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Summary 

Anxiety disorders are among the most common mental illnesses worldwide 

and are of considerable public health importance due to their high prevalence 

(Wittchen et al., 2011). Despite the availability of effective treatments for anxiety dis-

orders, millions of people suffer from symptoms that interfere with their daily lives, 

resulting in persistent distress and reduced overall quality of life (Craske et al., 2009). 

Within cognitive behavioral therapy, exposure therapy has been shown to be a suc-

cessful treatment option for many anxiety disorders. Exposure involves systematically 

exposing patients to anxiety-provoking stimuli in a controlled and safe environment 

until the fear response diminishes. Despite its high efficacy, not all anxiety patients 

benefit equally from the therapy, and there are always dropouts, incomplete recovery, 

or relapse of symptoms (Arch & Craske, 2009). 

The development and treatment of anxiety disorders can be explained in part 

by processes of classical conditioning, in which neutral stimuli are given negative 

meanings through association learning (Duits et al., 2015). Classical models of fear 

conditioning help to understand the development, maintenance and treatment of 

anxiety disorders. At the same time, environmental factors, such as traumatic experi-

ences or stressful life events, can play a central role in the development and progres-

sion of anxiety disorders. Stress can dysregulate neurobiological systems, particularly 

the limbic system and the amygdala, and thus increase vulnerability to the develop-

ment of anxiety disorders (Garakani et al., 2006). Recent global events, such as the 

COVID-19 pandemic and other crises, may exacerbate these processes through 

chronic stress, leading to a further increase in the prevalence of anxiety disorders 

(Kazmi et al., 2020). 

It is essential to find ways to improve the treatment options for anxiety disor-

ders, in particular to further improve exposure therapy. In addition to the use of clas-

sical psychotropic drugs, which are administered in addition to exposure therapy, the 

use of so-called cognitive enhancers, i.e. substances that influence neurocognitive 

processes such as attention, memory and learning, is proving to be promising. Studies 

have identified several such substances that have already shown positive effects in the 
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context of fear extinction, including hormones such as oxytocin or cortisol (Brueckner 

et al., 2019; de Quervain et al., 2009; Eckstein et al., 2015, 2019). 

The aim of the present dissertation is to investigate the role of environmental 

stress and cognitive enhancers as modulating factors of fear conditioning processes. 

Several aims were pursued and a total of three empirical studies were conducted. The 

first study aimed to investigate the potential of intranasally administered insulin as a 

cognitive enhancer in the extinction of fear. To this end, a classical fear conditioning 

study was conducted with healthy subjects. Before extinction, the subjects were ad-

ministered either insulin or a placebo by nasal spray. Subjects in the insulin group 

showed a greater reduction in the fear response during extinction, a first indication of 

the beneficial effect of intranasal insulin as a cognitive enhancer of fear extinction. 

The second study investigated the impact of anxiety related to the COVID-19 

pandemic on fear learning and fear generalization. The aim was to investigate whether 

increased anxiety during COVID-19 can lead to increased conditionability and gener-

alization of fear. To this end, a classical fear conditioning study was conducted with 

healthy subjects and COVID-19-related anxiety was measured. Subjects with higher 

COVID-19-related anxiety tended to discriminate poorly between safe and dangerous 

stimuli during fear learning and to generalize their fear response more strongly. 

Based on the results of the first study, the third study investigated whether the 

administration of glucose as a cognitive enhancer could improve the effects of fear 

extinction. Two fear conditioning studies were conducted in healthy subjects, in which 

the subjects were given either glucose or a placebo before (Study 1) or after (Study 2) 

extinction. Subjects in the glucose group showed a greater reduction in fear during 

extinction (Study 1) and during a later recall (Study 2), providing preliminary evidence 

for the efficacy of glucose as a cognitive enhancer in fear extinction. 

In conclusion, the three studies presented in this dissertation provide im-

portant insights for current research on fear extinction processes and their possible 

enhancement by cognitive enhancers such as insulin or glucose. Furthermore, the im-

portance of environmental stressors in the development and maintenance of anxiety 

disorders is highlighted by the demonstrated influence of COVID-19-related anxiety 

on important fear learning processes such as fear generalization. By integrating the 
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knowledge gained, the studies contribute to a better understanding of fear learning 

processes and lay the foundation for further research to gain practical implications for 

improving exposure therapy. 
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Zusammenfassung 

Angststörungen zählen zu den häufigsten psychischen Erkrankungen weltweit 

und haben aufgrund der hohen Prävalenz eine erhebliche Bedeutung für die öffentli-

che Gesundheit (Wittchen et al., 2011). Obwohl es eine effektive Therapie gegen 

Angststörungen gibt, leiden Millionen von Menschen unter Symptomen, die das all-

tägliche Leben erschweren und so zu einer anhaltenden Belastung und Verringerung 

der allgemeinen Lebensqualität führen (Craske et al., 2009). In der kognitiven Verhal-

tenstherapie hat sich die Expositionstherapie als bewährte Therapieoption zur erfolg-

reichen Behandlung vieler Angststörungen erwiesen. Während der Exposition werden 

die PatientInnen systematisch mit den angstauslösenden Reizen in einer kontrollierten 

und sicheren Umgebung konfrontiert, bis die Angstreaktion abnimmt. Trotz hoher Ef-

fektivität, profitieren nicht alle AngstpatientInnen gleichermaßen von der Therapie 

und es kommt immer wieder zu Therapieabbrüchen, einer unvollständigen Genesung 

oder einem Rezidiv der Symptomatik (Arch & Craske, 2009).  

Die Entstehung und Behandlung von Angststörungen kann unter anderem 

durch Prozesse klassischer Konditionierung erklärt werden, bei denen neutralen Rei-

zen durch Assoziationslernen eine negative Bedeutung zugeschrieben wird. Klassische 

Angstkonditionierungsmodelle helfen die Entstehung, Aufrechterhaltung und Be-

handlung von Angststörungen zu verstehen. Gleichzeitig können Umweltfaktoren, wie 

traumatische Erlebnisse oder stressige Lebensereignisse eine zentrale Rolle bei der 

Entstehung und dem Verlauf von Angststörungen spielen. Stress kann neurobiologi-

sche Systeme, insbesondere das limbische System und die Amygdala dysregulieren 

und so die Anfälligkeit für die Entwicklung von Angststörungen erhöhen (Garakani et 

al., 2006). Aktuelle globale Ereignisse, wie die COVID-19 Pandemie und andere Krisen 

können diese Prozesse durch chronischen Stress verschärfen, und so zu einer weiter 

steigenden Prävalenz von Angststörungen führen (Kazmi et al., 2020).  

Es ist von zentraler Bedeutung Wege zu Verbesserung von Therapieoptionen 

für Angststörungen, insbesondere zur weiteren Verbesserung der Expositionstherapie, 

zu finden. Neben dem Einsatz von zusätzlich zur Expositionstherapie verabreichten 

klassischen Psychopharmaka, erweist sich die Verwendung von sogenannten kogniti-
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ven Verstärkern, also Substanzen, welche neurokognitive Prozesse wie Aufmerksam-

keit, Gedächtnis und Lernen beeinflussen, als vielversprechend. Studien haben meh-

rere solcher Substanzen identifiziert, welche bereits im Kontext der Angstextinktion 

positive Effekte zeigten, darunter Hormone wie Oxytocin oder Cortisol (Brueckner et 

al., 2019; de Quervain et al., 2009; Eckstein et al., 2015, 2019).  

Ziel der vorliegenden Arbeit ist es, die Rolle von Umweltstress und kognitiven 

Verstärkern als modulierende Faktoren von Angstkonditionierungsprozessen zu un-

tersuchen. Dabei wurden mehrere Ziele verfolgt und insgesamt drei empirische Stu-

dien durchgeführt. Ziel der ersten Studie war es das Potential von intranasal verab-

reichtem Insulin als kognitiver Verstärker bei der Extinktion von Angst zu untersuchen. 

Zu diesem Zweck wurde eine klassische Angstkonditionierungsstudie mit gesunden 

ProbandInnen durchgeführt. Vor der Extinktion wurde den ProbandInnen entweder 

Insulin oder ein Placebo per Nasenspray verbreicht. ProbandInnen der Insulingruppe 

zeigten eine stärkere Abnahme der Angstreaktion während der Extinktion, was einen 

ersten Hinweis für die förderliche Wirkung von intranasalem Insulin als kognitiver Ver-

stärker der Angstextinktion darstellt.  

In der zweiten Studie wurde untersucht, wie sich auf die COVID-19 Pandemie 

bezogene Ängste auf das Angstlernen und die Angstgeneralisierung auswirken. Ziel 

war es zu untersuchen, ob eine erhöhte Ängstlichkeit während COVID-19 zu einer ver-

stärkten Konditionierbarkeit und Generalisierung von Angst führen kann. Dazu wurde 

eine klassische Angstkonditionierungsstudie mit gesunden ProbandInnen durchge-

führt und die COVID-19 bezogene Ängstlichkeit gemessen. ProbandInnen mit höherer 

COVID-19 bezogener Ängstlichkeit zeigten eine Tendenz zur schlechteren Diskrimi-

nierung zwischen sicheren und gefährlichen Reizen während des Angstlernens sowie 

eine stärker ausgeprägte Generalisierung der Angstreaktion.  

Aufbauend auf den Ergebnissen der ersten Studie wurde in der dritten Studie 

untersucht, ob die Verabreichung von Glukose als kognitiver Verstärker die Effekte der 

Angstextinktion verbessern kann. Es wurden zwei Angstkonditionierungsstudien mit 

gesunden ProbandInnen durchgeführt, bei denen den ProbandInnen vor (Studie 1) 

bzw. nach der Extinktion (Studie 2) entweder Glukose oder ein Placebo verabreicht 

wurde. ProbandInnen der Glukosegruppe zeigten eine stärkere Abnahme der 
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Angstreaktion während der Extinktion (Studie 1) und einem späteren Abruf (Studie 2), 

was einen ersten Beleg für die Wirksamkeit von Glukose als kognitiver Verstärker bei 

der Extinktion von Angst darstellt. 

Zusammenfassend liefern die drei in dieser Arbeit vorgestellten Studien wich-

tige Erkenntnisse für die aktuelle Forschung zu Prozessen der Angstextinktion und 

beispielsweise deren mögliche Verbesserung durch kognitive Verstärker wie Insulin 

oder Glukose. Zudem wird die Bedeutung von umweltbezogenen Stressfaktoren auf 

die Entstehung und Aufrechterhaltung von Angststörungen durch den nachgewiese-

nen Einfluss des COVID-19 bezogenen Angsterlebens auf wichtige Angstlernprozesse, 

wie die Generalisierung von Angst, unterstrichen. Durch die Integration der gewonne-

nen Erkenntnisse tragen die Studien zu einem besseren Verständnis von Angstlern-

prozessen bei und legen dabei den Grundstein für weitere Forschung, um mit deren 

Hilfe praktische Implikationen für die Verbesserung der Expositionstherapie gewinnen 

zu können.  
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1 Introduction 

Anxiety disorders represent a significant public health concern due to their 

high prevalence and debilitating impact on the well-being of individuals (Wittchen et 

al., 2011). With a global prevalence of 4% and approximately 300 million people 

worldwide affected by anxiety disorders (World Health Organization, 2023), under-

standing their characteristics, etiology, and effective treatment strategies has become 

paramount in research and clinical practice (Baxter et al., 2013; Craske et al., 2009; 

Craske & Stein, 2016; Santomauro et al., 2021; Szuhany & Simon, 2022). Anxiety dis-

orders cover a wide range of conditions, including specific phobias, panic disorder, 

social anxiety disorder (SAD), generalized anxiety disorder (GAD), and, in a broader 

context, other stress- and trauma-related disorders like post-traumatic stress disorder 

(PTSD), each characterized by different types of fears and behavioral manifestations. 

Diagnostic criteria typically include excessive and persistent worry, fear, or avoidance 

behaviors that frequently cause significant distress or interfere with personal, social, 

work-related, or other important areas of functioning (Craske et al., 2009). For exam-

ple, GAD is characterized by excessive and persistent worry and fear that is not limited 

to specific situations or objects and is accompanied by physical symptoms such as 

muscle tension, sleeping problems, and difficulty concentrating (Craske et al., 2009; 

Newman & Erickson, 2010). While specific phobias are characterized by an excessive 

fear of certain objects or situations, such as heights, animals, or confined spaces, re-

sulting in avoidance behaviors (Craske et al., 2009; Eaton et al., 2018), social anxiety 

disorder, refers to an intense fear of negative evaluation and embarrassment in social 

situations, which can lead to social withdrawal (Craske et al., 2009; Stein & Stein, 2008). 

Panic disorder is characterized by recurrent panic attacks that occur suddenly and are 

accompanied by physical symptoms such as rapid heartbeat, dizziness, and shortness 

of breath (Craske et al., 2009; Roy-Byrne et al., 2006). And finally, PTSD, which is not 

considered an anxiety disorder per se by diagnostic criteria but belongs to separate 

category of trauma-related disorders, occurs after a person has experienced a trau-

matic event that has caused severe emotional distress. Typical triggers include physi-

cal violence, sexual abuse, war, natural disasters, or serious accidents. Symptoms of 

PTSD often include recurrent and distressing memories of the trauma, nightmares, 
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strong emotional reactions to events reminiscent of the trauma, and avoidance be-

haviors to cope with these memories (Arieh et al., 2017; Yehuda et al., 2015).  

The etiology of anxiety disorders is complex and results from a variety of in-

teractions between environmental stressors, cognitive processes, genetic predisposi-

tion, and neurobiological factors (Thakar et al., 2024). While twin studies support the 

idea of genetic predispositions (Hettema et al., 2001), neurobiological models empha-

size the role of neurotransmitters such as serotonin, noradrenaline and gamma-ami-

nobutyric acid (GABA) as well as the dysregulation of the limbic system, especially the 

amygdala, in the development of anxiety disorders (Charney et al., 2000; Garakani et 

al., 2006; Mathew et al., 2008). Additionally, environmental factors such as traumatic 

experiences, stressful life events and early childhood experiences can also increase the 

risk of developing anxiety disorders (Blanco et al., 2014; Michael, Zetsche, et al., 2007; 

Nugent et al., 2011; Suliman et al., 2009). Psychological models focus on learning pro-

cesses, cognitive processing and individual differences in the perception of threats 

and coping with stress. Examples include cognitive and classical conditioning models 

(Mineka & Oehlberg, 2008; Mineka & Zinbarg, 2006; Zinbarg et al., 2022). A promi-

nent, yet controversial example of the classical conditioning approach is the two-fac-

tor theory proposed by Mowrer (1951), which posits that anxiety is acquired through 

classical conditioning (i.e., the association of a neutral stimulus with an aversive stim-

ulus) and maintained through operant conditioning (i.e., avoidance or escape behav-

iors that reduce anxiety; Feather, 1963; Mowrer, 1951). Although this theory cannot 

explain all facets in the development of anxiety disorders, it has provided valuable 

insights into the mechanisms underlying the acquisition and maintenance of anxiety-

related behaviors and classical conditioning continues to be considered an important 

process in learning models of etiology (Mineka & Oehlberg, 2008). 

The relevance of studying anxiety disorders has been further underscored by 

recent global events such as the COVID-19 pandemic, socio-political crises, and armed 

conflicts, which have exacerbated stress levels and increased susceptibility to anxiety-

related conditions (Carpiniello, 2023; Delpino et al., 2022; Deng et al., 2021; Fortuna et 

al., 2023; Friesen et al., 2022; Kazmi et al., 2020; Kurapov et al., 2023; Riad et al., 2022; 

Santomauro et al., 2021). Such environmental stressors not only have a direct impact 
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on the individual through the threat of illness, economic instability, and social disrup-

tion, but also lead to secondary stressors such as isolation, loss of social support net-

works, and uncertainty about the future (e.g., Alhaffar & Janos, 2021; Ben Salah et al., 

2023; Ojala et al., 2021; Saalwirth & Leipold, 2023; Thoits, 2010; Zheng et al., 2021). 

Experiencing chronic crises or trauma-like events can contribute significantly to the 

development and exacerbation of anxiety disorders by triggering biological and psy-

chological responses that dysregulate the stress response system and increase vul-

nerability to anxiety symptoms (Ghasemi et al., 2022; McLaughlin et al., 2007; Pêgo et 

al., 2010; Shalev, 2000). In addition, the long duration and unpredictability of crises 

can lead to chronic stress, which is associated with a generally higher risk of develop-

ing anxiety disorders and other mental health problems (Marin et al., 2011; Pêgo et 

al., 2010; Tafet & Bernardini, 2003). Unequal access to resources and support systems 

during times of crisis can also exacerbate existing mental health disparities, dispro-

portionately affecting vulnerable populations (e.g., Bacigalupe & Escolar-Pujolar, 

2014; Mezzina et al., 2022; Siu, 2021). Therefore, understanding the role of current 

crises as environmental stressors in the development and maintenance of anxiety dis-

orders is critical to the development of public health strategies and interventions 

aimed at mitigating the mental health impacts of these global events. 

The need to develop strategies to improve the treatment of anxiety disorders 

is underscored by the mixed effectiveness of existing treatment options. Although 

psychotherapeutic approaches such as cognitive behavioral therapy (CBT) and medi-

cations such as selective serotonin reuptake inhibitors (SSRIs) are commonly used, 

their effects are heterogeneous (DiMauro et al., 2013; Koen & Stein, 2011; Otte, 2011; 

Stewart & Chambless, 2009; Szuhany & Simon, 2022). Studies show that CBT, and es-

pecially exposure therapy, can have moderate to large effects in anxiety disorders 

(Carpenter et al., 2018; DiMauro et al., 2013; Hofmann et al., 2012), but it is not equally 

effective in all patients, and may be associated with a moderate relapse rate after 

completion of therapy (Arch & Craske, 2009; Carpenter et al., 2018). Similarly, while 

SSRIs show some efficacy, many patients do not fully respond to these medications, 

and side effects can interfere with adherence (Bandelow et al., 2015; Demyttenaere & 

Jaspers, 2008; Ferguson, 2001; Hofmann et al., 2012; Sinclair et al., 2009; Wang et al., 
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2018). A promising way to improve the efficacy of these therapies could be the inte-

gration of cognitive enhancers. By specifically modulating neurocognitive processes 

such as attention, memory, and learning, cognitive enhancers could help improve the 

efficacy of existing therapies (Hofmann et al., 2011). For example, cognitive enhancers 

could strengthen cognitive processes during exposure therapy by supporting the ex-

tinction of conditioned fear stimuli and promoting the consolidation of new, adaptive 

learning (e.g., Kaplan & Moore, 2011; Merz et al., 2018). However, more research is 

needed to determine the optimal dosage, timing, and combination of cognitive en-

hancers with existing therapies, as well as to consider potential side effects and long-

term effects. 

In light of these considerations, this dissertation examines how environmental 

stress contributes to pathological anxiety processes, such as overgeneralization of 

fear, on the one hand. More specifically, it will be investigated to what extent subjec-

tively perceived psychological impairment during the recent COVID-19 pandemic af-

fects fear learning and fear generalization in healthy subjects (Study II). On the other 

hand, the potential use of cognitive enhancers as an adjuvant to exposure therapy for 

anxiety disorders will be investigated. To this end, it will be investigated to what extent 

the substances insulin (Study I) and glucose (Study III), used as cognitive enhancers, 

have beneficial effects on the extinction of fear in healthy subjects.  
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2 Background and Rationale 

In the following, the main theoretical background of the dissertation is out-

lined, important models are introduced, and interrelations are explained. This over-

view provides the necessary framework for understanding the concepts underpinning 

the published articles within their broader theoretical context. 

2.1 Classical Fear Conditioning Processes 

Classical fear conditioning describes an associative learning process that ex-

plains the development of fears based on Pavlovian conditioning. Models of classical 

fear conditioning are widely used to describe the etiology of anxiety disorders and 

other trauma-related disorders, such as PTSD (Mineka & Oehlberg, 2008; Mineka & 

Zinbarg, 2006; Zinbarg et al., 2022). Experimental paradigms based on these models 

allow the investigation of essential processes in the development of anxiety and anx-

iety-related disorders in the laboratory—including in healthy participants—and, thus, 

are an invaluable tool for clinical-psychological research (Delgado et al., 2006; Lau et 

al., 2008; Lissek et al., 2005; Lonsdorf et al., 2017; Otto et al., 2007).  

2.1.1 Acquisition and Extinction of Fear Responses 

Classical fear conditioning paradigms serve as a fundamental model for un-

derstanding associative learning in the context of fear responses. It is based on the 

establishment of associations between stimuli and responses, specifically the acquisi-

tion and extinction of fear responses. 

Fear acquisition occurs through the repeated pairing of a neutral stimulus (NS), 

originally associated with a neutral response (NR), with an aversive, unconditioned 

stimulus (US), which naturally elicits a fear response (unconditioned response, UR). 

Over time, the NS becomes a conditioned stimulus (CS) that predicts the occurrence 

of the US and consequently elicits a conditioned response (CR) similar to the UR (see 

Figure 1). This process, known as acquisition, emphasizes the formation of associations 

between the CS and the aversive US and consolidates the role of the CS as a predictor 

of threat (Lonsdorf et al., 2017). In a commonly used variant known as differential fear 

conditioning, two types of CS are used. One that is used as a predictor of US (CS+), 
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and one that is never paired with US (CS−), which provides several advantages in re-

search, such as increased power, control for interindividual differences in responding, 

or no need for a control group (Lonsdorf et al., 2017). 

 

Figure 1 

Schematic representation of classical (fear) conditioning. 

 

Note: a) the neutral stimulus (NS) triggers a neutral response (NR), the unconditioned 

stimulus (US) triggers an unconditioned response; b) when repeatedly paired with the 

US, the NS becomes the conditioned stimulus (CS), predicting the UR; c) the CS alone 

triggers a conditioned response (CR), similar to the original UR. 

 

Extinction, on the other hand, involves the gradual reduction or elimination of 

the conditioned fear response. This is accomplished by repeated exposure to the CS 

without presentation of the US. Extinction trials weaken the association between the 

CS and the aversive outcome, resulting in a decrease in the conditioned fear response. 

Extinction represents a form of new learning in which the CS is associated with the 

absence of the aversive US, competing with the acquisition memory trace and ulti-

mately decreasing the fear response (Bouton, 2004; Myers & Davis, 2007). Extinction 

learning is the main action mechanism of exposure therapy (Furini et al., 2014; Rach-

man, 1989) and therefore plays a key role in the applied therapeutic work. 

Several factors can influence the acquisition and extinction of fear. The fre-

quency and intensity of the coupling between CS and US, as well as the predictability 

of the US, play a critical role (Dunsmoor et al., 2007; Flora & Pavlik, 2013; Grady et al., 

2016; Lonsdorf et al., 2017; Treviño, 2016). Higher rates of reinforcement, where the 

CS reliably predicts the occurrence of the US, generally lead to stronger acquisition of 
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fear responses (Grady et al., 2016). Conversely, partial reinforcement, where the CS 

does not reliably predict the US, can slow acquisition but also make the learned asso-

ciation more resistant to extinction or return of fear (RoF; Dunsmoor et al., 2007; Flora 

& Pavlik, 2013). 

2.1.2 Generalization of Fear 

Fear generalization is an integral part of the classical conditioning process, 

whereby learned fear responses extend to stimuli beyond those directly involved in 

conditioning (Dymond et al., 2015). Generalization involves the transfer of the CS-US 

association established during acquisition to similar, often neutral, stimuli that were 

not originally part of the conditioning process but are similar to the CS. 

These similar stimuli, called generalized stimuli (GS), may share visual, percep-

tual, or semantic features with the CS. As a result of this similarity, GS become predic-

tors of the aversive US and elicit CRs similar to those elicited by the CS. The strength 

of the CR elicited by a GS is typically proportional to its similarity to the original CS 

(Dymond et al., 2015; Ghirlanda & Enquist, 2003). Thus, the degree of similarity be-

tween a GS and the CS influences the intensity of the response it elicits. 

Fear generalization contributes to the adaptive nature of fear responses by 

allowing individuals to respond to novel stimuli that are similar to previously encoun-

tered threats. However, excessive generalization can lead to maladaptive fear re-

sponses and contribute to anxiety disorders, which are characterized by heightened 

sensitivity to perceived threats in the environment (Cooper et al., 2022; Dunsmoor & 

Paz, 2015; Fraunfelter et al., 2022; Lissek et al., 2014). 

Understanding the factors that influence fear generalization, such as the de-

gree of stimulus similarity and contextual cues, is crucial for elucidating the mecha-

nisms underlying fear-related psychopathology and for informing therapeutic inter-

ventions aimed at mitigating excessive fear responses (Cooper et al., 2022; Dymond 

et al., 2015). 

2.1.3 Fear Conditioning and Anxiety Disorders 

Anxiety disorders represent a spectrum of psychological conditions character-

ized by diverse symptoms and manifestations, including phobias, panic disorder, and 
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generalized anxiety disorder (GAD). Fear conditioning processes are crucial in the de-

velopment and maintenance of anxiety disorders. For example, alterations in fear con-

ditioning processes, such as increased fear responses during extinction and increased 

generalization of fear, are associated with increased susceptibility to anxiety disorders 

and PTSD (Cooper et al., 2022; Engelhard et al., 2009; Guthrie & Bryant, 2006; Lommen 

et al., 2013; Orr et al., 2012). In reverse, anxiety disorders may also significantly affect 

fear conditioning processes. A meta-analyses of differential fear conditioning para-

digms showed that patients with anxiety disorders showed slightly stronger fear re-

sponses to the CS+ than controls in both the acquisition and extinction phases (Lissek 

et al., 2005). This suggests that anxiety patients show enhanced fear learning during 

the acquisition phase and stronger fear expression during the extinction phase com-

pared to healthy controls (Duits et al., 2015; Lissek et al., 2005). However, a more recent 

meta-analysis could not find enhanced fear reactions to the CS+ during acquisition 

but found instead that compared to healthy controls, anxiety patients showed slightly 

enhanced fear responses to the CS−, indicating both a reduced ability to suppress fear 

in the presence of non-threatening stimuli and a greater tendency to generalize fear 

(Duits et al., 2015). In both meta-analysis, no significant differences were observed 

between patients and controls in discriminating between CS+ and CS− during acqui-

sition of fear (Duits et al., 2015; Lissek et al., 2005). During extinction, anxiety patients 

showed stronger fear responses to CS+ compared to healthy controls and tended to 

maintain an increased differentiation between CS+ and CS−, while no differences were 

observed in fear responses to CS−. These results suggest delayed or reduced fear 

extinction in anxiety patients (Duits et al., 2015).  

2.2 The Role of Stress in Anxiety Disorders 

Stress plays a central role in the development and manifestation of anxiety 

disorders and other trauma-related disorders like PTSD (Makino et al., 2002; Marin et 

al., 2011; Ramirez et al., 2017; Ströhle & Holsboer, 2003). Stress occurs when a person 

perceives that the demands of the environment exceed their adaptive capacities (Co-

hen et al., 1997, 2007). Studies of psychological stress have focused either on the oc-

currence of environmental events that are consensually perceived as taxing one's 

adaptive capacity, or on individual responses to events that indicate such taxing, such 
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as perceived distress and negative affect elicited by the event (Cohen et al., 2007). 

Thus, environmental stressors can be subjective negative events, traumatic experi-

ences such as serious accidents, rape, war or natural disasters, as well as chronic strains 

such as illness or the recent global COVID-19 pandemic (Thoits, 2010).  

2.2.1 Stress-Related Neurobiological Mechanisms 

As a known risk factor for the onset of psychological disorders, stress triggers 

specific stress responses, with the hypothalamic-pituitary-adrenal (HPA) axis playing 

a central role in stress regulation. Activation of the HPA axis occurs rapidly upon ex-

posure to environmental stressors, resulting in the secretion of corticotropin-releasing 

factor (CRF) in the hypothalamus. Released CRF leads to a secretion of adrenocortico-

tropic hormone (ACTH) in the anterior pituitary gland and antidiuretic hormone (ADH) 

by neurosecretory neurons in the parvocellular component of the paraventricular nu-

cleus (PVN). ACTH then stimulates the synthesis and release of corticosteroids, espe-

cially the glucocorticoid cortisol, by the adrenal glands (Papadimitriou & Priftis, 2009; 

Pêgo et al., 2010; Spencer & Deak, 2017; Stein & Steckler, 2010). 

The PVN serves as a critical regulator of the HPA stress response, integrating 

outputs from multiple stress-sensitive brain circuits (Jiang et al., 2019; Pêgo et al., 

2010). Different stressors, ranging from physical threats to cognitive stressors, activate 

the PVN through different neural pathways, with some stressors directly stimulating 

the PVN, while others elicit central responses aimed at mobilizing resources and im-

mune reserves in anticipation of homeostatic perturbations (Cole & Sawchenko, 2002; 

Herman et al., 2016; Pêgo et al., 2010). Thereby, the limbic system, especially the 

amygdala, plays a key role in coordinating anticipatory stress responses and shaping 

stress-related anxiety behavior (Herman et al., 2005; Radley et al., 2017).  

Glucocorticoids, especially cortisol, which are the primary effectors of the HPA 

axis, influence energy metabolism by depleting glycogen in muscle tissue and increas-

ing glucogenesis in the liver (Kuo et al., 2015), thus providing the body with more 

energy to prepare for possible threats. Additionally, immune and inflammatory re-

sponses are dampened, thereby preventing excessive activation of innate stress re-

sponses in the short term (de Kloet et al., 2005; Pêgo et al., 2010). In the brain, cortisol 
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binds to two different types of receptors, mineralocorticoid receptors (MR) and glu-

cocorticoid receptors (GR). MR seem to be involved in the appraisal process and the 

initiation of the stress responses, whereas GR appear to be involved in the mobiliza-

tion of metabolic resources and the major proportion of stress-related behavioral al-

terations. GR-mediated processes also include anxiety-like behavior and enhanced 

learning and memory function, especially memory consolidation (Pêgo et al., 2010). 

