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ARTICLE INFO ABSTRACT

Edited by Marian Berryhill Expectations about upcoming words play a central role in language comprehension, with expected words being
processed more easily than less expected ones. Surprisal theory formalizes this relationship by positing that
cognitive effort is proportional to a word’s negative log-probability in context, as determined by distributional,
linguistic, and world knowledge constraints. The emergence of large language models (LLMs) demonstrating
the capacity to compute richly contextualized surprisal estimates, has motivated their consideration as models

Dataset link: https://github.com/benedict-krie
ger/llm-surprisal-rerps

Ifgg:lr:snéuage models of comprehension. We assess here the relationship of LLM surprisal with two key neural correlates of
N400 comprehension — the N400 and the P600 — which differ in sensitivity to semantic association and contextual
P600 expectancy. While prior work has focused on the N400, we propose that the P600 may offer a better index
Event-related potentials of surprisal, as it is unaffected by association while still patterning continuously with expectancy. Using

Human language comprehension regression-based ERPs (rERPs), we examine data from three German factorial studies to evaluate the extent

Psycholinguistics to which LLM surprisal can account for ERP differences. Our results show that LLM surprisal captures neither
component consistently. We find that it is contaminated by simple association, particularly in smaller LLMs. As
a result, LLM surprisal can partially account for association-driven N400 effects, but not for the full attenuation
of N400 effects. Correspondingly, this property of LLMs compromises their ability to model the P600, which

is sensitive to expectancy but not to association.
1. Introduction cognitive effort (Levy, 2008; Venhuizen et al., 2019). It follows from
this formalization that words that are less expected will result in higher
Expectations regarding the next word play a central role in language surprisal and will be more difficult to integrate into the mental repre-
comprehension, as they reflect how linguistic and world knowledge sentation of the utterance, while expected words will require less effort.
interact with context to constrain how the linguistic signal is likely to Importantly, the link between expectancy and cognitive effort in Eq. (1)
unfold. As a consequence, listeners process expected words with greater can inform our understanding about (a) which empirical measures best

ease than less expected ones. Empirical evidence for expectation-based
processing dates back several decades. For instance, expected words
were found to be read more quickly (Ehrlich and Rayner, 1981) or to
elicit an attenuated N400 amplitude (Kutas and Hillyard, 1984) during
reading. A general formalization of this relationship between expected-
ness and processing effort was introduced with surprisal theory (Hale,
2001; Levy, 2008), which posits that the cognitive effort required to
process a word is proportional to its negative log-probability in context:

index true surprisal, and (b) which models best approximate both true
surprisal and - if divergent — cognitive indices of surprisal. The latter
may be particularly relevant in determining the extent to which models
use mechanisms and representations similar to those underlying human
comprehension. The present study examines critical evidence from the
two most salient neural correlates of comprehension — the N400 and
the P600 components of the EEG signal — to assess how well they index
surprisal as operationalized by current large language models (LLMs).
difficulty « surprisal(w,, ;) = —log, P(w,,|w;_,) (€9) The empirical support for surprisal theory is considerable. Since
its introduction, numerous studies have found word predictability to
be correlated with various indices of cognitive processing effort. This
includes not only evidence from behavioral metrics such as self-paced
reading and eye-tracking data (e.g., Brouwer et al., 2010; Demberg and

The true expectancy of a word should in principle reflect all relevant
determinants of what word can appear next — including distributional,
linguistic, and world knowledge-based plausibility constraints — while
negative log expectancy (true surprisal) should be proportional to
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Keller, 2008; Mitchell et al., 2010, Fernandez Monsalve et al., 2012; Oh
and Schuler, 2023a; Smith and Levy, 2008; Wilcox et al., 2020), but
also measures from brain activity, such as EEG and fMRI (e.g., Frank
et al., 2015; Frank and Willems, 2017; Michaelov et al., 2024; Shain
et al., 2024). Moreover, the predictions of surprisal theory have been
shown to robustly hold across multiple languages (Wilcox et al., 2023b)
and to transfer to multiple linguistic levels (Ettinger et al., 2014; Hu
et al., 2023; Malisz et al., 2018). In sum, there exists broad evidence
in support of surprisal and consequently of the notion that language
processing in the human brain is guided by probabilistic expectations.

Importantly, the link between various neurobehavioral indices of
processing effort and word predictability as posited by surprisal theory
is formulated at the computational level in Eq. (1), which Marr (1982)
specifies as what problem the system seeks to solve. This leaves open
the algorithmic level, which Marr defines as how the computational
problem is solved. Critically, any generative stochastic process that
is able to estimate contextual word probabilities — also known as a
language model - can be considered an algorithmic level implementation
of the computational theory that is able to estimate surprisal. Hence,
surprisal acts as a “causal bottleneck” between different algorithmic
language model implementations and observable processing phenom-
ena (Levy, 2008). When introduced by Hale (2001), surprisal was
computed with an Earley parser (Earley, 1970; Stolcke, 1995) on a
probabilistic context-free phrase-structure grammar (PCFG). Since then,
numerous studies have operationalized surprisal using a variety of
computational models, including PCFGs (e.g., Demberg and Keller,
2008), n-grams (e.g., Smith and Levy, 2008), recurrent neural networks
(RNNs; e.g., Aurnhammer and Frank, 2019) and, more recently, LLMs
(e.g., Oh and Schuler, 2023a).

1.1. Large language models as models of human comprehension

Large language models (LLMs) are deep neural network models
that predict the next word in an input sequence by generating a
probability distribution over all possible candidate tokens in their
vocabulary. Throughout training, their parameters are adjusted in order
to minimize prediction error, which is often evaluated by computing
perplexity, the exponentiated average negative log-likelihood per to-
ken (Meister and Cotterell, 2021). Thus, LLMs directly compute richly
contextualized surprisal estimates. Their grounding in predictive pro-
cessing, as well as their ability to generate coherent and deceptively
human-like text, has led to considerable interest in exploring the status
of LLMs as cognitive models at the computational level (Contreras
Kallens et al., 2023). Piantadosi (2023), for example, views the finding
that they to some extent encode semantic and syntactic representations
(e.g., Manning et al., 2020) as strong counter-evidence to traditional
generative linguistic approaches (Chomsky, 1965), and proposes to
treat LLMs as serious models of human cognition which allow to “de-
velop compelling theories of the interplay of structure and statistics”
(p. 383).

Moreover, the internal representations of LLMs were successfully
mapped to brain responses during natural language comprehension in
a number of studies (e.g., Caucheteux and King, 2022; Caucheteux
et al., 2023; Goldstein et al., 2022; Schrimpf et al., 2021) across
several neuroimaging response measures, such as electrocorticography
(ECoG), functional magnetic resonance imaging (fMRI) and magnetoen-
cephalography (MEG). The overall strong correlation between model
representations and brain responses was interpreted as evidence that
human language processing is based on predictive coding, to the extent
that “predictive processing fundamentally shapes the language compre-
hension mechanisms in the human brain” (Schrimpf et al., 2021). Going
even further, Goldstein et al. (2022) argue that both the brain and
autoregressive transformer LLMs share certain mechanisms, specifically
pre-onset word prediction, post-onset tracing of prediction error, and
reliance on contextual embeddings. From a broader methodological
perspective, Caucheteux et al. (2023) view their results as illustrating
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“how the synergy between neuroscience and artificial intelligence can
unravel the computational bases of human cognition”.

Together, these studies highlight the recent appeal of LLMs as mod-
els of human comprehension due to their impressive performance and
correlation to human brain responses during language comprehension.
Even though such strong claims are debated (see for example Katzir,
2023, for a reply to Piantadosi, 2023), what is remarkable is that
the performance of LLMs is solely grounded in the task of next-word
prediction.! Indeed, not only do LLMs — compared to previous compu-
tational models — generate surprisal estimates which provide a closer
fit to neurobehavioral indices of expectancy-related processing effort
(Merkx and Frank, 2021; Michaelov et al., 2021), they also yield hidden
states that correlate well with brain activity during language compre-
hension (Schrimpf et al., 2021). These observations have motivated the
investigation of whether similarities between LLMs and humans are not
limited to the computational, but extend to the algorithmic level, for
instance by instantiating predictive coding, in which an error signal
arising from pre-onset predictions is traced back in order to update
an internal probability distribution (Goldstein et al., 2022; Michaelov
et al., 2024). In other words, LLMs and humans may not only be
similar in what they predict, but also in how they predict. That is, if
the representations and mechanisms underlying the prediction process
in LLMs are sufficiently similar to those involved in prediction in the
brain during language comprehension, then reducing perplexity on an
appropriate training corpus may lead to surprisal estimates that better
approximate predictive behaviors in humans.

