDA is particularly valuable in privacy-sensitive or data-restricted environments, where
sharing raw training data may be legally, ethically, or commercially constrained [21].

Although numerous domain adaptation methods have been effectively applied to con-
dition monitoring, most assume idealized conditions that rarely correspond to real-world
industrial settings [15]. For example, assuming continuous access to both source and target
data is often impractical because of system limitations, domain privacy, or distribution
shifts that evolve over time.

Addressing the practical limitations of conventional domain adaptation methods in
condition monitoring, this study proposes a Normal-Class Online Domain Adaptation
framework tailored for real-world industrial environments. The key contributions are
(1) leveraging automated machine learning (AutoML) for automated optimization across
complex multi-sensor scenarios; (2) utilizing only readily available normal-class data
for practical and effective test-time adaptation in condition monitoring; (3) generalizing
the framework to both deep learning (HP-ConvNet) and conventional FESC methods;
(4) comprehensive validation across six real-world condition monitoring datasets.

The remainder of this article is organized as follows: Section 2 reviews domain adap-
tation methods and their applications in condition monitoring. Section 3 describes the
datasets and the proposed method. Section 4 presents the experimental results. Section 5
discusses and analyzes the findings. Finally, Section 6 concludes the paper.

2. Related Work
Addressing domain shift has a long history, with foundational methods developed

before the deep learning era [16,22]. Traditional approaches are generally classified into
instance-based transfer, feature-representation transfer, parameter transfer, and relational-
knowledge transfer [16]. These methods mitigate distribution shifts by reweighting source
instances [23], learning domain-invariant features [24], sharing model parameters [25],
or transferring structured relationships between domains [26].

While these taxonomies remain relevant, recent literature emphasizes categorization
based on the availability of source and target domain data and labels, considering the
growing significance of data accessibility and privacy in modern applications [27,28].
Table 1 summarizes key distinctions between Transfer Learning (TL), Domain Adaptation
(DA), and Domain Generalization (DG) from this perspective.

Table 1. Comparison of Transfer Learning (TL), Domain Adaptation (DA), and Domain Generalization
(DG) in terms of data and label availability.

Method Source Data Source Labels Target Data (Train Time) Target Labels

TL ✓ ✓ ✓ ✓(few)
DA ✓ ✓ ✓ –
DG ✓ ✓ – –

“✓” indicates availability or presence, while “–” indicates not available or not applicable.

2.1. Domain Generalization

Domain generalization refers to the ideal setting where a model is designed to perform
reliably across all types of unseen distribution shifts. In practice, this problem is typically
simplified by limiting the scope of the shifts to specific covariates. For instance, in a
condition monitoring task within a hydraulic system, the objective can be to develop a
model capable of handling variations in valve or cooler conditions robustly [29]. Under the
assumption that the domain shift is linear, linear models have been shown to achieve better
performance [4].
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Nevertheless, no domain generalization method is universally effective across all use
cases. Under fair and standardized evaluation protocols, many domain generalization
algorithms have been shown to perform no better than standard empirical risk minimization
(ERM) [9,30]. This finding challenges the perceived advantages of specialized methods.
Furthermore, recent theoretical work underscores a fundamental limitation: to achieve
a classifier with excess error no greater than ϵ, any algorithm requires at least a number
of distinct training domains that grows polynomially in 1/ϵ, regardless of the amount of
data available in each domain [30]. In real-world settings, the number of training domains
is often insufficient, which makes achieving reliable generalization to completely unseen
distributions challenging.

2.2. Domain Adaptation

With the mentioned limitations of domain generalization, domain adaptation emerges
as a more practical alternative in real-world scenarios. Domain adaptation is potentially
useful when the model is not strictly tied to the source domain and limited access to the
target domain is available. Domain adaptation methods can be classified according to the
strategies they use to align source and target domains.

2.2.1. Feature Alignment

Feature alignment methods mitigate statistical differences between domains by project-
ing them into a common feature space [31]. Methods such as Maximum Mean Discrepancy
(MMD) [32] and CORrelation ALignment (CORAL) [33] belong to this category.

