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Abstract
We survey solvability of equations in wreath products of groups, and prove that the
quadratic diophantine problem is solvable in wreath products of Abelian groups.
We consider the related question of determining commutator width, and prove that
the quadratic diophantine problem is also solvable in Baumslag’s finitely presented
metabelian group. This text is a short version of an extensive article by the first-named
authors.

Keywords Quadratic equations · Diophantine problem · Wreath product ·
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1 Introduction

LetG be a group. An equation overG is an expressionw(X1, . . . , Xn) = 1 inwhichw

is a word in some variables X1, . . . , Xn and constants in G; for example, X2
1g

−1 = 1
is an equation, which is solvable precisely when g has a square root in G.

More formally, consider the free group FX over countably many generators
X1, X2, . . . ; then an equation over G is given by an element w ∈ FX ∗ G, and this
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equation is solvable precisely when there exists a homomorphism σ : FX ∗ G → G
that is the identity on G and maps w to 1. This homomorphism σ is called a solution
of the equation, identifying the solution with the values (σ (X1), σ (X2), . . . ).

The fundamental question is then: For a group G, is there an algorithm that, given
an equation in G, determines whether it admits a solution? We call this problem
DP1, the index indicating that a single equation is considered; more generally, the
diophantine problem DP in a group asks for an algorithm to determine solvability of
a system of equations. If w is an equation involving no variable, i.e. a constant, then
it is solvable if and only if w represents the identity of G; thus a necessary condition
for solvability of DP1 is that G have solvable word problem. Some results:

• DP (and actually much more) is solvable in free groups, by the fundamental
contributions of Makanin [13] and Razborov [14];

• DP1 is solvable in theHeisenberg group of 3×3 upper-triangular unipotent integer
matrices, by Duchin–Liang–Shapiro [6];

• DP1 is unsolvable in free metabelian groups, by Roman’kov [15];
• DP1 is unsolvable in free nilpotent groups of class 3, by Truss [16];
• DP is unsolvable in the wreath product Z � Z, by a recent result of Dong [4].

(Wreath products will be recalled in the next section). Much current research attempts
to delineate, among metabelian groups, those for which DP or DP1 is solvable.

An important subclass of equations has emerged, the quadratic equations. They
are those equations w ∈ FX ∗ G such that every variable Xi appears at most twice as
a letter Xi or X

−1
i in w. Obviously if a variable appears only once then the equation

is solvable, by solving for that variable, so no generality is lost in supposing that
each of the variables X1, . . . , Xn appears exactly twice in w, and no other variable
appears. If furthermore each of these Xi appears once with exponent +1 and once
with exponent −1, then w is called an orientable quadratic equation. The motivation
comes from 2-dimensional geometry: drawing w on the boundary of a polygon and
gluing each edge labeled Xi to the one labeled X−1

i produces an orientable surface �

with elements of G marked on boundary components. A solution is then nothing but
a homomorphism π1(�) → G which sends boundary components to specified values
in G. The classification of surfaces implies that w may be given the form

w = [X1, X2] · · · [X2n−1, X2n]cX2n+1
1 · · · cX2n+p

p (1)

where � has genus n and p punctures, for some constants c1, . . . , cp ∈ G; here
and below the commutator is [g, h] = g−1h−1gh. There is a parallel story for
unorientable quadratic equations, that we ignore for brevity. We denote by Q+DP
the orientable quadratic diophantine problem, that of determining solvability of an
orientable quadratic equation (or equivalently an orientable quadratic system of equa-
tions, since the variables of different equations in the system are either disjoint or can
be eliminated). Sample results include:

• Q+DP is solvable in the “lamplighter group” C2 � Z and in the Baumslag-Solitar
groups BS(1, k) = 〈a, t | at = ak〉, by Kharlampovich–López–Myasnikov [10]
(beware that the published version claims more than the revised, arXiv version);
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• Q+DP (and also the unorientable quadratic diophantine problem) is solvable in
the Grigorchuk group, by Lysenok–Miasnikov–Ushakov [11];

• Q+DP is solvable in free metabelian groups, by Lysenok–Ushakov [12];
• Q+DP is unsolvable in some (explicit, finitely generated) Abelian-by-cyclic
group, again by Dong in the same article [4].

(We shall not define theGrigorchukgroup, but refer simply to that paperwhich contains
a good introduction to it).

A closely related problem, in view of the commutator form of (1), is to determine
the commutator width of a group G, namely the minimal n such that every element of
[G,G] is a product of at most n commutators. Indeed if n is bounded then G admits
“commutator elimination”: the genus g in (1) may be assumed to be at most n; and
conversely a clever argument in [11] deduces for the Grigorchuk group that n is finite,
without expliciting its value (which turns out to be 3, see [1]).

