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Abstract: Heat preconditioning has been shown to promote nutritive perfusion and tis-
sue survival in autologous fat grafting as well as in flap and breast surgery. However,
its impact on the vascularization properties of nanofat has not been investigated so far.
Therefore, we exposed nanofat from donor mice to a temperature of 43 ◦C for 1 h and
assessed the effects of this heat stress on cell viability and the expression of heat shock
proteins (HSPs) and angiogenesis-related factors. Moreover, dermal substitutes seeded with
heat-preconditioned and non-preconditioned control nanofat were implanted into dorsal
skinfold chambers of recipient mice to study their vascularization and tissue integration
in vivo by means of repeated intravital fluorescence microscopy, histology and immunohis-
tochemistry. Heat preconditioning upregulated the expression of HSPs in nanofat without
affecting cell viability. Moreover, it resulted in the downregulation of many pro-angiogenic
factors and the increased expression of anti-angiogenic factors, indicating a shift towards
an anti-angiogenic phenotype. Accordingly, implanted dermal substitutes seeded with
heat-preconditioned nanofat exhibited a reduced vascularization and were not better in-
tegrated into the host tissue when compared to controls. These findings indicate that
heat preconditioning cannot be recommended for enhancing the vascularization capacity
of nanofat.

Keywords: heat preconditioning; nanofat; dermal substitutes; Integra®; survival;
angiogenesis; vascularization; inflammation

1. Introduction
Nanofat is a fluid fat derivative that can be rapidly generated by intra-operative

mechanical emulsification and filtration of previously harvested autologous fat [1]. This
approach destroys most adult adipocytes but preserves adipose-derived stem cells (ASCs),
microvascular fragments and extracellular matrix components with a high content of
growth factors and eventually regenerative capacity [1–3]. Therefore, nanofat has been
reported to be effective in the treatment of scars, androgenic alopecia and skin wounds [4–6].
Moreover, it is currently applied in the field of facial rejuvenation [7].

Recently, we analyzed, in a preclinical setting, the regenerative effects of nanofat
seeded on dermal substitutes [8]. The adequate vascularization of implanted dermal
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substitutes is important for their subsequent coverage with split-thickness skin grafts
to reconstitute the physiological skin barrier and, thus, to protect patients from severe
infections [9]. To achieve this, we seeded small samples of a clinically often used collagen-
glycosaminoglycan dermal matrix with freshly generated nanofat from donor mice. After
implantation of these nanofat-seeded samples into the dorsal skinfold chambers of the
recipient animals, they finally exhibited improved vascularization and tissue integration
when compared to non-seeded controls [8]. However, during the first 10 days after implan-
tation, they still lacked ingrowing, functional, and blood-perfused microvessels. This raised
the question whether the vascularization properties of nanofat can be further improved
prior to its seeding onto dermal substitutes. For this purpose, preconditioning of nanofat
may represent a promising approach that has not been investigated so far.

The preconditioning of tissues and cells is known as a strategy to enhance their resis-
tance to subsequent stressors by first exposing them to different stimuli to induce protective
cellular adaptations, such as the upregulation of stress-response genes and the release of
cytokines [10–12]. Preconditioning has been widely tested for several clinical applications.
In particular, heat preconditioning by short-term tissue exposure to supraphysiological
temperatures has been shown to improve the outcome of flap and breast surgery as well as
autologous fat grafting [13–17]. Stress by local heat induces the expression of heat shock
proteins (HSPs), such as HSP-27, HSP-32, HSP-70 and HSP-90. In tumors, these HSPs are
important drivers of angiogenesis [18]. Moreover, HSP-32, also called heme-oxygenase-1
(HO-1), is the main endogenous source of carbon monoxide that acts as a potent vasodilator
enhancing nutritive tissue perfusion and cell viability [14,19,20]. Heat preconditioning
also promotes the upregulation of vascular endothelial growth factor (VEGF) and, thus,
stimulates the formation of new blood vessels [21].