2.2.2. Adversarial Training

Adversarial training approaches increase domain confusion by introducing a do-
main discriminator alongside a gradient reversal layer. A prominent example is Domain-
Adversarial Neural Networks (DANN) [34], encouraging the feature extractor to produce
representations that are indistinguishable across domains.

2.2.3. Hypothesis Transfer

Hypothesis transfer approaches adjust the decision boundaries of classifiers to suit the
target domain. This can be achieved through entropy minimization [35], or self-supervised
pseudo-labeling [36], which assigns labels to unlabeled target data for iterative refinement.

2.3. Source-Free Domain Adaptation

Recently, SFDA has gained increasing attention. These approaches operate under the
assumption that source data is inaccessible during the adaptation phase, which is advan-
tageous for preserving data privacy and reducing computational and storage overhead.
Representative examples of such approaches include

• Tent [37], which adapts only the batch normalization layers by minimizing prediction
entropy on the target data;

• SHOT [20], which freezes the feature extractor and fine-tunes the classifier via pseudo-
labeling;

• AdaBN [38], an early method that recalibrates batch normalization statistics using
target domain samples.

These methods demonstrate that even without access to source data, it is possible to
adapt models effectively.
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2.4. Test-Time Domain Adaptation

Test-time domain adaptation (TTDA) refers to adapting a pre-trained model using
only the target domain data that becomes available during inference time [39]. In contrast
to conventional domain adaptation or SFDA, TTDA does not require labeled or unlabeled
target data beforehand. Instead, adaptation takes place online, enabling robust deployment
in environments where data distributions may evolve or shift unexpectedly, such as in
real-world industrial applications with changing operational conditions.

Typical TTDA methods assume either that test samples arrive in batches or that data is
available sequentially [40]. Techniques often leverage batch normalization updates, entropy
minimization, or self-training to dynamically improve model performance on the target
distribution. Tent [37], originally proposed in the context of SFDA, is also one of the earliest
and most widely adopted TTDA approaches, as it updates only the batch normalization
parameters to minimize output entropy during test time.

2.5. Challenges of Domain Adaptation in Industrial Prognostics

DA methods often integrate several loss components, such as task-specific loss, dis-
tribution alignment loss, and correlation regularization, each weighted by empirically
selected trade-off parameters [33,34,41]. This increases both the computational complexity
and the demand for tuning and resources. Furthermore, widely used alignment strategies
like MMD, CORAL, and adversarial training frequently suffer from unstable optimization
objectives. The shifting alignment targets during training can lead to oscillating losses and
slow convergence [7].

While such issues are inherent to domain adaptation, predictive maintenance and
condition monitoring introduce additional domain-specific challenges. Although domain
adaptation has been widely used to address domain shifts in condition monitoring [15], its
application to prognostic tasks remains particularly challenging. This is primarily because,
in many real-world scenarios, the target domain data consists only of samples from the
normal-class. This condition is frequently observed when a system has recently been
deployed or after maintenance procedures have been performed.

3. Materials and Methods
This section presents the datasets and methodologies employed in this study.

3.1. Datasets

This study uses six publicly available datasets related to industrial condition monitor-
ing. The datasets used in this study are listed below.

• The ZeMA Electromechanical Axis (EA) dataset [42], ZeMA gGmbH, Saarbrücken,
Germany;

• The ZeMA Hydraulic System (HS) dataset [29];
• The Open Guided Waves (OGW) dataset [43];
• The Paderborn University Bearing (PU) dataset [44], Paderborn University, Paderborn,

Germany;
• The Case Western Reserve University Bearings (CWRU) dataset [45], Case Western

Reserve University, Cleveland, OH, USA;
• The Saarland University Bearings (UdS) dataset [46], Saarland University, Saarbrücken,

Germany.