Identifying the degree to which LLM surprisal approximates human
responses and/or where it diverges qualitatively and quantitatively can
offer insights about the extent to which they may implement a function
— such as next word prediction — in an algorithmically similar manner.
It is important to note, however, that many of the above studies
are based on evidence from naturalistic language such as podcasts,
novels or newspapers, i.e., language that has not been modified with
any particular hypothesis in mind. While naturalistic data offers the
advantage of observing responses to language in a natural setting, and
potentially increases the generalizability of results (Frank et al., 2015),
such datasets may not reveal how distinct properties of language affect
processing differentially. Indeed, this observation underlies the rich
history of controlled factorial experiments, in which participants are
exposed to items in different conditions. As these conditions only vary
with respect to specific factor levels, systematic differences in responses
across participants and items can be attributed to the experimental ma-
nipulations. Such studies have been crucial to identifying how distinct
neural correlates of processing effort, as measured using event-related
potentials, are differentially sensitive to properties of a word other than
just its overall contextual expectancy.

1.2. Neural correlates of surprisal

Event-related potentials (ERPs) offer a multidimensional window
into language comprehension at a high temporal resolution, allowing
for the investigation of the time course of its unfolding sub-processes.
Since its discovery by Kutas and Hillyard (1980), the N400 has been
shown to be one of the most robust neural markers indicating process-
ing effort related to how predictable a word is in a given context — the
less predictable the word, the more negative the N400 response. This
relationship was identified long before the introduction of surprisal
theory and, in the context of ERP studies, the predictability of a word
has often been operationalized as cloze probability — the proportion
of participants who offered this word as a completion in a separate
norming study (Taylor, 1953; see Kutas and Hillyard, 1984 for its first
application in ERP research). While cloze probability offers a good

1 We are excluding models that incorporate reinforcement learning by
human feedback here.
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estimate of predictable words, it poorly captures the lower end of
the probability spectrum, such that both implausible and plausible
but relatively rare words typically yield a cloze probability of zero.
This constitutes one reason why language model surprisal — as another
operationalization of expectancy that may cover the full probability
distribution more adequately — has become popular in recent years
(for more operationalizations of expectancy and how well they fit to
neurobehavioral data, see de Varda et al., 2023).

Frank et al. (2015) were among the first to use surprisal values
from three different language models (PCFG, n-gram, RNN) to predict
the amplitude of six different ERP components, including the N400.
Naturalistic sentences of written English from the UCL corpus (Frank
et al., 2013) were used as materials, and the authors found a strong
relationship between surprisal and the N400. The same dataset was
used in a number of further studies to test the fit of surprisal val-
ues collected from different types of language model architectures,
furthermore focusing predominantly on the amplitude of the N400
(e.g., Aurnhammer and Frank, 2019; de Varda et al., 2023; Merkx and
Frank, 2021; Frank and Willems, 2017). More recently, N40O responses
from controlled factorial experimental studies have also been modeled
with LLM surprisal (Michaelov and Bergen, 2020; Michaelov et al.,
2021; Michaelov et al., 2023; Michaelov et al., 2024).

However, the N400 is also sensitive to a number of other lin-
guistic and non-linguistic stimulus properties beyond the contextually-
determined expectancy of a word (Kutas and Federmeier, 2011). One
such property is the semantic association of a word to the preceding
context, i.e., the degree of its semantic relatedness. In naturalistic
stimuli, association and expectancy are often confounded in that the
words that are likely to come next, will often also be associated with the
context. Critically, however, association and expectancy are distinct;
that is, a word that is highly unexpected to immediately follow, may
nonetheless be strongly associated to the context. This contrast was di-
rectly investigated by Delogu et al. (2019), in an ERP study containing
the following experimental conditions:

(Ex. 1) Assoc+Exp+ John entered the restaurant. Before long, he opened the menu...
Assoc+Exp— John left the restaurant. Before long, he opened the menu...

Assoc—Exp— John entered the apartment. Before long, he opened the menu...

The target word menu is expected in condition Assoc+Exp+, but
unexpected in condition Assoc+Exp—, as verified by plausibility rat-
ings and cloze norming. Crucially, however, menu is equally asso-
ciated to the context in both conditions. No N400 difference was
observed between these conditions, indicating expectancy does not
necessarily modulate N400 response, a phenomenon which has been
observed in multiple studies, perhaps most notably role reversal anoma-
lies (e.g. Hoeks et al., 2004; Kim and Osterhout, 2005; Kuperberg et al.,
2007; see Brouwer et al., 2012 for a review). Indeed, an N400 effect
of expectancy was only observed when the unexpected target was also
unassociated, as is the case in condition Assoc—Exp—.

Cases such as these, in which contextual association modulates the
N400 to a greater extent than expectancy are generally challenging for
surprisal — and thus language models — to explain: In order to capture
the observed absence of an N400 effect, the model would need to assign
a similar probability to the target word in conditions Assoc+Exp+ and
Assoc+Exp—. Indeed, due to its sensitivity to association — as well as
the observation that the N400 is generally insensitive to words that are
syntactically unexpected (Gouvea et al., 2010) — it could therefore be
debated whether the N400 should be considered a reliable index of true
surprisal, as surprisal is formally defined as a measure of the likelihood
of a word that can immediately follow a given context. Conversely,
any operationalization of surprisal that captures this absence of an
expectancy effect, must either have not learned the role of world/event-
knowledge constraints on expectations (see e.g., Kauf et al., 2023), or
be influenced by association in a manner which is inconsistent with the
goal of minimizing perplexity (see e.g., Cong et al., 2023; Michaelov
and Bergen, 2022).
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Another salient ERP component that is sensitive to the context-
driven expectancy is the P600. This component is elicited when words
are unexpected due to syntactic (see Gouvea et al., 2010 for a re-
view), semantic (see Bornkessel-Schlesewsky and Schlesewsky, 2008;
Brouwer et al., 2012; Kuperberg et al., 2007 for reviews) or pragmatic
constraints (see Hoeks and Brouwer, 2014 for a review). Indeed, in
the Delogu et al. (2019) study above, a P600 effect was observed
in both unexpected conditions compared to the expected condition,
when P600 amplitude was corrected for its overlap with the N400
(see Brouwer et al., 2021a; Delogu et al., 2021, 2025). Moreover, Aurn-
hammer et al. (2023) have recently shown that the P600 is sensitive to
graded plausibility-driven expectancy, consistent with varying degrees
of surprisal. Combined with the fact that the P600 is insensitive to asso-
ciation (Aurnhammer et al., 2021), these findings suggest that the P600
may in fact be a better index of expectancy than the N400 (Brouwer
et al., 2021b). Evidence supporting this hypothesis is, however, rather
limited. Frank et al. (2015) did not find any effects of n-gram, RNN or
PCFG surprisal on P600 amplitude (in a relatively early time window),
but speculated that “more sophisticated systems are likely to be better
capable at simulating cognitive processes” (p.9). Indeed, de Varda
et al. (2023) did find LLM surprisal from different GPT models to be
predictive of the P600 amplitude in the same dataset, while Xu et al.
(2024) found LLM surprisal to be predictive of both the N400 and P600
in the context of joke comprehension.

Taken together, the above findings motivate the investigation of
which ERP component — the N400 or the P600 - is best indexed by LLM
surprisal. Importantly, the experimental manipulations of the studies
we evaluate elicited a partially orthogonal pattern of N400 and P600
effects, such that if LLM surprisal is able to adequately model the
N400, it cannot at the same also adequately capture the P600, and vice
versa. More specifically, we pursue two objectives with this work. First,
we aim to investigate N400 findings that appear challenging for LLM
surprisal, that is, cases where association was shown to override the
influence of expectancy, such that less expected targets did not elicit
a stronger negativity. Second, we aim to test how well LLM surprisal
predicts P600 modulations elicited by plausibility manipulations. We
evaluate three German ERP studies that were specifically designed to
disentangle the influences of association, plausibility and expectancy
on the N400 and P600:

» Study 1 (Aurnhammer et al., 2021) crossed association with
expectancy, revealing additive effects of both factors in the N400,
but only an effect of expectancy in the P600. To the extent that
LLM surprisal is unaffected by association, we hypothesize that it
captures the expectancy effects in both time windows, but not the
association effect in the N400.