More specifically, cortisol promotes the consolidation of recently acquired memories, 

but it can also interfere with the recall of previously learned information (de Quervain 

et al., 2009). However, prolonged activation of GR is linked to negative effects on var-

ious cognitive functions (Cerqueira et al., 2005, 2007; Finsterwald & Alberini, 2014; 

McEwen, 2005; Popoli et al., 2012). If the concentration of glucocorticoids is increased, 

the further release of CRH and ACTH and thus other glucocorticoids is reduced by an 

inhibitory feedback loop (Papadimitriou & Priftis, 2009). Long-term elevated gluco-

corticoid levels, on the other hand, may lead to chronic immune system dysfunction, 

endocrine dysregulation and other behavioral and neuropathological changes. 

(Cerqueira et al., 2008; Pêgo et al., 2010; Sorrells & Sapolsky, 2007; Sousa et al., 2008).  

Anxiety and stress- or trauma-related disorders have been associated with HPA 

axis abnormalities (Baumeister et al., 2014), although the patterns are different from 

those typically seen in affective disorders such as depression (Min et al., 2012; Porter 

& Gallagher, 2006). For example, while many individuals with depression show signs 

of hyperactive HPA axis function (Jokinen & Nordström, 2009), patients with anxiety 

disorders exhibit a wide range of HPA activity patterns, likely due to the heterogene-

ous nature of these disorders (Handwerger, 2009). Some anxiety and trauma-related 

disorders may manifest with hyperactivity of the HPA axis, whereas hypoactivity of the 

HPA axis has been observed in certain patients with PTSD (Jacobson, 2014). This vari-

ation in HPA activity raises the question of whether it plays a causative role in the 

development of these disorders. While clinical evidence supporting this idea is limited 

(Packard et al., 2016), some studies suggest that natural genetic variation in HPA-reg-

ulatory genes, for example, may increase susceptibility to developing anxiety or 

trauma-related disorders or even influence treatment outcomes (Flandreau et al., 

2012). In addition, PTSD may be more likely to develop in individuals with low cortisol 

levels or increased negative glucocorticoid feedback, which may affect sympathetic 
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responses and memory consolidation (Sriram et al., 2012; Yehuda et al., 2004). Taken 

together, these findings suggest that the risk of developing an anxiety disorder may 

be influenced by changes in HPA axis activity. Studies of chronic stress further support 

the link between HPA overactivity and anxiety (Packard et al., 2016). Chronic stress in 

rodents is associated with enhanced HPA axis activity and increased anxiety-related 

behaviors (Gamallo et al., 1986; Herman et al., 2008; Malta et al., 2021; McEwen, 2007). 

Conversely, interventions aimed at attenuating CRH and GR pathways have demon-

strated efficacy in reducing behavioral anxiety (Azogu & Plamondon, 2017; de la Trem-

blaye et al., 2016; Tronche et al., 1999). In addition, chronic stress is thought to alter 

the structure and functioning of the hippocampus. For example, animal studies have 

shown that while chronic stress leads to impairments in hippocampus-dependent spa-

tial memory, its effects on spatial working memory are more transient (Conrad, 2010; 

Sandi et al., 2003). This effect also seems to depend on the level of arousal and thus 

on processes in other brain areas, such as the amygdala, as chronic stress under mod-

erate to strong fear arousal may cause only minimal impairments or even facilitate 

spatial learning (Conrad, 2010). At the neuronal level, chronic stress or persistently 

high glucocorticoid levels can cause the death of neurons in the hippocampus (Sapol-

sky et al., 1986), and accelerate dendritic retraction (Conrad, 2010; Lambert et al., 1998; 

McKittrick et al., 2000). However, this process seems reversible after recovery from 

chronic stress (Conrad, 2010; McLaughlin et al., 2007; Sousa et al., 2000; Vyas et al., 

2004). The hippocampus plays a critical role in processing contextual fear information 

and is involved in various aspects of fear acquisition, generalization, and extinction 

(Bernier et al., 2017; Ghasemi et al., 2022; Morellini et al., 2017). For example, the den-

tate gyrus (DG) of the hippocampus appears to be central to fear generalization and 

discrimination, contributing to both processes, possibly due to its involvement in pat-

tern separation (Lesuis et al., 2021; Rolls, 1996; Treves & Rolls, 1994). Hippocampal 

activity has been linked to both congenital and learned fear responses in rodents (Or-

sini et al., 2011; Zhang et al., 2017). In addition, hippocampal suppression seems to 

impair contextual fear acquisition and to promote fear generalization, whereas gluco-

corticoids mediate fear generalization by modulating the size of activated cell popu-

lations in the DG (Bernier et al., 2017; Ghasemi et al., 2022; Lesuis et al., 2021; Zhang 

et al., 2017). Furthermore, hippocampal activity is critical for both fear acquisition and 
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extinction, with distinct neuronal ensembles involved in both processes (Bernier et al., 

2017; Denny et al., 2014; Lacagnina et al., 2019). Manipulation of these ensembles 

suggests a competition between neurons involved in fear acquisition and those re-

sponsible for extinction that influences fear expression and inhibition following ex-

tinction training (Ghasemi et al., 2022; Lacagnina et al., 2019). Thus, chronic stress may 

also affect hippocampus-dependent fear processes through its effects on neural plas-

ticity. 

2.2.2 Stress and Anxiety in Fear Conditioning 

Fear conditioning studies investigating the effects of environmental stress 

have shown that stress can affect central conditioning processes. A study by Merz et 

al. (2013), using functional magnetic resonance imaging (fMRI), found that psychoso-

cial stress enhanced the differentiation between CS+ and CS− in the hippocampus 

during the early trials of fear acquisition. However, it also led to a decrease in condi-

tioned responses in the medial frontal cortex during the later acquisition phase. They 

also found sex differences in the effects of stress on fear conditioning. Specifically, 

stress impaired the CR of men in areas like the amygdala, anterior cingulate gyrus, 

and nucleus accumbens. In contrast, women who were taking oral contraceptives, 

leading to reduced levels of free cortisol, showed improved discrimination between 

the CS+ and CS− under stress. This suggests that psychosocial stress has a detrimental 

effect on the neural mechanisms involved in learning and expressing fear in men. In 

contrast, it appears to enhance these mechanisms in women (Merz et al., 2013). Other 

studies have reported different and sometimes opposite sex effects at the electroder-

mal level and when women are not taking oral contraceptives. For example, while 

stressors were shown to lead to an overall increase in endogenous cortisol levels, as a 

measure of physiological stress experience, in both male and female participants, ex-

posure to stress facilitated the acquisition of fear in men as measured by skin con-

ductance, while stress appeared to inhibit fear conditioning in free cycling women 

(Jackson et al., 2006). In male participants, endogenous post-acquisition cortisol levels 

significantly correlated with skin conductance responses (SCR) during fear acquisition, 

whereas this correlation was not observed in female participants. Additionally, cortisol 

levels after acquisition of fear were positively correlated with SCR during a retention 
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test 24 hours later, but only in participants with generally high cortisol levels (Zorawski 

et al., 2006). Other studies investigated the effects of experimentally administered cor-

tisol, i.e. hydrocortisone, on fear conditioning processes. Similar to the studies de-

scribed above, some showed that hydrocortisone administration affected acquisition 

and extinction learning differently in males and females. For example, while adminis-

tered hydrocortisone interfered with fear acquisition of SCR and neuronal activity in 

males, it facilitated or had no effect on fear acquisition in females, who were taking 

oral contraceptives (Stark et al., 2006). The observed discrepancies in sex-specific ef-

fects on cortisol during fear conditioning may be due to different methodological ap-

proaches used in the studies, such as the use of single cue versus differential condi-

tioning paradigms or the salience of the used CS (Merz et al., 2013). Additionally, the 

influence of hormonal factors, particularly the use of oral contraceptives in women, 

seems to play an important role. Nevertheless, the studies suggest a significant cor-

relation between cortisol and fear acquisition processes. 

Animal studies have shown that stress and the associated glucocorticoids 

might also affect the extinction of fear and contribute to successful extinction learning 

(Barrett & Gonzalez-Lima, 2004; Blundell et al., 2011; Brueckner, 2018; Yang et al., 

2006, 2007). In humans, studies have demonstrated that stress leads to a stronger, 

context-dependent RoF (Brueckner, 2018; Hamacher-Dang et al., 2015), and that ele-

vated endogenous cortisol levels prior to extinction learning significantly reduced 

conditioned fear during extinction and memory recall test 24 and 48 hours after ac-

quisition in men (Bentz et al., 2013; Brueckner et al., 2019). Conversely, administration 

of hydrocortisone prior to extinction resulted in impaired extinction learning in men 

(Merz et al., 2014). The contrasting results of Merz et al. (2014) may be explained by 

the fact that extinction occurred immediately after the acquisition and therefore, un-

like in the Bentz et al. (2013) study, acquisition could not be fully consolidated. Thus, 

if acquisition is not sufficiently consolidated, cortisol appears to inhibit extinction 

learning, whereas after sufficient consolidation, it seems to support extinction learning 

and memory. In another study, and consistent with Bentz et al. (2013), the pre-extinc-

tion administration of hydrocortisone 24 hours after acquisition both reduced fear 

retrieval during extinction and promoted extinction memory consolidation in men 



34 

(Merz et al., 2018). However, hydrocortisone did not reduce the contextual depend-

ence of extinction in this study. In addition, when administered after extinction, hy-

drocortisone had a negative effect on retrieval of context dependent extinction 

memory and promoted the reinstatement of fear, particularly in men (Kinner et al., 

2016, 2018). Yet, hydrocortisone administration after extinction resulted in stronger 

extinction memory and lower RoF of context independent fear memory (Brueckner et 

al., 2019). Because of its memory-enhancing effects for emotional learning, cortisol 

has been suggested to improve extinction learning and thus, the success of exposure 

therapy (Schwabe et al., 2012). Studies suggest that administration of hydrocortisone 

prior to exposure improves treatment success in patients with social, spider, or height 

phobia, and PTSD (de Quervain et al., 2011; Lonsdorf & Merz, 2017; Soravia et al., 

2006, 2014; Suris et al., 2010; Yehuda et al., 2015), possibly by reducing fear recall 

during extinction and facilitating consolidation of extinction learning (de Quervain & 

Margraf, 2008; Merz et al., 2018). Additionally, in two studies with spider phobia and 

panic disorder patients, endogenous cortisol levels have been shown to be associated 

with greater treatment success when using exposure therapy (Lass-Hennemann & Mi-

chael, 2014; Meuret et al., 2015). 

2.3 Cognitive Enhancers and Fear Extinction 

Cognitive enhancers are substances that improve various cognitive functions 

such as memory, attention, motivation and concentration (Bostrom & Sandberg, 2009; 

Gründer, 2012; Lanni et al., 2008; Malik et al., 2007; Napoletano et al., 2020; Narahashi 

et al., 2004). These enhancers, also known as nootropics, include a wide range of sub-

stances, including pharmaceuticals, dietary supplements, stimulants, hormones, and 

others. While not all cognitive enhancers are generally safe or healthy, some may pro-

vide mental benefits (Tabassum et al., 2012). 

Animal and human research has identified cognitive enhancers that improve 

fear extinction, particularly those that target pathways such as GABA, adrenergic, glu-

tamatergic, dopaminergic, cholinergic, and cannabinoid systems (Fitzgerald et al., 

2014; Kaplan & Moore, 2011; Singewald et al., 2015). For example, D-cycloserine, an 

agonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, has been found 

to improve fear extinction, particularly by enhancing context-dependent extinction 
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memory (Bouton et al., 2008; Norberg et al., 2008; Vervliet, 2008; Yamamoto et al., 

2008). Other agents, including aminomethylphosphonic acid (AMPA) receptor ago-

nists (Yamada et al., 2009, 2011; Zushida et al., 2007), brain derived neurotrophic factor 

(BDNF; Andero & Ressler, 2012; Rosas-Vidal et al., 2014), and histone deacetylase in-

hibitors (Lattal et al., 2007; Stafford et al., 2012; Whittle et al., 2013) also enhance fear 

extinction in animals (Kaplan & Moore, 2011). These different cognitive enhancers are 

thought to facilitate changes in synaptic plasticity within the cortico-amygdala net-

work through diverse mechanisms, leading to an improvement in fear extinction 

(Kaplan & Moore, 2011). 

2.3.1 Mechanisms of Cognitive Enhancers 

Cognitive enhancers exert their effects through a variety of mechanisms. Some 

act as neurotransmitters, directly targeting neuronal processes and facilitating synap-

tic transmission by binding to specific receptors. Others trigger secondary processes, 

like neurotransmitter synthesis, that indirectly affect neuronal function or provide en-

ergy for cognitive processes. 

One type of cognitive enhancers are natural substances and ingredients that 

come in the form of supplements containing antioxidants, vitamins, minerals, amino 

acids, fatty acids, and herbal ingredients (Tabassum et al., 2012). These substances 

play various roles in supporting neuronal function and cognition. For example, vita-

mins, like thiamine, cyanocobalamin, niacinamide, or folic acid, can contribute to neu-

rotransmitter synthesis and support nervous system functioning by promoting fatty 

acid and glucose metabolism (Calderón-Ospina & Nava-Mesa, 2020; Kaviani et al., 

2020; Kennedy & Haskell, 2011; Kumar et al., 2022; Poddar et al., 2023; Tardy et al., 

2020; Traber, 2021; Yang et al., 2021; S. Zhao et al., 2012). Omega-3 fatty acids may 

support cell communication and function, and supplementation has been shown to 

improve cognitive performance in individuals with omega-3 fatty acid deficiencies 

(Cooper et al., 2015; Mazereeuw et al., 2012; McCann & Ames, 2005), while antioxi-

dants protect against oxidative damage and may help maintain cognitive function 

(Blokhina et al., 2003; Lalkovičová & Danielisová, 2016; Lee et al., 2020; Pisoschi & Pop, 

2015). Amino acids are thought to support catecholamine production and promote 
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cognitive functions like alertness (Fernstrom, 1994; Fernstrom & Fernstrom, 2007; Lie-

berman, 2003; McTavish et al., 1999; Nicklas et al., 1975). Other substances such as 

iron are essential for neural development in infants and children, and support hemo-

globin formation for oxygen transport to the brain, thus supporting essential brain 

functioning (Falkingham et al., 2010; Gattas et al., 2020; Gutema et al., 2023; Izquierdo-

Álvarez et al., 2015). Creatine, a reversible energy store, which after being converted 

to creatinine phosphate, supports the regeneration of adenosine triphosphate (ATP), 

the universal energy source in cells, and thus may also support cognitive processes by 

acting on the energy metabolism in the brain (Rae et al., 2003). Further compounds 

such as lipoic acid improve oxygen utilization and antioxidant recycling, which can 

enhance memory functions (Kaur et al., 2021; Molz & Schröder, 2017), and herbal sup-

plements such as rhodiola rosea, ginkgo biloba, bacopa monniera, and brahmi ra-

sayana have also shown promise in improving cognitive function (Tabassum et al., 

2012). 

In addition to naturally nootropics, there are several pharmacological sub-

stances that have primary, but more often secondary, effects on cognitive processes. 

Some of the most common pharmacological cognitive enhancers are psychotropic 

drugs such as the psychostimulants modafinil (Kredlow et al., 2019; Repantis et al., 

2010; Turner et al., 2003) or methylphenidate (Carlier et al., 2019; Kapur, 2020; Repantis 

et al., 2010, 2021), which are used to treat attention deficit hyperactivity disorder 

(ADHD) and narcolepsy. They are thought to increase extracellular levels of the excit-

atory neurotransmitters catecholamines and to promote attention and memory pro-

cesses, thus being used off-label as cognitive enhancer (Berridge et al., 2006; Schelle 

et al., 2014). However, the evidence for these substances is mixed, and their use as 

cognitive enhancers is highly controversial due to both ethical and health concerns 

(Brühl et al., 2019; Carlier et al., 2019; Koren & Korn, 2021; Kredlow et al., 2019; Roberts 

et al., 2020). This is similar to non-pharmacological drugs such as nicotine. Studies 

suggest that both smokers and non-smokers experience improvements in attention, 

working memory, and performance on complex tasks when consuming nicotine 

(Baschnagel & Hawk, 2008; Herman & Sofuoglu, 2010; Lawrence et al., 2002; Meinke 

et al., 2006; Trimmel & Wittberger, 2004). The mechanisms underlying cognitive en-
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hancement by nicotine involve the prefrontal cortex (PFC) and hippocampal brain re-

gions, although the exact pathways are not fully understood. The release of glutamate, 

acetylcholine (ACh) and dopamine in the prefrontal cortex is thought to play a critical 

role in mediating the cognitive-enhancing effects of nicotine (Herman & Sofuoglu, 

2010; Parikh et al., 2008; Sarter et al., 2009). However, the precise functions of the 

different nicotinic ACh receptor (nAChR) subtypes in these processes remain uncertain 

(Herman & Sofuoglu, 2010). 

In addition to natural substances and psychopharmacological drugs, hor-

mones may play an important role as cognitive enhancers. For example, vasopressin 

or oxytocin, both produced by the hypothalamus, can promote neurogenesis and im-

prove general memory encoding and retrieval (Alescio-Lautier et al., 2000; Brambilla 

et al., 2016; Cahill & Alkire, 2003; Engelmann et al., 1996; Flood et al., 1992; McGaugh, 

1983; Savaskan et al., 2008; Weingartner et al., 1981). Cortisol, already introduced in 

the previous chapters, is a steroid hormone produced by the zona fasciculata of the 

adrenal gland in response to stress (Katsu & Baker, 2021). Its functions include in-

creasing blood glucose levels through gluconeogenesis, suppressing the immune sys-

tem, supporting carbohydrate, protein, and fat metabolism, and modulating memory 

(Fond et al., 2015; Law & Clow, 2020; Shields et al., 2016). Because of its lipophilic 

nature, cortisol can cross the blood-brain barrier and affect numerous brain regions, 

like the hippocampus, amygdala and PFC (Dedovic, Duchesne, et al., 2009; Strelzyk et 

al., 2012). Cortisol can work with the hormone noradrenaline to form memories of 

short-term emotional experiences (Fond et al., 2015; Joëls et al., 2011; Nicholson et 

al., 2014). Another class of substances are ampakines, which are known to increase 

alertness, attention span, and to enhance learning and memory in both animals and 

humans (Fond et al., 2015; Hampson et al., 1998; Ingvar et al., 1997; Lynch, 2002; We-

zenberg et al., 2007). They are thought to enhance synaptic transmission using the 

neurotransmitter glutamate, thereby promoting synaptic plasticity and leading to im-

proved cognitive performance (Ingvar et al., 1997; Wezenberg et al., 2007). Glutamate, 

one of the primary excitatory neurotransmitters, strongly influences synaptic plasticity, 

learning and memory (Gasbarri & Pompili, 2014; Peng et al., 2011; Riedel et al., 2003). 

Another hormone produced in the adrenal gland, epinephrine, indirectly interacts with 

central cholinergic neurons to improve learning and memory by increasing the 



38 

amount of blood glucose available for brain uptake, stimulating insulin release, en-

hancing glucose uptake across the blood-brain barrier, and stimulating choline acetyl-

transferase activity (Introini-Collison & McGaugh, 1988; McGaugh et al., 1988). Glu-

cose uptake in the brain provides central cholinergic neurons with the necessary sub-

strate for acetylcholine formation, which is a critical neurotransmitter for cognitive 

processes (Messier et al., 1990; Ragozzino et al., 1996, 1998). Because glucose and 

insulin are closely related and play a central role in the energy supply to cells and are 

therefore critical to cognitive performance, their role will be examined in more detail 

in the next section. 

It is important to note, however, that the results of cognitive enhancers are 

highly controversial and sometimes inconsistent. For example, some studies can only 

demonstrate beneficial effects in clinical, cognitively impaired samples, such as Alz-

heimer's patients, while healthy subjects show little or no benefit (Zohny, 2015). 

2.3.2 Insulin and Glucose as Cognitive Enhancers 

Both insulin and glucose can be considered cognitive enhancers, as numerous 

studies have shown that both substances have a beneficial effect on cognitive pro-

cesses, particularly memory performance (Gold, 1995; Messier et al., 1990; Messier, 

2004). Numerous studies have shown that insulin administration affects cognitive 

learning processes in healthy but also clinical samples. Insulin is an endogenous hor-

mone involved in stress processes (Bohringer et al., 2008; Dallman et al., 2004), which 

has enhancing effects on memory and learning (Stockhorst et al., 2004). The peptide 

hormone insulin is secreted by the pancreas and is responsible for regulating blood 

glucose levels (Wilcox, 2005). Historically, insulin has been thought of primarily as a 

peripheral hormone involved in metabolic processes, including weight control (Stock-

horst et al., 2004; Unger et al., 1991). However, in the 1980s it was discovered that 

insulin also acts in the central nervous system (Baskin et al., 1987). Insulin receptors 

(IR) have been localized in various areas of the brain, particularly in the limbic-hypo-

thalamic system, including the amygdala, hippocampus, thalamus, and hypothalamus 

(Plum et al., 2005; Unger et al., 1991). These are critical areas for cognitive processes 

and the functionality of the central IR has been linked to brain development, plasticity, 

and cognitive processes such as memory and attention (Benedict, 2004; Schulingkamp 
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et al., 2000; Stockhorst et al., 2004; Zhao et al., 2004), also relevant in the conditioning 

of fear (Clark et al., 2002; Sanders et al., 2003).  

Administration of insulin has been shown to significantly improve memory in 

animal and human studies (Benedict, 2004; Benedict, Hallschmid, Schultes, et al., 2007; 

Craft et al., 2012; Flood et al., 1990; Kern et al., 2001; Park et al., 2000; Park, 2001; Reger 

et al., 2006; Stockhorst et al., 2004). Studies in both rats and humans have demon-

strated this beneficial effect with a variety of dosing regimens (Benedict, 2004; Bene-

dict, Hallschmid, Schultes, et al., 2007; Craft et al., 2012; Flood et al., 1990; Kern et al., 

2001; Park et al., 2000; Reger et al., 2006). For example, the study by Kern et al. (2001) 

showed that intravenously administered insulin improves memory performance and 

leads to an improvement in mood. Intranasal insulin, on the other hand, improved 

long-term consolidation of declarative memory (Benedict, 2004). Intranasal admin-

istration of insulin bypasses the blood-brain barrier, allowing for immediate effects in 

the brain without peripheral side effects, such as hypoglycemia (Born et al., 2002; Fish 

et al., 1986; Hanson & Frey, 2008). The cognitive-enhancing effects of insulin are evi-

dent not only in healthy subjects, but also in people with cognitive impairments. For 

example, patients with Alzheimer's disease are known to have an insulin resistance, 

characterized by chronically elevated peripheral insulin levels, reduced insulin activity, 

and reduced insulin levels in the brain, which is associated with cognitive impairments 

such as memory deficits (Craft, 2005, 2006). In animal and human studies of Alzhei-

mer's disease patients, the administration of insulin to the central nervous system has 

been shown to significantly improve memory and prevent further deterioration (Frei-

herr et al., 2013; Hallschmid, 2021; Schiöth et al., 2012; Vandal et al., 2014). However, 

sex differences were found in memory performance, with males appearing to benefit 

more from the anorexic effects and females from the acute cognitive enhancing ef-

fects of long-term insulin administration (Benedict et al., 2008; Hallschmid et al., 2004). 

Several pharmacological mechanisms may mediate the effects of central insu-

lin on memory function. These mimic peripheral effects, potentially leading to in-

creased glucose release from glycogen stores, enhanced glucose transport across 

membranes, and increased neuronal uptake of glucose or glucose analogs (Bilotta et 

al., 2017; Ghasemi et al., 2013; Muhič et al., 2015; Park, 2001). The hippocampus, 
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known for its sensitivity to insulin-mediated energy regulation, is of particular interest 

in this regard (Plum et al., 2005). Recent evidence suggests that glucose not only im-

proves cognitive function, but also plays a role in facilitating the acquisition of fear 

memories, which rely primarily on hippocampal processes (Glenn et al., 2014; Park, 

2001). 

Glucose is an important monosaccharide that acts as a cellular energy carrier 

and is the primary source of energy for the human brain (García et al., 2021). It can be 

produced by gluconeogenesis in the body as well as ingested with food, with the liver 

being the primary organ of gluconeogenesis (Rui, 2014). Glucose not only plays a cen-

tral role in providing energy to the body, but also influences cognitive processes (Gold, 

1995; Mergenthaler et al., 2013), and is shown to especially increase declarative and 

working memory functions (Korol & Gold, 1998; Messier, 2004; Scholey et al., 2013; 

Smith et al., 2011). Studies show that small increases in blood glucose levels can im-

prove learning and memory in young and older adults, with a single dose of 25 g of 

glucose resulting in improved memory performance (Smith et al., 2011; Sünram-Lea 

et al., 2002). However, chronic overconsumption of glucose increases the risk of cog-

nitive deficits and psychiatric disorders (Reichelt et al., 2018). Recent research shows 

that elevated blood glucose concentrations may have beneficial effects, particularly 

during demanding cognitive tasks (García et al., 2021). This effect extends to various 

aspects of memory, including verbal, spatial, and numerical memory, as well as atten-

tion (García et al., 2021; Smith et al., 2011). This glucose mediated memory effect also 

appears to be influenced by various factors such as age, the cognitive nature of the 

task, and glucose regulation (Meikle et al., 2005; Smith et al., 2011; Sünram-Lea et al., 

2002). The hippocampus plays a central role in mediating the effects of glucose on 

memory, particularly episodic memory (Park, 2001; Smith et al., 2011). By enhancing 

ACh synthesis in the hippocampus, glucose may improve general memory perfor-

mance (Alzheimer & Wess, 2005; Kopf et al., 2001). Another theory is that glucose has 

the potential to increase intraneural ATP levels, leading to inhibition of potassium ATP 

channels. Consequently, this inhibition leads to neuronal depolarization and enhanced 

neurotransmitter release (Stefani & Gold, 2001). In addition, the provision of glucose 

could increase extracellular glucose levels in the hippocampus (McNay & Gold, 2001), 
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which could improve the overall availability of glucose and explain why glucose intake 

is particularly beneficial during cognitively demanding tasks (Smith et al., 2011). 

2.4 Integration of Stress and Cognitive Enhancers in Fear Regulation 

As explained in the previous sections, both stress and cognitive enhancers can 

affect fear conditioning processes and, thus, potentially influence the development of 

pathological fears. Experiencing stress plays an important role in responding appro-

priately to certain situations by helping to regulate behaviors and emotions, such as 

fear (Het et al., 2012; Jentsch et al., 2019; Lam et al., 2009; Ochsner et al., 2012). Stress 

triggers the HPA axis and leads to the release of cortisol, an endogenous cognitive 

enhancer that influences cognitive processes and can affect both acquisition and ex-

tinction memory (e.g., Brueckner et al., 2019; Cornelisse et al., 2014; Merz et al., 2014), 

which in turn may enhance the regulation of fear in healthy persons through cognitive 

processes, including the generalization of fear to similar and potentially harmful stim-

uli (see e.g., Lemmens et al., 2021). However, it is important to note that excessive or 

prolonged stress, as may have occurred during the recent COVID-19 pandemic, can 

lead to pathological changes in the HPA axis (e.g., Flandreau et al., 2012; Frodl & 

O’Keane, 2013; Groenink et al., 2002; Juruena, 2014; Keen-Rhinehart et al., 2009), which 

may increase potential susceptibility to mental illnesses such as anxiety disorders by 

causing an enhancement effect on acquisition memory and overgeneralization. While 

excessive stress leads to impairment of fear conditioning processes and thus increases 

the risk of developing mental illness (Jackson et al., 2006; Lissek et al., 2005; Merz et 

al., 2013), cognitive enhancers may be used specifically to support conditioning pro-

cesses in a beneficial way. Cognitive enhancers can exert their effects on fear condi-

tioning processes through a variety of mechanisms and offer promising opportunities 

for intervention in anxiety disorders. By targeting specific cognitive functions involved 

in the acquisition, consolidation, and extinction of fear, cognitive enhancers can mod-

ulate the formation and retrieval of fear memories (e.g., Davis, 2011; Eckstein et al., 

2015; Hagedorn et al., 2022; Inslicht et al., 2022). By improving cognitive processes 

such as memory encoding and consolidation, cognitive enhancers can facilitate adap-

tive responses to fear-inducing stimuli. This may enable individuals to adaptively reg-

ulate fear responses in dynamic and uncertain environments and reduce the risk of 
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anxiety-related disorders. However, it is also of therapeutic interest to investigate how 

the extinction of fear can be enhanced by administering cognitive enhancers at de-

fined time points to achieve a beneficial effect on extinction memory.  

Based on this previous research landscape, several research questions opened 

up. Due to the recent and prolonged COVID-19 pandemic, which is associated with 

numerous stressors, it is likely that a large number of people have experienced an 

increase in subjective psychological impairment during this time. The aim of Study II 

was to investigate the extent to which the level of experienced subjective impairment, 

especially COVID-related anxiety, has a negative effect on the acquisition and gener-

alization of new fears in a classical fear conditioning paradigm. On the other hand, 

and independent of the COVID-19 pandemic, two studies were designed to investi-

gate the extent to which intranasal insulin (Study I) and glucose (Study III) as cognitive 

enhancers positively influence fear extinction in a classical fear conditioning paradigm. 

Although the cognitive-enhancing effects of both intranasal insulin and glucose have 

been well studied and confirmed, no studies to date have examined insulin and glu-

cose in the context of fear extinction. Both substances are easy to administer, have 

few side effects, and appear to be interdependent in their mechanisms of action as 

cognitive enhancers. 
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3 Research Aims 

In light of the theoretical background presented in the previous sections, the 

overall aim of this dissertation is to investigate the role of environmental stress and 

cognitive enhancers as reinforcing factors of fear conditioning processes. Three em-

pirical studies were conducted to examine the effects of environmental stress, in terms 

of COVID-19-related fear, on fear acquisition and generalization, as well as the rein-

forcing effects of intranasal insulin and glucose on fear extinction processes. The spe-

cific research objectives for the empirical studies are outlined below. 

3.1 Research Aim of Study I 

Given the limitations of current treatment effectiveness for anxiety disorders, 

including inconsistent long-term outcomes and relapse, we conducted a study to ex-

plore the potential of intranasal insulin to address this gap by facilitating fear extinc-

tion. The primary objective of Empirical Study I was to test whether intranasal insulin, 

as a cognitive enhancer, could improve fear extinction, a critical process in the treat-

ment of anxiety disorders through exposure therapy. While research has already iden-

tified the influence of insulin on cognitive function, its specific role in fear extinction 

had not been sufficiently explored. For this purpose, a classical fear conditioning study 

with healthy participants was conducted, which was able to provide first evidence for 

an extinction enhancing effect of intranasal insulin. 