Table 2 presents the causes of distribution shifts and the specific operating conditions
(OpC) in the source and target domains. For each use case, two distinct target domains are
defined. The sources of these domain shifts are varied and may include hardware variations
(e.g., the use of different devices), differences in operational settings (e.g., varying motor
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loads), or system-level changes (e.g., adjustments to cooling capacity). As described in [47],
the datasets are balanced or transformed to a balanced version. EA, HS, and CWRU are
multiclass classification use cases, while OGW, PU, and UdS are binary classification tasks.

Table 2. Overview of the datasets, including cause of shift and operating condition in source and
target domains. Device: different physical actuator instances; OpC: operating conditions.

Dataset Cause of Shift Source Domain 1 Domain 2

EA Device Axis 3 Axis 5 Axis 7
HS * Cooler 100% 20% 3%

OGW Pair of sensors Sensors 1 and 6 Sensors 1 and 2 Sensors 2 and 4
PU Device group Group 1 Group 2 Group 3

CWRU Motor load 1 hp 0 hp 2 hp
UdS OpC 2 1 3

* Two classification tasks are generated from the HS dataset, detecting faults of the accumulator (HSa) and valve
(HSv), respectively.

In addition to the datasets utilized in [47], we incorporated the Saarland University
Bearings (UdS) dataset [46] into our collection. The UdS dataset contains accelerometer
measurements from three cylindrical roller bearings (B10, B20, and B30). This dataset
was specifically designed for the systematic analysis of domain adaptation challenges in
condition monitoring tasks [46]. Various covariates were intentionally varied in the dataset
to serve as potential sources of domain shift. In this study, we focus exclusively on varying
the bearing position while keeping all other operating conditions fixed. The baseline
condition is defined by bearing B10, a speed range of 383 to 960 rpm, and force levels from 1
to 3. The source domain corresponds to position 2, whereas the target domains are defined
by positions 1 and 3, respectively. Further details regarding the datasets and experimental
setups are provided in [47].

3.2. Methods

We employed two categories of approaches: (1) deep learning methods, and (2) con-
ventional ML methods, specifically a combination of feature extraction, feature selection,
and classification, which we refer to as FESC. We begin by outlining each method and then
describe the NC-TTDA approach.

3.2.1. HP-ConvNet

Deep learning has achieved notable success across various fields, because of its effec-
tiveness in modeling complex patterns in data. In particular, convolutional neural networks
(ConvNets) are well-suited for pattern recognition tasks and have become the standard
choice for such applications [48]. Numerous variants of ConvNet architectures have been
developed to address different tasks and applications [49].

Despite their effectiveness, two primary challenges are associated with deep learning
methods: limited interpretability and difficulty in optimizing the model architecture. Deep
neural networks often function as “black boxes,” making it challenging to interpret the
reasoning behind their decisions. Addressing this lack of transparency requires dedicated
post-hoc analysis or explainable AI techniques [50,51].

In addition, identifying optimal hyperparameters is a non-trivial task, particularly
in deep networks with both network architecture and training hyperparameters. Neural
Architecture Search (NAS), which automates the selection of architectural hyperparameters
in deep neural networks (DNNs), has received considerable attention [52].

In well-studied domains like computer vision and natural language processing, it is
often feasible to reuse established architectures across multiple applications [53]. This is
largely due to the uniformity in input structure and characteristic feature patterns [54]. By con-
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trast, condition monitoring tasks typically involve heterogeneous sensor inputs, each with
distinct characteristics [55]. Depending on the application, the input signals may include
vibration, velocity, pressure, current, temperature, or even audio and video data [56–58].
In addition, variations in sampling rates across sensors introduce further challenges for data
synchronization and fusion. Consequently, the integration and processing of multi-sensor
data significantly complicate the task of identifying an appropriate network architecture for a
given use case.

HP-ConvNet [47] addresses these challenges by providing a flexible network ar-
chitecture specifically designed for hyperparameter tuning in multi-sensor applications.
The structure of HP-ConvNet is illustrated in Figure 1, with the search space adopted
from [47]. Optimal hyperparameter values are identified through Bayesian optimiza-
tion [59], which efficiently explores the search space to improve model performance.
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Figure 1. HyperParam ConvNet architecture. The number of convolutional blocks and their proper-
ties are defined during hyperparameter optimization [47].

