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SUMMARY
Neurons in the medial prefrontal cortex (mPFC) are spatially tuned. Trajectory-specific firing with distinct
spatial tuning on different paths to reward sites as well as generalized spatial tuning with similar responses
on separate trajectories have been described. However, it is unclear whether such distinct populations
contribute differently to the encoding of task space. Here, we find coexisting populations of neurons with tra-
jectory-specific and generalized tuning profiles in an olfaction-guided spatial memory task in mice. Neurons
with generalized representation show stable spatial tuning within and across days, allow accurate predic-
tions of the animal’s position, and preferentially emerge upon task learning. In contrast, cells with trajec-
tory-specific spatial tuning display dynamically changing tuning functions, are less informative about the cur-
rent position, and can be identified at a larger proportion early in task learning. These results highlight a role
for neurons with generalized tuning in the efficient and stable representation of task space.
INTRODUCTION

The prefrontal cortex is crucial for working memory and deci-

sion-making.1–3 Spatial tasks challenging these cognitive func-

tions are commonly designed such that the animal reports a

behavioral decision by traversing along different trajectories

(e.g., left or right going) toward reward locations. A key feature

of prefrontal cells is that their firing rates aremodulated by spatial

position.4–12 Several studies have focused on trajectory-spe-

cific4–6,10 firing and showed that neurons display distinct activ-

ities while passing through the same position en route to different

targets, similar to what is typically observed in the hippocam-

pus.13,14 However, others emphasized a generalized coding

regime of ‘‘path equivalence,’’ in which the neurons’ activity

best reflects the relative distance to targets.8,15,16 Several

studies acknowledged the coexistence of both coding types in

the medial prefrontal cortex (mPFC).11,16 Moreover, a recent

report found that the firing fields of some path-equivalent neu-

rons occur in association with common structural aspects of

the task, such as an upcoming left or right turn.15 These neurons,

which provide a specialized form of generalized spatial tuning,

have been described as ‘‘task-sequence-selective’’ cells.15

From a functional perspective, both trajectory-specific and

generalized types of representation might be advantageous: tra-

jectory-specific coding has been hypothesized to facilitate the

maintenance of trial-specific information and, hence, the distinc-

tion between target locations.4 In contrast, the abstract represen-

tation implemented by generalized codingmight support general-

ization to new tasks with similar overall structure,16 while the
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encoding of behavioral choice or absolute position in the arena

with this response type is less intuitive due to the similarity in the

neurons’ tuning functions ondifferent trajectories. Here, we tested

the contribution of trajectory-specific and generalized representa-

tions to space encoding in an olfaction-guided spatial mem-

ory task.
RESULTS

Coexistence of trajectory-specific and generalized
coding in the mPFC
To assess the spatial tuning of prefrontal neurons, we analyzed

1-photon calcium imaging data from layer 5 mPFC pyramidal

cells. The mice (n = 12) were proficient in an olfaction-guided

spatial memory task (performance: 85.9% ± 1.5% correct).

Each trial started with the presentation of one of two odors (Fig-

ure 1A). The mice then traversed the maze and received a reward

if the correct arm was chosen. To facilitate the analysis of spatial

tuning,we linearized the animals’ position such that outward travel

was scaled to range from 0 to 1 and the return travel back to the

sampling site from 1 to 2. The position during each trial was thus

represented in the normalized task space from 0 to 2 (Figures 1A

and 1B). We refer to the analyzed part of the paradigm as the

‘‘trial’’ epoch as opposed to ‘‘sampling’’ and ‘‘reward’’ epochs,

with the latter two not considered for the analysis (see Figure 1A).

We obtained for each active neuron (n = 1,171; STAR Methods)

the spatial tuning functions for leftward and rightward trials sepa-

rately. Plotting the tuning functions of left runs sorted by the peak

location during right runs (or vice versa) gave a blurred diagonal,
rch 25, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Conjoint generalized and trajectory-specific representation of task structure by prefrontal neurons

(A) Top, task schematic. Mice learned to associate odors presented in the central stemwith reward sites located at the ends of the left and right arms. Bottom left:

trajectories were linearized and scaled to range from 0 to 1 during travel to the reward site and from 1 to 2 during return travel. Bottom right: examples of su-

perimposed trajectories of one mouse.

(B) Example runs (top, left; bottom, right) and activity of example cells.

(C) Spatial tuning functions (n = 1,171 neurons, 12 mice) sorted for left and right trials.

(D) Bottom left, difference in peak location (Dpeak) plotted against the spatial correlation between tuning functions of left and right trials (CorrLR) revealed distinct

tuning types: trajectory-specific neurons with distinct tuning functions during left and right trials (magenta), path-equivalent neurons with similar tuning functions

(blue), and task-sequence-selective neurons that activate on corresponding trial segments (e.g., before left turns, gray). Histograms on the top and right show

CorrLR and Dpeak, respectively.

(E) Top, examples of the activity of three cells of each class during individual left- and right-going trials. Bottom, average spatial tuning functions of the three types

sorted by peak location during left and right trajectories.

(F) Path-equivalent neurons are the most frequent type (vs. trajectory-specific: t = �6.38 and p = 0.0001; other comparisons p > 0.05; one-way repeated measures

ANOVA followed by paired t tests with �Sidák correction). Boxes indicate the median with 25th and 75th percentiles. Dots show individual mice. ***p < 0.001.
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suggesting that some neurons might maintain similar tuning dur-

ing both run types (as expected froma generalized coding regime)

while others might show different tuning (as expected from a tra-

jectory-specific regime; Figure 1C).