Study 2 (Delogu et al., 2019), discussed above, found that asso-
ciation can override expectancy in the N400, while both unex-
pected conditions elicited a P600 effect. Depending on whether
LLM surprisal is sensitive to association, it may or may not predict
N400 differences between the three conditions. Conversely, LLM
surprisal should only be able to capture the P600 differences
between the conditions if it is insensitive to association.

Study 3 (Aurnhammer et al., 2023) used repetition priming of the

target word to achieve strong contextual association in all three
conditions, such that no N400 effects were observed. By contrast,
the graded implausibility of the conditions elicited an increasing
P600 response. If LLM surprisal reflects graded plausibility, and
is insensitive to association, we expect it to capture the graded
P600 response to plausibility. Conversely, to predict the absence
of any N400 effects, the LLM must assign a similar probability to
the target word in all conditions, despite their graded plausibility.
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2. Method

Surprisal values are collected for the target words of all studies using
three German state-of-the-art transformer models of different training
data size and model complexity. The primary motivation for this is
simply to identify robustness across models, and in the discussion we
also consider the extent to which model parameters affect fit. Following
previous approaches (e.g., Michaelov et al., 2024), we assess how
well LLM surprisal overall predicts mean amplitude across each time
window in a linear mixed effects regression. While the original studies
defined varying time intervals for the ERP components, we choose
to uniformly operationalize the time windows, such that the N400
ranges from 300-500 ms, and the P600 ranges from 600-1000 ms.
Turning then to a more detailed analysis, we apply regression-based
ERPs (rERPs; Smith and Kutas, 2015), in which we fit one simple linear
regression model per subject, electrode and time sample, predicting the
observed voltages with LLM surprisal. This approach allows us to assess
both the quantitative fit of LLM surprisal to the original data across time
and electrodes, and the qualitative fit with the effect structure of the
conditions in the original studies.

2.1. LLM selection and surprisal computation

Large language models exist in many different variations with re-
gard to the specific details and complexity of their architecture, as
well as to the amount and composition of textual data they have
been trained on. We focus here on surprisal values computed with
transformer-based models, which better predict ERP components com-
pared to other architectures such as recurrent neural networks (de
Varda et al., 2023; Merkx and Frank, 2021; Michaelov et al., 2021). A
key feature of the transformer architecture is its attention mechanism,
enabling the model to selectively weigh the influence of tokens from
the context when predicting the next token (Vaswani et al., 2017).
Attention can be applied in both directions of the target word position,
allowing for language models that make use of both the preceding
and subsequent context during training (e.g., Devlin et al., 2019).
As bidirectional attention appears psychologically implausible for the
purpose of modeling incremental language processing, we only consider
strictly unidirectional transformer models that deploy a masked variant
of attention, allowing them to attend only to the preceding context.

It has been previously argued, that model perplexity is inversely
correlated with the goodness of fit of surprisal values to human data,
such that models with lower perplexity generate surprisal values that
provide a better fit (Goodkind and Bicknell, 2018; Wilcox et al., 2020).
This hypothesis theoretically puts more advanced transformer models
at an advantage, as larger models typically achieve lower perplexity.
Oh et al. (2024), by contrast, found surprisal values from larger models
to underestimate reading times for rare words due to frequency effects,
suggesting that LLMs become overly accurate in predicting rare words.
How model complexity, training data size and composition interact in
influencing the fit of surprisal values to ERP components is not yet
clearly established. We therefore consider three LLMs that differ with
respect to their number of trainable parameters and amount of training
data. For the purpose of replicability, we use LLMs that are publicly
available via the Hugging Face platform (Wolf et al., 2020) and publish
our code.?

Concretely, we use LeoLM, a Llama-2 model which was initialized
with weights resulting from pre-training on English and which was then
continued to be trained on a large German web corpus (Pliister, 2023).°
Moreover, we use two GPT-2 models, GerPT-2 large and GerPT-
2, that were also initialized with their respective English weights and
were then trained on a different, smaller web corpus (Minixhofer,

2 https://github.com/benedict-krieger/llm-surprisal-rerps
3 https://huggingface.co/LeoLM/leo-hessianai-13b
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Table 1
Overview of features of used LLMs.
LeoLM GerPT-2 large GerPT-2

Parameters 13B 876M 176M
Vocabulary size 32,000 50,257 50,257
Context size 8192 1024 1024
Hidden layers 40 36 12
Hidden dimension 5120 1280 768
Attention heads 40 20 12
Training data size 595G 18G 18G
Training corpus OSCAR-2301° CC-100° CC-100°

2 https://huggingface.co/datasets/oscar-corpus/OSCAR-2301
b https://data.statmt.org/cc-100/

2020).* That is, the GPT-2 models share the same training data and
only differ with respect to their model complexity. For an overview
of the specifications of the LLMs that were used, see Table 1. We
note that a transfer from LLMs, which were pre-trained in English, to
different languages is common practice due to economic and ecological
considerations (see, e.g. Minixhofer et al., 2022).

The stimulus materials are presented to the LLMs up until the target
word. The target word itself is not part of the surprisal computation;
its probability is collected from the output layer at the preceding word,
to which a negative logarithm is applied. The LLMs we use here rely
on tokenization schemes and vocabulary representations based on sub-
words rather than words. Following previous work, when target words
are tokenized into sub-words we sum the sub-word surprisal values to
obtain a single surprisal value (see for example de Varda et al., 2023;0h
and Schuler, 2023b).>

2.2. LME analysis: Assessing overall fit of LLM surprisal to ERP amplitude

In previous studies, linear mixed effects models (LMEs) have been
used to quantify the fit of surprisal values to ERP amplitude (e.g., Frank
et al., 2015; Merkx and Frank, 2021; Michaelov et al., 2024). Usually, a
null model is fitted, containing fixed effects that are known to have an
overall influence on processing effort — such as word frequency, length
or position within the sentence — and also random effects, accounting
for variability specific to items, subjects and electrodes. Then, a model
which additionally contains LLM surprisal as predictor is fitted and
compared to the null model, for instance by computing Akaike’s In-
formation Criterion (AIC; Akaike, 1998) or conducting likelihood-ratio
tests.

Concretely, we follow the approach of Michaelov et al. (2024).
The authors used logarithmic word frequency and orthographic neigh-
borhood size as fixed effects, and also included a random intercept
for the target word in all models. Their approach is warranted, as
their study implemented a target word manipulation design. That is,
the target word varied within as well as across items. However, the
studies we evaluate in this work feature a context manipulation design,
under which the target words only vary between items. Therefore,
we do not include target word as a random intercept, and we do
not include orthographic neighborhood size as a fixed effect. For the
purpose of baseline comparison, we still include logarithmic word
frequency and also target word position within the target sentence as
fixed effects. Word frequencies are obtained with the WordFreq package
in Python (Speer, 2022), which is based on the Exquisite Corpus.® This
corpus comprises different domains of text, which include Wikipedia,
subtitles, news, books, web, and social media (Twitter and Reddit).

4 https://huggingface.co/benjamin/gerpt2

5 We note that the commonly applied sub-word tokenization schemes may
affect psycholinguistic modeling to a minor extent (see Oh et al., 2024; Nair
and Resnik, 2023; Pimentel and Meister, 2024 for recent discussions).

6 https://github.com/LuminosoInsight/exquisite-corpus
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We include random intercepts for subject, item and electrode, but no
random slopes (see Michaelov et al., 2024). For further comparison, we
also fit a model with condition instead of LLM surprisal as fixed effect.
In sum, each model contains the same random effects, fixed effects of
word frequency and target word position, and then either condition
or LLM surprisal from one of the three LLMs as an additional fixed
effect. Except for condition, all fixed effects are standardized. For each
of the time intervals we use the LMEs to predict mean N400 and P600
amplitude on the trial level, recorded from the set of 26 electrodes
which is shared in all studies. We then compute AIC values for all fitted
models and normalize them by the null model AIC. This allows us to
compare the overall predictive power of surprisal values from different
LLMs relative to the effect of condition per study and time window.
In order to assess statistical significance of the surprisal predictors, we
run likelihood-ratio tests, comparing each of the LMEs which include
suprisal to the null regression LME.