Based on these observations, the aim of this study was to investigate the effects of heat
preconditioning on cell viability as well as on the expression of HSPs and angiogenesis-
related factors originating from nanofat. In addition, dermal substitutes seeded with
heat-preconditioned nanofat were inserted in a mouse dorsal skinfold chamber to assess
their vascularization and tissue integration and compared to dermal substitutes seeded
with non-preconditioned control nanofat, as performed previously [8].

2. Materials and Methods
2.1. Animals

All animal experiments were performed in compliance with the National Institutes
of Health (NIH) Guidelines on the Care and Use of Laboratory Animals (NIH publication
#85-23 Rev. 1985) and the European legislation on the protection of animals (Directive
2010/63/EU). They were approved by the local authorities (permission number: 06-2022;
State Office for Consumer Protection, Saarbrücken, Germany).

The inguinal fat pads were isolated from C57BL/6J wild-type mice for ex vivo analyses
of nanofat. The animals exhibited a mean age of 4 months and an average body weight of
25 g. For in vivo experiments, the fat was harvested from green fluorescent protein (GFP)+

mice (C57BL/6-Tg (CAG-EGFP)131Osb/LeySopJ; The Jackson Laboratory, Bar Harbor,
ME, USA). They exhibited a mean age of 4 months and an average body weight of 30 g.
C57BL/6J wild-type mice with a mean age of 4 months and an average body weight of 25 g
were equipped with dorsal skinfold chambers. They were housed one per cage to prevent
mutual injuries due to the chambers at a temperature of 22–24 ◦C, a relative humidity
of 50–60% and a 12 h light/dark cycle with free access to pellet chow (Altromin, Lage,
Germany) and tap water.
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2.2. Anesthesia

All procedures were performed under general anesthesia with carprofen for postoper-
ative analgesia, as described previously in detail [8].

2.3. Generation and Heat Preconditioning of Nanofat

Nanofat was prepared, as previously described in detail [3], after sacrificing anes-
thetized donor mice by cervical dislocation. The nanofat from each donor mouse was
equally divided into two samples. The first sample (heat-preconditioned nanofat; heat)
was exposed to a constant temperature of 43 ◦C for 1 h in a heating incubator (Eppendorf
ThermoMixer® C, Eppendorf, Wesseling-Berzdorf, Germany). Thereafter, the precondi-
tioned sample was allowed to recover for 3–6 h at room temperature before ex vivo analyses
or used for in vivo experiments. The second sample (non-preconditioned nanofat; control)
was not exposed to heat but was analyzed ex vivo after 3–6 h at room temperature or
directly used for in vivo experiments, as outlined in detail in the following sections.

2.4. Ex Vivo Analysis of Nanofat

The viability of both control (n = 4) and heat-preconditioned nanofat (n = 4) was
assessed by means of flow cytometry. The samples were dissociated into single-cell suspen-
sions by Accutase® (BioLegend, Fell, Germany) after 3 h at room temperature. Thereafter,
the cells were washed in phosphate-buffered saline (PBS), resuspended in incubation
buffer and stained for 15 min with propidium iodide (50 µg/mL; BD Biosciences, Heidel-
berg, Germany) and annexin V (100 µg/mL; ImmunoTools, Friesoythe, Germany). The
cells were then analyzed in a flow cytometer (FACScan; BD Biosciences). The fraction
of vital, apoptotic, necroptotic and necrotic cells was expressed as the percentage of all
measured cells.

Moreover, after 6 h at room temperature, total RNA contained in control (n = 4)
and heat-preconditioned nanofat samples (n = 4) was extracted using QIAzol lysis
reagent (Qiagen, Hilden, Germany). The corresponding cDNA was synthesized from
the total RNA by c-DNA Synthesis Kit (iScript cDNA Synthesis Kit; BioRad, Her-
cules, CA, USA), as described in the manufacturer’s instructions. We used SYBR-
Green Supermix (SsoAdvanced Universal SYBR Green Supermix; BioRad) for quanti-
tative real-time polymerase chain reaction (qRT-PCR), and the data analysis was car-
ried out by a CFX96 RT-PCR System (BioRad). Murine β-actin was served as con-
trol. Forward and reverse primers (dissolved in RNase/DNase-free H2O) were used
in a concentration of 500 nM. Primer sequences for qRT-PCR were coded as follows:
5′-AGAGTTCTGTCGCACCTATG-3′ (forward) and 5′-GGCTCAACTCTGGCTATCTC-3′