We found that neurons of all three response types previously

described during various behaviors (trajectory specific, path

equivalent, and task-sequence selective) could be identified in

the task (Figures 1D and 1E). To formalize the classification, we

obtained the spatial correlation between the average left- and

right-going tuning functions (CorrLR) and the difference in the loca-

tion of the peak of the tuning functions of both run types (Dpeak).
2 Cell Reports 44, 115420, March 25, 2025
Both metrics capture distinct properties of spatial tuning. CorrLR
is a direct reflection of the similarity of a neuron’s left- and right-

going tuning function, while Dpeak quantifies the relative distance

of maximal activity in the sampling space of the task during both

run types. Dpeak of neurons with low CorrLR can thus be large or

small. We used an iterative clustering procedure (STAR Methods)

to separate the neurons first along the Dpeak dimension, which re-

sulted in a cluster of task-sequence-selective neurons (with a

characteristicDpeak of 1) and all other neurons. Then, we clustered

the remaining neurons with low Dpeak along the CorrLR dimension,

which produced separate clusters of trajectory-specific and
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path-equivalent neurons. Even though we observed substantial

variability in the response types of individual neurons (Figure S1A),

this classification method revealed clusters that mapped well to

the three response classes: first, for trajectory-specific neurons,

plotting the activity maps of one run type sorted by the peak

location of the other run type did not produce a clear diagonal

structure (low CorrLR and variable Dpeak; Figures S1D and S1E).

Second, path-equivalent neurons (large CorrLR and low Dpeak)

showed similar tuning functions during left and right trials

(Figures 1D and 1E). Finally, task-sequence-selective cells

showed low CorrLR and a characteristic Dpeak of �1. This is

because these neurons activate preferably when the animal ap-

proaches a certain structural feature in the arena: a neuron that

fires when the mouse approaches a left turn will be active during

the outward component of left-going trials, say at�position 0.5 in

normalized task space coordinates. The same neuron will not fire

during the return journey of the left trial as the mouse will not

encounter a leftward turn then. However, it will face a leftward

turnwhen the animal returns on a rightward trial. This corresponds

to a normalized task space coordinate of �1.5 for right-going tri-

als, giving aDpeak of�1. Activitymaps of these neurons displayed

a symmetrically shifted off diagonal when sorted for the opposite

run type (direction, Figure 1E, right). Quantitative analysis revealed

that path-equivalent neurons represented the largest group (n =

501 neurons, �43% of the population), with similar proportions

of neurons belonging to trajectory-specific and task-sequence-

selective classes (n = 287 neurons [�25%] and 340 neurons

[�29%]; Figure 1F). Thus, three classes of neurons with trajec-

tory-specific and distinct generalized tuning responses coexist

within the mPFC circuitry during execution of the task.

Trajectory-specific and generalized classes are
functionally distinct
The three classes of neurons were defined solely based on their

spatial tuning functions.We askedwhether theymight differ from

each other in additional functional parameters. First, we quanti-

fied their mean activity, which was lower for trajectory-specific

neurons compared to path-equivalent cells (Figure S1B). Sec-

ond, we assessed the depth of spatial tuning with a spatial infor-

mation (SI) measure. Trajectory-specific neurons showed larger

SI values than the other two classes (Figure S1C). Moreover, we

found a larger fraction of trajectory-specific neurons with signif-

icant SI (Figure S1D). Finally, we assessed the modulation of

neuronal activity by movement speed. The fraction of signifi-

cantly speed-modulated trajectory-specific cells exceeded that

of the other classes, followed by task-sequence-selective neu-

rons (Figure S1E). Most trajectory-specific neurons showed a

negative dependence onmovement speed. Differences in speed

modulation were not explained by the variable velocity of the an-

imals as they traversed the arena (Figures S1F and S1G). Thus,

the three classes of neurons defined by their spatial tuning prop-

erties differ in their activity, SI, and relation to movement speed.

Stable representation of task space by generalized
neurons
Given that prefrontal neurons are subject to little representational

drift in the task,12 we next assessed whether their spatial tuning

might differ in terms of stability over time. First, we quantified
within-day spatial consistency (Figures 2A and 2B). We found

this metric to be largest for path-equivalent cells (Figures 2B

and 2C), suggesting more transient within-session spatial tuning

of trajectory-specific and, to a lesser extent, task-sequence-se-

lective neurons. Similar results were obtained when consistency

was assessed based on the first and second halves of the runs,

when we restricted the analysis to neurons with significant SI, or

when we subsampled the data to obtain equal average activity

for all classes (Figures S2A–S2D). We next asked whether this

would also be reflected in tuning stability across days. We co-

registered neurons over a time span of 4 days, during which

the animals executed the task daily (n = 1,110 active neurons

from 10 mice; Figures 2A and 2B). Signal peak intensities of

longitudinally registered neurons were comparable for the two

recording sessions and did not differ between classes, suggest-

ing stable and equal recording conditions (Figure S2E). General-

izing classes, in particular path-equivalent cells, showed largely

stable responses over time (Figures 2B and 2C). In contrast, the

spatial stability of trajectory-specific neurons was significantly

lower (Figures 2B and 2C). Similar results were obtained when

we compared spatial stability for subsampled data with equal

activity levels among the classes (Figure S2F). Of note, path-

equivalent neurons were more likely to maintain consistent class

properties over the 4 recording days compared to both other

classes (Figures S2G and S2H). Neurons with generalized fea-

tures, in particular path-equivalent cells, thus maintain more

consistent spatial tuning within a session and across subsequent

days.