3.2 Research Aim of Study II 

The second study focused on how globally shared anxiety, specifically during 

the COVID-19 pandemic, affects fear learning and fear generalization. The goal was 

to examine whether heightened fear during a global crisis could lead to increased fear 

generalization and conditioning, which are central mechanisms in anxiety disorders. 

Previous research had largely overlooked the interaction between environmental 

stressors such as a pandemic and experimental fear learning paradigms, creating a 

gap in our understanding of how real-world stress translates into inappropriate fear 

responses. This study aimed to address this gap and contribute to a more nuanced 

understanding of how environmental stressors affect fear learning and generalization. 

A classical fear conditioning study with healthy participants was conducted during the 
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recent COVID-19 pandemic, which could show that heightened environmental stress 

is associated with impaired fear learning and fear generalization. 

3.3 Research Aim of Study III 

Following the results of Study I, Study III was designed to investigate whether 

glucose administration could enhance the efficacy of fear extinction and its consoli-

dation. Although glucose has been identified as a potential cognitive enhancer in pre-

vious studies, its specific role in enhancing fear extinction had not been thoroughly 

investigated. This study aimed to address this gap by investigating how glucose could 

be used as an adjuvant treatment option in exposure-based therapies for anxiety dis-

orders. Thus, two classical fear conditioning studies with healthy participants were 

conducted, which were able to provide first evidence for an extinction enhancing ef-

fect of glucose. 
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4 Empirical Studies 

Three empirical studies were conducted in accordance with the overall goal of 

this dissertation-to investigate and evaluate the effects of cognitive enhancers and 

environmental stressors on fear learning processes. I served as co-author in Study I, 

while I was the first author in Studies II and III. In the following chapter, all studies are 

presented as published. Additional information and materials can be found in the 

Supplementary Material of each study, which is referenced in the Appendix of this 

dissertation.

4.1 Study I 

Ferreira de Sá, D. S., Römer, S., Brueckner, A. H., Issler, T., Hauck, A., & Michael, 

T. (2020). Effects of intranasal insulin as an enhancer of fear extinction: a randomized, 

double-blind, placebo-controlled experimental study. Neuropsychopharmacology, 45 

(5), 753-760, https://doi.org/10.1038/s41386-019-0593-3 

4.1.1 Abstract 

Fear-extinction based psychotherapy (exposure) is the most effective method 

for treating anxiety disorders. Notwithstanding, since some patients show impair-

ments in the unlearning of fear and insufficient fear remission, there is a growing in-

terest in using cognitive enhancers as adjuvants to exposure. As insulin plays a critical 

role in stress processes and acts as a memory enhancer, this study aimed to assess 

the capacity of intranasal insulin to augment fear extinction. A double-blind, placebo-

controlled differential fear-conditioning paradigm was conducted in 123 healthy par-

ticipants (63 females). Pictures of faces with neutral expressions were used as condi-

tioned stimuli and electric shocks as unconditioned stimuli. The paradigm consisted 

of four phases presented on three consecutive days: acquisition (day 1), extinction 

(day 2), reinstatement and re-extinction (day 3). A single intranasal dose of insulin (160 

international units; IU) or placebo was applied on day 2, 45 min before fear extinction. 

Skin conductance response (SCR), fear-potentiated startle (FPS) and expectancy rat-

ings were assessed. During extinction, the insulin group (independent of sex) showed 

a significantly stronger decrease in differential FPS in comparison with the placebo 

group. Furthermore, a sex-specific effect was found for SCR, with women in the insulin 
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group showing a greater decrease of differential SCR both at early extinction and at 

late re-extinction. Our results provide first evidence that intranasal insulin facilitates 

fear extinction processes and is therefore a promising adjuvant for extinction-based 

therapies in anxiety and related disorders. Sex-specific effects should be taken into 

consideration in future studies. 

4.1.2 Introduction 

Anxiety disorders (ADs) are the most frequent group of mental disorders 

(Wittchen et al., 2011) and contribute significantly to the large burden of mental illness 

worldwide (Patel et al., 2018). Cognitive-behavioral therapy (CBT) is the gold standard 

for treating ADs and other fear-related disorders like obsessive-compulsive disorder 

(OCD) and posttraumatic stress disorder (PTSD; Hofmann et al., 2012). While CBT is an 

effective treatment with few side-effects, not all patients profit from it (Arch & Craske, 

2009). A recent meta-analysis of placebo-controlled CBT trials (Carpenter et al., 2018) 

has revealed large effect sizes only for generalized anxiety disorder (GAD), OCD, and 

acute stress disorder (ASD). Effect sizes for PTSD, social anxiety disorder (SAD), and 

panic disorder (PD) were small to moderate.  

Exposure therapy is widely regarded as the vital therapeutic component of CBT 

for ADs (Bentz et al., 2010). This assumption is underlined by the above-mentioned 

meta-analysis (Carpenter et al., 2018) showing that treatments which chiefly used ex-

posure techniques have larger effect sizes than those utilizing both cognitive and be-

havioral techniques, and cognitive techniques alone. Augmentation of exposure ther-

apy is thus an ideal starting point in the quest of improving treatments for anxiety and 

related disorders. It involves exposing patients under controlled conditions to situa-

tions that elicit pathological fear, thereby inducing fear extinction, a process well char-

acterized and understood based on human and animal fear-conditioning research 

(Hermans et al., 2006). Impaired extinction learning has been observed in individuals 

with anxiety and related disorders (Arch & Craske, 2009; Blechert et al., 2007; Michael 

et al., 2007) and the success of exposure therapy is predicted by extinction learning 
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(Forcadell et al., 2017). Decades of intense animal and human research have uncov-

ered both associative and neurobiological mechanisms underlying extinction. This has 

also opened the door to translational research, which allowed the identification of 

agents like D-cycloserine (Norberg et al., 2008) or cortisol (Brueckner et al., 2019; de 

Quervain et al., 2011; Lass-Hennemann & Michael, 2014) that may be utilized to en-

hance therapeutic success.  

We propose that the peptide hormone insulin should be examined for its po-

tential to augment exposure success. Insulin is widely known for its regulatory role in 

metabolism, but also has enhancing effects on memory and learning (Stockhorst et 

al., 2004). Insulin is produced by the pancreatic ß-cells and its main function is to con-

trol glucose metabolism in the periphery of the body. However, insulin receptors (IR) 

are also widely distributed in the brain (Unger et al., 1991), with particularly high den-

sities in the olfactory bulb, cerebral cortex, hypothalamus, and hippocampus (Plum et 

al., 2005). While the peripheral IR primarily act on glucose regulation, central IR exert 

functions related to brain development, plasticity and cognitive processes, in particu-

lar modulation of memory and attention processes (Benedict et al., 2004; Schuling-

kamp et al., 2000; Stockhorst et al., 2004; Zhao et al., 2004). The experimental manip-

ulation of central effects of insulin by intravenous application is limited by severe pe-

ripheral side-effects, i.e. hypoglycemia (Fish et al., 1986). However, intranasal applica-

tion can prevent such peripheral side-effects while providing a direct route to the 

central nervous system (CNS; Born et al., 2002). In patients with Alzheimer’s disease, 

intranasal insulin can improve memory performance and prevent deterioration (Frei-

herr et al., 2013). In healthy subjects, it increases performance in hippocampus-de-

pendent tasks (Benedict et al., 2004, 2008; Hallschmid et al., 2008; Krug et al., 2010). 

Long-term administration of intranasal insulin also improved executive function in bi-

polar disorder patients (McIntyre et al., 2012). While some studies using long-term 

insulin administration showed similar cognitive enhancement in both sexes (Benedict 

et al., 2004), sex-dependent effects of insulin have been reported, with men being 

more sensitive to its anorexigenic and women to its acute cognitive enhancing prop-

erties (Benedict et al., 2008; Hallschmid et al., 2004). When used as an unconditioned 
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stimulus, intranasal insulin was shown to produce a conditioned serum insulin re-

sponse (Stockhorst et al., 2011), indicating promising applications in learning pro-

cesses. 

Fear extinction is not a passive process, but the result of a newly formed inhib-

itory memory (Bouton, 2004). Attending the large evidence on the effects of intranasal 

insulin as a cognitive enhancer, we expect this hormone to also enhance fear extinc-

tion memory. To date, this has not been investigated. The aim of the present study 

was to investigate the effects of exogenous intranasal insulin on fear extinction pro-

cesses in healthy subjects. We carried out a double-blind, placebo-controlled study to 

test the effect of an acute dose of intranasal insulin (160 IU) administered before fear 

extinction learning using a differential fear-conditioning paradigm. Furthermore, re-

instatement of fear and re-extinction were tested 24h later to examine the stability of 

possible insulin effects after RoF. We hypothesized that intranasal insulin prior to ex-

tinction would facilitate extinction and diminish reinstatement while enhancing re-

extinction. As a subsidiary aim, we investigated interactions of sex with insulin effects 

on fear extinction processes given the reported sex-specific effects of insulin on 

memory. 

4.1.3 Methods and Materials 

4.1.3.1 Participants 

Data were acquired from 131 healthy students at Saarland University. Exclusion 

criteria were: tinnitus; body-mass index (BMI) outside the normal range (men: 20-25 

kg/m2; women: 19-24 kg/m2; German Nutrition Society); drug or medication intake 

within the last 6 months, except occasional use of painkillers and moderate caf-

feine/nicotine consumption; acute medical or psychiatric symptoms/complaints; ex-

cessive physical exercise. To control for hormonal effects of the menstrual cycle, only 

women taking oral contraceptives were included, with exception of contraceptives 

containing drosperinone due to its mineralocorticoid receptor antagonist effects 

(Genazzani et al., 2007). Study procedures followed the Declaration of Helsinki, were 

approved by the local medical ethical committee (Ärztekammer des Saarlandes), and 
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were registered in the German Clinical Trial Register (DRKS00010551). At application 

to partake in the experiment, a participant information sheet was given with details 

on the procedures applied (e.g., electroshock administration, insulin or placebo ad-

ministration), as well as the general research question (effects of intranasal insulin in 

memory processes). Participants gave written informed consent and received moder-

ate monetary incentive on completion of the study.  

Two participants did not come to the first day of experiment, while two others 

discontinued participation. Due to malfunctions on day 1, four participants were ex-

cluded from all analyses (see Figure S1 in Supplementary Material of Study I). The final 

sample consisted of 123 participants (63 females) with a median age of 23 years (range 

18-35).   

4.1.3.2 Group Assignment and Pharmacological Manipulation 

In a double-blind design, participants were randomly assigned within sex to 

intranasal insulin or intranasal placebo, resulting in the following division: insulin 

group (n = 62, 31 females), placebo group (n = 61, 32 females). Participants received 

160 units of intranasal insulin (Insulin Human Actrapid Penfill® 100I.E./ml; Novo 

Nordisk, Mainz, Germany), a quantity which has shown effects on cognitive function 

(Shemesh et al., 2012), or placebo (dilution buffer for insulin). Eight 0.1ml puffs of 

substance were applied into each nostril via high precision medical nose pump (Aero 

Pump, Hochheim, Germany). Substance was administered on day 2, 45min before fear 

extinction to ensure central effects during the critical time of extinction learning (Born 

et al., 2002; Schilling et al., 2014). Upon arrival, before starting the extinction, and be-

fore departure, blood sugar levels were controlled via a blood glucose meter (Accu-

Chek Aviva, Roche Diagnostics Deutschland, Mannheim, Germany). In the period be-

tween substance administration and beginning of the extinction phase, participants 

were allowed to read pre-selected magazines after being asked to leave their belong-

ings, including mobile devices, in a separate room. 
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4.1.3.3 Stimuli and apparatus 

Given that social anxiety is the most common anxiety disorder (Stein & Stein, 

2008) and threatening social experiences can provoke lasting fear (Tost et al., 2015), 

we chose socially-relevant conditioned stimuli (CS). These stimuli have a higher com-

parability with common aversive experiences than abstract stimuli, and consequently 

lend a higher ecological validity to the present paradigm. CSs consisted of four vali-

dated face pictures (two female) from the Radboud Faces Database (Langner et al., 

2010), showing neutral expressions (female: nr. 1 and 19, male: nr. 7 and 25). Pairs 

were chosen based on matching valence and arousal ratings obtained in a pre-study 

(Marousal: nr.1 = 29.96, nr.19 = 30.41; nr.7 = 31.93, nr.25 = 28.43; MValence: nr.1 = 47.96, 

nr.19 = 48.93; nr.7 = 45.17, nr.25 = 48.30). In a pseudo-randomized fashion (balanced 

by sex and group), each participant watched either female or male faces. Each picture 

was shown for 8s followed by a black screen with randomized intertrial-interval (ITI) 

of 10-15s duration. An acoustic startle stimulus was presented on all CS-trials 7s after 

picture onset, and during the ITI (noise alone, NA), 5s after picture offset. NA trials 

were presented as often as the single CSs. The acoustic startle stimulus was a white 

noise (105dB, 50ms, instantaneous rise-time) presented binaurally via 24-Bit sound 

card (Creative Sound Blaster Z, Creative Technology Ltd., Singapore) and audiometric 

headphones (Holmco PD-81, Holmberg GmbH & Co. KG, Germany). As unconditioned 

stimulus (US), a moderate 200ms electroshock was applied to the lower left arm of the 

subject immediately at the offset of the CS+. Intensity was adjusted individually by 

each subject on day 1 (possible range: 1mA to 100mA) and kept constant in the fol-

lowing days. The presentation order was pseudo-randomized with the restriction that 

a) no more than two consecutive presentations of the same stimulus-type would oc-

cur; b) each half of the experiment would have a balanced number of each trial-type.  

4.1.3.4 Procedure 

The differential fear-conditioning procedure took place on three consecutive 

days: acquisition of fear was established on day 1; pharmacological manipulation and 
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extinction of fear on day 2; reinstatement and re-extinction on day 3 (Figure 2). Par-

ticipants were asked to abstain from alcoholic/caffeinated beverages consumption 

and sport activities prior to the experiment. To ensure a similar glycemic state every 

day, they were instructed to have their last meal prior 22.00 of the previous day. For a 

better applicability of the fasting period and to control for the natural circadian 

rhythms of metabolic hormones (Challet, 2015), testing took place between 8.00-

12.00. A cover story was used to increase compliance: participants were informed that 

a saliva sample would be collected to control if the fasting period had been respected. 

A routine recall from waking until arrival was completed as an additional compliance 

control (Ferreira de Sá, Plein, et al., 2014; Stone et al., 1991). Participants were prepared 

for recording of electromyographic (EMG) eye blink of the left orbicularis oculi muscle, 

skin conductance response (SCR), electrocardiogram (ECG), and for electroshock fol-

lowing published guidelines (Blumenthal et al., 2005; Boucsein et al., 2012). Every ex-

perimental session started with a resting phase of 3min (black screen with fixation 

cross) and a startle habituation (10 startle probes). 

Day 1 (Acquisition): After the resting phase, participants were instructed to ad-

just the intensity of the US by gradually increasing the intensity of the electroshock 

up to being “highly unpleasant and demanding some effort to tolerate, while not be-

ing painful”. Instructions for acquisition indicated that one of two pictures would be 

sometimes followed by an electroshock. Acquisition consisted of 12 NA, 12 CS− and 

12 CS+, with 75% reinforcement. Partial reinforcement allows for a slower extinction 

learning (Haselgrove et al., 2004), where effects of a cognitive enhancer can be better 

studied. 

Day 2 (Extinction): 45min after pharmacological administration, participants 

started the experiment. Participants were instructed that an electroshock could or 

could not appear sometimes and that the same pictures from the previous day would 

be presented. Extinction consisted of 12 unpaired NA/CS−/CS+ trials. 



52 

Figure 2 

Diagram of the experimental design. 

 

 

 

Day 3 (Reinstatement and Re-Extinction): Participants were instructed that an 

electroshock could or could not be administered during the experiment and that the 

faces from the previous days would be presented. During reinstatement three unpre-

dicted USs were administered with randomized ISI of 15-20s. Re-extinction followed 

consisting of six unpaired NA/CS−/CS+ trials. 
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4.1.3.5 Physiological Measures   

Physiological data were recorded with ActiveTwo-Software (BioSemi, Amster-

dam, Netherlands) at a sampling rate of 2048Hz. Data was further analyzed with Au-

tonomic Nervous System Laboratory (ANSLAB) version 2.6 (Blechert et al., 2016) and 

manually inspected.  

Eyeblink startle responses were measured from electromyographic activity of 

the orbicularis oculi muscle using silver-silver-chloride (Ag-AgCl) active electrodes. 

Startle response amplitude was computed as the difference between peak - highest 

value of the startle response within 20-150ms after acoustic stimulus onset - and base-

line - mean EMG in the 50ms window before acoustic stimulus onset. Artifacts were 

set to missing data, while trials with no visible startle response were scored as zero. 

Startle magnitudes were calculated including zero responses.  

SCR was measured through two Nihon-Kohden electrodes filled with isotonic 

electrode gel attached to the proximal part of the palm of the subject's non-dominant 

hand. SCR to the CS was calculated by subtracting the average baseline (2s before 

stimulus onset) from the maximum score after CS onset (0–7s; Bentz et al., 2013; Bos 

et al., 2012; Vriends et al., 2011; Wegerer et al., 2013).  

For each participant, outliers (|Z|>3) and missing data from startle (Placebo 

group: 1.4%, Insulin group: 1.1% of all data) and SCR (Placebo group: 1.6%, Insulin 

group: 1.5% of all data) were replaced by linear trend at point separately for experi-

mental phase (acquisition, extinction, reinstatement, re-extinction) and CS-type 

(Brueckner et al., 2019; Sevenster et al., 2014). To minimize between-subject and day 

variability, both startle and SCR were T-scored. 

4.1.3.6 Self-Report and Subjective Measures 

Before the first day of experiment, participants filled out the Beck Depression 

Inventory (BDI-II; Hautzinger et al., 2006) and the trait-form of the State-Trait-Anxiety-

Inventory (STAI-T; Laux, 1981). The state-form of the STAI (STAI-S; Laux, 1981) was 

acquired on each day at beginning and end of session. US-expectancy ratings were 

collected before the beginning (pre), in the middle (mid), and at the end (post) of each 
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conditioning phase with a continuous visual analogue scale, ranging from very low (0) 

to very high expectancy (100), prompting participants to retrospectively rate how 

much they expected the CS to be followed by an electroshock. At the end of day 2, 

participants indicated which substance they believed was administered to them (“in-

sulin”, “placebo”, “I do not know”).  

4.1.3.7 Statistical analysis 

Statistical analyses were conducted with IBM SPSS (version 22), the level of 

significance set to (α) = 0.05. Due to experimental malfunctions on day 3, four partic-

ipants had to be excluded from analyses regarding this day. Six participants were ex-

cluded from startle analysis due to complete absence of startle eye-blinks (non-re-

sponders) and three others due to missing values in > 5% of their total startle data. 

Two participants were excluded from EDA analysis on day 2 and another one on day 

3, due to technical problems.  

To assess conditioning to the CS+ in the physiological data, a mixed-design-

ANOVA with Group (insulin vs. placebo) as between-groups factor, and CS-type (CS+ 

vs. CS−) and Time (Block 1-6, each with two trials of each CS-type) as within-partici-

pants factors was conducted.  

Since we hypothesized that insulin effects might be modulated by sex, all anal-

ysis from day 2 on (after pharmacological manipulation) included Sex as a between 

factor. To assess discrimination between the CS+ and CS−, difference-scores (CS+-

CS−; DiffX, with X specifying the dependent variable) were used for analysis of extinc-

tion, reinstatement and re-extinction (LaBar et al., 1995; Norrholm et al., 2006). Fol-

lowing data correction recommendations (Lonsdorf et al., 2017) and studies with sim-

ilar designs (Brueckner et al., 2019; Eckstein et al., 2015; Fani et al., 2015; Sjouwerman 

et al., 2016), blocks were averaged into early and late phases, each containing one half 

of the respective phase, to better represent learning effects. Extinction and re-extinc-

tion were tested with a mixed-design-ANOVA with Sex and Group as between factors 

and Time (early vs. late) as within-variable. Reinstatement was tested in a similar fash-

ion with Time consisting of late extinction vs. early re-extinction. 
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For the US-expectancy ratings, similar analyses were conducted, with the 

within-factor Time (pre vs. mid vs. post) for acquisition, extinction, and re-extinction. 

For reinstatement analysis post-extinction vs. pre- and post-reinstatement were used2. 

Additionally, to check for contextual anxiety throughout the experiment (Ameli 

et al., 2001; Haaker et al., 2014; Missig et al., 2010), raw NA trials were analyzed in a 

mixed-design-ANOVA with Sex and Group as between factors, and Phase (acquisition, 

extinction and re-extinction) and Time (early vs. late) as within-variables.   

The Greenhouse-Geisser correction was applied whenever sphericity adjust-

ment was required (adjusted p-values are reported with uncorrected degrees-of-free-

dom and epsilon-values). Where not specified, means and standard error are reported. 

Follow-up analysis of 3-way interactions were done with Bonferroni-adjusted pairwise 

comparisons for each Time point within each Sex group, comparing placebo and in-

sulin. 

Raw SCR (CS+, CS−) and FPS (CS+, CS−, NA) through all trials and sessions are 

depicted separately by group (Acquisition) or group and sex (Extinction, Reinstate-

ment, Re-Extinction) in Figure S2-S11 in Supplementary Material of Study I. 

4.1.4 Results  

4.1.4.1 Demographic Variables 

There were no significant differences between groups regarding age, BMI, BDI, 

STAI-T (Table 1).  

4.1.4.2 Glucose Check 

No differences between groups were found regarding glucose levels through-

out extinction (all ps > .05; Figure S12 in Supplementary Material of Study I). Glucose 

 
2 Additional models were calculated to control for the effects of acquisition levels on extinction, 

reinstatement and re-extinction: the difference-score from the last Block of acquisition (Block 6) was 

added as a covariate to the analysis of physiological data, and the last trial of acquisition was added as a 

covariate to the analysis of expectancy ratings. Results remained largely unaltered (see Table S1 in Sup-

plementary Material of Study I). 
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slightly decreased from the beginning to the end of the experiment (Time: F2, 232 = 

7.73, p =.001, ηp
2 = .64), with all subjects remaining in the euglycemic state at all time 

points (> 70mg/dL). 

4.1.4.3 Subjective Ratings and US Intensity 

Groups did not differ in their estimation of substance administered, [X2
(2, N = 123) 

= .41, p = .82; Table S2 in Supplementary Material of Study I], nor in the selected US 

level (Placebo: 4.03 ± .26, Insulin: 4.04 ± .27; t121 = .22, p = .83, d = .04). STAI-S on the 

three days did not show differences between groups (ps > .05), but all participants 

reported higher state anxiety at the end of the experiment (Time effect on each day: 

ps <. 001). 

 

Table 1 

Demographic characterization of the insulin and placebo group. 

 

Note: BMI: Body Mass Index, BDI: Becks Depression Inventory, STAI-T: State-Trait-Anx-

iety-Inventory. Questionnaires were completed before the first experimental session. 

Mean and standard deviation are presented for continuous variables, absolute num-

bers for categorical variables. *Continuous variables were tested with Independent 

Samples T-Test, categorical variables with Chi-Square. 
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4.1.4.4 Contextual Anxiety throughout the Experiment: NA Startle  

Insulin had no influence per se on background anxiety throughout the differ-

ent phases of the experiment. In absence of any group-related effects, it was found 

that women showed in general higher context anxiety (Sex: F1, 108 = 6.22, p =.014, ηp
2 

= .05) and that for all participants contextual anxiety was lower in the end of the ex-

periment (Time: F1, 108 = 56.26, p <.001, ηp
2 = .34). 

4.1.4.5 Acquisition 

SCR: As expected, the CS+ (52.18 ± .23) elicited a higher SCR than the CS− 

(47.82 ± .23) during acquisition (Time: F5, 605 = 39.44, p <.001, ε = .70, ηp
2 = .25; 

CS−Type: F1, 121 = 92.88, p <.001, ηp
2 = .43; CS-Type x Time: F5, 605 = 3.58, p =.006, ε = 

.85, ηp
2 = .03; no significant interactions with Group).  

FPS: As expected, the CS+ (52.93 ± .29) elicited a higher FPS than the CS− 

(47.89 ± .26) during acquisition (Time: F5, 560 = 56.38, p <.001, ε = .91, ηp
2 = .34; CS-

Type: F1, 112 = 154.34, p <.001, ηp
2 = .58; CS-Type x Time interaction: F5, 560 = 3.24, p 

=.009, ε = .91, ηp
2 = .03; no significant interactions with Group).  

US-expectancy: Participants correctly identified the CS+ as predicting the 

shock (CS+: 69.77 ± 20.79; CS−: 25.57 ± 23.81; Time: F2, 242 = 8.49, p = .002, ε = .68, 

ηp
2 = .07; CS-Type: F1,121 = 534.47, p < .001, ηp

2 = .82; CS-Type x Time interaction: F2, 

242 = 241.22, p <.001, ε = .68, ηp
2 = .95). CS+ was rated with a higher expectancy than 

the CS− in the mid and post (ps < .001), but not in the pre-ratings. No significant 

interactions with Group were found. 

4.1.4.6 Extinction 

SCR: A main effect of Time (F1, 117 = 16.96, p <.001, ηp
2 = .13), and an interaction 

of Time x Group x Sex was found for the DiffSCR (F1, 117 = 7.93, p = .006, ηp
2 = .07). 

Post-hoc tests showed that in the early extinction phase, DiffSCR was lower for women 

in the insulin group (-.01 ± 5.30) than for women in the control group (3.78 ± 6.13; F1, 

117 = 7.52, p = .007, ηp
2 = .06; Figure 3). No differences between Group were present 

in late extinction. 
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FPS: The insulin group showed throughout the extinction phase a lower 

DiffStartle (1.35 ± 5.53) than the placebo group (3.02 ± 5.57; Group: F1, 110 = 4.18, p = 

.04, ηp
2 = .04; Figure 4).  

US-expectancy: A decay in differential expectancy from pre, to mid and post-

ratings (ps < .001) was found (Time: F2, 238 = 66.17, p < .001; ε = .81, ηp
2 = 0.36), indi-

cating attenuation of the fear association (Figure 5). No main effects or interactions 

with Group were found. 

 

Figure 3 

Differential SCR during extinction. 

 

Note: Differential skin conductance response during early and late extinction in the 

insulin and placebo group by sex. Significant pairwise comparisons for each time point 

within each sex, comparing placebo and insulin, are indicated in the graphic. Error bars 

indicate one standard error. ** p < .01 
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Figure 4 

Differential FPS during extinction. 

 

Note: Differential fear-potentiated startle during early and late extinction in the insulin 

and placebo group by sex. Error bars indicate one standard error. * p < .05 
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Figure 5 

Differential US-expectancy during extinction, reinstatement and re-extinction. 

 

Note: Differential US-expectancy during extinction, reinstatement and re-extinction in 

the insulin and placebo group. Main effects of time are depicted collapsed across the 

two groups. Error bars indicate one standard error. *** p < .001 

 

4.1.4.7 Reinstatement 

SCR: No effects were found for the DiffSCR in the reinstatement of fear (all ps 

> .05), indicating that there was no reinstatement of SCR.  

FPS: Similarly to the SCR, no effects were found for the FPS (all ps > .05). 

US-expectancy: DiffUS-expectancy had a significant Time effect (F2, 236 = 15.59, 

p < .001, ε = .68, ηp
2 = .12) during reinstatement. An increase in differential expectancy 
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from post-extinction to pre-reinstatement (p <.001) was present, suggesting a spon-

taneous recovery of fear. The reinstatement stimuli had no effect on expectancy rat-

ings however, with no significant change in US-expectancy ratings from pre- to post-

reinstatement (Figure 5). 

 

Figure 6 

Differential SCR during re-extinction. 

 

Note: Differential skin conductance response during early and late re-extinction in the 

insulin and placebo group by sex. Significant pairwise comparisons for each time point 

within each sex, comparing placebo and insulin, are indicated in the graphic. Error bars 

indicate one standard error. * p < .05 
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4.1.4.8 Re-Extinction 

SCR: In the re-extinction, women (-1.13 ± 7.08) showed lower DiffSCR than 

men (1.05 ± 8.05; Sex: F1, 112 = 4.1, p < .05, ηp
2 = .04). Furthermore, an interaction of 

Time x Group x Sex was found (F1, 112 = 5.74, p = .02, ηp
2 = .05). Post-hoc tests showed 

that in late re-extinction DiffSCR was lower for women in the insulin group (-3.42 ± 

5.24) than for women in the control group (0.73 ± 6.20; F1, 112 = 5.14, p =.03, ηp
2 = .04; 

Figure 6).  

FPS: No effects were found for the FPS during re-extinction (all ps>.05). 

US-expectancy: As expected, a decay in differential expectancy is seen from 

pre to mid and post-re-extinction (pre: 33.74 ± 30.64, mid: 21.35 ± 24.08, post: 14.61 

± 18.97; Time: F2, 230 = 42.35, p < .001; ε = .71, ηp
2 = 0.27; Figure 5). 

4.1.5 Discussion 

The present study is the first investigating the hypothesis that intranasal insulin 

enhances fear extinction and providing first evidence for its confirmation. On day 1, 

acquisition of fear was established successfully without differences between the insu-

lin and placebo group. Critically, during fear extinction on day 2, the insulin group 

showed a smaller differential startle response than the placebo group. Additionally, 

women in the insulin group showed an enhanced reduction of the fear-related SCR 

during early fear extinction on day 2 as well as in late re-extinction on day 3.  

