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Abstract

The thesis addresses two main topics, spectra of typical Hilbert space operators
and non-commutative Choquet theory.
The former is discussed in Chapter 2, where we show that a typical operator has
non-empty point spectrum as well as non-empty continuous spectrum are typical
properties. We conclude the chapter with the new result that the set of operators
with empty continuous spectrum is dense.
In Chapter 3, we study the lattice of C∗-covers of operator algebras. Among other
things, we show that an operator algebra with more than one C∗-cover already
has continuum many C∗-covers.
Chapter 4 is devoted to Arveson’s Hyperrigidity Conjecture. We first show that
all operator systems of the form A(K), where K ⊂ R2 is compact and convex,
are hyperrigid in C(ex(K)). After that, we look at the known counterexample by
Bilich and Dor-On and present a new counterexample, new in the sense that the
operator system is generated by only finitely many selfadjoint operators.
We conclude the thesis in Chapter 5 with so far unpublished results. This includes,
among others, the result that the maximal unital completely positive maps form
a dense Gδ-set.
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Zusammenfassung

Die Doktorarbeit befasst sich mit zwei zentralen Themen, typischen Spektren von
Operatoren auf Hilberträumen und nicht-kommutative Choquet Theorie.
Ersteres wird in Chapter 2 behandelt. Dort zeigen wir zuerst, dass nicht-leeres
Punktspektrum sowie nicht-leeres stetiges Spektrum typische Eigenschaften sind.
Das Kapitel beenden wir mit dem neuen Resultat, dass die Menge der Operatoren
mit leerem stetigem Spektrum dicht liegt.
In Chapter 3 befassen wir uns mit dem Verband von C∗-Überdeckungen von
Operatoralgebren. Wir zeigen unter anderem, dass eine Operatoralgebra mit mehr
als einer C∗-Überdeckung bereits Kontinuum viele C∗-Überdeckungen hat.
Chapter 4 widmet sich Arveson’s Hyperrigidity Vermutung. Zuerst zeigen wir,
dass alle Operatorsysteme der Form A(K), wobei K ⊂ R2 eine kompakte konvexe
Menge ist, hyperrigid in C(ex(K)) sind. Danach befassen wir uns mit dem
bekannten Gegenbeispiel von Bilich und Dor-On und geben ein neues Gegenbeispiel,
neu im Sinne, dass das Operatorsystem nur von endlich vielen selbstadjungierten
Elementen erzeugt ist.
Wir schließen die Thesis mit noch nicht veröffentlichten Resultaten in Chapter 5.
Dies enthält unter anderem das Resultat, dass die maximalen unitalen vollständig
positiven Abbildungen eine dichte Gδ-Menge sind.
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Chapter 1

Introduction

This thesis addresses two main topics. The first concerns typical properties of
Hilbert space operators (see Chapter 2), and the second is non-commutative Cho-
quet theory, which is further subdivided into two subtopics: C∗-covers of operator
algebras (see Chapter 3) and hyperrigidity of operator systems (see Chapter 4).
The thesis concludes with Chapter 5, which presents a collection of smaller results.
Each chapter begins with a more detailed introduction to its specific subject. The
present chapter provides a brief overview of the three aforementioned areas, along
with a summary of the thesis’s contributions to each.

In 1914, Felix Hausdorff published his book “Grundzüge der Mengenlehre“ (see
[36] for the 1949 edition), in which, among other things, he introduced Gδ and
Fσ sets. The former are countable intersections of open sets, while the latter are
countable unions of closed sets. In the same work, Hausdorff also established the
general version of what is now known as the Baire category theorem, a theorem
that was first proven by Osgood for the real line R and later generalized to Rn.

Theorem (Baire): Let (X, d) be a complete metric space and (Un)n∈N be a sequence
of open dense subsets in X. Then, ⋂n∈N Un is dense in X.

The theorem is of importance in geometry and analysis and appears in many
proofs of fundamental results.
Furthermore, in his book, Hausdorff introduced sets of first category, nowadays
called meager sets, which are subsets of countable unions of nowhere dense sets.
He referred to their complements as “sets of second category“, we refer to them
as comeager sets. The terminology “first“ and “second category“ originates from
Baire’s Ph.D. thesis, while the terms “meager“ and “comeager“ were introduced
later by Bourbaki.
In the Scottish book, Stanisław Mazur noted a topological game, played alternately
by two players, I and II, selecting decreasing open sets of (R, | · |). Player II is
said to win the game for a set A ⊂ R if there is a strategy such that, for each
possible run of the game, the intersection of the chosen sets is contained in A.
Apparently, in 1935, Stefan Banach showed that Player II has a winning strategy
if and only if A is comeager. Later, in 1957, John Oxtoby generalized this game
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Chapter 1 Introduction

to arbitrary topological spaces (X, τ), a version now known as the Banach-Mazur
game, and proved the following theorem in [54].

Theorem (Banach-Mazur, Oxtoby): Let (X, τ) be a topological space and A ⊂ X.
Then, Player II has a winning strategy in the Banach-Mazur game for the set A
if and only if A is comeager.

In Chapter 2, we study typical properties of bounded linear operators on a Hilbert
space H. A “typical property“ means that the set of operators having the property
is comeager in B(H). This of course depends on the topology considered on B(H).
In [27] and [26], Tanja Eisner and Tamás Mátrai investigated typical properties
in the norm, weak, and strong operator topologies, focusing on properties such
as having non-empty point spectrum. Our work focuses exclusively on the norm
topology and the two properties:

(i) having non-empty point spectrum,
(ii) having empty continuous spectrum.

In [27, Question 8.4], it was asked if (i) and (ii) are typical properties. We answer
both of these questions in Chapter 2. The majority of the presented results were
published in [59]. In Theorem 2.3.3, we show the following:

Theorem: Let H be an infinite dimensional separable Hilbert space. Then

{T ∈ B(H); σp(T ) ̸= ∅}

contains an open dense subset of B(H) with respect to the norm topology.

This shows, in particular, that property (i) is typical.
On the other hand, in Theorem 2.3.12, we prove the following:

Theorem: Let H be an infinite dimensional separable Hilbert space. Then the
property of having non-empty continuous spectrum is typical with respect to the
norm topology.

This shows that (ii) is not a typical property. The proof uses the Banach-Mazur
game and the aforementioned result by Banach-Mazur respectively Oxtoby.
These findings motivated an investigation of the closure of the set of operators
with empty continuous spectrum. Similar questions were studied for other classes
of operators by Domingo Herrero, see [39]. Our central tool for addressing
this problem is the Similarity Orbit Theorem of Apostol, Fialkow, Herrero and
Voiculescu. It provides necessary and sufficient spectral conditions for an operator
to lie in the closure of the similarity orbit of another operator.
In this context, we need certain concrete examples of operators with specific
spectral properties. In particular, for every non-empty compact set K ⊂ C, we
require an operator Tp on a separable Hilbert space such that σ(Tp) = σp(Tp) = K.
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The topological properties of the spectrum and the point spectrum of an operator
have a long history. Independently, Dixmier and Foiaş, and later Nikol’skaya in
[53] showed that the point spectrum of a bounded operator acting on a separable
reflexive Banach space is Fσ, and that every bounded Fσ subset of C coincides with
the point spectrum of a certain bounded operator on a separable Hilbert space.
A few years later, Kaufmann showed in [44, 43] that a necessary and sufficient
condition for a subset of C to be the point spectrum of a bounded operator on
some separable complex Banach space is that it be bounded and analytic (in the
sense of Suslin). These results were extended by Smolyanov and Shkarin, see also
[62] and [52] for further results.
The Similarity Orbit Theorem and the operator Tp are then used to prove a new
result, Theorem 2.4.7:
Theorem: Let H be a separable Hilbert space. Then

{T ∈ B(H); σc(T ) = ∅} = B(H)

Chapter 3 and Chapter 4 are devoted to non-commutative Choquet theory. We
begin with a discussion of classical Choquet theory. Originally developed by
Gustave Choquet in the context of potential theory, it quickly evolved into an
independent area of research.
Typically, one starts with a compact convex set K in a normed space and seeks to
relate points in K to the extreme points of K. The most classical and probably
most general result in this setting is due to Mark Krein and David Milman (1940,
[48]):
Theorem (Krein-Milman): Let X be a locally convex Hausdorff space and K ⊂ X
a non-empty, compact, convex set. Then

conv(ex(K)) = K,

where conv(·) denotes the convex hull.

This general result has a stronger formulation in Euclidean spaces Rd:
Theorem (Carathéodory-Minkowski): Let K ⊂ Rd be non-empty and compact,
and let x ∈ K. Then x can be written as a convex combination of at most d+ 1
extreme points of K.

Choquet attempted to generalize Carathéodroy’s theorem to arbitrary compact
convex sets. However, in such generality, neither finite nor countably infinite convex
combinations suffice. The key lies in interpreting what a convex combination is.
If one views the extreme points in Carathéodory’s theorem as point measures
on ex(K), then a convex combination corresponds to a probability measure µ
supported on ex(K). This measure then represents the point x in the sense that�

ex(K)
fdµ = f(x)

3



Chapter 1 Introduction

for all f ∈ A(K), the space of affine continuous functions on K.
This perspective allowed Choquet to prove the following fundamental result:

Theorem (Choquet): Let K be a non-empty compact convex subset of a normed
space and x ∈ K. Then there exists a probability measure µ concentrated on ex(K)
such that �

ex(K)
fdµ = f(x)

for all f ∈ A(K).

Most of the theorems in classical Choquet theory are formulated for function
systems or function algebras. A unital self-adjoint subspace of a commutative C∗-
algebra is called a function system and a unital closed subalgebra of a commutative
C∗-algebra is called a function algebra. It is easy to see that A(K) is a function
system in C(K). These definitions naturally motivate non-commutative Choquet
theory by replacing the commutative C∗-algebra with a general one. This leads
to the concepts of operator systems, unital selfadjoint subspaces of C∗-algebras
and operator algebras, norm-closed subalgebras of C∗-algebras. Both were studied
by William Arveson: operator algebras in [9], [6], and operator systems in [8], [7].
In the theory of operator algebras, Arveson investigated ideals I in the underlying
C∗-algebra such that the corresponding quotient map by I is completely isometric
on the operator algebra. This led to the fundamental concepts of C∗-covers, the
Shilov ideal, and the C∗-envelope. Roughly speaking, a C∗-cover of an operator
algebra is a completely isometric embedding of the operator algebra into a C∗-
algebra.
Our work, while building on these ideas, is about the lattice that is obtained
by defining an equivalence class on the collection of C∗-covers of an operator
algebra. This was recently studied by Adam Humeniuk and Christopher Ramsey in
[41]. Although their work yielded many interesting results, the following question
remained open: [41, Question 3.1]: Does there exist a non-self-adjoint operator
algebra that has, up to equivalence, only one C∗-cover? This question is answered
in the affirmative in Theorem 3.2.4. The solution led to a fruitful joint work with
Humeniuk and Ramsey, and to the surprising result Theorem 3.2.7:

Theorem: Let A be an operator algebra with more than one C∗-cover up to
equivalence. Then the cardinality of the lattice of C∗-covers of A is at least the
continuum.

This and various other small results of this joint work are presented in Chapter 3.
For operator systems, Arveson aimed to generalize the Choquet boundary of a
function system. For a function system S in a commutative C∗-algebra C(M), the
Choquet boundary B(S) consists of all points y ∈ M such that the point evaluation
ey : S → C, f 7→ f(y) is an extreme point of the state space

S(S) = {ϕ : S → C; ϕ unital and positive}.
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It is a well-known result (see [56]) that

∥f∥∞,K = sup{|f(y)|; y ∈ B(M)}

and that B(A(K)) = ex(K) when A(K) is viewed as a function system in C(K).
In the setting of operator systems S, the state space is replaced by the set of
unital completely positive maps from S into B(H) for some Hilbert space H. In
1969, Arveson conjectured that an appropriate analogue of the Choquet boundary
is given by the set ∂S of unitary equivalence classes of boundary representations,
that is, unital, irreducible ∗-representations of C∗(S) whose restriction to S has a
unique unital completely positive extension.1 He proposed that

∥x∥ = sup{∥ϕ(x)∥; ϕ ∈ ∂S}

for every n ∈ N and n × n-matrix x with entries in S. This remained an open
problem for nearly 40 years, until Arveson himself resolved it in the separable
case in [7], and Davidson and Kennedy settled it in full generality in [22]. For
further reading on non-commutative Choquet theory, we refer to [21].
During this work, Arveson encountered a related but still unresolved question:
under which conditions does every unital ∗-representation of C∗(S) restricted to
S have a unique unital completely positive extension to C∗(S)?
He called operator systems with this property hyperrigid and conjectured:

Conjecture: A separable operator system S is hyperrigid if and only if the restric-
tion of every boundary representation of C∗(S) to S has a unique unital completely
positive extension.

A detailed discussion of this conjecture will be given at the beginning of Chapter 4.
For now, let us mention that the conjecture is false: a counterexample was
constructed by Boris Bilich and Adam Dor-On in [10]. However, the conjecture
remains open when restricted to function systems. This is where our main result
of Chapter 4 becomes relevant. Using a technique by Lawrence Brown [14], we
show that:

Theorem: Let ∅ ̸= K ⊂ R2 be compact and convex. Then A(K) is hyperrigid in
C(ex(K)).

This result was published in [60].
The chapter concludes with a new counterexample to Arveson’s Hyperrigidity
Conjecture - new in the sense that it is generated by finitely many operators. This
result was published in [58].
The thesis concludes with several smaller results. The first noteworthy result in

1Some authors define the Choquet boundary of an operator system S in a commutative C∗-
algebra C(M) to be all point evaluations for which the restriction to S has a unique positive
extension. This is actually equivalent to our definition, see [57, Lemma 6.2], and shows the
relation to boundary representation.

5



Chapter 1 Introduction

Chapter 5, developed in collaboration with Michael Hartz and stated in Theo-
rem 5.1.5, establishes a connection between non-commutative Choquet theory and
Gδ-sets:

Theorem: Let S be a separable operator system and H an infinite dimensional
separable Hilbert space. Then

{π : S → B(H); π maximal}

is a dense Gδ-subset of the set of all B(H)-valued u.c.p. maps on S, with respect
to pointwise convergence in the weak operator topology.

The last noteworthy theorem of this thesis concerns matrix convex sets and was
also developed in collaboration with Michael Hartz. These are graded sets that
can be viewed as a generalization of convex sets, for which analog concepts of
extreme points and convex hulls exist. In particular, one can consider the matrix
state space of an operator system S, defined as

W(S) =
⋃

n∈N
{ϕ : S → Mn; ϕ u.c.p.},

as a compact matrix convex set.
There are several notions of extreme points in this context. Our main focus lies
on the Arveson extreme points, which, in the case of the matrix state space of
a finite-dimensional operator system S, are given by the restrictions of finite-
dimensional boundary representations. Such extreme points do not always exist,
and it remains an open problem to identify conditions that ensure their existence.
In Theorem 5.2.6, we will show that as long as S generates a FDI C∗-algebra, the
matrix convex hull of the Arveson extreme points coincides with the entire matrix
state space of S:

Theorem: Let S be a finite-dimensional operator system generating a FDI C∗-
algebra. Then

mconv(arvex(W(S))) = W(S).

Finally, we compare this result with a related theorem by Evert and Helton, [29,
Theorem 1.1], which concerns spectrahedra, and observe that the two results
apply, in general, to different classes of operator systems and, respectively, matrix
convex sets.
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Chapter 2

Spectra of Typical Hilbert Space
Operators

This chapter begins with an introduction to Gδ-sets, comeager sets, and their
relation to topological games. We then provide an overview of Fredholm theory
and collect several lemmas needed for the first two main results. These answer
two questions posed by Tanja Eisner and Tamás Mátrai (see [27, Question 8.4]):

A) Is the set of operators with non-empty point spectrum comeager with respect
to the operator norm topology?

B) Is the set of operators with empty continuous spectrum comeager with
respect to the operator norm topology?

We answer the first question affirmatively in Theorem 2.3.3 and the second
negatively in Theorem 2.3.12.
The latter result raises the question of how large the closure of operators with
empty continuous spectrum actually is. In Theorem 2.4.7, we show that the
closure is B(H). For the proof, we need Herrero’s Similarity Orbit theorem, stated
in Section 2.4, and the existence of operators on separable Hilbert spaces with
certain point spectra. Dixmier and Foaiş demonstrated the existence of such
operators using Sobolev spaces, which will also be introduced in the first section
of this chapter.
All of the new results were published in [59].

2.1 Gδ and Comeager Sets
Let (X, τ) be a topological space. A subset U ⊂ X is called Gδ if there exists
a countable collection (Un)n∈N of elements in τ such that U = ⋂

n∈N Un. Gδ-sets
play an important role in descriptive set theory, where their collection is denoted
by ∏0

2. Here are some of the most iconic examples.

Example 2.1.1:

7



Chapter 2 Spectra of Typical Hilbert Space Operators

(i) Let (qn)n∈N be an enumeration of the rational numbers. Then,

R \ Q =
⋂

n∈N
(R \ {qn})

shows that the irrational numbers form a Gδ-set in R equipped with the
Euclidean topology.

(ii) Let C([0, 1]) be the space of continuous functions on [0, 1] equipped with the
uniform norm ∥ · ∥∞. Then,

⋂
n∈N

{
f ∈ C([0, 1]); ∀ t ∈ [0, 1] : sup0<|h|<1/(n+1)

∣∣∣∣∣f(t+ h) − f(t)
h

∣∣∣∣∣ > n+ 1
}

is a Gδ-set consisting of nowhere differentiable functions. It is not-trivial
that this set is non-empty. However, it is a consequence of the next theorem
that the set is dense in C([0, 1]).

(iii) Let K be a metrizable, compact convex subset of a topological vector space,
let d be a metric inducing the topology on K, and let A(K) denote the
continuous affine functions on K. Then

Fn = {x ∈ K; ∃ y, z ∈ K such that x = 1
2(y + z) and d(y, z) ≥ 1

n
}

is closed for each 1 ≤ n ∈ N. Moreover, it is easy to see that for every
x ∈ K \ ex(K) there exists an n ∈ N such that x ∈ Fn. Hence,

ex(K) =
∞⋂

n=1
K \ Fn,

which shows that the set of extreme points forms a Gδ-subset of K. (see
also [57, Proposition 1.3])

One of the most useful applications of Gδ-sets arises from the following version of
the classical Baire category theorem. A proof can be found in [45, Theorem 8.4].

Theorem 2.1.2 (The Baire Category Theorem): Let (X, d) be a complete metric
space. Then the intersection of countably many open dense sets of X is dense.

Applying the above theorem to Example 2.1.1, we see that the set of irrational
numbers is dense in R and that the set of nowhere differentiable functions contains
a dense Gδ-subset of C([0, 1]), and is therefore non-empty.
The property of containing a dense Gδ-set appears frequently, so we call a subset U
of a topological space comeager (or residual) if it contains a countable intersection
of dense open sets. The complement of a comeager set is called meager (or of the
first category).
Determining comeager sets in general topological spaces can be problematic, as
many intuitively expected properties do not hold. At the very least, one should

8



2.1 Gδ and Comeager Sets

expect the Baire Category Theorem to be valid. Therefore, we define a topological
space to be a Baire space if the countable intersection of open dense subsets is
again dense. By the above theorem, complete metric spaces are Baire spaces.

To better understand the differences between general topological spaces and
Baire spaces, consider the following: in a Baire space, the Baire Category The-
orem implies that the intersection of two comeager sets is again comeager, and
a comeager set cannot be meager. To see the latter, let U be both comeager
and meager in a Baire space X. Then, ∅ = (X \ U) ∩ U would be comeager,
contradicting the assumption that the space is Baire.
This property fails drastically in (Q, | · |), since Q is the countable union of its
elements, all of which are nowhere dense.
The following proposition is well known, see [45, Proposition 8.1], and characterizes
Baire spaces. The proof is straightforward.

Proposition 2.1.3: Let (X, τ) be a topological space. The following statements are
equivalent:

i) Every non-empty open set in X is non-meager.

ii) Every comeager set in X is dense.

iii) The space (X, τ) is Baire.

Proof:
i) ⇒ ii) Let A ⊂ X be comeager. Then X \ A is an open meager set, which is
empty by i).
ii) ⇒ iii) This follows from the observation that the intersection of countably
many dense open sets is comeager.
iii) ⇒ i) Being Baire implies that the interior of every meager set is empty.
Therefore, the only open meager set is the empty set. □

Probably the easiest way to show that a given set is comeager is to write down a
countable family of dense open sets and show that their intersection is contained
in the set, as in Example 2.1.1. However, in Section 2.3 we will encounter a set
for witch this procedure does not seem to work, and therefore we need other tools
to determine whether a given set is comeager.

A powerful tool to determine whether a topological space is Baire or a set is
comeager is provided by a topological game. We first define the Choquet game,
which characterizes Baire spaces, and then the Banach-Mazur game, which char-
acterizes comeager sets.
Both games are played in the same manner, the only difference lies in the winning
condition. In general, two players take turns choosing open sets in a topological

9



Chapter 2 Spectra of Typical Hilbert Space Operators

space (X, τ):

I : U0 U2 . . .

II : U1 U3 . . .

with the condition that ∅ ≠ Un+1 ⊂ Un and Un ∈ τ for all n ∈ N. In the Choquet
game GX , Player II wins if ⋂

n∈N
U2n+1 ̸= ∅.

In the Banach-Mazur game G∗∗(A), which is played with respect to a subset
A ⊂ X, Player II wins if ⋂

n∈N
U2n+1 ⊂ A.

Note, that by construction of the Un, we always have ⋂n∈N U2n+1 = ⋂
n∈N U2n.

The connection between these games and Baire spaces respectively comeager sets
is as follows: a topological space is Baire if and only if Player I has no winning
strategy in the Choquet game, and a set A is comeager if and only if Player II
has a winning strategy in the Banach-Mazur game G∗∗(A).
However, we have omitted an important definition here. What exactly is a winning
strategy? While this is intuitively clear, a precise mathematical definition is needed.
So what follows now is the cumbersome definition of a winning strategy.
Let A be a set and n ∈ N. Then An denotes the set of all finite sequences of
length n with entries in A, and the set of all finite sequences with entries in A is
denoted by

A<N =
⋃

n∈N
An+1.

Let x = (xi)n
i=0 ∈ An+1 and y = (yi)m

i=0 ∈ Am+1. We say that x is an initial
segment of y and y is an extension of x if n ≤ m and (xi)n

i=0 = (yi)n
i=0.

A tree (in the sense of descriptive set theory) on A is a subset T ⊂ A<N such
that for every x ∈ T and every y ∈ A with x an initial segment of y, we have
that y ∈ T . The tree is called pruned if every x ∈ T has an extension y ∈ T with
x ̸= y.
The body of a tree T is defined by

[T ] = {(xn)n∈N ∈ AN; (xi)m
i=0 ∈ T for all m ∈ N}.

We now define a strategy for Player II as a subtree of the pruned tree⋃
n∈N

{(U0, . . . , Un) ∈ τn; ∅ ≠ Un+1 ⊂ Un ⊂ · · · ⊂ U0}

on X such that, for all n ∈ N:

i) U ∈ σ for all U ∈ τ .
ii) For every (U0, . . . , U2n+1) ∈ σ and ∅ ̸= V ∈ τ with V ⊂ U2n+1, we have that

(U0, . . . , U2n+1, V ) ∈ σ.

10



2.1 Gδ and Comeager Sets

iii) Every (U0, . . . , U2n) ∈ σ has a unique extension (U0, . . . , U2n+1) ∈ σ.

Given a strategy σ for Player II, the game proceeds as follows: if Player I plays
U0 ∈ τ , then Player II plays the unique U1 ∈ τ such that (U0, U1) ∈ σ. If the sets
(U0, . . . , U2n) have been played, then (U0, . . . , U2n) ∈ σ by the definition of strategy,
and thus Player II plays the unique set U2n+1 ∈ σ such that (U0, . . . , U2n, U2n+1) ∈
σ. A run of the game is given by a sequence of open sets (Un)n ∈ N such that
Un+1 ⊂ Un for all n ∈ N. Let σ be a strategy for Player II. Then a run (Un)n is
called compatible with σ if (Un)n ∈ [σ].
The strategy σ is a winning strategy for Player II in the Choquet game if⋂

n∈N Un ̸= ∅ for every compatible run (Un)n, and in the Banach-Mazur game
G∗∗(A) if ⋂n∈N U2n+1 ⊂ A for every compatible run.
Similarly, a strategy σ for Player I is defined as a subtree of the pruned tree⋃

n∈N
{(U0, . . . , Un) ∈ τn; ∅ ≠ Un+1 ⊂ Un ⊂ · · · ⊂ U0}

such that, for all n ∈ N:

i) σ ̸= ∅.
ii) For every (U0, . . . , U2n) ∈ σ and ∅ ≠ V ∈ τ with V ⊂ U2n, we have that

(U0, . . . , U2n, V ) ∈ σ.
iii) Every (U0, . . . , U2n+1) ∈ σ has a unique extension (U0, . . . , U2n+1, U2n+2) ∈ σ.

Player I plays according to a strategy σ as follows: Player I plays an arbitrary
U0 ∈ σ. Then Player II plays an open non-empty U1 ⊂ U0. By the definition
of our strategy, there is a unique non-empty U2 ∈ τ such that (U0, U1, U2) ∈ σ.
Player I plays U2 and the proceeding rounds are played recursively.
Let σ be a strategy for Player I. Then, a run (Un)n is called compatible with
σ, if (Un)n ∈ [σ]. The strategy σ is a winning strategy for Player I in GX , if⋂

n∈N U2n = ∅ for every compatible run (Un)n, and a winning strategy for Player I
in G∗∗(A), if ⋂n∈N U2n ̸⊂ A.
The connection between the games and the respective topological concepts is
established in the following two theorems (see [45, Chapter 8]). We state both
but only prove the second, as we will use it in the proof of question B.

Theorem 2.1.4 (Oxtoby): Let (X, τ) be a topological space. Then, Player I has
no winning strategy in the Choquet game GX if and only if (X, τ) is a Baire space.

Theorem 2.1.5 (Banach-Mazur, Oxtoby): Let (X, τ) be a topological space and
∅ ≠ A ⊂ X. Player II has a winning strategy in the Banach-Mazur game G∗∗(A)
if and only if the set A is comeager.

Proof:
⇐: Let A ⊂ X be comeager. Then, there exists a collection (Vn)n∈N of open dense

11



Chapter 2 Spectra of Typical Hilbert Space Operators

subsets of X such that ⋂n∈N Vn ⊂ A. Define a strategy σ for Player II as follows:
if (U0, . . . , U2n) is played, then play U2n ∩ Vn. Note that U2n ∩ Vn ̸= ∅ as Vn is
dense. Hence, for a run (Un)n∈N compatible with σ,⋂

n∈N
U2n+1 =

⋂
n∈N

U2n ∩ Vn ⊂
⋂

n∈N
Vn ⊂ A,

so σ is a winning strategy for Player II.
⇒: Let σ be a winning strategy for Player II. Define

τ0 = {U ∈ τ ; there exists V ∈ τ such that (V, U) ∈ σ}.

We first claim that there exists a family (Ui)i∈I in τ0 of pairwise disjoint elements
such that ⋃i∈I Ui is dense in X. Define

M0 = {(Vj)j∈J ; Vj ∈ τ0, Vj ∩ Vi = ∅ for all i ̸= j ∈ J},

and an ordering on M0 by

(Vj)j∈J ≤ (Ui)i∈I ⇔ ∀ j ∈ J ∃ i ∈ I : Vj = Ui.

Let ((Ui)i∈Ij
)j∈J be a chain in M0 and define I = ⋃

j∈J Ij. For i, j ∈ I, define
i ∼ j if and only if Ui = Uj. Denote by Ĩ the set of equivalence classes of I with
repsect to ∼. Then (Ui)i∈Ĩ is an element of M0 and an upper bound of the chain
((Ui)i∈Ij

)j∈J . By Zorn’s lemma, there exists a maximal element in M0, which we
denote by (Ui)i∈G.
We claim that ⋃i∈G Ui is dense in X. Assume the contrary, that is, that

∅ ≠ X \
⋃
i∈G

Ui = U

is open. By the definition of strategy, there exists a Ug ∈ τ such that (U,Ug) ∈ σ.
Thus, Ug ∈ τ1, and

(Ui)i∈G ≤ (Ui)i∈G∪{g}

which contradicts the maximality of (Ui)i∈G. Hence, ⋃i∈G Ui is dense in X.
Denote the family (Ui)i∈G by (U (0)

i )i∈I0 and define recursively for 1 ≤ n ∈ N:

τn = {U ∈ τ ; ∃ V0, . . . , Vn ∈ τ, U0 ∈ τ0, . . . , Un−1 ∈ τn−1 : (V0, U0, . . . , Vn, U) ∈ σ}.

Analogously to the above, there exists a family (U (n)
i )i∈In of pairwise disjoint

elements in τn such that ⋃i∈In
U

(n)
i is dense in X.

Define, for n ∈ N,
Un =

⋃
i∈In

U
(n)
i .

Then Un is open and dense by construction. To prove that A is comeager, it
remains to show that ⋂

n∈N
Un ⊂ A.

12



2.1 Gδ and Comeager Sets

Let x ∈ ⋂
n∈N Un. Then, for every n ∈ N, there exists precisely one in ∈ In such

that x ∈ U
(n)
in

, and Vn ∈ τ such that

(V0, U
(0)
i1 , V2, . . . , Vn, U

(n)
in

) ∈ σ.

This yields a run of the Banach-Mazur game, and since σ is a winning strategy,
we obtain ⋂

n∈N
Un ⊂ A.

Hence, x ∈ A, and the proof is complete. □

The next example illustrates a winning strategy and provides additional back-
ground on strategies, included solely for better understanding. For the proof of
Question B, only the aforementioned definition of a winning strategy is required.

Example 2.1.6: In Example 2.1.1, we saw that R \ Q is a Gδ-set and dense in
R, thus it is comeager. By the previous theorem, Player II has a winning
strategy. The proof shows us what a possible strategy looks like. Let (qn)n∈N be
an enumeration of Q. Then, one possible winning strategy is:

I : U0 U2 . . .

II : U0 \ {q0} U2 \ {q1} . . .

More generally, given open dense sets (Vn)n∈N of X, a winning strategy for Player
II in G∗∗(A) for any A ⊂ X with ⋂n Vn ⊂ A is:

I : U0 U2 . . .

II : U0 ∩ V0 U2 ∩ V1 . . .

The above strategy actually depends only on the last move of Player I and the
round number. Such a strategy is called a Markov winning strategy for Player II.
If the strategy depends solely on the last move of Player I, it is called a stationary
winning strategy. By definition, every stationary winning strategy is a Markov
winning strategy, and every Markov winning strategy is a winning strategy. For
the Banach-Mazur game, Theorem 2.1.5 and the discussion above show that the
existence of a Markov winning strategy for Player II is equivalent to the existence
of a winning strategy.
The relationship between winning, Markov winning and stationary winning strate-
gies has been studied by Oxtoby, Galvin and Telgársky, yielding surprising results
for the Choquet game. If there exists a Markov winning strategy, then there
already exists a stationary one [33, Corollary 9]. However, there are topological
spaces where Player II has a winning strategy but no stationary winning strategy
[23].
Nevertheless, if Player II has a winning strategy, then there exists one that
depends only on the last moves of both players, that is, if (U0, . . . , U2n) have

13



Chapter 2 Spectra of Typical Hilbert Space Operators

been played, then the next move of Player II depends only on (U2n−1, U2n) [33,
Corollary 14]. Interestingly, it is still an open question whether a winning strategy
for Player II implies the existence of a winning strategy that depends only on
the last two moves of Player I.

We end this chapter with an observation that we will need later.

Remark 2.1.7: Let (X, d) be a metric space, and suppose we want to show that
Player II has a winning strategy in the Banach-Mazur game G∗∗(A). Then,
without loss of generality, we may assume that Player I only plays open balls
Bϵ(x). This is justified by the fact that all sets played by Player I must be open,
and thus every open set Player I can possibly play contains an open ball.

2.2 Fredholm and Spectral Theory
Let H be a Hilbert space, and denote by B(H) the set of all bounded linear
operators on H, equipped with the operator norm. An operator T ∈ B(H) is
called semi-Fredholm if either dim(H/Im(T )) < ∞ or T has closed image and
dim(ker(T )) < ∞. The possibly infinite number

ind(T ) = dim(ker(T )) − dim(Im(T )) ∈ Z ∪ {−∞,∞}

is then well defined and called the index of T . The operator T is called Fredholm
if ind(T ) ∈ Z. One of the results we need, and perhaps the most famous in
Fredholm theory, is the following.

Lemma 2.2.1: Let c ∈ Z ∪ {−∞,∞}. Then the set

{T ∈ B(H); T is semi-Fredholm with ind(T ) = c}

is open with respect to the operator norm.

Proof:
See, for example, [51, Chapter 18, Corollary 2].