Functional classes contribute differently to the
encoding of task space
We next assessed the classes’ potential contribution to the en-

coding of task-relevant parameters. First, to test whether

neuronal activity is informative about trial outcome (i.e., left or

right choices), we trained decoding models (logistic regression)

on the calcium signals of matched numbers of neurons (n = 25

per class and mouse) to predict behavioral choice on a frame-

by-frame basis (Figure 3A). This analysis revealed predictions

above chance level (shuffled trial labels in the test data; Fig-

ure 3B), with no difference among classes irrespective of the

chosen decoding model (Figures 3B and S3A). Predicting trial

outcome as a function of position along the trajectory revealed

above-chance accuracy for all classes throughout the arena.

Task-sequence-selective neurons showed significantly higher

accuracy during return travel (Figure 3C). Finally, predictions

similarly depended on neuron numbers for all three classes (Fig-

ure 3D). These results suggest that neurons of all classes are

informative about trial outcomes.

Next, we tested the classes’ ability to encode generalized

distance along the trajectory (Figure 3E). This analysis treats

left- and right-going trajectories the same. Decoders (support

vector machine) trained on all classes allowed significantly

better predictions than models fit to shuffled control data

(Figure 3F). However, decoding with path-equivalent neurons

resulted in a smaller prediction error than with trajectory-spe-

cific or task-sequence-selective neurons (Figure 3F). Notably,

no differences between classes were detected for the predic-

tion of the animals’ speed (Figure S3B). The low decoding error
Cell Reports 44, 115420, March 25, 2025 3
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Figure 2. Class-dependent dynamic and stable tuning over time

(A) Schematic of the assessment of spatial consistency (top) and stability (bottom).

(B) Spatial tuning functions of left-going odd and even runs (top) and of the first and the last day (bottom) sorted by peak location during odd runs and on day 1,

respectively.

(C) Top, trajectory-specific neurons showed the lowest spatial consistency (vs. path equivalent: t =�6.02 and p = 0.0004; vs. task-sequence selective: t =�4.20

and p = 0.005; and path equivalent vs. task-sequence selective: t = 4.79 and p = 0.002). Bottom, spatial stability of trajectory-specific neurons was significantly

lower than that of path equivalent (t =�10.53 and p = 73 10�9) or task-sequence-selective neurons (t =�6.65 and p = 0.0003; path equivalent vs. task-sequence

selective: t = 3.23 and p = 0.030). One-way repeated measures ANOVAs followed by paired t tests with �Sidák correction were used for n = 3 comparisons.

Corrected p values are reported. Boxes indicate the median with 25th and 75th percentiles. Dots show mouse averages. *p < 0.05, **p < 0.01, and ***p < 0.001.
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of path-equivalent neurons was confirmed with a different de-

coding model (Figure S3C). Moreover, we ran the inverse anal-

ysis, in which we first decoded the generalized position with a

‘‘full’’ model composed of equal numbers of neurons from all

classes and then removed one class. Decoding with reduced

models revealed a significantly larger increase in decoding er-

ror when the path-equivalent class was removed (Figure 3G).

Decoding analysis with increasing numbers of randomly drawn

neurons of each class indicated that the better performance of

path-equivalent neurons was observable already at a low

neuron count (Figure 3H). We further tested predictions of

generalized position separately for outward and return trajec-

tories. During the outward phase, the animals need to maintain

information about odor identity, while the return phase arguably

poses less memory demand. Except for better positional

predictions of task-sequence-selective neurons during outward

travel, the predictions did not differ between both trial

phases (Figure S3D). Finally, we directly tested the ability of

the distinct classes to generalize between trajectories. For

this, we predicted the linearized position of one trajectory

type with models trained exclusively on the opposite trajectory

type. Path-equivalent neurons allowed the best predictions

compared to the other classes (Figure S3E). Thus, consistent

with their similar tuning functions during both trajectory types,
4 Cell Reports 44, 115420, March 25, 2025
path-equivalent neurons allow the most accurate prediction of

relative position.

We then assessed the encoding of absolute position within the

maze (Figure 3I). Starting from concatenated linearized positions

for left- and rightward trajectories, we inverted the relative posi-

tional values of rightward trials for both periods of side-arm travel

(i.e., during outward runs from 0.5 to 1 and during return runs

from 1 to 1.5). The resulting one-dimensional trajectories thus

share the same positional value for the maze segments in which

both trajectory types overlap but contain different values for the

maze segments in the side arms for which both trajectories differ

from each other. Decoders trained on all classes allowed better

predictions than shuffled controls (Figure 3J). However, decod-

ing with path-equivalent neurons resulted in a smaller prediction

error than doing so with task-sequence-selective neurons (vs.

trajectory specific: p = 0.062; Figure 3J). Using a different decod-

ing model (linear regression) yielded a similar trend toward lower

decoding errors of path-equivalent cells (p = 0.058 vs. trajectory-

specific neuron; Figure S3F). Removing path-equivalent neurons

increased the decoding error compared to full models trained on

neurons from all classes. However, this reduction was not signif-

icantly different from the other classes (Figure 3K). To further

clarify whether path-equivalent neurons offer better predictions

of absolute position, we performed random subsampling with
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Figure 3. Decoding task variables with distinct neuron classes

(A) Decoding of trial outcome with models trained on the calcium activity of neurons of a given class (n = 25 cells per mouse, n = 7 mice for all analyses in this

figure).