Since SCR is closely associated with declarative memory while startle repre-

sents a more primary fear reaction (Sevenster et al., 2014), these results might indicate 

that insulin exerts different effects at different levels of fear extinction learning. Estab-

lished cognitive effects of insulin are mainly found on short-term declarative memory 

(Shemesh et al., 2012). It is therefore not surprising that we found an effect of insulin 

already at the beginning of fear extinction for the SCR. Although men and women 

seem to benefit from the cognitive effects of insulin, there is some evidence that 

women might be more sensitive to the beneficial effects of central insulin on hippo-

campus-dependent memory functions (Benedict et al., 2008). In line with this, in the 
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present study, although both men and women benefited from the insulin effects in 

extinction of FPS, only women showed increased extinction and better extinction recall 

of the SCR. This might indicate that indeed women are more sensitive to the cognitive 

effects of insulin. This is highly relevant, given that women show not only a higher 

prevalence of anxiety disorders, but also higher associated burden and disability 

(McLean et al., 2011). Notwithstanding, since men and women present general differ-

ences in body mass, sex-dependent effects can also be due to different sensitivity to 

the administered dose. In order to clarify this question, dose-dependent effects need 

to be explored in future studies. 

The enhancing effects of insulin on fear extinction in women could also be 

seen 24h later, with a better fear extinction recall on the SCR. Similar to the extinction 

phase, a sex-specific insulin effect was observed for SCR, with women in the insulin 

group presenting lower differential SCR at the end of re-extinction and therefore bet-

ter extinction recall. Fear extinction does not erase the original fear memory, but cre-

ates a new memory that will hinder fear to reoccur. This process is however frail and 

susceptible to reappearance of the original fear memory (Bouton, 2002). In clinical 

context, it is known that relapse can occur even after successful extinction (Vervliet et 

al., 2013). Effects on the level of extinction recall are therefore of special clinical rele-

vance, since more important than the fear extinction is how this new learning can hold 

up during time. The present results show that insulin might not only enhance learning 

of fear extinction but also its consolidation. 

The present study applied a randomized, double-blind, placebo-controlled dif-

ferential fear-conditioning paradigm, with careful maintenance of control variables. A 

comparable glycemic state at the beginning of the experiment was assured by food 

restriction and control throughout the experiment showed that glucose levels re-

mained in an euglycemic level after the intranasal administration of 160 IU insulin 

(Benedict et al., 2008, 2011; Ferreira de Sá et al., 2014; Hallschmid et al., 2012). The 

observed differences between insulin and placebo group can therefore be attributed 

to central nervous insulin effects and not to changes in peripheral glucose levels. 
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Based on the current information it can only be speculated which brain structures are 

involved in these effects. In this regard, it is important to note that the effects of in-

tranasal insulin were observed for two physiological measures of fear learning and 

extinction: fear-potentiated startle and SCR. Long-standing evidence indicates that 

the two measures have different neural correlates and therefore express different pro-

cessing mechanisms. It is thought that FPS reflects a more primal form of fear learning, 

involving neuronal structures like the amygdala, insular cortex and thalamus (Davis, 

2006). SCR is on the other hand considered to express associative fear learning and 

anticipatory arousal (Soeter & Kindt, 2010), accompanied by activation of the hippo-

campus (Hamm & Weike, 2005). A concerted activity of the amygdala, hippocampus 

and prefrontal cortex is central during fear extinction (Milad & Quirk, 2012). Further-

more, the insular cortex, a structure implied in fear-conditioning possibly via intero-

ception and awareness processes (Vervliet et al., 2013) has been shown to be sensitive 

to intranasal insulin (Schilling et al., 2014). Neuroimaging studies should target those 

regions to investigate on what level intranasal insulin affects fear learning and extinc-

tion.  

Insulin can cross the blood-brain barrier through active transport and thus di-

rectly affect the central nervous system (Woods et al., 2003). The widespread expres-

sion of IR in the brain suggests effects on a broad range of brain structures, including 

the above-mentioned ones. The influence of central insulin on memory functions 

might be mediated by different pharmacological mechanisms (Ghasemi et al., 2013). 

Similar to insulin effects in the periphery, central insulin effects include an increased 

release of glucose from glycogen stores and its transportation across membranes, as 

well as an enhanced neural uptake of glucose or glucose-analog substances (Park, 

2001; Schulingkamp et al., 2000; Wozniak et al., 1993). An especially sensitive structure 

to the insulin-dependent energy regulation is the hippocampus (Park, 2001) and glu-

cose has been shown to increase cognitive functions (Korol & Gold, 1998; Scholey et 

al., 2001), and more recently, hippocampus-dependent acquisition of fear memory 

(Glenn et al., 2014). It is therefore possible that enhancing effects of intranasal insulin 

in memory processes are actually mediated by glucose uptake. On the other hand, 
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central insulin exerts effects through additional pathways and especially its capacity 

to modulate glutaminergic and GABAergic transmission, and consequently excitatory 

synaptic transmission have been suggested to mediate memory effects (Ghasemi et 

al., 2013). 

No differences between groups on the US-expectancy ratings were found, 

however, dissociation between subjective ratings and physiological measures has 

been repeatedly reported (Acheson et al., 2013; Blechert et al., 2008; Sevenster et al., 

2014) and is in line with the theory of multiple memory systems (Phelps, 2004). A 

limitation of the present study is that the reinstatement procedure was not successful, 

neither at a subjective nor at a physiological level. US-expectancy results showed, 

however, a spontaneous recovery of fear: the difference between the CSs was already 

increased at the beginning of day 3, before the reinstatement procedure, compared 

to the end of the extinction on the previous day. It could be that the large time interval 

between extinction and test was enough to prompt RoF (Norrholm et al., 2008; Schiller 

et al., 2008), or that the context of the laboratory environment might have led to an 

immediate RoF (Kull et al., 2012; Vervliet et al., 2013), which was not further exacer-

bated by the reinstatement procedure. It is important to note that the interval be-

tween fear acquisition and reinstatement was longer than what is commonly used in 

similar paradigms (Haaker et al., 2014). Although longer temporal intervals might be 

more ecologically valid, it is possible that the used US was not emotionally salient 

enough to produce reinstatement after such an interval. Moreover, given that the re-

instatement procedure proceeded re-extinction, it is not possible to exclude a poten-

tial influence in extinction recall.  

It is a further limitation that only women taking hormonal contraceptives were 

included in this study. Since sex hormones can affect not only insulin sensitivity (Lind-

heim et al., 1993) but also fear-conditioning processes (Milad et al., 2006), research 

should be extended to women not taking oral contraceptives.  
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As insulin exerts a long-term regulatory signal (Havel, 2001), many studies fo-

cused on effects of long-term intranasal insulin administration on cognitive enhance-

ment (Benedict et al., 2004, 2007; Hallschmid et al., 2008). It would therefore also be 

important to study the effects of prolonged insulin administration on fear extinction 

learning. Furthermore, research with cognitive enhancers like cortisol, has shown that 

such hormones can have enhancing or deteriorating cognitive effects dependent on 

time of administration and the investigated memory process (Schwabe et al., 2012). 

The present study cannot disentangle the effects on extinction learning and consoli-

dation as insulin was administered before extinction learning. Future studies should 

focus on these different processes.  

With regard to improve the effectiveness of cognitive-behavioral therapy for 

fear-related disorders, there is an increased need for substances improving extinction 

processes. We present first evidence that intranasal insulin might be a promising ad-

juvant to extinction-based therapies. Further research is necessary to elucidate the 

effects of insulin in fear learning and extinction, especially in sub-clinical and clinical 

samples. Furthermore, sex-effects need to be taken into consideration. 

4.2 Study II 

Hauck, A., Michael, T., & Ferreira de Sá, D. S. (2022). Fear learning and gener-

alization during pandemic fear: How COVID-19-related anxiety affects classical fear 

conditioning with traumatic film clips. Journal of Psychiatric Research, 155, 90-99, 

https://doi.org/10.1016/j.jpsychires.2022.07.068 

4.2.1 Abstract 

The COVID-19 pandemic greatly disrupted our daily lives. Worldwide, people 

were confronted with health, financial, and existential fears or trauma-like experiences. 

Recent studies have identified an increase in stress, anxiety, and fear symptoms in 

connection with the pandemic. Furthermore, fear learning processes are central mech-

anisms in the development and maintenance of anxiety disorders. Patients commonly 
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show impairments not only in fear learning but also in its generalization. Thus, pan-

demic-related anxiety may constitute a risk factor for both enhanced fear acquisition 

and generalization. In a pre-registered online study with a final sample of 220 healthy 

university students, we investigated whether participants with higher COVID-19-re-

lated anxiety (COVID-Anxiety) show impaired fear learning and generalization. For this 

purpose, we used a differential fear conditioning paradigm with a traumatic film clip 

as the unconditioned stimulus (UCS) and collected UCS expectancy as the main meas-

ure of interest. Participants with high COVID-Anxiety show a tendency toward poorer 

discrimination between the reinforced conditioned stimulus (CS+) and the unrein-

forced conditioned stimulus (CS−) during acquisition and significantly poorer discrim-

ination patterns during generalization. Furthermore, participants with high COVID-

Anxiety show greater general fear throughout the whole experiment. Our results show 

that the subjective effects of the COVID-19 pandemic on psychological well-being are 

associated with impairments in both fear learning and fear generalization. As ex-

pected, high COVID-Anxiety leads to poorer performance in stimulus discrimination 

and greater levels of fear, which might contribute to a higher risk of anxiety disorders. 

4.2.2 Introduction 

With more than 460 million confirmed cases worldwide and over 6 million 

deaths (World Health Organization, n.d.), the COVID-19 epidemic has changed the 

world like no other event in recent decades has. To prevent the further spread of 

COVID-19, many countries have implemented severe restrictions, which not only af-

fect countries’ economies but also many areas of people’s daily lives (e.g., reduced 

work hours, unemployment, the closure of schools and universities, restricted leisure 

activities, curtailed social contact, and so on). 

Aside from the global and individual benefits of these restrictions, namely pre-

venting COVID-19 infection and, thus, limiting the spread of the pandemic, they can 

have a negative impact on well-being and health (Brooks et al., 2020; Lades et al., 

2020; Wegmann et al., 2021). In addition to the physical health risks associated with 

COVID-19, the prolonged pandemic and its associated restrictions are increasingly 
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bringing more attention to mental health issues. For example, many people are re-

porting persistent worry and fear of illness due to the pandemic (Borade & Nagarkar, 

2021; Chakraborty & Chatterjee, 2020; Šrol et al., 2021). Other stressors include being 

in quarantine, being overwhelmed or bored, feeling helpless, losing money, and per-

ception of inadequate information (Brooks et al., 2020; Klaiber et al., 2021). Moreover, 

both younger and older people are suffering from increasing loneliness, tension, and 

insecurity (Ahrendt et al., 2020; Aristovnik et al., 2020; Borade & Nagarkar, 2021; Di 

Santo et al., 2020; Liang et al., 2020). It is also known that previous infectious disease 

outbreaks, such as the severe acute respiratory syndrome (SARS) outbreak in 2003, 

the influenza A (H1N1) outbreak in 2009, or the Ebola outbreak in 2014, severely af-

fected public mental health and, as fear-provoking events, led to symptoms of anxiety 

and post-traumatic stress disorder (PTSD; Liang et al., 2020; Liao et al., 2014; Main et 

al., 2011; Mak et al., 2010; Maunder et al., 2003; Pfefferbaum et al., 2012; Shultz et al., 

2015). In this context, since the onset of the COVID-19 pandemic, there has been a 

global increase in mental disorders, particularly depression and anxiety-related disor-

ders (Fountoulakis et al., 2021; Salari et al., 2020). Recent studies have also suggested 

that the prevalence of stress, anxiety, and depression has increased significantly as a 

result of the COVID-19 pandemic (Deng et al., 2021; Sahebi et al., 2021; Salari et al., 

2020; Santabárbara et al., 2021; Santomauro et al., 2021). 

Fear learning processes play a crucial role in the etiology of anxiety disorders 

(Britton et al., 2011; Lissek et al., 2005). They are commonly studied under laboratory 

conditions using fear conditioning paradigms (Lonsdorf et al., 2017). Classical condi-

tioning models show that fear can be triggered not only directly by aversive or 

trauma-like events but by previously harmless stimuli after being paired with aversive 

events, which activate the fear system (Hamm & Weike, 2005). Anxiety patients tend 

to show a discrimination deficit in differential fear conditioning paradigms, which 

manifests as a lack of safety learning (an increased fear response to safety cues), com-

pared to controls, indicating poorer fear learning (Cooper et al., 2018; Duits et al., 

2015). Similarly, Dibbets et al. (2015) found that highly anxious persons exhibit poorer 
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discrimination between harmless and aversive stimuli in fear learning using a condi-

tioning paradigm, making them more vulnerable to the development of anxiety dis-

orders. Further, fear reactions can be transferred to similar neutral stimuli that were 

never paired with an aversive event. They can, therefore, occur not only in the pres-

ence of stimuli that were associated with the aversive situation but also in the presence 

of perceptually, semantically, or contextually similar stimuli (Dymond et al., 2015). This 

process, called fear generalization, is another characteristic of and risk factor for anx-

iety disorders (Britton et al., 2011; Craske et al., 2009). These inappropriately evoked 

fear reactions significantly contribute to the impaired quality of life of anxiety patients 

(Craske et al., 2009) and pose a major difficulty for successful therapy (Dymond et al., 

2015). Patients with anxiety, as well as healthy but highly anxious individuals, show a 

stronger tendency toward fear generalization (Duits et al., 2015; Morey et al., 2015). 

Additionally, studies have suggested a relationship between trait anxiety and fear gen-

eralization, even before the onset of pathological anxiety (Sep et al., 2019). 

Attending to this, it is our aim to investigate how the current COVID-19 pan-

demic, as a potential fear-provoking experience in the general population, affects the 

fear learning and fear generalization processes. To the best of our knowledge, such a 

relationship has not been investigated to date. To achieve this aim, we use a differen-

tial fear conditioning paradigm with a traumatic film clip as the unconditioned stimu-

lus (UCS) and collect US-expectancy as the main measure of interest. Due to the pan-

demic and the constraints in place at the time of this study, including contact re-

strictions, we conducted the experiment online. We hypothesize that higher COVID-

19-related anxiety (COVID-Anxiety) is associated with poorer fear learning and, thus, 

poorer discrimination performance between a safety and an aversive cue, as well as 

higher levels of generalization. 

4.2.3 Methods and Materials 

4.2.3.1 Participants 

We acquired our data from 297 healthy university students recruited via social 

media. The inclusion criteria were as follows: The individuals needed to be a current 
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student at a German university, aged between 18 and 40 years, have no actual psy-

chiatric disorder, have no epilepsy, and have never participated in such an experiment. 

To avoid fraud, participants had to provide a valid student e-mail address. Further-

more, the participant’s code, generated at the end of the experiment, needed to be 

sent to the responsible researcher using that e-mail address. 

Study procedures were approved by the local ethical review committee (Ethics 

Committee of the Faculty of Empirical Human Sciences and Economics at the Saarland 

University), follow the Declaration of Helsinki, and were registered in the German Clin-

ical Trial Register (DRKS00022761). Complete information on the study was given at 

the beginning of the experiment, and they could only continue after they had con-

firmed that they met the inclusion criteria and once they had provided informed con-

sent. We offered participants student credit (psychology students at Saarland Univer-

sity) or the opportunity to win a voucher (all participants) as an incentive for their 

participation. 

From all acquired data, 38 participants did not complete the experiment and 

another 77 had to be excluded from the statistical analyses due to technical problems 

and lack of compliance (see Figure S1 in Supplementary Material of Study II). The final 

sample consisted of 220 participants (141 females) with a median age of 21 years 

(range 18–40). The study took place from August to December 2020, when COVID-19 

preventive measures such as nocturnal lockdowns, the introduction of the mandatory 

use of masks in public, remote learning, and limitations on social contact (Bundesre-

gierung, n.d.) were generally implemented across Germany. 

4.2.3.2 Questionnaires 

We assessed COVID-Anxiety using a modified version of the validated DSM-5 

Severity Measure For Specific Phobia Adult Scale (Beesdo-Baum et al., 2012; Craske et 

al., 2013) adapted for COVID-Anxiety (c.f. Bendau et al., 2021; Petzold et al., 2020). The 

COVID-Anxiety questionnaire (COVID-Anx) consisted of 10 items assessing COVID-

Anxiety symptoms, such as worries, fear, or panic. Participants were asked to indicate 

how often they had felt that way within the last seven days, and answers had to be 
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given on a five-point scale ranging from never (0) to constantly (4). To screen for de-

pression symptomatology, we applied the depression module of the Patient Health 

Questionnaire (PHQ-9, Spitzer, 1999), while we measured anxiety symptoms and fear-

fulness using the anxiety module of the PHQ (Generalized Anxiety Disorder, GAD-7, 

Spitzer et al., 2006) and the State–Trait Anxiety Inventory (Trait Version, STAI–T, Spiel-

berger et al., 1983). Finally, perception of current stress was measured using the Per-

ceived Stress Scale (PSS, Cohen et al., 1994). 

4.2.3.3 Stimuli and Apparatus 

The conditioned stimuli (CS) consisted of two male face pictures from the Rad-

boud Faces Database (Langner et al., 2010), matched per valence and arousal. Each 

picture was shown for six seconds, followed by a black screen with an intertrial interval 

(ITI) of four seconds. In a randomized manner, one of the faces was associated with 

an aversive US and served as the reinforced conditioned stimulus (CS+), while the 

other face served as the unreinforced conditioned stimulus (CS−). As a US, a 6s video 

clip with aversive content (explicit depiction of bodily harm) from the film German 

Angst (segment “Make a Wish”, Kosakowski, 2015) was shown at the CS+ offset in the 

reinforced trials. The presentation order was pseudo-randomized with the restriction 

that no more than two consecutive presentations of the same stimulus type would 

occur. The generalized stimuli (GS) consisted of eight faces resulting from morphing 

the two CS along different gradients (i.e., 88.8% [GS1], 77.7% [GS2], 66.6% [GS3], 55.5% 

[GS4], 44.4% [GS5], 33.3% [GS6], 22.2% [GS7], or 11.1% [GS8] overlap with the CS+). 

We performed this morphing using WinMorph software (Kumar, 2002, WinMorph 

3.01, DebugMode: http://www.debugmode.com/winmorph/). 

4.2.3.4 Subjective Ratings 

The US-expectancy ratings were collected during all trials in which CS and GS 

were presented. Two seconds after the onset of the stimuli, a visual analog scale (VAS), 

ranging from very low (0) to very high (100) expectancy, was shown below the stimulus 

for 4s, prompting participants to rate to what extent they expected the CS/GS to be 
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followed by the aversive video. (“How much do you expect that the video will follow 

after this picture?”) The VAS disappeared once a response was given. 

Additionally, valence ratings for both CS (“How unpleasant is this picture for 

you?”; not at all unpleasant [0] to very unpleasant [100]) and current anxiety levels 

(“How anxious are you feeling right now?”; not at all anxious [0] to anxious [100]) were 

collected on the VAS at different points of the experiment, namely 1) before CS habit-

uation, 2) before the acquisition phase, 3) before the generalization phase, and 4) after 

the generalization phase. 

4.2.3.5 Procedure 

The procedure of the study was modeled on similar studies of fear generaliza-

tion in a laboratory context (e.g., Dunsmoor et al., 2009, 2011; Dymond et al., 2015; 

Haddad et al., 2013; Lissek et al., 2008). The study was conducted online using the 

professional web-based experiment provider LabVanced (https://www.lab-

vanced.com/). After providing informed consent, participants were asked to provide 

their demographic data, following which they received the questionnaires. During the 

second phase, a differential fear conditioning procedure consisting of two phases (ac-

quisition and generalization) was conducted (see Figure 7). At the start of the second 

phase, participants were asked to turn on the loudspeakers or use headphones so that 

they could hear the audio of the video that would be shown to them. They then had 

to test the volume and adjust it using a short test sound, which they could play re-

peatedly. 
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Figure 7 

Diagram of the Experimental Design. 

 

Note: A differential fear conditioning paradigm with three different phases was used: 

Habituation, Acquisition and Generalization. Male faces with neutral expression were 

used as conditioned stimuli (CS) and a 6s aversive film clip as unconditioned stimulus 

(US). Each CS was presented three times during the habituation, and eight times dur-

ing the acquisition and generalization. One of the CS was paired with the US in 75% 

of trials in acquisition and 50% of trials in the generalization (CS+). The other CS was 

never paired with the US (CS−). Eight morphs of CS+ and CS− on a gradient contin-

uum were used as generalized stimuli (GS) and each was presented four times. US-

expectancy ratings were measured during all CS and GS trials using a VAS appearing 

2s after picture onset. COVID-Anx = Questionnaire on the subjective perception of 

the COVID-19 epidemic (COVID-19-related anxiety [COVID-Anxiety]), PHQ-9 = De-

pression module of the Patient Health Questionnaire (depression), GAD-7 = General-

ized anxiety disorder, the anxiety module of the PHQ (anxiety symptoms), PSS = Per-

ceived Stress Scale (stress), STAI–T = The trait version of the State–Trait Anxiety Inven-

tory (trait anxiety). 
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Fear Acquisition 

Participants were informed that faces would be presented during the experi-

ment and that they would need to indicate to what extent they expected them to be 

followed by an aversive video (expectancy ratings). They were also informed that they 

would have only a few seconds to answer and should, therefore, answer as quickly as 

possible. A practice run consisting of three trials with a third neutral face serving as 

the CS− (no US) was completed to ensure that participants were familiar with the trial 

procedure and, in particular, the expectancy ratings. The practice run could be re-

peated if desired. A habituation phase then followed, consisting of three presentations 

each of the CS+ and CS−, all without the US. The instructions for acquisition indicated 

that one of two pictures would sometimes be followed by an aversive video. Acquisi-

tion consisted of eight CS− and eight CS+, with six of the CS+ followed by the US at 

the offset (75% reinforcement). A partial reinforcement rate during acquisition was 

used to prolong extinction and prevent ceiling effects (cf. Lonsdorf et al., 2017). For 

an example of the CS+ trial, see Figure 8. 

Fear Generalization 

The generalization phase started immediately after the pause for valence rat-

ings that followed the acquisition phase, without specific instruction. During this 

phase, the CS+ and CS− were presented along with the eight GS. The CS+ and CS− 

were presented eight times each and the GS were presented four times for each of 

the eight GS. Half of the CS+ trials were reinforced using the US to prevent extinction 

learning and ensure that the focus remained on the effects of generalization (cf. Had-

dad et al., 2013). 

Attention Check 

To ensure the quality of the data, two questions were presented at the end of 

the experiment. An unannounced beep was played several times, and participants 

were asked to indicate how often they heard the beep. This served to verify that par-

ticipants watched the aversive videos with their volume on and that they were paying 
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attention during the study. Finally, participants were asked whether they had com-

pleted the tasks conscientiously and how often they looked away during the video 

presentations. 

 

Figure 8 

Example of a Reinforced Conditioned Stimulus Trial. 

 

Note: In every trial, CS/GS was presented for a total of 6s. A VAS for collection of US-

expectancy appeared under the stimulus 2s after picture onset and remained till a 

response was done or otherwise, till picture offset. In the reinforced CS+ trials, the US 

(6s aversive film clip) appeared at picture offset. Between trials, a black screen with a 

fixation cross was presented during a 4s intertrial interval (ITI). 

 

4.2.3.6 Statistical Analyses 

All statistical analyses were conducted using IBM SPSS (version 26), with the 

level of significance set to α = 0.05. Sum scores were calculated to analyze the COVID-

Anx. All other questionnaires were scored according to their guidelines. Non-para-

metric correlations (Spearman’s Rho) were calculated between the COVID-Anx and 
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the other questionnaires. For comparisons between groups, we divided participants 

per a median split (Median = 17) into low and high COVID-Anxiety groups. The low 

COVID-Anxiety group comprised 115 participants (63 women), while the high COVID-

Anxiety group comprised 105 participants (78 women). 

To assess US-expectancy discrimination between the CS+ and CS− during ha-

bituation and acquisition, difference scores were calculated (CS+-CS−; DiffX, with X 

specifying the phase; LaBar et al., 1995; Norrholm et al., 2006). Higher difference scores 

indicated better discrimination between the CS+ and CS−. The use of difference scores 

has advantages such as higher statistical power, the ability to account for between-

subject differences in the overall response tendency, and the reflection of discrimina-

tion between stimuli, as well as what provides a better measure of learning-related 

effects. Additionally, it allows for better control of orientation and habituation reac-

tions occurring at both the CS+ and the CS− (Lonsdorf et al., 2017). To test the effects 

of COVID-Anxiety on US-expectancy during fear acquisition, we conducted a mixed-

design ANOVA with the Group (low vs. high COVID-Anxiety) as the between-group 

factor and the Phase (habituation vs. acquisition) as the within-participants factor. 

Similarly to Lissek et al. (2008), for the analysis of US-expectancy during fear 

generalization, we divided the responses to the eight GS into four classes (GS_Class1–

4) using the averaged response to every two GS (e.g., GS_Class1 = GS1 + GS2, see 

Figure 9). The classes followed a similarity gradient, with GS_Class1 having the highest 

similarity to the CS+ and GS_Class4 having the highest similarity to the CS−. Averaging 

the stimuli into classes resulted in an equal number of trials for the CS+, CS−, and 

GS_Classes. To correct for answer tendencies, and to obtain a better comparison with 

fear acquisition, difference scores were calculated to assess discrimination between 

the CS+, the four classes of GS, and the CS−, respectively (CS+-CS−, GS_Class1-CS−, 

GS_Class2-CS−, GS_Class3-CS−, GS_Class4-CS−; DiffX, with X specifying the CS type). 

Thus, five difference scores were calculated, with higher difference scores indicating 

better discrimination between the CS+/GS and the CS− and, therefore, less generali-

zation. A mixed-design ANOVA was then conducted with Group (low vs. high COVID-
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Anxiety) as the between-group factor and CS Type (DiffCS+/CS− vs. DiffGS_Class1-CS− vs. Dif-

fGS_Class2-CS− vs. DiffGS_Class3-CS− vs. DiffGS_Class4-CS−) as the within-participants factor3. 

 

Figure 9 

Conditioned and Generalized Stimuli Used in the Paradigm. 

 

Note: The CS were two neutral male faces taken from the Radboud Face Database 

(Langner et al., 2010). We randomly assigned both CS between participants to serve 

as the reinforced stimulus (CS+) or unreinforced stimulus (CS−). The GS consisted of 

the two faces morphed along a gradient from CS+ to CS− (from 88.8% to 11.1% sim-

ilarity to the CS+). We divided the responses to the eight GS into four classes 

(GS_Class1–4), with GS_Class1 having the greatest similarity to CS+ and GS_Class4 the 

lowest (and, therefore, the highest similarity to the CS−). 

 

For the analysis of subjective valence, the difference scores of valence ratings 

(CS+-CS−) were used as dependent variable. A mixed-design ANOVA, with Group (low 

vs. high COVID-Anxiety) as the between-group factor and Time (pre-habituation, pre-

acquisition, post-acquisition, post-generalization) as the within-participants factor. 

 
3 An additional regression analysis of COVID-Anxiety’s effects on fear generalization, with a gen-

eralization index as the dependent variable and the COVID-Anx (non-dichotomized) as the predictor, is 

included in S4 in Supplementary Material of Study II.  
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CS-specific analyses (no difference scores) for US-expectancy and CS valence 

are reported in the supplementary data (S2) in Supplementary Material of Study II to 

allow for additional interpretations of threat/safety learning, as recommended by 

Lonsdorf et al. (2017). The results are concordant with those found for the difference 

scores. 

For the analysis of current anxiety levels, we used the raw scores of the current 

anxiety ratings and mixed-design ANOVAs with the Group (low vs. high COVID-Anxi-

ety) as the between-group factor and Time (pre-habituation, pre-acquisition, post-

acquisition, post-generalization) as the within-participants factor. 

Greenhouse–Geisser correction was applied whenever sphericity adjustment 

was required. (Adjusted p-values are reported with uncorrected degrees of freedom 

and epsilon values.) Where not specified, means and standard errors are reported. 

A follow-up analysis of interaction effects with Bonferroni-adjusted pairwise 

comparisons was conducted. An explorative analyses of gender effects by adding gen-

der (female, male) as an additional between-participants factor to the mixed ANOVAs 

was also conducted. 

4.2.4 Results 

4.2.4.1 Demographic Variables 

A chi-square test was used to compare gender distribution in the two COVID-

Anxiety groups. None of the expected cell frequencies was less than 5. The results 

show a significantly different distribution of gender in the groups, χ²(1) = 9.07, p 

=.003, φ = −.20, with fewer men in the high COVID-Anxiety group. There were no 

significant differences in age (p >.050). 

4.2.4.2 Questionnaires 

The descriptive statistics and correlations of the questionnaire measures are 

shown in Table 2. Correlations between COVID-Anx and the standardized question-

naires showed a significant relationship between COVID-Anxiety and depressive 

symptom severity (rs =.43, p <.001 [PHQ-9]), anxiety severity (rs =.46, p <.001 [GAD-
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7]), trait anxiety (rs =.39, p <.001 [STAI–T]), and perceived stress (rs =.37, p <.001 [PSS]), 

indicating the validity of the COVID-Anx questionnaire. 

Concordantly, t-test comparisons between the two groups (low vs. high 

COVID-Anxiety) were significant for all questionnaires, indicating higher depressive 

symptom severity, anxiety severity, trait anxiety, and perceived stress in the high 

COVID-Anxiety group (see Table S1 in Supplementary Material of Study II). 

 

Table 2 

Correlations Between the COVID-19 Anxiety Questionnaire and the Standardized 

Questionnaires. 