The spectrum σ(T ) of T is the set of all λ ∈ C such that T − λidH is not
invertible. It is well known that the spectrum is always non-empty and compact.
Let K(H) denote the compact operators on H. Then the essential spectrum σe(T )
is defined as the spectrum of the image of T under the quotient map in the Calkin
algebra C(H) = B(H)/K(H). If H is infinite dimensional, then σe(T ) is also
always non-empty and compact. Moreover, σe(T ) is invariant under compact
perturbations, that is, σe(T ) = σe(T +K) for all K ∈ K(H). This follows directly
from the definition of the essential spectrum. The following lemma relates these
notions to Fredholm theory:

14



2.2 Fredholm and Spectral Theory

Lemma 2.2.2: Let T ∈ B(H). Then:

(i) If T is semi-Fredholm, then T +K is also semi-Fredholm for all K ∈ K(H).
(ii) T − λidH is not semi-Fredholm for all λ ∈ ∂σe(T ).
(iii) If T is not semi-Fredholm, then T + K(H) is not left-invertible in C(H).
(iv) If T is not semi-Fredholm, then for every ϵ > 0, there exists a K ∈ K(H)

such that dim(ker(T −K)) = ∞ and ∥K∥ < ϵ.

In particular, if dim(H) = ∞, then there exists a λ ∈ C such that T − λidH is
not semi-Fredholm.

Proof:
Part (i) is contained in [51, Chapter 19, Proposition 1], part (ii) follows from the
same proposition, part (iii) follows from (i) and [51, Chapter 19, Theorem 7], and
part (iv) is contained in [51, Chapter 16, Theorem 18].
The final remark follows from (ii) and the fact that σe(T ) is compact and non-
empty whenever dim(H) = ∞.

We now introduce the necessary definitions from spectral theory, starting with
the polar decomposition of an operator T . For x ∈ H, we have:

∥Tx∥2 = ⟨Tx, Tx⟩ =
〈√

T ∗Tx,
√
T ∗Tx

〉
=
∥∥∥√T ∗Tx

∥∥∥2
.

Thus, there exists a partial isometry P ∈ B(H), uniquely defined by

Tx = P
(√

T ∗Tx
)

for all x ∈ H,

and Py = 0 for all y ∈ Im(T ∗)⊥. In particular, T = P
√
T ∗T . This shows that

for every operator T , there exists a positive operator A and a partial isometry P
such that T = PA and Im(A)⊥ = ker(P ) = ker(T ). This is known as the polar
decomposition of T . A proof of the uniqueness can be found in [35, Problem 134].
The next lemma is the starting point for a series of lemmas which we will use to
answer Questions A) and B).

Lemma 2.2.3: Let H be a separable Hilbert space, T ∈ B(H) be not semi-Fredholm,
and ∥T∥ > ϵ > 0. If T = PA is the polar decomposition of T , and ν the spectral
measure of A, then

S = P

� ∥T ∥

ϵ

t dν(t) ∈ B(H)

has the following properties:

a) The image of S is closed, more precisely, ∥Sx∥ ≥ ϵ∥x∥ for all x ∈ ker(S)⊥.
b) dim(ker(S)) = dim(Im(S)⊥) = ∞.

15



Chapter 2 Spectra of Typical Hilbert Space Operators

c) ∥T − S∥ ≤ ϵ.

Proof:
Let T, S, P,A, ν be as above. Since P is a partial isometry and ν([ϵ, ∥T∥])(H) ⊂
ν({0})(H)⊥ = ker(A)⊥ = Im(A) = ker(P )⊥, it follows that∥∥∥∥∥

� ∥T ∥

ϵ

t dν(t)x
∥∥∥∥∥ = ∥Sx∥

for every x ∈ ν([ϵ, ∥T∥])(H). Therefore,

∥Sx∥2 =
∥∥∥∥∥
� ∥T ∥

ϵ

t dν(t)x
∥∥∥∥∥

2

=
〈� ∥T ∥

ϵ

t2dν(t)x, x
〉

=
� ∥T ∥

ϵ

t2 dνx,x(t) ≥ ϵ2∥x∥2,

where νx,x(·) denotes the scalar valued measure ⟨ν(·)x, x⟩. Together with ker(S)⊥ ⊂
ν([ϵ, ∥T∥])(H), this proves a).
For clarity, let [T ] denote the equivalence class of T + K(H) in C(H). Since T
is not semi-Fredholm, [T ] is not left-invertible by Lemma 2.2.2. Consequently,
[T ∗T ] = [A]2 is not invertible, so [A] is not invertible and in particular, A is not
Fredholm. We can write A as

A =
� ∥T ∥

0
max(ϵ, t)dν(t) −

� ϵ

0
(ϵ− t)dν(t).

The first operator in the sum is clearly invertible. If we assume dim(ν([0, ϵ))(H)) <
∞, then the second operator in the sum has finite rank, contradicting the fact
that A is not Fredholm. Therefore, dim(ν([0, ϵ))(H)) = ∞. Moreover

ν([0, ϵ))(H) ⊂ ker(S) and Pν([0, ϵ))(H) ⊂ Im(S)⊥,

where the second inclusion follows from ν([0, ϵ))(H) ⊂ ker(P )⊥. Hence, dim(ker(S)) =
dim(Im(S)⊥) = ∞, which proves part b).
To prove c), observe that

∥(T − S)x∥2 = ∥
�
tχ[0,ϵ)(t) dν(t)x∥2 =

�
t2χ[0,ϵ)(t)dνx,x(t) ≤ ϵ2∥x∥2

for all x ∈ H. □

This immediately implies the following corollary.

Corollary 2.2.4: Let T ∈ B(H) and ϵ > 0. Then there exist λ ∈ C and S ∈
Bϵ(T − λidH) such that:

i) the image of S is closed.
ii) dim(ker(S)) = dim(Im(S)⊥) = ∞.
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2.2 Fredholm and Spectral Theory

Proof:
First apply Lemma 2.2.2 and then Lemma 2.2.3. □

In addition to the polar decomposition, we will need the notion of a spectral
distribution in the sense of Foaiş (see, for example, [50], [32], [61]). A spectral
distribution is a map µ from the space of test functions C∞

c (C), that is, infinitely
differentiable functions with compact support, into B(H) equipped with the
operator norm, such that:

(i) µ(fg) = µ(f)µ(g) for all f, g ∈ C∞
c (C).

(ii) µ has compact support, that is, there is a compact set K ⊂ C such that

µ(f) = 0 for all f ∈ C∞
c (C) satisfying f |C\K = 0.

(iii) µ(f) = idH for all f ∈ C∞
c (C) which are identically 1 near the support of µ.

(iv) µ is continuous with respect to the seminorms given by

sup
x∈K

|∂αf(x)|, α ∈ N2, K ⊂ U compact1.

We say that an operator T has the spectral distribution µ if there exists a test
function f such that µ(f) = T and f(λ) = λ near the support of µ.
Operators admitting a spectral distribution were studied by Foiaş in [32], where
he proved the following lemma:

Lemma 2.2.5: Let T have a spectral distribution. Then for every x ∈ H, there
exists a non-empty maximal open set Ux such that there exists an analytic function
g : Ux → H satisfying

(λidH − T )g(λ) = x for all λ ∈ Ux.

Here, maximal means that for any other set U with this property, we have U ⊂ Ux.
In the above context, we define σ(T, x) = C \ Ux and for a closed subset F ⊂ C,
we define

H(T, F ) = {x ∈ H; σ(T, x) ⊂ F}.

It is easy to verify that this is a sub-Hilbert space of H.
The following lemma was also proven in [32].

Lemma 2.2.6: Let T have a spectral distribution and let F ⊂ C be closed. Then
H(T, F ) is invariant under T , and σ(T |H(T,F )) ⊂ F . Conversely, if H̃ ⊂ H is a
subspace invariant under T with σ(T |H̃) ⊂ F , then H̃ ⊂ H(T, F ).

1α = (α1, α2) ∈ N2 is a multiindex and we use the standard conventions: |α| = α1 + α2, and
α! = α1!α2!
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Chapter 2 Spectra of Typical Hilbert Space Operators

Later, we will apply this lemma to an operator defined on a Sobolev space.
Since not every reader may be familiar with Sobolev spaces, we will conclude this
section with their definition and the key properties for our work.
Let U ⊂ C be a non-empty open set. For a function u ∈ L2(U) and multi-index
(α1, α2) ∈ N2, we say that a function Dαu ∈ L1(U) is the α-th weak derivative of
u if Dαu is locally integrable and

(−1)α1+α2

�
U

Dαu(t)ϕ(t)d(t) =
�

U

u(t) ∂α

∂α1t1∂α2t2
ϕ(t)d(t)

for all locally integrable, infinitely often differentiable functions ϕ ∈ C∞(U). We
are not going into detail here, but it can be shown using the Du-Bois-Reymond
lemma (see [16, page 314]) that the weak derivative is unique up to a set of
measure zero.
Now the Sobolev space W 2,2(U) is defined as

W 2,2(U) =
{
u ∈ L2(U);

for all α ∈ N2 with |α| ≤ 2,
Dαu exists and lies in L2(U)

}

together with the inner product

⟨u, v⟩ =
∑

|α|≤2
⟨Dαu,Dαv⟩L2(U).

The norm induced by this inner product is equal to the sum of the L2-norms of
all weak derivations of order less than or equal to 2. With this, one easily verifies
that W k,2(U) is a closed subspace of L2(U) and hence forms a Hilbert space.
The following lemma is a special case of a classic result in the theory of Sobolev
spaces. It follows from [13, Corollary 9.15].

Lemma 2.2.7: Let U be an open disc in C. Then for every [u] ∈ W 2,2(U), there
exists a continuous function fu ∈ [u]. Moreover, there exists a constant c > 0,
independent of [u], such that

∥fu∥∞ ≤ c∥[u]∥W 2,2(U).

We finish this section by combining the theory of Sobolev spaces with the theory
of spectral distributions.

Theorem 2.2.8: Let U be an open disc in C. Then

T : W 2,2(U) → W 2,2(U), f 7→ zf

is well defined, linear, continuous, and admits a spectral distribution.
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Proof:
Let f ∈ W 2,2(U). Then for all multi-indices α = (α1, α2) ∈ N2 with α1 + α2 ≤ 2,
the Leibniz product rule (see [28, Section 5.2.3 Theorem 1]) yields:

DαT (f) =
∑

β1≤α1

∑
β2≤α2

α1!α2!
β1!β2!(α1 − β1)!(α2 − β2)!

D(β1,β2)zD(α1−β1,α2−β2)f.

Since the norm on the Sobolev spaces is equal to the sum of the L2-norms of the
weak derivations of order up to 2, this proves that T is well defined and continuous.
Since linearity is clear, it remains to show that T admits a spectral distribution.
Define the map

µ : C∞
c (C) → B(W 2,2(U)), g 7→ [f 7→ gf ].

By the Leibniz formula, this map is well-defined. Moreover, µ is supported on U ,
multiplicative, and satisfies µ(f) = idH for all f ∈ C∞

c (C) which are identically 1
near U . We claim that µ is a spectral distribution of T .
Since µ(f) = T for every function f ∈ C∞

c (C) satisfying f(λ) = λ on U , it remains
to show that µ is continuous. For this, it suffices to prove that for every compact
set K ⊂ U , the map

C∞
c (K) → B(H), f 7→ µ(f)

is continuous with respect to the topology induced by the seminorms
sup
x∈K

|∂pf(x)|, p ∈ N2.

This again follows from the Leibniz formula. □

The reader might wonder why we use Sobolev spaces rather than simply working
in L2(U). A detailed explanation is given in the proof of Theorem 2.4.5. The
short answer is the following observation:
By Lemma 2.2.7, point evaluations are continuous on W 2,2(U), and therefore, by
the Riesz representation theorem, for each λ ∈ U there exists vectors kλ ∈ W 2,2(U)
such that

⟨[u], kλ⟩ = fu(λ).
Hence, the adjoint of Mz has eigenvalues at every point λ ∈ U when acting on
W 2,2(U), which is not the case for M∗

z considered as an operator on L2(U).

2.3 Typical Properties of Spectra
Given a topological space (X, τ) and a property (P ) on the points of X, we
say that the property is typical (or generic) if the set {x ∈ X; x fulfills (P )} is
comeager in X. In the following, the topological space will be the C∗-algebra of
bounded linear operators on a Hilbert space equipped with the operator norm,
and (P ) will refer to a property related to the spectrum. Note that this space is a
Baire space by the Baire Category Theorem.
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2.3.1 The Point Spectrum
Let H be a Hilbert space and T ∈ B(H) be a linear bounded operator. We call
λ ∈ C an eigenvalue if there is a non-zero vector x ∈ H with Tx = λx. The set
of all eigenvalues of T is called the point spectrum σp(T ) of T . It is clear that
σp(T ) ⊂ σ(T ), since λ ∈ σp(T ) if and only if ker(T − λidH) ̸= {0}.
It is well known that σp(T ) ̸= ∅ if dim(H) < ∞. Hence, having non-empty
point spectrum is obviously a typical property in the finite-dimensional case.
Therefore, throughout this section, we assume that H is an infinite-dimensional
separable Hilbert space. We begin with an example of an operator with empty
point spectrum.

Example 2.3.1: Let ℓ2(Z) = {(an)n∈Z; ∑n∈Z |an|2 < ∞}. Then the bilateral shift

U : ℓ2(Z) → ℓ2(Z), (xn)n 7→ (xn+1)n

is well-known to be a bounded linear operator on ℓ2(Z) with σ(U) = T and
σp(U) = ∅.

This example shows that there are operators with no eigenvalues and that such
operators occur quite naturally. This leads to the question: Is having non-empty
point spectrum a typical property? It turns out that the set of operators with
non-empty point spectrum actually contains an open dense subset of B(H), an
even stronger property than being comeager. Recall that a set is comeager in a
Baire space if and only if it contains a dense Gδ-set. The proof follows easily from
the following lemma.

Lemma 2.3.2: Let T ∈ B(H) and ϵ > 0. Then there exist δ > 0 and T̃ ∈ B(H)
such that

i) ∥T − T̃∥ < ϵ,
ii) Bδ(T̃ ) ⊂ {A ∈ B(H); σp(A) ̸= ∅}.

Proof:
Let T ∈ B(H). Apply Corollary 2.2.4 to T and ϵ/2 to obtain an operator
S ∈ B(H), a scalar λ ∈ C and δ > 0 such that:

i) the image of S is closed,
ii) dim(ker(S)) = dim(ker(S∗)) = ∞,
iii) ∥S − (T − λidH)∥ ≤ ϵ/2.

Since both ker(S) and ker(S∗) are separable infinite-dimensional Hilbert spaces,
there exists an isometric operator

j : ker(S∗) → ker(S)
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such that dim(ker(S) ⊖ Im(j)) < ∞ and j is not surjective. Let I denote the
extension of j to H by defining I(x) = 0 for x ∈ ker(S∗)⊥ = Im(S). Then the
operator

S̃ = S + ϵ

3I
∗

is a Fredholm operator with index(S̃) = c < 0. This follows from the fact that
Im(S̃) = Im(S) ⊕ Im(I∗) = H and ker(S̃) = ker(j∗) ̸= {0}. By Lemma 2.2.1, the
set of Fredholm operators with index c is open. Hence, there exists a δ > 0 such
that

Bδ(S̃) ⊂ {A ∈ B(H); ind(A) < 0} ⊂ {A ∈ B(H); σp(A) ̸= ∅}.
The operator T̃ = S̃ + λid satisfies (i), because

∥T − T̃∥ = ∥T − λid− S̃∥ ≤ ∥T − λid− S∥ + ∥S − S̃∥ < ϵ,

and it satisfies (ii) as well, since for A ∈ Bδ(T̃ ), it holds that A − λid ∈ Bδ(S̃),
hence ∅ ≠ σp(A− λid), which implies ∅ ≠ σp(A). □

With this lemma in hand, it is straightforward to show that having non-empty
point spectrum is a typical property.
Theorem 2.3.3: The set

{T ∈ B(H); σp(T ) = ∅}

is nowhere dense with respect to the operator norm, i. e., its closure has empty
interior. In particular, having non-empty point spectrum is a typical property.

Proof:
For every T ∈ B(H) and n ∈ N, let T̃n, δn be the operator and radius from
Lemma 2.3.2 with ∥T − T̃n∥ < 1/n and Bδn(T̃n) ⊂ {A ∈ B(H); σp(A) ̸= ∅}. Then,
the set ⋃

n∈N, T ∈B(H)
Bδn(T̃n)

is open and dense in B(H) with respect to the operator norm and is contained
within the set of operators with non-empty point spectrum. This shows that

{T ∈ B(H); σp(T ) = ∅}

is nowhere dense. Since the complement of the closure of this set contains an open
dense set, having non-empty point spectrum is typical. □

We can actually replace the open dense subset from the previous proof with
a more convenient open dense set, as shown in the following corollary. This result
is similar in spirit to a theorem by Bouldin, [12],which characterizes the closure of
the invertible operators. It is worth noting that Bouldin also makes use of the
polar decomposition, as we do.
This following corollary and theorem are new in the sense that they are not
included in the results of [59].
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Corollary 2.3.4: Let c ∈ Z ∪ {−∞} ∪ {∞}. Then,

{T ∈ B(H); ∃λ ∈ σ(T ) : T −λidH is semi-Fredholm and ind(T −λidH) = c}

is open and dense in B(H).

Proof:
The above set is open by Lemma 2.2.1. The density of the above set now follows
similarly to the proof of Lemma 2.3.2, with the difference that one chooses the
map

j : ker(S∗) → ker(S)
such that j has closed image, and either dim(ker(j)) < ∞ or dim(Im(j)⊥) < ∞,
and dim(ker(j)) − dim(Im(j)⊥)) = c. □

It is now natural to ask whether the set of operators with non-empty point
spectrum is Gδ or even open. The answer to the latter is straightforward: the set
is not open, since every neighborhood of the zero operator contains every operator
scaled by a non-zero constant.
To see that the set is also not Gδ, we construct, for a given countable family of
open dense sets that are contained in the set of operators with non-empty point
spectrum, a weighted shift operator which has empty point spectrum but still
belongs to the intersection of those dense open sets.
Theorem 2.3.5: The set

{T ∈ B(H); σp(T ) ̸= ∅}

is not Gδ.

Proof:
Let X = {T ∈ B(H); σp(T ) ̸= ∅} and let (Un)n∈N be a sequence of open dense
subsets of B(H) containing X. We aim to show that X ≠ ⋂

n∈N Un. To this end,
fix an orthonormal basis (en)n∈N of H. Since 0 ∈ X, there exists a ϵ0 > 0 such
that Bϵ0(0) ⊂ U0. Define the operator

F1 : H → H,
∑
n∈N

xnen 7→ ϵ0/3x0e1.

This is a finite-rank operator and thus F1 ∈ U1. Hence, there exists a ϵ0 > ϵ1 > 0
such that Bϵ1(F1) ⊂ U1. Define

F2 : H → H,
∑
n∈N

xnen 7→ ϵ0/3x0e1 + ϵ1/3x1e2.

Then F2 ∈ U2.
Now assume that for a fixed 1 ≤ n ∈ N, we have constructed ϵ0, . . . , ϵn and
F0, F1, . . . , Fn+1 such that: F0 = 0, ϵ1 > ϵ2 > · · · > ϵn > 0, Bϵk

(Fk) ⊂ Uk and

Fk+1(
∑
n∈N

xnen) =
k∑

j=0
ϵj/3xjej+1
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for 0 ≤ k ≤ n. Then Fn+1 is again a finite-rank operator and lies in Un+1. Thus,
there exists ϵn > ϵn+1 > 0 such that Bϵn+1(Fn+1) ⊂ Un+1. Define

Fn+2(
∑
n∈N

xnen) =
n+1∑
j=0

ϵj/3xjej+1.

By induction, we get a sequence (ϵn)n∈N such that ϵn > ϵn+1 > 0 and Bϵn(Fn) ⊂ Un,
where

Fn(
∑
n∈N

xnen) =
n∑

j=1
ϵj/3xjej+1.

Define the operator
F (
∑
n∈N

xnen) =
∞∑

j=0
ϵj/3xjej+1.

This operator is well-defined, since the sequence (ϵn)n is bounded by ϵ0. Clearly,
F ∈ Bϵn(Fn) ⊂ Un for every n, hence F ∈ ⋂

n∈N Un.
We claim that σp(F ) = ∅. Suppose for contradiction, that there exists λ ∈ C and
0 ̸= ∑

n∈N xnen ∈ H, such that Fx = λx. Then x0 = 0 and ϵn/3xn = λxn+1 for
every n ≥ 1. We deduce recursively that xn = 0 for all n, contradicting 0 ̸= x. □

We conclude the study of operators with non-empty point spectrum with a
short discussion of remaining open problems.

Remark 2.3.6: It is not known whether the set of operators with non-empty point
spectrum is even a Borel set. From the previous theorem, we only know that it is
not a ∏0

2 set. However, one can show that the set is analytic, in the sense that it
is the continuous image of a closed set, by considering

{(x, T ) ∈ H × B(H); ∥x∥ = 1, T (x) = 0} → B(H), (x, T ) 7→ T.

One should note, however, that in the standard literature, analytic sets are only
defined in Polish spaces, that is, separable completely metrizable topological
spaces. In our case, however, B(H) is not separable, and thus not Polish.

2.3.2 The Continuous Spectrum
Let H be a Hilbert space and T ∈ B(H) a bounded linear operator. The continuous
spectrum σc(T ) is defined by

σc(T ) = σ(T ) \ {λ ∈ C; λ ∈ σp(T ) or λ̄ ∈ σp(T ∗)}.

It is easy to see that λ ∈ σc(T ) if and only if ker(T−λidH) = {0} and Im(T−λidH)
is dense but not closed. This characterization implies that σc(T ) = ∅ whenever
dim(H) < ∞. Thus having empty continuous spectrum is a typical property in
the finite-dimensional setting. So as in the previous section, let H be infinite
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Chapter 2 Spectra of Typical Hilbert Space Operators

dimensional and separable.
In fact, we have already encountered an operator with non-empty continuous
spectrum in Example 2.3.1.

Example 2.3.7: Let U ∈ B(ℓ2(Z)) be the bilateral shift. It is well known that
σp(U) = σp(U∗) = ∅. Hence, σ(U) = σc(U) = T.

We are now led to the Question B: is having empty continuous spectrum a typical
property? We will answer this question in the negative. Unfortunately, the proof
is considerably more intricate than the argument for Question A. We begin with
a lemma whose proof is somewhat similar to that of Theorem 2.3.3.

Lemma 2.3.8: Let T ∈ B(H) be a non-semi-Fredholm operator. Then, for every
ϵ > 0, there exists S ∈ Bϵ(T ) such that

i) σe(S) = σe(T ),
ii) ker(S) = ker(S∗) = {0}.

Proof:
The idea is to choose S as a compact perturbation of T , since the essential spectrum
is invariant under compact perturbations. Assume there exists a compact operator
K1 with ∥K1∥ ≤ ϵ/2 and dim(ker(T − K1)) = dim(ker(T ∗ − K∗

1)). Since H is
separable, there exists an injective, compact operator

K2 : ker(T −K1) → ker(T ∗ −K∗
1)

with dense image and ∥K2∥ < ϵ/2. Extend K2 to H by defining it to be 0 on
ker(T −K1)⊥. The operator S = T −K1 +K2 fulfills the conditions (i), (ii) and
S ∈ Bϵ(T ). It remains to show that such an operator K1 exists.
By Lemma 2.2.2, there exists a compact operator K ∈ B(H) such that dim(ker(T−
K)) = ∞ and ∥K∥ < ϵ/4. If dim(ker(T ∗ − K∗)) = ∞, we are done. Otherwise,
assume that dim(ker(T ∗ − K∗)) < ∞. Since T ∗ − K∗ is not semi-Fredholm, its
image is not closed. Therefore, we may apply the same theorem to the operator

H → ker(T −K)⊥, x 7→ (T ∗ −K∗)x.

This yields another compact operator K̃ : H → ker(T−K)⊥ such that dim(ker(T ∗−
K∗ − K̃)) = ∞ and ∥K̃∥ < ϵ/4.
Consider K̃ as an operator from H to H. Then the operator K1 = K+K̃∗ ∈ B(H)
is compact as sum of two compact operators, satisfies ∥K1∥ < ϵ/2, and fulfills
dim(ker(T −K1)) = dim(ker(T ∗ −K∗

1)) = ∞. □
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Lemma 2.3.9: Let T ∈ B(H) be not semi-Fredholm with ker(T ) = {0} and let
T = PA be its polar decomposition with spectral measure v. Then

v([δ, ||T ||]) →SOT idH for δ → 0.
In particular, for every finite-dimensional subspace F ⊂ H, we have

||(v([δ, ||T ||]) − idH)|F || → 0 (2.1)
for δ → 0.

Proof:
Let T, P,A, ν be as above. We have v((0, ∥T∥]) = idH , since v((0, ||T ||]) is the
projection onto ker(A)⊥. Therefore, for each x ∈ H,
lim
δ→0

∥(idH −v([δ, ∥T∥))x∥2 = lim
δ→0

∥v([0, δ))x∥2 = lim
δ→0

vx,x([0, δ)) = vx,x({0}) = 0,

where vx,x(·) denotes the scalar valued measure ⟨v(·)x, x⟩. Hence, v([δ, ||T ||])
converges to idH in the strong operator topology as δ → 0.
To proof the additional statement, let F ⊂ H be a non-empty finite-dimensional
subspace, and let (δn)n∈N be a null sequence of positive numbers. Since F is
finite-dimensional, for each n ∈ N there exists xn ∈ F with ∥xn∥ = 1 such that

∥(v(δn, ∥T∥) − idH)|F ∥ = ∥(v(δn, ∥T∥) − idH)(xn)∥.
Because F is finite-dimensional, the sequence (xn) has a convergent subsequence
with limit x ∈ F such that

limsupn∈N∥(v(δn, ∥T∥) − idH)|F ∥ = limsupn∈N∥(v(δn, ∥T∥) − idH)(x)∥.
By the first part of the lemma,

∥(v(δn, ∥T∥) − idH)(x)∥ → 0 for n → ∞,

which implies that
∥(v(δn, ∥T∥) − idH)|F ∥ → 0.

This completes the proof. □

A simple application of the triangle inequality shows that a sequence of norm
bounded operators that converges pointwise on a dense subspace to an operator
already converges pointwise on the entire space. This proves the next lemma.
Lemma 2.3.10: Let (vn)n∈N be a sequence of spectral measures and (rn)n∈N a
sequence in [0,∞) such that vn((0, rn]) = idH . Assume that there exists an
increasing sequence of finite-dimensional subspaces Fn ⊂ H whose union is dense
in H, and a null sequence (δn)n∈N of positive numbers such that

||(vn([δn, rn]) − idH)|Fn|| < 1/n.
Then,

vn([δn, rn])x → x

for every x ∈ H.
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Lemma 2.3.11: Let ϵ > 0, T ∈ B(H) and λ ∈ ∂σe(T ). Then there exists S ∈ Bϵ(T )
and δ > 0 such that

Bϵ(λ) ∩ ∂σe(A) ̸= ∅

for every A ∈ Bδ(S).

Proof:
Let ϵ > 0, T ∈ B(H), and λ ∈ ∂σe(T ). Since λ lies in the boundary of σe(T ), the
operator T − λidH is not semi-Fredholm by Lemma 2.2.2. Furthermore, there
exists λ̃ ∈ Bϵ(λ) such that T − λ̃idH is Fredholm. Denote ind(T − λ̃idH) = c. By
Lemma 2.2.1, the set of Fredholm operators with index c is open, so there exists
δ̃ > 0 such that

ind(A− λ̃idH) = c ∀ A ∈ Bδ̃(T ). (2.2)
Without loss of generality, we may assume δ̃ < ϵ. Applying Lemma 2.2.3 to
T − λidH and δ̃/2, we obtain an operator S̃ ∈ B(H) such that:

i) Im(S̃) is closed,
ii) dim(ker(S̃)) = dim(Im(S̃)⊥) = ∞,
iii) ||T − λidH − S̃|| ≤ δ̃/2.

Let j : ker(S̃) → Im(S̃)⊥ be an isometric operator such that dim(ker(j)) −
dim(ker(j∗)) = c̃ ∈ Z\{c}, and extend it to H by defining j(x) = 0 for x ∈ ker(S̃)⊥.
Define

S = S̃ + λidH + δ̃/3j.
Then:

a) ||T − S|| ≤ ||T − λidH − S̃|| + δ̃/3||j|| < δ̃,
b) S − λidH is Fredholm with ind(S − λidH) = c̃,
c) S − λ̃idH is semi-Fredholm with ind(S − λ̃idH) = c,

where (c) follows from S ∈ Bδ̃(T ) and Eq. (2.2). By Lemma 2.2.1, there exists
δ > 0 such that for all A ∈ Bδ(S),

ind(A− λidH) = c̃,

ind(A− λ̃idH) = c.

It remains to show that Bϵ(λ) ∩ ∂σe(A) ̸= ∅ for all A ∈ Bδ(S). Define

t0 = min{t ∈ [0, 1]; A− λidH + t(λ− λ̃)idH is not semi-Fredholm},

and set λ0 = λ − t0(λ − λ̃). Note that t0 exists because ind(A − λidH) ̸=
ind(A− λ̃idh). By definition, A− λ0idH is not semi-Fredholm, hence λ0 ∈ σe(A).
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Since every neighborhood of λ0 contains a point λ1 for which A−λ1idH is Fredholm,
we conclude λ0 ∈ ∂σe(A). Finally, we observe that

|λ− λ0| ≤ |λ− λ̃| < ϵ,

which implies λ0 ∈ Bϵ(λ). □

We are now ready to answer Question B.

Theorem 2.3.12: The set

{T ∈ B(H);σc(T ) ̸= ∅}

is comeager with respect to the operator norm.

Proof:
Recall that we aim to use the Banach-Mazur game. By Remark 2.1.7, we may
assume that Player I chooses the set Bϵ1(T1) ⊂ B(H). Let λ1 ∈ ∂σe(T1). Then,
by Lemma 2.3.8, we may assume that

ker(T1 − λ1idH) = ker(T ∗
1 − λ̄1idH) = {0}.

Let T1 − λ1idH = P1A1 and T ∗
1 − λ̄1idH = Q1B1 be the polar decompositions and

ν1, µ1 be the spectral measures corresponding toA1 and B1. By Lemma 2.3.9,
there exists a 1 > δ̃1 > 0 such that

||(ν1([δ̃1, ||A1||]) − idH)|F1|| < 1,
||(µ1([δ̃1, ||B1||]) − idH)|F1|| < 1.

Moreover, by Lemma 2.3.11, there exists δ1 > 0 and S1 ∈ Bδ̃1/4(T1) such that

Bδ̃1/4(λ1) ∩ ∂σe(A) ̸= ∅ for all A ∈ Bδ1(S1).

Without loss of generality, assume δ1 < 1. Now Player II plays the set Bδ1(S1).
Let n > 1. We construct the strategy of Player II inductively. Assume the sets
Bϵi

(Ti) and Bδi
(Si), i = 1, . . . , n − 1 have been played. Set λ0 = 0 and δ̃0 = ∞.

The induction hypothesis is as follows:
There exists λi ∈ ∂σe(Ti) ∩Bδ̃i−1/4(λi−1) with polar decompositions

Ti − λiidH = PiAi, T ∗
i − λ̄iidH = QiBi

and corresponding spectral measures νi, µi such that

||(νi([δ̃i, ||Ai||]) − idH)|Fi
|| < 1/i,

||(µi([δ̃i, ||Bi||]) − idH)|Fi
|| < 1/i
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for some δ̃i > 0 with 1/i > δ̃i and

Bδ̃i/4(λi) ⊂ Bδ̃i−1/4(λi−1).

Also, δi < min{1/i, δ̃i/4} and

Bδ̃i/4(λi) ∩ ∂σe(A) ̸= ∅ for all A ∈ Bδi
(Si)

Now assume Player I plays Bϵn(Tn). By the construction, there exists λn ∈
∂σe(Tn) ∩Bδ̃n−1/4(λn−1), and by Lemma 2.3.8, we can assume that

ker(Tn − λn) = ker(T ∗
n − λ̄n) = {0}.

Let Tn −λnidH = PnAn and T ∗
n − λ̄nidH = QnBn be the polar decompositions and

denote by vn and µn the corresponding spectral measures. Then, by Lemma 2.3.9,
there exits 0 < δ̃n < 1/n such that

||(vn([δ̃n, ||An||]) − idH)|Fn|| < 1/n,
||(µn([δ̃n, ||Bn||]) − idH)|Fn|| < 1/n.

Without loss of generality, we may assume that δ̃n is so small that

Bδ̃n/4(λn) ⊂ Bδ̃n−1/4(λn−1).

By Lemma 2.3.11, there exists δn > 0 and Sn ∈ Bδ̃n/4(Tn) such that

Bδ̃n/4(λn) ∩ ∂σe(A) ̸= ∅ for all A ∈ Bδn(Sn)

Without loss of generality, we can assume δn < min{δ̃n/4, 1/n}.
Now, Player II plays Bδn(Sn).
It remains to show that any T ∈ ⋂

n∈NBδn(Sn) = ⋂
n∈NBϵn(Tn) satisfies σc(T ) ̸= ∅.