3.2.2. FESC

FESC is a well-established approach with demonstrated effectiveness in condition
monitoring applications [5,11,55]. It comprises three main components: feature extraction,
feature selection, and classification. One key advantage of FESC methods is their inherent
interpretability. At each stage, the relationship between extracted features and a model’s
predictions remains transparent and can be systematically analyzed. Furthermore, feature
extractors can be explicitly designed to produce interpretable sources, enhancing the
explainability of the entire process.

However, a key limitation of classical feature engineering is the substantial time
and domain expertise required to design effective models. The manual selection and
construction of features are often time-consuming and heavily reliant on expert knowl-
edge. Automated machine learning (AutoML) techniques can address this challenge by
automating both model selection and hyperparameter optimization [60].

Schneider et al. [11] proposed an AutoML framework (Auto-FESC) tailored for con-
dition monitoring, which can automatically identify the optimal FESC configuration for
a given task from a predefined search space. In this study, we adopt the Auto-FESC
framework from [11]. Figure 2 illustrates the FESC model used in this study, and the
corresponding search space is detailed in Table 3. The selected feature extraction methods
comprise time domain, time–frequency domain, and frequency domain features to ensure
comprehensive coverage of signal characteristics. The feature selection strategies are de-
signed to handle both categorical and non-categorical features. For the final classification
stage, we employ linear discriminant analysis with Mahalanobis distance classification
(LDAMahal) and support vector machine (SVM) classifiers, enabling the model to cap-
ture both linear and nonlinear relationships between features and class labels in various
use cases.
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Sensor S Feature Extractor

FESC Model

Sensor 1 Feature Extractor C
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Feature Selection Classification

Figure 2. FESC model structure. The model consists of three blocks: feature extraction, feature
selection, and classification. Feature extraction is performed separately for each sensor.

Table 3. Search space of the Auto-FESC framework [5].

Feature Extraction Methods

ALA Adaptive linear approximation [61]
BFC Best Fourier coefficient [62]
BDW Best Daubechies wavelets [62]
TFEx Statistical features in time and frequency domains [55]
NoFE No feature extraction
PCA Principal component analysis [63]
StatMom Statistical moments [11]

Feature Selection Methods

Pearson Pearson correlation coefficient [64]
RELIEFF RELIEFF [65]
RFESVM Recursive feature elimination

support vector machines [66]
Spearman Spearman correlation coefficient [67]
NoFS No feature selection

Classification Methods

LDAMahal Linear discriminant analysis [68] with
Mahalanobis distance classification

SVM Support vector machine [69] with
a radial basis function kernel

3.2.3. HP-Based Deep Ensemble

Hyperparameter optimization is a challenging, yet essential step in machine learn-
ing applications, particularly when addressing new tasks or domains. The concept of a
hyperparameter-based (HP-based) deep ensemble [47] involves constructing an ensemble
model by aggregating multiple models obtained during the hyperparameter optimiza-
tion process. This ensemble approach offers advantages in producing robust predictions,
and the variability among individual model outputs can be leveraged to detect domain
and distribution shifts.

The proposed framework is capable of detecting domain shifts [47], and it can be
extended to perform domain adaptation based on a hypothesis transfer approach [70].
In practical scenarios in condition monitoring, data collected under healthy or normal
operating conditions are typically easily accessible. When transitioning to a new domain,
characterized by different working conditions, new data can be gathered to facilitate
adaptation of the model. The underlying assumption is that the base models have learned
discriminative features that remain informative even in the new domain, although decision
boundaries may differ from those in the source domain.

The ensemble model generates a tensor of size RN×(m·S·K), where K is the number of
embedded features produced by the base models. The embedded features in the base models
can be extracted from different network layers. In general, earlier layers (e.g., Conv Block 1 in
Figure 1) generate more generic representations such as simple patterns, while later, deeper
layers produce features that are increasingly task-specific and strongly influenced by the
training objective [71]. In our framework, features from the last fully connected layer are
utilized for prediction and also for anomaly detection. Multi-sensor integration is achieved
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through independent per-sensor processing by base models, followed by ensemble-level
late fusion in a shared feature space. Each base model processes individual sensor data
independently, handling sensor-specific changes across domains. Ensemble uncertainty then
identifies sensors that become uninformative due to domain shift. Figure 3 illustrates the
HP-based deep ensemble as part of the NC-TTDA framework, shown in the top-left box.