 

Note: M = Mean, SD = Standard deviation, COVID-Anx = Questionnaire on the sub-

jective perception of the COVID-19 epidemic (COVID-19-related anxiety), PHQ-9 = 

Depression module of the Patient Health Questionnaire (depression), GAD-7 = Gen-

eralized anxiety disorder, the anxiety module of the PHQ (anxiety symptoms), PSS = 

Perceived Stress Scale (stress), STAI–T = The trait version of the State–Trait Anxiety 

Inventory (trait anxiety). ** p <.01. 
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4.2.4.3 US-Expectancy During Habituation and Fear Acquisition 

A main effect of Phase, F1, 218 = 207.07, p <.001, ηp2 =.49, and a significant 

interaction between Phase*Group, F1, 218 = 7.20, p =.008, ηp2 =.03 (Figure 10) were 

found. There was no main effect of Group, F1, 218 = 0.09, p =.760, ηp2 <.001. As ex-

pected, US-expectancy difference scores were significantly higher in the acquisition 

(MDiff
Acq = 33.80, SE = 1.89) than in the habituation phase (MDiff

Hab = −0.80, SE = 1.68), 

showing that CS+/CS− discrimination was generally high during acquisition but not 

during habituation. Pairwise comparisons showed that the Phase*Group effect was 

driven by a marginally significant difference between groups in fear acquisition, F1, 218 

= 3.68, p =.056, ηp2 =.01. Furthermore, participants with high COVID-Anxiety showed 

lower difference scores during acquisition (MDiff
Acq = 30.17, SE = 2.74) than participants 

with low COVID-Anxiety (MDiff
Acq = 37.44, SE = 2.62), indicating worse discrimination 

between the CS+ and CS−. No significant differences between groups were found in 

the habituation phase, F1, 218 = 2.84, p =.093, ηp2 =.01. Explorative analysis with Gender 

as the additional factor did not reveal an interaction effect (Phase*Group*Gender: F1, 

216 = 2.81, p =.095). 
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Figure 10 

The Effect of COVID-19-Related Anxiety on Habituation and Fear Acquisition. 

 

Note: Means and standard errors of US-expectancy difference scores (* p <.05). 

 

4.2.4.4 US-Expectancy During Fear Generalization 

A main effect of CS Type, F4, 872 = 378.94, p <.001, ε =.45, ηp2 =.64, and a sig-

nificant interaction between CS Type*Group, F4, 872 = 4.27, p =.018, ε =.45, ηp2 =.02 

(Figure 11) were found. There was no main effect of Group, F1, 218 = 3.55, p =.061, ηp2 

=.02. A decrease in differential expectancy is seen from the CS+ (MDiff
CS+-CS− = 52.59, 

SE = 2.38) to GS_Class1 (MDiff
GS_Class1-CS− = 47.98, SE = 2.29), GS_Class2 (MDiff

GS_Class2-CS− = 

26.33, SE = 1.77), GS_Class3 (MDiff
GS_Class3-CS− = 9.62, SE = 1.18), and GS_Class4 

(MDiff
GS_Class4-CS− = 1.13, SE = 0.68), indicating the expected general generalization gra-

dient (ps <.001). Pairwise comparisons showed that there were significant differences 

between groups for DiffCS+-CS− (F1, 218 = 5.33, p =.022, ηp2 =.02) and DiffGS_Class1-CS− (F1, 218 
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= 4.19, p =.042, ηp2 =.02) but not for DiffGS_Class2-CS− (p =.112), DiffGS_Class3-CS− (p =.928), 

and DiffGS_Class4-CS− (p =.463). Participants with high COVID-Anxiety showed lower dif-

ference scores for the CS+ (MDiff
CS+-CS− = 47.11, SE = 3.43) and the most similar class 

of GS (MDiff
GS_Class1-CS− = 43.30, SE = 3.31) than participants with low COVID-Anxiety 

(MDiff
CS+-CS− = 58.08, SE = 3.28; MDiff

GS_Class1-CS− = 52.66, SE = 3.16), indicating worse dis-

crimination between the CS+ and CS−, as well as between the highly similar GS and 

the CS−. Explorative analysis with Gender as the additional factor did not reveal any 

gender-related COVID-Anxiety effects on US-expectancy (CS Type*Group*Gender: F4, 

864 = 0.28, p =.727, ε =.44). 

 

Figure 11 

The Effect of COVID-19-Related Anxiety on Fear Generalization. 

 

Note: Means and standard errors of US-expectancy difference scores (* p <.05). 
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4.2.4.5 Subjective Ratings 

CS-Related Valence Ratings 

The analysis of CS valence revealed a significant main effect of Time, F3, 654 = 

125.14, p <.001, ε =.65, ηp2 =.37. An increase in differential valence is seen from pre-

acquisition to post-acquisition and from post-acquisition to post-generalization (ps 

<.001), indicating an increase in the unpleasantness of the CS+ in relation to the CS− 

throughout the experiment (Figure 12). No other significant effects were found. Ex-

plorative analysis with Gender as the additional factor did not reveal an interaction 

effect (Time*Group*Gender: F3, 648 = 0.30, p =.828, ε =.66). 

 

Figure 12 

The Effect of COVID-19-Related Anxiety on Valence Ratings. 

 

Note: Means and standard errors of valence difference scores (* p <.05). 
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Current Anxiety Levels 

The analysis of current anxiety levels revealed a significant main effect of Time, 

F3, 654 = 9.97, p <.001, ε =.65., ηp2 =.04, and a significant effect of Group, F1, 218 = 19.97, 

p <.001, ηp2 =.08 (Figure 13). That is, current anxiety levels increased from pre- to 

post-acquisition (p <.001). A decrease in current anxiety levels from post-acquisition 

to post-generalization (p <.001) was observed. Participants with high COVID-Anxiety 

showed higher current anxiety levels than participants with low COVID-Anxiety 

throughout the experiment (ps <.011). Explorative analysis with Gender as the addi-

tional factor did not reveal an interaction effect (Time*Group*Gender: F3, 648 = 0.55, p 

=.651, ε =.65). 

 

Figure 13 

The Effect of COVID-19-Related Anxiety on Current Anxiety Levels. 

 

Note: Means and standard errors of current anxiety ratings (* p <.05). 
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4.2.5 Discussion 

This study aimed to investigate whether high anxiety associated with the 

COVID-19 pandemic negatively affects the fear learning and generalization processes. 

For this purpose, a differential fear conditioning paradigm was conducted, in which 

one stimulus was used as a conditioned fear cue and the other as a conditioned safety 

cue. We found evidence that COVID-Anxiety is associated with impaired fear learning 

and fear generalization, as well as increased current anxiety levels. 

Notably, the study was conducted during a period of the COVID-19 pandemic 

in which, although some personal adjustments could already have been made, there 

were still high incidence numbers (Robert Koch-Institut, n.d.) and stringent preventive 

measures (Bundesregierung, n.d.) that had a strong impact on daily life. 

Fear acquisition was successful in the present study. That is, participants asso-

ciated the CS+ with the aversive video and learned to discriminate it from the CS− 

according to its US-expectancy, which is consistent with other studies of the same 

type (Constantinou et al., 2021; Lonsdorf et al., 2017; Mertens et al., 2021). Further-

more, a trend for differences between participants with low versus high COVID-Anxi-

ety was evident during fear acquisition. Although both groups learned to discriminate 

between the stimuli from habituation to acquisition, participants with high COVID-

Anxiety showed marginally significant poorer discrimination, thus indicating poorer 

performance in fear learning. Classical conditioning models represent a valuable tool 

to study the characteristic mechanisms of anxiety disorders (Blechert et al., 2007; Dib-

bets et al., 2015; Duits et al., 2015; Lissek et al., 2005, 2014; Mineka & Oehlberg, 2008) 

because they not only provide information on the development of anxiety disorders 

but also on the effects of anxiety on fear learning processes. High anxiety, persistent 

worry, or anxiety disorders can lead to impaired fear learning, as reflected in stronger 

fear responses to an aversive stimulus (CS+), the poorer learning of safety cues (CS−), 

and poorer performance in fear extinction (Blechert et al., 2007; Dibbets et al., 2015; 

Duits et al., 2015; Lissek et al., 2005, 2014). Impaired fear learning is, therefore, not 

only associated with anxiety disorders but also with its maintenance and resistance to 
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therapy (Graham & Milad, 2011; Pittig et al., 2018). Our results indicate that partici-

pants who experience more anxiety and worry specific to the COVID-19 pandemic 

seem to show similar responses to those of highly anxious participants or patients 

with anxiety disorders in a fear conditioning paradigm, as they present with poorer 

fear discrimination (Duits et al., 2015). 

US-expectancy difference scores during fear generalization followed a re-

sponse pattern congruent with the morphing gradients. That is, the difference scores 

gradually decreased as the stimuli became less similar to the fear cue (CS+) and more 

similar to the safety cue (CS−). This general pattern of response from all participants 

is, therefore, in line with that of previous laboratory studies on human fear generali-

zation that found a decrease in behavioral and psychophysiological measures—such 

as US-expectancy ratings, CS fear ratings, perceived risk ratings, or startle amplitude—

along the similarity gradient from the CS+ to CS− (Dunning & Hajcak, 2015; Haddad 

et al., 2013; Lissek et al., 2008). Furthermore, participants in both groups showed de-

creases in US-expectancy ratings on the morph gradient from the CS+ to the CS−, 

suggesting that they could successfully discriminate between stimuli, regardless of 

COVID-Anxiety. 

Fear generalization is an adaptative response that allows us to respond to 

novel stimuli that are similar to previously experienced threatening stimuli in an ap-

propriate defensive manner (Dymond et al., 2015), so a degree of generalization is to 

be expected in all participants. Generalization can, however, turn into a maladaptive 

process, when new, non-threatening stimuli, i.e., with a lower resemblance to the CS+, 

are incorrectly perceived as harmful (Lissek et al., 2008). The impact of COVID-Anxiety 

on fear generalization was evident in the present study. That is, participants with high 

COVID-Anxiety showed significantly lower difference scores for the CS+ to CS− and 

GS_Class1 to CS− than participants with low COVID-Anxiety. Similar to what was ob-

served during fear acquisition, the high COVID-Anxiety group presented with poorer 

discrimination between harmful and harmless stimuli (CS+ vs. CS−). Moreover, partic-

ipants with high COVID-Anxiety also showed poorer discrimination between non-
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harmful generalization stimuli similar to the CS+ and non-harmful stimuli (GS_Class1 

vs. CS−). Similarly, regression analysis with a generalization index also showed a sig-

nificant effect of COVID-Anxiety (non-dichotomized) on generalization, with higher 

values of COVID-Anxiety significantly predicting higher generalization (S4 in Supple-

mentary Material of Study II). Overgeneralization is an important characteristic of 

many anxiety disorders and may not only lead to more suffering in patients but also 

to more difficulties in psychotherapeutic treatment (Craske et al., 2009; Dymond et al., 

2015). Studies have suggested that fear can be elicited by stimuli that were never 

paired with the original US and that the fear of GS may be even greater than the fear 

of the CS (Dougher et al., 2007; Dymond et al., 2015). Additionally, the extinction of 

GS may be less effective and result in even greater levels of the return of fear than 

extinction with the CS itself (Vervliet et al., 2005). The latter, in particular, poses a major 

challenge for clinical practice, as exposure therapy can often only be applied to the 

available GS, and these first need to be identified. 

Additional analysis of CS-specific US-expectancy (see S2 in Supplementary 

Material of Study II) showed significant differences between groups during fear ac-

quisition driven by a higher US-expectancy of the CS− in the high COVID-Anxiety 

group. Similarly, during the generalization phase, the high COVID-Anxiety group (vs. 

the low COVID-Anxiety group) also showed greater US-expectancy both of the CS− 

and of the GS most similar to the CS− (GS_Class3 and 4). These results suggest that 

the high COVID-Anxiety group seemed to have impairments in safety detection rather 

than in threat detection. A similar pattern can be seen in studies with patients with 

anxiety disorders and PTSD in which impaired safety learning has been commonly 

found (e.g., Duits et al., 2015; Jovanovic et al., 2005, 2009). That is, it has been sug-

gested that impaired safety learning might be a biomarker for PTSD (Jovanovic et al., 

2012). Further, difference scores for CS valence ratings increased from pre-habitua-

tion/acquisition to post-acquisition and again to post-generalization, indicating a suc-

cessful fear acquisition paradigm. We saw an increase in current anxiety levels from 

pre- to post-acquisition in both groups, indicating that the fear acquisition phase was 

mostly stressful enough and, therefore, successful. Additionally, a decrease in current 
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anxiety levels from post-acquisition to post-generalization was found, probably due 

to the presence of more safety cues and a lower reinforcement rate of the CS+ (50%), 

allowing for a small fear extinction effect throughout generalization. Differences be-

tween the groups were also seen in current anxiety levels. That is, participants with 

high COVID-Anxiety showed higher anxiety ratings throughout the experiment, indi-

cating higher psychological distress within this group. 

Positive correlations between the COVID-Anx questionnaire and the standard-

ized questionnaires testing for depression (PHQ-9), anxiety (GAD-7, STAI–T), and per-

ceived stress (PSS) were found, showing that the items used were suitable to measure 

the pandemic’s negative effects on psychological well-being. Additionally, significant 

differences between the groups in all of the used questionnaires (see Table S1 in Sup-

plementary Material of Study II) were also observed, with participants in the high 

COVID-Anxiety group achieving higher scores for depression, anxiety symptoms and 

trait, and perceived stress. These results further support studies on the impact of the 

current pandemic on mental health and its association with mental illnesses, such as 

depression or anxiety disorders (Deng et al., 2021; Sahebi et al., 2021; Salari et al., 

2020; Santabárbara et al., 2021). However, notably, while the COVID-Anx question-

naire specifically addresses COVID-Anxiety, due to the cross-sectional design of the 

present study, we cannot rule out that the observed inter-individual differences only 

partially reflect differences in general anxiety. Due to a lack of longitudinal data, it 

remains unknown to what extent the groups differed in terms of other measures of 

anxiety, even before the onset of the COVID-19 pandemic. 

Gender distribution was not comparable between the groups, as there were 

fewer men in the high COVID-Anxiety group, which is unsurprising because studies 

have suggested that the current pandemic affects men and women’s mental health 

differently. That is, women appear to report more anxiety and worry and, therefore, 

experience greater psychological impairments (Broche-Pérez et al., 2020; Oreffice & 

Quintana-Domeque, 2021; Proto & Quintana-Domeque, 2021). Independent of the 

COVID-19 pandemic, women are also at a higher risk of developing anxiety disorders 



89 

(McLean et al., 2011), a disparity that could be exacerbated by the burdens of the 

pandemic. Nevertheless, we did not find gender-related effects regarding fear acqui-

sition and fear generalization. Yet, to gain a better overview of the role of gender in 

fear learning during COVID-19, further studies should explicitly explore gender differ-

ences. 

Due to the limitations imposed by preventive COVID-19 measures, this study 

was conducted as an online experiment and not in a laboratory setting. Online exper-

iments have many advantages, including easy and wide advertisement and recruit-

ment, the 24h availability of the experiment, and greater convenience for participants. 

However, the disadvantages thereof include higher variability in environmental fac-

tors, such as ambient noise or technical equipment; higher susceptibility to fraud, for 

example, due to multiple participation or lower compliance (Anwyl-Irvine et al., 2020; 

Dandurand et al., 2008; Di Santo et al., 2020); and the impossibility of collecting addi-

tional physiological data. To mitigate some of these disadvantages, we employed sev-

eral control measures that served as exclusion criteria and limited participation to per-

sons with valid student e-mail addresses. Studies have shown, however, that there are 

differences in the psychological impact of the COVID-19 pandemic on different pop-

ulation and age groups (Breslau et al., 2021; Kazmi et al., 2020; Xiong et al., 2020). For 

example, elderly people have a higher likelihood of developing a more severe clinical 

course of COVID-19 (Ho et al., 2020; Rashedi et al., 2020), while societal limitations, 

such as those due to social isolation, can affect the elderly more significantly than 

younger people (Borade & Nagarkar, 2021; Di Santo et al., 2020). However, it has been 

found that since the pandemic started, young people have shown an increase in wor-

ries about their professional future, boredom, and frustration, as well as an increase 

in mental disorders (Aristovnik et al., 2020; Liang et al., 2020). Therefore, the COVID-

19 pandemic is affecting all population groups, but the magnitude of and disparities 

in its impact have not yet been extensively studied and should be the focus of future 

research. Moreover, differences between subjective expectancy ratings and psycho-

physiological measures, such as the skin conductance response (SCR) or the startle 

reflex, have been reported in several fear conditioning studies (Blechert et al., 2008; 
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Ferreira de Sá et al., 2020; Sevenster et al., 2014). These dissociations correspond to 

the idea of multiple memory systems being involved in fear learning (Phelps, 2004). 

For further studies, it would be beneficial to collect psychophysiological measures as 

well to obtain a broader understanding of the involved processes. However, it should 

also be mentioned that subjective measures, such as verbal reports or expectancy rat-

ings, are one way to measure emotional processes reliably and directly and are the 

easiest to use in therapeutic settings (LeDoux & Hofmann, 2018). For example, US-

expectancy ratings are widely used measures in fear conditioning research. They not 

only allow for inferences to be made about conscious knowledge of the CS–US con-

tingency but are also aligned with the development of other conditioned reactions 

(Constantinou et al., 2021; Lonsdorf et al., 2017; Purkis & Lipp, 2001; Weidemann & 

Antees, 2012) and could be confirmed as a valid measure of fear responses (Boddez 

et al., 2013). Therefore, for a practice-oriented transfer of study results, subjective 

measures should always be recorded, despite their discrepancies with physiological 

measures. In addition, future studies should focus on COVID-Anxiety’s effects on fear 

extinction. Additionally, to ensure that the experiment was not too long, which could 

compromise data quality and increase dropout rates, an extinction phase was not in-

cluded in the present study. However, as mentioned above, the extinction of general-

ized CS–US associations poses a particular problem for the success of exposure ther-

apies and should, therefore, also be investigated in the context of the COVID-19 pan-

demic. 

Overall, the present results provide first evidence to show that anxiety associ-

ated with the COVID-19 pandemic might influence fear learning, and especially fear 

generalization, processes in a healthy sample of university students. As hypothesized, 

high COVID-Anxiety led to poorer discrimination performance between fear and 

safety cues, indicating impaired fear learning and generalization in comparison with 

lower COVID-Anxiety. This effect is characterized, in particular, by an impairment in 

safety learning, whereas the learning of threat cues did not seem to be impaired. Thus, 

factors that increase COVID-Anxiety may constitute a risk factor for anxiety develop-



91 

ment and other fear-related disorders, as well as contribute to greater treatment re-

sistance. Further research should focus on other age groups and the identification of 

possible factors contributing to COVID-Anxiety. Prevention and impairment-reducing 

interventions, especially for those at a high risk (e.g., high subjective stress), should be 

an important public health focus in the context of the COVID-19 pandemic and similar 

extreme global events. 

4.3 Study III 

Hauck, A., Michael, T., & Ferreira de Sá, D. S. (2024). Can glucose serve as an 

adjuvant of fear exposure? Effects of glucose administration on fear extinction and its 

consolidation. Behavior Research and Therapy, 178, 104553, 

https://doi.org/10.1016/j.brat.2024.104553 

4.3.1 Abstract 

Previous studies showed that glucose has beneficial effects on memory func-

tion and can enhance contextual fear learning. To derive potential therapeutic inter-

ventions, further research is needed regarding the effects of glucose on fear extinc-

tion. In two experimental studies with healthy participants (Study 1: N=68, 39 females; 

Study 2: N=89, 67 females), we investigated the effects of glucose on fear extinction 

learning and its consolidation. Participants completed a differential fear conditioning 

paradigm consisting of acquisition, extinction, and return of fear tests: reinstatement, 

and extinction recall. US-expectancy ratings, skin conductance response (SCR), and 

fear potentiated startle (FPS) were collected. Participants were pseudorandomized and 

double-blinded to one of two groups: They received either a drink containing glucose 

or saccharine 20 minutes before (Study 1) or immediately after extinction (Study 2). 

The glucose group showed a significantly stronger decrease in differential FPS during 

extinction (Study 1) and extinction recall (Study 2). Additionally, the glucose group 

showed a significantly lower contextual anxiety at test of reinstatement (Study 2). Our 

findings provide first evidence that glucose supports the process of fear extinction, 

and in particular the consolidation of fear extinction memory, and thus has potential 

as a beneficial adjuvant to extinction-based treatments. 
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4.3.2 Introduction 

Anxiety disorders (ADs) are among the most common psychological disorders 

and are responsible for a great burden of disease worldwide (Patel et al., 2018; 

Wittchen et al., 2011). In the wake of the COVID-19 pandemic, there has been a sig-

nificant increase in prevalence rates for ADs (Salari et al., 2020; Santabárbara et al., 

2021; Santomauro et al., 2021). Thus, following the central health challenge of the 21st 

century of providing better general treatment for mental illness, improving the treat-

ment of ADs in particular has become extremely salient. First-line therapy for treating 

ADs is cognitive behavioral therapy (CBT) with special focus on exposure therapy (Hof-

mann et al., 2012; Kaczkurkin & Foa, 2015).  

ADs may often be explained according to models of classical conditioning 

(Carpenter et al., 2019; De Houwer, 2020; Michael, Blechert, et al., 2007; Vervliet & 

Boddez, 2020). Although CBT and exposure therapy are safe and, most importantly, 

effective forms of treatment for ADs, not all patients benefit equally well from its ef-

fects (Arch & Craske, 2009; Carpenter et al., 2018; Hembree & Cahill, 2007; Markowitz 

& Fanselow, 2020). A key component to the success of exposure therapy is successful 

extinction learning (Forcadell et al., 2017), for which some studies demonstrate im-

pairments for patients with AD (Arch & Craske, 2009; Blechert, Michael, Vriends, et al., 

2007; Michael, Blechert, et al., 2007). Extinction learning is a process that has been well 

characterized and understood by a wealth of research on fear conditioning in humans 

and animals (Bouton et al., 2021; Carpenter et al., 2019; Salinas-Hernández et al., 2018). 

Recent studies confirmed the efficacy of exposure therapy when optimized according 

to the principles of fear extinction (Pittig et al., 2021, 2023). Thus, improving successful 

extinction learning is a key factor in further enhancing the effectiveness of exposure 

therapy. Numerous studies have identified adjuvant substances that appear to have 

positive effects on fear extinction, such as D-cycloserine (Davis, 2011; Ebrahimi et al., 

2020; Inslicht et al., 2022), oxytocin (Eckstein et al., 2015, 2019), cortisol (Brueckner et 

al., 2019; Hagedorn et al., 2022; Lass-Hennemann & Michael, 2014; Merz et al., 2018) 

or insulin (Ferreira de Sá et al., 2020). While studies have shown mixed results regard-

ing their use in exposure therapy (Giovanna et al., 2020; Kushner et al., 2007; Litz et 
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al., 2012; Raeder et al., 2019; H. Rodrigues et al., 2014; Soravia et al., 2014), a major 

disadvantage of the mentioned substances is that they cannot be prescribed and used 

by non-medical psychotherapists in most countries. Additionally, they might have 

considerable physical secondary effects and might not be used unrestrictedly in all 

patients. Therefore, it is important to study alternative adjuvant substances that do 

not have significant secondary effects or greater limitations in their use, and that can 

easily be used by any practitioner in the therapeutic setting.  

Glucose is a monosaccharide and acts as one of the most important cellular 

energy sources, with 20% of the total glucose intake relating to human brain func-

tioning (Mergenthaler et al., 2013). Glucose plays an essential role in modulating cog-

nitive processes (Mergenthaler et al., 2013; Messier, 2004; Smith et al., 2011) and can 

improve declarative memory and working memory in healthy participants (Korol & 

Gold, 1998; Martin & Benton, 1999; Messier, 2004; Scholey et al., 2013; Smith et al., 

2011). In a study from Glenn and colleagues (2014), participants who received glucose 

after fear learning (versus placebo) showed an increase in fear response during a re-

tention test, demonstrating that glucose has an influence on human fear conditioning 

processes. However, for a psychotherapeutic application of glucose it is essential to 

investigate whether it can support fear extinction, and to date this question remains 

open. 

We conducted two separate double-blind, placebo-controlled studies to ex-

amine the effects of glucose on extinction learning, using a differential fear condition-

ing paradigm. A glucose drink (vs. placebo) was administered at two different times: 

before extinction learning, with blood glucose peak during memory encoding (Study 

1); after extinction learning, to focus on direct effects on early consolidation (Study 2; 

see Brueckner et al. (2019). Glucose effects in fear extinction learning and RoF (here 

extinction recall and reinstatement) were analyzed. We hypothesized that glucose ad-

ministration would result in better extinction learning and retention, as measured by 

psychophysiological and behavioral parameters, compared with placebo.  
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4.3.3 Methods and Materials 

4.3.3.1 Participants 

In a preliminary interview, screening questions were used to check for the pres-

ence of exclusion criteria. To be eligible, participants required a normal body mass 

index (World Health Organization, n.d.), no acute or chronic physical or mental ill-

nesses (e.g., diabetes, thyroid disease, depression, or post-traumatic stress disorder), 

and no pregnancy. Female participants were required to use hormonal contraceptives4 

to minimize hormonal differences. Regular use of medication, drugs, or excessive al-

cohol/nicotine were exclusion criteria.  

Both studies were conducted in accordance with the Declaration of Helsinki 

and approved by the local ethics committee (Ethics Committee of the Faculty of Em-

pirical Human Sciences at Saarland University). Registration for clinical trials was done 

through the German Clinical Trials Registry (Study 1: DRKS00010550; Study 2: 

DRKS00018933). Because Study 1 was conducted as a pilot study, no sample size cal-

culation was performed. See supplement for more information on sample size deter-

mination of Study 1 and sample size calculations of Study 2. After completing the 

study, participants received either monetary compensation (Study 2) or academic 

credit if they were studying psychology at Saarland University (Studies 1 and 2). 

For Study 1, 120 healthy students were recruited at Saarland University to par-

ticipate with a final sample of 68 participants (39 female, sample description and CON-

SORT flow diagram in supplemental information of Study III, Schulz et al., 2010). For 

Study 2, 134 healthy students were recruited at Saarland University. The final sample 

consisted of 89 participants (67 female, sample description and CONSORT flow dia-

gram in supplemental information of Study III, Schulz et al., 2010). 

 
4 The use of drugs containing drosperinone has been approved due to its additional action as a 

mineralocorticoid receptor antagonist (Genazzani et al., 2007). 
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4.3.3.2 Group Assignment and Pharmacological Manipulation 

For both studies, a double-blind methodology was employed. Participants 

were blinded, sex matched, and pseudo-randomly assigned to either the glucose or 

placebo group (sex distribution per group in supplemental information). The glucose 

group received an opaque drinking bottle containing 25g of glucose powder mixed 

with 300ml of water, while the placebo group received 30mg of saccharin powder 

mixed with the same amount of water. The amount of glucose administered proved 

optimal for improving cognitive abilities (Smith et al., 2011), while the amount of sac-

charin provided the same sweetness without affecting blood glucose levels (Scholey 

et al., 2013). The drink's administration was followed by a 20-minute break during 

which participants read neutral magazines. This time interval was chosen based on 

data from a pilot study (supplemental information). Blood glucose levels were meas-

ured with a glucometer (Accu-Chek Aviva, Roche Diagnostics Deutschland, Mann-

heim, Germany) during the experiment: for Study 1 on arrival, 15 minutes after drink 

administration, and before departure, and for Study 2 upon arrival on day 2, and 15 

minutes after the drink. 

4.3.3.3 Stimuli and Apparatus 

The stimuli and apparatus used were based on the study by Ferreira de Sá et 

al. (2020). Stimuli included two male face pictures from the Radboud face database 

(Langner et al., 2010) that showed neutral expressions and were matched on valence 

and arousal ratings (Ferreira de Sá et al., 2020). These images served as conditioned 

stimuli (CSs). Each image was presented for 8s, followed by a black screen and a ran-

domized intertrial interval (ITI) of 10-15s. At stimulus offset, one of the CSs was ran-

domly associated with a moderate 200ms electrical shock to the left forearm and 

served as a reinforced conditioned stimulus (CS+), whereas the other CS was never 

paired with an electrical shock, serving as an unreinforced conditioned stimulus (CS–

). The allocation of pictures to CS+ and CS– was counterbalanced and randomized 

between participants. The intensity of the electrical shock was individually adjusted 
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(possible range: 1mA to 100mA; DS3 Isolated Current Stimulator, Digitimer Ltd, Hert-

fordshire, United Kingdom) and applied via two electrodes (45mm diameter; Kendall 

ECG electrodes H34SG, Cardinal Health, Dublin, USA) on the inside of the left forearm 

with an interelectrode distance of approximately 3cm. The adjustment was made at 

the beginning of the experiment and was kept constant for all days of Study 2. A white 

noise (105dB, 50ms, instantaneous rise time) was presented binaurally via 24-Bit 

sound card (Creative Sound Blaster Z, Creative Technology Ltd., Singapore) and audi-

ometric headphones (Holmco PD-81, Holmberg GmbH & Co. KG, Berlin, Germany) on 

all CS trials 7s after picture onset, and 5s after picture offset during half of the ITI 

(noise alone, NA) and served as an auditory startle stimulus. The order of CS+ and CS– 

trials was pseudo-randomized: no more than two consecutive presentations of the 

same stimulus type, and a balanced number of trials of each type in each half of the 

conditioning phase. 

4.3.3.4 Procedure 

For Study 1, the differential fear-conditioning paradigm took place on a single 

day and included: 3min resting phase at the beginning and end of the session, startle 

habituation, picture habituation, acquisition, substance administration, extinction, re-

instatement (including test of reinstatement [ToR]; Figure 14). For Study 2, the differ-

ential fear-conditioning paradigm took place on three consecutive days and addition-

ally included an extinction recall (retention test) before reinstatement on day 3 (Figure 

15). 

To ensure a comparable glycemic state between participants, they were in-

structed to have their last meal before 10 p.m. the previous day. Additionally, they 

were asked not to consume caffeine, nicotine, or alcohol, and not to exercise on the 

day of the experiment. The study was conducted from 8 a.m. to 12 p.m. to ensure 

similar fasting states and to control for time of the day effects (Challet, 2015). As a 

cover story for increased compliance, participants were informed that a saliva sample 

would be collected to check their fasting status. Upon arrival, participants completed 

a routine recall from awakening to arrival ("What did you do from the time you got 
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up until you got to the laboratory?"; Ferreira de Sá et al., 2014, 2020; Stone et al., 

1991), and the saliva sample was collected. For a detailed description of the fear con-

ditioning paradigm, see supplemental information.  

 

Figure 14 

Procedure of Study 1 and example of CS+ trial during acquisition.  

 

Note: Study 1 consisted of a 1-day differential fear conditioning paradigm. Glucose 

was administered before fear extinction. Two male face pictures were used, one each 

as reinforced (CS+) and unreinforced conditioned stimulus (CS–). An electroshock was 

used as unconditioned stimulus (US).  
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Figure 15 

Procedure of Study 2. 