2.3. TERPs: Assessing LLM surprisal across time and electrodes

While the methodological approach outlined above is well-suited
to quantify the fit of LLM surprisal to naturalistic data, or to compare
different predictors to each other, we aim to complement it with a more
fine-grained analysis. That is, we wish to assess whether LLM surprisal
can model each of the N400 and P600 effects observed in the original
studies. In order to do so, we apply the regression-based ERP method
(rERPs; Smith and Kutas, 2015). For every subject at every electrode,
timestamp, and trial, the observed voltage is replaced by the estimate
of a simple linear regression model. This estimated voltage is a linear
combination of stimulus properties of the particular trial, which may
for example be operationalized by human ratings. In our approach, we
are interested in re-estimating the voltages based on the isolated effect
of LLM surprisal. Therefore, the regression model as specified below
only contains surprisal from one of the three language models as single
predictor (apart from the intercept):

y = fy + pysurprisal + ¢ 2)

Surprisal values are standardized (cf. Brouwer et al., 2021a). Both
By, which denotes the intercept term, and the surprisal coefficient g,
are determined by the least-squares principle. Each trial belongs to
a certain condition of an item, and thus has a particular surprisal
value associated with it. The regression will find coefficients for f,
and p; which minimize the residual term ¢ across all trials for a given
combination of subject, electrode, and timestamp. The fitted regres-
sion models are then used to compute trial-level voltage estimates,
resulting in a new dataset of estimated voltages, which has the same
dimensionality as the dataset of observed voltages. Analogous to the
traditional ERP analysis procedure, these forward estimates are then
grouped by condition, and first averaged within subjects, resulting in
one estimate per subject, electrode, time sample and condition. Then,
the estimates are averaged once more across subjects, to obtain one
mean estimate per electrode and time sample in each condition. It is
important to note, that in this way the linear models do not have access
to condition-coded predictors and the estimates are only averaged
per condition retrospectively. The grand-average estimates can then
be plotted, allowing us to visually inspect how closely the forward
estimates of the linear models incorporating surprisal approximate the
observed voltages — in each condition, at each electrode and at each
latency. Moreover, this fit is described by the residual error term ¢ of
the trial-level models, which can be averaged and visualized in the
same way as described above, allowing to evaluate how far off the
forward estimates are at a given latency and whether they are too
negative or positive, relative to the observed voltages. The more these
average residuals per condition approximate zero, the better the fit of
the rERP analysis.

Following Aurnhammer et al. (2023), we assess the significance
of the surprisal predictor by computing the same models as specified
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in Eq. (2), but across subjects, instead of within subjects. This allows
us to obtain a single t- and p-value per electrode and time sample.
Due to the problem of multiple comparisons, we correct the p-values
for the inflated false discovery rate by applying the method proposed
by Benjamini and Hochberg (1995). The p-values are corrected within
the N400 and P600 time windows defined in Section 3, and at the
nine central electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), of which
we report Pz. Importantly, however, while these p-values only reflect
the overall fit of predictors across all trials, they are not indicative
of the qualitative fit to the effect structure, and should therefore be
interpreted with caution. That is, predictors may reach significance, but
not adequately replicate the effect structure. Conversely, a predictor
that does not reach significance, may still contribute to modeling the
effect structure.

2.4. rERPs: Correcting for component overlap

While the design of Study 2 will be described in more detail in
Section 3, we note that the study became subject to a phenomenon for
which we need to adjust our methodology: component overlap, that can
occur when negative and positive components, that may temporally
overlap to some degree, cancel each other out in the scalp-recorded
signal (Brouwer and Crocker, 2017; Luck, 2005). In Study 2, the manip-
ulation of two factors led to the observed effect structure: association
modulated the N400, and expectancy — operationalized through plausi-
bility — modulated the P600. Importantly, the decreased association in
the Assoc— Exp— condition (see Ex. 1) elicited a negative response in
the N400, which was so strong that it concealed a subsequent positivity
elicited by the decreased plausibility in the observable waveform-based
component structure (see Brouwer et al.,, 2021a for methodological
and Delogu et al., 2021, 2025 for empirical evidence).

One advantage of the rERP method is, that it permits the direct mod-
eling of the latent contribution of stimulus properties to the measured
voltages, as described in Section 2.3. Brouwer et al. (2021a) showed
how association and plausibility — which were inverted and stan-
dardized - linearly combine in re-estimating the originally observed
voltages with the following model specification:

y = py + B, plausibility + p,association + ¢ 3)

Computing forward estimates with the fitted model results in a
replication of the originally observed effect structure of Study 2. Crit-
ically, using this fitted model, one can neutralize the influence of a
predictor on these estimates, by setting this predictor to its mean,
thereby keeping its influence on the estimates for each trial constant.
Setting association to its mean, and thus isolating the influence of
plausibility, revealed that the P600 amplitude was indeed modulated
by plausibility in the latent component structure (Brouwer et al., 2021a;
Delogu et al., 2021), showing an increased P600 amplitude for the
implausible conditions relative to the plausible baseline. Thus, in order
to enable a fair comparison for LLM surprisal, we follow the same
approach and re-estimate the observed data, setting association to
its mean, hence, isolating the influence of plausibility. In the P600
window of Study 2, we evaluate LLM surprisal on the re-estimated
data separately, both in the LME analysis, in which we predict overall
fit in the time window, and in the rERP analysis, in which we predict
differences between conditions across time and electrodes.

3. Results

We start by reporting the results from the linear mixed effects
regression for all studies and both time windows. Then, we continue
to present the results of our rERP analysis per study. First, we briefly
introduce the original experimental design and findings — presenting
the conditions, their mean ratings, an example item and the observed
ERPs.
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Fig. 1. AICs of linear regressions predicting N400 and P600 amplitude, normalized by the AIC of the null regression.
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Fig. 2. AICs of linear regressions predicting P600 amplitude on the data of Study
2 which was corrected for component overlap. Note the difference in y-axis scale
compared to Fig. 1.

The two factors, which were manipulated across studies, are con-
textual semantic association and expectancy. In Study 1 and Study
2, association was operationalized via human ratings collected in a
separate norming study. Participants rated the semantic relatedness
between the target word and one or multiple context words on a
Likert-scale ranging from 1 (weak) to 7 (strong). In Study 3, a strong
association in all three conditions was achieved via repetition prim-
ing of the target word. Study 1 operationalized expectancy via cloze
probability. That is, in a separate study, participants completed the
stimuli which they saw up until, but excluding the determiner of the
target word. Study 2 operationalized expectancy via cloze probability
and plausibility. Cloze data was collected analogously to Study 1.
Plausibility was operationalized by participants rating the plausibility
of the stimuli up until, and including, the target word on a Likert-scale
from 1 (weak) to 7 (strong). Study 3 operationalized expectancy via
cloze probability and plausibility, which were determined analogously
to Study 2. We re-label the conditions across studies, such that they
reflect the manipulation of association (Assoc+/—) and expectancy
(Exp+/—/—-), the latter originally being operationalized through cloze
or plausibility.

After presenting the original studies, we inspect the distribution of
raw surprisal values grouped by condition, which allows us to reason a
priori which types of ERP differences they may be able to capture. We
then present the rERP forward estimates of the linear regression models
using LLM surprisal as predictor, as specified in Eq. (2), and evaluate
the qualitative fit of the re-estimated voltages to the observed voltages
in the N400 and P600 window. Moreover, the average residual errors
per condition of the forward estimates allow us to also assess this fit
quantitatively. As a general observation, these residuals indicate that
across studies and LLMs, ERP differences in both time windows are
underestimated. For observed voltages, rERP forward estimates, and
residuals, we present confidence intervals. We also report t- and p-
values, which were computed and corrected as described in Section 2.3,
but as noted earlier these may not reflect the quality of fit with the
observed effect structure, which is the focus of the rERP analysis. We
restrict our report to electrode Pz which was most responsive to the
N400 and P600 effects in the studies examined here.