(reverse) for HSP-27; 5′-GCGGTACAAATCGGAAGATG-3′ (forward) and 5′-TTTGTCCTG
CTCGCTAATCT-3′ (reverse) for HSP-70; 5′-ACCCTGACCATTGTGGATAC-3′ (forward)
and 5′-CTCATCGTCGTTATGCTTCG-3′ (reverse) for HSP-90; 5′-AGGAGATAGAGCGCAA
CAAG-3′ (forward) and 5′-CTCGTGGAGACGCTTTACAT-3′ (reverse) for HSP-32/HO-1.

Additional samples of control (n = 4) and heat-preconditioned nanofat (n = 4) were
fixed after 6 h at room temperature in 4% formalin, embedded in paraffin and cut into
3 µm-thick sections for histological and immunohistochemical analyses. Sections were
stained with hematoxylin-eosin (HE). Moreover, sections were stained with a rabbit-anti-
HO-1 antibody (1:100; Enzo Life Science, Lörrach, Germany) and a rabbit-anti-cleaved
caspase-3 antibody (Casp-3; 1:100; Cell Signaling, Leiden, The Netherland). A goat anti-
rabbit-peroxidase-labeled antibody (1:200; dianova GmbH, Hamburg, Germany) and a
biotinylated goat-anti-rabbit IgG antibody (ready-to-use; Abcam, Cambridge, UK) were
used as secondary antibodies. Thereafter, the numbers of Casp-3+ and HO-1+ cells were
quantitatively assessed (5 regions of interest (ROIs) on 1 section per sample) by means of a
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BX53 microscope with the imaging software CellSens Dimension (version 1.11; Olympus,
Hamburg, Germany).

Finally, a proteome profiler mouse angiogenesis array (R&D Systems, Bio-Techne;
Wiesbaden-Nordenstadt, Germany) was performed to analyze pooled nanofat samples
(n = 4 per group) after 6 h at room temperature according to the manufacturer’s instructions.

2.5. Seeding of Dermal Substitutes with Nanofat

As previously described [8], small samples were cut out of an Integra® dermal regen-
eration template single layer without silicone sheet (Integra Life Sciences, Gent, Belgium)
using a 4 mm biopsy punch (Kai Europe GmbH, Solingen, Germany). The samples were
then placed for 10 min into a tube (Eppendorf, Hamburg, Germany) filled with either
non-preconditioned nanofat or with heat-preconditioned nanofat for proper seeding [8].

2.6. Dorsal Skinfold Chamber Model

The effects of control and heat-preconditioned nanofat on the vascularization and
integration of dermal substitutes were investigated in a mouse dorsal skinfold chamber
model, as described previously in detail [8]. For this purpose, an Integra® sample seeded
with non-preconditioned nanofat (control; n = 8) or with heat-preconditioned nanofat (heat;
n = 8) was positioned in the center of the chamber observation window for in vivo analyses.

2.7. Intravital Fluorescence Microscopy

The vascularization of the implants was repeatedly analyzed using intravital fluores-
cence microscopy over 14 days, as described previously in detail [8].

The microscopic movies were analyzed with CapImage (version 8.10.1; Zeintl, Heidel-
berg, Germany). This analysis included the following parameters: total number of perfused
ROIs (%), functional microvessel density (cm/cm2) as well as diameter (µm), centerline
red blood cell (RBC) velocity (µm/s), shear rate (s−1) and volumetric blood flow (pL/s) of
individual microvessels in 8 ROIs located within the center (n = 4) and the border zones
(n = 4) of each implant. Moreover, microhemodynamic parameters (diameter, centerline
RBC velocity, shear rate and volumetric blood flow) and leukocyte-endothelial cell interac-
tions (adherent leukocytes (mm−2) and rolling leukocytes (min−1)) of postcapillary and
collecting venules within the host tissue were assessed in 4 different ROIs in direct vicinity
to the implants [8].