 

Note: The study took place on three consecutive days with a 24h period between ses-

sions. Glucose was administered at the end of day 2. Two male faces were used, one 

each as reinforced (CS+) and unreinforced conditioned stimulus (CS–). An electro-

shock was used as unconditioned stimulus (US).  

 

4.3.3.5 Self-Report and Subjective Measures 

Prior to the experiment, participants completed several questionnaires via 

SoSci-Survey (Leiner, 2014): the depression and the anxiety module of the Patient 

Health Questionnaire (PHQ-9, (Spitzer, 1999); GAD-7, (Spitzer et al., 2006)), as well as 

ratings of participants' US-expectancy (“How much do you expect that the electro-

shock will follow after this picture?”) and CS-valence (“How unpleasant is this picture 

for you?”) via a visual analog scale (VAS, 0-100, with higher ratings indicating higher 

US-expectancy and higher unpleasantness) at the beginning (pre), middle (mid), and 

end (post) of each conditioning phase. In addition, ratings of current anxiety level 

(“How anxious are you feeling right now?”), reported stress (“How stressed are you 

right now?”), and wakefulness (“How awake do you feel right now?”) were collected at 
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different times during the experiments via a VAS (0-100, with higher ratings indicating 

higher levels of wakefulness, reported stress, and anxiety):  

• Study 1: a) before picture habituation, b) after acquisition, c) before extinction, d) 

before reinstatement, and e) after ToR.  

• Study 2, day 1: a) before picture habituation, b) after acquisition; day 2: c) before 

extinction d) after extinction, e) after glucose administration; day 3: f) before re-

extinction (extinction recall), g) before reinstatement, h) after reinstatement, i) and 

after ToR.  

After fear acquisition, contingency awareness was assessed by asking partici-

pants to indicate which of the pictures was followed by the electroshock. For Study 2, 

additional contingency awareness was assessed at the end of day 3. At the end of 

both experiments, participants were asked to indicate which substance they believed 

was administered to them ("glucose", "placebo (sweetener)", "I don't know"). 

4.3.3.6 Physiological Measures 

Fear potentiated startle (FPS) and skin conductance responses (SCR) were col-

lected to represent different dimensions of fear learning (see Lonsdorf et al., 2017). 

For FPS responses, EMG activity (μV) of the orbicularis oculi was measured using two 

active Ag-AgCl electrodes (11 x 17 x 4.5mm; BioSemi FLAT Active electrode, BioSemi, 

Amsterdam, Netherlands). The amplitude of the startle response was calculated by 

computing the difference between baseline (mean EMG in a 50ms window before 

acoustic stimulus) and peak startle response (highest value within 20-150ms after 

acoustic stimulus), and trials with artifacts were scored as missing. Trials with no visible 

startle response were scored as zero, which were included in the calculation of FPS 

magnitudes. Startle responses during the presentation of CS+ and CS– were measured 

to assess fear learning, while startle responses during noise alone trials were measured 

to assess contextual fear (Ferreira de Sá et al., 2020; Haaker et al., 2014; Missig et al., 

2010). 

SCR (μS) was measured using two passive Nihon-Kohden electrodes (11 x 11 

x 3mm; BioSemi Galvanic Skin Response Sensor, BioSemi, Amsterdam, Netherlands), 
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filled with isotonic gel and attached to thenar and hypothenar eminence of the par-

ticipant’s nondominant hand. The maximum responses (highest value within 0-7s after 

CS onset) were subtracted from the average baseline responses (mean SCR in a 2s 

window before CS onset) to obtain the SCR size (Bentz et al., 2013; Bos et al., 2012; 

Ferreira de Sá et al., 2020; Vriends et al., 2011; Wegerer et al., 2013). 

Physiological data was recorded with ActiveTwo-Software (BioSemi, Amster-

dam, Netherlands) at a sampling rate of 2048Hz, and the data was further analyzed 

with Autonomic Nervous System Laboratory (ANSLAB) version 2.6 (Blechert et al., 

2016) and by manual inspection. Missing data and outliers (|Z|>3) from startle (Study 

1: 2.2%, Study 2: 1.8%) and SCR (Study 1: 1.6%, Study 2: 2.2%) were replaced by linear 

trend at point for each participant, and separately for each experimental phase and 

CS-type (Brueckner et al., 2019; Sevenster et al., 2014). In accordance with established 

guidelines, startle amplitudes (FPS) and SCR size were T-scored to minimize between-

participants variability (Blumenthal et al., 2005; Boucsein et al., 2012; Dawson et al., 

2007; Lonsdorf et al., 2017). For Study 2, standardization of physiological data was 

performed separately for each day of the study. To compare between-group differ-

ences in Study 1, analysis of NA startle reactions was conducted using raw scores and 

startle amplitudes were not standardized, since standardized NA startle reactions 

might be influenced by startle responses to CS+ and CS–. For analysis of NA startle 

reactions in Study 2, standardized NA startle reactions were used to better account 

for intra-individual differences between the three experimental days (e.g., due to 

slightly different placement of startle electrodes or different skin conductance; see 

supplemental information for analyses of NA startle reactions in Study 2 using raw 

scores). 

4.3.3.7 Statistical Analysis 

Statistical analysis was performed using IBM SPSS (version 29; IBM, Ar-

monk,USA) with a significance level of α = .05. Similar to other studies with multiple 

outcome measures, data were analyzed separately by SCR, FPS, and US-expectancy 

(Gerlicher et al., 2019; Mertens et al., 2021; Newsome et al., 2023). 
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For both studies, conditioning to the CS+ was assessed with a mixed-design 

ANOVA with Group as between-subjects factor, and CS-type (CS+ vs. CS–), as well as 

Time (physiological data: Block 1-6, each with two trials of each CS-type; US-expec-

tancy: pre vs. mid vs. post) as within-subjects factor. To assess discrimination between 

CS types, difference scores (CS+ - CS–) of each outcome measure (SCR, FPS, and US-

expectancy) were calculated for analyses of extinction, reinstatement, and ToR in 

Study 1 and for extinction, re-extinction, reinstatement, and ToR in study 2 (Ferreira 

de Sá et al., 2020; K. LaBar et al., 1995; Norrholm et al., 2006).  

In study 1, extinction and ToR of physiological data were divided into blocks 

to represent learning effects resulting from the preceding glucose administration (ex-

tinction: three blocks, ToR: two blocks; Brueckner et al., 2019; Eckstein et al., 2019; 

Ferreira de Sá et al., 2020; Lonsdorf et al., 2017). Mixed-design ANOVAs with Group 

as between-subjects factor and Time as within-subjects (extinction: early vs. mid vs. 

late, ToR: early vs. late, reinstatement: late extinction vs. early ToR) were performed. 

US-expectancy ratings were similarly analyzed with mixed-design ANOVAS with 

Group and Time (extinction and ToR: pre vs. mid vs. post, reinstatement: post-extinc-

tion vs. post-reinstatement). Follow-up analyses of two-way interactions were done 

with Bonferroni-adjusted pairwise comparisons for each Time point, comparing pla-

cebo and glucose. 

In study 2, in order to study the effects of glucose administered after the fear 

extinction, mixed-design ANOVAs with Group as between-subjects factor and Time as 

within-subjects factor (extinction and re-extinction: early vs. late; reinstatement: late 

re-extinction vs. early ToR) were performed for the physiological data. US-expectancy 

ratings were analyzed with a mixed-design ANOVA with Group as between-subjects 

factor and Time (extinction, re-extinction and ToR: pre vs. mid vs. post; reinstatement: 

post-re-extinction and post-reinstatement). To additionally test the immediate effects 

of glucose administration on US-expectancy ratings, a mixed ANOVA was calculated 

with the between-subjects factor Group (glucose vs. placebo) and Time (post-extinc-

tion vs. post-glucose). Follow-up analyses of two-way interactions were done with 
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Bonferroni-adjusted pairwise comparisons for each Time point, comparing placebo 

and glucose. 

For both studies, NA startle trials were analyzed with a mixed-design ANOVA 

with Group as between-subjects factor and Phase as within-subjects factor (Study 1: 

acquisition, extinction, ToR; Study 2: acquisition, extinction, re-extinction, ToR). 

In addition, and for both studies, subjective ratings of wakefulness, anxiety, 

stress, and unpleasantness of US were analyzed with mixed-design ANOVAs, with 

Group as between-subjects factor and Time (Study 1: pre-acquisition, post-acquisi-

tion, pre-extinction, post-extinction, post-test-of-reinstatement; Study 2: pre-acquisi-

tion, post-acquisition, pre-extinction, post-extinction, post-glucose, pre-re-extinction, 

post-re-extinction, post-test-of-reinstatement) as within-subjects factor. 

When sphericity adjustment was required, the Greenhouse-Geisser correction 

was applied and adjusted p-values are reported in connection with epsilon. A follow-

up analysis for contextual anxiety during ToR of Study 2 was performed, using a one-

tailed t-test between both groups (since a beneficial effect of glucose is hypothesized 

for all measures). 

4.3.4 Results  

4.3.4.1 Study 1 

There were no significant differences between groups regarding age, sex dis-

tribution, and questionnaire measures (all ps > .05). Additionally, there were no differ-

ences between groups in subjective ratings, nor in the glucose levels at the beginning 

of the experiment. A significant increase in blood glucose level was found in partici-

pants of the glucose, but not the placebo group, after drink administration (F2, 132 = 

29.88, p < .001, ε = 0.83, ηp
2 = 0.31; supplemental information of Study III).  

Contextual Anxiety: NA Startle 

A significant main effect of Phase (F2, 124 = 29.93, p < .001, ηp
2 = 0.33) indicated, 

that for all participants contextual anxiety decreased from acquisition (M = 54.13, SE 

= 4.59) to extinction (M = 42.90, SE = 3.69, p < .001, 95%-CI [6.01, 16.47]), and from 
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extinction to ToR (M = 39.32, SE = 3.74, p = .033, 95%-CI [0.21, 6.95]). No main effect 

of Group (F1, 62 = 2.06, p = .156) and no interaction Phase*Group (F2, 124 = 3.20, p = 

.058) were found. 

Acquisition 

SCR: Acquisition was successful in SCR. Significant main effects of CS-type (F1, 

65 = 7.21, p = .009, ηp
2 = 0.10) and Time (F5, 325 = 28.76, p < .001, ε = 0.66, ηp

2 = 0.31) 

were found. CS+ (M = 51.88, SD = 8.87) elicited a significantly higher SCR than the 

CS– (M = 50.32, SD = 6.82), while overall SCR continuously decreased from block 1 (M 

= 55.93, SE = 1.01) to block 2 (M = 52.01, SE = 0.87, p < .001, 95%-CI [2.42, 5.42]), and 

from block 2 to block 3 (M = 49.51, SE = 0.85; p < .001, 95%-CI [1.13, 3.88]). No inter-

actions of CS-type*Time (F5, 325 = 0.55, p = .681, ε = 0.71), CS-type*Group (F1, 325 = 0.18, 

p = .669), Time*Group (F5, 325 = 0.24, p = .889, ε = 0.66), or CS-type*Time*Group (F5, 65 

= 0.90, p = .456, ε = 0.71) were found (Figure 16a).  

FPS: Acquisition was successful in FPS. Significant main effects of CS-type (F1, 

62 = 31.16, p < .001, ηp
2 = 0.33) and Time (F5, 310 = 43.87, p < .001, ε = 0.85, ηp

2 = 0.41) 

were found. CS+ (M = 54.35, SD = 6.75) elicited a significantly higher FPS than the CS– 

(M = 51.46, SD = 6.43), while overall FPS continuously decreased from block 1 (M = 

59.13, SE = 0.77) to block 2 (M = 55.12, SE = 0.72, p < .001, 95%-CI [2.32, 5.70]), from 

block 2 to block 3 (M = 52.27, SE = 0.62, p < .001, 95%-CI [1.36, 4.34]), and from block 

4 (M = 51.84, SE = 0.54) to block 5 (M = 50.11, SE = 0.50; p = .007, 95%-CI [0.50, 2.97]). 

No interactions of CS-type*Time (F5, 310 = 0.89, p = .483), CS-type*Group (F1, 62 = 0.02, 

p = .891), Time*Group (F5, 310 = 1.44, p = .219, ε = 0.85), or CS-type*Time*Group (F5, 310 

= 1.69, p = .143, ε = 0.85) were found (Figure 17a). 

US-expectancy: Acquisition was successful in US-expectancy. A significant 

main effect of CS-type (F1, 66 = 269.41, p < .001, ηp
2 = 0.80) and a significant interaction 

CS-type*Time (F2, 132 = 269.99, p < .001, ε = 0.73, ηp
2 = 0.80) were found. While US-

expectancy significantly increased from pre- (M = 47.75, SE = 3.53) to mid-acquisition 

(M = 81.58, SE = 1.85) for CS+ (p < .001, 95%-CI [–41.19, –26.47]), US-expectancy 

continuously decreased from pre- (M = 52.23, SE = 3.41) to mid- (M = 19.43, SE = 2.63, 
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p < .001, 95%-CI [25.50, 40.11]) to post-acquisition (M = 15.19, SE = 2.53, p = .007, 

95%-CI [1.20, 7.27]) for CS–. No main effect of Time (F2, 132 = 0.16, p = .715, ε = 0.55) 

and no interactions of CS-type*Group (F1, 66 = 1.25, p = .268), Time*Group (F2, 132 = 

0.01, p = .936), or CS-type*Time*Group (F2, 132 = 2.63, p = .093, ε = 0.73) were found 

(Figure 18a). 

 

Figure 16 

SCR across phases of Study 1. 

 

Note: Standardized skin conductance responses and standard errors for CS+ and CS– 

during each trial of a) acquisition, b) extinction, and c) test of reinstatement (ToR), 

separated by group (glucose vs. placebo). For analysis of extinction and ToR, differ-

ence-scores were calculated. (b) Glucose was administered 20 minutes before extinc-

tion. Extinction was divided into three blocks (early, mid, late). Shaded area represents 

last trial of acquisition. (c) ToR was divided into two blocks (early, late). Shaded area 

represents last trial of extinction. 
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Figure 17 

FPS across phases of Study 1. 

 

Note: Standardized fear potentiated startle reactions and standard errors for CS+, CS–

, and NA trials during each trial of a) acquisition, b) extinction, and c) test of reinstate-

ment (ToR), separated by group (glucose vs. placebo). For analysis of extinction and 

ToR, difference-scores were calculated. (b) Glucose was administered 20 minutes be-

fore extinction. Extinction was divided into three blocks (early, mid, late). Shaded area 

represents last trial of acquisition. (c) ToR was divided into two blocks (early, late). 

Shaded area represents last trial of extinction. 
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Figure 18 

US-expectancy across phases of Study 1. 

 

Note: Mean US-expectancy ratings and standard errors for CS+ and CS– during each 

trial of a) acquisition, b) extinction, and c) test of reinstatement (ToR), separated by 

group (glucose vs. placebo). For analysis of extinction and ToR, difference-scores were 

calculated. (b) Glucose was administered 20 minutes before extinction. Shaded area 

represents last rating after acquisition. (c) For ToR, shaded area represents rating after 

extinction. 

 

Extinction (20 Minutes after Glucose Administration) 

SCR: A significant main effect of Time (F2, 130 = 4.53, p = .015, ηp
2 = 0.07) was 

found. Differential SCR significantly decreased from early (M = 2.40, SD = 6.51) to late 

extinction (M = –0.37, SD = 5.72; p = .009, 95%-CI [0.75, 5.01]). No main effect of Group 

(F1, 65 = 1.68, p = .200) or interaction Time*Group (F2, 130 = 1.67, p = .195, ε = 0.92) were 

found (Figure 16b, Figure 19a). 
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FPS: A significant interaction Time*Group (F2, 124 = 3.24, p = .041, ηp
2 = 0.05) 

was found, with participants in the glucose group showing significantly smaller differ-

ential startle reactions than participants in the placebo group at early (Mglucose = –0.93, 

SEglucose = 4.32, Mplacebo = 1.70, SEplacebo = 4.77, p = .024, 95%-CI [0.35, 4.89]), but not 

mid (Mglucose = 1.52, SEglucose = 4.44, Mplacebo = 0.81, SEplacebo = 4.39, p = .522, 95%-CI [–

2.92, 1.50]) or late extinction (Mglucose = 1.44, SEglucose = 3.60, Mplacebo = 0.96, SEplacebo = 

4.18, p = .625, 95%-CI [–2.42, 1.47]). For participants in the glucose group, differential 

startle reactions significantly increased from early (Mglucose = –0.93, SEglucose = 4.32) to 

mid (Mglucose = 1.52, SEglucose = 4.44, Mplacebo = 0.81, p = .010, 95%-CI [–4.30, –0.60]), but 

not from mid to late extinction (Mglucose = 1.44, SEglucose = 3.60, p = 0.935, 95%-CI [–

1.95, –2.11]). No main effects of Time (F2, 124 = 0.81, p = .448) and Group (F1, 62 = 0.51, 

p = .508) were found (Figure 17b, Figure 19b). 

US-expectancy: A significant main effect of Time (F2, 132 = 67.86, p < .001, ε = 

0.62, ηp
2 = 0.51) was found. Overall, US-expectancy decreased from pre- (M = 58.07, 

SE = 4.48) to mid- (M = 22.74, SE = 2.44, p < .011, 95%-CI [26.96, 43.71]) and from 

mid- to post-extinction (M = 10.87, SE = 2.40, p < .001, 95%-CI [7.11, 16.64]). No main 

effect of Group (F1, 66 = 0.02, p = .886) or interaction Time*Group (F2, 132 = 0.27, p = 

.653, ε = 0.62) were found (Figure 18b). 

 

Figure 19 

Differential SCR and FPS during extinction of Study 1. 

 

Note: Glucose was administered 20 minutes before extinction. * p < .05.  
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Reinstatement 

SCR: No main effects of Time (F1, 65 = 0.32, p = .572) or Group (F1, 65 = 0.75, p 

= .390) and no interaction Time*Group (F1, 65 = 0.46, p = .501) were found (Figure 16c). 

FPS: No main effects of Time (F1, 61 = 0.51, p = .477) or Group (F1, 61 = 0.01, p = 

.992) and no interaction Time*Group (F1, 61 = 0.84, p = .772) were found (Figure 17c). 

US-expectancy: A significant main effect of Time (F1, 66 = 7.77, p = .007, ηp
2 = 

0.11) was found, with differential US-expectancy increasing from post-extinction (M = 

10.78, SD = 19.64) to post-reinstatement (M = 19.41, SD = 24.60). No main effect of 

Group (F1, 66 = 0.09, p = .763) and no interaction Time*Group (F1, 66 = 0.27, p = .608) 

were found (Figure 18c). 

Test of Reinstatement 

SCR: No main effects of Time (F1, 65 = 1.13, p = .292) or Group (F1, 65 = 0.45, p 

= .503) and no interaction Time*Group (F1, 65 = 0.57, p = .453) were found (Figure 16c). 

FPS: A significant main effect of Time (F1, 61 = 5.00, p = .029, ηp
2 = 0.08) was 

found. Overall, differential FPS decreased from early (M = 1.72, SD = 6.82) to late ToR 

(M = –0.87, SD = 5.75). No main effect of Group (F1, 61 = 0.14, p = .715) and no inter-

action Time*Group (F1, 61 = 0.33, p = .570) were found (Figure 17c). 

US-expectancy: A significant main effect of Time (F2, 132 = 4.19, p = .033, ε = 

0.66, ηp
2 = 0.06) was found. Differential US-expectancy significantly decreased from 

mid- (M = 18.71, SE = 2.66) to post-ToR (M = 13.90, SE = 2.43; p < .001, 95%-CI [2.31, 

7.31]). No main effect of Group (F1, 66 = 1.54, p = .219) and no interaction Time*Group 

(F2, 132 = 3.54, p = .051, ε = 0.66) were found (Figure 18c). 

4.3.4.2 Study 2 

There were no significant differences between groups regarding age, sex dis-

tribution, and questionnaire measures (all ps > .05). Additionally, there were no differ-

ences between groups in the subjective ratings. Glucose levels were comparable be-

tween groups at the beginning of the experiment, but, as expected, a significant in-
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crease in blood glucose was seen in the glucose group (vs. placebo) after drink ad-

ministration (Group*Time: F1, 81 = 126.80, p < .001, ηp
2 = 0.61; supplemental infor-

mation). 

 

Contextual Anxiety: NA Startle 

A significant interaction Phase*Group (F3, 219 = 3.84, p = .016, ε = 0.84, ηp
2 = 

0.05) was found. Descriptively, but not statistically significant, for participants in the 

glucose group the overall contextual anxiety decreased from acquisition (Mglucose = 

47.44, SEglucose = 0.48) to ToR (Mglucose = 46.03, SEglucose = 0.73, p = .316, 95%-CI [–0.53, 

3.35]), while it increased for participants in the placebo group (acquisition: Mplacebo = 

46.59, SEplacebo = 0.49, ToR: Mplacebo = 48.07, SEplacebo = 0.76, p = .30, 95%-CI [–3.50, 0.53]; 

Figure 20). Follow-up analysis for the ToR phase revealed a significant difference be-

tween the groups, with the glucose group showing less contextual anxiety than the 

placebo group (t73 = 1.93, p = .029, d = 0.45). No main effects of Phase (F3, 219 = 0.30, 

p = .792, ε = 0.84) and Group (F1, 73 = 0.25, p = .622) were found. 

 

Figure 20 

NA startle reactions during Study 2. 

 

Note: Mean T-scores and standard errors of NA startle reactions. Glucose was admin-

istered at the end of day 2. 
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Acquisition (Day 1) 

SCR: Acquisition was successful in SCR. A significant main effect of CS-type (F1, 

82 = 50.35, p < .001, ηp
2 = 0.38), a significant main effect of Time (F5, 410 = 38.90, p < 

.001, ε = 0.73, ηp
2 = 0.32), and a significant interaction of CS-type*Time (F5, 410 = 3.57, 

p = .008, ε = 0.78, ηp
2 = 0.04) were found. As expected, the CS+ elicited an overall 

higher SCR than the CS– (MCS+ = 52.43, SD = 8.42; MCS– = 48.78, SD = 6.64). SCR con-

tinuously decreased from block 1 (M = 56.57, SE = 0.95) to block 2 (M = 51.98, SE = 

0.73; p < .001, 95%-CI [2.06, 7.12]), from block 2 to block 3 (M = 49.59, SE = 0.55; p = 

.017, 95%-CI [0.25, 4.52]), and from block 4 (M = 51.34, SE = 0.70) to block 5 (M = 

47.18, SE = 0.49; p < .001, 95%-CI [1.82, 6.51]), with higher SCR for CS+ than CS– at 

blocks 1-3 (block 1: MCS+ = 59.25, SECS+ = 1.21, MCS– = 53.89, SECS– = 1.19, p < .001, 

95%-CI [2.44, 8.28]; block 2: MCS+ = 55.21, SECS+ = 1.13, MCS– = 48.74, SECS– = 0.67, p < 

.001, 95%-CI [4.19, 8.76]; block 3: MCS+ = 51.36, SECS+ = 0.85, MCS– = 47.83, SECS– = 0.62; 

p < .001, 95%-CI [1.55, 5.51]) and block 6 (MCS+ = 48.64, SECS+ = 0.68, MCS– = 45.38, 

SECS– = 0.41, p < .001, 95%-CI [1.87, 4.65]), but not at blocks 4 and 5 (block 4: MCS+ = 

52.45, SECS+ = 0.98, MCS– = 50.23, SECS– = 0.93, p = .094, 95%-CI [–0.39, 4.82]; block 5: 

MCS+ = 47.68, SECS+ = 0.69, MCS– = 46.67, SECS– = 0.54; p = .190, 95%-CI [–0.51, 2.51]). 

No main effect of Group (F1, 82 = 0.09, p = .771) and no interactions CS-type*Group (F1, 

82 = 0.23, p = .634), Time*Group (F5, 410 = 0.61, p = .644, ε = 0.73), and CS-

type*Time*Group (F5, 410 = 0.28, p = .886, ε = 0.78) were found (Figure 21a). 

FPS: Acquisition was successful in FPS. A significant main effect of CS-type (F1, 

86 = 61.97, p < .001, ηp
2 = 0.42) and a significant main effect of Time (F5, 430 = 36.11, p 

< .001, ε = 0.75, ηp
2 = 0.30) were found. As expected, the CS+ elicited an overall higher 

FPS than the CS– (MCS+ = 52.74, SD = 6.54; MCS– = 49.18, SD = 6.04). FPS significantly 

decreased from block 2 (M = 53.17, SE = 0.50) to block 3 (M = 50.80, SE = 0.50; p = 

.005, 95%-CI [0.46, 4.27]) and from block 4 (M = 51.56, SE = 0.47) to block 5 (M = 

47.92, SE = 0.44, p < .001, 95%-CI [2.05, 5.24]). No main effect of Group (F1, 86 = 0.25, 

p = .621) and no interactions CS-type*Group (F1, 86 = 0.21, p = .949), Time*Group (F5, 
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430 = 1.41, p = .226, ε = 0.87), CS-type*Time (F5, 430 = 2.10, p = .064), and CS-

type*Time*Group (F5, 430 = 1.91, p = .096, ε = 0.87) were found (Figure 22a).  

US-expectancy: A significant main effect of CS-type (F1, 86 = 369.64, p < .001, 

ηp
2 = 0.81), a significant interaction CS-type*Time (F2, 172 = 188.80, p < .001, ε = 0.81, 

ηp
2 = 0.69), and a significant interaction Time*Group (F2, 172 = 6.53, p = .008, ε = 0.63, 

ηp
2 = 0.07) were found. As expected, CS+ (M = 70.27, SD = 20.92) elicited overall sig-

nificantly higher US-expectancy then the CS– (M = 25.58, SD = 23.57). While there was 

no difference in US-expectancy of CS+ and CS– at pre-acquisition (MCS+ = 45.01, SECS+ 

= 2.72, MCS– = 44.92, SECS– = 2.76, p = .968, 95%-CI [–4.28, 4.46]), significant differences 

are found at mid- (MCS+ = 83.70, SECS+ = 1.94, MCS– = 16.96, SECS– = 2.48, p < .001, 95%-

CI [59.08, 74.41]) and post-acquisition (MCS+ = 82.07, SECS+ = 2.00, MCS– = 15.25, SECS– 

= 2.32, p < .001, 95%-CI [59.89, 73.74]), indicating successful discrimination at the end 

of acquisition. While groups did not differ at pre- (Mglucose = 40.47, SEglucose = 3.38, 

Mplacebo = 49.45, SEplacebo = 3.71, p = .077, 95%-CS [–1.00, 18.95]) and mid-acquisition 

(Mglucose = 49.68, SEglucose = 1.50, Mplacebo = 50.98, SEplacebo = 1.64, p = .562, 95%-CI [–

3.12, 5.70]), participants in the placebo group showed a general tendency (both for 

CS+ and CS–) for lower US-expectancy ratings at post-acquisition (Mglucose = 51.89, 

SEglucose = 1.74, Mplacebo = 45.44, SEplacebo = 1.90, p = .014, 95%-CI [–11.57, –1.32]). No 

main effect of Time (F2, 172 = 3.32, p = .062, ε = 0.63), no interaction CS-type*Group (F1, 

86 = 0.42, p = .520), and no interaction CS-type*Time*Group (F2, 172 = 0.37, p = .643, ε 

= 0.81) were found (Figure 23a).  
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Figure 21 

SCR across phases of Study 2. 

 

Note: Standardized skin conductance responses and standard errors for CS+ and CS– 

during each trial of a) acquisition, b) extinction, c) extinction recall, and d) test of re-

instatement (ToR), separated by group (glucose vs. placebo). (b) Glucose was admin-

istered after extinction at day 2. Extinction was divided into two blocks (early, late). 

Shaded area represents last trial of acquisition at day 1. (c) Glucose was administered 

24 hours before extinction recall at day 3. Extinction recall was divided into two blocks 

(early, late). Shaded area represents last trial of extinction before glucose administra-

tion at day 2. (d) ToR was divided into two blocks (early, late). Shaded area represents 

last trial of extinction recall at day 3. 
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Figure 22 

FPS across phases of Study 2. 

 

Note: Standardized fear potentiated startle reactions and standard errors for CS+, CS–

, and NA trials during each trial of a) acquisition, b) extinction, c) extinction recall, and 

d) test of reinstatement (ToR), separated by group (glucose vs. placebo). (b) Glucose 

was administered after extinction at day 2. Extinction was divided into two blocks 

(early, late). Shaded area represents last trial of acquisition at day 1. (c) Glucose was 

administered 24 hours before extinction recall at day 3. Extinction recall was divided 

into two blocks (early, late). Shaded area represents last trial of extinction before glu-

cose administration at day 2. (d) ToR was divided into two blocks (early, late). Shaded 

area represents last trial of extinction recall at day 3. 
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Figure 23 

US-expectancy across phases of Study 2. 

 

Note: Mean US-expectancy ratings and standard errors for CS+ and CS– during each 

trial of a) acquisition, b) extinction, c) extinction recall, and d) test of reinstatement 

(ToR), separated by group (glucose vs. placebo). For analysis of extinction, extinction 

recall, reinstatement and ToR, difference-scores were calculated. (b) Glucose was ad-

ministered after extinction at day 2. 20 minutes after administration, the US-expec-

tancy was assessed again (post glucose). Shaded area represents last rating after ac-

quisition at day 1. (c) Glucose was administered 24 hours before extinction recall. 

Shaded area represents US-expectancy ratings after glucose administration at day 2. 

(d) For ToR, shaded area represents rating after extinction recall at day 3. 
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Extinction (Day 2) 

SCR: A significant main effect of Time (F1, 76 = 6.97, p = .010, ηp
2 = 0.08) with a 

decrease in overall differential SCR from early (M = 2.37, SD = 5.15) to late extinction 

(M = 0.06, SD = 5.41) revealed successful extinction of fear. No main effect of Group 

(F1, 76 = 0.15, p = .704) and no interaction Time*Group (F1, 76 = 2.42, p = .124) were 

found (Figure 21b). 

FPS: A significant main effect of Time (F1, 74 = 7.98, p = .006, ηp
2 = 0.10) with a 

decrease in overall differential FPS from early (M = 3.17, SD = 5.97) to late extinction 

(M = 0.74, SD = 4.96) revealed successful extinction of fear. No main effect of Group 

(F1, 74 = 0.28, p = .598= and no interaction Time*Group (F1, 74 = 0.42, p = .520) were 

found (Figure 22b). 