3.1. Assessing overall fit of LLM surprisal in both time windows

Fitting the LMEs per study and time window, as described in the
Method section, leads to normalized AIC values, which are visualized
in Fig. 1. Since the effect structure in the P600 window of Study 2 was
affected by component overlap, Fig. 1 only displays the AICs for the
N400 window in this study. For the P600 window, we re-estimate the
observed voltages (as described earlier) and fit the LMEs with the same
model specifications to the re-estimated data. The AIC values for this
separate set of LMEs are displayed in Fig. 2.

Following Michaelov et al. (2024), we also assess the significance of
the fixed effects by conducting likelihood-ratio tests: we compare each
of the models, which contain either condition or surprisal from one of
the LLMs, to the null model which only contains word frequency and
target word position as fixed effects. All predictors are significant in
both time windows and in all studies (all ps < 0.05), except for GerPT-
2 surprisal, which is not significant in the N400 time window of Study
3: #2(1) =0.17, p = 0.68.

Inspecting the AIC values, normalized by the null model, we observe
that the LMEs including condition as fixed effect generally result in the
lowest AICs, indicating the best fit to the data. An exception is the N400
window in Study 3, in which all AICs are close to zero. This result is
unsurprising, since in this study, no N400 effects were elicited. In the
P600 time window, surprisal of the smallest LLM, GerPT-2, produces
the lowest AICs. For Study 1 and Study 2, GerPT-2 large surprisal
yields the lowest AICs in the N400 window and LeoLM surprisal yields
the lowest AICs in the P600 window.

Crucially, although these results allow for an evaluation of which
LLM produces surprisal values that best predict mean N400 and P600
amplitude in each of the studies, this analysis alone does not allow
us to assess why this is the case. While these results reveal that LLM
surprisal is a significant predictor of mean ERP amplitude in almost
all time windows across all studies, we will now turn to a more
fine-grained rERP analysis, which shows that LLM surprisal not only
underestimates ERP differences, but also in multiple cases fails to model
them qualitatively.

3.2. Additive effects of association and expectancy in the N400

Study 1 crossed association with expectancy, finding that both can
additively modulate the N400 amplitude, whereas only expectancy
modulated P600 amplitude. Fig. 3 shows an example item, mean as-
sociation ratings and cloze probabilities across items, and the observed
ERPs. Expectancy was manipulated through the selectional restrictions
of the main verb: “sharpened ... the axe” in the high expectancy
conditions Assoc+Exp+ and Assoc—Exp+ and “ate ... the axe” in the
low expectancy conditions Assoc+Exp— and Assoc—Exp—. Association
was manipulated through the lexical content of an intervening adver-
bial clause: “... before he the wood stacked, the axe” in the strongly
associated conditions Assoc+Exp+ and Assoc+Exp— and “... before
he the movie watched, the axe” in the weakly associated conditions
Assoc—Exp+ and Assoc—Exp-.
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Pz: Observed
Condition Assoc. Plaus. Cloze Example Item T
I
Assoc+Exp+ 6.29 - 0.67 Yesterday sharpened the lumberjack, 54 I
before he the wood stacked, |
the axe... !
Assoc—Exp+ 2.09 - 0.64 Yesterday sharpened the lumberjack, =3 Y
before he the movie watched, 3 Or—zF-r——t-—-7 -1 -
the axe... 3 |
Assoc+Exp— 6.29 - 0.008 Yesterday ate the lumberjack, 2 1
before he the wood stacked, g | \W I/
. 5 I
the axe... ' \
| Y
'
|
10+ L
Mean association ratings between adverbial clause noun and target, cloze (') 400 800 1200

probabilities for target. English translation preserving German word order.

Time (ms)

Fig. 3. Study 1 (40 participants), experimental conditions, mean human ratings across items, example item and observed ERPs.

In the N400 window, the stimuli elicited additive modulations from
both expectancy and association. Keeping one of the two properties
constant, a decrease in the other led to an increased negativity. Cru-
cially, in the P600 window a main effect of expectancy was observed,
but the manipulation of association did not elicit a difference. Hence,
in order to model the N400 response in the rERPs, LLM surprisal values
need to reflect sensitivity to both association and expectancy, but - in
contrast — they are required to be insensitive to association to capture
the P600. Fig. 4 shows surprisal densities in the first, the rERP forward
estimates in the second, residuals in the third, and t- and p-values in
the last row.

N400. Inspecting the densities in the top row of Fig. 4, we can
observe that surprisal values by all three LLMs appear to reflect sen-
sitivity to both association and expectancy. For LeoLM and GerPT-
2 large the contrast of unexpected versus expected (Assoc+Exp—
& Assoc—Exp— vs. Assoc+Exp+ & Assoc—Exp+) is more pronounced
than the contrast of un-associated versus associated (Assoc—Exp— vs.
Assoc+Exp—, Assoc—Exp+ vs. Assoc+Exp+). This is not the case for
GerPT-2 surprisal values. Consequently, we observe that the rERP
forward estimates (Fig. 4, middle row) match the observed ERPs (Fig. 3)
qualitatively well when entering LeoLM or GerPT-2 large surprisal
into the regression models.

However, the surprisal values from LeoLM show only a small differ-
ence between unassociated versus associated in the expected conditions
(Assoc—Exp+ vs. Assoc+Exp+). Therefore, unlike in the observed pat-
tern, hardly any N400 difference is predicted between these conditions
in the rERPs. GerPT-2 surprisal values appear to reflect the contrast
of association well, but the contrast of expectancy however only to
a smaller extent when compared to the other LLMs. In the rERPs,
surprisal values from this LLM only capture the overall ordering of
differences, and provide the worst fit to the human data, which is also
reflected in the largest residuals for GerPT-2 in both time windows.

P600. The contrast of the higher mean surprisal in the unexpected
conditions relative to the lower mean surprisal in the expected condi-
tions — observable in the densities of LeoLM and GerPT-2 large -
leads to rERP forward estimates that predict a difference of expectancy
in this time window. This prediction matches the observed ERPs (Fig.
3). However, the additional sensitivity to association, which is reflected
in the surprisal values, leads to the prediction of a small P600 dif-
ference of association in the unexpected conditions (Assoc—Exp— vs.
Assoc+Exp—). Entering surprisal values from GerPT-2 leads to rERPs
that predict only minimal P600 differences between all conditions.

Summary. Surprisal by LeoLM and GerPT-2 large was a signif-
icant predictor throughout most time samples in both time windows,
while surprisal by GerPT-2 was only significant in the N400 and
initial time samples in the P600. In the N400 window, however, Study
1 revealed additive influences of association and expectancy, i.e., de-
creasing either association or expectancy led to a stronger negativity
when keeping the other property constant. This means modeling this
response requires LLM surprisal values to reflect sensitivity to not only
expectancy but association as well — which is what we observe in the

densities for all three LLMs. While resulting in rERP forward estimates
that overall match the observed voltages qualitatively (LeoLM and
GerPT-2 large), this raises the question of how well LLMs estimate
true surprisal, as true surprisal is insensitive to association. By contrast,
P600 amplitude was shown here to be sensitive to expectancy but
insensitive to association, as only an effect between the expected and
unexpected conditions was observed. While in the rERPs this difference
of expectancy is captured best with surprisal from the larger LLMs
(LeoLM and GerPT-2 large), their additional sensitivity to associa-
tion leads to the prediction of a small difference of association in the
unexpected conditions.

3.3. Association overrides expectancy in the N400 but not P600

Study 2 showed, that in the N400 time window, association and ex-
pectancy may not necessarily lead to additive effects. An example item
of this study is presented in Fig. 5, alongside mean human judgments
of association, plausibility and cloze across items. Central to the design
is a manipulation of plausibility that is determined by world event
knowledge: while entering a restaurant and then opening a menu is
plausible (Assoc+Exp+), leaving a restaurant and then opening a menu
is implausible and less expected (Assoc+Exp—), which also holds for
entering an apartment and opening a menu (Assoc—Exp—). However,
the conditions Assoc+Exp+ and Assoc+Exp— share the same strong con-
textual association between the prime noun restaurant and the target
menu, while apartment and menu in condition Assoc—Exp— are only
weakly associated. Crucially, no N400 effect was observed between
Assoc+Exp+ and Assoc+Exp—, despite the decreased plausibility and
cloze probability of menu in Assoc+Exp—. Only Assoc—Exp—, being
both implausible and weakly associated, elicited a stronger negativ-
ity relative to the other conditions. While the implausible condition
Assoc+Exp— did not elicit an N400 effect relative to Assoc+Exp+, due
to the strong contextual association in both conditions, a P600 effect
was observed instead. Although Delogu et al. (2019) predicted a cen-
troparietal P600 effect in the other implausible condition Assoc—Exp—
relative to Assoc+Exp+ as well, such an effect was only observed at
occipital electrodes, due to the sustained negativity which extended
into the P600 window. When correcting for spatio-temporal overlap,
the predicted P600 effect was observed (Brouwer et al., 2021a; Delogu
et al., 2021).