1.1 Main results

We recall that the wreath product A � B of two groups is the semi-direct product∏′
B A� B of the restricted power (almost all coordinates are 1) of A by B, the action

being by permutation of the coordinates. Elements of A � B may be represented in the
form ( f , b) with f : B → A and b ∈ B, and then the multiplication is given by

( f , b) · ( f ′, b′) = (x 	→ f (x) f ′(xb), bb′).

This basic construction in group theory is ubiquitous; for example, by [9] every group
extension with kernel H and quotient Q is a subgroup of the wreath product H �Q, the
p-Sylowsubgroupof the symmetric group Spn is the iteratedwreath productCp�· · ·�Cp

as already noted by Jordan in 1870 [8, II.I.41]; one of the most-encountered examples
is the “lamplighter group” C2 � Z; and the Grigorchuk group may be defined via its
imbedding G ↪→ G � C2.

Theorem A Let A, B be two finitely generated Abelian groups. Then the quadratic
diophantine problem Q+DP is solvable in A � B.
Theorem B Let A, B be two finitely generated Abelian groups, with A 
= 1. Then the
commutator width of A � B is �rank(B)/2�.

We concentrate on A = Z and B = Z
n in the sketches of the proofs; the difficulties

to extend to the general case are more notational than technical, and definitely not
conceptual. For the full treatment refer to the forthcoming article [5].

We include, nevertheless, another example, the “Baumslag group”, to show the
extent of our method, the difficulties that may arise to treat metabelian groups beyond
wreath products, and hopefully to convince the reader that “smaller” groups may have
harder diophantine problems than “larger” or “freeer” ones. The Baumslag group
admits as presentation

� := 〈a, t, u | [t, u], [a, at ], au = aat 〉 (2)
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and is remarkable as an example of a finitely presented metabelian group containing
the wreath product Z � Z (as the subgroup 〈a, t〉). We show:

Theorem C Q+DP is solvable in the Baumslag group�, and� has commutator width
1.

2 Proofs

For anAbelian group A that has the structure of a commutative ring, thewreath product
A � B has a natural expression in terms of the group ring: it is the semidirect product
A[B] � B of B’s group ring with B, the action of B on its group ring being given by
right multiplication. To simplify the notation, we restrict ourselves to A = Z.

For every quotient map π : B � Q, there is a natural ideal of the group ring

�Q := ker(Z[B] � Z[Q]).

If furthermore B is free Abelian, say B = Z
d , then its group ring Z[B] is isomorphic

to the ring of Laurent polynomials Z[Z±1
1 , . . . , Z±1

d ]. The group B is identified in
Z[B] with Laurent monomials, and we write Zg for the monomial corresponding to
g ∈ B; so �B/N is generated as an ideal by {1 − Zh : h ∈ N }.

2.1 Spherical equations

These are the quadratic equations with genus 0, in other words of the form w =
∏p

i=1 g
Xi
i for some elements gi ∈ Z � B. Writing gi = ( fi , ti ) with fi ∈ Z[B], ti ∈ B,

we observe that, if ti = 1, then the corresponding variable Xi may be assumed to
belong to B since the component of Xi in Z[B] commutes with fi .

Evidently the constants in w must satisfy
∏

ti = 1 if there is any chance of a
solution. For any j ∈ {1, . . . , p}, write B = B/〈t j 〉; we claim thatw is solvable if and
only if its projection to Z � B = Z[B]/�B � B is solvable. In the non-trivial direction,
let σ be a solution in Z � B; by the remark above σ(Z j ) may be assumed to belong
to B. Lift σ to σ : FX → Z � B, write σ(Z j ) =: u ∈ B, and write ( f ′, u′), ( f ′′, u′′)
respectively for the subproducts in w on the left and right of ( f j , t j )u in σ(w); we
obtain

f := f ′ + f j · u′ + f ′′ · (u′u) ∈ �B = 〈1 − Zt j 〉

and we adjust σ(Z j ) := (− f /(1− Zt j ), u) to obtain a solution. Repeating, we reduce
to equations for which the constants are all of the form gi = fi ∈ Z[B].