US-expectancy: A significant main effect of Time (F2, 164 = 62.42, p < .001, ε = 

0.75, ηp
2 = 0.43) indicated overall successful extinction of fear. Differential US-expec-

tancy continuously decreased from pre- (M = 58.12, SE = 4.21) to mid- (M = 26.23, SE 

= 3.09, p < .001, 95%-CI [21.91, 41.87]), and from mid- to post-extinction (M = 19.89, 

SE = 2.89, p = .030, 95%-CI [0.46, 12.22]). No main effect of Group (F1, 82 = 1.48, p = 

.228) and no interaction Time*Group (F2, 164 = 0.06, p = .895, ε = 0.75) were found 

(Figure 23b). 

Immediate Glucose Effects: US-expectancy 20 Minutes after Administra-

tion (Day 2) 

No significant main effects of Time (F1, 81 = 0.19, p = .663), Group (F1, 81 = 0.19, 

p = .664) and no interaction Time*Group (F1, 81 = 3.16, p = .079) were found (Figure 

23b). 

Extinction Recall (Day 3) 

SCR: No main effects of Time (F1, 72 = 0.32, p = .574), Group (F1, 72 = 2.01, p = 

.161), and no interaction Time*Group (F1, 72 = 0.93, p = .339) were found (Figure 21c, 

Figure 24a). 
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FPS: A significant interaction Time*Group (F1, 71 = 4.09, p = .047, ηp
2 = 0.05) 

was found, with participants in the glucose group showing significantly smaller differ-

ential startle-reactions than participants in the placebo group at late (Mglucose = 1.18, 

SEglucose = 0.93, Mplacebo = 3.91, SEplacebo = 0.97, p = .047, 95%-CI [0.04, 5.40]) but not at 

early extinction recall (Mglucose = 3.27, SEglucose = 0.95, Mplacebo = 2.54, SEplacebo = 0.97, p 

= .592, 95%-CI [–3.45, 1.99]; Figure 11b). No main effects of Time (F1, 71 = 0.26, p = 

.614) or Group (F1, 71 = 0.89, p = .348) were found (Figure 22c, Figure 24b). 

US-expectancy: A significant main effect of Time (F2, 158 = 47.52, p < .001, ε = 

0.64, ηp
2 = 0.38) was found, with US-expectancy difference scores decreasing from 

pre- (M = 38.99, SE = 3.34) to mid- (M = 20.90, SE = 2.70, p < .001, 95%-CI [11.99, 

24.18]), and from mid- to post-extinction recall (M = 17.44, SE = 2.60, p = .022, 95%-

CI [0.39, 6.54]). No main effect of Group (F1, 79 = 0.01, p = .991) and no interaction 

Time*Group (F2, 158 = 0.50, p = 522, ε = 0.62) were found (Figure 23c). 

 

Figure 24 

Differential SCR and FPS during extinction recall of Study 2. 

 

Note: Mean T-scores and standard errors of differential SCR and FPS. Glucose was 

administered 24 hours before extinction recall. *p < .05. 
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Reinstatement 

SCR: No significant main effects of Time (F1, 72 = 0.07, p = .791), Group (F1, 72 = 

0.40, p = .528), and no interaction Time*Group (F1, 72 = 0.01, p = .967) were found 

(Figure 21d). 

FPS: No significant main effects of Time (F1, 71 = 0.96, p = .332), Group (F1, 71 = 

0.58, p = .447), and no interaction Time*Group (F1, 71 = 2.46, p = .121) were found 

(Figure 22d). 

US-expectancy: A significant main effect of Time (F1, 78 = 9.66, p = .003, ηp
2 

= 0.11) was found. Differential US-expectancy significantly increased from post-re-

extinction (M = 17.73, SD = 23.18) to post-reinstatement (M = 26.17, SD = 28.06), 

indicating successful reinstatement of fear. No main effect of Group (F1, 78 = 0.24, p = 

.627) and no interaction Time*Group (F1, 78 = 0.03, p = .865) were found (Figure 23d). 

Test of Reinstatement 

SCR: No main effects of Time (F1, 72 = 3.38, p = .070), Group (F1, 72 = 0.67, p = 

.417), and no interaction Time*Group (F1, 72 = 0.40, p = .528) were found (Figure 21d). 

FPS: No main effects of Time (F1, 71 = 1.90, p = .172), Group (F1, 71 = 0.50, p = 

.484), and no interaction Time*Group (F1, 71 = 0.15, p = .705) were found (Figure 22d). 

US-expectancy: A significant main effect of Time (F2, 156 = 6.11, p = .005, ε = 

0.84, ηp
2 = 0.07) was found. Differential US-expectancy ratings did not decrease from 

pre- (M = 26.24, SE = 3.16) to mid- (M = 23.84, SE = 2.52, p = 0.999, 95%-CI [–3.78, 

8.58]), but from mid- to post-test-of-reinstatement (M = 18.03, SE = 2.45, p = .007, 

95%-CI [1.31, 10.32]). No main effect of Group (F1, 78 = 1.08, p = .302) and no interac-

tion Time*Group (F2, 156 = 0.37, p = .654, ε = 0.84) were found (Figure 23d).  

4.3.5 Discussion 

The two studies reported here are, to our knowledge, the first to examine the 

effect of glucose administration on fear extinction processes in a classical fear condi-

tioning paradigm. It can be concluded from both studies that additional to the effects 

on fear acquisition shown by Glenn et al. (2014), glucose can affect fear extinction and 
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associated memory processes. In Study 1, glucose administration prior to extinction 

learning promoted faster extinction learning, although no effects on RoF could be 

found. To examine the effects on early consolidation, glucose was administered after 

extinction in Study 2. Results pointed to less RoF, namely extinction recall, and to less 

contextual anxiety during reinstatement on day 3 in the glucose group. However, for 

both studies, the beneficial effects of glucose were found only in the FPS but not in 

SCR or US-expectancy. 

Acquisition of fear was successful in both studies. This is most evident for de-

clarative learning, which is best illustrated by the US-expectancy results. Although the 

difference in fear response to CS+ and CS– in the physiological data did not change 

significantly over the course of the acquisition, the results reflect that participants 

learned to significantly discriminate between CS+ and CS–. Given that the stimuli were 

counterbalanced for CS+ and CS−, this effect can be considered essential for demon-

strating successful acquisition. 

The FPS results of Study 1 indicate differences between the glucose and pla-

cebo group in early extinction learning, indicating a faster extinction learning process 

for participants in the glucose group. This difference at early extinction appears to be 

due to a lack of potentiation of the CS+ compared to the CS– for participants in the 

glucose group. This is consistent with other studies in which the FPS response to CS+ 

was not potentiated at the onset of extinction (Hollandt et al., 2020). The lack of dis-

crimination between CS+ and CS– may indicate an adaptive process of uncertainty 

that might occur after contextual changes or modified instructions (Hollandt et al., 

2020; Mertens & De Houwer, 2016). Although there was no explicit change in the 

extinction instructions, there was a longer pause between acquisition and extinction, 

and the extinction instructions left open whether and on which stimulus the electrical 

stimulus followed. This could have led to an ambiguous evaluation of CS+ and CS–, 

resulting in higher defensive reflex measures, such as the FPS to the CS–. In a study of 

uncertainty-intolerant and anxious participants, it was shown that this effect was 

found only at low levels of intolerance and anxiety, suggesting that this process is 
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adaptive and does not appear to occur in high-risk groups (Wroblewski et al., 2022). 

Since this effect was observed only in the glucose group, the results of Study 1 could 

further suggest that glucose specifically supports this functional adaptation process 

in terms of pronounced psychological flexibility during early extinction under in-

creased uncertainty. This adaptation process is particularly effective at the beginning 

of a new situation. In Study 1, after the initial adaptation in extinction, the response of 

the glucose group quickly resembles that of the placebo group, which corresponds to 

an adequate response in an unchanged evaluative situation. The probability that the 

predictive content of CS+ and CS– has changed with respect to the US decreases again 

(i.e., the probability of the CS– predicting the US is low, the probability of the CS+ 

predicting the US is high), which is why the differentiation between CS+ and CS– con-

sequently increases again. 

In Study 2, the FPS results suggest that glucose administration after extinction 

learning may influence extinction memory consolidation and lead to a slightly lower 

RoF after 24 hours. The fact that this effect is seen only in the late phase of extinction 

recall on day 3 may indicate that glucose supports an entirely new learning process, 

re-extinction learning. However, since the glucose administration had already taken 

place 24 hours before and can no longer have an active effect, this can only be ex-

plained by the fact that glucose must have initially influenced the consolidation of the 

extinction memory after learning on day 2. Re-extinction learning could be facilitated 

by a better consolidated extinction memory and thus lead to a lower RoF. 

While SCR and US-expectancy are associated with declarative learning, FPS re-

flects automatic, reflexive processes that are relatively unaffected by conscious aware-

ness (Grillon, 2002; Sevenster et al., 2014). Results of the two studies suggest that 

glucose facilitates the latter processes. These findings contrast numerous studies, 

which have found glucose to primarily affect declarative memory processes (Scholey 

et al., 2001; Sünram-Lea et al., 2002). However, given that the paradigm used is a very 

simple learning task, and that ceiling effects are present with respect to contingency 

awareness (all participants consciously reported the association between CS+ and US), 
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it seems reasonable why glucose might not provide additional enhancement of de-

clarative memory learning. Studies have shown that declarative fear learning is largely 

dependent on the hippocampus, whereas the amygdala appears to play an important 

role in unconscious conditioning processes (Bechara et al., 1995). It is important to 

note that glucose not only supports hippocampus-dependent processes, but also pro-

cesses of the amygdala and dorsal striatum, both structures involved in processing 

emotional content (McGaugh et al., 1996; Owen et al., 2010). Thus, there seems to be 

a connection between glucose and unconscious fear learning processes, which may 

explain its beneficial effects seen in FPS. 

Both studies presented here differed in timing of glucose administration and 

could show different effects on fear memory processes. The temporal sequence of 

acquisition and glucose administration is similar to the study by Glenn et al. (2014), 

where glucose was administered immediately after acquisition and enhanced acquisi-

tion learning. This effect was found 24 hours after acquisition, allowing sufficient time 

for memory consolidation of fear acquisition. In Study 1, and in contrast to Glenn and 

colleagues, extinction took place 20 minutes after glucose administration, when blood 

glucose concentrations are expected to peak (see supplementary materials). For glu-

cose to affect acquisition processes in Study 1, it would have to support both fear 

memory consolidation and extinction memory encoding simultaneously. Since the de-

sign of Study 1 does not allow conclusions to be drawn about consolidation processes, 

as there is not a sufficiently large time interval between processes, it can be assumed 

that the effects of glucose found are related solely to extinction processes. Thus, glu-

cose administration prior to extinction learning seems to lead to a faster learning pro-

cess, whereas subsequent administration leads to a more stable fear extinction 

memory. In general, glucose availability in the brain appears to have a greater impact 

on memory consolidation and long-term retrieval, than on short-term memory stor-

age and recall. Studies found that consuming a glucose drink after performing a 

memory task improved participants’ ability to recall the information 24 hours, or even 

one week, after the initial learning session (Foster et al., 1998; Sünram-Lea et al., 2002). 

This corresponds with the findings from Study 2, where glucose led to a slightly better 
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performance at the retention test 24 hours after initial extinction learning. In contrast, 

the effects of glucose on short-term memory processes seem less consistent. Some 

studies found that glucose can improve working memory performance in healthy 

adults (Scholey et al., 2001). However, other studies failed to find an effect of glucose 

on short-term memory (Benton & Owens, 1993; Foster et al., 1998; Korol & Gold, 1998; 

Manning et al., 1990). Since a direct effect of glucose on discrimination performance 

during extinction was found in Study 1, it supports the assumption that glucose could 

also influence short-term memory processes. There are conflicting findings on the 

time interval between acquisition and extinction, with some studies arguing that im-

mediate extinction is especially protective against RoF and delayed extinction en-

hances inhibitory learning in particular (Myers et al., 2006). This could explain why no 

effects were found during reinstatement in Study 1, whereas a significant effect was 

found in the RoF manipulation of Study 2. However, other studies found no differences 

between immediate and delayed extinction (Lonsdorf et al., 2017; Maren, 2014).  

Consistent with the improved retention of contextual fear learning shown by 

Glenn et al. (2014), in Study 2, the glucose group showed reduced extension of fear 

to ambiguous contextual stimuli. These results on contextual fear further suggest that 

glucose not only affects fear extinction learning, but also fear expression itself, in 

which it seems to be protective against arousal effects of the reinstatement. This effect 

is consistent with the finding of both studies, that glucose supports affective learning 

processes as indicated by the FPS, as well as suggestions from other studies that glu-

cose can support processes of the amygdala and dorsal striatum (McGaugh et al., 

1996; Owen et al., 2010). 

Various neurocognitive mechanisms are discussed that underlie the memory-

enhancing effect of glucose (see Smith et al., 2011). On the one hand, it is suggested 

that glucose may mediate insulin as well as acetylcholine delivery to the hippocampus 

and thus improve memory (Ghasemi et al., 2013). Both acetylcholine and insulin de-

livery in the hippocampus are central to cognitive functions, since the release of the 
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neurotransmitter acetylcholine is also associated with changes in memory perfor-

mance (Alzheimer & Wess, 2005; Baxter & Crimins, 2018; Hasselmo, 2006; Kopf et al., 

2001). In addition, according to other hypotheses, glucose can increase intraneural 

adenosine triphosphate (ATP) concentration, which initially leads to blockade of po-

tassium ATP channels and in turn causes depolarization of neurons and increased re-

lease of neurotransmitters (Stefani & Gold, 2001). Moreover, there is suggestions that 

glucose administration leads to increased extracellular glucose concentrations in the 

hippocampal region, which may in turn increase the overall availability of glucose un-

der conditions of higher demand and thus lead to an overall improvement in memory 

(McNay et al., 2000, 2001) 

Compared to the reference values from the study by Schäfer and Schwarz 

(2019) for pre-registered between-subjects design studies in the field of psychology, 

the effects found can be described as rather small to moderate. Because the glucose 

intervention was aimed at improving specific anxiety responses, it may have shown 

more subtle effects in the healthy sample studied, which may be more difficult to 

quantify than in a study with a clinical sample. In addition, a major limitation of both 

studies is the small sample size, and in particular the unequal sex distribution, as well 

as the restriction to young, healthy participants. Although there were no group differ-

ences in sex distribution, overall, more women participated in both studies. In a study 

by Craft et al. (1994), older men benefited more from memory-enhancing effects of 

glucose than younger men, or older and younger women. Moreover, in a study inves-

tigating the effects of intranasal insulin on fear learning processes, women were found 

to benefit more from memory-enhancing effects of insulin (Ferreira de Sá et al., 2020). 

Since women are at higher risk for developing ADs (Jalnapurkar et al., 2018; C. P. 

McLean et al., 2011) and there are also sex differences in glucose-sensitive brain struc-

tures of anxiety patients, such as in hippocampus and amygdala (Irle et al., 2010), it 

would be relevant to examine the extent of which glucose affects fear memory pro-

cesses differently between sexes. This should be investigated in future studies with 

bigger sample sizes and comparable sex distribution. 
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In addition, both studies show a pattern of sudden increases in fear responses 

in the middle of each conditioning phase. This pattern is best explained by the behav-

ioral ratings that took place in the middle of each phase. As described above, these 

interruptions could trigger uncertainty processes similar to those in context change 

studies (e.g., Hollandt et al., 2020; Mertens & De Houwer, 2016), leading to a short-

term re-evaluation, especially of CS–, and thus to changes in the discrimination per-

formance of CS+ and CS–. This effect may have influenced the pattern of fear condi-

tioning responses presented here, although it is important to note, that this was sim-

ilar for both groups and therefore cannot explain the group differences found. Similar 

to the interruption caused by ratings in the laboratory studies described here, inter-

ruptions also occur in the real world, and even between or within individual exposure 

therapy sessions. If such brief interruptions can have an effect on fear conditioning 

processes, as shown in both studies, the implications for everyday, real-world or ap-

plied psychotherapeutic work need to be considered. In summary, the two studies 

presented here provide first evidence that glucose can enhance extinction of fear in 

healthy participants. Extending the findings by Glenn et al. (2014) on fear acquisition, 

this study provides first results regarding beneficial effects of glucose on fear extinc-

tion processes as glucose appears to be particularly beneficial for the consolidation 

and long-term retrieval of extinction memory content. In particular, the results confirm 

the positive influence of glucose on fear memory processes when administered after 

extinction. Glucose could therefore be administered in a therapeutic context, particu-

larly after successful exposure, which would not only eliminate the potential fear-en-

hancing effects (Glenn et al., 2014) of failed exposure sessions, but also further im-

prove the success of exposure therapy itself. Further research should investigate ad-

ditional fear conditioning processes important to the maintenance of psychopathol-

ogy and resistance to therapy. Additionally, studies with subclinical or clinical samples 

should also follow. The present results show that glucose is a promising adjuvant to 

support exposure therapy and its maintenance with the great advantage of being sim-

ple to administer, inexpensive, and not unpleasant or invasive to the patient.   
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5 General Discussion 

In this chapter, the main findings of the empirical studies will be summarized, 

conclusions in relation to the overall research objective of this dissertation will be 

drawn, and its limitations will be discussed. The findings will then be placed in the 

context of previous research and conclusions, and new directions for future research 

and practice will be suggested. 

5.1 Critical Appraisal of Pivotal Achievements 

5.1.1 Study I: Intranasal Insulin as an Enhancer of Fear Extinction 

The objective of this study was to examine the efficacy of intranasal insulin in 

improving fear extinction. The study was conducted as a randomized, double-blind, 

placebo-controlled experimental trial and was the first to investigate the administra-

tion of intranasal insulin in the context of fear learning processes. Participants under-

went a classical fear conditioning paradigm and received a dose of intranasal insulin 

prior to extinction. Primary outcome measures included subjective fear ratings and 

physiological responses, specifically FPS and SCR. Results showed that participants 

receiving intranasal insulin had significantly lower physiological fear responses than 

those in the placebo group, with notable differences observed in FPS response and 

SCR. Specifically, the insulin group had a lower FPS response, suggesting lower phys-

iological arousal in response to anxious stimuli. In addition, the EDA data showed 

lower skin conductance levels during extinction trials, suggesting a dampened auto-

nomic response. Sex differences were also found: the reduction in fear responses was 

more pronounced in female participants receiving insulin than in males. This gender 

difference highlights the possibility of differential sensitivity to the effects of insulin 

on fear modulation, which could be due to hormonal differences or other gender-

specific factors in fear processing and regulation. The results give first evidence that 

intranasal insulin modulates cognitive processes involved in fear extinction, possibly 

targeting neural circuits in the hippocampus and amygdala. These regions are critical 

for fear learning and memory, and insulin may enhance synaptic plasticity or neuro-

transmission, allowing for better extinction of conditioned fear responses. 
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5.1.2 Study II: Fear Learning and Generalization during Pandemic Fear 

The second study examined the effects of pandemic-related anxiety on fear 

learning and generalization, highlighting how heightened globally experienced anxi-

ety influences experimental fear conditioning processes. Conducted during the 

COVID-19 pandemic as a global environmental stressor, the study found that partici-

pants with higher COVID-19-related anxiety exhibited stronger fear conditioning and 

increased fear generalization. Those with higher levels of COVID-19-related anxiety 

demonstrated more robust conditioned responses as evidenced by subjective fear 

ratings. Participants with high COVID-19-related anxiety also showed an increased 

tendency to generalize fear responses to stimuli that were similar but not identical to 

the CS+, suggesting that the pervasive anxiety during the pandemic led to a broad-

ening of the range of fear responses. These findings underscore the impact of envi-

ronmental stress on fear learning processes and emphasize the need for therapeutic 

interventions that address ongoing stressors. Treatments for anxiety disorders may 

need to be adapted during periods of heightened environmental stress to be more 

effective, particularly by including strategies for managing broaden situational anxiety. 

Preventive approaches to mitigating the development of psychological disorders also 

become increasingly important under such conditions. This study offers valuable in-

sights into how environmental stressors, such as those induced by a global pandemic, 

can influence fear conditioning and generalization, with important implications for the 

understanding and treatment of anxiety disorders during times of widespread stress. 

5.1.3 Study III: Glucose as an Adjuvant of Fear Exposure 

Building on the first study, the third study, consisting of two independent ex-

perimental investigations, examined the potential of glucose administration to im-

prove extinction learning and consolidation. It was the first study to examine the cog-

nitive enhancing effects of glucose on extinction learning. Participants underwent a 

classical fear conditioning paradigm and received glucose at different times relative 

to extinction. When administered prior to extinction, glucose facilitated fear extinction 

learning. When administered after extinction, it improved consolidation of extinction 
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memory and reduced contextual fear after reinstatement. The results suggest that the 

timing of glucose administration is critical for maximizing therapeutic benefit. Physi-

ologically, the study measured fear responses including SCR and FPS. Interestingly, 

glucose administration had no effect on SCR. However, it did have a significant effect 

on FPS, a measure more closely associated with the amygdala's role in fear processing. 

Participants who received glucose prior to extinction showed lower FPS on subse-

quent fear-eliciting trials, suggesting enhanced fear extinction. These results suggest 

that glucose enhances cognitive processes related to fear extinction, possibly by 

providing additional metabolic support to brain regions involved in emotional learn-

ing and memory, such as the amygdala. The study highlights the potential of glucose 

as an adjunct therapy to exposure-based treatments and offers a simple and cost-

effective strategy to improve therapeutic outcomes in people with anxiety disorders. 

5.1.4 Overall Benefit to the Research Landscape Around Fear Learning  

The three studies conducted as part of this dissertation significantly enrich the 

research landscape in fear learning and extinction by filling important gaps and pre-

senting novel interventions. The investigation of intranasal insulin as a potential en-

hancer of fear extinction in Study I contributes to the growing interest in neuroendo-

crine modulation of fear processes. This study is consistent with previous research 

suggesting that insulin can exert central effects on cognitive functions, including 

memory and emotion regulation (Agrawal et al., 2021; Craft et al., 2013; Shemesh et 

al., 2012). By demonstrating that intranasal insulin can enhance extinction learning, 

this study offers a promising addition to the limited range of pharmacological agents 

currently available to support exposure therapy, a critical component in the treatment 

of anxiety disorders (Duits et al., 2015). The possibility of incorporating intranasal in-

sulin into therapeutic protocols could lead to more effective and efficient treatments, 

particularly for patients who are resistant to conventional therapies. Furthermore, in-

tranasal insulin has minimal to no side-effects and is easier to apply than many of the 

other studied pharmacological agents. 
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Examining the effects of COVID-19-related anxiety on fear learning and gen-

eralization in Study II extends existing research on the effects of stress and anxiety on 

fear learning processes. Previous studies have shown that chronic stress can alter fear 

conditioning and generalization, potentially leading to the development of anxiety 

disorders (Cooper et al., 2022; Duits et al., 2015; Mertens et al., 2020; Merz et al., 2013). 

The results of this study highlight how real-world global stressors, such as a worldwide 

pandemic, can exacerbate these processes and thus provide important insights into 

how situational and environmental factors influence fear learning. This is particularly 

relevant in light of current global health crises, armed conflicts, socio-political crises, 

and their profound psychological impact. By embedding the study in the context of 

the pandemic, the research not only provides immediate relevance, but also contrib-

utes to a broader understanding of how environmental stressors interact with fear 

learning mechanisms. 

The investigation of glucose as an adjuvant for fear extinction in Study III ties 

in with Study I and establishes a direct link between metabolic processes and cognitive 

and emotional regulation, an understudied area related to fear learning. Previous re-

search has shown that glucose administration can improve cognitive functions, includ-

ing memory consolidation (Craft et al., 1994; Owen et al., 2010; Schroeder & Packard, 

2003) and, even more specifically, fear learning (Glenn et al., 2014). The study's find-

ings that glucose can improve short-term extinction learning and consolidation sug-

gest that metabolic interventions may be a viable strategy for improving the outcomes 

of exposure-based therapies. By linking metabolic and psychological research, this 

study opens up new avenues for interdisciplinary approaches to the treatment of anx-

iety disorders. 

Collectively, these studies advance the field of anxiety learning by introducing 

novel interventions, contextualizing anxiety processes with real-world stressors, and 

examining the interplay between metabolism and fear extinction. They build on and 

extend existing research to provide a foundation for future studies aimed at develop-

ing more effective, personalized treatments for anxiety disorders. The integration of 
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pharmacological, environmental, and metabolic perspectives in these studies high-

lights the complexity of fear learning and emphasizes the importance of multifaceted 

approaches in both research and clinical practice. 

5.2 Limitations 

The results of the three studies provide valuable insights into the modulation 

of fear extinction and learning, but several limitations must be acknowledged. These 

limitations relate to both the methodological approaches used and the generalizabil-

ity of the results to broader clinical populations and are discussed below. 

5.2.1 General Methodological Constraints 

5.2.1.1 Sample Size and Characteristics 

A major limitation of all three studies is the relatively small and homogeneous 

sample size. Participants were predominantly young adults with minimal diversity in 

age (overall range 18–40 years), educational level, ethnicity, and socio-economic back-

ground. This homogeneity limits the generalizability of the findings to more diverse 

populations, including older adults, adolescents, and individuals from different cul-

tural backgrounds. For example, research has shown that age can have a significant 

impact on the cognitive processes associated with fear conditioning and extinction, 

with older adults potentially responding differently than younger populations 

(Battaglia et al., 2018; Ganella et al., 2018; LaBar et al., 2004). In addition, the impact 

of environmental stressors, as the recent COVID-19 pandemic, may differ between 

older and younger people. Although older people are more susceptible to physical 

diseases such as COVID-19, younger people are significantly more limited in other 

areas of life (Birditt et al., 2021; Borade & Nagarkar, 2021; Di Santo et al., 2020; Kau-

hanen et al., 2023; Liang et al., 2020; Rashedi et al., 2020). Similarly, cultural factors 

may influence the expression and management of fear, suggesting that findings from 

a homogeneous sample may not be fully generalizable to different ethnic groups (Ad-

ams et al., 2010; Chiao et al., 2008).  
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Additionally, small sample sizes reduce the statistical power of the studies, 

making it more challenging to detect subtle effects or interactions that may be present 

in larger, more varied groups. This limitation may be particularly critical when explor-

ing interventions like intranasal insulin (123 participants in Study I) or glucose admin-

istration (68 participants in Study 1 and 89 participants in Study 2 of Study III), where 

individual variability in response can be significant. For example, previous research has 

indicated that metabolic differences, potentially influenced by factors such as age, 

gender, and baseline glucose levels, can alter the efficacy of glucose in cognitive en-

hancement (Owen et al., 2013; Rebelos et al., 2021; Sünram-Lea & Owen, 2017). Thus, 

a more diverse and larger sample would allow for a more nuanced understanding of 

how these interventions might work across different subpopulations. However, it is 

important to note that the sample sizes in all three studies, in particular in Study I (123 

participants), was relatively large compared to many other studies in this field, en-

hancing their ability to detect effects with greater precision. 

Moreover, the lack of diversity in socio-economic background among partici-

pants also restricts the applicability of the findings. Especially in Studies I and III, but 

also to a considerable extent in Study II, the sample consisted mainly of psychology 

students, so that a low variance can be assumed. For example, psychology students 

might differ from students in other disciplines, e.g., in the way they deal with emotions 

(Nel & Roomaney, 2015). Additionally, socio-economic factors have been shown to 

influence both the prevalence and manifestation of anxiety disorders, as well as access 

to and outcomes of treatment (Frasquilho et al., 2015; Rayner et al., 2020; Reiss et al., 

2021; Silva et al., 2016). Therefore, including participants from a broader range of so-

cio-economic backgrounds would not only improve the generalizability of the re-

search but also provide insights into how these interventions might be optimized for 

different demographic groups. 

5.2.1.2 Sex and Gender Differences 

Another important aspect that may limit the generalizability of the study re-

sults is possible sex and gender effects. With the exception of a nearly balanced sex 
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ratio in Study I (51% females), the proportion of female participants was slightly to 

clearly higher than that of male participants in Studies II and III, resulting in an unbal-

anced sample distribution (64% self-identified females in Study II; 57% females in 

Study 1 and 75% females in Study 2 of Study III). This unbalanced sex/gender ratio for 

Studies II and III did not allow for a robust analysis of sex differences. However, this 

limitation is of critical importance, as the existing literature indicates significant sex-

specific responses to stress and metabolic processes. As women and men are known 

to respond differently to stress and anxiety (Goldfarb et al., 2019; McLean & Anderson, 

2009; McLean et al., 2011; Seo et al., 2017), this sex distribution may have biased the 

results in a particular direction. Studies have shown that women tend to have stronger 

and more persistent physiological responses to stress, possibly due to hormonal dif-

ferences and social roles (Dedovic et al., 2009; Kajantie & Phillips, 2006; Mayor, 2015). 

Additionally, women are at higher risk for the development of anxiety disorders, as-

sociated with higher burden and disability (McLean et al., 2011). Moreover, differences 

in insulin and glucose metabolism between men and women are known (Tramunt et 

al., 2019; Varlamov et al., 2014). These differences may also influence how women and 

men respond to interventions such as insulin or glucose administration, thus limiting 

the applicability of study results. 

Study I found sex differences in the response to administration of intranasal 

insulin, suggesting possible differences in the physiological and cognitive responses 

of men and women. Research indicates that the beneficial effects of insulin on hippo-

campus-dependent memory functions may be more pronounced in women, suggest-

ing a potential sex-related sensitivity (Benedict et al., 2008). Hormonal fluctuations, 

particularly those related to the menstrual cycle, may significantly influence both in-

sulin sensitivity and glucose metabolism (Pulido & Salazar, 1999; Rani, 2013; Yeung et 

al., 2010), which in turn may influence the efficacy of these interventions in fear con-

ditioning and extinction. 