To implement this adaptation strategy, a Z-score normalization is first applied to the
ensemble features extracted from the target domain data. Subsequently, principal component
analysis (PCA) is employed to reduce the dimensionality of each model’s feature set. The num-
ber of principal components retained is treated as a hyperparameter; in this study, we used
the first and second principal components from each base model’s feature set. This means
that the PCA step determines the value of K in the tensor used for the anomaly detection
output. The concatenated PCA projections from all base models are then combined and
used as input for an anomaly detection algorithm to identify deviations from the normal
condition. Ensemble diversity creates complementary feature distortions under domain shift,
making combined PCA projections more separable from normal-class patterns than single-
model features. This effectively converts the initial multiclass classification task into a binary
classification problem distinguishing between normal and anomalous states. Following the
HP-based deep ensemble method, the k-nearest neighbors (k-NN) algorithm is employed for
anomaly detection. The k-NN method classifies a sample based on the distance to its k closest
neighbors in the feature space, making it a simple yet effective non-parametric approach for
detecting abnormal patterns. In this study, the parameter k is set to 5, which provides a good
balance between sensitivity to local variations and robustness against noise in the data.

Sensor S
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Base Model 1

Base Model m

Base Model m

M models

M models

HP-Driven Ensemble

Predictions

Meta- 
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Anomaly
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Anomaly 
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Z
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Figure 3. Normal-Class Test-Time Domain Adaptation framework. Either the HP-based deep
ensemble or the FESC ensemble can serve as the backbone.

The method does not suffer from breaking or forgetting issues during adaptation.
The framework applies single-shot test-time adaptation independently for each detected
domain shift, avoiding cumulative updates that could lead to forgetting. Each new oper-
ating condition uses its own normal-class data to define the anomaly boundary, thereby
preserving previously learned information.

For anomaly detection, the additional overhead remains small: first, a Z-score nor-
malization is applied to the extracted features; then, PCA reduces each feature vector
to K components (typically K = 2), and finally, a k-NN classifier is applied in this low-
dimensional space. The combined PCA and k-NN operations introduce only minimal
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additional cost, on the order of O(m × K), making the overall approach suitable for real-
time or near real-time deployment.

3.2.4. FESC Ensemble

The Auto-FESC framework in [11] is based on identifying the optimal combination
of FESC methods for each specific task. Beyond selecting the single best model, it is also
possible to construct an ensemble method using multiple models obtained from the search
algorithm, i.e., the best m models.

Figure 3 illustrates the FESC ensemble as part of the NC-TTDA framework, shown in
the bottom-left box. Its structure resembles the HP-based deep ensemble; however, the base
models differ in that they are derived from FESC methods rather than deep learning models.
The input to the meta-classifier is formed by concatenating the ensemble outputs prior to
final prediction. Specifically, for SVM classifiers, this corresponds to the distances to the
support vectors, while for LDA classifiers, it consists of distances to the class centroids.

The remaining workflow follows a similar approach as in the HP-based deep ensemble,
leveraging the combined information of individual models to improve robustness and
enable detection of domain shifts.

4. Results
In this section, we present the results of NC-TTDA experiments using two ensemble

approaches: the HP-driven Deep Ensemble and the FESC Ensemble. We evaluate both
methods across the selected benchmark datasets to assess their robustness under domain
shift scenarios. Each model is trained on data from a single source domain and evaluated
on two unseen target domains. Performance is reported using multiple metrics, including
accuracy, area under the receiver operating characteristic curve (AUROC) [72], and false
positive rate at 95% true positive rate (FPR95) [73].