(B) All models perform significantly better than shuffled controls (main effect of condition: F = 121.04 and p = 33 10�5; post hoc tests, trajectory-specific: t = 4.69

and p = 0.020, path equivalent: t = 12.41 and p = 93 10�5, and task-sequence selective: t = 7.55 and p = 0.0016) with no effect of model type (F = 0.35 and p =

0.710) or model type-condition interaction (F = 0.40 and p = 0.681).

(C) Decoding trial outcome as a function of spatial position. Task-sequence-selective neurons outperform the other classes during the return journey (task-

sequence selective vs. path equivalent, bin 3: t = 3.40 and p = 0.043; bin 10: t = 3.32 and p = 0.047; bin 11: t = 3.90 and p = 0.023; bin 12: t = 5.97 and p = 0.003; bin

13: t = 22.17 and p = 10�6; bin 15: t = 4.15 and p = 0.018; and bin 16: t = 4.10 and p = 0.019; trajectory-specific vs. path equivalent, bin 10: t = 8.05 and p = 0.0006;

bin 15: t = 4.83 and p = 0.009; and all other bins: p > 0.05).

(D) Trial outcome decoding accuracy as a function of used neurons revealed no difference between classes (F = 0.12–1.81 and p = 0.205–0.889).

(E) Decoding relative position along the trajectory.

(F) Mean-squared error between true and predicted trajectories (10 positional bins). While all classes perform better than shuffled controls (t = �10.12 to�17.84

and p = 0.0003 to 10�5), path-equivalent neurons display smaller decoding errors compared to trajectory-specific (t = �4.69 and p = 0.02) and task-sequence-

selective (t = �4.31 and p = 0.030; trajectory-specific vs. task-sequence selective: t = 2.73 and p = 0.199) neurons.

(legend continued on next page)
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increasing neuron numbers. This analysis revealed lower decod-

ing errors of path-equivalent neurons compared to the other

classes (Figure 3L). To test whether the better decoding perfor-

mance of path-equivalent neurons holds true at the level of indi-

vidual cells, we ran the decoding analysis separately for each

neuron. Expectedly, this analysis gave larger decoding errors

than the population approach. However, the significantly lower

decoding error of path-equivalent neurons remained (Fig-

ure S3G). We also performed positional predictions with

randomly chosen sets of neurons. Decoding errors correlated

negatively with the proportion of path-equivalent cells in the

sample (Figure S3H). These results jointly suggest that path-

equivalent neurons are most informative about the animal’s po-

sition within the maze. Given that path-equivalent neurons show

similar tuning functions during left and right trials, their better

positional predictions seem counterintuitive at first glance.

Previous work indicated that a neuron’s activity level is a major

factor determining its contribution to a positional decoder.17

We, therefore, speculated that the higher mean activity of

path-equivalent cells (Figure S1B) might be responsible for this

difference. To directly test this hypothesis, we performed a sub-

sampling analysis in which we removed the 20% of path-equiv-

alent neurons with the highest mean activity and ran positional

decoding with that subset of neurons. The performance of the

decoder trained on the subsampled dataset was indistinguish-

able from that of decoders trained on a balanced number of cells

of the other classes (Figure S3I). Taken together, these results

suggest that path-equivalent neurons are most predictive of

the animal’s position within the arena, which might be explained

by the higher activity levels of this neuron class.

Class composition differs early in task learning
The good decoding performance based on the activity of path-

equivalent neurons suggests that these cells might be particu-

larly relevant in representing the spatial structure of the task.

We thus speculated that path-equivalent neurons might emerge

during the learning process. To test this conjecture, we quanti-

fied the proportion of neurons in the three classes in a cohort

of mice that had not learned the task yet (‘‘learning’’ group,
(G) Removing path-equivalent neurons from full models composed of all three cla

larger decoding errors in the reduced model) (trajectory-specific vs. path equival

2.42 and p = 0.152; and path equivalent vs. task-sequence selective: t = �3.69 a

(H) Generalized position decoding error as a function of neurons. Path-equivalent

�8.82, and �6.57 and p = 0.01, 0.005, 0.0003, and 0.002 for 2, 10, 15, and 20 neu

and p = 0.009, 0.015, and 0.002 for 10, 15, and 20 neurons, respectively) neuron

(I) Decoding absolute position from one-dimensional trajectories with the same po

different values for non-overlapping segments.