Let λn, δ̃n, An and vn be as above. Since

Bδ̃i/4(λi) ⊂ Bδ̃i−1/4(λi−1) for every i ∈ N,

the sequence (λn)n∈N converges to some λ ∈ C with |λ− λn| ≤ δ̃n/4.
On the other hand, Tn → T because ||Tn − T || < ϵn ≤ δn−1 < 1/(n− 1). Hence,
T − λidH is the limit of non-semi-Fredholm operators and thus itself not semi-
Fredholm.
It remains to show that ker(T − λidH) = ker(T ∗ − λ̄idH) = {0}. Let x ∈
ker(T − λidH) and define xn = vn([δ̃n, ||An||])x. Then

δ̃n(||xn|| − ||x− xn||) ≤ ||(Tn − λnidH)x|||
= ||(Tn − Sn)x+ (Sn − T )x− (λn − λ)x||
≤ δn||x|| + δn||x|| + δ̃n/4||x||
≤ δ̃n/4||x|| + δ̃n/4||x|| + δ̃n/4||x||
= 3/4δ̃n||x||.
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2.4 Density of Operators with Empty Continuous Spectrum

Here, the first inequality uses ||(Tn −λnidH)xn|| ≥ δ̃n||xn|| and ||(Tn −λnidH)(x−
xn)|| ≤ δ̃n||x − xn||. By Lemma 2.3.8, xn → x, so the inequality above implies
x = 0.
A similar argument applies to x ∈ ker(T ∗), using xn = µn([δ̃n, ∥An∥])x, and shows
that

ker(T − λidH) = ker(T ∗ − λ̄idH) = {0}.
Thus, λ ∈ σc(T ). □

We can now combine Theorem 2.3.3 and Theorem 2.3.12 to conclude that having
both non-empty point and non-empty continuous spectrum is a typical property.

Corollary 2.3.13: A typical operator has non-empty point and non-empty contin-
uous spectrum.

Proof:
By Theorem 2.1.2, the intersection of two dense Gδ-sets is again a dense Gδ-set.
Thus the intersection of two comeager sets is again comeager. The corollary now
follows from Theorem 2.3.3 and Theorem 2.3.12. □

As in the case of the set of operators with non-empty point spectrum, it is
not known whether the set of operators with non-empty continuous spectrum
is Borel. It is also unclear whether this set is a Gδ-set. A technique similar to
the proof of Theorem 2.3.5 appears conceivable, however, one must overcome the
problem that finite-rank operators have empty continuous spectrum, and that the
point spectrum of the adjoint a weight shift strongly depends on the choice of
weights (see [35, Problem 93]).

2.4 Density of Operators with Empty Continuous
Spectrum

The previous chapter raises the question of how common operators with empty
continuous spectrum actually are. This, of course, can be is related to the ques-
tion: Is the set of operators with empty continuous spectrum dense in B(H). In
Theorem 2.4.7, we answer this question in the affirmative. To demonstrate this,
we will invoke the restricted Similarity Orbit Theorem from [3]. We begin by
introducing the basic definitions needed to understand this theorem.

For an operator T ∈ B(H), define the similarity orbit of T by

Sim(T ) = {S−1TS; S ∈ B(H) invertible}.

In [38], the closure of Sim(T ) is characterized in terms of properties of the spectrum
of T . The following three types of points in the spectrum are preserved under
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similarity and thus will play an important role in the proof of Theorem 2.4.7.
The normal spectrum σ0(T ) consists of the isolated points in σ(T ) which are not
in the essential spectrum σe(T ).
The set of points λ ∈ C such that T −λidH is semi-Fredholm is denoted by ρsF (T ).
It follows immediately from Lemma 2.2.1 that this set is open.
The third type of spectral points we consider are the isolated point in σe(T ). We
do not introduce a separate notation for them, but we characterize them further:
Let λ ∈ σe(T ) be isolated, and let Φ be a unital faithful *-representation of the
Calkin algebra C(H). Let f(z) be a holomorphic function that equals z − λ in a
neighborhood of λ, and is zero in a neighborhood of σe(T ) \ {λ}. Applying the
holomorphic functional calculus to Φ(T + K(H)), we obtain the quasinilpotent
element

f(Φ(T + K(H))) = Qλ.

For λ ∈ C, we define

k(λ;T ) =


0 if λ /∈ σe(T ),
n if λ is isolated in σe(T ) and Qλ is nilpotent of order n,
∞ otherwise.

In the following remark, we show that k(λ;T ) is independent of the chosen
representation Φ.

Remark 2.4.1: For convenience, we write [T ] for T + K(H). Let Φ1,Φ2 be two
unital faithful *-representations of the Calkin algebra C(H), and ki(·;T ) denote
the corresponding functions as defined above. Since for i = 1, 2, we have

σe(T ) = σ([T ]) = σ(Φi([T ])),

it follows that k1(λ;T ) = 0 if and only if k2(λ;T ) = 0. It remains to show that
k1(λ;T ) = n if and only if k2(λ;T ) = n for 1 ≤ n.
Let λ be isolated in σe(T ), and f be as above. Suppose f(Φ1([T ])) is nilpotent of
order n. Let U be an open neighborhood of σe(T ). Then, for i = 1, 2,

O(U) → C(H), g 7→ Φi(g([T ]))

extends the polynomial functional calculus, is an algebra homomorphism, and
preserves uniform convergence. By the uniqueness of the holomorphic functional
calculus, this map coincide with the holomorphic functional calculus. In particular,

f(Φi([T ])) = Φi(f([T ])).

Thus, f([T ]) is nilpotent of order n since Φ1 is faithful, and hence k2(λ;T ) = n.
Reversing the roles of Φ1 and Φ2 completes the proof.
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The reader might rightly ask why we defined k(·;T ) via a unital faithful ∗-
representation of C(H) rather than directly through f([T ]). The reason for this
choice becomes clear in the proof of the next lemma.

Lemma 2.4.2: Let A ∈ B(H) and B ∈ B(H̃) be operators on Hilbert spaces H
and H̃. If λ ∈ σe(A⊕B) is isolated, then

k(λ;A⊕B) = max(k(λ;A), k(λ;B)).

Proof:
Let H, H̃, A,B be as above and λ ∈ σe(A ⊕ B) be isolated. For clarity, denote
the equivalence class of an operator T in the Calkin algebra by [T ]. Define the
projection P by

P : H ⊕ H̃ → H ⊕ H̃, x⊕ y 7→ x⊕ 0.
Let Φ : B(H ⊕ H̃)/K(H ⊕ H̃) → B(K) be a unital faithful ∗-representation. Then
Φ([P ]) is a projection, since Φ is a *-homomorphism. Denote this projection
by P1, and let H1 = P1(K). Set P2 = idK − P1 and H2 = P2(K), yielding the
decomposition of K = H1 ⊕H2.
Since P1 commutes with Φ([A ⊕ 0]) and P2 with Φ([0 ⊕ B]), the subspaces H1
and H2 reduce Φ([A⊕B]). Denote by A0 the restriction Φ([A⊕B])|H1 , and B0
the restriction to H2.
Now define

Φ1 : B(H)/K(H) → B(H1), [T ] 7→ Φ([T ⊕ 0])|H1 .

This map is well defined since P1 commutes with Φ([T⊕0]) for all T ∈ B(H), and it
is again a unital faithful ∗-representation. Thus Φ1([A]) = A0, and σ([A]) = σ(A0).
Analogously, for

Φ2 : B(H)/K(H) → B(H2), [T ] 7→ Φ([0 ⊕ T ])|H2 ,

we have Φ2([B]) = B0 and σ([B]) = σ(B0).
Let f(z) be a function that is equal to z − λ on a neighborhood of λ, and zero in
a neighborhood of σe(A ⊕ B) \ {λ}. Since σe(A ⊕ B) = σe(A) ∪ σe(B), we can
apply f to obtain

f(Φ([A⊕B])) = f(A0 ⊕B0) = f(A0) ⊕ f(B0).

Because Φ1 and Φ2 are unital faithful ∗-representations, and k(λ; ·) is independent
of the representation by Remark 2.4.1, we conclude: f(A0) is nilpotent of order n
if and only if k(λ;A) = n, and likewise f(B0) is nilpotent of order n if and only if
k(λ;B) = n.
Hence, f(Φ([A⊕B])) is nilpotent of order n if and only if

n = max(k(λ;A), k(λ;B)),
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and it is not nilpotent if and only if either k(λ;A) = ∞ or k(λ;B) = ∞. This
proves the lemma. □

Let A ∈ B(H). We say that A satisfies property (S), (F ) or (A) with respect to
T if:

(S) σ0(A) ⊂ σ0(T ) and every component of C \ ρsF (A) intersects σe(T ),

(F) ρsF (A) ⊂ ρsF (T ), ind(λidH − A) = ind(λidH − T ), and

min ind(λidH − T )k ≤ min ind(λidH − A)k

for all λ ∈ ρsF (T ) and k ≥ 1,

(A) dim(ker(A− λidH)) = dim(ker(T − λidH)) for all λ ∈ σ0(A).

Here, min ind(x) denotes

min{dim(ker(x)), dim(ker(x∗))}.

We are ready to state the restricted Similarity Orbit Theorem [38, Corollary 1.6].

Theorem 2.4.3 (restricted Similarity Orbit Theorem): Let T ∈ B(H) and sup-
pose k(λ;T ) = ∞ for every isolated point λ ∈ σe(T ). Then

Sim(T ) = {X ∈ B(H);X satisfies property (S), (F ) and (A) with respect to T}.

Now that the reader is familiar with the Similarity Orbit Theorem, we can outline
our strategy for proving Theorem 2.4.7. Given an arbitrary operator X ∈ B(H),
we will construct an operator T such that σc(T ) = ∅ and X ∈ Sim(T ). According
to the theorem above, it suffices to verify that X satisfies property (S), (F ) and
(A) with respect to T . The operator T will be unitarily equivalent to a direct sum
of three operators. One of them being X itself, and the others arising from the
spectral properties of X. The first one is given in the next example, where we
later replace the sequence (λn)n∈N with the isolated points of σe(X).

Example 2.4.4: Let T ∈ B(H) be a quasinilpotent operator such that k(0;T0) =
∞, and let a = (λn)n∈N be a bounded sequence of isolated points in C. Then the
operator

Ta :
⊕
n∈N

H →
⊕
n∈N

H, (xn)n 7→ ((λnidH − T0)(xn))n

is bounded, since the sequence a is bounded. Furthermore, if λ /∈ {λn, n ∈ N},
then, by continuity of the inverse map, we have

sup
n∈N

∥((λ− λn)idH − T0)−1∥ < ∞,
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and hence λ /∈ σ(Ta). We conclude that

{λn; n ∈ N} = σ(Ta) = σe(Ta),

and each λn is an isolated point in σe(Ta). Fix m ∈ N. We can decompose Ta as
a direct sum of λmidH − T0 and⊕

n∈N\{m}
H →

⊕
n∈N\{m}

H, (xn)n 7→ ((λnidH − T0)(xn))n.

By assumption, k(λm;λmidH − T0) = ∞ and since λm is isolated in σe(Ta), we
obtain k(λm;Ta) = ∞ by Lemma 2.4.2. Since m ∈ N was arbitrary, it follows that
k(λn;Ta) = ∞ for all n ∈ N.

The second operator will ensure that σc(T ) = ∅. For this, we need an operator
Tp such that its spectrum and point spectrum coincide with the spectrum of T :
σ(T ) = σp(Tp) = σ(Tp). This would not be a problem if Tp could be chosen on a
Hilbert space of arbitrary cardinality, but for separable Hilbert spaces, it becomes
a nontrivial problem. Fortunately, this was already shown by Dixmier and Foiaş
[24]. The general theorem states that for every non-empty compact set K ⊂ C
and every F ⊂ K that is Fσ, there exists an operator Tp on a separable Hilbert
space such that K = σ(Tp) and F = σp(Tp). In our case, we only need this for
K = F , and since the original source [24] is difficult to access (and in French), we
provide their proof for this special case.

Theorem 2.4.5: Let K ⊂ C be a non-empty compact set. Then there exists an
operator T on a separable Hilbert space such that

σ(T ) = σp(T ) = K.

Proof:
Let ∅ ≠ K ⊂ C be compact, and let U ⊂ C be an open disc containing K.
Recall that W 2,2(U) denotes the Sobolev space. Let Mz be the multiplication
operator by the identity. By Theorem 2.2.8, this defines a bounded operator with
a spectral distribution, and it is straightforward to verify that M∗

z also has a
spectral distribution.
By Lemma 2.2.7 and the Riesz representation theorem, for every λ ∈ U , there
exists a function kλ such that

⟨[u], kλ⟩ = fu(λ)

for all [u] ∈ W 2,2(U), where fu is the unique continuous representative of the
equivalence class [u]. Moreover,

⟨Mz[u], kλ⟩ = λfu(λ) = ⟨[u], λkλ⟩ = ⟨[u],M∗
z (kλ)⟩
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for all [u] ∈ W 2,2(U) and λ ∈ U . Thus, M∗
z (kλ) = λkλ, which implies U ⊂ σp(M∗

z ).
Let H = H(M∗

z , K) (see Lemma 2.2.6 for the definition) and define T = M∗
z |H .

Then, by Lemma 2.2.6, we have σ(T ) ⊂ K and kλ ∈ H for all λ ∈ K. Hence,
σp(T ) = σ(T ) = K. □

Lemma 2.4.6: Let H̃ be a Hilbert space and A ∈ B(H), B ∈ B(H̃). Assume that
σ(B) = σp(B) = C \ ρsF (A). Then:

i) σ(A⊕B) = σ(A),
ii) σc(A⊕B) = ∅,

iii) σe(A⊕B) = σe(A),
iv) σ0(A⊕ B) = σ0(A) and dim(ker(A⊕ B − λidH⊕H̃)) = dim(ker(A− λidH))

for all λ ∈ σ0(A),
v) ρsF (A⊕B) = ρsF (A),

vi) ind(A⊕B − λidH⊕H̃) = ind(A− λidH) for all λ ∈ ρsF (A⊕B) ,
vii) min ind(A ⊕ B − λidH⊕H̃)k = min ind(A − λidH)k for all λ ∈ ρsF (A ⊕ B)

and k ≥ 1.

If U is a linear, invertible operator from H⊕H̃ → H, then A has property (S), (A),
and (F ) with respect to U(A⊕B)U−1.

Proof:
Let A,B, H̃ and U be as above.
(i) follows from σ(A⊕B) = σ(A) ∪ σ(B) and σ(B) = C \ ρsF (A) ⊂ σ(A).
Let λ ∈ σc(A ⊕ B). Then λ lies in σ(A) but not in ρsF (A), hence λ ∈ σ(B).
However, σ(B) = σp(B) ⊂ σp(A ⊕ B), which contradicts λ ∈ σc(A ⊕ B). Thus,
(ii) holds.
For (iii), observe that σe(A⊕B) = σe(A) ∪ σe(B) and σe(B) ⊂ σ(B) ⊂ σe(A).
From (i) and (iii), we deduce that σ0(A⊕B) = σ0(A). Furthermore, we have:

dim(ker(A⊕B − λidH⊕H̃)) = dim(ker(A− λidH)) + dim(ker(B − λidH̃)) (2.3)

for all λ ∈ C. Since dim(ker(B − λidH̃)) = 0 for all λ ∈ σ0(A) ⊂ C \ σ(B), we
obtain (iv).
Assertions (v) and (vi) follow essentially from σ(B) ⊂ C \ ρsF (A) and ind(B −
λidH̃) = 0 for all λ ∈ ρsF (A). More precisely, Im(A ⊕ B − λidH⊕H̃) is closed if
and only if the image of A − λidH and B − λidH̃ is closed. Using Eq. (2.3), if
A− λidH is semi-Fredholm and B − λidH̃ is Fredholm, then A⊕B − λidH⊕H̃ is
semi-Fredholm and satisfies:

ind(A⊕B − λidH⊕H̃) = ind(A− λidH) + ind(B − λidH̃)
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for all λ ∈ ρsF (A⊕B). Since B − λidH̃ is invertible for all λ ∈ ρsF (A), it follows
that ind(B − λidH̃) = 0 and ρsF (A) ⊂ ρsF (A⊕B). Conversly, if A− λidH is not
semi-Fredholm, then neither is A⊕B−λidH⊕H̃ . This proves the reverse inclusion
ρsF (A⊕B) ⊂ ρsF (A).
Part (vii) follows from

ker(A⊕B − λidH⊕H̃) = ker(A− λidH) ⊕ ker(B − λidH̃),
(A⊕B − λidH⊕H̃)k = (A− λidH)k ⊕ (B − λidH̃)k

and from ker((B − λidH̃)∗)k = ker(B − λidH̃)k = {0} for all λ ∈ ρsF (A) =
ρsF (A⊕B).
The final statement follows from (i), . . . , (viii) and the observation that each of
the sets

σ(·), σe(·), σc(·), ρsF (·), σ0(·)
and each of the numbers

dim(ker(·)), ind(·), min ind(·)

are invariant under similarity. □

Theorem 2.4.7: Let H be a separable Hilbert space. Then

{T ∈ B(H); σc(T ) = ∅} = B(H)

with respect to the norm topology.

Proof:
We already know that the theorem is true for dim(H) < ∞, so we may assume
dim(H) = ∞. Let A ∈ B(H) and {λn;n ∈ N} be the set of isolated points in
σe(A). If the set is finite, repeat one λ infinitely often. Let Ta be the operator
from Example 2.4.4 with respect to the sequence (λn)n∈N. Recall that σ(Ta) =
{λn; n ∈ N} and k(λn;Ta) = ∞ for all n ∈ N.
By Theorem 2.4.5 and since the set C \ ρsF (A) is compact and non-empty, there
exists an operator Tp ∈ B(H) such that

σ(Tp) = σp(Tp) = C \ ρsF (A).

Define the operators B = Tp ⊕Ta ∈ B(H ⊕⊕
n∈NH) and T̃ = A⊕B. Fix a linear,

invertible operator U : H ⊕H ⊕⊕
n∈NH → H and define T = UT̃U−1.

The set

{λ ∈ ρsF (A); ind(A− λidH) = ∞ or ind(A− λidH) = −∞}

is open by Lemma 2.2.1 and equal to σe(A) ∩ ρsF (A). Hence no isolated point
of σe(A) lies in ρsF (A), so {λn, n ∈ N} ⊂ C \ ρsF (A). Moreover, we have
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σ(B) = σ(Ta) ∪ σ(Tp) = C \ ρsF (A) and σp(B) = σp(Ta) ∪ σp(Tp) = σ(B).
Thus, we may apply Lemma 2.4.6 to conclude that A has property (A), (S) and
(F ) with respect to T . Furthermore, by Lemma 2.4.2 and the invariance of
k(λ; ·) under similarity, we have k(λn;T ) = k(λn;Ta) = ∞ for all n ∈ N. Hence
the requirements for the restricted Similarity Orbit Theorem Theorem 2.4.3 are
fulfilled, and we obtain A ∈ Sim(T ). Since T has empty continuous spectrum, it
follows that

A ∈ Sim(T ) ⊂ {X ∈ B(H); σc(X) = ∅}.

□

The idea of constructing an operator with certain spectral properties via di-
rect sums is well known and appears, for example, in the proof of [62, Theorem 2].
We conclude this chapter with a theorem that characterises the closure of all
operators whose spectrum coincides with their point spectrum. The proof is a
slight modification of that of Theorem 2.4.7.

Theorem 2.4.8: Let H be a separable Hilbert space. We have

{T ∈ B(H); σp(T ) = σ(T )} =
{
T ∈ B(H);

dim(ker(T − λidH)) ̸= 0
for all λ ∈ ρsF (T ) ∩ σ(T )

}
.

Proof:
The statement is clear if H is a finite-dimensional Hilbert space, so assume
that H is a separable infinite dimensional Hilbert space. Let T ∈ B(H) and
suppose that there exists λ ∈ ρsF (T ) ∩ σ(T ) such that dim(ker(T − λidH)) = 0.
Since the operator T − λidH is semi-Fredholm with trivial kernel, it is bounded
below by some constant c > 0. By Lemma 2.2.1, there exists ϵ < c/2 such that
ind(S) = ind(T − λidH) ̸= 0 for all S ∈ Bϵ(T − λidH). Every operator S ∈ Bϵ(T )
then satisfies that S − λidH is bounded below and λ ∈ σ(S). Thus,

Bϵ(T ) ⊂ B(H) \ {X ∈ B(H); σp(X) = σ(X)},

and in particular, T /∈ {X ∈ B(H); σp(X) = σ(X)}.
Conversely, if A ∈ B(H) and dim(ker(A− λidH)) ̸= 0 for all λ ∈ ρsF (A) ∩ σ(A),
we only need to verify that the operator T from the proof of Theorem 2.4.7 lies in
{X ∈ B(H); σp(X) = σ(X)}. By construction, we have

C \ ρsF (T ) ⊂ σp(T ), σ(T ) = σ(A), ρsF (T ) = ρsF (A)

and by the assumption, ρsF (A)∩σ(A) ⊂ σp(A) ⊂ σp(T ). Therefore, σp(T ) = σ(T )
and the proof is complete. □
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Chapter 3

The Lattice of C∗-covers

We begin this chapter with the basic definitions and well known results of non-
commutative Choquet theory. Most of these definitions will also be relevant for
the remaining chapters, and many of the well known results will be used later
without explicit mentioning.
The new results presented in this chapter are a joint work with Adam Humeniuk
and Christopher Ramsey and provide new insights into the structure of the C∗-
cover lattice of operator algebras. The first new result, Theorem 3.2.4, answers
[41, Question 3.1] by Ramsey and Humeniuk, who asked whether there exists a
non-selfadjoint operator algebra with a unique C∗-cover. Here, “unique“ means
that all C∗-covers are equivalent.
Motivated by this example, we study the lattice of operator algebras with more
than one C∗-cover, which leads to the surprising result Theorem 3.2.7:
Theorem 3.0.1: Let A be an operator algebra that has more than one C∗-cover.
Then A has uncountably many C∗-covers.
For the proof, we invoke a lemma by Katznelson that has largely fallen into
obscurity. This technique also allows us to study the C∗-cover lattice of Dirichlet
operator algebras and to answer [40, Question 3.13]: When is the maximal
semi-Dirichlet C∗-cover equal to the maximal C∗-cover? This is resolved by
Theorem 3.3.1:
Theorem 3.0.2: If A is a semi-Dirichlet operator algebra, then its maximal semi-
Dirichlet C∗-cover of A is equal to the maximal C∗-cover of A if and only if A is
selfadjoint.
We conclude this chapter with an example of a residual finite-dimensional operator
algebra for which the collection of residual finite-dimensional C∗-covers does not
form a lattice.

3.1 Preliminaries
This section introduces the definitions of operator spaces and operator systems and
everything that we need related to this topic. Most of the definitions and several
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well-known results can be found in [55]. However, we will also cover topics like
the existence of maximal dilations, the equivalence between the unique extension
property and maximality, Sarason’s lemma and more. Ergo incipiamus.

3.1.1 Operator Spaces and Operator Systems
An operator space is a subspace of a C∗-algebra that contains 1. If the space is
also closed under the adjoint operation, it is called an operator system.
Let M be an operator space in a C∗-algebra A and ϕ : M → B a linear map into
another C∗-algebra B. The map ϕ is called contractive if

∥ϕ(a)∥ ≤ 1

for all a ∈ A with ∥a∥ ≤ 1. For 1 ≤ n ∈ N, we write Mn(M) for the space of
n× n matrices with entries in M , which we regard as an operator space within
the C∗-algebra Mn(A). The map ϕ is called completely contractive if

∥(ϕ(ai,j))1≤i,j≤n∥ ≤ 1

for all 1 ≤ n ∈ N and (ai,j)1≤i,j≤n ∈ Mn(M) with ∥(ai,j)1≤i,j≤n∥ ≤ 1. A map that
is both completely contractive and unital is called u.c.c..
Given an operator system S in a C∗-algebra A, a linear map ϕ : S → B into
a C∗-algebra B is called positive if ϕ(a) ≥ 0 for all 0 ≤ a ∈ A, and completely
positive if

0 ≤ (ϕ(ai,j))1≤i,j≤n

for all 0 ≤ (ai,j)1≤i,j≤n ∈ Mn(S), where we view Mn(S) as an operator system in
Mn(A). If ϕ is both completely positive and unital, we write that ϕ is u.c.p..
Given an operator space (or system) M , a matrix A = (ai,j)1≤i,j≤n with entries in
M , and a map ϕ on M , we write ϕ(A) for the matrix (ϕ(ai,j))1≤i,j≤n.
One of the most fundamental results about positive maps, that is even the first
exercise in [55, Chapter 2], is given in the following proposition. We will use it
frequently without explicitly mentioning it. Since the book provides no proof, we
include one here.

Proposition 3.1.1: Let S be an operator system and ϕ be a positive map on S.
Then,

ϕ(a∗) = ϕ(a)∗

for all a ∈ S.

Proof:
First, suppose that a ∈ S is selfadjoint. Since ϕ(1A) ≥ 0, it follows that ϕ(1)∗ =
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ϕ(1). Moreover, as ∥a∥1A − a ≥ 0, we have ∥a∥ϕ(1A) − ϕ(a) ≥ 0, and hence ϕ(a)
is selfadjoint. Now, let a ∈ S be arbitrary. We have the decomposition

a = a+ a∗

2 − i
i(a− a∗)

2 ,

note that both a+a∗

2 and i(a−a∗)
2 are selfadjoint. Therefore, by the first step,

ϕ
(
a+ a∗

2

)
= ϕ

(
a+ a∗

2

)∗
, ϕ

(
i(a− a∗)

2

)
= ϕ

(
i(a− a∗)

2

)∗

.

Hence,

ϕ(a∗) = ϕ

(
a+ a∗

2 + i
i(a− a∗)

2

)
= ϕ

(
a+ a∗

2

)∗
− iϕ

(
i(a− a∗)

2

)∗

= ϕ
(
a+ a∗

2 − i
a+ a∗

2

)∗
= ϕ(a)∗.

This completes the proof. □

The next proposition is another basic result that we will often use without
explicitly mentioning it. It combines [55, Proposition 3.5 and Proposition 3.6].

Proposition 3.1.2: Let M be an operator space, S an operator system, B a C∗-
algebra. Given a u.c.c. map ϕ : M → B and a u.c.p. map ρ : S → B, then:

(i) M +M∗ = {a+ b∗; a ∈ M, b ∈ M} is an operator system,
(ii) ϕ̃ : M + M∗ → B, defined by a + b∗ 7→ ϕ(a) + ϕ(b∗), is well defined and

u.c.p.,
(iii) ρ is u.c.c..

This proposition allows us to apply results about operator system to operator
spaces. We illustrate this with the following results by Arveson.

Theorem 3.1.3 (Arveson’s extension theorem): Let S be an operator system in
a C∗-algebra A and let ϕ : S → B(H) be a u.c.p. map, where H is a Hilbert space.
Then there exists a u.c.p. map ψ : A → B(H) such that ϕ(a) = ψ(a) for all a ∈ S.

Corollary 3.1.4 (Arveson): Let M be an operator space in a C∗-algebra A and let
ϕ : M → B(H) be a u.c.c. map, where H is a Hilbert space. Then there exists a
u.c.c. map on ψ : A → B(H), and hence also a u.c.p. map, such that ϕ(a) = ψ(a)
for all a ∈ M .

39



Chapter 3 The Lattice of C∗-covers

At this point, we briefly introduce the concept of Schur complents and a related
lemma, which we will use in Section 4.2.3.
Let H and K be Hilbert spaces, and let A ∈ B(H), C ∈ B(K) and B : K → H
be a linear bounded operator. If

M =
(
A B
B∗ C

)
∈ B(H ⊕K)

and C is invertible, then the operator

A−BC−1B∗

is called the Schur complement of C in M . The following lemma relates the
positivity of the Schur complement to the positivity of the operator M . The
statement and proof can, for instance, be found in [1, Lemma 7.27].

Lemma 3.1.5: Let A,B,C and M be as above, C invertible. Then M is positive
if and only if C and the Schur complement of C in M are positive.

Proof:
The proof immediately follows from the identity

M =
(
idH BC−1

0 idK

)(
A−BC−1B∗ 0

0 C

)(
idH 0

C−1B∗ idK

)
.

□

Using this lemma, we can now prove the well-known Schwarz inequality.

Proposition 3.1.6 (Schwarz inequality): Let A and B be C∗-algebras and let ϕ :
A → B be a u.c.p. map. Then

ϕ(a)∗ϕ(a) ≤ ϕ(a∗a)

for all a ∈ A.

Proof:
Let a ∈ A. By scaling, it suffices to prove the proposition for all a with ∥a∥ ≤ 1.
Embedding A into B(H) for some Hilbert space H, and applying Lemma 3.1.5
with A = a∗a, B = a, and C = 1A shows that(

a∗a a∗

a 1A

)
∈ B(H ⊕K)

is a positive operator. Since ϕ is completely positive, it follows that(
ϕ(a∗a) ϕ(a∗)
ϕ(a) 1B

)
∈ B(H ⊕K)
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is also positive. Applying Lemma 3.1.5 again yields

ϕ(a∗a) ≥ ϕ(a∗)ϕ(a) = ϕ(a)∗ϕ(a),

which completes the proof. □

Next, we present examples of u.c.p. maps.

Example 3.1.7: Let A be a C∗-algebra.
(i) Every unital ∗-representation π : A → B(H) is u.c.p.. Indeed, let n ∈ N and
0 ≤ A ∈ Mn(A). Since A is positive, there is an element B ∈ Mn(A) such that
A = B∗B. Since π is a ∗−homomorphism, it is easy to verify that

π(A) = π(B∗)π(B) = π(B)∗π(B),

and thus, π is u.c.p..
(ii) If, additionally, V : H → K is an isometry into another Hilbert space K. We
claim that the map ϕ : A → B(K), a 7→ V ∗π(a)V is also u.c.p.. It should be clear
that ϕ is unital and linear. So let n ∈ N and 0 ≤ A ∈ Mn(A). Then, it is again
easy to verify that

ϕ(A) = V ∗
n π(A)Vn,

where Vn : Hn → Kn, x1 ⊕ . . . xn 7→ V (x1) ⊕ . . . V (xn). Thus, by (i), ϕ(A) ≥ 0,
and we obtain that ϕ is u.c.p..
(iii) Let B be a commutative C∗-algebra. Then, every unital positive map
ϕ : A → B is u.c.p.. The proof is too lengthy and not relevant for our purposes,
so we refer to [55, Theorem 3.9]. However, we will later use the special case where
B = C, which yields the result: Every state on a C∗-algebra is u.c.p..

That actually all u.c.p. maps on a C∗-algebra are a compression of a unital
∗−homomorphism was shown by Stinespring and is stated in the next theorem.

Theorem 3.1.8 (Stinespring’s dilation theorem): Let A be a C∗-algebra, H a
Hilbert space and ϕ : A → B(H) be a u.c.p. map. Then there exists a Hilbert
space K, an isometry V : H → K and a unital ∗−homomorphism π : A → B(K)
such that

ϕ(a) = V ∗π(a)V
for all a ∈ A.

In general, if S is an operator system (respectively operator space), H a Hilbert
space and ϕ : S → B(H) a u.c.p. (respectively a u.c.c.) map, then we say that a
u.c.p. (respectively u.c.c.) map Φ : S → B(K), for a Hilbert space K, is a dilation
of ϕ, if there exists an isometry V : H → K such that

ϕ(a) = V ∗Φ(a)V
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for all a ∈ S. The dilation Φ is called trivial if V (H) is a reducing subspace for Φ.
If every dilation of ϕ to a u.c.p. map is trivial, then we call the map maximal.
Combing Stinespring’s dilation theorem with Arveson’s extension theorem shows
that every u.c.p. (respectively u.c.c.) map admits a dilation to a restriction of a
unital ∗-homomorphism.

Corollary 3.1.9: Let S be an operator system (respectively operator space) in a
C∗-algebra A, H a Hilbert space, and ϕ : S → B(H) be a u.c.p. (respectively
u.c.c.) map. Then there exists a Hilbert space K, an isometry V : H → K and a
unital ∗−homomorphism π : A → B(K) such that

ϕ(a) = V ∗π(a)V

for all a ∈ S.

It is a non trivial result that every u.c.p. map admits a maximal dilation. Before
stating this theorem, we present an example to illustrate the concept of maximality
for a u.c.p. map.

Example 3.1.10: Let z be the identity function on C, and let S be the operator
system generated by z in C(T). Let H and K be Hilbert spaces. Any u.c.p. map
ϕ : S → B(H) is uniquely determined by ϕ(z), which must be a contraction since
∥ϕ(z)∥ ≤ ∥z∥ = 1.
Suppose that Φ : S → B(K) is a u.c.p. dilation of ϕ with respect to an isometry
V : H → K, and assume that ϕ(z) is unitary. Then:

1 ≥∥V ∗Φ(z)∗Φ(z)V ∥ = ∥V ∗Φ(z)∗V V ∗Φ(z)V + V ∗Φ(z)∗(idK − V V ∗)Φ(z)V ∥
= ∥ϕ(z)∗ϕ(z) + V ∗Φ(z)∗(idK − V V ∗)Φ(z)V ∥
= ∥idH + V ∗Φ(z)∗(idK − V V ∗)Φ(z)V ∥,

which implies V ∗Φ(z)∗(idK − V V ∗)Φ(z)V = 0, so V (H) is reducing for Φ(z).
Therefore, any u.c.p. map ϕ, such that ϕ(z) is a unitary operator, is maximal.
Conversely, let T be a contraction on H. Then

U =
(

T
√
idH − TT ∗

√
idH − T ∗T −T ∗

)
∈ B(H ⊕H)

is called a dilation of T . Using the series expansion of the square root function on
[0,∞), one verifies that

T ∗
√
idH − TT ∗ =

√
idH − T ∗TT ∗ and T

√
idH − T ∗T =

√
idH − TT ∗T.

Hence, U is a unitary. Define the unital ∗-homomorphism

π : C(T) → B(H ⊕H), z 7→ U,
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and let
V : H → H ⊕H, x 7→ x⊕ 0.