We are now reduced to the following problem in group rings: given f1, . . . , f p ∈
Z[B], determine whether there exist translates f1 · u1, . . . , f p · u p which sum to 0.
This can only happen if the supports of the fi · ui overlap in independent clusters
summing to 0, so we may bound the lengths of the ui in terms of the fi ’s supports.
Spherical equations are thus decidable.
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2.2 Commutators in wreath products

An easy calculation gives, for ( f , t), ( f ′, t ′) ∈ Z � B, the commutator
[( f , t), ( f ′, t ′)] = ((1 − Zt ′) f − (1 − Zt ) f ′, 1), so the set of commutators in Z � B
is

⋃

t,t ′∈B
〈1 − Zt , 1 − Zt ′ 〉 × {1},

and the set of n-fold products of commutators is

⋃

t1,...,t2n∈B
〈1 − Zt1 , . . . , 1 − Zt2n 〉 × {1}.

We deduce that the commutator width ofZ �B is �rank(B)/2�, proving Theorem B:
in one direction, products of �rank(B)/2� commutators contain�1×{1} = γ2(Z �B),
and in the other direction the element d − Z1 − · · · − Zd does not belong to any ideal
generated by less than d terms of the form 1 − Zt .

We also deduce that an equation of the form w = [X1,Y1] · · · [Xn,Yn]w′ in Z � B
has a solution if and only if there exists a lattice L ≤ B of rank at most 2n such that
w′ has a solution in Z � (B/L). Using the same reductions as above, we are again
led to a group ring problem: given f1, . . . , f p ∈ Z[B], determine whether there exist
translates f1 · u1, . . . , f p · u p which sum to an element of �B/L . Again this can
only happen if the supports of the fi · ui overlap in clusters, leading to bounds on the
lengths of the ui and only finitely many cases need be considered; and the rank of the
space spanned by the corresponding shifted supports is computable, for example by
evaluating appropriate determinants (the Plücker relations). We have completed the
proof of Theorem A.

3 The Baumslag group

In [2], Baumslag gives the group � in (2) as an example of a finitely presented
metabelian group containing an infinitely presented subgroup. He later shows that
every finitely generated metabelian group can be imbedded in a finitely presented
metabelian group [3].

Here � is the quotient of Z � Z
2 by the relations f + f · t + f · u = 0 for every

f ∈ Z[Z2], namely it may be written as

� = Z[Z±1
1 , Z±1

2 ]/(1 + Z1 − Z2) � Z
2.

On the one hand, since� is a quotient ofZ �Z2, its commutator width is at most 1, so is
precisely 1 because it is not Abelian. On the other hand, to solve equations we follow
the arguments above in the ring Z[Y±1] acted upon by Z1 = Y and Z2 = Y + 1. In
the case of genus > 0, the whole derived subgroup γ2(�) is expressible with a single
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commutator, so the equation to be solved actually takes place in �/γ2(�) ∼= Z
3;

therefore the interesting case is that of a spherical equation.
By the reductions from the previous section, the spherical equationmay be assumed

to have constants in K := 〈a〉� = ker(� � Z
2), and the variables may be assumed

to take values in 〈t, u〉, so we arrive at the following problem: given f1, . . . , f p ∈ K ,
determine whether there exist translates f1 · u1, . . . , f p · u p with ui ∈ 〈t, u〉 which
sum to 0. Since K = Z[Z±1

1 , Z±1
2 ]/(1+ Z1− Z2) is isomorphic to the ring of Laurent

polynomials Z[Y±1], the problem becomes: Given f1, . . . , f p ∈ Z[Y±1], determine
whether there exist a1, b1, . . . , ap, bp ∈ Z with Y a1(Y + 1)b1 f1 + · · · + Yap (Y +
1)bp f p = 0.

Without loss of generality, by considering all possible orderings of the fi , we may
suppose b1 ≥ b2 ≥ · · · ≥ bp = 0. Suppose by induction on k, starting at k = p
downwards, that we have an upper bound on bk+1, bk+2, . . . , bp . Then bk can be
bounded in the following way. Since bk+1, bk+2, . . . , bp are bounded from above, the
number of monomials appearing in the polynomial 	 := Yak+1(Y + 1)bk+1 fk+1 +
· · · + Yap (Y + 1)bp f p is also bounded, say by B. Then since Ya1(Y + 1)b1 f1 + · · · +
Yak (Y + 1)bk fk = −	, we see that (Y + 1)bk divides 	. If 	 = 0 then we have two
shorter equations to solve, and recurse; otherwise, bk ≤ B − 1 by [7, Lemma 4.1],
and the induction on k proceeds. It follows that the bi ’s are all bounded, and trying
them all yields equations of the form Ya1 f̃1 + · · · + Yap f̃ p = 0, that we have already
considered and know how to solve. Theorem C is proven.

It is the nature of the quotient Z[Z±1
1 , Z±1

2 ]/(1 + Z1 − Z2) ∼= Z[Y±1] that makes
the problem solvable; a precise formulation of an algebraico-geometric condition
guaranteeing this is still wanting.
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