If mean LLM surprisal differs sufficiently in conditions Assoc+Exp+
and Assoc+Exp—, it will predict a difference between these conditions
in the rERPs, which does not match the observed data. If mean LLM
surprisal does not differ between these conditions, no difference will
be predicted in the rERPs. This would match the observed data but
also show that LLM surprisal is sensitive to association and not purely
estimating surprisal. In order to assess LLM surprisal in the P600
window, a correction of component overlap is required first, showing a
positivity in both conditions Assoc+Exp— and Assoc—Exp— relative to
Assoc+Exp+. Predicting a positivity in Assoc+Exp— and Assoc—Exp—
relative to Assoc+Exp+ consequently requires mean surprisal to be
higher in these conditions.
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Pz: Observed

|
|
Condition Assoc. Plaus. Cloze Example Item |
N

Assoc+Exp+ 6.32 6.28 0.38 John entered the restaurant.
Before long, he opened the menu...
Assoc+Exp— 6.32 2.42 0.13 John left the restaurant.
Before long, he opened the menu...
Assoc—Exp— 1.56 1.93 0.008 John entered the apartment.
Before long, he opened the menu...

Amplitude (uVolt)

Mean association ratings between prime noun and target, mean plausibility

ratings for stimuli up until including target, cloze probabilities for target.
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Fig. 5. Study 2 (26 Participants), experimental conditions, mean human ratings across items, example item and observed ERPs.
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Fig. 6. Study 2 surprisal densities (row 1), rERP forward estimates (row 2), rERP residuals (row 3), t-values and significant corrected p-values (row 4).

N400. As can be observed in the top row of Fig. 6, the LLMs
diverge in how strongly their mean surprisal differs between conditions
Assoc+Exp+ and Assoc+Exp—. There is a noticeable difference for
LeoLM, which is less pronounced for GerPT-2 large and almost
unnoticeable for GerPT-2. Consequently, computing rERP forward
estimates with LeoLM surprisal values leads to the prediction of a
stronger negativity in the N400 in condition Assoc+Exp— relative to
Assoc+Exp+, aligning with judgments of plausibility and expectancy,
even though no N400 but rather a P600 effect was observed between
these conditions (see Fig. 5). By contrast, entering GerPT-2 surprisal
into the rERP analysis does not predict any difference between the
conditions, which is in line with association and the observed ERPs.
GerPT-2 large appears to fall in between the other LLMs, that is, its
surprisal values lead to only a minimally stronger negativity. In sum,

the largest LLM (LeoLM) produces surprisal values patterning with
plausibility and expectancy — predicting a difference in Assoc+Exp—
relative to Assoc+Exp+ in the rERPs which was not observed in the
ERP data — while using the smaller GPT-2 models (GerPT-2 large
and GerPT-2) leads to surprisal values patterning with association,
predicting no difference between Assoc+Exp+ and Assoc+Exp— in the
rERPs — which is the pattern that was observed.

P600. A positivity in Assoc+Exp—, but not Assoc—Exp—, relative to
Assoc+Exp+ was observed in the original data, even though both con-
ditions were implausible. Thus, modeling the observed data would re-
quire LLM surprisal to be high in the implausible condition Assoc+Exp—,
and lower in the other implausible condition Assoc—Exp— as well as
the plausible baseline Assoc+Exp+. As confirmed by Brouwer et al.
(2021a) and Delogu et al. (2021, 2025), the absence of the posi-
tivity in Assoc—Exp— was due to component overlap: the preceding
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strong negativity in this condition sustained throughout the ERP epoch
and concealed the subsequent positivity. To account for this phe-
nomenon, we first isolate the influence of plausibility and re-estimate
the data, as described in the Method section. This reveals a positivity
in both implausible conditions Assoc+Exp— and Assoc—Exp— relative
to Assoc+Exp+, as can be seen in the left panel of Fig. 7. The rERP
analysis is then conducted on the re-estimated data, potentially allow-
ing LLM surprisal to predict the increased positivity in the implausible
conditions in this time window.

We only present the forward estimates and residuals for LeoLM in
Fig. 7, where close inspection reveals a minimally stronger positivity
in condition Assoc—Exp—. This difference is hardly noticeable for the
forward estimates based on the other LLM’s surprisal values. Indeed,
the residuals clearly show that the plausibility effect (Assoc+Exp— &
Assoc—Exp— relative to Assoc+Exp+) is not adequately modeled in the
corrected ERPs.

Summary. Surprisal by all three LLMs was a significant predictor
throughout the N400 (see Fig. 6), and partially in the P600 time-
window (see Fig. 7, where we focus our analysis on LeoLM). The N400
effect pattern observed in this study, however, poses a challenge for
LLM surprisal: the less expected condition Assoc+Exp— did not elicit
an increased negativity, due to the strong semantic association between
the target and the context. Surprisal values obtained with LeoLM, our
largest LLM in terms of model complexity and training data size, pattern
with human judgments of plausibility and expectancy, thus predicting
an increased negativity in the rERPs that was not observed in the
N400, but rather in the P600. In contrast, surprisal values obtained
with the smallest LLM (GerPT-2) pattern with association rather than
expectancy, predicting the (observed) absence of this difference in the
N400.

The implausible and associated condition Assoc+Exp— elicited a
P600 relative to the plausible and associated baseline. The implausible
and un-associated condition Assoc—Exp— did not lead to an observable
P600 difference due to component overlap. Evaluating LLM surprisal
on re-estimated ERPs that account for component overlap and show a
positivity for both implausible conditions relative to the baseline, we
find that none of the LLMs yields surprisal values that allow to capture
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this difference in the rERPs, although surprisal values from the largest
LLM appear to predict a slightly increased positivity for the implausible
and unassociated condition.

3.4. The P600 as continuous index of plausibility-driven expectancy

Study 3 found that repeated priming of the target word can lead
to the absence of any N400 effects between gradually less plausible
conditions. Note, that the pre-N400 negativity which can be observed
in condition Exp—, can be explained by the high cloze probability of the
distractor, and is hence akin to a mismatch negativity (see Aurnhammer
et al., 2023 for a discussion). Instead, gradually decreased plausibility
elicited an increasingly positive P600 amplitude. In this study, a context
paragraph repeats the target word multiple times to maximally prime
its meaning.” The subsequent target sentence then offers a continuation
in which the target word is either plausible (Exp+), less plausible
(Exp-) or implausible (Exp—-). See Fig. 8 for mean plausibility rat-
ings, cloze probability and an example item. The graded plausibility
manipulation is achieved by continuously decreasing the plausibility
of the target word being the object of the preceding verb: “dismissed
... the tourist” Exp+ vs. “weighed ... the tourist” Exp— vs. “signed ...
the tourist” Exp——. Due to the repetition priming noted above, the
association between the target and the context is equally strong in all
three conditions and no N400 effects were elicited. Instead, the gradual
decrease in plausibility led to an increasingly positive amplitude in the
P600 window, with the strongest positivity for condition Exp—— > Exp—
> Exp+. In order to model the N400 window in the rERPs, mean LLM
surprisal would need to be equal in all three conditions. In contrast, to
model the P600 window, mean surprisal should be highest in Exp——
and gradually lower in Exp— and Exp+.

N400. Inspecting the surprisal densities in the top row of Fig. 9,
we observe that for all three LLMs, mean surprisal is higher with an
increased spread in the less plausible and implausible conditions (Exp—

7 The stimulus materials were based on materials by Nieuwland and Van
Berkum (2005).
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and Exp—-) relative to the plausible baseline Exp+.° In the rERPs,
this leads to the prediction of an unobserved increased negativity
for conditions Exp— and Exp—— when using surprisal computed with
LeoLM and GerPT-2 large. This negativity is less noticeable for the
forward estimates computed with GerPT-2 surprisal.

