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Abstract: In practical machine learning (ML) applications, covariate shifts and dependen-
cies can significantly impact model robustness and prediction quality, leading to perfor-
mance degradation under distribution shifts. In industrial settings, it is crucial to account
for covariates during the design of experiments to ensure reliable generalization. The
presented dataset of undamaged and artificially damaged cylindrical roller bearings is
designed to address the lack of data resources for targeting domain and distribution shifts
in this field. The dataset considers multiple key covariates, including mounting position,
load, and rotational speed. Each covariate consists of multiple levels optimized for group-
based cross-validation. This allows the user to exclude specific groups in the training
to validate and test the algorithm. Using this approach, algorithms can be evaluated for
their robustness and the effect on the model caused by distribution shifts, allowing their
generalization capabilities to be studied under realistic conditions.

Dataset: Published on Zenodo. DOI: 10.5281/zenodo.11108503 (MATLAB), 10.5281/zen-
odo.11108503 (CSV/Python)

Dataset License: Creative Commons Attribution 4.0 International (CC-BY)

Keywords: machine learning; robust learning; domain shift; bearing dataset

1. Introduction
Roller bearings are widely used rotating machine elements that reduce friction and

carry loads. Although bearings are considered robust and have a long service life, incorrect
usage can lead to unexpected bearing failure and, eventually, machine failure. Typical
bearing failures are, e.g., wear, corrosion, or fracture and cracking [1]. In particular, pitting
corrosion, which forms small hole-like corrosion pits in the metal, can cause severe damage
to the bearing and result in failure [2]. To investigate these damage characteristics using
machine learning (ML), multiple datasets are publicly available, e.g.,:

• NASA bearing dataset [3]: The dataset contains acceleration measurements with four
bearings that are stressed with a constant load until they reach their wear limit.

• Paderborn University Bearing Dataset [4]: The dataset contains acceleration, rota-
tional speed, load, and torque measurements of 26 damaged (artificial and real) and
six undamaged bearings in four scenarios.
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• Case Western Reserve University Bearing Dataset [5]: The dataset contains measure-
ments of an accelerometer for artificially damaged bearings with different damage
sizes and loads.

The datasets mentioned above incorporate covariates to a limited extent, such as
load or rotational speed. In real-world scenarios, several additional covariates may occur
simultaneously and interact with each other. As a result, measurements could be inade-
quate for developing robust ML models. Therefore, these interactions must be taken into
account during data collection. This justifies the need for a new dataset with a focus on
covariates during the measurement process. The bearing dataset presented in this study
consists of acceleration measurements of three cylindrical roller bearings (B10, B20, and
B30) successively measured on a testbed. Each bearing was first measured undamaged and
later artificially damaged with a milling cutter. The dataset was designed to address the
lack of publicly available data enabling systematic analysis of covariate shift and domain
adaptation challenges in machine learning models. By providing controlled variation
of multiple influencing factors, this dataset enables more realistic assessment of model
robustness under variable operating conditions.

2. Methods
2.1. Bearing

Figure 1 shows an assembled cylindrical roller bearing of type NU206-E-XL-TVP2 (a),
as investigated in the experiments, along with its disassembled components (b).

Figure 1. (a) Assembled cylindrical roller bearing and (b) disassembled into its components: outer
ring, inner ring, rolling elements, and cage.

The inner ring has no ribs to secure the rolling element, so that it can be easily
separated. This approach enables the introduction of artificial damage to the inner ring
without causing additional damage during the bearing’s mounting and dismounting. The
corresponding basic frequency factors can be found in Table 1 [6].

Table 1. Basic frequency factors of the NU206-E-XL-TVP2 related to 1/s [6].

Basic Frequency Factors Abbreviation Factor

Overrolling frequency factor on outer ring BPFFO 5.24
Overrolling frequency factor on inner ring BPFFI 7.76
Overrolling frequency factor on rolling element BSFF 2.49
Ring pass frequency factor on rolling element RPFFB 4.97
Speed factor of rolling element set for rotating inner ring FTFFi 0.40
Speed factor of rolling element set for rotating outer ring FTFFo 0.60
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Figure 2 presents microscope images of the artificial damage applied to bearings B10,
B20, and B30, along with their dimensions, which are also included in the dataset.