Figure 4 presents the classification accuracies of both ensemble methods across all
domains before applying NC-TTDA. Each reported value corresponds to the mean over
10 iterations for the respective dataset. The figure illustrates the impact of domain shift
on trained ML models, with nearly all datasets showing a substantial drop in prediction
accuracy when transitioning from the source to the target domains. Both methods exhibit a
similar performance drop under these shifts. Considering that both methods are sophisti-
cated ensemble ML models, this further emphasizes the severity of the problem. Among the
datasets, CWRU and UdS experience comparatively small reductions in accuracy, whereas
EA and HSa undergo the most pronounced performance degradation.

Table 4 summarizes the AUROC and FPR95 scores for the HP-based deep ensemble
and the FESC ensemble after applying NC-TTDA. To perform NC-TTDA, 70% of the target
domain data is used as adaptation data, and we sub-sample the abnormal classes to keep the
datasets balanced. The reported results represent the average values over 10 iterations on
the test set for each dataset. Most models achieve excellent anomaly detection performance
on the source domains, often reaching AUROC values of 100.0%, which is desirable and
indicates successful training.

Applying NC-TTDA on the target domains remains effective even in challenging cases
such as EA and HSa. However, some cases exhibit reduced effectiveness. For example,
the FESC model performance deteriorates notably for the EA and HS datasets at domain
2, and for the UdS dataset for both target domains. The high FPR in the UdS dataset can
be justified by the relatively small drop in target domain accuracy, as illustrated in Figure 4.
A minor distribution shift is evident in the UdS use case. The worst-case scenario for the
HP-based ensemble occurs in the PU dataset at domain 1, with an AUROC of 94.8% and
a relatively high FPR of 18.8%. Visualization of the embedded features helps to interpret
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the models’ performance. Figures A1 and A2 present PCA plots of the embedded features
generated by the HP-based and FESC ensemble models, respectively. The PCA plots show
that normal samples from the new domain form distinguishable clusters in the embedding
space, despite the substantial differences between the domains.
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Figure 4. Accuracy of models trained only on the source domain and evaluated on two different
target domains before applying NC-TTDA. (a) HP-based deep ensemble, and (b) FESC ensemble.
Each group of bars represents a dataset, with three bars per group corresponding to the source
domain, target domain 1, and target domain 2.

Table 4. Performance comparison of HP-based deep ensemble and FESC ensemble for seven datasets
over three domains after applying NC-TTDA.

(a) HP-Based Deep Ensemble

Source Domain 1 Domain 2
Datasets AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

CWRU 100.0 0.0 100.0 0.0 100.0 0.0
EA 98.3 2.2 99.8 0.3 98.3 5.9
HSa 99.2 4.8 99.8 2.4 98.0 9.5
HSv 98.0 5.7 99.4 0.0 99.0 2.4
OGW 100.0 0.0 99.3 5.0 100.0 0.0
PU 100.0 0.0 94.8 18.8 100.0 0.0
UdS 99.8 0.0 99.7 0.1 100.0 0.0

(b) FESC Ensemble

Source Domain 1 Domain 2
Datasets AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

CWRU 100.0 0.0 100.0 0.0 100.0 0.0
EA 98.2 5.6 99.6 0.4 86.9 47.3
HSa 100.0 0.0 99.7 0.9 96.4 20.6
HSv 100.0 0.0 100.0 0.0 95.5 29.1
OGW 100.0 0.0 98.6 6.3 100.0 0.0
PU 100.0 0.0 91.9 23.9 99.7 1.4
UdS 100.0 0.0 90.4 52.2 88.9 34.2

↑ indicates that higher values correspond to better performance, while ↓ indicates that lower values correspond to
better performance.

Table 5 summarizes the average performance metrics of the two NC-TTDA ensemble
variants, HP-based and FESC, and compares their results before and after adaptation. The ac-
curacies in Table 5 are the averages of the values reported in Figure 4. On the source domain,
both variants achieve near-perfect accuracy, AUROC, and FPR95 scores. In the target domains
before applying NC-TTDA, the average classification accuracy drops to 54% for the HP-based
method and 5% for the FESC method. Despite this decrease, NC-TTDA maintains strong
performance: the HP-based variant reaches an average AUROC of 99% and FPR95 of 3%,
while the FESC ensemble attains an AUROC of 96% and FPR95 of 15%.
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Table 5. Comparison of the performance between the HP-based and FCSC ensembles. Acc denotes
the accuracy of the models before applying NC-TTDA, and AUROC and FPR95 are the results after
applying NC-TTDA.