(J) Mean-squared error between true and predicted trajectories.While all classes p

path-equivalent neurons display the smallest decoding errors (vs. trajectory spe

0.0395; and trajectory specific vs. task-sequence selective: t = �0.10 and p = 1)

(K) Reduction model analysis for absolute position decoding (trajectory specific v

selective: t = 0.15 and p = 1; and path equivalent vs. task-sequence selective: t

(L) Absolute position decoding error as a function of neurons. Path-equivalent neu

�4.24 and p = 0.008, 0.022, and 0.016 for 10, 15, and 20 neurons, respectively) and

0.014, 0.03, 10�5, 0.0008, and 0.002 for 2, 5, 10, 15, and 20 neurons, respective

(B, F, and J) Two-way repeatedmeasures ANOVA followed by paired t tests with �S

repeatedmeasures ANOVA followed by paired t tests with �Sidák correction were u

median with 25th and 75th percentiles. Dots show individual mice. Thick lines sho

differences. *p < 0.05, **p < 0.01, and ***p < 0.001.
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behavioral performance �55%, n = 7; Figure 4A). In the learning

group, we found a larger total fraction of trajectory-specific

neurons. Those neurons displayed, on average, less SI in

the learning group (Figure S4A). In contrast, the proportion of -

path-equivalent neurons was smaller and that of task-

sequence-selective neurons was unchanged relative to profi-

cient mice (Figure 4B). Moreover, we found a significant positive

correlation between the proportion of path-equivalent neurons

and behavioral performance across both groups of mice (Fig-

ure S4B). Although obtained in separate groups of animals, these

results suggest that the proportion of trajectory-specific neurons

might decrease while the fraction of path-equivalent neurons

might increase with task learning.

DISCUSSION

We identified three classes of neurons based on their spatial

tuning functions. On their own, all three classes can be linked

to previous findings in the literature: trajectory-specific neurons

bear a resemblance to previous accounts of ‘‘predicting’’ neu-

rons in the rat mPFC.11 Similarly, path-equivalent neurons in

our task are likely identical to ‘‘non-predicting’’ cells observed

in rats during a similar olfaction-guided spatial memory task11

and neurons with generalized tuning in a multi-path spatial

foraging task16 or a rule-shifting task in a plus maze.8 Finally,

task-sequence-selective neurons are similar to previous ac-

counts of mPFC neurons with this firing profile during the execu-

tion of a continuous trajectory alternation task in rats.15 Neurons

with task-sequence-selective activity have, moreover, previ-

ously been described in deep layers of the entorhinal cortex.18

Decoding analysis suggested that all classes might contribute

to the encoding of goal location at the population level, even

before the behavioral transition point in the maze is reached. In

contrast, path-equivalent neurons stand out from the other pop-

ulations in terms of the encoding of task space: they provide the

most accurate readout of the current relative and absolute posi-

tion of the animal in the arena, while trajectory-specific neurons

allow positional predictions only at substantially larger error. The

more accurate positional predictions of path-equivalent neurons
sses results in the largest increase in decoding error (negative values indicate

ent: t = 4.52 and p = 0.012; trajectory-specific vs. task-sequence selective: t =

nd p = 0.030).

neurons show significantly lower error vs. trajectory-specific (t =�4.61,�5.38,

rons, respectively) and task-sequence-selective (t = �4.73, �4.28, and �6.63

s.

sitional value for the maze segments in which both trajectory types overlap and

erform better than shuffled controls (t =�7.73 to�27.78 and p = 0.0007–10�7),

cific: t = �3.66 and p = 0.062; vs. task-sequence selective: t = �4.05 and p =

.

s. path equivalent: t = 2.47 and p = 0.144; trajectory specific vs. task-sequence

= �2.56 and p = 0.126).

rons show significantly lower error vs. trajectory-specific (t =�4.94,�3.97, and

task-sequence-selective (t =�4.35,�3.69,�11.95,�7.53, and�6.39 and p =

ly) neurons.

idák correctionwere used for n = 6 comparisons. (C, D, G, H, K, and L) One-way

sed for n = 3 comparisons. Corrected p values are reported. Boxes indicate the

w the mean and dotted lines the SEM. Gray bars in (H) and (L) show significant



A B Figure 4. Different class compositions dur-

ing learning

(A) Mice that have not learned the task yet

(‘‘learning,’’ n = 7) were compared to task-profi-

cient mice (n = 12). Behavioral performance: t =

�8.21, p = 10�7, unpaired t test.

(B) Comparison of the proportion of neurons in the

three classes based on individual mice with >50

active neurons (n = 7 learning and n = 9 proficient

mice). The fraction of trajectory-specific neurons

was higher in the learning group (U = 56, p = 0.008,

Mann-WhitneyU test) and lower for path-equivalent

neurons (t = �7.45 and p = 3 3 10�6), while no

significant effect was found for task-sequence-se-

lective neurons (t = �1.01, p = 0.328, unpaired t

tests).

Boxes indicate the median with 25th and 75th per-

centiles. Dots show individual mice.
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despite their similar spatial tuning functions for left- and right-