Figure 2. Microscope images of the artificial damage introduced to bearings 10, 20, and 30, along
with their respective dimensions.

In addition to the NU206-E-XL-TVP2, which was used as a loose bearing in the setup,
a 1206-TVH was employed as a fixed bearing to compensate for axial forces and minor
shaft misalignments. The NU207-E-XL-TVP2, another loose bearing, was used to apply
the pulling force to the rotating shaft. All relevant frequency factors for 1206-TVH and
NU207-E-XL-TVP2 are provided in Table A1.

2.2. Testbed

Figure 3a shows the mechanical setup of the testbed. The corresponding components
of the testbed (I. Mechanical System) and the data acquisition (II. Data Acquisition System)
can be found in Table 2.

Table 2. Components of the testbed.

Component Model Manufacturer

I. Mechanical System

Motor EMMS-AS-70S-LS-RSB Festo
Motor controller CMMP-AS-C2-3A-M3 Festo
Coupling GWE 5106-24-11-25 Ringfeder Power Transmission
Loose bearing (Cylindrical roller bearing) NU206-E-XL-TVP2 Schaeffler Technologies
Fixed bearing (Self-aligning ball bearing) 1206-TVH Schaeffler Technologies
Bearing Force introduction (Cylindrical roller bearing) NU207-E-XL-TVP2 Schaeffler Technologies

II. Data Acquisition
System

Accelerometer 3233a Dytran Instruments
Force Sensor K-25 Lorenz Messtechnik
Embedded Controller cRIO 9040 National Instruments
Vibration Input Module NI-9232 National Instruments
Voltage Input Module NI-9215 National Instruments
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Figure 3. (a) Mechanical setup of the testbed. (b) Enlarged view on the force introduction.

In the testbed, a servo motor (indicated in blue in Figure 3) powered two shafts
connected by two couplings (yellow). Each shaft was supported by one fixed and one loose
bearing located in the bearing housings (green). Two Force Introductions were constructed
to apply an external force on the bearings. Figure 3b shows an enlarged view of one Force
Introduction with the components force-application nut and locking nut (light-green), force
sensor (red), and bearing housing (green). The Force Introduction applied a pulling force on
one shaft at a time by tightening the force-application nut. Using a pulling force improved
the signal path of the resulting vibrations to the accelerometer as the sensor was mounted
on top of the bearing housing [7].

The design of the testbed allowed for mounting the bearing in other bearing housings
without disassembling it from the shaft (Figure 4), as disassembling and reassembling
could influence the data.

Figure 4. Dismantled shaft before a position change.

To change the bearing position, the covers of the bearing houses and the couplings
were removed. Next, the shaft with the mounted bearings was lifted out of the bearing
housings and rotated by 180° so that the bearing was switched from Pos. A to Pos. B.
The two shafts had the same dimensions, so they could be exchanged. This allowed for a
bearing to be mounted in all four positions without dismounting it from the shaft. Note
that the direction of rotation of the shaft was constant.
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Before the experiments, the testbed was aligned using a Fixturlaser EVO (see
Figure A1). The resulting measurements are presented in Table A2.

2.3. Identification of Influencing Factors

To identify relevant influencing factors on the data, a cause–effect graph [8] was used
(see Figure 5).

Figure 5. Cause–effect graph illustrating the influencing factors on the measurement for cylindrical
roller bearings.

All identified influences were further assigned to the groups constant, variable,
and covariates.

Constant influences (grey) were maintained constant throughout the measurements.
These included the bearing type (B1) and its lubrication (B7, defined amount of lubrication),
the sensor type (S1) and its performance (S2), the data acquisition (D1–D4), and the tools
(W2) used by the workers. To ensure that the influence of the tools remained constant,
specific torque wrenches with preset torque were used for each type of screw.