Source Domain Target Domain
Method ACC AUROC ↑ FPR95 ↓ ACC AUROC ↑ FPR95 ↓

HP-based deep ensemble 99.8 99.3 1.8 54.0 99.1 3.2
FESC ensemble 99.7 99.7 0.8 57.0 96.2 15.4

↑ indicates that higher values correspond to better performance, while ↓ indicates that lower values correspond to
better performance.

5. Discussion
The consistently high AUROC and low FPR scores on the source domains demonstrate

that the proposed NC-TTDA method can be effectively used in combination with the main
classification models. Both the FESC and HP-based deep ensemble approaches successfully
enable test-time adaptation in previously unseen target domains. However, the varying
performance across different datasets and methods underscores the inherent challenges of
one-class domain generalization. No direct benchmarks exist for AutoML-based test-time
adaptation using only normal-class sensor data. Methods such as Tent, SHOT, and AdaBN
require multi-class target data for entropy minimization or pseudo-labeling, making them
unsuitable for post-maintenance scenarios where only normal samples are available. Applying
these methods in single-class settings typically results in degraded performance. Therefore,
our evaluation focuses on baseline comparison, shift detection capability, and one-class domain
adaptation effectiveness across six real-world datasets.

Consistent performance drops observed in specific scenarios underscore the significant
difficulties posed by domain shifts. Both methods struggle notably with the EA dataset at
domain 2, HSa ans HSv at domain 2, and OGW at domain 1. For instance, in the HS dataset,
the domain shift arises primarily from differences in cooler performance, quantified as 20%
and 3% for target domains 1 and 2, respectively. Intuitively, the severity of domain shift
appears greater in domain 2. However, a simple linear correspondence between domains is
rarely observed, and the multifaceted nature of domain shift complicates model generalization,
necessitating advanced adaptation techniques. Additionally, in the HS datasets, each operating
condition includes the primary target fault used for evaluation as well as two additional fault
types [29]. Despite this increased complexity, the framework still achieves very high AUROC
values and low FPR on both the HSa and HSv datasets after normal-class adaptation.

Both methods exhibit severe difficulties in generalizing to new domains (see Table 5).
However, after applying NC-TTDA, the deep ensemble achieves superior average perfor-
mance. This advantage is from its anomaly detection approach, which leverages feature
variance across diverse models to enhance detection capabilities. It is very important that
the source domain results after applying NC-TTDA remain intact. This means that as long
as the underlying distribution does not change, the models do not generate false positive
predictions. Although hyperparameter optimization was conducted for each dataset, the more
constrained Auto-FESC search space may have limited its adaptability. While deep ensem-
bles demonstrate superior detection accuracy, FESC methods provide higher interpretability,
an important factor in condition monitoring, where explainable model decisions enhance trust
and facilitate effective diagnosis.

6. Conclusions
This study addresses the critical challenge of domain shift in real-world condition moni-

toring, where the common domain adaptation assumption of access to labeled target domain
data from multiple classes does not hold, particularly in industrial condition monitoring
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applications. We propose a novel one-class domain adaptation framework that leverages only
normal-class data from the target domain at test-time to adapt ensemble models for anomaly
detection. This work extend the method from [47], to not only detectiong possible domain
shift in test time but also being able to adapt the system in the new domain.

Two ensemble-based approaches were developed and evaluated: the HP-driven deep
ensemble and the FESC ensemble. Domain shift scenarios were constructed using six publicly
available datasets, and the methods were tested within a single-source domain adaptation
setup. Without adaptation, classification accuracy decreases under domain shift due to distri-
butional inconsistency, even when employing sophisticated ensemble methods. By utilizing
the proposed NC-TTDA mechanisms, both approaches maintain strong anomaly detection
performance across all tested datasets. Experimental results demonstrate that both ensembles
achieve high AUROC and low FPR scores on both source and target domains, highlighting
their ability to generalize effectively with limited target domain data.