P600. As the densities in the top row of Fig. 9 show, the difference
in mean LLM surprisal is small between conditions Exp— and Exp——,
although higher in both conditions relative to Exp+. Consequently,
in the rERPs, LLM surprisal predicts an increased positivity for the
conditions with decreased plausibility. However, the gradedness of this
effect is not captured. There is no prediction of an increased positivity
in condition Exp—- relative to Exp—.

Summary. Surprisal by LeoLM and GerPT-2 large was a sig-
nificant predictor in some time samples in the N400. In the P600,
surprisal by GerPT-2 was a significant predictor throughout most
time samples, while surprisal by LeoLM and GerPT-2 large was a
significant predictor in some time samples. However, no N400 effects
were observed in the increasingly less plausible conditions relative
to the plausible baseline, due to the repeated priming of the target
word which leads to a strong association with the context. Modeling
this absence of differences is again challenging for LLM surprisal, as
it would require the LLM to assign a similar probability to the target
word in all conditions, but a good language model should have learned
to assign increasingly lower probability to increasingly unexpected
continuations. LLM surprisal is higher in the conditions Exp— and
Exp—— relative to Exp+. Consequently, the higher LLM surprisal for
conditions Exp— and Exp—-— still predicts a small negativity for the
less plausible and implausible conditions, which was not observed.
In the P600 window, the gradually decreased plausibility elicited a
continuously increased amplitude (Exp—— > Exp— > Exp+). However,
mean LLM surprisal only differs slightly between the less plausible and
implausible conditions. Thus, in the rERPs it predicts a difference of
plausibility but not the gradedness of this difference.

4. Discussion

There is broad empirical support for expectation-based accounts of
language comprehension as formalized by surprisal in Eq. (1). Given
the remarkable performance of recent large language models which
directly operationalize surprisal, we sought to examine the relationship
between LLM surprisal and two of the most salient ERP indices of lan-
guage comprehension: the N400 and P600. Importantly, any empirical
evaluation of the relationship defined in Eq. (1) faces a many-to-many
mapping problem: there are multiple measures of cognitive effort, and
many possible operationalizations of surprisal.

With regard to the left-hand side of Eq. (1), reading times, eye
movements, or ERP components offer different measures of processing
effort that may more or less reliably reflect the full extent of the dif-
ficulty which comprehenders experience when processing a word. The
N400 and the P600, for example, both index processing in a manner
which is differentially sensitive to word expectancy. Beyond contextual
expectancy, the N400 is also sensitive to simple contextual association,
to the extent that association can attenuate (Aurnhammer et al., 2021)
and even override (Aurnhammer et al., 2023) any expectancy effects in
this time window. This is consistent with Delogu et al. (2019), as well as
ample evidence from reversal anomalies demonstrating the absence of
an N400 for words that are unexpected based on all linguistic and world
knowledge (see Kuperberg et al., 2007; Bornkessel-Schlesewsky and
Schlesewsky, 2008; Brouwer et al., 2012 for reviews), and the broader
insensitivity of the N400 to syntactically unexpected words, which are
rather indexed by the P600, as discussed below (see Gouvea et al.,
2010 for a review). Taken together, these findings present a serious

8 We note that LeoLM shows the highest mean surprisal for Exp— instead
of Exp——.
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challenge to the claim that the N400 indexes true surprisal. By contrast,
the P600 is insensitive to association, and known to robustly respond
to words that are unexpected based on morpho-syntactic, semantic,
and pragmatic constraints (see Gouvea et al., 2010; Brouwer et al.,
2012; Hoeks and Brouwer, 2014 for reviews). Furthermore, Aurnham-
mer et al. (2023) demonstrate that the P600 is continuously sensitive
to plausibility grounded in world-knowledge. Therefore, we consider
whether the P600 may provide a more reliable, yet underexplored,
index of true surprisal compared to the N400.

Turning to the right-hand side of the equation sign in Eq. (1),
LLMs based on transformer architectures (Vaswani et al., 2017) have
become a focus of recent research into expectation-based processing.
In addition to being trained on the vast amounts of linguistic data
necessary to accurately reflect the distributional properties of language,
their performance also suggests they capture plausibility — including
aspects of world and event knowledge — suggesting they are better at
approximating true surprisal than previous language model architec-
tures. While surprisal estimates from LLMs have indeed been found to
provide a close fit to a range of neurobehavioral processing indices
(e.g., see de Varda et al.,, 2023), much of the supportive evidence
is based on correlating LLM surprisal with language from naturalistic
corpora. While such correlations underline the robustness of surprisal
theory, our primary focus is on which ERP component provides the
best index of true surprisal, as well as how well this is operationalized
by LLMs. We therefore motivated the evaluation of three controlled
datasets which are particularly revealing about the differential response
of the two components to manipulations of expectancy and association,
as these are not easily dissociable in naturalistic data. We analyzed the
surprisal estimates from three current German LLMs on these datasets
in order to gain insight into the generality of our findings.

4.1. LLM surprisal as predictor of the N400 or the P600

Since its discovery by Kutas and Hillyard (1980), the N400 has
repeatedly been found to be sensitive to expectancy manipulations:
unexpected words generally elicit an increased negativity compared to
expected words. Consequently, previous research has tested whether
N400 amplitude can be predicted by LLM surprisal on both naturalistic
(e.g., Merkx and Frank, 2021) and experimental data (e.g., Michaelov
et al.,, 2024). Overall, a significant negative correlation has been ob-
served. However, among numerous linguistic and non-linguistic fea-
tures, the N400 is also sensitive to contextual semantic association (Ku-
tas and Federmeier, 2011). Association is not concerned with grammat-
icality or plausibility, i.e., surprising continuations that are ungrammat-
ical and/or implausible may be highly associated with the context and
hence attenuate processing effort reflected in the N400. Therefore, we
argue that these findings challenge the role of the N400 as a reliable
index of surprisal, as surprisal by definition is unaffected by simple
association (Levy, 2008).

In the ERP studies which we evaluated, association either atten-
uated expectancy effects in the N400 (Study 1), or eliminated them
completely (Study 2 and 3). LLM surprisal was able to capture the
additive N400 effects of association and expectancy observed in Study
1. This finding implies that not only the N400 but also LLMs are to some
extent sensitive to association. This result is also in line with previous
results reported by Michaelov and Bergen (2022) about the stimuli
of Metusalem et al. (2012): when two continuations were matched for a
cloze probability of zero, the less associated continuation led to higher
LLM surprisal.

Cases in which association eliminates expectancy effects remain
challenging for LLMs, however. In Study 2, the condition Assoc+Exp—
is less expected than Assoc+Exp+. Yet, no N400 effect of expectancy
was observed between these conditions, due to the target word being
highly associated with the context in both conditions. Only the condi-
tion that is both unassociated and unexpected (Assoc—Exp-) elicited
an increased negativity relative to the other conditions. The same logic
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applies to the N400 data of Study 3, where the conditions are either
expected, less expected, or unexpected, but the strong association of
the target to the context across conditions eliminated any expectancy
effects. Thus, to correctly model N400 amplitude, LLMs would need
to assign equal likelihood to target words in each condition despite
their varying expectancy. The extent to which LLM surprisal does this,
however, would suggest a divergence from true surprisal.

Such a divergence could reflect the extent to which LLMs can learn
the relevant world/event knowledge that determines the plausibility —
and thus expectancy — differences of the conditions in Study 2 and 3,
which would be necessary for them to assign lower probabilities to less
plausible continuations. Kauf et al. (2023) investigated this question,
and found that LLMs are consistently sensitive to sentences describ-
ing impossible states-of-affairs, but not necessarily to those describing
possible but unlikely ones. While this suggests mixed sensitivity of
current LLMs to plausibility based on world knowledge, one would
expect better language models to capture such plausibility-driven ex-
pectations and be less affected by association. As LLMs are trained to
minimize perplexity on naturalistic data, smaller LLMs tend to have
a higher perplexity. As a consequence, such models may be poorer
at distinguishing plausible and implausible words that have not been
adequately observed during training, and we speculate that they may
rather rely on simple association. Indeed, our results are in line with
this, as in our analysis of Study 2 we find that surprisal by the small
and medium-sized GPT-2 models captures the observed absence of a
difference best, while surprisal by the largest LLM predicts an unob-
served negativity for Assoc+Exp— relative to Assoc+Exp+. Analogously,
the smallest LLM predicts the least amount of difference between all
conditions in the data of Study 3. The sensitivity of LLM surprisal to not
only expectancy but also association found for controlled experimental
data in the present study may thus explain the previously observed
correlation between the N400 and LLM surprisal in naturalistic data.