Variable influences (blue) are covariates varied in a controlled manner during the
experiment. In this study, the load on the bearing (B4), its rotational speed (B5), and its
mounting position (S4) were varied. For the variable influences Load (B4) and Rotational
Speed (B5), Latin Hypercube Sampling [9] was used to determine the levels and their order
in the design of experiments (DoE), ensuring well-distributed coverage while avoiding
temporal correlation. The range of these values was determined based on the maximum
values provided in the manufacturer’s specifications, including a safety factor of 2. For
rotational speed, the maximum was limited by the coupling and set to 1000 rpm, while
the maximum load was restricted by the fixed bearing (1206-TVH) and set to 3700 N.
Note that all bearings, especially the loose bearing (NU206-E-XL-TVP2), are designed to
handle higher loads and are intentionally oversized to minimize wear effects, which could
influence the results during the course of the experiments.

Covariates (orange) could only be tracked or influenced with extended effort. Manu-
facturing tolerances (B2) were considered by repeating the experiment with three different
bearings. Bearing condition (B3) was addressed by using new bearings and measuring
the undamaged condition before introducing any damage. The mounting of the sensor
(S4) and the bearing (B6) was managed using the concept of Runs. In each run, the sensor
was mounted three times in the same configuration, following the order: Run 1 (Positions
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A, B, C, D), Run 2 (Positions A, B, C, D), and Run 3 (Positions A, B, C, D). The influence
of the worker’s skill was minimized through training and monitored via pictures of the
configuration after modifications. Environmental influences (E1–E4) were reduced by
conducting the measurements in a temperature-controlled laboratory, while temperature
and humidity were recorded.

Figure 6 illustrates the variation of covariates in the DoE.

Figure 6. Variation of the covariates in the DoE.

3. Data Description
The dataset is published on Zenodo [10] and consists of the three folders Data, Meta-

data and +functions as well as the two files info.mat and readdata.m. Figure 7 provides an
overview of the dataset structure.

Figure 7. Overview of the dataset’s folder structure.

The Data folder contains 1151 measurement files, where each file contains the mea-
surement of a three-axis accelerometer (20 kHz, 60 s) of a specific combination of covari-
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ates, which is named according to the syntax DamageCase_Bearing_Damage_Run_Posi-
tion_Force_Speed_Worker, e.g., Inner_Ring_B10_DSmall_R1_PA_F0_S706_W2.mat. Orig-
inally, 1152 combinations were planned, but one measurement file was missing due to
corruption. The missing combination corresponded to Bearing 30, Damage Case 0, Run 1,
Position B, Force Level 1, and Speed 392. In addition, the folders include images showing
the testbed configuration and the dimensions of the damage. The folder structure reflects
the testbed’s specific configurations. Measurement files are, therefore, sorted according
to bearing number (B10, B20, B30), damage size (DNoD for no damage, DSmall for small
damage), run (R1, R2, R3), and position (PA, PB, PC, PD).

The folder Metadata contains the calibration certificate of the accelerometer, the
testbed’s alignment report, a text file listing all deviations from the initial DoE, and a
text file containing further information about the warm-up phases of the testbed.

The file info.mat contais all the parameters recorded during the measurements. Table 3
lists the parameters of the measurements. Parameters 1–6 represent the controlled variables,
while 7–12 correspond to the tracked covariates.

Table 3. Parameters for the design of experiments.

Nr. Parameter Quantity Label Values

1 Bearing 3 B10, B20, B30 10, 20, 30
2 Damage state 2 No damage, small damage 0, 1
3 Run (Position A to D) 3 R1, R2, R3 1, 2, 3
4 Position 4 PA, PB, PC, PD 1, 2, 3, 4
5 Force level 1 (±50 N) 4 F0 ≈ 0 N, F2 ≈ 2500 N, F1 ≈ 1600 N, F3 ≈ 3300 N 0, 2, 1, 3
6 Speed 1 [rpm] 4 706, 969, 85, 392 706, 969, 85, 392

7 Worker 2 W1, W2 1, 2
8 Mounting sensor 2 Normal, flipped 0, 1
9 Mounting coupling 4 Normal, twisted, right-centered, left-centered 0, 1, 2, 3

10 Mounting second shaft 2 Normal, flipped 0, 1
11 Temperature [°C] - - 21.6–22.7
12 Rel. humidity [%] - - 36.6–49.1

1 Randomized order of the parameters.

In addition, this file contains the following information:

• Timestamp: The measurement start time is automatically recorded using the internal
clock of the data acquisition system (NI cRIO 9040).