going trials might be explained by the larger overall activity levels

of neurons in this class,17 which is supported by our subsampling

analysis. Moreover, their larger trial-by-trial consistency

(Figures 2B and 2C) might contribute to the encoding efficiency

of this class. We propose that the activity of trajectory-specific

neurons represents a rapidly emerging, rule-independent

‘‘default’’ map of the environment. Trajectory-specific neurons

resemble previous accounts of spatially tuned neurons during

the spontaneous exploration of two virtual contexts in head-fixed

mice: similar to our trajectory-specific population, negative

speed correlations dominate under those conditions.19 More-

over, spatial tuning is context specific and relatively transient in

nature (within-session spatial consistency of �0.5).19 The rela-

tive abundance of trajectory-specific cells in the learning group

suggests that this default map might dominate the mPFC before

task learning. In contrast, the map formed by path-equivalent

cells is stable within and across days andmore informative about

the animal’s own position. These representations might emerge

as mice become more familiar with the task structure and/or the

reward rules (Figure 4). This notion is supported by the previously

observed experience-dependent emergence of generalized

hippocampal firing patterns reminiscent of path-equivalent ac-

tivity.20 Generalized representations might be preferably stabi-

lized by offline reactivation alongside hippocampal ripples, as

previously shown for mPFC neurons with generalized encoding

in a multi-path foraging task in rats.16 The learning-dependent

refined map provided by path-equivalent neurons, together

with the ‘‘egocentric’’ representation of task structure by task-

sequence-selective neurons, might further support the general-

ization to novel contexts with similar spatial layout, which could

represent a mechanism for accelerated learning of novel rules

based on inference from previously learned task structure.21,22

This notion is in line with abstract prefrontal population-level rep-

resentations allowing generalization23 and prefrontal activities

reflecting learned categories rather than specific stimuli.24 In

task-proficient mice, prefrontal space encoding follows a gener-

alized regime in which changes in task context are embedded

into a learned task representation.12,15 Our findings add to this

notion insofar as path-equivalent neurons are ideally positioned

to provide information about the current position within the
maze. Schema-like, generalized task representations are, there-

fore, supported by neurons that are themselves highly informa-

tive about position within the maze. This dual role of path-equiv-

alent neurons might facilitate not only the transfer of knowledge

across contexts but also themaintenance of high precision in the

representation of features within each context.

The fact that path-equivalent neurons show high consistency

and stability in their activities might reflect functional relevance

on yet another level. Recent work identified distinct trial-by-trial

consistency of neuronal responses depending on the circuit un-

der investigation25: mPFC neurons show reliable response pat-

terns during choice behavior, which sets them apart from orbito-

frontal neurons. Despite large amounts of information about

choice being contained in the firing in both regions, it washypoth-

esized that response reliability might reflect the contribution of a

given circuitry to a computation being performed at that time. In

this framework, our findings argue that, in particular, path-equiv-

alent cells with their consistent and stable responses in the task

might be relevant to the encoding of task space in the mPFC.
Limitations of the study
Our results are based on the grouping of neurons in three separate

classes. It is likely that the tuning diversity in the circuitry is, in fact,

more complex (Figure S1). For instance, some neurons displayed

secondary peaks, giving themmixed class properties reminiscent

of previously noted ‘‘mixed selectivity’’26,27 of mPFC neurons. The

explicit classes might, therefore, represent extreme ends of a

continuous spectrum. Moreover, while our results suggest

changes in class composition during task learning, we only report

data fromseparate groups ofmice. Longitudinal registration of the

same population of neurons during task learning is required in the

future todrawdefinitive conclusionsabout learningeffects. Finally,

sincepredominantly layer5cells expressGCaMP in themouse line

used here, class composition and the contribution to task encod-

ing of superficial layer neurons remain to be investigated.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to the lead

contact, Jonas-Frederic Sauer (jonas.sauer@uni-saarland.de).
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d The processed dataset underlying the results of this study is publicly

available on Zenodo: https://doi.org/10.5281/zenodo.10528243. The

processed data of two additional mice recorded for this study are pub-

licly available at Zenodo: https://doi.org/10.5281/zenodo.14259421.

d The analysis code used in this study is available here: https://github.

com/JFSauer/PFC-tuning-types.git.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Thy1-GCamP6f mice Jackson Laboratories JAX: 025393

Deposited data

Pre-processed data Muysers et al.12, Zenodo https://doi.org/10.5281/zenodo.10528243

Pre-processed data This paper, Zenodo https://doi.org/10.5281/zenodo.14259421

Software and algorithms

Caiman Giovannucci et al.28 https://github.com/flatironinstitute/CaImAn

CellReg Sheintuch et al.29 https://github.com/zivlab/CellReg

custom analysis codes This paper, GitHub https://github.com/JFSauer/PFC-tuning-

types.git
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice and dataset
We analyzed calcium signals of Thy1-GCaMP6f mice30 (Jackson Labs #025393) from a previously published12 dataset (https://doi.

org/10.5281/zenodo.10528244). Additional recordings were performed from two Thy1-GCaMP6fmice. The animals weremaintained

on a heterozygous background by crossing with C57Bl6/J (Jackson Labs #000664, age at the beginning of the experiments:

12–16 weeks). Mice were maintained on a 12h light-dark cycle with free access to food and water until the start of behavioral training.

Mice were food restricted for behavioral training to 85–90% of their freely feeding body weight. All experiments were performed in

agreement with national legislation (license G19-145 approved by the Regierungspräsidium Freiburg).

METHOD DETAILS

Implantation surgery
Following previously described procedures,12 a gradient reflective index lens of 1 mm diameter (Inscopix) was implanted into the

mPFC at 1.7 mm anterior and 0.6 mm lateral of bregma at a depth of 1.2–1.6 mm from the brain surface. 1-photon calcium imaging

(nVista, Inscopix, 20 Hz sampling frequency) was performed during execution of an olfaction-guided memory task. After habituation

for 3 days, food-deprivedmicewere presentedwith olfactory cues (vanilla or coconut) at a sniffing port in the central stemof the arena

(M-shapedmaze, arm length 40 cm). Once the animals learned to sample the odor, to collect the reward and to initiate the next trial by

nose-poking, they were trained to make the correct choice to receive a reward. A reward was only given when the correct target arm

was chosen. Only correct trials were considered in the analysis. A camera above the behavioral arena synchronized with the calcium

acquisition recorded the movement of the animals.