Clearly, V is an isometry. Thus, by Example 3.1.7, the map

ϕ(·) = V ∗π(·)V

is a u.c.p. map on C(T), and by construction, ϕ(z) = V ∗UV = T . Note that π is
a trivial dilation of ϕ if and only if T ∗T = TT ∗ = idH .
Altogether, we have shown that the maps

{ϕ : S → B(H); ϕ u.c.p.} → {T ∈ B(H); ∥T∥ ≤ 1}, ϕ 7→ ϕ(z)

and

{ϕ : S → B(H); ϕ maximal} → {T ∈ B(H); T unitary}, ϕ 7→ ϕ(z)

are well defined and bijective.

We now state the result that every u.c.p. map admits a maximal dilation. For a
proof, we refer to Dritschel-McCullough [25] respectively Arveson [7, Theorem
2.5].

Theorem 3.1.11: Let S be an operator system (respectively operator space), H a
Hilbert space, and let ϕ : S → B(H) be a u.c.p. (respectively u.c.c.) map. Then
there exists a dilation Φ : S → B(K) of ϕ for some Hilbert space K such that Φ is
maximal. If both S and H are separable, then K can be chosen to be separable.

Hence, there always exists many maximal u.c.p. maps on an operator system, and
understanding these maps provides deeper insight into the structure of all u.c.p.
maps. Let us now collect some fundamental results about maximal u.c.p. maps.
A well-known and frequently used, and often not explicitly stated fact throughout
this thesis is the close connection between maximality and the unique extension
property (u.e.p.).1 A u.c.p. map ϕ on an operator system S (respectively space)
in an C∗-algebra A is said to have the u.e.p. if there exists a unique u.c.p.
(respectively u.c.c.) extension of ρ to C∗(S) such that ϕ|S = ρ.
Before we explore the relationship between maximal and the unique extension
property, let us collect some useful basic facts about maximal maps.

Lemma 3.1.12: Let S be a operator system in a C∗-algebra A. Then:
1We emphasize that our definition of the unique extension property differs from the usual

definition, as given, for instance, in [5] or [22]. Typically, the unique extension is required to
be a ∗-homomorphism.
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(i) Every unital ∗-homomorphism on A is maximal (seen as a u.c.p. map on
the operator system A).

(ii) Let n ∈ N, and for each n, let Hn be a Hilbert space and ϕn : S → B(Hn) be
u.c.p. maps. Then the map

ϕ : S → B(
⊕
n∈N

Hn), s 7→
⊕
n∈N

ϕn(s)

is maximal if and only if each ϕn is maximal.

Proof:
(i): Let H,K be Hilbert spaces, π : A → B(H) be a unital ∗-homomorphism, and
ρ : A → B(K) a dilation of π with respect to an isometry V : H → K. Then for
every a ∈ A,

V ∗ρ(a∗)(idK − V V ∗)ρ(a)V = V ∗ρ(a∗a)V − V ∗ρ(a∗)V V ∗ρ(a)V
= π(a∗a) − π(a∗)π(a) = 0.

It follows that V (H) is a reducing subspace for ρ.
(ii): Let (ϕn)n∈N and ϕ be as above. For every n ∈ N and every dilation ρ of ϕn,
one can construct a dilation of ϕ by replacing ϕn in the direct sum ⊕n∈Nϕn with
ρ. Hence, if ϕ is maximal, then each ϕn must also be maximal.
Conversly, since Hn ⊂ H, every dilation of ϕ restricts to a dilation of each ϕn

for all n. So if ρ is a dilation of ϕ with respect to an isometry V , then V (Hn)
is reducing for ρ for all n, and thus the entire space ⊕n∈NHn is reducing for ρ,
showing that ϕ is maximal. □.

Theorem 3.1.13: Let S be an operator system (respectively space) and ϕ a u.c.p.
(respectively u.c.c.) on S. Then:

(i) If ϕ is maximal, then it has the unique extension property.
(ii) If ϕ has the unique extension property and the unique extension is a unital

∗-homomorphism, then ϕ is maximal.
(iii) If ϕ is maximal and ρ is its unique u.c.p. extension on C∗(S), then ρ is a

unital ∗-homomorphism.

Proof:
Let S be an operator system in a C∗-algebra and C∗(S) the C∗-algebra generated
by S. Let ϕ : S → B(H) be a u.c.p. map for some Hilbert space H.
Assume first that ϕ is maximal, and let ρ be any u.c.p. extension to C∗(S).
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By Stinespring’s dilation theorem, there exists a Hilbert space K, a unital ∗-
homomorphism π : C∗(S) → B(K), and an isometry V : H → K such that

ϕ(s) = V ∗π(S)V for all s ∈ S.

Then π|S is a dilation of ϕ, and since ϕ is maximal, V (H) is reducing for π|S.
Because S is selfadjoint, V (H) is reducing for π as well. Hence, the compression
π|V (H) = ρ is a unital ∗-homomorphism. Thus, we have shown that any u.c.p.
extension of ϕ is a unital ∗-homomorphism. Since all such extensions agree on S,
they must also agree on C∗(S). This proves both (i) and (iii).
Now assume that ϕ has a unique u.c.p. extension ϕ̃, which is a ∗-homomorphism.
Let ρ : S → B(K) be a maximal dilation of ϕ with respect to an isometry
V : H → K. By the first part, ρ has a unique u.c.p. extension ρ̃ to C∗(S), which
is a unital ∗-homomorphism. The map

V ∗ρ̃(·)V

is a u.c.p. extension of ϕ, and thus equals ϕ̃. In particular, ρ̃ is a dilation of ϕ̃.
Since ϕ̃ is a unital ∗-homomorphism, it is maximal by Lemma 3.1.12. Therefore,
V (H) is reducing for ρ̃ and consequently for ρ, proving that ϕ is maximal. □.

Given two operator system S1 and S2 in C∗-algebras A1 and A2, we say that
S1 and S2 are completely order isomorphic if there is a bijective u.c.p. map
ϕ : S1 → S2 such that ϕ−1 is also u.c.p.. In this case, ϕ is called complete order
isomorphism.
Completely order isomorphic operator systems share the property that every u.c.p.
map on one of them induces a u.c.p. map on the other one via composition with
the complete order isomorphism. Given an operator system S and a C∗-algebra
A, we say that a pair (A, ϕ) is a C∗-cover of S if ϕ : S → ϕ(S) is a complete order
isomorphism and C∗(ϕ(S)) = A.
It is easy to see that the composition with a complete order isomorphism pre-
serves trivial dilations and thus also maximality. This leads to an interesting
observation: whether a u.c.p. on an operator system S is the restriction of a
unital ∗-homomorphism depends strongly on the underlying C∗-algebra and is
not preserved under complete order isomorphism, as the next example illustrates.
Nevertheless, since maximality is preserved under complete order isomorphisms,
and since maximal u.c.p. maps are restrictions of unital ∗-homomorphism on
C∗(S), knowing that a map is maximal on S yields information about every
C∗-cover of S.

Example 3.1.14: Let C∗(1, x) denote the universal C∗-algebra in a contraction.
That is, up to isometric isomorphism, the unique unital C∗-algebra A generated
by a contraction x such that for every Hilbert space and contraction T ∈ B(H),
there exists a unital ∗-homomorphism π : A → B(H) with π(x) = T . It follows
from the definition that every C∗-algebra with this universal property is unique
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up to isometric isomorphism.
Let S be the operator system generated by x, and S̃ be the operator system
consider in Example 3.1.10, the operator system generated by z in C(T). Since x
is a contraction, we saw that

ϕ : S̃ → S, a1 + bz + cz̄ 7→ a1 + bx+ cx∗

is well defined u.c.p. map. Since z is a contraction, there is a unital ∗-homomorphism
π : C∗(1, x) → C(T) with π(x) = z. Now, it is easy to verify that π|S is the
inverse to ϕ and thus ϕ is a complete order isomorphism. To come back to the
comment preceding this example, the universal property of C∗(1, x) shows that
every u.c.p. map on S is a restriction of a unital ∗-homomorphism. In contrast,
the only u.c.p. maps on S̃ that are restrictions of ∗-homomorphism are those such
that ϕ(z) is unitary.

For an operator system S, we say that two C∗-covers (A1, i1) and (A2, i2) are
equivalent if there exists a unital ∗-isomorphism π : A1 → A2 such that

i2 = π ◦ i1.

We denote the collection of equivalent classes of C∗-covers of S by C∗-Lat(S). We
equip this set with a partial order as follows. For [(A1, i1)], [(A2, i2)] ∈ C∗-Lat(S),
we write [(A2, i1)] ≤ [(A1, i1)] if there exists a unital ∗-homomorphism π : A2 → A1
such that

i2 = π ◦ i1.
An partially ordered set (I,≤) is called lattice if for all a, b ∈ I, the meet a ∧ b
(greatest lower bound) and the join a ∨ b (least upper bound) exist. It is called
complete lattice if the meet and join exist for every subset J ⊂ I, that is, for every
such J , there exists an element c ∈ I such that c ≤ a (respectively a ≤ c) for all
a ∈ J and for every other element b ∈ I with b ≤ a (respectively a ≤ b) for all
a ∈ J , we have b ≤ c (respectively c ≤ b).
One can show that (C∗-Lat(S),≤) is a complete lattice, however, the proof is
similar to the proof for (C∗-Lat(A),≤), where A is an operator algebra. So we
will only prove the latter later in Proposition 3.1.25.

Proposition 3.1.15: Let S be an operator system. Then (C∗-Lat(S),≤) is a com-
plete lattice.

The smallest and largest elements in (C∗-Lat(S),≤) have special names. The
smallest element, (C∗

e (S), ie), is called the C∗-envelope of S and is uniquely
characterized by the property that for every C∗-cover (A, i) of S, there exists a
unital ∗-homomorphism π : A → C∗

e (S) such that

ie = π ◦ i.
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The largest element, (C∗
max(S), imax), is called the universal C∗-algebra of S and

is uniquely characterized by the property that for every C∗-cover (A, i) of S, there
exists a unital ∗-homomorphism π : C∗

max(S) → A such that

i = π ◦ imax.

The existence of the C∗-envelope was an open problem for some time. One of
the earliest contributions came from Arveson, who proved existence in certain
particular cases. The problem was later resolved in full generality by Hamana in
[36].

The last topic concerning operator systems we will address in this section is
that of irreducible maximal maps. Given an operator system S in a C∗-algebra A
such that S generates A, and an irreducible unital ∗-homomorphism π on A, we
say that π is a boundary representation if its restriction π|S is maximal.
It is worth noting that maximality and irreducibility are preserved under complete
order isomorphisms. Therefore, when considering only the restriction to S, the
particular C∗-algebra does not matter.
Arveson conjectured that irreducible representations, and in particular the bound-
ary representations, play a central role in understanding operator system. One
famous conjecture, known as Arveson’s Hyperrigidity Conjecture, states that the
restrictions of all unital ∗-homomorphisms are maximal if and only if all irreducible
representations are boundary representations. In this case, the operator system is
called hyperrigid.
A counterexample to this conjecture was constructed by Boris Bilich and Adam
Dor-On in [10], and it will be presented in Chapter 4. Their example involves
an infinite-dimensional operator system, and this infinite-dimensionality plays
a crucial role. Therefore, we will construct a new counterexample in which the
operator system is finite-dimensional in Chapter 4.
For this purpose, we need several preliminary lemmas and theorems. The first three
results are due to Arveson [4] and form the foundation for both counterexamples.
The first lemma is a remark preceding [4, Theorem1.3.4].

Lemma 3.1.16: Let A be a C∗-algebra, I ⊂ A a closed ideal, and π : A → B(H)
a unital ∗-homomorphism. Then K = π(I)(H) is a reducing subspace for π, and
we have the decomposition

π = π|K⊥ ⊕ π|K .

Moreover, π(a)|K⊥ = 0 for all a ∈ I, and π|K is uniquely determined by its action
on I.

Proof:
In the above setting, note that for all a ∈ A, i ∈ I, and x ∈ H, we have that

π(a)π(i)(x) = π(ai)(x) ∈ π(I)(H),
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since I is an ideal. Thus, K is reducing for π, and the stated decomposition
follows. Since π(a)(H) ⊂ K for all a ∈ I, we have that π(a)|K⊥ = 0 for all a ∈ I.
So it remains to show that π|K is uniquely determined by its action on I.
Let ρ be another unital ∗-homomorphism such that π|K = ρ on I. Then, for all
a ∈ A, i ∈ I, and x ∈ H, we have

ρ(a)π(i)(x) = ρ(a)ρ(i)(x) = ρ(ia)(x) = π(ia)(x) = π(a)π(i)(x),

which shows that ρ(a) and π|K(a) agree on π(I)(H). Since both maps are contin-
uous and π(I)(H) is dense in K, it follows that ρ = π|K . □

The next lemma is [4, Corollary 1.3, Section 1.4].

Lemma 3.1.17: Let H be a Hilbert space. Then every irreducible representation
of K(H) is unitarily equivalent to the identity representation.

Thus, if we take I = K(H) in Lemma 3.1.16 and know the irreducible repre-
sentations of A/I, for instance, if A/I is a commutative C∗-algebra, then the
previous lemma implies that the irreducible representations of A consist precisely
of the irreducible representations of A/I and the identity representation of A. We
will use the case in which A/I is commutative, and record this fact in the next
theorem. The additional statement is known as Arveson’s boundary theorem, see
for example, [18].

Theorem 3.1.18: Let H be a Hilbert space and let A ⊂ B(H) be a C∗-algebra such
that K(H) ⊂ A. If A/K(H) is ∗-isomorphic to C(K) for some compact set K,
then every irreducible representation of A is either given by a point evaluation at
some z ∈ K,

A → C, a 7→ [a+ K(H)](z),
where we identify [a+ K(H)] with the corresponding element in C(K), or unitarily
equivalent to the identity representation.
Moreover, if S ⊂ A is an operator system such that C∗(S) = A, and the quotient
map by K(H) restricted to S is not completely isometric, then the identity map
on S already has the unique extension property.

Proof:
In the setting above, let π : A → B(H) be a unital irreducible representation. By
Lemma 3.1.16, π(K(H)) is a reducing subspace for π, and since π is irreducible,
we must have either π(K(H)) = 0 or π(K(H)) = H.
In the first case, π induces a irreducible representation on C(K) and is therefore
given by point evaluation at some z ∈ K. In the second case, there exists, by
Lemma 3.1.17, a unitary operator U such that U∗π(a)U = a for all a ∈ K(H).
By Lemma 3.1.16, U∗πU is uniquely determined by its action on K(H), and thus
equals the identity map on A, proving the first part of the theorem.
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Now let S ⊂ A be an operator system generating A. If S were reducible, then so
would be A, which contradicts K(H) ⊂ A. Hence, S is irreducible. By [18], the
identity map on S has a unique extension to a u.c.p. map on B(H), and thus has
the unique extension property. □

The last tool needed for the constructing the finite-dimensional counterexample is
a dilation theorem by Davidson and Kennedy concerning pure u.c.p. maps [22,
Theorem 2.4]. A u.c.p. map ϕ is called pure if the only completely positive maps
ψ such that

ϕ− ψ

is completely positive, are scalar multiplies of ϕ.
Scalar-valued u.c.p. maps are closely related to extreme points of the state space,
as captured in the following proposition.
For an operator system S, we define its state space by

S(S) = {ϕ : S → C; ϕ u.c.p.}.

Note that, by Example 3.1.7, states are already u.c.p.maps. Therefore, our
definition of the state space coincides with the standard definition via states.

Proposition 3.1.19: Let S be an operator system. Then S(S) is convex and com-
pact with respect to the topology of pointwise convergence in norm. Furthermore,

ex(S(S)) = {ϕ : S → C; ϕ pure}.

Proof:
Let S be an operator system. It is straightforward to verify that a convex
combinations of u.c.p. maps are again u.c.p.. The compactness of S(S) follows
from the Banach-Alaoglu theorem and the fact the pointwise limit of positive
maps remains positive. It remains to show that

ex(S(S)) = {ϕ : S → C; ϕ pure}.

First, suppose that ϕ ∈ S(S) is not an extreme point. Then there exist ϕ1, ϕ2 ∈
S(S) and t ∈ (0, 1) such that ϕ = tϕ1 + (1 − t)ϕ2 with ϕ2 ≠ ϕ ̸= ϕ1. The maps
tϕ1, (1 − t)ϕ2 are still completely positive. and

ϕ− tϕ1 = (1 − t)ϕ2.

Since ϕ ̸= ϕ1, we conclude that ϕ is not pure.
Conversely, assume that ϕ ∈ ex(S(S)), and let ψ : S → C be a completely positive
map such that ϕ− ψ is also completely positive. It is easy to see that if ψ(1) = 0,
then ψ = 0, because ∥x∥1 − x ≥ 0 for all selfadjoint x ∈ S. Thus, assume
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t = ψ(1) > 0. Then 1 − t = (ϕ− ψ)(1) > 0, and so both ψ/t and (ϕ− ψ)/(1 − t)
are unital completely positive. Hence,

ϕ = t(ψ
t

) + (1 − t)ϕ− ψ

1 − t
.

is a convex combination of two u.c.p. maps. Since ϕ was assumed to be an ex-
treme point of S(S), this implies that ϕ/t = (ϕ−ψ)/(1−t) = ψ, hence ϕ is pure. □

Theorem 3.1.20 (Davidson-Kennedy): Let S be an operator system contained in
a C∗-algebra A such that C∗(S) = A, and let ϕ be a pure u.c.p. map on S. Then
there exists a dilation ρ of ϕ that is both maximal and pure. In particular, the
unique extension of ρ to A is a boundary representation.

This result was used to resolve another conjecture by Arveson, namely that the
boundary representations of S are completely norming for S, that is,

∥s∥ = sup{∥π(s)∥; π boundary representation of S}

for all n ∈ N and s ∈ Mn(S).
Although we do not need this result here, we include some historical context
for interested readers. This problem remained open for nearly 40 years and was
settled in the separable case by Arveson himself using disintegration techniques for
representations of C∗-algebras, a method he expressed regret to appear necessary.
Sic fata ferunt: Arveson passed away in 2011, two years before the publication of
[22].

3.1.2 Operator Algebras
An operator algebra is essentially an algebra that is an operator space. More
precisely, an operator algebra A is a closed unital subalgebra of a C∗-algebra.
Since such a subalgebra is automatically an operator space, all results from the
previous section on operator spaces also apply to operator algebras.
A major advantage of operator algebras is that maximal u.c.c. maps are always
homomorphisms. Since every u.c.c. map dilates to a maximal one, it follows
that every non-maximal u.c.c. homomorphism dilates non-trivially to a u.c.c.
homomorphism. However, this can only occur in a specific form, described in the
following lemma, known as Sarason’s lemma.

Lemma 3.1.21 (Sarason): Let A be an operator algebra, π : A → B(H) be a u.c.c.
homomorphism for a Hilbert space H, and ρ : A → B(K) a u.c.c. homomorphism
that dilates π. Identifying H with its image under the isometry from the dilation,
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we may assume H ⊂ K. Then H is a semi-invariant subspace of ρ, that is, there
exists an orthogonal decomposition of H⊥ = H1 ⊕H3 such that

PHρ|H1 = PH3ρ|H1 = PH3ρ|H = 0,

or equivalently, we have a matrix decomposition of ρ:

ρ =

π1,1 π1,2 π1,3
0 π π2,3
0 0 π3,3

 ,
for maps πi,j : A → B(Hi, Hj), where H2 = H and π2,2 = π.

Proof:
In the setting of the lemma, define H1 = ρ(A)(H) ⊖H. Note that H ⊂ ρ(A)(H)
since 1 ∈ A and ρ(1) = idK . Set H3 = H⊥ ⊖H1. Then H⊥ = H1 ⊕H3. We now
verify H1 and H3 satisfy the semi-invariance conditions.
Let x ∈ H1, y ∈ H, z ∈ H3 and a ∈ A be arbitrary. Then, since ρ is a homo-
morphism and by the definition of H1, we have ρ(a)(x), ρ(a)(y) ∈ H1 ⊕H, and
so

⟨ρ(a)(x), z⟩ = ⟨ρ(a)(y), z⟩ = 0.
As x ∈ H1, there exist sequences (an)n∈N in A and (xn)n∈N in H such that
ρ(an)xn → x. Then

⟨ρ(a)(x), y⟩ = lim
n→∞

⟨ρ(aan)(xn), y⟩

= lim
n→∞

⟨π(a)π(an)(xn), y⟩ = ⟨x, π(a)∗(y)⟩ = 0,

since π(a)∗(y) ∈ H, and the proof is complete. □

Although not relevant for our purposes, it is still worth noting that the proof only
uses that A is a unital algebra, not a subalgebra of a C∗-algebra, and that π and
ρ are unital homomorphism. Thus, the lemma holds in a more general setting.
Later, we will use Sarason’s lemma both to control u.c.c. homomorphism on a
given operator algebra and and to construct new u.c.c. homomorphisms from a
non-maximal one. The latter will be achieved by multiplying the off diagonal
entries in the above matrix decomposition in a specific way. This idea was first
observed and written down by Kaznelson in [42]. We include a proof here, as the
original paper is written in Russian.

Theorem 3.1.22 (Kaznelson): Let A be an operator algebra and π : A → B(H) a
u.c.c. homomorphism that admits a matrix decomposition of the form

π =

π1,1 π1,2 π1,3
0 π2,2 π2,3
0 0 π3,3

 .
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Then, for every z ∈ D, the map

πz =

π1,1 zπ1,2 z2π1,3
0 π2,2 zπ2,3
0 0 π3,3

 .
is again a u.c.c. homomorphism.

Proof:
If z = 0, then f(z) is a direct sum of u.c.c. homomorphisms, which is itself a
u.c.c. homomorphism. Now assume z ̸= 0. Then, the map f(z) is obtained via
the similarity transformation

f(z) =

1 0 0
0 z−1 0
0 0 z−2


π1 π1,2 π1,3

0 π π2,3
0 0 π3


1 0 0

0 z 0
0 0 z2

 .
This shows that each f(z) is a homomorphism. Moreover, for every x ∈ Mn(A),
the map

C → B(Kn)
z 7→ f(z)(x)

is analytic. Thus, by the maximum modulus principle,

sup
z∈D

∥f(z)(x)∥ = sup
z∈T

∥f(z)(x)∥ = ∥π(x)∥ ≤ ∥x∥

for every x ∈ Mn(A). Therefore, f(z) is u.c.c for all z ∈ D. □

We will later apply this theorem in the context of C∗-covers. A C∗-cover of
an operator algebra A is a pair (A, i), where A is a C∗-algebra and i : A → A a
unital completely isometric homomorphism, that is, a injective u.c.c. homomor-
phism such that i−1 : i(A) → A is also u.c.c. with C∗(i(A)) = A.
Given two C∗-covers (A1, i1) and (A2, i2) of A, we write

(A1, i1) ≾ (A2, i2)

if there exists a unital ∗-homomorphism π : A1 → A2 such that

i2 ◦ π = i1.

If π is additionally bijective, we say that the two C∗-covers are equivalent, denoted
by

(A1, i1) ∼ (A2, i2).
We denote the collection of equivalence classes of C∗-covers of A by C∗-Lat(A).
It is well known that (C∗-Lat(A),≾) forms a complete lattice. As announced in
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the previous section, we will now provide a proof of this fact. We split the proof
in two steps.
In the first step, we show that the smallest and largest elements in C∗-Lat(A)
exists, even without first proving that this collection is actually a set. The largest
element is called the universal C∗-algebra of A, denoted by (C∗

max(A), imax), the
smallest is called the C∗-envelope of A, denoted by (C∗

e (A), ie). Both are uniquely
defined up to equivalence, with the property that for every C∗-cover (A, i) of A,
we have

(C∗
e (A), ie) ≾ (A, i) ≾ (C∗

max(A), imax).

The intuitive idea behind the construction of the maximal C∗-cover is take the
sum over all possible u.c.c. homomorphisms on A. However, this collection does
not form a set. One approach is to restrict to u.c.c. homomorphism acting
on a sufficiently large Hilbert space, but this leads to unsightly handling with
cardinalities.
The proof we present is, to the best of our knowledge, the first written proof of
the existence of the maximal C∗-cover given by Blecher in [11]. In fact, this was
one of the earliest works to study the maximal C∗-cover in depth.
We will use the maximal C∗-cover to construct the C∗-envelope. This is, in fact,
not necessary, as can be seen from a proof by Dritschel and McCullough, see [25].
Our proof is not simpler, however, the construction used here will reappear in the
proof of Theorem 3.2.7.

Lemma 3.1.23: Let A be an operator algebra. Then (C∗
max(A), imax) and (C∗

e (A), ie)
exist.

Proof:
We begin with the existence of (C∗

max(A), imax). Let A be an operator algebra in
C∗(A). Let E be the ∗-algebra given by the algebraic free product of A and A∗.
Let π : A → B(H) be a u.c.c. homomorphism for some Hilbert space H. It is
easy to check that the map

π∗ : A∗ → B(H), x 7→ π(x∗)

is still u.c.c.. These two homomorphisms give rise to a ∗-representation

π ⋆ π∗ : E → B(H).

Similar to the usual construction of universal C∗-algebra, E gives rise to a
C∗-algebra C∗

max(A) by taking the supremum over all π ⋆ π∗. We claim that
(C∗

max(A), imax) is a maximal C∗-cover of A where imax is the canonical embed-
ding. Indeed, this is a C∗-cover, since the supremum runs over all possible u.c.c.
homomorphism, and taking one that is completely isometric shows that imax is
completely isometric. It is also clear that C∗

max(A) = C∗(imax(A)). So it remains
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Chapter 3 The Lattice of C∗-covers

to shows this C∗-cover is maximal in our partial order. Let (A, i) be an arbitrary
C∗-cover of A. By construction of C∗

max(A), there exists a unital ∗-homomorphism

π : C∗
max(A) → A

extending i ⋆ i∗. Hence, π ◦ imax = i, and thus

(A, i) ≾ (C∗
max(A), imax).

Now consider the C∗-envelope. Define

Ie =
⋂{

ker(π); π unital ∗-homomorphism on C∗
max(A),

π|imax(A) maximal

}
.

Since Ie is an intersection of closed ideals, it is a closed ideal in C∗
max(A), and we

define
(C∗

e (A), ie) = (C∗
max(A)/Ie, ie), with ie(a) = imax(a) + Ie.

To see that (C∗
e (A), ie) is a C∗-cover of A, the only non-trivial thing to check is

that ie is completely isometric. For this, let π be the unital completely isometric
homomorphism obtained by restricting the identity representation on C∗

max(A) to
A, and let ρ be a maximal dilation of π. Then ρ is still a unital completely isometric
homomorphism, which extends to a unital ∗-homomorphism Ψ on C∗

max(A).
Since Ie ⊂ ker(Ψ), we have for all a = (ai,j)1≤i,j≤n ∈ Mn(A),

∥a∥ = ∥imax(a)∥ = ∥ρ(imax(a))∥
= ∥Ψ(imax(a))∥ ≤ ∥(imax(ai,j) + ker(Ψ))1≤i,j≤n∥ ≤ ∥ie(a)∥ ≤ ∥a∥,

proving that ie is completely isometric.
Now suppose that (A, i) is a C∗-cover of A. From the existence of the maximal
C∗-cover, we know that there exists an ideal I ⊂ C∗

max(A) such that (A, i) ∼
(C∗

max(A)/I, q), where q(a) = imax(a) + I. So it remains to show that

(C∗
max(A)/Ie, ie) ≾ (C∗

max(A)/I, q),

which will immediately follow as soon as we have shown that I ⊂ Ie.
Let π be a unital ∗-homomorphism on C∗

max(A) such that π|imax(A) is maximal.
Define a u.c.c. homomorphism on q(A) via π◦q−1, which is maximal since π|imax(A)
is maximal. Hence, π ◦ q−1 admits a unique u.c.p. extension ϕ to C∗

max(A)/I,
which is necessarily a unital ∗-homomorphism.
Since ϕ(a + I) = π(a) for all a ∈ imax(A), and both ϕ and π are unital ∗-
homomorphisms, this identity extends to all of C∗

max(A), that is, ϕ(a+ I) = π(a)
for all a ∈ C∗

max(A), yielding that I ⊂ ker(π).
It follows that I ⊂ Ie, completing the proof of the existence of the C∗-envelope of
A. □
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Remark 3.1.24: There are several remarks to be made regarding C∗
max(A), C∗

e (A)
and C∗-covers in general. First, whether the term “C∗-cover“ refers to an equiva-
lence class or a specific representative of the class depends on the context.
Second, a C∗-cover is the maximal C∗-cover if and only if every u.c.c. homomor-
phism on A extends to a unital ∗-homomorphism on the C∗-cover.
And finally, every bijective unital ∗-isomorphism between C∗-algebras is automat-
ically unital completely isometric.

Proposition 3.1.25: Let A be an operator algebra. Then C∗-Lat(A) is a set and
forms a complete lattice.

Proof:
Let A be an operator algebra. The proof of the previous lemma showed that for
every C∗-cover (A, i) of A, there exists a closed ideal I ⊂ C∗

max(A) such that

(C∗
max(A)/I, q) ∼ (A, i), where q(a) = imax(a) + I.

Moreover, every such I contains

Ie =
⋂

{ker(π); π : C∗
max(A) → B(H) unital ∗-homomorphism, π|imax(A)maximal}.

Conversely, for every closed ideal I ⊂ C∗
max(A) with I ⊂ Ie, the pair (C∗

max(A)/I, q),
where q : A → C∗

max(A)/I, a 7→ imax(a) + I, is a C∗-cover of A.
Thus, there is order isomorphism between C∗-Lat(A) and

{I ⊂ C∗
max(A); I closed ideal, I ⊂ Ie},

ordered by inclusion. This is clearly a complete lattice, and in particular a set.
Therefore, C∗-Lat(A) is a complete lattice. □

Let us now consider two of the most iconic examples of operator algebras and
their C∗-envelopes and maximal C∗-algebra.
Example 3.1.26:

(i) Let T2 be the algebra of upper triangular matrices in M2. This obviously a
closed subalgebra and thus an operator algebra. The only u.c.c. extension of
idT2 is idM2 , since u.c.c. maps on operator systems are u.c.p and T2+T ∗

2 = M2.
Therefore, idT2 is maximal, and the construction of the C∗-envelope yields
C∗

e (T2) = M2, so
C∗

e (T2, ie) = (M2, idT2).
Although we will not compute C∗

max(T2) in detail, for completeness we
mention that it is given by the M2-valued continuous function on [0, 1] such
that f(0) is a diagonal matrix with the embedding

imax

((
a b
0 c

))
=
[
t 7→

(
a tx
0 c

)]
,

(see [11, Example 2.4]).
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Chapter 3 The Lattice of C∗-covers

(ii) Let A(D) be the disk algebra, the algebra of holomorphic functions on D
that extend continuously to D. By the maximum principle, we can view
A(D) as a subalgebra of C(T). Using Example 3.1.10, we can characterize
the maximal maps on A(D).
First, note that the operator algebra A(D) is generated by z, the identity
function. Hence, every u.c.c. homomorphism is uniquely determined by
its value at z. Now, let S be the operator system generated by z. Since
z∗z = 1 on T, the restrictions of unital ∗-homomorphism π on C(T) are
precisely those such that π(z) is unitary. Any u.c.c. extension ρ of π|A(D) to
C(T) is u.c.p., and hence also a u.c.p. extension of the u.c.p. map π|S. By
Example 3.1.10, the only u.c.p. extension of π|S is π itself. Therefore, the
maximal maps on A(D) are exactly the u.c.c. homomorphism which send z
to a unitary element.
In particular, idA(D) is maximal, and thus

(C∗
e (A(D)), ie) = (C(T), idA(D)).

On the other hand, the maximal C∗-algebra is given by the universal C∗-
algebra C∗(1, x) generated in a contraction x with the embedding imax(z) = x.
To see that this is indeed a C∗-cover of A(D), one can apply the Sz.-Nagy
dilation theorem [55, Theorem 1.1]. To verify that this is also the maximal
C∗-cover, observe that any u.c.c. homomorphism π on A(D) extends to a
unital ∗-homomorphism on C∗(1, x) via x 7→ π(z).

We conclude the preliminaries with two special types of operator algebras. The
first are (semi-)Dirichlet operator algebras (see [20, Definition 4.1]). An operator
algebra A is called Dirichlet if

ie(A) + ie(A)∗ = C∗
e (A)

and semi-Dirichlet if
ie(A)∗ie(A) ⊂ ie(A) + ie(A)∗.

A general C∗-cover (A, i) is called semi-Dirichlet C∗-cover of A if

i(A)∗i(A) ⊂ i(A) + i(A)∗.

The second type are residual finite dimensional (RFD) operator algebras. These
are operator algebras A for which there exists a C∗-cover (A, i) with a RFD
C∗-algebra A, that is,

∥a∥ = sup{∥π(a)∥; π : A → Mn unital *-homomorphism, 1 ≤ n ∈ N}

for all a ∈ A. In this case, (A, i) is called a RFD C∗-cover, and any such π is
called a finite-dimensional representation of A.
Let us list some examples of RFD and (semi-)Dirichlet operator algebras. Some
of these example will reappear later.
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3.2 The Lattice of C∗-covers

Example 3.1.27:
(i) Commutative C∗-algebras are RFD, since their norm is given by the supre-

mum over point evaluations, which are finite-dimensional representations.

(ii) The unital C∗-algebra generated by a universal contraction is RFD by [17,
Theorem5.1].

(iii) The disk algebra A(D) is a Dirichlet operator algebra since every real-valued
continuous function f ∈ C(T) can be approximated via convolutions with
the Poisson kernel and these convolutions are the real parts of functions in
A(D).

(iv) T2 is clearly a Dirichlet operator algebra.

(v) If A is a Dirichlet operator algebra, then

B =
(

A 0
A+ A∗ A∗

)

is a semi-Dirichlet operator algebra. For a proof see [40, Proposition 2.15].