• Measurement day and batches: One measurement day consists of 48 batches. Each
batch consists of all speed cycles for a given configuration.

• Damage dimensions: Each damage was measured in two dimensions using a micro-
scope. The resulting images are included in the corresponding folders and shown in
Figure 2. The info.mat contains the dimensions as Damage_width and Damage_length.

• Filename: Name of the measurement file with the corresponding folder path.

The file readdata.mat is designed to load the data into MATLAB and internally uses
functions from the +functions folder. The user can load all data or selectively load mea-
surements with specific annotation, e.g., only measurements from position Pos. A and
force level F0. Furthermore, the user can reshape (split) measurements into segments.
For example, if split into eight sub-measurements, each segment will contain at least
10 rotations [7].

After executing the script, the user receives the file dataset.mat with the variables data
and target. The variable data is a 1 × 3 cell containing the measurements of the three axis
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X ({1,3}), Y ({2,3}) and Z ({3,3}), where the measurements are stored row-wise. The variable
trainTarget contains the corresponding annotation (metadata) of the measurements in data.

To support broader accessibility and interoperability, the dataset is provided both
in MATLAB (.mat) and open CSV format, accompanied by data loading and processing
scripts available in both MATLAB (version R2024b) and Python (version 3.13).

4. User Notes
4.1. Validation

Validation of ML models is a crucial step to assess their generalization ability and
prevent overfitting [11]. Leave-One-Group-Out cross-validation (LOGOCV) is considered
a more realistic scenario than methods such as k-fold cross-validation [12].

The presented bearing dataset is designed explicitly for LOGOCV. Figure 8 illustrates
how LOGOCV can be applied to the dataset by excluding certain bearing positions. This
approach reflects real-world scenarios where the ML model should perform robustly
regardless of the bearing’s mounting position.

Figure 8. Example of a LOGOCV for the bearing dataset.

In the example, two bearing positions are used for training, while a third, “unknown”
position is used for validation in each fold of the LOGOCV. Subsequently, the model is
tested on a fourth position that is entirely excluded from the training process. The resulting
accuracy serves as an indicator of the ML model’s robustness to new mounting positions.
Furthermore, other covariates such as load and speed levels, measurements from different
bearings, or combinations of covariates can also be employed in a LOGOCV scenario.

Figure 9 [13] highlights the relevance of considering cross-influences during model
building. It shows the principal component analysis (PCA) [14] of features from the
frequency domain (Best Fourier coefficients [15]) of the undamaged bearings colored by
mounting position (a), bearing (b), and run (c).

Figure 9. PCA of the undamaged measurements colored by the mounting position (a), bearing (b),
and run (c). Adapted from [13].
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In particular, the measurements of the positions and, to a certain degree, the measure-
ments of the bearings tend to form clusters. This highlights the relevance of considering
covariates as, e.g., a different mounting position can significantly change the data distribu-
tion and cause the ML model to fail. The presented dataset enables systematic investigation
of such covariate influences by providing controlled, documented variation of key operat-
ing factors, allowing users to evaluate model robustness under these shifts.

4.2. Assembly Errors

During the measurements, certain assembly errors occurred. By using the pictures of
the configuration, these assembly errors (cf. Table 3) could be identified. Figure 10 shows,
e.g., a configuration where the coupling is off-center.

Figure 10. Testbed configuration with the coupling mounted off-centered as assembly error.

Users can interpret these pictures as follows:

• The shaft with the bearing to be measured is indicated with a red off-centered ring
(purple). A black off-centered ring (green) on the second shaft indicates the position of
the fixed bearing. Due to the colored rings, the positions of all bearings can be tracked.

• The mounting of the sensor (blue) can be tracked by comparing the mounted position
with the label in the dataset. In some measurements, the sensor is mounted upside
down, which can be seen as a black surface on the top of the sensor (indicated in the
data as sensor_flipped).