131 

5.2.1.3 Lab-Setting and Online-Design 

The methodological frameworks of the studies, which include both laboratory 

(Studies I and III) and online settings (Study II), might have some limitations that can 

affect the validity, reliability, and generalizability of the results. While laboratory-based 

studies can accurately control for extraneous variables, they often fail to capture the 

complexity and variability of real-life experiences that might influence fear and anxiety 

(Wilhelm & Grossmann, 2010). For example, participants in a laboratory setting may 

exhibit attenuated fear responses due to the safe and controlled environment that 

lacks the unpredictability and stress of everyday life (Shin & Liberzon, 2010). This may 

lead to results that do not fully reflect how fear responses manifest in more dynamic 

and less predictable real-life contexts. 

Both, experimental laboratory and online studies typically involve some degree 

of artificiality, such as the use of standardized stimuli (e.g., pictures, videos or tactile 

stimulation) to elicit fear, which can be controlled by the researcher but may not elicit 

the same emotional responses as more personal or contextual stimuli that occur out-

side the experimental setting. Our laboratory studies used an electric shock as an 

aversive stimulus, which is widely used in fear conditioning research and reliably elicits 

fear responses (Lonsdorf et al., 2017), but can be considered a rather artificial stimulus 

and not a common stimulus to elicit fear and trauma responses in real life. The con-

trolled laboratory setting also limits the generalizability of findings to diverse popula-

tions, as the way in which participants are recruited at universities is particularly con-

ducive to participants often being drawn from a narrow demographic group (e.g., uni-

versity students) that may not be representative of broader, more diverse groups 

(Henrich et al., 2010; see chapter 5.2.1.1). The lack of real-world applicability raises 

questions about how well the findings translate to clinical practice or how they might 

apply to other populations, such as older adults or people from different cultural back-

grounds. 

In contrast, while online studies offer the advantage of reaching more diverse 

and geographically dispersed populations, they also present several challenges. The 
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variability of participant environments, from varying levels of noise and distraction to 

varying levels of privacy, e.g., in the sense of whether participants were alone or in the 

presence of other people during the study, can significantly affect data quality (Anwyl-

Irvine et al., 2020; Clifford & Jerit, 2014). In addition, technical issues such as differ-

ences in screen size, internet connection, and device quality can lead to inconsisten-

cies in the presentation and perception of stimuli, potentially leading to variability in 

participant responses unrelated to the experimental manipulations (Dandurand et al., 

2008). 

Another concern with online studies is the potential for lower levels of partic-

ipant engagement or honesty, especially when there is no direct interaction with re-

searchers. This can lead to inaccuracies in self-reported data, as participants may not 

be as motivated to provide careful and truthful responses as they would in an in-

person setting (Clifford & Jerit, 2014). This is also reflected in comparatively higher 

dropout rates of online experiments (Arechar et al., 2018), although our dropout rate 

of about 25% in Study II is comparable to other online studies (Dandurand et al., 2008). 

As a further limitation, the lack of monitoring in online environments means that par-

ticipants may not strictly adhere to study protocols, further complicating the interpre-

tation of results. 

5.2.1.4 Physiological and Behavioral Measurements of Fear 

The use of physiological and behavioral measures to assess fear responses in 

research studies has several limitations that can affect the interpretation and validity 

of the results. Psychophysiological responses, such as SCR and FPS (as used in Studies 

I and III), are commonly used indicators of autonomic arousal and reflexive fear re-

sponses. The use of SCR and FPS as a measure of fear has been a cornerstone of 

psychophysiological research due to its sensitivity to autonomic arousal (Blumenthal 

et al., 2005; Boucsein et al. 2012; Lonsdorf et al., 2017). However, this sensitivity can 

also be a limitation. SCR is primarily a measure of sympathetic nervous system activity, 

which, although closely associated with emotional arousal, is not exclusively triggered 

by fear. It can be triggered by a range of emotional states, including excitement, anger 
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or even heightened alertness, which might complicate the interpretation of SCR data 

as a pure indicator of fear (Christopoulos et al., 2019). 

In addition, the high variability of SCR and FPS reactions between individuals 

(but also within individuals, when compared between different sessions) presents a 

challenge. Baseline levels and the magnitude of responses can vary widely depending 

on factors such as hydration, temperature, individual differences in sweat gland den-

sity, current physical health, and current emotional state. This variability can mask sub-

tle differences in fear responses and make it difficult to draw definitive conclusions 

about the effects of experimental manipulations (Boucsein, 2012; Boucsein et al., 

2012). It is therefore necessary to transform and standardize the data in order to make 

comparisons between individuals. This means that the raw data is no longer interpret-

able, and outliers or extreme values that could affect the transformation should be 

excluded and are typically lost.  

The FPS is particularly valuable because of its robustness and its ability to cap-

ture the learned association between a neutral/conditioned and aversive uncondi-

tioned stimulus, making it a reliable indicator of conditioned fear (Lang et al., 1990). 

However, like the SCR, the FPS is not without limitations. A major problem with the 

FPS is its sensitivity to contextual factors. For example, the participant's attentional 

focus, level of arousal, and prior exposure to the startle stimulus may all influence the 

level of the FPS (Blumenthal et al., 1995; Blumenthal & Goode, 1991; Koch, 1999). Ha-

bituation to the startle stimulus, where repeated exposure leads to reduced responses, 

can also confound results, particularly in multi-trial or multi-session studies like ours 

(Koch, 1999; Valsamis & Schmid, 2011). This can be problematic when evaluating in-

terventions such as insulin or glucose administration, as the effect on fear responses 

can be subtle and easily masked by such confounding factors (Blumenthal et al., 2005). 

Although our paradigms included additional startle habituation phases to reduce the 

habituation effect, habituation beyond this cannot be ruled out in the course of the 

experiments. 
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Furthermore, the FPS primarily reflects the amygdala-mediated reflexive fear 

response, which is central to fear conditioning but does not encompass the full range 

of fear-related cognitive processes. The startle response is an automatic lower brain 

response that does not necessarily correlate with conscious fear experiences or cog-

nitive threat appraisals (Grillon, 2002; Sevenster et al., 2014). As a result, while the FPS 

is an effective tool for assessing the presence of conditioned fear, it may not fully 

capture the effects of the insulin and glucose interventions on the cognitive dimen-

sions of fear, such as how individuals evaluate and regulate their fear. In order to make 

a comprehensive statement, it is advisable to use several measures of fear in parallel, 

as we did in our studies. In addition to physiological measures, behavioral measures 

such as US-expectancy ratings can be used. 

US-expectancy ratings provide a declarative approach to measuring fear by 

assessing participants' conscious expectations of an aversive stimulus. This measure 

provides direct insight into the cognitive aspects of fear learning, specifically how well 

participants understand the contingency between the CS and the US. However, reli-

ance on self-report has several problems. One of the major limitations of US-expec-

tancy ratings is their susceptibility to demand characteristics and social desirability 

(Durmaz et al., 2020). Participants may change their responses depending on what 

they think the experimenter expects or because of a desire to present themselves in a 

certain way. This may lead to over- or underreporting of fear-related expectations, 

which could bias the results. In addition, participants' ability to accurately record and 

report their expectations may vary, leading to discrepancies between actual learning 

and reported expectations. 

Furthermore, the process of repeatedly asking participants to report their US-

expectations may itself influence the phenomenon being measured. Frequent en-

gagement in this cognitive task may increase participants' awareness of the CS-US 

contingency (Warren et al., 2014), thereby accelerating learning or facilitating extinc-

tion processes that may not occur under more natural conditions. This raises questions 

about the ecological validity of US-expectancy ratings and whether they truly reflect 
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fear learning as it occurs outside of the laboratory environment. In addition, US-ex-

pectancy ratings primarily capture the explicit, conscious aspects of fear learning and 

may not reflect the implicit or unconscious processes that are often critical to the 

development and maintenance of anxiety disorders (Mayer, 1999; Schultz et al., 2013; 

Zinbarg et al., 2022). Implicit learning mechanisms, such as those involving the amyg-

dala, may drive fear responses without being consciously recognized, so it is important 

to also use measures that can tap into these deeper levels of fear processing. Thus, 

reliance on declarative measures alone may provide an incomplete picture of how fear 

is learned and extinguished, and should be complemented by physiological measures, 

for example. Unfortunately, due to the online design of Study II this was not possible, 

so the interpretation of the results is limited to declarative fear learning. However, 

despite the possible limitations, the US-expectancy has proven to be a valid measure 

of fear learning (Boddez et al., 2013).   

5.2.2 Study-Specific Constraints 

5.2.2.1 Variability in Insulin Absorption Rates and Metabolic Responses 

A major limitation of Study I is the variability in insulin absorption rates be-

tween participants, which may have affected the results of the study. Although in-

tranasal insulin administration is a promising route to the central nervous system, it 

may be affected by individual differences, e.g., in nasal mucosal permeability or pre-

cision of delivery. These differences can be attributed to biological factors such as 

nasal mucosal thickness, nasal airflow, blood flow and even minor infections or aller-

gies present at the time of administration or to the spray administration and plume 

angles (Grassin-Delyle et al., 2012; Mygind & Dahl, 1998; Pires et al., 2009). Such vari-

ability may result in inconsistent insulin delivery to the brain (Born et al., 2002), po-

tentially affecting the ability of the study to detect subtle changes in fear extinction 

processes. In addition, individual metabolic responses to insulin - such as variations in 

insulin sensitivity and glucose metabolism - could further complicate the interpreta-

tion of results. This is particularly relevant as insulin resistance, a common condition 

(James et al., 2021; Meigs, 2003), may alter the cognitive effects of insulin (Cui et al., 
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2022; Kim & Arvanitakis, 2023; Kullmann et al., 2016; Willmann et al., 2020). Although 

the presence of diagnosed metabolic disorders, such as diabetes, and BMI was con-

trolled for, the presence of interindividual differences in insulin sensitivity and glucose 

metabolism, as well as possible subclinical insulin resistance, cannot be excluded. This 

highlights the need for future research to incorporate assessments of insulin absorp-

tion and metabolic status to better account for and manage these individual differ-

ences. 

5.2.2.2 External Factors Related to the Pandemic 

The influence of external factors related to the COVID-19 pandemic is a further 

limitation for Study II. Although the study found increased fear generalization and fear 

conditioning in individuals with increased COVID-19 related anxiety, it cannot fully 

explain the variability in participants' experiences during the time of the pandemic. 

Factors such as the severity of lockdowns, levels of media consumption, and personal 

experiences with COVID-19 - such as contracting the virus or knowing someone who 

did - may have significantly influenced the mental well-being and COVID-19 related 

anxiety (Brooks et al., 2020; Fiorillo et al., 2020; Mertens et al., 2020; Odriozola-Gon-

zález et al., 2020). High media exposure, for example, has been associated with in-

creased anxiety and fear (Bendau et al., 2021; Gu et al., 2023; Liu & Liu, 2020), which 

may have mediated the observed effects. Additionally, the varying intensity of the 

lockdowns may have affected participants' stress and anxiety levels, resulting in in-

consistent anxiety levels during the data collection period that cannot be attributed 

solely to general COVID-19 related anxiety. However, other studies suggest that the 

impact of lockdowns on mental health is highly variable, but overall small, and that 

most people show clear signs of resilience (Prati & Mancini, 2021). Since the sample 

of healthy participants, mostly students, was very homogeneous, it can be assumed 

that the overall variance in general COVID-19-related anxiety and thus the differences 

between participants with high and low anxiety are rather small. 
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5.2.2.3 Questionnaire and Self-Report Data 

In Study II, a modified version of the DSM-5 Severity Measure for Specific Pho-

bia Adult Scale (Beesdo-Baum et al., 2012; Craske et al., 2013) was adapted to measure 

COVID-19-related anxiety (c.f. Bendau et al., 2021; Petzold et al., 2020). While this ad-

aptation allowed for a tailored assessment of pandemic-specific anxiety, it has both 

strengths and limitations. On the positive side, the use of an established, validated 

instrument, such as the DSM-5 scale, ensures that the measure is consistent with com-

monly accepted diagnostic criteria for anxiety disorders, which lends credibility to the 

results. Adaptation to the unique context of COVID-19 also highlights the flexibility 

and relevance of the scale in capturing real-world, situational anxiety, which is critical 

given the unprecedented nature of the pandemic (Mertens et al., 2020). Although the 

scale reflects some aspects of pandemic-related anxiety, it was originally developed 

for specific phobias and may not fully capture the broader, multifaceted nature of 

COVID-19 anxiety. This limitation is particularly relevant as pandemic-related anxiety 

involves complex factors such as health concerns, economic stress, and social isolation 

that go beyond the scope of specific phobias (Borade & Nagarkar, 2021; Klaiber et al., 

2021; Taylor et al., 2020). Another concern is that self-report questionnaires can be 

affected by response biases such as social desirability or recall bias, especially when 

measuring sensitive topics such as fear and anxiety (Paulhus, 1991; van de Mortel, 

2020). Participants may underreport their fear due to stigma or discomfort, or they 

may exaggerate due to heightened emotional states, especially in the context of a 

pandemic. These biases may distort the true relationship between fear learning and 

generalization during a global crisis. 

5.3 Implications and Future Directions 

With regard to the individual studies and the overall dissertation, it should be 

emphasized that it does not claim to provide an exhaustive examination of the com-

plex and multifaceted nature of fear learning and extinction. Rather, it seeks to shed 

light on specific aspects of these processes, particularly with regard to the enhance-

ment of fear extinction by biological interventions such as insulin and glucose, and 
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the effects of environmental stressors such as the COVID-19 pandemic. By contrib-

uting to an area of research that still has significant gaps, the results of this dissertation 

represent a small but important step toward a deeper understanding of how fear 

learning can be modulated to improve the treatment of anxiety disorders. Neverthe-

less, many questions remain unanswered, and the results of this work open new ave-

nues for further study and consideration, paving the way for future research to build 

on these findings and explore new directions in the field of fear learning and extinc-

tion.  

5.3.1 Impact of Environmental Stressors on Fear Learning 

The role of environmental stressors in influencing fear learning processes has 

become increasingly important, especially in the context of real-world stressors such 

as the COVID-19 pandemic and recent armed conflicts. Research has long shown that 

stress and anxiety can significantly influence how individuals acquire and generalize 

fear, with stress often leading to heightened fear responses and impaired extinction 

learning (Shin & Liberzon, 2010). The results of Study II provide important insights 

into how environmental stressors can influence the basic processes of fear acquisition 

and generalization and allow for a deeper understanding of the interaction between 

environmental factors and fear-based psychopathology. 

The effects of environmental stressors on fear learning have direct implications 

for clinical interventions, particularly exposure therapy. Research has shown that stress 

impairs extinction learning by altering the function of the prefrontal cortex and hip-

pocampus (Maren & Holmes, 2016), brain regions involved in the regulation of fear 

responses and the formation of extinction memories (Giustino & Maren, 2015; Milad 

et al., 2007). This impairment may make it difficult for individuals to benefit from ther-

apeutic interventions aimed at reducing pathological fear. Study II highlights this chal-

lenge, as the heightened anxiety and stress during the pandemic may have impaired 

participants' ability to effectively differentiate between an aversive (CS+) and safe 

stimuli (CS–, GSs). Future research should investigate strategies to mitigate the effects 

of environmental stressors on fear generalization, for example by incorporating stress 
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reduction techniques alongside extinction trainings (Nagele et al., 2014). This may in-

crease the effectiveness of interventions, particularly for individuals exposed to high 

levels of stress or traumatic experiences. 

Given the profound effects of environmental stressors on the learning of fear, 

future research should examine how different levels of stress, both acute and chronic, 

affect the acquisition, extinction, and generalization of fear in different populations. 

Longitudinal studies examining how stress levels affect the learning and generaliza-

tion of fear over time would provide valuable insights into the development of anxiety 

disorders. In addition, how global stressors such as pandemics, wars, or natural disas-

ters alter the effectiveness of therapeutic interventions to reduce pathological anxiety 

should be investigated. By identifying ways to mitigate the negative effects of stress 

on fear learning, researchers can develop more robust treatment protocols that are 

more resilient to environmental stressors. 

5.3.2 Interaction between Metabolism and Cognition 

The studies conducted in this dissertation provide important insights into the 

neurobiological mechanisms underlying fear extinction, particularly by examining the 

role of insulin and glucose in modulating cognitive processes. Administration of in-

tranasal insulin and glucose emerged as a promising intervention for fear extinction, 

as they have been shown to improve memory consolidation and cognitive control 

during extinction-based trainings. This is consistent with previous research showing 

that insulin plays a critical role in cognitive processes such as learning, memory, and 

emotion regulation, primarily through modulation of hippocampal activity and syn-

aptic plasticity (Benedict et al., 2004; Craft et al., 2013). Insulin is well known for its 

peripheral role in glucose metabolism, but its central functions in the brain are in-

creasingly recognized for their involvement in the regulation of neuronal function and 

synaptic plasticity. The hippocampus, a key structure for fear learning and memory 

consolidation, is particularly sensitive to the effects of insulin (Plum et al., 2005).  

In Study I, intranasal insulin was shown to enhance fear extinction processes, 

possibly through its effects on the hippocampus and prefrontal cortex, where insulin 
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receptors are abundant (Banks et al., 2012). This supports the notion that insulin may 

facilitate the synaptic changes required for fear extinction by improving glucose me-

tabolism and energy availability in the neural circuits involved in memory consolida-

tion (Park, 2001). Glucose also plays a critical role in cognitive modulation. The brain 

relies heavily on glucose as its primary energy source, and fluctuations in glucose 

availability can significantly impair cognitive function (Sünram-Lea & Owen, 2017; Xia 

et al., 2020). Study III showed that glucose administration prior to or after fear extinc-

tion improved extinction learning or extinction memory consolidation, respectively. 

These findings support previous research suggesting that increased glucose availabil-

ity improves cognitively demanding tasks such as memory retrieval and attentional 

control (Riby, 2004; Smith et al., 2011). 

The interaction between metabolism and cognition is an emerging area of re-

search suggesting that metabolic processes directly influence cognitive performance, 

particularly in tasks that require high energy expenditure, such as fear extinction. Both 

insulin and glucose may help to optimize the metabolic environment necessary for 

effective cognitive processing, particularly under conditions of stress or high cognitive 

load (Benton & Owens, 1993). By modulating glucose availability in the brain, insulin 

may enhance neural substrates that support fear extinction, which may explain why 

metabolic disorders such as insulin resistance are associated with mental health prob-

lems including anxiety-behavior (Freiherr et al., 2013; Kleinridders et al., 2015; Narita 

et al., 2008). Metabolic disorders, particularly in the form of insulin resistance or im-

paired glucose metabolism, are associated with cognitive impairment and emotional 

dysregulation (Kapogiannis & Mattson, 2011). Studies have shown that individuals 

with metabolic disorders are more likely to suffer from depression and anxiety (Kan et 

al., 2013; Lyra e Silva et al., 2019; Smith et al., 2013). This has important theoretical 

implications for the treatment of anxiety disorders, as individuals with metabolic dis-

orders may not respond as effectively to interventions aimed at improving fear extinc-

tion through metabolic means. Metabolic enhancers such as insulin and glucose show 

promise in enhancing fear extinction processes. However, the role of individual me-

tabolism needs to be carefully considered in future studies as it may influence the 
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efficacy of these treatments, especially in individuals with comorbid metabolic disor-

ders. 

5.3.3 Integration of Cognitive Enhancers in Exposure Therapy 

The integration of cognitive enhancers such as glucose and intranasal insulin 

into exposure-based therapies is a promising way to improve the efficacy of treat-

ments for anxiety disorders. Exposure therapy, in which a feared stimulus is repeatedly 

presented in a safe and controlled environment, aims to reduce pathological fear re-

sponses through extinction learning. However, the success of this approach varies be-

tween individuals, and improving the cognitive mechanisms involved in extinction 

may improve general treatment outcomes.  

The mechanism by which insulin exerts its effect on extinction learning is not 

fully understood, but there is evidence that it involves modulation of neural circuits 

that regulate both memory and emotion. Insulin's ability to influence synaptic plastic-

ity (Chiu et al., 2008; van der Heide et al., 2005) may enhance the brain's ability to form 

new associations during extinction, making it a potentially valuable addition to exist-

ing therapeutic strategies for anxiety disorders. However, the long-term effects of in-

sulin administration on extinction learning have not been thoroughly investigated. In 

addition, the variable rates of insulin absorption among individuals, as well as the var-

iable metabolic responses to insulin, may complicate its therapeutic application. 

By providing additional metabolic resources to brain regions responsible for 

learning and memory, such as the hippocampus and PFC, glucose may help individu-

als to consolidate new associations during extinction (Mergenthaler et al., 2013; 

Scholey et al., 2013; Smith et al., 2011). This could be particularly beneficial in clinical 

settings, where exposure therapy seeks to weaken the link between a conditioned 

stimulus and fear responses. However, studies conducted to date, including those re-

viewed in this dissertation, have focused on the short-term effects of glucose admin-

istration on extinction memory. While these results are promising, they raise important 

questions about the long-term efficacy of glucose as a cognitive enhancer. It remains 
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unclear whether prolonged glucose supplementation can result in sustained improve-

ments in fear extinction, or whether repeated administration might result in diminish-

ing returns or even adverse effects. 

The integration of cognitive enhancers such as glucose and insulin into extinc-

tion training or exposure therapy could have several potential benefits. By improving 

the consolidation of extinction memories, these substances could help individuals in 

therapy to better retain the gains made during treatment sessions, which could reduce 

relapse rates. However, there are also significant challenges that must be overcome 

before these approaches can be implemented on a large scale in clinical settings. One 

important issue is the individual variability of metabolic responses to glucose and in-

sulin. Factors such as insulin resistance, metabolic health, and even differences in glu-

cose metabolism between the sexes could influence how individuals respond to these 

enhancers (Born et al., 2002; Cui et al., 2022; James et al., 2021; Varlamov et al., 2014). 

This variability underscores the need for personalized treatment approaches that take 

into account each patient's metabolic profile when considering the use of cognitive 

enhancers in therapy. In addition, the potential long-term consequences of using glu-

cose or insulin in therapeutic situations must be carefully considered. While short-

term administration has been shown to improve cognitive function in the context of 

fear extinction, repeated use could pose risks, such as the development of insulin re-

sistance or other metabolic disorders. These risks highlight the importance of further 

research to investigate both the safety and efficacy of these substances in the context 

of long-term treatment of anxiety disorders. 

Future research should focus on filling the current gaps in understanding the 

long-term effects of cognitive enhancers in exposure therapy. Studies should include 

follow-up to determine whether the benefits of glucose and insulin administration 

persist over time and whether these substances have negative metabolic effects with 

repeated use. In addition, research should investigate the optimal timing and dosing 

of these enhancers to maximize their therapeutic potential while minimizing risks. Fur-

ther studies are also needed to investigate the mechanisms by which glucose and 
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insulin affect fear extinction processes at the neuronal level. Understanding how these 

substances interact with brain circuits involved in fear learning and memory could 

provide valuable insights into how to tailor cognitive enhancement strategies to indi-

vidual patients. In addition to studying fear extinction, future research should also 

investigate the effects of glucose and insulin on other processes of fear learning, such 

as fear generalization. The modulation of fear generalization by glucose or insulin re-

mains to be thoroughly investigated, but it is plausible that these substances could 

also influence the extent of fear generalization. Because generalized fear responses 

are often more treatment-resistant and contribute to the persistence of fear, knowing 

whether glucose and insulin can help reduce generalization could provide important 

therapeutic insights (Dymond et al., 2015). Furthermore, the current studies were con-

ducted in healthy participants, which limits the generalizability of the findings to clin-

ical populations. Extending this research to (sub)clinical samples is crucial to deter-

mine whether the observed effects of glucose and insulin apply to those most likely 

to benefit from enhanced extinction learning. This could pave the way for more tar-

geted and effective treatments for anxiety disorders and potentially improve out-

comes for patients who do not respond well to traditional exposure therapy alone. 

5.3.4 Integrating Biological, Psychological, and Environmental Factors 

The integration of metabolic factors such as glucose and insulin regulation in 

models of fear learning provides a new perspective on how physical conditions affect 

cognitive and emotional processes. Research has shown that glucose can improve 

cognitive functions such as memory and learning, including fear acquisition and as 

shown in this dissertation also fear extinction (Glenn et al., 2014; Smith et al., 2011). 

The results of Studies I and III suggest that metabolic processes are not only peripheral 

but can actively influence the neural circuits involved in fear learning. These findings 

are consistent with studies suggesting that human metabolism can directly influence 

cognitive processes and neural plasticity (Stranahan & Mattson, 2011; Vaynman & 

Gomez-Pinilla, 2006; Watts et al., 2018), e.g., in the hippocampus and prefrontal cor-
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tex, areas critical for regulating memory processes (Gold, 2014). By integrating meta-

bolic factors into fear conditioning models, researchers could develop a more nu-

anced understanding of how internal physiological states, such as metabolic efficiency 

or metabolic dysregulation, affect fear learning processes. 

In addition to metabolic processes, environmental stressors, such as those ex-

amined in Study II, underscore the important role of external contexts in fear learning. 

Stressful environments can enhance fear responses and alter the way people general-

ize fear to safe stimuli (e.g., Mertens et al., 2020). The pandemic provided a unique 

opportunity to examine how real-world stressors, such as health threats and social 

isolation, affect fear conditioning and generalization. By integrating environmental 

stressors into models of fear learning, future research could better predict how indi-

viduals in high-stress environments—whether due to personal circumstances or 

broader societal conditions—may develop inappropriate fear responses that contrib-

ute negatively to anxiety disorders. This integration could be crucial to the develop-

ment of therapeutic strategies that address individuals' broader life contexts. 

The integration of biological, psychological, and environmental factors opens 

up several new avenues for developing holistic models of fear learning. One promising 

area of research is understanding how individual differences in metabolic health, such 

as glucose regulation or insulin sensitivity, influence the effectiveness of therapeutic 

interventions such as exposure therapy. Future studies could examine whether indi-

viduals with metabolic disorders, such as diabetes, have different patterns of fear ex-

tinction and whether they respond differently to interventions aimed at reducing fear 

responses. Another potential avenue for future research is to examine how chronic 

environmental stressors, such as economic hardship or ongoing global crises, affect 

fear learning over time. Longitudinal studies could examine whether prolonged expo-

sure to stress alters the neural and hormonal systems involved in fear conditioning, 

leading to long-term changes in fear levels and generalization tendencies. Under-
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standing these long-term effects could help improve treatment protocols by identify-

ing individuals at risk for developing persistent fear responses based on their environ-

mental context.  

Finally, a holistic approach to fear learning should also consider the interaction 

between metabolic and environmental factors. For example, stress-induced changes 

in eating habits or metabolic health (Dallman, 2010; Hill et al., 2022; Kuo et al., 2019; 

Rabasa & Dickson, 2016; Tomiyama, 2019) could further exacerbate fear learning and 

anxiety (Koorneef et al., 2018), suggesting a bidirectional relationship between these 

variables. This intersectional perspective would allow researchers and clinicians to de-

velop more integrative treatments that address not only the psychological aspects of 

anxiety, but also the biological and environmental factors that may contribute to in-

appropriate fear responses. 

5.3.5 Enhancing Fear Extinction in Stressful Environments 

The interaction between cognitive enhancers and environmental stressors 

might be an important aspect in developing more effective treatments for anxiety 

disorders. When people are exposed to high levels of environmental stress, such as 

during major life events or crises (e.g., the COVID-19 pandemic), their cognitive and 

emotional responses to fear learning may be enhanced, potentially leading to in-

creased anxiety and maladaptive fear generalization. In these contexts, cognitive en-

hancers could play a critical role in supporting adaptive fear learning by attenuating 

the negative effects of stress on cognitive processes involved in fear extinction 

(Hamacher-Dang et al., 2015; Maren & Holmes, 2016; Peyrot et al., 2020). 

For example, during periods of heightened stress, individuals often experience 

a reduction in cognitive flexibility and an increase in fear responses, probably due to 

elevated cortisol levels and stress-related disruptions in neural circuits (Goldfarb et al., 

2017; Marko & Riečanský, 2018; Plessow et al., 2011; Rodrigues et al., 2009). Admin-

istration of cognitive enhancers could counteract these effects, promote consolidation 

of fear extinction memories, and enhance the overall efficacy of exposure-based ther-
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apies. This suggests that in therapeutic contexts, in which patients might also experi-

ence stress, e.g., due to the confrontation with a feared stimulus, the strategic use of 

cognitive enhancers could enhance the patients’ ability to engage in and benefit from 

treatment. Furthermore, this approach could help reduce the relapse rates seen in 

some anxiety disorders, particularly during stressful conditions that might otherwise 

trigger a resurgence of symptoms. 

Future research should therefore examine how cognitive enhancers can best 

be adapted to periods of high environmental stress to optimize fear extinction and 

overall treatment outcomes for anxiety disorders. This could open new avenues for 

integrating biological, psychological, and environmental factors into a more holistic 

model of anxiety treatment. 

5.4 Conclusion 

In summary, the three studies presented in this dissertation contribute im-

portant findings to the ongoing research on fear extinction processes and their mod-

ulation by cognitive enhancers and environmental stress. Study I demonstrated the 

potential of intranasal insulin as a non-invasive enhancer of fear extinction and 

opened new possibilities for the use of metabolic hormones in therapeutic contexts. 

Study II highlighted the relevance of fear learning in the real world by examining how 

fear associated with the COVID-19 pandemic affects fear conditioning and generali-

zation, and provided valuable data on how environmental stressors interact with fear 

processes. Study III examined the effects of glucose as an adjuvant for fear extinction 

and showed promising short-term benefits, but also highlighted the need for further 

research on long-term efficacy. 

Collectively, these studies address critical gaps in the current understanding of 

how cognitive enhancers and environmental factors may modulate fear learning and 

extinction. By integrating findings from psychology and neuroscience, these studies 

contribute to a more holistic understanding of anxiety treatment and offer practical 

implications for improving the effectiveness of exposure therapy. Despite their limita-

tions, such as sample homogeneity and short-term focus, these studies lay the 
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groundwork for future research that could lead to more individualized and effective 

interventions for anxiety disorders, e.g., by incorporating cognitive enhancers during 

periods of heightened stress or anxiety. 

These contributions are particularly valuable in light of the need to improve 

treatment outcomes for anxiety disorders, which remain among the most prevalent 

mental illnesses worldwide. Future research should continue to address the integra-

tion of biological, psychological, and environmental factors and help refine treatment 

models that can adapt to the complex, multifaceted nature of fear and anxiety. 
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