3.2 The Lattice of C∗-covers
The main goal of this section is to characterize those C∗-cover lattices that have
finite cardinality. It is evident that if A is a C∗-algebra, then every unital com-
pletely isometric homomorphism π : A → B for some C∗-algebra B is already a
unital ∗-isomorphism. Thus, |C∗-Lat(A)| = 1 for every C∗-algebra A. However,
the question of whether there exist an operator algebra A with |C∗-Lat(A)| = 1
becomes non-trivial if we require A to be non-selfadjoint. This question was posed
by Humeniuk and Ramsey in [41, Question 3.1], and we will answer it affirmatively
in Theorem 3.2.4.
We will also address the follow-up question concerning the existence of an operator
algebra with |C∗-Lat(A)| = n for 2 ≤ n ∈ N. Surprisingly, we will show that
no such an operator algebra exist - not even one with |C∗-Lat(A)| = ℵ0, see
Theorem 3.2.7.
We then answer [40, Question 3.1.13] in Theorem 3.3.1 by showing that the
maximal C∗-cover of a non-selfadjoint operator algebra is never a semi-Dirichlet
C∗-cover.
All results presented in this chapter are joint work with Adam Humeniuk and
Christopher Ramsey.
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3.2.1 One-Point Lattice
To construct a non-selfadjoint operator algebra with |C∗-Lat(A)| = 1, we require
the following lemma, for which we introduce one more piece of notation.
Given u.c.c. maps (πn)n∈N from an operator algebra A to B(H), we say that (πn)n

converges pointwise in the ∗-SOT if both (πn(a))n and πn(a)∗)n converge in the
SOT for all a ∈ A.

Lemma 3.2.1: Let A be an operator algebra in a C∗-algebra A. For n ∈ N, let
π, πn : A → B(H) be unital ∗-homomorphisms such that πn → π pointwise in
the *-SOT. If every restriction πn|A is maximal, then there exists a unital ∗-
homomorphism ψ on the C∗-envelope C∗

e (A) such that ψ ◦ σ = π, where σ : A →
C∗

e (A) is the unique morphism satisfying σ|A = ie.

Proof:
Let A, (πn)n∈N and π be as above. Since each πn|A is maximal, there exist ∗-
homomorphisms ψn defined on C∗

e (A) such that ψn ◦ σ = πn. Let a ∈ C∗
e (A). As

σ is surjective, there exists ã ∈ A such that σ(ã) = a. Then

∥(ψn − ψm)(a)x∥ = ∥(πn − πm)(ã)x∥

for all x ∈ H. Hence, the sequence (ψn) has a *-SOT-limit ψ, which is again a
∗-homomorphism. This map also satisfies ψ ◦ σ = π. □

Now we construct the desired example. Let C∗(1, x) be the unital universal
C*-algebra generated by a contraction x, for a definition see Example 3.1.14. Let
A be the closed operator algebra generated by 1, x, (x2)∗, (x3)∗. We will show that
the equivalence class of both the C∗-envelope and the maximal C∗-algebra of A
are given by C∗(1, x) with the identity embedding, and that A is non-selfadjoint.
Note that A is RFD, since C∗(1, x) is a RFD C*-algebra.

Remark 3.2.2: Let π : A → B(H) be a u.c.c. homomorphism. Since π extends to
a completely positive map on A+ A∗, it follows that if a ∈ A and a∗ ∈ A, then
π(a∗) = π(a)∗. Therefore, π((x2)∗) = π(x2)∗ = (π(x)2)∗, and π((x3)∗) = (π(x)3)∗.
In particular, every u.c.c. homomorphism on A is uniquely determined by its
value at x. Consequently, for every contraction T , there exists a unique u.c.c.
homomorphism π on A such that π(x) = T .

Theorem 3.2.3: Let H be a Hilbert space, T ∈ B(H) be an invertible contraction,
and let π : C∗(1, x) → B(H) be the unital ∗-homomorphism with π(x) = T . Then
π|A is maximal.

Proof:
Let π be as above, and let Π : C∗(1, x) → B(K) be a unital *-homomorpism
with H ⊂ K, such that PHΠ|H |A = π|A. By Sarason’s Lemma (Lemma 3.1.21),
the space H is semi-invariant for Π. Therefore, there exist closed subspaces

58



3.2 The Lattice of C∗-covers

M ⊆ L ⊆ K with L⊖M = H, such that both M and L are invariant under Π|A.
Since the C*-algebra C∗(1, x2, x3) ⊂ A, the subspaces M and L already reduce
Π|C∗(1,x2,x3).
We write Π(x) as a matrix with respect to the orthogonal decomposition K =
M ⊕H ⊕ (K ⊖ L):

Π(x) =

T1,1 T1,2 T1,3
0 T T2,3
0 0 T3,3


Now, we can compute Π(x3) in three different ways. First, since x3 ∈ C∗(1, x2, x3),
M and L reduce Π, and we have

Π(x3) =

T
3
1,1 0 0
0 T 3 0
0 0 T 3

3,3

 ,
On the other hand, using Π(x3) = Π(x)Π(x2) and the fact that x2 ∈ C∗(1, x2, x3),
we obtain:

Π(x3)) =

T1,1 T1,2 T1,3
0 T T2,3
0 0 T3,3


T

2
1,1 0 0
0 T 2 0
0 0 T 2

3,3



=

T
3
1,1 T1,2T

2 T1,3T
2
3,3

0 T 3 T2,3T
2
3,3

0 0 T 3
3,3.


Comparing with the first expression for Π(x3), we find T1,2T

2 = 0. Since T is
invertible by assumption, it follows T1,2 = 0.
Similarly, using Π(x3) = Π(x2)Π(x), we compute:

Π(x3) =

T
2
1,1 0 0
0 T 2 0
0 0 T 2

3,3


T1,1 T1,2 T1,3

0 T T2,3
0 0 T3,3



=

T
3
1,1 T 2

1,1T1,2 T 2
1,1T1,3

0 T 3 T 2T2,3
0 0 T 3

3,3.


Comparing with the first expression again, we see that T2,3 = 0. This shows that
H is reducing for Π, and thus π is maximal. □

Theorem 3.2.4: The C∗-envelope and the maximal C∗-algebra of A are both given
by C∗(1, x), with the identity embedding. However, A is non-selfadjoint.

Proof:
It is clear that (C∗

max(A), imax) is given by (C∗(1, x), id), since every contractive
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operator T ∈ B(H) defines a u.c.c. homomorphism π : A → B(H), x 7→ T . By
Remark 3.2.2 every u.c.c. homomorphism π : A → B(H) is uniquely determined
by the contraction π(x), and thus extends uniquely to a ∗-homomorphism of the
universal C*-algebra C∗(1, x).
Let ι : A → C∗

e (A) be the embedding of A into its C*-envelope, and let σ :
C∗(1, x) → C∗

e (A) be the unique morphism of C*-covers of A satisfying σ|A = ι.
For any 1 ≤ n ∈ N, any invertible contraction T ∈ Mn determines a maximal
representation of A by Theorem Theorem 3.2.3, and hence the ∗-homomorphism
C∗(1, x) → Mn, x 7→ T , factors through σ. Since the invertible contractions are
dense in the set of all contractions in Mn with respect to the operator norm,
such homomorphisms C∗(x) → Mn are in particular point ∗-SOT dense in all
homomorphisms C∗(x) → Mn. By Lemma Lemma 3.2.1, it follows that every
∗-homomorphism C∗(x) → Mn factors through σ. Because C∗(1, x) is RFD, the
set of finite-dimensional representations norms C∗(1, x), and so σ is isometric.
It remains to show that A is non-selfadjoint. Since u.c.c. homomorphisms on
selfadjoint operator algebras have the unique extension property, and therefore
are maximal, it suffices to show that there exist at least one u.c.c. homomorphism
on A that is not maximal. Consider the following u.c.c. homomorphisms π : A →
C, x 7→ 0 and

ψ : A → M2, x 7→
(

0 1
0 0

)
.

Since ψ((x∗)2) = ψ((x∗)3) = 0, the subspace C ⊕ 0 is invariant under ψ. The
compression of ψ onto C ⊕ 0=̃C yields π. This shows that π is not maximal, and
hence A is non-selfadjoint. □

3.2.2 No Two-Point Lattice
To study operator algebras with more than one equivalence class of C∗-covers, we
employ Sarason’s lemma in combination with Kaznelson’s lemma. We illustrate
the technique with the following example.
Example 3.2.5: Let π : A(D) → C∗(S) be the completely isometric representation
that sends the generator f to the unilateral shift S. A maximal dilation of this
representation sends f to the Sz. Nagy dilation of S, i. e., to a unitary

U =
(
S I − SS∗

0 S∗

)
.

The process in Lemma Theorem 3.1.22 applied to this dilation (note that because
U extends S, we can take H1 = 0 in Sarason’s Lemma) corresponds to the family
of completely isometric representations of A(D) that send z to

Vz =
(
S z(I − SS∗)
0 S∗

)
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for z ∈ D. We will see that for |z| ≠ |w|, the representations determined by Vz and
Vw generate C*-covers that are not even comparable in the ordering of C*-covers,
unless |z| = 1 or |w| = 1.

Suppose that there is a morphism of C*-covers π : C∗(Vz) → C∗(Vw), meaning
a (unital) ∗-homomorphism that satisfies π(Vz) = Vw. We have

V ∗
z Vz =

(
I 0
0 |z|2(I − SS∗) + SS∗

)
=
(
I 0
0 I − SS∗

)
+ |z|2

(
0 0
0 SS∗

)
.

Since the two matrices on the right-hand-side are orthogonal projections summing
to the identity, the spectrum is

σ(V ∗
z Vz) = {|z|2, 1}.

Similarly, σ(V ∗
wVw) = {|w|2, 1}. Since a ∗-homomorphism shrinks spectra, we have

σ(V ∗
wVw) = σ(π(V ∗

z Vz)) ⊆ σ(V ∗
z Vz),

and so {|w|2, 1} ⊆ {|z|2, 1}. Therefore, we must have |w| = |z|–in which case Vz

and Vw are unitarily equivalent, or else |w| = 1–in which case C∗(Vw) = C∗(U) is
the C*-envelope.

Example 3.2.5 demonstrates that even though the definiton of f(z) in Theo-
rem 3.1.22 is a nice point-SOT continuous map, the resulting C*-covers produced
along the path from z = 0 to z = 1 can be “badly discontinuous". In Example 3.2.5,
the C*-covers produced start from f(0), which generates the Toeplitz algebra, end
at f(1) giving the C*-envelope, but along the way the representations f(z) for
0 ≤ z < 1 are all mutually incomparable in the ordering of the C*-cover lattice.

Example 3.2.6: Now, consider the completely isometric representation π : A(D) →
C(D) given by inclusion. This is the universal C*-algebra generated by a normal
contraction f ∈ C(D) with f(z) = z. A maximal dilation to a unitary is given by
the Schaeffer dilation

f 7→ U :=



. . .
0 1

0
√

1 − |f |2 −f
0 f

√
1 − |f |2 0

0 1
0 1

. . .


∈ C(D, B(ℓ2))
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For z ∈ D, the dilation produced by the process in Theorem 3.1.22 sends the
generator f ∈ A(D) to

f 7→ Vz :=



. . .
0 1

0 z
√

1 − |f |2 −z2f

0 f z
√

1 − |f |2 0
0 1

0 1
. . .


It is straightforward to check that when |z| ̸= 0 and |z| ̸= 1, the operator Vz

is not normal. Therefore, even though C∗(V0) = C(D), and C∗(V1) = C(T),
for z ∈ (0, 1), none of the C*-covers C∗(Vz) sit between C(D) and C(T) in the
ordering of C*-covers.

It is time to show that every operator algebra with more than one equivalence
class of C∗-covers already has uncountably many such classes. For this, we
introduce the following notation. For an operator algebra A in a C∗-algebra A,
the universal property of the maximal C∗-cover guarantees that for every u.c.c.
homomorphism π : A → B(H) there exists a unique unital *-homomorphism,
denoted by π∗ : C∗

max(A) → B(H), such that π∗ ◦ imax = π.

Theorem 3.2.7: Let A be an operator algebra with |C∗-Lat(A)| ̸= 1. Then
|C∗-Lat(A)| is at least that of the continuum c.

Proof:
Let A be as above. Since (C∗

max(A), imax) ̸= (C∗
e (A), ie), the map imax is not

maximal. Let Φ be a maximal dilation of imax, and let

Φ =

π1 ϕ1,2 ϕ1,3
0 imax ϕ2,3
0 0 π3


be the decomposition from Sarason’s Lemma (Lemma 3.1.21), and let f(z) the
family of u.c.c. homomorphisms from Theorem 3.1.22. The ideal2

I =
⋂

{ker(ρ∗); ρ : A → B(H) u.c.c. and maximal}

is not trivial since A has more than one C*-cover. Thus, there exists a x ∈ I with
x ̸= 0. By construction, Φ = f(1) is maximal, hence

f(1)∗(x) = Φ∗(x) = 0.
2This ideal is actually the Shilov ideal of A seen as a subalgebra of C∗

max(A). For more
information about the Shilov ideal, we refer to [5]
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On the other hand, i∗max is an isometric representation of C∗
max(A), so ker(i∗max) =

{0}. Since f(0) is a trivial dilation of imax, we have

f(0)∗(x) ̸= 0.

We now show that for every y ∈ C∗
max(A), the function

δy : D → R, z 7→ ∥f(z)∗(y)∥

is continuous. It is clear that δy is continuous for every y ∈ imax(A), and since
f(z)∗ is a *-homomorphism, δy is continuous for every y in the ∗-algebra generated
by imax(A). By contractivity of f(z)∗ and the triangle inequality, we have

|δy(z) − δy(ω)| ≤ 2∥y − v∥ + |δv(z) − δv(ω)|

for every y, v ∈ C∗
max(A). Hence, δy is continuous for every y ∈ C∗

max(A).
Thus, for every s ∈ [0, ∥f(0)∗(x)∥], there exists a zs ∈ [0, 1] such that ∥f(zs)∗(x)∥ =
s. Define is = ie ⊕ f(zs) and let C∗(is(A)) = C∗

s (A). It remains to show that the
C*-covers (C∗

s (A), is) are pairwise non-equivalent.
Suppose there exists a *-isomorphism ρ : C∗

s (A) → C∗
t (A) such that it = ρ ◦ is on

A. Since x ∈ ker(i∗e) and ρ ◦ i∗s = (ρ ◦ is)∗, comparing the norms of the image of x
in both C*-cover yields:

s = ∥(ie ⊕ f(zs))∗(x)∥ = ∥i∗s(x)∥ = ∥ρ ◦ i∗s(x)∥
= ∥(ρ ◦ is)∗(x)∥ = ∥i∗t (x)∥ = ∥(ie ⊕ f(zt))∗(x)∥
= ∥f(zt)∗(x)∥ = t.

Therefore, (C∗
s (A), is) ̸∼= (C∗

t (A), it) for every s ̸= t in [0, ∥f(0)∗(x)∥]. □

Corollary 3.2.8: If the operator algebra in the previous theorem is separable, then
the cardinality of the set of C∗-covers is c.

Proof:
We already know that the cardinality is at least c. To see that it is not larger,
note that every C*-cover corresponds to a norm-closed ideal in Cmax(A). Since
A is separable, so is C∗

max(A). Hence, C∗
max(A) is a second-countable space with

respect to the norm topology. It is well known that the cardinality of the set of
closed sets in a secound-countable space is at most c. Indeed, let (Un)n∈N be a
basis for the norm topology. Then,

P(N) → {U ⊂ C∗
max(A); U open}, F 7→

⋃
n∈F

Un

is surjective, and therefore the cardinality of open sets in C∗
max(A) is at most c.

Since the closed sets are precisely the complements of open sets, we obtain that
also the cardinality of closed sets is at most c. □
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Chapter 3 The Lattice of C∗-covers

3.3 Semi-Dirichlet C*-covers
The following argument answers [40, Question 3.13], which asks when C∗

max(A) is
a semi-Dirichlet C*-cover.

Theorem 3.3.1: If A is a non-selfadjoint, semi-Dirichlet operator algebra, then
C∗

max(A) is not a semi-Dirichlet C*-cover.

Proof:
By contradiction, assume that [C∗

max(A), ιmax] is semi-Dirichlet. Suppose ρ : A →
B(H) is any completely contractive representation. By universality, there exists
π : C∗

max(A) → C∗(ρ(A)) such that π · ιmax = ρ. Then ρ must be a semi-Dirichlet
representation:

ρ(a)∗ρ(b) = π(ιmax(a)∗ιmax(b))

= π
(

lim
n→∞

ιmax(cn) + ιmax(dn)∗
)

= lim
n→∞

ρ(cn) + ρ(dn)∗ .

We will see that it is impossible that all representations are semi-Dirichlet.
Now, by [41, Proposition 3.4], since A is non-selfadjoint, there exists a non-
maximal, completely contractive representation φ : A → B(H). Non-maximality
implies that φ either extends or coextends non-trivially by Sarason’s Lemma (see
Lemma 3.1.21).
First, assume that φ extends non-trivially to a completely contractive representa-
tion Φ : A → B(K) with K = H ⊕H⊥ and block structure

Φ =
[
φ Φ12
0 Φ22

]

where Φ12 ̸= 0. Define Φ′ : A → B(K)

Φ′ =
[
φ 1

2Φ12
0 Φ22

]
.

Both Φ and Φ′ are semi-Dirichlet representations by assumption.
Now, there exists a ∈ A such that Φ12(a) ̸= 0. By the semi-Dirichlet property for
ιmax there exist bn ∈ A such that

ιmax(a)∗ιmax(a) = lim
n→∞

ιmax(bn) + ιmax(bn)∗ .

By universality, there exists ∗-homomorphisms π, π′ : C∗
max(A) → B(K) such that

π ◦ ιmax = Φ and π′ ◦ ιmax = Φ′. Following the argument at the start of this proof,

Φ(a)∗Φ(a) = lim
n→∞

Φ(bn) + Φ(bn)∗, and

Φ′(a)∗Φ′(a) = lim
n→∞

Φ′(bn) + Φ′(bn)∗ .
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3.4 RFD C∗-Covers

But this implies that[
φ(a)∗φ(a) φ(a)∗Φ12(a)

Φ12(a)∗φ(a) Φ12(a)∗Φ12(a) + Φ22(a)∗Φ22(a)

]

= lim
n→∞

[
φ(bn) + φ(bn)∗ Φ12(bn)

Φ12(bn)∗ Φ22(bn) + Φ22(bn)∗

]

and [
φ(a)∗φ(a) 1

2φ(a)∗Φ12(a)
1
2Φ12(a)∗φ(a) 1

4Φ12(a)∗Φ12(a) + Φ22(a)∗Φ22(a)

]

= lim
n→∞

[
φ(bn) + φ(bn)∗ 1

2Φ12(bn)
1
2Φ12(bn)∗ Φ22(bn) + Φ22(bn)∗

]
.

Looking at the (2,2)-entries of both equations we see that 3
4Φ12(a)∗Φ12(a) = 0 and

so Φ12(a) = 0, a contradiction.
Essentially the same argument works in the case that φ has a nontrivial coexten-
sion, in which case the operator matrices involved are lower triangular, so we will
omit those details.
Therefore, both Φ and Φ′ cannot be semi-Dirichlet representations which implies
that [C∗

max(A), ιmax] is not a semi-Dirichlet C*-cover. □

Corollary 3.3.2: If A is a non-selfadjoint, semi-Dirichlet operator algebra, then it
has an infinite lattice of C*-covers.

Proof:
By definition [C∗

e (A), ιe] is a semi-Dirichlet C∗-cover and [C∗
max(A), ιmax] is not a

semi-Dirichlet C∗-cover. Since there are two points in the lattice then there are
infinitely many by Theorem 3.2.7. □

3.4 RFD C∗-Covers
We conclude this chapter with the existence of a RFD operator algebra A such
that

{[(A, i)]; (A, i) RFD C∗-cover of A},

equipped with the order induced by C∗-Lat(A), is not a lattice. The main idea
behind the proof is to construct two C∗-covers for which the finite-dimensional
representations admit a good characterization. This is achieved via an infinite
product of matrix algebras Mn for increasing numbers n.
Let us begin with the construction of the operator algebra and the RFD C∗-covers.
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Chapter 3 The Lattice of C∗-covers

Let (en)n be the standard orthonormal basis of ℓ2(N). For (i, j) ∈ N2, denote by
Ei,j the operator in B(ℓ2(N)) defined by Ei,j(en) = δj,nei for all n ∈ N. Let A be
the operator algebra obtained as the norm closure of the algebra generated by
{Ei,j, j ≥ i} and idℓ2(N). Thus, every element in A can be written as a sum of a
compact upper triangular operator and λidℓ2(N) for some λ ∈ C.
Furthermore, for m ∈ N, define the projection Pm : ℓ2(N) → Cm+1, (x)n 7→
(x0, . . . , xm). These projections induce u.c.c. homomorphisms on A via

πm+1 : A → B(Cm+1), x 7→ PmxP
∗
m.

We now define three representations of A:

i0 =
⊕
n∈N

πn,

i1 =
⊕
n∈N

π2n+1,

i2 =
⊕
n∈N

π2n.

Let

B = C∗(i0(A)) ⊂
∏
n∈N

Mn+1 ⊂ B(
⊕
n∈N

Cn+1),

B1 = C∗(i1(A)) ⊂
∏
n∈N

M2n+1 ⊂ B(
⊕
n∈N

C2n+1),

B2 = C∗(i2(A)) ⊂
∏
n∈N

M2n+2 ⊂ B(
⊕
n∈N

C2n+2).

The first thing to check is that these are indeed RFD C∗-covers.

Proposition 3.4.1: The pairs (B, i0), (B1, i1) and (B2, i2) are RFD C∗-covers of
A.

Proof:
For every m ∈ N,

Hm =
(

m+1⊕
k=1

Ck

)
⊕

∞⊕
k=m+1

0

is a reducing subspace for B, and thus induces a finite-dimensional representation
of B by compression. Hence, B is a RFD C∗-algebra, since

∥a∥ = sup
m∈N

∥PHma|Hm∥

for all a ∈ B. To see that (B, i) is a C∗-cover of A, note that for all a ∈ A,

∥a∥ = sup
n∈N

∥πn(a)∥ = ∥i0(a)∥,
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3.4 RFD C∗-Covers

as the πn are compressions to an increasing sequence of finite-dimensional Hilbert
spaces whose union is dense in ℓ2(N). For a ∈ Mm(A) ⊂ B(ℓ2(N)m), the same
argument applies, yielding

∥a∥ = sup
n∈N

∥πn(a)∥ = ∥i0(a)∥.

In the same way, one shows that (B1, i1) and (B2, i2) are RFD C∗-covers. □
The C∗-cover (B, i) is only needed in the following lemma and serves as a tool for
the subsequent corollary.

Lemma 3.4.2: For every N ∈ N, it holds that
n∏

i=1
Mi ×

∞∏
i=n+1

{0} ⊂ B.

Proof:
For n ∈ N and (i, j) ∈ N2, let E(n)

i,j denote the element in B whose n-th entry is
PnEi,jP

∗
n and is 0 elsewhere. Then

i0(E0,0) − i0(E0,1)i0(E0,1)∗ = E
(0)
0,0 ∈ B.

Hence,
M1 ×

∞∏
i=2

{0} ⊂ B.

Assume inductively that
m∏

i=1
Mi ×

∞∏
i=m+1

{0} ⊂ B.

for some fixed 1 ≤ m ∈ N. For 0 ≤ k ≤ m, we then have

i0(Ek,k) − i0(Ek,m+1)i0(Ek,m+1)∗ =
m∑

i=k

E
(i)
k,k.

The induction hypothesis guarantees that E(i)
k,k ∈ B for 1 ≤ i ≤ m− 1 and k ∈ N,

hence E(m)
k,k ∈ B for all 0 ≤ k ≤ m. Moreover, for 1 ≤ i ≤ j ≤ m, we have

E
(m)
i,j = E

(m)
i,i i0(Ei,j)E(m)

j,j ∈ B,

and since (E(m)
i,j )∗ = E

(m)
j,i ∈ B, it follows that

m+1∏
i=1

Mi ×
∞∏

i=m+2
{0} ⊂ B.

The lemma then follows by induction. □
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Chapter 3 The Lattice of C∗-covers

Corollary 3.4.3: For every 1 ≤ n ∈ N, it holds that
n∏

i=1
M2i−1 ×

∞∏
i=2n

{0} ⊂ B1

n∏
i=1

M2i ×
∞∏

i=2n+1
{0} ⊂ B2.

Proof:
For m ∈ N, define Hm = {0} if m is odd, and Hm = C2m if m is even. Set
H = ⊕

m∈NHm. It is clear that H is a reducing subspace for B. Identifying H
with ⊕m∈N C2m yields a unital ∗-homomorphism

σ : B → B2, a 7→ PHa|H

which satisfies σ(i(a)) = i2(a) for all a ∈ A. By the previous lemma, we conclude
for all 1 ≤ n ∈ N that

n∏
i=1

M2i ×
∞∏

i=2n

{0} = σ

 2n∏
i=1

Mi ×
∞∏

i=2n+1
{0}

 ⊂ B2.

The claim for B1 follows analogously. □

Theorem 3.4.4: Let ρ : B1 → Ml be a unital *-homomorphism. Then there exists
odd numbers a1, . . . , am and a unitary operator U : Cl → ⊕m

k=1 Cak such that

ρ = U∗(⊕m
k=1idak

)U,

where idak
: B1 → Mak

, (x2n)n 7→ xak
.

Proof:
Let E(2n+1)

i,j be the element in B1 with P2n+1Ei,jP2n+1 in the (2n+ 1)-th entry and
0 elsewhere. For each odd n ∈ N, the algebra Jn, generated by

{E(n)
i,j , (i, j) ∈ N2},

is a closed two-sided ideal in B1. By Lemma 3.1.16, the subspace Hn = ρ(Jn)(Cl)
is reducing for ρ. Since ρ is a finite-dimensional representation, there exist only
finitely many n1, . . . , nm̃ such that Hni

̸= 0. Furthermore, Lemma 3.1.16 implies
that the compression of ρ to Hni

is uniquely determined by its action on Jni
.

Identifying Jni
=̃Mni

, we find unitary operators Ui such that the compression of
ρ to Hni

is a direct sum of identity representations of Mni
. Letting U = ⊕m̃

i=1Ui

and H = (⊕m̃
i=1Hni

)⊥, we obtain

ρ = (U∗(⊕m
k=1idak

)U) ⊕ PHρ|H
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3.4 RFD C∗-Covers

for some m ∈ N and odd integers a1, . . . , am ∈ N. It remains to show that
ρ0 = PHρ|H = 0. For this, it suffices to show that ρ0(i1(Ei,j)) = 0 for all
i ≤ j ∈ N.
Fix i ∈ N. The elements i1(En,n) are orthogonal projections in B1, hence only
finitely many ρ0(i1(En,n)) are nonzero. Thus, there exists an odd m ∈ N such
that ρ0(i1(Em,m)) = 0 and i ≤ m. If i is odd, then

ρ0(i1(Ei,i)) = ρ0(i1(Ei,i)) − ρ0(i1(Ei,m))ρ0(i1(Em,m))ρ0(i1(Ei,m)∗)
= ρ0(i1(Ei,i) − i1(Ei,m)i1(Em,m)i1(Ei,m)∗)
= ρ0(i1(Ei,i) − i1(Ei,m)i1(Ei,m)∗)

= ρ0

 (m−1)/2∑
k=(i+1)/2

E
(2k−1)
i,i

 = 0,

since ρ0(Jn) = 0 for all n ∈ N. If i is even, then

ρ0(i1(Ei,i)) = ρ0(i1(Ei,i) − i1(Ei,m)i1(Ei,m)∗)

= ρ0

 (m−1)/2∑
k=(i+2)/2

E
(2k−1)
i,i

 = 0.

Hence, ρ0(i1(Ei,i)) = 0, and since i1(Ei,j) = i1(Ei,i)i1(Ei,j), it follows that
ρ0(i1(Ei,j)) = 0 for i ≤ j. This completes the proof. □

We obtain a similar result for B2 with an analogous proof.

Theorem 3.4.5: Let ρ : B2 → Ml be a unital *-homomorphism. Then there exist
even numbers b1, . . . , bm and a unitary operator U : Cl → ⊕m

k=1 Cbk such that

ρ = U∗ ⊕m
k=1 idbk

U ⊕ ρ0,

where idbk
: B2 → Mbk

, (x2n)n 7→ xbk
, and ρ0 is a unital *-homomorphism such

that ρ0(i2(Ei,j)) = 0 for all i ≤ j.

Theorem 3.4.6: The pair of RFD C∗-covers (B1, i1) and (B2, i2) has no meet in
the partially ordered set of RFD C∗-covers.

Proof:
Let (C, ic) be a C*-cover such that C ≤ B1 and C ≤ B2. We will show that there
exists no unital ∗-homomorphism ρ : C → Mn for any 1 ≤ n ∈ N.
Assume to the contrary that such homomorphism exists. Then, there are unital
∗-homomorphisms ρ1 : B1 → Mn and ρ2 : B2 → Mn such that

ρ ◦ ic = ρ1 ◦ i1 = ρ2 ◦ i2.
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Chapter 3 The Lattice of C∗-covers

By the two previous theorems, we obtain decompositions

ρ1 = U∗
1 (⊕m1

k=1idak
)U1,

ρ2 = U∗
2 (⊕m2

k=1idbk
)U2,

where each ak odd numbers, bk even numbers, and U1, U2 unitary operators.
Let ap be the smallest of the a1, . . . , am1 , and let k = |{n; an = ap}|. Assume
that ap < bn for all 1 ≤ n ≤ m2. Then,

m2 = dim(ρ2(i2(E1,1))(Cn)) = dim(ρ1(i1(E1,1))(Cn)) = m1,

m2 − k = dim(ρ2(i2(Eap+1,ap+1))((Cn)) = dim(ρ1(i1(Eap+1,ap+1))(Cn)) = m2.

This leads to the contradiction k = 0.
If there is a n such that bn ≤ ap, then the smallest bp satisfies bp < ap (since the
bn are even and the an are odd). In this case, we argue analogously using bp in
place of ap.
Therefore, C has no finite-dimensional representation and hence is not RFD. □
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Chapter 4

Hyperrigidity

This chapter is devoted entirely to Arveson’s Hyperrigidity Conjecture. Although
it was already introduced in the preliminaries of Chapter 3, we will recall the
conjecture here and provide a detailed background on the known partial results
in the case of commutative C∗-algebras. It should be noted that there are many
more papers about the conjecture concerning the case of operator systems in
non-commutative C∗-algebras.
The starting point for the original definition of a hyperrigid operator system was
a result by Korovkin. In [47], he showed that if a sequence of positive linear maps
ϕn : C([0, 1]) → C([0, 1]) satisfies

lim
n→∞

∥ϕn(f) − f∥ = 0

for all f ∈ span(1, t, t2), then

lim
n→∞

∥ϕn(f) − f∥ = 0

also holds for all f ∈ C([0, 1]). In [8], Arveson defined a separable operator
system S, generating a C∗-algebra A, to be hyperrigid if, for every faithful
representation A ⊂ B(H) on a Hilbert space H and every sequence of u.c.p. maps
ϕn : B(H) → B(H), n ∈ N, we have the implication

lim
n→∞

∥ϕn(a) − a∥ = 0 for all a ∈ S ⇒ lim
n→∞

∥ϕ(a) − a∥ = 0 for all a ∈ A. (4.1)

In [8, Theorem 2.1], Arveson showed that the above definition is equivalent to the
one given in Chapter 3, namely that every restriction of a unital ∗-homomorphism
on A has the unique extension property. One of his goals in that paper was to
find good criteria implying hyperrigidity. He proved hyperrigidity of some basic
examples using dilation theory and conjectured in [8, Conjecture 4.3] that

Conjecture (Arveson): Let S be a separable operator system generating a C∗-
algebra A. If the restriction of every irreducible representation of A to S has the
unique extension property, then S is hyperrigid.
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He showed that the conjecture holds if A has a countable spectrum and also
proved a local version of it. He also proved that operator systems generated by
1, t, f in C([0, 1]) satisfy the assumption of his conjecture if and only if f is strictly
convex or strictly concave. Although he did not formally state it as a theorem,
he mentioned in the introduction that an inequality by Petz [56] can be used to
deduce that span(1, t, f) is hyperrigid for operator convex functions f . His paper
concludes with a proof of a local version of the Hyperrigidity Conjecture which,
up to today, remains the strongest known result for general operator systems in
commutative C∗-algebras.
Eight years later, in 2015, Kleski published his work [46] about operator systems
in Type I C∗-algebras. He obtained a result about u.c.p. maps with range A′′, the
bicommutant of A, and showed that a u.c.p. map is maximal if and only if every
sequence of u.c.p. maps that converges pointwise in the weak operator topology
also converges pointwise in the strong operator topology.
One year later, Brown [14] showed that the operator systems span(1, t, f) ⊂
C([0, 1]) considered by Arveson are hyperrigid for all strictly convex functions
f . His approach was to separate two disjoint intervals in [0, 1] with a linear
combination of 1, t, f , and then use the fact that convex functions have left and
right derivatives to establish certain upper and lower bounds for the separating
function.
The next major contribution came in 2021, when Kennedy and Davidson published
their work [22]. They tried to generalize the Choquet order to what they called
the dilation order, and obtained a generalization of a theorem by Saskin [22,
Theorm 5.3]. Of particular importance for us is that they were the first to shift
perspective away from abstract operator systems: instead, they used the fact that
every operator system in a commutative C∗-algebra is completely order isomorphic
to the space of continuous affine functions on a compact convex set, and worked
directly with the convex set.
In 2024, a remarkable paper by Bilich and Dor-On [10] demonstrated that Arve-
son’s Hyperrigidity Conjecture is false, using a relatively simple operator system
in a non-commutative Type I C∗-algebra.