Signal extraction and data curation
In total, data from 15 Thy1-GCamp6f mice were analyzed. 12 mice were proficient in the task. For the majority of the analysis,

we considered the first recording day (single-day dataset). In a subset of analyses we considered a dataset containing the

first and the fourth recording day (multi-day dataset). For this analysis, only neurons that were detected during both recording

days were kept. Across-day registration was performed using CellReg29 as described before.12 True positive and true negative

scores as assessed by CellReg were >0.97 and >0.94, respectively. In addition, data from 7 mice during a single day of task

learning were considered (learning dataset). Among these, four mice subsequently learned the task and were also part of the

learned dataset.

Significant calcium transients were extracted from spatial components detected using the CNMF-E algorithm implemented in

CaImAn.28 The quality of components was quantified by the correlation value of each spatial component with the frames where

this component was active (rval) and the signal-to-noise ratio (SNR). Components with rval>0.7 or SNR>2 were kept for further in-

spection. A custom GUI was used to exclude components with infiltrating calcium activity from neighboring components as well

as cells with ambiguous shape or calcium traces. Calcium traces were corrected for slow baseline drifts with a running percentile

filter (10th percentile, window size 30 s). The traces were standardized by iteratively calculating the mean and standard deviation

(s). During each iteration, the signal above 3s was excluded until the relative change in s was smaller than 0.1% ((s0-s1)/

s1<0.001). From these baseline-subtracted and normalized traces significant calcium transients were calculated as signals
10 Cell Reports 44, 115420, March 25, 2025
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exceeding 3s and lasting for a minimum duration of 0.2 s. Except when indicated otherwise, all analysis was performed with the re-

sulting transients.

For all analysis, we selected task-active neurons, which were defined as all cells for which the summed activity of the average tun-

ing functions (see below) of both left- and right-going trajectories was >0 and Pearson’s r was computable between average tuning

functions of odd and even runs (spatial consistency, see below). This measure ensured sufficient activity of the included set of cells

during the trial epoch to assess tuning functions and spatial consistency. Note that this criterion is harsh in that it discards neurons

with very sparse activity. In the single-day dataset, among 2051 detected cells 1171 passed these criteria. In the multi-day dataset,

1110 of 1562 cells were included. In the learning dataset, 676 of 1453 cells passed the criteria.

Linearization of trajectories
2D trajectories were mapped onto a 1D skeleton, which approximated the linear position as a series of 4 vectors spanning from the

odor sampling site to the reward zone. For each set of x/y coordinates, the nearest point on the skeleton was found using the sci-

py.spatial.KDTree function. The linear position from entry into the center arm to the end of the side arm was then expressed as

normalized distance (from 0 to 1). Position from exit of the reward area to entry into the sampling area was scaled to range from 1

to 2. For the analysis of generalized position, both left- and right-going trajectories were treated the same. For analyses of absolute

position, those maze segments that are shared by both trial types (i.e., in the central stem) were assigned the same value whereas

non-overlapping segments were assigned the same value but with inverted sign. For instance, when a position in the left side arm

gets a value of 0.8, the same relative position in the right arm is assigned a value of �0.8.

Spatial tuning functions, consistency, stability and SI
To obtain tuning functions, the signals were binned as a function of linearized position (40 bins) and normalized by occupancy. This

was performed separately for left and right trials. Correlation between left and right trials was calculated using Pearson’s r of both

tuning functions. Spatial consistency was measured as Pearson’s r between tuning functions obtained separately for odd and

even trials or between the first and second half of the session, only considering the trial type (i.e., left or right) with largest mean activity

for each cell. For visualization, tuning functions were normalized to range from 0 to 1. Spatial stability wasmeasured as the Pearson’s

r of average tuning functions on day 1 and day 4. For each cell, the trial type with larger mean activity was used. The results of both

consistency and stability analyses were averaged for each neuron type for eachmouse (consistency: n = 11, stability: n= 10micewith

neurons of all three categories).

SI, was computed as31

SI =
Xn

i = 1

�
Ai � log

�
Ai

�A

�
�Oi

�

whereAi is the value of the spatial tuning function in the ith of n bins,Oi is the occupancy of the i
th bin, and �A is the average activity over

all bins.

Classification of neuron types
Classification relied on three parameters: CorrLR defined as Pearson’s correlation coefficient between the average tuning functions

obtained separately for left- and right-going trials, Dpeak defined as the difference from zero of the peak in the cross-correlation of

average left- and right-going tuning functions, and Peaksig, which denotes whether a given cell has a significant peak in its tuning

function on a given trajectory type. To determine Peaksig of a neuron for a given trajectory type, we randomly time-shifted the line-

arized position of each run independently (1000 iterations) and computed average spatial tuning functions for each iteration. A

peak was considered significant if the value of the actual average tuning function of any bin exceeded the 95th percentile of

the random distribution. We used a 2-step classification procedure. First, all active neurons of all mice were separated into

two clusters along the Dpeak dimension using a spectral clustering approach implemented with scicit-learn’s SpectralClustering