We also assessed the ability of LLM surprisal to account for differ-
ences between conditions in the P600. The P600 has been found to
be sensitive to syntactic, semantic and pragmatic expectancy (see Gou-
vea et al.,, 2010; Brouwer et al., 2012; Hoeks and Brouwer, 2014
for reviews). Crucially, as the P600 is insensitive to association, we
hypothesize that this component offers a more direct index of true
surprisal. In the ERP studies we evaluated, P600 effects were elicited by
manipulating semantic plausibility, as determined by script-knowledge
(Study 2), or by selectional restrictions of verbs (Study 1 and 3). LLM
surprisal was able to account for the increased positivity elicited by
the more salient expectancy manipulations in Study 1 and Study 3.
However, it could neither capture the graded plausibility effects in
Study 3, nor the script-knowledge violations in Study 2. As discussed
above, the inability of LLM surprisal to completely capture the P600
in these two controlled studies may be due to (a) the influence of
association on LLM surprisal, and/or (b) variability in the ability of
LLMs to learn relevant world/event-knowledge plausibility constraints
on expectancy. This is consistent with our observation that the surprisal
from the largest LLM — which is less sensitive to association and more
likely to approximate true surprisal — performed best in capturing the
P600.

While the aim of the present study was not to assess the specific
parameters of the models considered, the differences in their perfor-
mance naturally lead to the question of which LLM features contribute
to their psychometric quality, that is, how well their surprisal estimates
match neurobehavioral processing data (de Varda and Marelli, 2023;
Wilcox et al., 2023a). Factors that have been shown to influence model
behavior include the amount of training data the LLM has been exposed
to, the number of its trainable parameters, hidden layers, attention
heads and also the amount of previous context which it considers
during prediction. While it was initially assumed that psychometric
quality linearly increases with decreasing perplexity (Goodkind and
Bicknell, 2018), further research found conflicting results. LLMs which
are smaller with regard to their architecture, training data size or
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training duration, i.e., LLMs with higher perplexity, were found to
provide a closer fit to human reading times than larger ones (Oh and
Schuler, 2023b; Shain et al., 2024). Oh et al. (2024) argued that this
effect may arise due to larger LLMs becoming overly accurate in pre-
dicting the probability of rare open-class words, thus underestimating
reading times for these words. Moreover, Kuribayashi et al. (2022)
found that LLMs which were more constrained in their context size,
also led to a closer reading time fit. Furthermore, de Varda and Marelli
(2023) observed that surprisal from LLMs of different sizes predict early
versus late eye-tracking measures differentially well, such that earlier
measures were better predicted by smaller, and later measures better
predicted by larger LLMs. In sum, the fit of LLM surprisal to various
neurobehavioral processing indices is complex, with numerous factors
contributing to LLM performance, and any conclusions about the effect
of LLM parameters on psychometric fit with ERPs remain to be explored
in future experiments.

4.2. Reconciling LLM behavior with the functional interpretation of ERPs

The focus of the present investigation has been to assess the degree
to which surprisal, as estimated at the output layer of an LLM, can
explain observed N400 and P600 effects in language comprehension.
Due to the partial orthogonality of N400 and P600 responses to various
aspects of the next word, it is not possible for LLM surprisal to fully
explain both of these components. Indeed, the differential sensitivity
of the N400 and P600 - as exemplified by the studies evaluated here —
have underpinned the functional interpretation of the components with
regard to which mechanistic processes they index. Retrieval-Integration
(RI) theory, for instance, posits that the N400 indexes the retrieval of
word meaning from long-term memory, while the P600 reflects the
integration of this meaning into an unfolding utterance representa-
tion (Brouwer et al., 2012; Brouwer and Hoeks, 2013; Brouwer et al.,
2017; Venhuizen and Brouwer, 2025). RI theory predicts facilitated re-
trieval of the meaning of the next word if it is contextually expected by,
or associated with, the prior context, resulting in an attenuated N400
amplitude. The cost of integrating this retrieved word meaning into an
unfolding utterance representation, by contrast, is predominantly deter-
mined by linguistic and plausibility constraints, such that unexpected
words entail greater effort, resulting in larger P600 amplitude.

One approach to reconciling such a mechanistic account of the
cognitive processes underlying the N400 and the P600, is to look
for correlates of these processes and their assumed representation in
different internal layers of an LLM. For instance, as earlier layers of
an LLM are closer to the input word embeddings, the computational
and representational dynamics at these layers may be closer to those
underlying the N400. On the other hand, computations and representa-
tions closer to the final layers may be more reflective of utterance-level
integrative processes, and thus better capture the computations and
representations underlying P600. Indeed, this perspective is consistent
with the hypothesis that more shallow LLM representations align better
with earlier, and deeper representations better with late processing
indices (Kuribayashi et al., 2025). This hypothesis could, for instance,
be tested by applying the tuned lens method (Belrose et al., 2023),
which reveals model predictions about upcoming input at different LLM
layers, other than just the output layer.

Alternatively, methods from the field of mechanistic interpretability
may be leveraged (see Rai et al., 2024 for a review). Research in this
area has begun to shed light on the mechanistic roles of different LLM
representations, such as the multilayer-perceptron layers and attention
heads, and how they combine to form circuits which are specialized
in fulfilling sub-goals during next-word prediction (Geva et al., 2023;
Wang et al., 2022). On a final note, building on work by Kauf et al.
(2023), probing methods may be harnessed to investigate the degree to
which different LLMs layers are sensitive to, for instance, association,
plausibility and world/event knowledge.
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5. Conclusion

Expectations regarding the next word play a central role in lan-
guage comprehension, such that listeners process expected words with
greater ease than less expected ones. Surprisal theory formalizes this
relationship by positing that the cognitive effort required to process
a word is proportional to its negative log-probability in context. Crit-
ically, the true expectancy of a word should in principle reflect all
relevant determinants of what words are likely to appear next — includ-
ing distributional, linguistic, and world knowledge-based plausibility
constraints. LLMs trained on next word prediction directly compute
richly contextualized surprisal estimates which, when combined with
their deceptively human-like language capabilities, has motivated their
consideration as plausible models of human comprehension at both the
computational and algorithmic level. We here evaluated the degree to
which LLM surprisal aligns with the two most salient neural correlates
of comprehension — the N400 and the P600 — which are differentially
sensitive to the semantic association and contextual expectancy of a
word.

Critically, while previous studies have established a link between
the N400 and LLM surprisal, these results are predominantly based on
evaluations of naturalistic data, in which association and expectancy
are confounded. By focusing the present evaluation on factorial designs
that tease apart association and expectancy, we challenge the validity
of the N400 as an index of true surprisal. While we find that LLM
surprisal does indeed not fully align with the N400, we do observe that
it is sensitive to association, especially in smaller models. Hence, to
the extent that LLM surprisal properly models the N400, it is in fact
a poor model of true surprisal. Due to this sensitivity to association
and/or the inability to learn world/event knowledge constraints — at
least for the LLMs considered here — we find that LLM surprisal also
does not fully align with the P600. Importantly, as the P600 is insensi-
tive to association, patterns with expectancy in a continuous manner,
and is more broadly sensitive to syntactic, semantic and pragmatic
expectancy, we argue that the P600 is a better index of true surprisal.
We therefore posit that — when the full complex of N400 and P600
responses as revealed by controlled manipulations is taken into account
— we should regard the P600, rather than the N400, as the neural
correlate of true surprisal. Indeed, we advocate more generally for
the importance of evaluating LLMs against controlled experimental
data that more fully reveal the sensitivity of relevant ERP components
to a range of expectancy manipulations, thus complementing more
naturalistic data. Finally, given our observations that the surprisal from
the largest LLM performed best in capturing the P600, we hypothesize
that better performing LLMs will be both less sensitive to association
and better embody the full-range of linguistic and world knowledge
constraints that determine true surprisal.
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