In this chapter, we combine the ideas of Kennedy and Davidson, approaching
operator systems in terms of compact convex sets, with those of Brown, separating
disjoint sets by functions in the operator system. The one-sided derivatives in
Brown’s approach will be translated into supporting hyperplanes, and the upper
and lower bounds will be linked to geometric properties of the compact convex
set. This will lead to the main result of this chapter:
Theorem: Let K ⊂ R2 be a non-empty compact convex set. Then the continuous
affine functions A(K) ⊂ C(ex(K)) are hyperrigid.
We conclude the chapter with Bilich and Dor-On’s counter example, followed by
a new counter example that differs by being generated by finitely many elements.
We begin with the basics concepts necessary to understand the proofs.
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4.1 Preliminaries

4.1 Preliminaries
If not further specified, K is a non-empty compact convex subset of R2 such that
0 ∈ Int(K). This is not really a big restriction since Int(K) = ∅ implies that K is
a line segment, and ex(K) contains either one or two points, and if Int(K) ̸= ∅,
there is a translation T : R2 → R2 such that 0 ∈ Int(T (K)).
We begin with a well-known fact: the extreme points of K are closed. Therefore,
C(ex(K)) is a C∗-algebra, and we may view A(K) as an operator system within
C(ex(K)).

Proposition 4.1.1: For every non-empty compact convex set K ⊂ R2, the set of
extreme points ex(K) is closed, and ∂K is a rectifiable curve.

Proof:
Let x ∈ ex(K), and assume there exist w ̸= z ∈ K such that

x ∈ {tw + (1 − t)z; t ∈ (0, 1)}.

Since ex(K) ⊂ ∂K, it follows that x ∈ ∂K. Denote by [w : z] the unique line
through w and z, and let H1 and H2 be the two closed half spaces bounded by
[w : z]. We claim that for i = 1, 2, there exist points zi ∈ (R2 \Hi) ∩ ex(K).
To construct z1, choose z1 ∈ ex(K) such that |x− z1| < min(|x− z|, |w − z|) = δ.
This z1 cannot lie on [w : z], because

[w : z] ∩Bδ(x) ⊂ {tw + (1 − t)z; t ∈ (0, 1)} ⊂ K \ ex(K).

By change of notation, we may assume z1 ∈ R2 \ H1. For the second point,
choose ϵ > 0 such that Bϵ(x) ∩ H2 ⊂ conv(w, z, z1). Then, select z2 ∈ ex(K)
with |x − z2| < ϵ. This z2 is not in H2, otherwise it would be in the interior of
conv(w, z, z1).
It now follows that x ∈ Int(conv(w, z, z1, z2)), contradicting the assumption that
x ∈ ex(K).
The fact that ∂K is rectifiable can be found in [63]. □

Next, we parametrize ∂K. Before doing so, we collect some well-known facts
about convex functions and their one-sided derivatives. Parts of the following
lemma and its proof can be found in [19] and other classical books on convex
analysis.

Lemma 4.1.2: Let I ⊂ R be an open interval, and let f : I → R be a convex
function. Then:

(i) The Secant lemma holds for all a < x < b ∈ I:

f(x) − f(a)
x− a

≤ f(b) − f(a)
b− a

≤ f(b) − f(x)
b− x

.
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(ii) The right-hand derivative f ′
+(t) and left-hand derivative f ′

−(t) exist for every
t ∈ I.

(iii) f is continuous.
(iv) f ′

+ is right-continuous and f ′
− is left-continuous.

(v) lim
s→t,s<t∈I

f ′
+(s) = f ′

−(t) and lim
s→t,s>t∈I

f ′
−(s) = f ′

+(t).

Proof:
Let I and f be as above, and a < x < b ∈ I. Then λ = b−x

b−a
∈ (0, 1) and by

convexity of f , f(x) ≤ λf(a) + (1 − λ)f(b). This implies that

f(x) − f(a) ≤ (1 − λ)(f(b) − f(a))

and dividing both sides by x− a = (1 − λ)(b− a) yields

f(x) − f(a)
x− a

≤ f(b) − f(a)
b− a

.

The second inequality of part (i) follows analogously.
Part (ii) follows directly from the Secant Lemma, since

f(x) − f(a)
x− a

is monotone decreasing as x → a from above, and is bounded below by

f(z) − f(a)
z − a

for some z < a ∈ I with z ∈ I. Such a z exists because I is open. This implies
the existence of f ′

+(a), and a similar argument shows the existence of f ′
−(a).

With the existence of the one-sided derivatives, we can conclude that

lim
x→a,x>a

f(x) − f(a) = lim
x→a,x>a

(x− a)f(x) − f(a)
x− a

lim
x→a,x>a

(x− a)f ′
+(a) = 0

and similarly,

lim
x→a,x<a

f(x) − f(a) = lim
x→a,x<a

(x− a)f(x) − f(a)
x− a

lim
x→a,x>a

(x− a)f ′
−(a) = 0.

Therefore, f is continuous.
For part (iv), let ϵ > 0 and let (sn)n be a sequence in I such that sn → t ∈ I with
t < sn. Let s̃ ∈ I such that

0 ≤ f(s) − f(t)
s− t

− f ′
+(t) < ϵ
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for every t < s ≤ s̃. From the Secant Lemma, we conclude that

0 ≤ lim sup
n→∞

f ′
+(sn)−f ′

+(t) ≤ lim sup
n→∞

f(sn) − f(s̃)
sn − s̃

−f ′
+(t) = f(t) − f(s̃)

t− s̃
−f ′

+(t) < ϵ,

where we also used the continuity of f from part (iii). Therefore, f ′
+ is right-

continuous. A similar argument shows that f ′
− is left-continuous.

For part (v), let sn < t with sn → t. The Secant Lemma implies that

f ′
−(a) ≤ f ′

+(a) ≤ f ′
−(b)

for a < b ∈ I. Using the left-continuity of f ′
−, we obtain

lim
n→∞

f ′
−(sn) = lim

n→∞
f ′

+(sn) = f ′
−(t).

The second statement in part (v) follows analogously. □

To define the parametrization, we also need the Minkowski functional fK of
K, defined by

fK : R2 → R, x 7→ inf{r ∈ R; r > 0 and x ∈ rK}.

Note that this function is well-defined since, by assumption, 0 ∈ Int(K). The
following properties of fK are well knwon.

Proposition 4.1.3: The Minkowski functional fK is convex, continuous, and non-
negative homogeneous.

Proof:
First, note that x ∈ fK(x)K for all x ∈ R2, since K is closed. Let x, y ∈ R2,
t ∈ [0, 1], and let 0 < r1, r2 ∈ R be such that x ∈ r1K and y ∈ r2K. Then, since
K is convex,

tr1

tr1 + (1 − t)r2
x/r1 + (1 − t)r2

tr1 + (1 − t)r2
y/r2 ∈ K,

which implies
tx+ (1 − t)y ∈ (tr1 + (1 − t)r2)K.

Taking the infimum over all such r1, r2 yields the inequality

fK(tx+ (1 − t)y) ≤ tfK(x) + (1 − t)fK(y),

thus proving the convexity of fK .
Next, let 0 < t ∈ R and x ∈ R2. Then,

fK(tx) = inf{r ∈ R; r > 0 and tx ∈ rK}
= inf{r ∈ R; r > 0 and x ∈ r/tK}
= inf{r/t ∈ R; r > 0 and tx ∈ rK} = fK(x)/t,
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which shows nonnegative homogeneity.
Finally, since 0 ∈ Int(K), there exists s > 0 such that Bs(0) ⊂ K. Then, for any
x ∈ R2, we have s

∥x∥x ∈ K, so

fK(x) ≤ ∥x∥
s
,

which implies that fK is continuous in 0. For general x, y ∈ R2, we can use
convexity and nonnegative homogeneity to conclude:

fK(x) ≤ 1/2fK(2(x− y)) + 1/2fK(2y) = fK(x− y) + fK(y),

thus,
|fK(x) − fK(y)| ≤ max{fK(x− y), fK(y − x)},

and so the continuity of fK follows form its continuity at 0. □

The Minkowski functional allows us to define the polar parameterization of the
boundary of K as

p : R → ∂K, t 7→ (cos(t), sin(t))
fK((cos(t), sin(t))) .

It is clear that this is a 2π-periodic function. In the following lemma, we show
that p shares properties similar to those established in Lemma 4.1.2.
Throughout this chapter, we identify R2 with C to improve the readability of
our arguments. However, we emphasize that the canonical scalar product we use
remains R-linear and R-valued.

Lemma 4.1.4: The following statements hold:

(i) The left- and right-hand derivatives p′
−(·) and p′

+(·) exist.
(ii) p′

− is left-continuous and p′
+ is right-continuous.

(iii) lim
s→t,s<t

p′
+(s) = p′

−(t) and lim
s→t,s>t

p′
−(s) = p′

+(t).

Proof:
We begin by proving the lemma for the restriction of p to the interval I = (−π

2 ,
π
2 ).

Define h(t) = 1/ cos(t). Then the function

p̃(t) = fK(h(t)eit) = fK(1 + i tan(t)) = fK(1 + i(·)) ◦ tan(t)

is the composition of the convex function fK(1 + i(·)) with the strictly increasing,
continuously differentiable function tan(·). From Lemma 4.1.2, we know that
fK(1 + i(·)) satisfies properties (ii), (iv) and (v) from Lemma 4.1.2, and hence p̃

76



4.1 Preliminaries

also inherits these properties.
Using the nonnegative homogeneity of fK , we observe that

h(a)fK(eia) − fK(eis)
a− s

− p̃(a) − p̃(s)
a− s

= h(a)(fK(eia) − fK(eis)) − fK(h(a)eia) + fK(h(s)eis)
a− s

= fK(eis)h(s) − h(a)
a− s

for all a ∈ I, showing that fK(ei·) is both right- and left-differentiable at a with

f ′
K+(eia) = 1

h(a)(p̃′
+(a) − fK(eia)h′(a))

f ′
K−(eia) = 1

h(a)(p̃′
−(a) − fK(eia)h′(a)).

Therefore, fK has properties (ii) and (iii) from Lemma 4.1.2, and we can immedi-
ately conclude that p, when restricted to (−π

2 ,
π
2 ), satisfies properties (1), (2) and

(3).
To complete the proof, we repeat the same argument on the following intervals:

• I = (0, π) with h(t) = 1/ sin(t),
• I = (−π, 0) with h(t) = −1/ sin(t),
• I = (π

2 ,
3π
2 ) with h(t) = −1/ cos(t).

□

Example 4.1.5: Let K be the unit disc. Then the polar parametrization is simply
given by

p(t) = (cos(t), sin(t)).

The derivative is, of course, p′(t) = (− sin(t), cos(t)). Figure 4.1 visualizes the
boundary ∂K as well as the vectors p′(0) and p′(π). It should be noted at this
point that the direction of the vectors p′(t) will become important later on.

For t ∈ R, we define the subderivatives by

∂−
p(t) = {p(t) + sp′

−(t), s ∈ R}; ∂+
p(t) = {p(t) + sp′

+(t); s ∈ R}.

In the next theorem, we will show that both ∂−
p(t) and ∂+

p(t) define supporting
hyperplanes. Recall that a supporting hyperplane of K is a hyperplane that
contains a boundary point of K and such that K is entirely contained in one of
the two closed half-spaces it determines.
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Figure 4.1: ∂D with p′(0) and p′(π)

Example 4.1.6: Let K be the convex hull of the points {1,−1, i,−i}. Then the
polar parametrization p is given by

p(t) = (0, 1) + 1
1 + tan(t)(1,−1)

on the interval (0, π
2 ), and

p(t) = (1, 0) + 1
1 − tan(t)(1, 1)

on the interval (3π
2 , 2π). Therefore,

p′
+(0) = (−1, 1), p′

−(0) = (1, 1),

and

∂+
p(0) = {(0, 1) + s(−1, 1); s ∈ R},
∂−

p(0) = {(0, 1) + s(1, 1); s ∈ R}.

For better visualization, this example is illustrated in Figure 4.2.

Theorem 4.1.7: For every x ∈ ∂K, the lines ∂−
x and ∂+

x are supporting hyperplanes
of K.

Proof:
We begin by verifying that ∂−

x and ∂+
x are indeed hyperplanes and not just points.

It suffices to show that p′
−(t) ̸= 0 and p′

+(t) ̸= 0.
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Figure 4.2: An example of ∂K with ∂+
p(0) and ∂−

p(0)

Recall from the proof of Lemma 4.1.4 that fK(ei·) is differentiable from both left
and the right. From this, we can derive the following inequality:

lim
s→t,s<t

∣∣∣∣∣p(t) − p(s)
t− s

∣∣∣∣∣ = lim
s→t,s<t

1
fK(eis)fK(eit)

∣∣∣∣∣fK(eis)eit − fK(eit)eis

t− s

∣∣∣∣∣
= 1
fK(eit)2 lim

s→t,s<t

∣∣∣∣∣fK(eis)eit − fK(eis)eis + fK(eis)eis − fK(eit)eis)
t− s

∣∣∣∣∣
= 1
fK(eit)2 lim

s→t,s<t

∣∣∣∣∣fK(eis)e
it − eis

t− s
+ eisfK(eis) − fK(eit)

t− s

∣∣∣∣∣
= 1
fK(eit)2

∣∣∣ieitfK(eit) + eitfK(ei·)′
−(t)

∣∣∣
= 1
fK(eit)2

∣∣∣ifK(eit) + fK(ei·)′
−(t)

∣∣∣
≥ 1
fK(eit) > 0.

An analogous estimate shows that |p′
+(t)| ≥ 1

fK(eit)2 |ifK(eit) + fK(ei·)′
+(t)| ≥

1
fK(eit) > 0. Hence, both derivatives are nonzero, and ∂−

x , ∂+
x are indeed hyper-

planes.

We now prove that these hyperplanes are supporting hyperplanes of K. Let
x = p(t) ∈ ∂K with t ∈ [0, 2π), and let (tn)n be a sequence in (0, 2π) such that
tn → t and tn > t. The line through the points p(t) and p(tn) divides R2 into two
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closed half planes:

Hn
1 =

{
z ∈ R2;

〈
z − p(t), i(p(t) − p(tn))

t− tn

〉
≥ 0

}
,

Hn
2 =

{
z ∈ R2;

〈
z − p(t), i(p(t) − p(tn))

t− tn

〉
≤ 0

}
.

By the continuity of the polar parameterization, we know that

{p(s); s ∈ [0, 2π) \ (t, tn)}

is entirely contained in either Hn
1 or Hn

2 . By the pigeonhole principle, for each n
we may assume (after possibly passing to a subsequence) that

p([0, 2π) \ (t, tn)) ⊂ Hn
i

for some fixed i ∈ {1, 2}. On the other hand, the two closed half spaces bounded
by ∂+

x are given by

H̃1 = {z ∈ R2; ⟨z − p(t), ip′
+(t)⟩ ≥ 0},

H̃2 = {z ∈ R2; ⟨z − p(t), ip′
+(t)⟩ ≤ 0}.

Since p′
+(t) = limn→∞

p(t)−p(tn)
t−tn

, either H̃1 or H̃2 contains

{p(s); s ∈ [0, 2π)}.

Therefore, ∂+
x is a supporting hyperplane. An analogous argument shows that ∂−

x

is also a supporting hyperplane. □

Remark 4.1.8: If there is only one supporting hyperplane ∂x at a point x ∈ ∂K,
then Theorem 4.1.7 implies that

∂+
x = ∂−

x = ∂x.

In particular, let [a, b] = I ⊂ [0, 2π) be such that {p(t); t ∈ [a, b]} lies entirely
in a face of K. Then for every s ∈ (a, b), there exists exactly one supporting
hyperplane at p(s), namely the line through p(a) and p(b), which we denote by
[p(a) : p(b)]. Hence,

∂+
p(s) = ∂−

p(s) = [p(a) : p(b)]
for all s ∈ (a, b). Furthermore, by Lemma 4.1.4, we also obtain

∂+
p(a) = [p(a) : p(b)] = ∂−

p(b).
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The next step is to define a function ∢(·, ·) : [0, 2π]2 → [0, π] that measures
the angle between two subderivatives. To do this, we introduce the following
two notational conventions. For three distinct points x, y, z ∈ R2, we denote
by △(x, y, z) the triangle with vertices x, y, z, and by ∠(x, y, z) the angle at the
vertex y.
Now define for s ≤ t,

∢(s, t) =



0 if ∂+
p(s) ∩ ∂−

p(t) = ∅
π if ∂+

p(s) = ∂−
p(t)

cos−1
(

⟨p′
−(t),−p′

+(s)⟩
|p′

−(t)||p′
+(s)|

)
if ∂+

p(s) ∩ ∂−
p(t) = {z} and

{p(l); l ∈ [s, t]} ⊂ △(p(s), z, p(t))
0 otherwise.

For s > t, we set ∢(s, t) = ∢(t, s). Note that in the third case, we have

∢(s, t) = ∠(p(s), z, p(t)) (4.2)

for s ̸= t.

Remark 4.1.9: A careful reader might wonder why ∠(p(s), z, p(t)) is not given by

cos−1
(

⟨p′
−(t), p′

+(s)⟩
|p′

−(t)||p′
+(s)|

)
.

To justify Eq. (4.2), it suffices to show that for every t ∈ [0, 2π), the set K lies
to the left of the line {p(t) + sp′

−(t); s ∈ R}, respectively {p(t) + sp′
+(t); s ∈ R}.

Since 0 ∈ Int(K), this follows directly from

⟨0 − p(t), ip′
+(t)⟩ = lim

n→∞,tn>t

〈
−p(t), ip(t) − p(tn)

t− tn

〉

= lim
n→∞,tn>t

1
fK(eit)fK(eitn)(t− tn)⟨(cos(t), sin(t)), (− sin(tn), cos(tn))⟩

= lim
n→∞,tn>t

−1
fK(eit)fK(eitn)(tn − t)(− cos(t) sin(tn) + sin(t) cos(tn)) ≥ 0,

where the last inequality holds for t ̸= π/2 and t ̸= 3/2π, and for tn sufficiently
close to t, due to

sin(t)
cos(t) = tan(t) ≤ tan(tn) = sin(tn)

cos(tn) ,

and sin(t) cos(tn) ≤ 0 for t = π/2 or t = 3/2π.
A similar computation shows that ⟨0 − p(t), ip′

−(t)⟩ ≥ 0.

Lemma 4.1.10: Let (sn), (tn) be sequences in [0, 2π] such that sn, tn → t and
sn < t < tn. Then:
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(i) limn→∞ ∢(sn, tn) = ∢(t, t).

If t ≤ sn < tn and sn, tn → t, then:

(i) limn→∞ ∢(sn, tn) = π.

If tn < sn ≤ t and sn, tn → t, then:

(i) limn→∞ ∢(tn, sn) = π,

Proof:
We first show that for every x ∈ R, there exists ϵ > 0 such that for all s < t ∈ Bϵ(x),
either ∂+

p(s) = ∂−
p(t) or ∂+

p(s) ∩ ∂−
p(t) = {z} and

{p(l); l ∈ [s, t]} ⊂ △(p(s), z, p(t)).

Assume the contrary. Then for every n ∈ N, there exists sn < tn ∈ B1/n(x) such
that either ∂+

p(sn) ∩ ∂−
p(tn) = ∅ or ∂+

p(sn) ∩ ∂−
p(tn) = {zn} and

∂K \ {p(l); l ∈ [sn, tn]} ⊂ △(p(sn), zn, p(tn)).

In the first case, K lies between the two parallel lines ∂+
p(sn) and ∂−

p(tn). In the
second case, we get

{p(t); t ∈ [x− π, x+ π] \ (sn, tn)} ⊂ △(p(sn), zn, p(tn)).

Since sn, tn → x and p is continuous, this contradicts the assumption that
0 ∈ Int(K).
The lemma now follows from Eq. (4.2) and Lemma 4.1.4. □

Lemma 4.1.11: Let a < b ∈ [0, 2π) and ϵ > 0. Then there exists points a = t0 <
t1 < · · · < tm = b such that

∢(tn, tn+1) ≥ π − ϵ.

Proof:
First, we prove that the set

{x ∈ (a, b); ∢(x, x) ≤ π − ϵ}

contains only finitely many points s1 < s2 < · · · < sk. Assume otherwise. Then,
for every n, we could construct a convex polygon with n vertices, each of which
has angle strictly less than π − ϵ. But the sum of the internal angles of such a
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polygon is (n− 2)π, which contradicts the assumption for sufficiently large n.
Let s0 = a, sk+1 = b. We now show that there exists δ > 0 such that

∢(x, y) ≥ π − ϵ

for all x, y ∈ [sn, sn+1], n = 0, . . . , k, with |x − y| < δ. If this were not the case,
then there would exist m ∈ {0, . . . , k} and sequences xn < yn ∈ [sm, sm+1] such
that |xn − yn| < 1/n and

∢(xn, yn) ≤ π − ϵ.

Without loss of generality, assume that (xn)n and (yn)n both converge to some
z ∈ [sm, sm+1]. Then by Lemma 4.1.10, we either have

lim
n→∞

∢(xn, yn) = π

if z ≤ xn or yn ≤ z, or
lim

n→∞
∢(xn, yn) = ∢(z, z)

if xn < z < yn. but in this case, ∢(z, z) > π − ϵ by the choice of the points
s1, . . . , sk, contradicting the assumption ∢(xn, yn) ≤ π − ϵ.
Thus, we obtain the desired partition as a refinement of s0 < · · · < sk+1. □

The final technique we introduce in the preliminaries will be used in the construc-
tion of our counterexample to Arveson’s Hyperrigidity Conjecture and is taken
from [2]. It determines the optimal constant by which a rank-one operator must
be scaled to be bounded above by a multiplication operator.

Theorem 4.1.12: Let K ⊂ Rd be compact for some 1 ≤ d ∈ N, and let µ be
a probability measure on K. Then, for every function g ∈ L2(K,µ) and every
positive function f ∈ L∞(K,µ), we have:

inf{c ≥ 0; Pg ≤ cMf} =
�

K

|g|2

f
dµ,

where Pg denotes the rank-one operator defined by Pg(·) = ⟨·, g⟩g.

Proof:
Let K, g, f, µ be as above, and let h ∈ L2(K,µ). Then:

⟨Pg(h), h⟩ =
∣∣∣∣∣
�

K

hḡdµ

∣∣∣∣∣
2

=
∣∣∣∣∣
�

K

f 1/2hḡf−1/2dµ

∣∣∣∣∣
2

= ⟨f 1/2h, gf−1/2⟩2

≤ ∥f 1/2h∥2∥gf−1/2∥2

= ⟨Mfh, h⟩
�

K

|g|2

f
dµ.
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This proves ≤ in the statement.
For the reverse inequality ≥, let h = f−1g. Then all the inequalities in the chain
above become equalities, and the result follows. □

This result has a particular elegant analog in the setting of matrices.

Theorem 4.1.13: Let 1 ≤ n ∈ N, and let A ∈ Mn be a positive, invertible matrix
and P ∈ Mn a projection. Then,

tr(PA−1) ≤ 1

if and only if P ≤ A.

Proof:
Let A and P be as above. Then A ≥ P if and only if

id ≥ A−1/2PA−1/2.

Since P is a projection, A−1/2PA−1/2 is a rank-one operator. Thus, the inequality
holds if and only if the (unique) non-zero eigenvalue of A−1/2PA−1/2 is less than
or equal to one. Since the trace equals the sum of the eigenvalues, we conclude
that A ≥ P if and only if

tr(PA−1) = tr(A−1/2PA−1/2) ≤ 1.

□

4.2 Hyperrigidity of A(K)
Let K ⊂ R2 be compact and convex. If Int(K) = ∅, then K is merely a line
segment, and thus A(K) = C(ex(K)). In this case, A(K) is trivially hyperrigid
in C(ex(K)).
Now consider the case where x ∈ Int(K). Define K̃ = {y − x; y ∈ K}, and
consider the map

j : C(ex(K)) → C(ex(K̃)), f 7→ f(· + x),

where we do not need to take the closure of ex(K), since the set of extreme points
of a compact convex subset of R2 is always closed by Proposition 4.1.1. It is
clear that j is a unital *-isomorphism mapping A(K) onto A(K̃). Therefore,
showing that A(K) is hyperrigid in C(ex(K)) is equivalent to proving that A(K̃)
is hyperrigid in C(ex(K̃)). Since 0 ∈ Int(K̃) by construction, we will henceforth
assume that 0 ∈ Int(K), allowing us to use the polar parametrization p.
Let H be a Hilbert space, π : C(ex(K)) → B(H) a unital *-homomorphism, and
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ϕ : C(ex(K)) → B(H) be a u.c.p. map such that π = ϕ on A(K). For Borel sets
F ⊂ R2, define

ϕ(χF ) = µ(F ∩ ex(K)),
π(χF ) = ν(F ∩ ex(K)),

where µ and ν denote the positive operator-valued measure corresponding to ϕ
and π.
We now briefly outline the strategy behind the proof of the main theorem of this
chapter. As in Brown’s approach, we aim to show that

π(χp(I))ϕ(χp(J)) = 0

for all disjoint closed intervals I, J ⊂ [0, 2π). Form this, it wont be too far to
see that π = ϕ. To show the above equality, we will cover I with finitely many
disjoint intervals Ii, small enough so that we may apply [14, Corollary 1.2]. For
convenience, we restate that corollary here:

Lemma 4.2.1: Let H = H1 ⊕ . . . , Hn be a direct sum of Hilbert spaces, A a positive
operator on H and Pi the orthogonal projection onto Hi. Then

∥A∥ ≤
n∑

i=1
∥PiAPi∥.

In our context, we let A = π(χp(I))ϕ(χp(J))π(χp(I)) and Hi = π(χp(Ii))(H), where
(Ii)n

i=1 is a finite family of disjoint Borel subsets such that I = ⋃n
i=1 Ii. Then the

lemma gives:

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤
n∑

i=1
∥π(χp(Ii))ϕ(χp(J))π(χp(Ii))∥.

It thus suffices to estimate the individual terms on the right-hand side. Dropping
the index i for simplicity, let f ∈ A(K) be such that χp(J) ≤ f . Then the positivity
of ϕ implies

π(χp(I))ϕ(χp(J))π(χp(I)) ≤ π(χp(I))ϕ(f)π(χp(I)) = π(fχp(I)). (4.3)

Our next goal is to construct such a function f . Let I = [a, b] ⊂ [0, 2π) with a < b,
and define gI to be the unique composition of a translation and a rotation such
that

Im(g(p(a))) = Im(g(p(b))) = 0, Re(g(p(a))) < Re(g(p(b))) = 0,

and assume that
infp(J)|Im(gI)| > 0.
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Then the function
g̃I = Im(gI) + ∥Im(gI)∥p(I),∞

infp(J)|Im(gI)|
is an affine function which, when used in Eq. (4.3), yields the estimate

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤
∥Im(gI)∥p(I),∞

infp(J)|Im(gI)| ,

since π(Im(gI)χp(I)) ≤ 0.
Therefore, we establish an upper bound for ∥Im(gI)∥p(I),∞ in Section 4.2.1 and a
lower bound for infp(J)|Im(gI)| in Section 4.2.2.

4.2.1 The upper bound for ∥Im(gI)∥p(I),∞

Figure 4.3: An illustration for the proof of Lemma 4.2.2

Lemma 4.2.2: Let I = [a, b], J ⊂ [0, 2π) be closed disjoint intervals with a < b.
Then for every ϵ > 0, there exists a partition a = t0 < t1 < · · · < tm = b such that

∥Im(g[tn,tn+1])∥p([tn,tn+1]),∞ ≤ ϵ|p(tn) − p(tn+1)|

for every n = 0, . . . ,m− 1.

The idea of the proof is illustrated in Figure 4.3.

Proof:
Let π/2 > ϵ > 0. By Lemma 4.1.2, there exists a partition a = t0 < t1 < · · · <
tm = b such that

∢(tn, tn+1) ≥ π − ϵ
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for every 0 ≤ n ≤ m − 1. Fix such an n. For clarity, write g = g[tn,tn+1] and
In = [tn, tn+1]. If ∂+

p(tn) = ∂−
p(tn+1), then ∥Im(g)∥p(In),∞ = 0. Thus, we may assume

that ∂+
p(tn) ∩ ∂−

p(tn+1) = {z} for some z ∈ R2.
By the definition of ∢(·, ·) and our choice of the partition, we have

p(In) ⊂ △(p(tn), z, p(tn+1)),

and hence
∥Im(g)∥p(In),∞ ≤ |Im(g(z))|.

Moreover, since
∢(tn, tn+1) ≥ π − ϵ > π/2,

we conclude that ∠(p(tn+1), p(tn), z) < π/2 and ∠(z, p(tn+1), p(tn)) < π/2. This
implies

Re(g(p(tn+1))) ≤ Re(g(z)) ≤ Re(g(p(tn))).
Putting everything together and applying elementary geometry, we obtain

∥Im(g)∥p(In),∞

|p(tn) − p(tn+1)|
= ∥Im(g)∥p(In),∞

|Re(g(p(tn))) − Re(g(p(tn+1)))|

≤ |Im(g(z))|
|Re(g(p(tn))) − Re(g(z))|

= tan(∠(g(p(tn+1)), g(p(tn)), g(z))
= tan(∠(p(tn+1), p(tn), z)
≤ tan(π − ∢(tn, tn+1)) ≤ tan(ϵ).

Thus, the lemma follows by choosing ϵ sufficiently small. □

4.2.2 The lower bound for infp(J)|Im(gI)|
For two sets A,B ⊂ R2, we define the distance between A and B as

dist(A,B) = inf{|x− y|; x ∈ A, y ∈ B}.

Lemma 4.2.3: Let I, J be closed, disjoint intervals in [0, 2π), and I = [α, β] with
α < β. Then

infp(J)|Im(gI)| = dist(gI(J),R × {0}) ≥ dist(p(J), ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)]),

where [p(α) : p(β)] denotes the hyperplane through p(α) and p(β).

Proof:
First observe that

infp(J)|Im(gI)| = inf{|x− gI(y)|; x ∈ R × {0}, y ∈ p(J)}
= dist(gI(p(J)),R × {0}).

(4.4)
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Now, note that gI([p(α) : p(β)]) = R × {0}, since gI(p(α)), gI(p(β)) ∈ R × {0} by
construction of gI . Furthermore, since gI is a composition of a translation and a
rotation, it preserves Euclidean distances:

|gI(x) − gI(y)| = |x− y| for all x, y ∈ R2.

Combining these observations with Eq. (4.4) yields

infp(J)|Im(gI)| = dist(gI(J),R × {0}) ≥ dist(p(J), [p(α) : p(β)]),

which obviously implies the claim. □

The following lemma and its proof are visualized in Figure 4.4. The lemma is

Figure 4.4: ∂D with α = 9/8π, a = 11/8π, b = 13/8π and β = 15/8π. The
hyperplanes ∂+

p(α), ∂
−
p(β) and [p(α) : p(β)] are solid, ∂+

p(a), ∂
−
p(b) and

[p(a) : p(b)] are dashed. The set p(J) is given by the dotted line.

geometrically intuitive, but the rigorous argument is more involved.
Before proceeding to the proof, we highlight a key geometric fact the reader should
keep in mind: if α < β ∈ [0, 2π), and a supporting hyperplane contains both p(α)
and p(β), then either p([α, β]) or p([0, 2π) \ (α, β)) is contained in a face of K.

Lemma 4.2.4: Let I = [α, β] and J ⊂ [0, 2π) be disjoint closed intervals and
[a, b] ⊂ I ⊂ [0, 2π) with a < b. Then

dist(p(J), ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)]) ≤ dist(p(J), ∂+
p(a) ∪ ∂−

p(b) ∪ [p(a) : p(b)]).

Proof:
First, note that if p([0, 2π) \ (α, β)) ⊂ [p(α) : p(β)], then

dist(p(J), ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)]) = 0
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4.2 Hyperrigidity of A(K)

and there is nothing to prove. While this case may seem trivial, we will need to
exclude it later in our arguments.
So assume that p([0, 2π)\(α, β)) is not be contained in [p(α) : p(β)]. The following
construction, illustrated in Figure 4.4, will guide us. The hyperplanes ∂+

p(α) and
∂−

p(β) divide R2 into up to four convex sets. One of these sets contains K and is,
as established in Remark 4.1.9, given by:

H = {z ∈ R2; ⟨z − p(β), ip′
−(β)⟩ ≥ 0, ⟨z − p(α), ip′

+(α)⟩ ≥ 0}.

Moreover, the hyperplane [p(α) : p(β)] further subdivides H into two closed convex
sets:

H1 = H ∩ {z ∈ R2; ⟨z − p(α), i(p(β) − p(α))⟩ ≥ 0},
H2 = H ∩ {z ∈ R2; ⟨z − p(α), i(p(β) − p(α))⟩ ≤ 0}.

Similarly to Remark 4.1.9, one can show that p(J) ⊂ H1 and p([α, β]) ⊂ H2. Let
us quickly argue why it suffices to show that

(∂+
p(a) ∪ ∂−

p(b) ∪ [p(a) : p(b)]) ∩ Int(H1) = ∅. (4.5)

AssumeEq. (4.5) holds, but the lemma is false. Then there exists z ∈ ∂+
p(a) ∪∂−

p(b) ∪
[p(a) : p(b)] and t ∈ J such that

∥p(t) − z∥ < dist(p(J), ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)]).