(n_cluster = 2, n_neighbors = 1000, n_components = 2), yielding a silhouette score of 0.77. This produced a set of candidate

task-sequence selective neurons, which were considered as task-sequence selective if they had a significant peak on both tra-

jectory types. Next, the same clustering was applied to the remaining neurons along the CorrLR dimension, yielding putative tra-

jectory-specific and path equivalent neurons (silhouette score 0.67). Neurons were included in the final set of trajectory-specific

neurons if they had a significant peak on at least one trajectory type. Putative path equivalent and task-sequence selective neu-

rons were kept for analysis if they showed significant peaks on both trajectory types. Unclassified neurons (n = 43) were not

considered further. The same clustering analysis was applied independently to the set of neurons recorded longitudinally in Fig-

ure 3 (silhouette score 1: 0.75, silhouette score 2: 0.68, n = 1110 active neurons) and to the learning group in Figure 4 (silhouette

score 1: 0.72, silhouette score 2: 0.68, n = 1112 active neurons). The proportion of neurons in each class was calculated as the

number of cells in a class divided by the number of active cells in that session. Note that our classification method differs from

previous approaches.4,11,15,20 Moreover, we did not exclude neurons based on SI, except for the analysis of spatial consistency

in Figure S2D.
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Mean activity and modulation by movement speed
Mean activity was measured as the average calcium signal during the trial epoch. To test for speed dependence, the activity of each

neuron during the trial phase was binned as a function of movement speed (10 bins ranging from 0 to 50 cm/s). Spearman’s corre-

lation coefficient was then used on these binned data to determine significant speed modulation.

Decoding of trial outcome
Predictions were made with either trajectory-specific, path equivalent, or task-sequence selective neurons (randomly subsampled

from the total population of each type in each animal, 10 iterations, n = 25 per mouse and group). Trial outcome was predicted for

each data point with a logistic regression model (LogisticRegression of scikit-learn, parameters: C = 3, tol = 10�9, max_iter = 109).

Predictions were made by 10-fold cross validation. Predictions with randomly shuffled trial labels in the test data served as a control.

To assess decoding as a function of spatial position, the calcium data were binned as a function of linearized position (10 bins for the

range of position from 0 to 2, bin size = 8 cm). As an alternative decodingmodel, we used a support vector classifier (linear kernel SVC

of scikit-learn with parameters: C = 3, tol = 10�9, max_iter = 109) with 10-fold downsampling. Accuracy of the prediction was calcu-

lated as the proportion of correctly predicted choices. Predictions were made for each mouse separately.

Position decoding
To decode absolute position in the maze, the linearized positions of left- and rightward trajectories were concatenated. Then, the

relative positional value of rightward trials during side arm travel (i.e., from 0.5 to 1 and from 1 to 1.5) were inverted. The resulting

trajectories contain the same positional value for overlapping maze segments but different values for non-overlapping segments.

The resulting full trajectory was digitized into 10 bins (bin size = 8 cm). Predictions were made with either trajectory-specific,

path equivalent, or task-sequence selective neurons (randomly subsampled from the total population of each type in each animal,

10 iterations, n = 25 permouse and cell class). A support vector classifier (linear kernelSVC of scikit-learnwith parameters: C = 3, tol =

10�9, max_iter = 109) was used to generate a predicted position trace using 5-fold cross validation (with shuffling). We additionally

performed decoding using linear regression (LinearRegression of scikit-learn, 10 iterations) applied to the position trace without digi-

tization. The same linear regression model was also used to predict the animals’ movement speed from calcium activity. Accuracy of

all predictions was calculated as the mean squared error between the predicted and the true position (or speed) in the test data aver-

aged over all folds and iterations. Predictions with randomly shuffled positions in the test data served as a control. For single cell

models, the models were trained on the activity of individual cells of the three classes. To independently assess the contribution

of the different neuron types, full models were trained on equal numbers of cells from all classes (10 iterations with random picks

of n = 25 neurons of each class per mouse, 10-fold downsampling). Then, a single class was removed and the difference in decoding

error to the full model wasmeasured. The contribution of the cell classes to positional encoding was further tested by trainingmodels

on randomly selected neurons (n = 20, irrespective of their class identity) of each mouse (50 iterations). The proportion of neurons of

the individual classes in that random set was then correlated with the decoding error of that iteration.

To decode relative position within each trajectory type, the SVC analysis was performed as above but with both trajectory types at

their original scaling (i.e., 0–2 irrespective of the direction of the run). To predict position on one trial type based on activity during the

other, transients during left trials were used as training data for the SVCmodel and transients during right trials as test data (and vice

versa). Decoding errors for each mouse were averaged over both sides. Predictions were made for each mouse separately.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparisons between two independent groups (e.g., learning vs. learned) were made with two-sided unpaired t-tests. The normality

assumption was tested with a Shapiro-Wilk test. For multiple comparisons of dependent data (e.g., proportions of neurons in the

different classes), one-way repeated measures ANOVA was used. For multiple comparisons of dependent data of two groups

(e.g., decoding with distinct classes vs. respective shuffled controls), two-way repeated measures ANOVA was used. Pairwise

post-hoc comparisons commenced using paired t-tests with �Sidák correction for n = 6 comparisons (each class vs. shuffled plus

the three classes against each other). Multiple comparisons of unpaired data were assessed using one way ANOVA followed by Tu-

key tests. To compare speed modulation of the three classes of neurons, 2x2 c2-tests were computed online (http://www.quantpsy.

org/chisq/chisq.htm). All other statistics were computed using Python’s stats and pingouin32 packages. Statistical results including

p-values are reported in the figure legends. Comparisons were made based on animals unless indicated otherwise.
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