Despite these promising results, some limitations remain. The quantity and quality of
unlabeled target domain data critically influence adaptation success. Except for the UdS
dataset, the other datasets were not originally designed to explicitly address domain shift,
which may affect the generalizability of our conclusions. The approach may fail when the
domain shift is so severe that normal and faulty target samples collapse into overlapping
regions in the embedding space; in this case domain shifts can still be detected but DA
may become unreliable. Furthermore, the current experiments focus solely on single-source
domain adaptation, leaving multi-source and continual adaptation as promising directions for
enhancing robustness in more complex and heterogeneous industrial environments. Finally,
the computational overhead associated with ensemble sizes motivates future work on model
compression techniques such as quantization and pruning [74], which could make real-time
deployment more feasible.

In this work, two principal components were retained to capture the dominant variance
in the ensemble features, reducing noise and computational complexity during adaptation.
Although this choice may risk discarding subtle but potentially informative components,
the empirical results demonstrate strong anomaly detection performance, indicating that
the primary discriminative structure is preserved. Future work could explore adaptive or
data-driven component selection strategies to further enhance overall effectiveness.

In summary, this work underscores the practical importance of addressing domain shift
in condition monitoring. The proposed AutoML framework not only generalizes well to in-
distribution data but also identifies domain shifts and adapts to new distributions in real-world
scenarios. Our results demonstrated that integrating NC-TTDA into ensemble frameworks
can effectively mitigate performance loss across diverse datasets. These findings highlight
the value of combining performance monitoring and anomaly detection with conventional
supervised machine learning systems for industrial applications.
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Abbreviations
The following abbreviations are used in this manuscript:

AUROC Area Under the Receiver Operating Characteristic Curve
FPR False Positive Rate
FPR95 FPR at 95% TPR
kNN k-Nearest Neighbors
ConvNet Convolutional Neural Network
HP Hyperparameter
EA ZeMA Electromechanical Axis Dataset
HS ZeMA Hydraulic System Dataset
OGW The Open Guided Waves Dataset
PU Paderborn University Bearing Dataset
CWRU Case Western Reserve University Bearings Dataset
UdS Saarland University Bearings Dataset
ML Machine Learning
AutoML Automated Machine Learning
DNN Deep Neural Network
NAS Neural Architecture Search
LDA Linear Discriminant Analysis
SVM Support Vector Machines
ALA Adaptive Linear Approximation
BFC Best Fourier Coefficient
BDW Best Daubechies Wavelets
TFEx Statistical Features in Time and Frequency Domains
NoFE No Feature Extraction
PCA Principal Component Analysis
StatMom Statistical Moments
Pearson Pearson Correlation Coefficient
RFESVM Recursive Feature Elimination Support Vector Machines
Spearman Spearman Correlation Coefficient
NoFS No Feature Selection
FESC Feature Extraction Feature Selection, and Classification
DA Domain Adaptation
UDA Unsupervised Domain Adaptation
TTDA Test-time domain adaptation
DANN Domain-Adversarial Neural Networks
MMD Maximum Mean Discrepancy
CORAL Correlation ALignment
OpC Operating Conditions

Appendix A
Figures A1 and A2 illustrate the embedded features produced by the HP-based and

FESC ensemble models, respectively. Principal Component Analysis (PCA) was employed
to reduce the dimensionality of these features for visualization.
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Figure A1. Graphical representation of the embedded features for each dataset and domain produced
by the HP-based ensemble models. In all figures, dark blue indicates observations from the normal class,
while the other colors represent the remaining classes in the datasets.
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Figure A2. Graphical representation of the embedded features for each dataset and domain produced
by the FESC ensemble models. In all figures, dark blue indicates observations from the normal class,
while the other colors represent the remaining classes in the datasets.
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