This inequality together with Eq. (4.5) and the observation ∂H1 ⊂ ∂+
p(α) ∪ ∂−

p(β) ∪
[p(α) : p(β)], imply that z /∈ H1, and therefore we either have

⟨z − p(β), ip′
−(β)⟩ < 0

or
⟨z − p(α), ip′

+(α)⟩ < 0
or

⟨z − p(α), i(p(β) − p(α)) < 0.
Since p(t) ∈ p(J) ⊂ H1, in each of the three cases above, there exists an s ∈ [0, 1]
such that the convex combination sz + (1 − s)p(t) lies on either ∂+

p(α), ∂
−
p(β), or

[p(α) : p(β)]. This leads to the contradiction:

∥p(t) − z∥ < dist(p(J), ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)])
≤ ∥p(t) − (sz + (1 − s)p(t))∥ = s∥(p(t) − z)∥,

which is impossible since z /∈ ∂+
p(α) ∪ ∂−

p(β) ∪ [p(α) : p(β)] and therefore s < 1.
It remains to verify Eq. (4.5). Suppose there exists z in the left-hand side of
Eq. (4.5). Then, since z ∈ Int(H1), we have:

⟨z − p(α), i(p(β) − p(α))⟩ > 0,
⟨z − p(α), ip′

+(α)⟩ > 0,
⟨z − p(β), ip′

−(β)⟩ > 0.
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Furthermore, since p([a, b]) ⊂ p([α, β]) ⊂ H2, we also have:

⟨p(a) − p(α), i(p(β) − p(α))⟩ ≤ 0,
⟨p(b) − p(α), i(p(β) − p(α))⟩ ≤ 0.

Thus, there exists a point w ∈ {tz + (1 − t)p(a); t ∈ [0, 1]} such that

⟨ω − p(α), i(p(β) − p(α))⟩ = 0.

We also know that w ∈ H ∩ [p(α) : p(β)], since both z and p(a) lie in H.
Next, we show that ω ∈ {tp(α) + (1 − t)p(β); t ∈ (0, 1)}. Let s ∈ R such that
w = sp(α) + (1 − s)p(β), and observe that

0 ≤ ⟨w − p(α), ip′
+(α)⟩ = (1 − s)⟨p(β) − p(α), ip′

+(α)⟩

and similarly,

0 ≤ ⟨w − p(β), ip′
−(β)⟩ = s⟨p(α) − p(β), ip′

−(β)⟩.

Hence, it suffices to show that

⟨p(β) − p(α), ip′
+(α)⟩ > 0 and

⟨p(α) − p(β), ip′
−(β)⟩ > 0.

Assume the contrary. Then either

⟨p(β) − p(α), ip′
+(α)⟩ = 0 or

⟨p(α) − p(β), ip′
−(β)⟩ = 0.

Since p(β), p(α) ∈ H, it follows that both are contained in either ∂+
p(α) or

∂−
p(β). According to the note preceding the lemma, we must then have either
p([α, β]) ⊂ [p(α) : p(β)] or p([0, 2π) \ (α, β)) ⊂ [p(α) : p(β)].
The first case implies that ∂+

p(a) = ∂−
p(b) = [p(a) : p(b)] = [p(α) : p(β)] by

Remark 4.1.8, contradicting the existence of the point z. The second case con-
tradicts our initial assumption, namely that p([0, 2π) \ (α, β)) is not contained in
[p(α) : p(β)].
Thus, there exists s ∈ (0, 1) such that ω = sp(α) + (1 − s)p(β). We now conclude
the proof via a case distinction:
(1) If z ∈ ∂+

p(a), then, since z ∈ Int(H1), we must have ∂+
p(a) ̸= [p(α) : p(β)].

Moreover, we saw that w ∈ {tz + (1 − t)p(a); t ∈ [0, 1]} ⊂ ∂+
p(a) and hence

⟨w − p(a), ip′
+(a)⟩ = 0.

But, since ∂+
p(a) ̸= [p(α) : p(β)], we have

⟨p(α) − p(a), ip′
+(a)⟩ > 0 or ⟨p(β) − p(a), ip′

+(a)⟩ > 0,

90



4.2 Hyperrigidity of A(K)

and it follows that

0 = ⟨w − p(a), ip′
+(a)⟩ = s⟨p(α) − p(a), ip′

+(a)⟩ + (1 − s)⟨p(β) − p(a), ip′
+(a)⟩,

which implies that p(α) and p(β) lie on opposite sides of the supporting hyperplane
∂+

p(a), contradicting the fact that ∂+
p(a) is a supporting hyperplane.

(2) If z ∈ ∂−
p(b), we argue analogously by considering ω̃ ∈ {tz+(1−t)p(b); t ∈ [0, 1]}

such that
⟨ω̃ − p(α), i(p(α) − p(β))⟩ = 0,

and repeat the argument as above with ω̃ instead of ω.
(3) If z ∈ [p(a) : p(b)], then w ∈ [p(a) : p(b)]. Analogously to Remark 4.1.9, we
observe that

⟨p(α) − p(a), i(p(b) − p(a))⟩ ≥ 0,
⟨p(β) − p(a), i(p(b) − p(a))⟩ ≥ 0.

Thus,

0 = ⟨ω − p(a), i(p(b) − p(a))⟩
= s⟨p(α) − p(a), i(p(b) − p(a))⟩ + (1 − s)⟨p(β) − p(a), i(p(b) − p(a))⟩

implies that p(α), p(β) ∈ [p(a) : p(b)] and hence [p(a) : p(b)] = [p(α) : p(β)],
contradicting z ∈ Int(H1).
Thus, we have shown Eq. (4.5), and the lemma is proven. □

4.2.3 Hyperrigidity of A(K)
Let us briefly recall the setting from the beginning of this section. Let K ⊂ R2 be
compact and convex with 0 ∈ Int(K), and let p denote its polar parametrization.
For two disjoint closed intervals [a, b] = I, J ⊂ [0, 2π) with a < b, the map gI was
defined as the unique composition of a rotation and a translation such that

Im(gI(p(a))) = Im(gI(p(b))) = 0 and Re(gI(p(a))) < Re(gI(p(b))) = 0.

In addition, we defined the affine function

g̃I = Im(gI) + ∥Im(gI)∥p(I),∞

infp(J) |Im(gI)| ,

whenever infp(J) |Im(gI)| > 0.
If φ is a u.c.p. map on C(K), we defined φ(χF ) = µ(K ∩ F ), where µ is the
positive operator-valued measure corresponding to φ.
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Lemma 4.2.5: Let K be as above, and let π : C(ex(K)) → B(H) be a unital
*-homomorphism, and ϕ : C(ex(K)) → B(H) a u.c.p. map. If x ∈ ex(K) and
F ⊂ ex(K) \ {x} is Borel, then

π(χ{x})ϕ(χF )π(χ{x}) = 0.

Proof:
Let x ∈ ex(K), E = ex(K)\{x}, and let H̃ = π(χ{x})(H). Assume that π(χ{x}) ̸=
0. Then the map PH̃π|H̃ is a direct sum of copies of the point evaluation ex :
C(ex(K)) → C, and therefore has the unique extension property by Lemma 3.1.12.
It follows that

PH̃ϕ|H̃ = PH̃π|H̃ on C(ex(K)).
Let µ be the positive operator-valued measure corresponding to ϕ. Then PH̃µ|H̃ is
the positive operator-valued measure corresponding to PH̃ϕ|H̃ , and by the previous
identity, it equals the scalar valued measure δxidH̃ . Thus:

π(χ{x})ϕ(χ{x})π(χ{x}) = PH̃

and
π(χ{x})ϕ(χE)π(χ{x}) = PH̃ − π(χ{x})ϕ(χ{x})π(χ{x}) = 0.

Now for arbitrary Borel F ⊂ E, we have:

0 ≤ π(χ{x})ϕ(χF )π(χ{x}) ≤ π(χ{x})ϕ(χE)π(χ{x}) = 0,

and hence the claim follows. □

Theorem 4.2.6: Let K be as above, π : C(ex(K)) → B(H) a unital *-homomorphism,
and ϕ : C(ex(K)) → B(H) a u.c.p. map such that π = ϕ on A(K). Let
I, J ⊂ [0, 2π) be disjoint closed intervals. Then

π(χp(I))ϕ(χp(J))π(χp(I)) = 0.

Proof:
The case where I is a singleton has already been treated in Lemma 4.2.5. Hence,
we assume that I = [a, b] with a < b, and fix ϵ > 0. By Lemma 4.2.2, there exists
a partition a = t0 < t1 < · · · < tm = b such that

∥Im(g[tn,tn+1])∥[tn,tn+1],∞ ≤ ϵ|p(tn) − p(tn+1)| (4.6)

for every n = 0, . . . ,m− 1. Denote [tn, tn+1] = In.
As discussed at the beginning of Section 4.2, we have:

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤ ∥π(χp([t0,t1]))ϕ(χp(J))π(χp([t0,t1]))∥+
m−1∑
n=1

∥π(χp((tn,tn+1]))ϕ(χp(J))π(χp((tn,tn+1]))∥.
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In turn, for each n, the terms satisfy

∥π(χp((tn,tn+1]))ϕ(χp(J))π(χp((tn,tn+1]))∥ ≤ ∥π(χp(In))ϕ(χp(J))π(χp(In))∥.

Therefore,

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤
m−1∑
n=0

∥π(χp(In))ϕ(χp(J))π(χp(In))∥.

As shown earlier, we also have:

π(χp(In))ϕ(χp(J))π(χp(In)) ≤ ∥Im(gIn)∥In,∞

infp(J) |Im(gIn)|idH ,

provided infp(J) |Im(gIn)| > 0.
The next step is a case distinction based on the value

c = dist(p(J), ∂+
p(a) ∪ ∂−

p(b) ∪ [p(a) : p(b)]).

Case 1:
Assume that c > 0. By Lemma 4.2.3 and Lemma 4.2.4, we know that

infJ |Im(gIn)| ≥ c for all n = 0, . . . ,m− 1. (4.7)

Thus, the inequalities together with Eq. (4.6) yield

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤
m−1∑
n=0

ϵ

c
|p(tn) − p(tn+1)|. (4.8)

However, the boundary of a compact convex set has finite length by Proposi-
tion 4.1.1. Let L denote the length of ∂K. Then we conclude that

∥π(χp(I))ϕ(χp(J))π(χp(I))∥ ≤ ϵ
L

c
.

Since c and L are independent of ϵ, we obtain the claim in this case.

Case 2:
Assume that c = 0. Define

Ĩ = conv{t ∈ [0, 2π); p(t) ∈ p(I) ∩ ex(K)} ⊂ I.

The definition of Ĩ yields that ex(K) ∩ p(I \ Ĩ) = ∅. Thus, the theorem follows
immediately from Lemma 4.2.5 if Ĩ = ∅ or Ĩ is a singleton. So assume Ĩ = [ã, b̃]
with ã < b̃ ∈ [0, 2π). Note that p(ã), p(b̃) ∈ ex(K) by definition of Ĩ.
Choose N ∈ N such that ã+ 1/N < b̃− 1/N , and define intervals

Ĩn = [ã+ 1/n, b̃− 1/n] for n ≥ N.
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We claim that

dist(p(J), ∂+
p(ã+1/n) ∪ ∂−

p(b̃−1/n) ∪ [p(ã+ 1/n) : p(b̃− 1/n)]) > 0

for every n ≥ N . Otherwise, there would exist a point t ∈ J such that either
p(ã+1/n) and p(t) or p(b̃−1/n) and p(t) lie on a common face of K, contradicting
p(ã), p(b̃) ∈ ex(K).
Hence, Case 1 applies to each Ĩn, and we obtain

π(χp(Ĩn))ϕ(χp(J))π(χp(Ĩn)) = 0 for all n ≥ N.

Since π(χp(Ĩn)) →SOT π(χp((ã,b̃))), we also obtain

π(χp((ã,b̃)))ϕ(χp(J))π(χp((ã,b̃))) = 0.

Now I splits into
I = {ã} ∪ {b̃} ∪ (ã, b̃) ∪ (I \ Ĩ).

Note that π(χp(I\Ĩ)) = 0, since ex(K) ∩ (I \ Ĩ) = ∅, and

π(χ{p(ã)})ϕ(χ{p(J)})π(χ{p(ã)}) = 0

respectively,
π(χ{p(b̃)})ϕ(χ{p(J)})π(χ{p(b̃)}) = 0,

due to Lemma 4.2.5. By applying Lemma 4.2.1 once again, we conclude that

π(χp(I))ϕ(χp(J))π(χp(I)) = 0.

□

Corollary 4.2.7: Under the assumptions of the preceding theorem,

π(χp(J)) = ϕ(χp(J)).

Proof:
First, note that, since

π(χp(J)) = ϕ(χp(J)) + ϕ(χp([0,2π)\J))π(χp(J)) − ϕ(χp(J))π(χp([0,2π)\J)),

it suffices to show that
ϕ(χp(J))π(χp([0,2π)\J)) = 0

and
ϕ(χp([0,2π)\J))π(χp(J)) = 0.
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Using the Schwarz inequality for u.c.p. maps, we get

0 ≤ (ϕ(χp(J))π(χp([0,2π)\J)))∗ϕ(χp(J))π(χp([0,2π)\J))
≤ π(χp([0,2π)\J))ϕ(χp(J))π(χp([0,2π)\J)),

0 ≤ (ϕ(χp([0,2π)\J))π(χp(J)))∗ϕ(χp([0,2π)\J))π(χp(J))
≤ π(χp(J))ϕ(χp([0,2π)\J))π(χp(J)).

Thus it suffices to show that the right-hand sides of the these inequalities are zero.
Let In ⊂ [0, 2π) \ J be an increasing sequence of sets, each being the union of at
most two closed intervals, such that ⋃n In = [0, 2π) \ J . Then

π(χp(In)) →SOT π(χp([0,2π)\J)),
ϕ(χp(In)) →W OT ϕ(χp([0,2π)\J))

By Theorem 4.2.6 and Lemma 4.2.1, it follows that

π(χp(J))ϕ(χp(In))π(χp(J)) = 0 and π(χp(In))ϕ(χp(J)π(χp(In)) = 0.

Taking the limit as n → ∞ yields

π(χp(J))ϕ(χp([0,2π)\J)π(χp(J)) = 0,
π(χp([0,2π)\J))ϕ(χp(J))π(χp([0,2π)\J)) = 0

and the corollary follows. □.

Theorem 4.2.8: Let K ⊂ R2 be a convex compact set. Then the operator system
A(K) is hyperrigid in C(ex(K)).

Proof:
In the discussion at the beginning of Section 4.2, we already saw that the theorem
holds if Int(K) = ∅, and that it suffices to prove the case where 0 ∈ Int(K).
Let π be a unital *-homomorphism and ϕ be a u.c.p. map such that π on A(K).
By Corollary 4.2.7, the set

E = {E ⊂ [0, 2π); E Borel , π(χp(E)) = ϕ(χp(E))}

contains all closed intervals. It is clear that E is closed under complements and
countable disjoint unions. Therefore, E is a Dynkin system. By the Dynkin’s π-λ
theorem, we conclude that π(χE) = ϕ(χE) for every Borel set E ⊂ ex(K), and
hence π = ϕ. □

To conclude the section, we present a notable application of the main theo-
rem, which generalizes the classical result that the weak and strong operator
topologies agree on the unitary operators.
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Corollary 4.2.9: For every compact convex K ⊂ R2 and Hilbert space H, the weak
and strong operator topologies coincide on the set

{T ∈ B(H); T normal and σ(T ) ⊂ ex(K)}.

Proof:
Let K and H be as above, and let Tn, T ∈ B(H) be normal operators with
σ(Tn), σ(T ) ⊂ ex(K), such that Tn → T in the weak operator topology. Define
unital *-homomorphims π, πn : C(ex(K)) → B(H) by πn(z) = Tn and π(z) = T .
Then, πn|A(K) → π|A(K) in the WOT. By Theorem 4.2.8, the restriction π|A(K) is
maximal. Thus, by [46, Lemma 2.1], it follows that πn → π in the strong operator
topology, completing the proof. □

4.3 Counterexamples
We close this chapter with two counterexample to Arveson’s Hyperrigidity Con-
jecture. We begin with the example provided in [10], which was the first known
counterexample.

4.3.1 Counterexample by Bilich and Dor-On
Let U ∈ B(ℓ2(Z)) be the unilateral shift, H = ℓ2(Z) ⊕ C, let (en)n∈Z be the
canonical orthonormal basis of ℓ2(N) ⊕ 0, and define e = 0 ⊕ 1 ∈ H.
For x, y ∈ H, we denote by Px,y the rank one operator given by

Px,y(z) = ⟨z, y⟩x.

Now define the operator
T = (U ⊕ 0) + Pe0,e,

which may be written in block matrix form as

T =
(
U Pe0,e

0 0

)
.

Let S denote the operator system generated by {T n, n ∈ N}. The first thing we
show is that C∗(S) ⊂ B(H) contains all compact operators. This allows us to use
Theorem 3.1.18.

Lemma 4.3.1: We have K(H) ⊂ C∗(S) and C∗(S)/K(H) is ∗-isomorphic to C(T).
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Proof:
We compute

TT ∗ − idH = Pe0,ePe,e0 − Pe = Pe0 − Pe.

Thus,

(TT ∗ − idH)2 − (TT ∗ − idH)
2 = Pe0 + Pe − Pe0 + Pe

2 = Pe ∈ C∗(S).

From here, we obtain for all n,m ∈ Z:

T nPe = Pen,e ∈ C∗(S)

and thus:
Pen,em = Pen,eP

∗
em,e ∈ C∗(S).

Since span({en; n ∈ Z} ∪ {e}) is dense in H, every rank-one operator Px,y can
be approximated in norm by a linear combination of the operators Pen,em . Thus,
Px,y ∈ C∗(S) for all x, y ∈ H.
We conclude that K(H) ⊂ C∗(S), since every finite-rank operator is a linear
combination of such Px,y, and the finite-rank operators are norm-dense in K(H).
Since T is a finite-rank perturbation of the unitary operator

(U ⊕ 0) + Pe = T − Pe0,e + Pe,

we see that the image of T in the Calkin algebra equals the image of (U ⊕ 0) +Pe,
and hence

C∗(S)/K(H) = C∗([(U ⊕ 0) + Pe]) ∼= C(T).
□

This places us in the setting of Theorem 3.1.18, and since

∥T + K(H)∥ ≤ 1 < ∥T∥,

we may also apply Arveson’s boundary theorem. It follows that the only irreducible
representations of C∗(S), up to unitary equivalence, are the identity representation
and the point evaluations

ez : C∗(S) → C, T 7→ z

for z ∈ T, and moreover, the identity map id : S → B(H) has the unique extension
property.
Thus, in order to contradict Arveson’s Hyperrigidity Conjecture, it suffices to show
that the restrictions of the point evaluations have the unique extension property
and that there exists a unital ∗-homomorphism on C∗(S) whose restriction to S
does not have the unique extension property.
To this end, we need the following technical lemma:
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Lemma 4.3.2: For any set I and any vector x = ⊕i∈Ixi ∈ ⊕
i∈I H, we have

lim
n→∞

⟨(⊕i∈IT
n)(x), x⟩ = 0

Proof:
Let I be a set, x = ⊕i∈Ixi ∈ ⊕

i∈I H, and fix ϵ > 0. Then there exists a finite
subset J ⊂ I such that ∑

i∈I\J

∥xi∥2 < ϵ.

Since

|⟨T n(x), x⟩| = |
∑
i∈I

⟨T n(xi), xi⟩|

≤ |
∑
i∈J

⟨T n(xi), xi⟩| +
∑

i∈I\J

∥T n∥∥xi∥2

< |
∑
i∈J

⟨T n(xi), xi⟩| + 2ϵ,

where we used the Cauchy-Schwarz inequality and the estimate ∥T n∥ = ∥(Un ⊕
0) + Pe,en∥ ≤ 2 for 1 ≤ n ∈ N, it suffices to show that (T n)n∈N → 0 in the weak
operator topology. But since T n = (Un ⊕ 0) + Pe,en , and (Un)n∈N converges to
zero in the weak operator topology, and the rank-one perturbation Pe,en vanishes
weakly as n → ∞, we conclude that (T n)n∈N → 0 in the weak operator topology. □

Theorem 4.3.3: The operator system S is not hyperrigid, however, the restriction
of every irreducible representation of C∗(S) has the unique extension property.

Proof:
Following on from the above observations, note that the unital ∗-homomorphism

ρ : C(T) → B(ℓ2(Z)), z 7→ U

induces a unital ∗-homomorphism on C∗(S) by

π : C∗(S) → B(ℓ2(Z)), x 7→ ρ(x+ K(H)),

where we identified C∗(S)/K(H) with C(T). But π|S clearly dilates non-trivially
to the identity representation of S. Hence, π|S is a restriction of a unital ∗-
homomorphism that is not maximal and thus does not have the unique extension
property.
It remains to show that the maps ez|S are maximal for every z ∈ T. Let z ∈ T
and ρ : S → B(K) be a maximal dilation of ez. This, in particular, means that
there is a unit vector x ∈ K such that

ez(s) = ⟨ρ(s)(x), x⟩
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for all s ∈ S. Let π : C∗(S) → B(K) be the unique extension of ρ to a unital
∗-homomorphism. By Lemma 3.1.16, there is a decomposition of K = H1 ⊕H2
into reducing subspaces of π such that π1 = PH1π|H1 vanishes on K(H) and
π2 = PH2π|H2 is uniquely determined by its action on K(H). Therefore, π2 is
unitary equivalent to a direct sum of identity representation of K(H), so let
π2 = U∗ ⊕i∈I idK(H)U for some set I and unitary operator U . Let x1 = PH1(x)
and x2 = PH2(x). It holds that

1 = |ez(s)| = |⟨ρ(s)(x), x⟩| = |⟨π(s)(x), x⟩|
= |⟨π1(s)(x1), x1⟩ + ⟨π2(s)(x2), x2⟩|
≤ |⟨π1(s)(x1), x1⟩| + |⟨π2(s)(x2), x2⟩|
≤ ∥π1(s)∥∥x1∥2 + |⟨π2(s)(x2), x2⟩|
= ∥π1(s)∥∥x1∥2 + |⟨(⊕i∈Is)(U(x2)), U(x2)⟩|

for all s ∈ S. Since T is a compact perturbation of U ⊕ 0, we have ∥T n∥ ≤ 1 for
all n ∈ N. Hence, by Lemma 4.3.2:

1 ≤ lim sup
n→∞

∥π1(T n)∥∥x1∥2 + |⟨(⊕i∈IT
n)(U(x2)), U(x2)⟩| ≤ ∥x1∥2,

and therefore 1 = ∥x1∥2, which implies x2 = 0.
We have thus shown that π1|S is a dilation of ez|S, and π|S is a trivial dilation of
π1|S. It remains to show that π1|S is a trivial dilation of ez|S.
For all n ∈ N, the operator π(T n) is unitary, since π1 annihilates the compact oper-
ators, and T n is a compact perturbation of Un ⊕1. Thus, as in Example 3.1.10,the
subspace spanned by x1 reduces each π(T n), and since S is generated by the T n,
it follows that π1|S is a trivial dilation of ez|S. Hence, ez|S is maximal, and the
proof is complete. □

Remark 4.3.4: There are several noteworthy aspects of the presented example.
Firstly, the C∗-algebra C∗(S) is of type I, since the quotient C∗(S)/K(H) is
commutative, see [34, Theorem 1]. Secondly, the operator system is generated by
the operator algebra spanned by T . This also shows that Arveson’s Hyperrigidity
Conjecture remains false even when “operator system“is replaced by “operator
algebra“.
Interestingly, this is not the case in commutative C∗-algebras. A point evaluation
ex on an operator algebra contained in a commutative C∗-algebra C(K) is maximal
if and only if x is a peak point, that is, there exists a function f in the operator
algebra such that |f(y)| < |f(x)| for all x ̸= y ∈ K, see [56, Chapter 8]. However,
in the above example we have

∥ez(p(T ))∥ ≤ ∥id(p(T ))∥
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for all z ∈ T, so the peak point phenomenon does not hold in general for operator
algebras in non-commutative C∗-algebras.
This observation, together with the idea of the proof of Theorem 4.2.6, might lead
to a proof of the conjecture for operator algebras in commutative C∗-algebras.

4.3.2 A finite dimensional Counterexample
We finish this chapter with a new counterexample for Arveson’s Hyperrigidity
Conjecture, new in the sense that the operator system is generated by finitely
many elements.
We start with the Euclidean open unit ball B4 in R4, and denote by S3 be its
boundary, the sphere in R4. Let A(B4) denote the continuous affine functions on
the closed unit ball, and let ti ∈ A(B4), i = 1, 2, 3, 4, be the projection onto the
i-th component. Note that A(B4) is spanned by 1, t1, t2, t3, t4.
Define P : L2(S3) → C, g 7→ ⟨g, 1⟩. For i = 1, 2, 3, 4 and c > 0, we define the
operators

Ti = Mti
⊕ 0, T1,c =

(
Mt1 cP ∗

cP 0

)
, T̃1,c =

(
Mt1 cP ∗

0 0

)
on L2(S3) ⊕ C. Here, L2(S3) is equipped with the unique rotation-invariant
probability measure m on S3. Let

Sc = span{T̃1,c, T2, T3, T4}.
In Theorem 4.3.10, we show that Sc is not hyperrigid, although the restrictions of
all irreducible representations of C∗(Sc) are boundary representations.
A crucial part of the proof is to show that the joint numerical range of the operator
tuple (T1,c, T2, T3, T4), defined as

W((T1,c, T2, T3, T4)) = {(⟨T1,cx, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩); ∥x∥ = 1},
is contained in the open unit ball B4. To show this, we first establish that the
joint numerical range of (T1, T2, T3, T4) lies in B4.
Lemma 4.3.5: It holds that

W((T1, T2, T3, T4)) ⊂ B4.

Proof:
Let x ∈ L2(S3) ⊕ C with ∥x∥ = 1. Using the identity ∑4

i=1 t
2
i = 1 on S3 and

applying the Cauchy-Schwarz inequality, we obtain:

∥(⟨T1x, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩)∥2 =
4∑

i=1
|⟨Tix, x⟩|2 ≤

4∑
i=1

∥Tix∥2∥x∥2

=
4∑

i=1
⟨Tix, Tix⟩ =

4∑
i=1

⟨T 2
i x, x⟩

≤ ∥x∥2 = 1.
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Furthermore, equality in the Cauchy-Schwarz inequality would require that there
exists some i ∈ {1, 2, 3, 4} and a scalar 0 ̸= λ ∈ C such that Tix = λx. However,
the operator Mti

has no eigenvalues, so we conclude that:

4∑
i=1

(⟨Tix, x⟩)2 < 1,

which completes the proof. □

We also need the value of
�

S3
1

1+z1
dm, which we quickly calculate in the next

lemma.

Lemma 4.3.6: It holds that
�

S3

1
1 + z1

dm = 2.

Proof:
We will use an analogue of the spherical coordinates. Define a parametrization of

F = S3 \ {(1, 0, 0, 0), (−1, 0, 0, 0), (0, 1, 0, 0), (0,−1, 0, 0)}

by

ϕ : (0, π) × (0, π) × [0, 2π) → F, (θ,Φ,Ψ) 7→


cos(θ)

sin(θ) cos(Φ)
sin(θ) sin(Φ) cos(Ψ)
sin(θ) sin(Φ) sin(Ψ)

 .

Then the Jacobian matrix is given by:

Dϕ =


− sin(θ) 0 0

cos(θ) cos(Φ) − sin(θ) sin(Φ) 0
cos(θ) sin(Φ) cos(Ψ) sin(θ) cos(Φ) cos(Ψ) − sin(θ) sin(Φ) sin(Ψ)
cos(θ) sin(Φ) sin(Ψ) sin(θ) cos(Φ) sin(Ψ) sin(θ) sin(Φ) cos(Ψ)

 .

This gives the Gram matrix:

(Dϕ)∗Dϕ =

1 0 0
0 sin(θ)2 0
0 0 sin(θ)2 sin(Φ)2

 .
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Since m(S3 \ F ) = 0, the integral becomes�
S3

1
1 + z1

dm =
�

F

1
1 + z1

dm

= (2π2)−1
� π

0

� π

0

� 2π

0

√
det((Dϕ)∗Dϕ)
1 + cos(θ) dΨdΦdθ

= (2π2)−1
� π

0

� π

0

� 2π

0

sin2(θ) sin(Φ)
1 + cos(θ) dΨdΦdθ

= π−1
� π

0

� π

0

(1 − cos(θ)2) sin(Φ)
1 + cos(θ) dΦdθ

= π−1
� π

0

� π

0
(1 − cos(θ)) sin(Φ)dΦdθ = 2

□

Lemma 4.3.7: Let 0 < c < 1/2. Then, the following holds:

W((T1,c, T2, T3, T4)) ⊂ B4.

Proof:
Let 0 < c ≤ 1/2, let S̃c be the operator system generated by T1,c, T2, T3, T4, and
let f = α + βt1 + γt2 + δte + ϵt4 ∈ A(B4). Define a map Φ : A(B4) → S̃c by

Φ(f) = αI + βT1 + γT2 + δT3 + ϵT4 =
(
Mf cβP ∗

cβP α

)
.

It is clear that this map is well-defined, bijective and that its inverse is positive.
The next step is to show that Φ is positive. Suppose that f ≥ 0 and notice that
this implies α ≥ 0 and β, γ, δ, ϵ ∈ R. If α = 0, then f = 0, and there is nothing to
show. Thus assume α > 0. Then by Lemma 3.1.5:

Φ(f) ≥ 0

if and only if the Schur complement

Mf − c2β2α−1P ∗P

is positive. Therefore, the positivity of Φ(f) is equivalent to

c2β2P ∗P ≤ αMf .

Evaluating f in (1, 0, 0, 0) and (−1, 0, 0, 0) shows that |β| ≤ α, and since there is
nothing to show for β = 0, it suffices to check that

c2P ∗P ≤ |β|−1Mf .

102



4.3 Counterexamples

Recall that m is the unique rotation-invariant probability measure on S3. Let
g ∈ L2(S3), and write f̃ = f/|β|. By Theorem 4.1.12 and since P ∗P = P1, we
have that

inf{a ≥ 0; P ∗P ≤ aMf̃} =
�

S3

f̃−1dm.

Therefore, we only have to check that

c2
�

S3

f̃−1dm ≤ 1.

Note that f̃(z) = |β|−1(α + ⟨z, ω⟩R4), where ω = (β, γ, δ, ϵ), and α ≥ ∥ω∥ since
f ≥ 0. Let U ∈ B(R4) be an orthogonal matrix such that U∗ω = (∥ω∥, 0, 0, 0).
Then

�
S3

f̃−1dm =
�

S3

|β|
α + ⟨z, ω⟩

dm(z) =
�

S3

|β|
α + ⟨U(z), ω⟩

dm(z)

=
�

S3

|β|
α + ∥ω∥t1

dm ≤
�

S3

|β|
∥ω∥

1
1 + t1

dm ≤
�

S3

1
1 + t1

dm

and by Lemma 4.3.6 �
S3

1
1 + t1

dm = 2.

Therefore, Φ(f) ≥ 0 if c ≤ 1/2 which is the case by choice of c.
In total, we have shown that if ϕ is a positive state on S̃c, then ϕ ◦ Φ is a positive
state on A(B4), and therefore

(ϕ(T1), ϕ(T2), ϕ(T3), ϕ(T4)) ∈ B4.

In particular, since 0 < c ≤ 1/2, we obtain

W((T1,c, T2, T3, T4)) ⊂ B4. (4.9)

Let x ∈ L2(S3) ⊕ C with ∥x∥ = 1 and define

z1 = (⟨T1x, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩),
z2 = (⟨T1,1/2x, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩).

Then, z1 ∈ B4 by Lemma 4.3.5 and z2 ∈ B4 by Eq. (4.9). Thus, since 0 < c < 1/2,
we have that

(⟨T1,cx, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩) = (1 − 2c)z1 + 2cz2 ∈ B4.

□
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Lemma 4.3.8: Let 0 < c < 1 and x ∈ L2(S3) ⊕ C with ∥x∥ = 1. Then, the
following holds:

∥(⟨T̃1,cx, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩)∥ < 1.

Proof:
Let x = (y, a) ∈ L2(S3) ⊕ C with ∥x∥ = 1 and define

z = (⟨T̃1,cx, x⟩, ⟨T2x, x⟩, ⟨T3x, x⟩, ⟨T4x, x⟩).

Assume, for contradiction, that ∥z∥ ≥ 1. The equation

|⟨T̃1,cx, x⟩| = |⟨Mt1y, y⟩ + ca⟨1, y⟩| ≤ |⟨Mt1y, y⟩| + |ca⟨1, y⟩|

shows, on one hand, that ⟨1, y⟩ ≠ 0, and on the other, that for

x̃ =
(y, |a| ⟨y,1⟩

|⟨y,1⟩|) if ⟨Mt1y, y⟩ ≥ 0
(y,−|a| ⟨y,1⟩

|⟨y,1⟩|) else

and
z̃ = (⟨T̃1,cx̃, x̃⟩, ⟨T2x̃, x̃⟩, ⟨T3x̃, x̃⟩, ⟨T4x̃, x̃⟩),

we have ∥x̃∥ = ∥x∥ = 1, ⟨T̃1,cx̃, x̃⟩ ∈ R and 1 ≤ ∥z∥ ≤ ∥z̃∥. Thus, applying the
identity Re(T̃1,c) = T1,c/2, we conclude that

z̃ = (⟨T1,c/2x̃, x̃⟩, ⟨T2x̃, x̃⟩, ⟨T3x̃, x̃⟩, ⟨T4x̃, x̃⟩),

which lies within the unit ball B4 by Lemma 4.3.7, thus leading to a contradiction.
Hence, ∥z∥ < 1. □

Lemma 4.3.9: Let 0 < c < 1. Then, the compact operators K(L2(S3) ⊕ C) are
contained in C∗(Sc).