• The coupling in the middle (red) can be controlled on a centered mounting. Further-
more, it can be controlled if the coupling itself is mounted correctly, e.g., through the
gap dimensions. Each side of the coupling has a corresponding engraving “R” for the
right side and “L” for the left side, which are not visible in most of the pictures due to
the camera’s low resolution. The coupling on the left side is always mounted on the
motor side (screws covered), and only the shaft side is dismounted.

• The bearing housings have an engraving (e.g., A for Pos. A) on the cover and the body
to check that the covers are mounted on the correct body in the correct orientation.

All screws that are not used to change the testbed configuration are covered (red tape).

4.3. Limitations

The following limitations apply to the bearing dataset:

• Despite numerous countermeasures, such as employee training, multiple assembly er-
rors occurred during the measurements that were not part of the DoE. These assembly
errors did not influence the function of the testbed, but might cause changes in the
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data distribution. Therefore, they are transparently labeled in the data. As assembly
errors also occur in real applications, users can try to identify those errors with their
ML model and investigate their influence on the data.

• The damages on the inner ring of the bearing are artificial, meaning that the ML
model is only valid for this specific error type. Artificially damaging bearings is an
established method in bearing diagnostics research to simulate pitting corrosion, as it
enables controlled, reproducible defect sizes and locations while avoiding the time
and variability associated with natural fault development [16]. However, artificially
induced defects can only approximate real-world damage to a certain extent and are
not directly transferable to all operational conditions. Representative images of real
pitting corrosion can be found in [17].

• The dataset includes only artificially induced damage on the inner ring, while the
other bearing components remain undamaged. This design choice enabled isolation of
inner ring defect effects, but simplifies real-world conditions, where damage can occur
simultaneously on multiple components, progressively worsen over time, and arise
from more complex degradation mechanisms than those represented by the artificially
introduced defects [17]. Consequently, machine learning models trained on this dataset
exhibit limited sensitivity to early-stage, progressive, or multi-component faults.

• The metadata are provided in descriptive form but not in a standardized schema,
which may limit automated indexing.

5. Conclusions
The presented bearing dataset focuses on the controlled variation of multiple co-

variates and allows users to evaluate ML models under realistic validation scenarios to
systematically test their robustness. Assembly errors that occurred during the measure-
ments are well documented, enabling investigation of their influence on the data.

A first investigation of the dataset [13] demonstrated successful detection of bearing
damage at positions excluded from the training data (LOGOCV), achieving a validation
error of 4.3 % (969 rpm, F1–F3). This result shows that ML models trained on this dataset
can generalize to previously unseen mounting positions despite covariate shifts, confirming
the dataset’s applicability for evaluating model robustness under more realistic scenarios.
In addition to this validation, exploratory PCA analysis revealed clustering effects based
on the mounting position and bearing, further highlighting the significant influence of
covariates on the data distribution and the potential impact on model performance.

These findings emphasize the need to systematically account for varying operational
conditions during model development and validation to ensure reliable fault detection in
practical applications. Further studies could investigate the combined effects of multiple
covariates, such as unknown speed and unknown mounting position in LOGOCV, as well
as explore the transferability of ML models.
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Appendix A

Table A1. Basic frequency factors of the 1206-TVH [18] and NU207-E-XL-TVP2 [19] related to 1/s.

Basic Frequency Factors [1/s] 1206-TVH NU207-E-XL-TVP2

BPFFO 5.79 5.70
BPFFI 8.21 8.30
BSFF 2.76 2.61

RPFFB 5.52 5.21
FTFFi 0.41 0.41
FTFFo 0.59 0.59

Figure A1. Alignment process with the Fixturlaser EVO.

Table A2. Results of the alignment measurement.

Position Measurement Unit

Vertical Angle −0.011 °
Vertical Offset −0.079 mm
Horizontal Angle −0.021 °
Horizontal Offset 0.063 mm

https://doi.org/10.5281/zenodo.11108503
https://doi.org/10.5281/zenodo.11108503
https://doi.org/10.5281/zenodo.15376390
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