Proof:
We start by noting that

T̃1,cT̃
∗
1,c +

4∑
i=2

T ∗
i Ti − 1 =

(
c2P ∗P 0

0 −PP ∗

)
∈ C∗(Sc).

This implies that

0 ⊕ PP ∗ = 1
c−2 + 1

c−2
(
c2P ∗P 0

0 −PP ∗

)2

−
(
c2P ∗P 0

0 −PP ∗

) ∈ C∗(Sc),
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id⊕ 0 = 1 − 0 ⊕ PP ∗ ∈ C∗(Sc).
Therefore,

P ∗P ⊕ 0 = 1
c2 (id⊕ 0)(T̃1,cT̃

∗
1,c +

4∑
i=2

T ∗
i Ti − 1) ∈ C∗(Sc).

Additionally, Mt1 ⊕ 0 = T̃1,c(id⊕ 0) ∈ C∗(Sc) and(
0 0
P 0

)
= T̃ ∗

1,c −Mt1 ⊕ 0 ∈ C∗(Sc).

Further multiplying by Mti
⊕ 0, i = 1, 2, 3, 4, from the left and right to P ∗P ⊕ 0

and
(

0 0
P 0

)
shows that

(
p⟨·, q⟩ 0

0 0

)
,

(
0 0

⟨·, q⟩ 0

)
∈ C∗(Sc)

for every p, q ∈ C[t1, t2, t3, t4]. Finally, since the polynomials are dense in L2(S3),
any compact operator can be approximated by elements of C∗(Sc), completing
the proof. □

The previous lemma places us in the setting of Theorem 3.1.18. Since (T1,c, T2, T3, T4)
is a compact perturbation of (Mt1 ⊕ 1,Mt2 ⊕ 1,Mt3 ⊕ 1,Mt4 ⊕ 1), by the previous
lemma, we have the following split short exact sequence:

0 → K(L2(S3 ⊕ C)) → C∗(Sc) → C(S3) → 0.

Consequently, the only irreducible representations of C∗(Sc) are given by the
identity representation and the evaluations ez, defined by

C∗(Sc) → C, (T1,c, T2, T3, T4) 7→ z

for z ∈ S3, see Theorem 3.1.18.

Theorem 4.3.10: Let 0 < c < 1. The operator system Sc is not hyperrigid.
However, the restrictions of all irreducible representations of C∗(Sc) to Sc have
the unique extension property.

Proof:
To show that Sc is not hyperrigid, we begin by considering the ∗-homomorphisms

π : C∗(Sc) → B(L2(S3)), (T̃1,c, T2, T3, T4) 7→ (Mt1 ,Mt2 ,Mt3 ,Mt4)

and
Φ : C∗(Sc) → B(L2(S3)), A 7→ PL2(S3)A|L2(S3).
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Clearly, π|Sc = ϕ|Sc , but π ̸= ϕ because the range of π is commutative, whereas
the range of Φ contains all compact operators by Lemma 4.3.9. Hence, π|Sc does
not have the unqiue extension property, and thus Sc is not hyperirigid.
It remains to show that the irreducible representations of C∗(Sc) are boundary
representations. By Arveson’s boundary theorem (see Theorem 3.1.18), we observe
that since

1 = ∥
4∑

i=1
T ∗

i Ti∥ < ∥T̃ ∗
1,cT̃1,c +

4∑
i=2

T ∗
i Ti∥,

the identity representation of C∗(Sc) is a boundary representation. Thus, it
remains to verify that the point evaluations ez, restricted to Sc, are maximal for
all z ∈ S3.
We begin by showing that

∥(ϕ(T̃1,c), ϕ(T2), ϕ(T3), ϕ(T4))∥ ≤ 1 (4.10)

for every ϕ ∈ S(Sc) and that

∥(ϕ(T̃1,c), ϕ(T2), ϕ(T3), ϕ(T4))∥ < 1 (4.11)

for every pure state ϕ that is not maximal.
Let ϕ ∈ S(Sc). If ϕ is pure and maximal, we have

∥(ϕ(T̃1,c), ϕ(T2), ϕ(T3), ϕ(T4))∥ = 1,

since the only representations of C∗(Sc) with image in C are given by the point
evaluations. If ϕ is pure and not maximal, then by Theorem 3.1.20, ϕ dilates
non-trivially to a maximal irreducible u.c.p. map, which must be the identity
representation, since this is the only irreducible representation besides the point
evaluations. Thus, there exists x ∈ L2(S3) ⊕ C with ∥x∥ = 1 such that ϕ(·) =
⟨·x, x⟩. Since c < 1, we can apply Lemma 4.3.8 to obtain Eq. (4.11). Moreover,
since the convex hull of the extreme points of S(Sc) is the entire state space S(Sc),
and the pure states are precisely the extreme points by Proposition 3.1.19, we
also obtain Eq. (4.10) via Carathédory’s theorem.
It follows from Eq. (4.10) that the restrictions of the maps ez to Sc are extreme
points of S(Sc). By equation Eq. (4.11), these maps must also be maximal,
completing the proof. □

Remark 4.3.11: Perhaps the most interesting aspect of this example is that it is
necessary to work with the sphere in R4, since 4 is the smallest dimension d for
which �

Sd

1
1 + z1

< ∞.

At present, it is not known whether there exists operator systems generated by
fewer than four selfadjoint operators that provide an counterexample to Arveson’s
Hyperrigidity Conjecture.
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Miscellaneous Results on u.c.p. Maps
and Matrix Convex Sets

This chapter contains so far unpublished results. The first one, Theorem 5.1.5,
connects Gδ-sets with maximal u.c.p. maps. The second one, Theorem 5.2.6, is
about matrix convex sets and Arveson extreme points. The two main results are
joint work with Michael Hartz.

5.1 Maximal u.c.p. Maps are Dense and Gδ

For an operator system S and a Hilbert space H, we define

UCP(S,B(H)) = {ϕ : S → B(H); ϕ u.c.p.}

and if not stated otherwise, we equip the set with the topology induced by
pointwise WOT convergence. The following lemma is well-known.

Proposition 5.1.1: Let S be an operator system and H a Hilbert space. Then,

UCP(S,B(H))

is convex and compact.

Proof:
Convexity is clear. For compactness, one first considers the set

{L ∈ B(S,B(H)); ∥L∥ ≤ 1}.

The topology of pointwise WOT convergence on the above set coincides with a
weak∗ topology, see, for instance, [55, Lemma 7.1+ Proposition 7.3]. Thus, the
above set is compact by the Banach-Alaoglu theorem. Moreover, this set contains
UCP(S,B(H)), because u.c.p. maps are already completely contractive.
It remains to show that

UCP(S,B(H))
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is closed. Let (ϕλ)λ∈I be a net of u.c.p. maps converging pointwise in the WOT
to a map ϕ ∈ B(S,B(H)). Let 1 ≤ n ∈ N and (ai,j)1≤i,j≤n ∈ Mn(S) be positive.
Since we can identify Mn(B(H)) with B(Hn), it suffices to verify that

⟨ϕ((ai,j)1≤i,j≤n)(x1 ⊕ · · · ⊕ xn), x1 ⊕ · · · ⊕ xn⟩ ≥ 0

for all x1 ⊕ · · · ⊕ xn ∈ Hn. However, for all x = x1 ⊕ · · · ⊕ xn ∈ Hn, we have

⟨ϕ((ai,j)1≤i,j≤n)(x), x⟩ = lim
λ

⟨ϕλ((ai,j)1≤i,j≤n)(x), x⟩ ≥ 0,

because ϕλ is completely positive for all λ ∈ I. Therefore, ϕ is completely positive.
The proof is completed by noticing that ϕ(1) = idH since ϕλ(1) = idH for all
λ ∈ I. □

Lemma 5.1.2: Let S be a separable operator system and H an infinite dimensional
separable Hilbert space. Then,

{ϕ : S → B(H); ϕ maximal}

is dense in UCP(S,B(H)).

Proof:
Let S and H be as above and define

Λ = {F ⊂ H; F finite-dimensional subspace}.

Let ϕ ∈ UCP(S,B(H)). By Theorem 3.1.11, there is a maximal dilation ψ : S →
B(K) of ϕ such that K is still separable. For simplicity, we identify V (H) with
H. Then, for every F ∈ Λ, since K and H are separable and infinite dimensional,
there is a unitary operator UF : H → K such that U(x) = x for all x ∈ F . It
is easy to check that (U∗

FψUF )F ∈Λ is a net of maximal maps. Let x, y ∈ H and
choose F ∈ Λ such that x, y ∈ F . Then,

⟨U∗
Gψ(s)UG(x), y⟩ = ⟨ϕ(s)(x), y⟩

for all F ≤ G ∈ Λ and s ∈ S. Hence (U∗
FψUF )F ∈Λ is a net of maximal maps,

converging to ϕ. □

Lemma 5.1.3: Let K,L be compact Hausdorff spaces, π : K → L be surjective
and continuous, and f : K → R upper semi-continuous. Then

g : L → R, x 7→ sup{f(y); y ∈ π−1(x)}

is upper semi-continuous.
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Proof:
Let K,L, π and f be as above. For every t ∈ R, we have to show that

{x ∈ L; g(x) ≥ t}

is closed. But
{x ∈ L; g(x) ≥ t} = π({y ∈ K; f(y) ≥ t}).

Since K is compact, f upper semi-continuous, and π continuous,

{y ∈ K; f(y) ≥ t}

and therefore also
π({y ∈ K; f(y) ≥ t})

are closed. □

Given a s ∈ S, x ∈ H and a u.c.p. map ϕ : S → B(H), we say that ϕ is maximal
in (s, x) if for every dilation ψ : S → B(K), it holds that ψ(V (x)) ∈ V (H),
where V is the isometry belonging to the dilation (see [5]). We also define
βs,x : UCP(S,B(H)) → [0,∞) by

βs,x(ϕ) = sup{⟨ψ(s∗s)x, x⟩, ψ u.c.p. extension of ϕ on C∗(S)}.

Lemma 5.1.4: Let S be an operator system, H a Hilbert space, s ∈ S and x ∈ H.
Then, the function

UCP(S,B(H)) → [0,∞), ϕ 7→ ∥ϕ(s)(x)∥2

is WOT lower semi-continuous and the function βs,x WOT upper semi-continuous.

Proof:
Let S,H, s and x be as above. The lower semi-continuity of the first function
follows from the lower semi-continuity of the map H → [0,∞), y 7→ ∥y∥, see for
example [36, Problem 21].
For the upper semi-continuity of the functions βs,x, we will use Lemma 5.1.3.
Define K = UCP(C∗(S),B(H)), L = UCP(S,B(H)),

π : K → L, ρ 7→ ρ|S
and

f : K → R, ρ 7→ ⟨ρ(s∗s)x, x⟩.
The maps π and F are clearly continuous. Additionally, π is also surjective, and
by Proposition 5.1.1, K and L are compact. Thus, by Lemma 5.1.2,

g : L → R, ρ 7→ sup{f(y); y ∈ π−1(ρ)}

is upper semi-continuous. The proof is complete with the observation that g = βs,x.
□
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Theorem 5.1.5: Let S be a separable operator system and H an infinite dimen-
sional separable Hilbert space. Then,

{ϕ : S → B(H); ϕ maximal} ⊂ UCP(S,B(H))

is a dense Gδ-set.

Proof:
Let S and H be as above and S0 ⊂ S,H0 ⊂ H be dense countable subsets. We
claim that

{ϕ ∈ UCP (S,B(H)); ϕ maximal}

equals ⋂
s∈S0

⋂
x∈H0

⋂
0<ϵ∈Q

{ϕ ∈ UCP (S,B(H)); βs,x(ϕ) − ∥ϕ(s)(x)∥2 < ϵ}

and that the sets on the rights are WOT open. First assume that ϕ ∈ UCP(S,B(H))
is maximal. Then, ϕ has a unique u.c.p. extension ψ to C∗(S) and ψ is a unital
∗-homomorphism. Therefore, βs,x(ϕ) = ∥ϕ(s)(x)∥2 for all s ∈ S and x ∈ H and
we obtain „ ⊂ “.
For the other direction, let ϕ ∈ UCP(S,B(H)) such that βs,x(ϕ) = ∥ϕ(s)(x)∥2 for
all s ∈ S0, x ∈ H0, and ψ : C∗(S) → B(K) be a u.c.p. dilation of ϕ. For clarity,
we identify H with V (H). Since βs,x(ϕ) = ∥ϕ(s)(x)∥2, we have that

∥ψ(s)(x)∥2 = ∥ϕ(s)(x)∥2,

and since PHψ|H = ϕ, it follows that ψ(s)(x) = ϕ(s)(x) for all s ∈ S0, x ∈ H0. By
density of these two spaces, we obtain that ψ|H = ϕ. Hence, ψ is a trivial dilation
of ϕ, and ϕ is maximal.
Finally, the maps βs,x and −∥(·)(s)(x)∥2 are upper semi-continuous by Lemma 5.1.4
and thus

{ϕ ∈ UCP (S,B(H)); βs,x(ϕ) − ∥ϕ(s)(x)∥2 < ϵ}

is WOT open for all s ∈ S0, x ∈ H0. □

5.2 Matrix Convex Sets and Arveson Extreme Points
We have already mentioned that every commutative operator system is completely
order isomorphic to the affine functions on some compact convex set. This result
extends to arbitrary operator system, but one must replace affine functions and
compact convex set with suitable non-commutative analogues. In the following,
we present the fundamental definitions associated with this concept.

A matrix convex set over a topological vector space V is a graded set (Kn)∞
n=1,
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where each Kn ⊂ Mn(V ), that it is closed under matrix convex combinations, that
is, a combination of the form

n∑
i=1

V ∗
i XiVi ∈ Mm(V ),

where 1 ≤ n,m ∈ N, Xi ∈ Kni
, Vi ∈ Mm,ni

(C), and ∑n
i=1 V

∗
i Vi = id.

A matrix convex set (Kn)n is called compact if each Kn is compact.
A point X ∈ (Kn)n is called matrix extreme if for every matrix convex combination

X =
n∑

i=1
V ∗

i XiVi

with each Vi surjective, it follows that every Xi is unitarily equivalent to X. The
set of matrix extreme points is denoted by mex(K).

A proper generalization of compact set and extreme points should, of course,
satisfy analogues version of the Krein-Milman and Carathéodory theorems. In-
deed, such analogues exist. To state them, we first have to introduce the concept
of the matrix convex hull of a graded set, defined as

mconv(L) =
{

n∑
i=1

V ∗
i XiVi; Xi ∈ Lni

, Vi ∈ Mm,ni
,

n∑
i=1

V ∗
i Vi = id

}
,

where L = (Ln)n∈N ⊂ (Mn(V ))n∈N.
The generalization of the Krein-Milman theorem is due to Webster and Winkler
and can be found in [64].

Theorem 5.2.1 (Webster-Winkler): Let K = (Kn)n be a compact matrix convex
set. Then

mconv(K) = K.

One generalization of Carathéodory’s theorem is due to Hartz and Lupini and can
be found in [37]. We also note that there is a generalization by Kriel concerning
free spectrahedra (see [49]), which we will introduce later. We state only the first
generalization, as it is the one we will need.

Theorem 5.2.2 (Hartz-Lupini): Let V be a finite-dimensional topological vector
space and K a compact matrix convex set. Then every point in K can be written
as a matrix convex combinations of matrix extreme points.

We now turn to the connection between matrix convex sets and operator systems.
Given an operator system S, the matrix state space of S is defined by

W(S) =
∞⋃

n=1
{ϕ : S → Mn(C); ϕ u.c.p.}.
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We view this set as a graded set over the dual space of S. It is easy to verify
that matrix convex combinations of u.c.p. maps are again u.c.p., and thus, by
Proposition 5.1.1, W(S) is a compact matrix convex set.
This shows that every operator system gives rise to a compact matrix convex set.
To see that this correspondence is one-to-one, we introduce a non-commutative
analogue of affine functions:
Let V , W be topological vector spaces, and let K = (Kn)n be a compact matrix
convex set. A sequence θ = (θn)∞

n=1 with θ : Kn → Mn(W ), is called matrix affine
if

θm

(
n∑

i=1
V ∗

i XiVi

)
=

n∑
i=1

V ∗
i θni

(Xi)Vi

for all m ∈ N, Xi ∈ Kni
, Vi ∈ Mm,ni

(C) with ∑n
i=1 V

∗
i Vi = id. If in addition each

θn is a homeomorphism, we call θ a matrix affine homeomorphism. In the case
W = C, we write A(K) for the graded set of all matrix affine maps θ such that
θ1 : K1 → C is continuous.

We now state the general relationship between A(K) and operator systems. The
following theorem was proved by Webster and Winkler [64, Proposition 3.5]. It is
not immediately obvious why A(K) can be seen as an operator system. There are
two ways to do this: One can define a suitable C∗-algebra of non-commutative
functions into which A(K) embeds (see [21]). Alternatively, one can characterize
operator systems via the Choi-Effors axioms and verify that A(K) satisfies them.
For the axiomatic characterization of operator systems, see [55, Chapter 13].

Theorem 5.2.3:

(i) If S is an operator system, then there exists a completely order isomorphic
map between A(W(S)) and S.

(ii) If K is a matrix convex set, then the sequence (θn)n, defined by

θn : Kn → W(A(K))n, x 7→ [f 7→ f(x)] ,

is a matrix affine homeomorphism between K and W(A(K)).

Besides matrix extreme points, there exists a second, more restrictive notion of
extremality. A point X in a matrix convex set K is called an Arveson extreme
point (also known as absolute matrix extreme point) if for every matrix convex
combination

X =
n∑

i=1
V ∗

i XiVi

with 0 ̸= Vi ∈ Mm,ni
, the following holds: For each i ∈ {1, . . . , n}, either Xi is

unitarily equivalent to X, or ni > m and there exits Zi ∈ K such that Xi is
unitarily equivalent to X ⊕ Zi. The set of all Arveson extreme points is denoted
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by arvex(K).
Note that arvex(K) ⊂ mex(K). This inclusion follows from the fact that if all Vi

are surjective, then the case ni > m cannot occur.

The following theorem relates matrix extreme points to pure u.c.p. maps and
the Arveson extreme points to boundary representations. It will enable us to
determine matrix extreme points and Arveson extreme point more easily. Part (i)
is due to Farenick [31, Theorem B], and part (ii) can be found in [49, Corollary
6.27] and [30, Theorem 3.10].
Theorem 5.2.4: Let S be an operator system. Then:

(i) A map ϕ ∈ W(S) is a matrix extreme point if and only if ϕ is a pure u.c.p.
map.

(ii) If S is finite-dimensional, then ϕ ∈ W(S) is an Arveson extreme point if
and only if ϕ is the restriction of a boundary representation.

The disadvantage of matrix extreme points compared to Arveson extreme points
is that matrix extreme points are often more numerous than necessary to recover
the matrix convex set. We did not mention this earlier but, in the classical case,
for a compact convex set K and a subset F such that conv(F ) = K, Milman’s
converse theorem implies that ex(K) ⊂ F . In this sense, the extreme points are
minimal. However, this minimality does not hold for matrix extreme points.
On the other hand, the downside of Arveson extreme points is that they do not
have to exist, as the following example demonstrates.
Example 5.2.5: Let u, v be the universal generator of the Cuntz algebra

O2 = C∗(u, v; u∗u = v∗v = uu∗ + vv∗ = 1)

and define the operator system S = span(1, u, v, u∗, v∗). Since C∗(S) = O2
and O2 admits no finite-dimensional representations, it follows that W(S) = ∅.
Nevertheless, Theorem 5.2.1 guarantees the existence of matrix extreme points.

It remains an open problem to find conditions under which the matrix convex hull
of the Arveson extreme points equals the full matrix convex set. We now study
two such conditions and their relationship. The first one is a new result obtained
in collaboration with Michael Hartz. For its formulation, we need the following
definition.
A C∗-algebra is called finite-dimensional irreducible (FDI) if every irreducible
representation is unitarily equivalent to a finite-dimensional one.

Theorem 5.2.6: Let S be a finite-dimensional operator system generating a FDI
C∗-algebra A. Then

mconv(arvex(W(S)) = W(S).
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Proof:
Let S and A be as above, and let ϕ ∈ W(S)m. By Theorem 5.2.2, there exists a
matrix convex combination of matrix extreme points ϕ1, . . . , ϕn such that

ϕ =
n∑

i=1
V ∗

i ϕiVi. (5.1)

By Theorem 5.2.4, each ϕi is pure, and by Theorem 3.1.20, each ϕi : S → B(Hi)
has a dilation to a maximal irreducible representation ψi : S → B(Ki) with respect
to an isometry γi : Hi → Ki.
Each ψi has a unique u.c.p. extension to a boundary representation. Since A is
FDI, we conclude that dim(Ki) < ∞. Again, by Theorem 5.2.4, each ψi is an
Arveson extreme point. Moreover, we can write

ϕ =
n∑

i=1
(γiVi)∗ψi(γiVi)

which is a matrix convex combination, since
n∑

i=1
(γiVi)∗(γiVi) =

n∑
i=1

Viγ
∗
i γiVi =

n∑
i=1

V ∗
i Vi = id.

Hence, ϕ ∈ mconv(arvex(W(S))), completing the proof. □

Example 5.2.7:

(i) Every commutative C∗-algebra is FDI, since its irreducible representations
are given by point evaluations.

(ii) Every C∗-algebra of continuous matrix-valued functions is FDI, as the irre-
ducible representations are again given by matrix-valued point evaluations.

(iii) The universal C∗-algebra by two unitary operators

C∗(u, v; u∗u = uu∗ = v∗v = vv∗ = 1)

is not FDI, because there exists two unitary operators U, V on an infinite-
dimensional Hilbert space that do not admit a common non-trivial reducing
subspace. For example, let H = ℓ2(Z), U be the bilateral shift, and V be
the diagonal operator with respect to the canonical orthonormal basis and
the sequence (eiqn)n∈Z for some q ∈ R \ Q. Nevertheless, this is a RFD
C∗-algebra by [15].

The last example together with the following example show that the conclusion
of Theorem 5.2.6 may still hold even if the operator system does not embed
completely order isomorphic into a FDI C∗-algebra.
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Example 5.2.8: Let u, v be as in the previous example, and let S be the operator
system generated by u and v. Similar to Example 3.1.10, one can show that

θ = (θn)n∈N : W(S) →
⋃

1≤n∈N
{(T1, T2) ∈ Mn(C)2; ∥Ti∥ ≤ 1}, ϕ 7→ (ϕ(u), ϕ(v))

is well-defined and bijective. Moreover, the maximal u.c.p. maps ϕ are exactly
those for which ϕ(u) and ϕ(v) are unitary operators.
Given any ϕ ∈ W(S), one can construct a dilation ψ : S → B(K) with respect
to an isometry V : H → K, such that ψ is a restriction of a finite-dimensional
representation of C∗(u, v), using the construction in Example 3.1.10. ψ is maximal,
since both ψ(u) and ψ(v) are unitary operators, and since ψ is a finite-dimensional
representation, it is the direct sum of restrictions of boundary representations.
Hence, ψ ∈ mconv(arvex(W(S))), and since

ϕ = V ∗ψV,

we obtain that ϕ ∈ mconv(arvex(W(S))). Thus we have proven that

mconv(arvex(W(S))) = W(S).

An alternative proof of this is given in Example 5.2.15. However, we claim that S
is not completely order isomorphic to an operator system that generates a FDI C∗-
algebra. We have already observed that maximality is preserved under completely
order isomorphic maps, and it is straightforward to verify that irreducibility of
u.c.p. maps is also preserved under such isomorphisms. Therefore, since C∗(u, v)
is not FDI by the previous example, the claim follows.

Let us now turn to a second condition which ensures that the matrix convex hull
of the Arveson extreme points coincides with the entire matrix convex set. To
state this condition, we introduce the concept of linear pencils.
Let A = (A1, . . . , Ad) ∈ Mk(C)d be a tuple of complex-valued matrices. Then the
map

LA((T1, . . . , Td)) = id− 2Re
(

d∑
i=1

Ai ⊗ Ti

)

is called monic linear pencil. The free spectrahedron of A is the matrix convex set

DA =
⋃

1≤n∈N
{T ∈ Mn(C)d; LA(T ) ≥ 0}.

Note that this yields a matrix convex set, but not necessarily a compact one.
Usually, one restricts to selfadjoint tuples A, but this is actually no real restriction,
since

Re(Aj ⊗ Tj) = Re(Aj) ⊗ Re(Tj) − Im(Aj) ⊗ Im(Tj)
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implies that for B = (Re(A1),−Im(A1), . . . ,Re(Ad),−Im(Ad)):

Z = (X1 + iY1, . . . , Xd + iYd) ∈ DA ⇔ LB((X1, Y1, . . . , Xd, Yd)) ≥ 0.

Thus we can identify DA with

DB =
⋃

n∈N

{
(T ∈ Mn(C)2d; Ti = T ∗

i and LB(T ) = id−
2d∑

i=1
Bi ⊗ Ti ≥ 0

}
.

The form DB is called the selfadjoint form of DA.
If one restricts the underlying field to R, then we have a reel free spectrahedron
with selfadjoint form

DR
A =

⋃
n∈N

{T ∈ Mn(R)d; Ti = T ∗
i and LA(T ) ≥ 0}.

Remark 5.2.9: Let A = (A1, . . . , Ad) ∈ Mn(C)d. Then the spectraball is defined
by

BA =
⋃

1≤n∈N

{
X ∈ Mn(C)d;

∥∥∥∥∥
d∑

i=1
Ai ⊗Xi

∥∥∥∥∥ ≤ 1
}
.

An advantage of the spectraball is that it is useful in the construction of examples.
To see that this is a spectrahedron, define

Ej =
(

0 Aj

0 0

)
,

and observe that

LE((T1, . . . , Td)) = id− 2Re
(

d∑
i=1

Ei ⊗ Ti

)
=
(

id
∑d

i=1 Ai ⊗ Ti∑d
i=1 A

∗
i ⊗ T ∗

i id

)
.

Thus,

LE((T1, . . . , Td)) ≥ 0 ⇔
(

d∑
i=1

Ai ⊗ Ti

)∗ ( d∑
i=1

Ai ⊗ Ti

)
≤ id,

from which it follows that DE = BA.

In the following, we study free spectrahedra that are closed under complex
conjugation. For a matrix X ∈ Mn(C), let X denote the entrywise complex
conjugate, and XT the transpose.

Example 5.2.10: Let

A1 =
(

1 0
0 0

)
and A2 =

(
0 0
1 0

)
.

116



5.2 Matrix Convex Sets and Arveson Extreme Points

Then the spectralball is given by

BA =
⋃

n∈N

{
(T1, T2) ∈ Mn(C)2; T ∗

1 T1 + T ∗
2 T2 ≤ id

}
.

Define

E1 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , and E2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
Then DE = BA, and the selfadjoint form of DA is given by⋃

n∈N

{
(T1, T2, T3, T4) ∈ Mn(C)4; T ∗

i =Ti,
(T1−iT2)(T1+iT2)+(T3−iT4)(T3+iT4)≤id

}
.

Note that for any X1, X2 ∈ Mn(C)2, we have

X1 X2 = X1X2 and X1
∗ = X∗

1 .

Thus, the spectraball BA is closed under complax conjugation. However,

T =
((

1 0
0 0

)
,

(
0 0
0 0

)
,

(
0 1/2

1/2 0

)
,

(
0 −i/2
i/2 0

))

lies in the selfadjoint form of DE, while T does not.
Furthermore, we want to determine arvex(BA). For this, consider the Cuntz
algebra O2 with generators u, v, and define S = span{1, u, u∗, v, v∗}. Then we can
identify W(S) with BA via the map ϕ 7→ (ϕ(u∗), ϕ(v∗)).
Since the Cuntz algebra O2 admits no finite-dimensional representations, it follows
from Theorem 5.2.4 that arvex(W(S)) = ∅, and hence

arvex(BA) = ∅.

That a free spectrahedron is closed under complex conjugation has a surprising
consequence for the Arveson extreme points. The following result is due to [29,
Theorem 1.1].

Theorem 5.2.11 (Evert-Helton): Let DA be a free spectrahedron whose selfadjoint
form is closed under complex conjugation. Then

DA = mconv(arvex(DA)).

Naturally, one may ask how this theorem relates to Theorem 5.2.6. To answer
this, we begin by collecting two useful lemmas. The first helps determine when
the selfadjoint form of a spectrahedron is closed under complex conjugation.
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Theorem 5.2.12: Let DA be a free spectrahedron. The following are equivalent:

(i) DA is closed under transposition.
(ii) The selfadjoint form of DA is closed under complex conjugation.

Proof:
Let DA be a free spectrahedron. The core of the proof lies in the observation:

XT = Re(X)T + iIm(X)T for all X ∈ Mn(C).

Let B = (Re(A1),−Im(A1), . . . ,Re(Ad),−Im(Ad)), and suppose

(X1, Y1, . . . , Xd, Yd) ∈ DB.

Then we have:

(X1, Y 1, . . . , Xd, Y d) = (XT
1 , Y

T
1 , . . . , X

T
d , Y

T
d ),

and hence

((X1 + iY1)T , . . . , (Xd + iYd)T ) ∈ DA ⇔ (X1, Y 1, . . . , Xd, Y d) ∈ DB.

This completes the proof. □

The next lemma gives some sort of twisted Cauchy-Schwartz inequality in the
case that the matrix state space is closed under the transpose and the operator
system is a C∗-algebra.

Lemma 5.2.13: Let A be a C∗-algebra, and let ϕ ∈ W(A) such that ϕT is u.c.p..
Then, for all x ∈ A, it holds that

ϕ(x)ϕ(x∗) ≤ ϕ(x∗x). (5.2)

Proof:
Let x ∈ A, and without loss of generality assume ∥x∥ ≤ 1. Then the matrix(

1 x
x∗ x∗x

)
≥ 0

and thus,

ϕT

((
1 x
x∗ x∗x

))
=
(

1 ϕ(x)T

ϕ(x∗)T ϕ(x∗x)T

)
≥ 0.

Since the transpose of a positive matrix is again positive, it follows that(
1 ϕ(x)T

ϕ(x∗)T ϕ(x∗x)T

)T

=
(

1 ϕ(x∗)
ϕ(x) ϕ(x∗x)

)
≥ 0.
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Conjugating this matrix with
(

0 1
1 0

)
and applying the lemma about Schur com-

plements, Lemma 3.1.5, yields the inequality ϕ(x)ϕ(x∗) ≤ ϕ(x∗x). □
We conclude this chapter, and with it, the thesis, with two examples that illustrate
that Theorem 5.2.6 and Theorem 5.2.11 are in general independent. Specifically,
we show that:

• there exist finite-dimensional operator systems in FDI C∗-algebras whose
matrix state space is not closed under transposition, and

• there exists free spectrahedra that are closed under transposition, although
the corresponding operator system does not embed completely order isomor-
phic into a FDI C∗-algebra.

Example 5.2.14: Consider M2(C) as an operator system in itself. This is clearly
a finite-dimensional operator system inside a FDI C∗-algebra and thus, by Theo-
rem 5.2.6,

mconv(arvex(M2(C))) = W(M2(C)).
However, W(M2(C)) is not closed under transposition. To see this, consider the
identity map

id : M2(C) → M2(C), X 7→ X.

This is clearly a u.c.p. map. If idT were also u.c.p., then by Lemma 5.2.13, it
would follow that(

0 0
0 1

)
= id

((
0 1
0 0

)∗)
id

((
0 1
0 0

))
≤ id

((
0 1
0 0

)(
0 1
0 0

)∗)
=
(

1 0
0 0

)
,

which clearly is false. Therefore, W(M2(C)) is not closed under transposition.

Example 5.2.15: Let C∗(u, v) be the universal C∗-algebra generated by two unitary
elements u and v, as already encountered in Example 5.2.7, and let

S = span(1, u, v, u∗, v∗).

In Example 5.2.8, we showed that S is not completely order isomorphic to an
operator system contained in a FDI C∗-algebra, even though

mconv(arvex(W(S))) = W(S).

We now claim that W(S) is matrix affine homeomorphic to a free spectrahedron
that is closed under transposition. Define

θ : W(S)n →
⋃

1≤n∈N
{(T1, T2) ∈ Mn(C)2; ∥Ti∥ ≤ 1}, ϕ 7→ (ϕ(u), ϕ(v)).
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It is easy to verify that this is a matrix affine homeomorphism. Let

A1 =
(

1 0
0 0

)
and A2 =

(
0 0
0 1

)
.

Then
BA =

⋃
n∈N

{
(T1, T2) ∈ Mn(C)2;

∥∥∥∥∥
(
T1 0
0 T2

)∥∥∥∥∥ ≤ 1
}
,

and by Remark 5.2.9, we have that

BA = DE,

where

E1 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , and E2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
The spectraball BA is clearly closed under transposition, therefore, so is the free
spectrahedron DE. Hence Theorem 5.2.11 applies to DE, whereas Theorem 5.2.6
does not.
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