2.8. Histology and Immunohistochemistry of In Vivo Samples

After the in vivo experiments, tissue samples were carefully excised, fixed in 4% for-
malin, embedded in paraffin and cut into 3 µm thick sections. HE staining was performed
according to standard procedures. Additional sections were stained with antibodies against
CD31, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1 and GFP as well as
collagen (Col) I, Col III, CD68, CD3 and myeloperoxidase (MPO), as described previously
in detail [8].

The stained sections (1 section per sample) were used to measure microvessel density
(mm−2), lymph vessel density (mm−2) as well as CD31+/GFP+ microvessels (%) and LYVE-
1+/GFP+ lymph vessels (%). In addition, the total Col I and Col III ratio (implant/skin),
the numbers of CD68+ macrophages (mm−2), CD3+ lymphocytes (mm−2) and MPO+

neutrophilic granulocytes (mm−2) were assessed in 2 ROIs in the border zones and 2 ROIs
in the center of each implant.

2.9. Statistical Analysis

All data sets were first tested for normal distribution and equal variance (GraphPad Prism
10.1.2; GraphPad Software, San Diego, CA, USA). Thereafter, differences between the two
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groups were assessed by the unpaired Student’s t-test (parametric data) or Mann–Whitney
rank sum test (non-parametric data). The values were given as mean ± standard error of the
mean (SEM). A p-value of <0.05 was considered to indicate significant differences.

3. Results
3.1. Ex Vivo Characterization of Control and Heat-Preconditioned Nanofat

In the first set of experiments, nanofat samples from donor mice were exposed ex
vivo to a constant temperature of 43 ◦C for 1 h and compared to non-preconditioned
nanofat, which served as control. Macroscopically, no differences between the two sample
types were detected in terms of color or consistency. Moreover, flow cytometric analyses
revealed that heat preconditioning of nanofat does not affect its viability (Figure 1A). In fact,
heat-preconditioned and control nanofat exhibited comparable fractions of vital, apoptotic,
necroptotic and necrotic cells (Figure 1A). This was confirmed by additional immuno-
histochemical staining of the apoptosis marker Casp-3, which did not show significant
differences between sections of heat-preconditioned and control nanofat (Figure 1B,C).

In addition, qRT-PCR analyses revealed an upregulation of HSP gene expression as
a response to heat stress to nanofat (Figure 1D). In line with this finding, immunohisto-
chemically stained sections of heat-preconditioned nanofat exhibited a significantly higher
number of HO-1+ cells when compared to controls (Figure 1E,F).

A proteome profiler mouse angiogenesis array was performed to analyze the expres-
sion of angiogenesis-related proteins in heat-preconditioned nanofat in comparison to
non-preconditioned control nanofat. The array demonstrated that in heat-preconditioned
nanofat the expression of many pro-angiogenic factors (22 out of 39) is downregulated,
whereas the expression of most anti-angiogenic factors (10 out of 14) is upregulated when
compared to control (Table 1). This indicates a shift in heat-preconditioned nanofat towards
an anti-angiogenic phenotype.

Table 1. Expression of pro- and anti-angiogenic proteins (% of control) in pooled heat-preconditioned
nanofat. The data are presented in a descending order as mean of two technical replicates.

Protein Expression (% of Control)

Pro-angiogenic

HGF 564

KC/CXCL1/CINC-1/GRO-alpha 330

KGF/FGF-7 306

DLL4 299

ET-1 231

GM-CSF 211

PD-ECGF 207

AR 164

Proliferin 157

FGF acid/FGF-1/ECGF/HBGF-1 155

Coagulator Factor III/TF 147

EGF 125

VEGF/VPF 125

IGFBP-3 116

MMP-3 109

Ang-1 108

PIGF-2 104

MIP-1alpha 98
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Table 1. Cont.

Protein Expression (% of Control)

OPN 98

Leptin/OB 92

IL-10/CSIF 87

ANG 84

PDGF-AA 84

Cyr61/CCN1, IGFBP10 78

FGF basic/FGF-22 71

MMP-9 68

IL-1beta 55

Fractalkine/CX3CL1 53

IGFBP-1 52

IL-1alpha 45

VEGF B/VRF 45

SDF-1/CXCL12 43

MCP-1/CCL2 33

MMP-8 27

NOV/CCN3/IGFBP-9 25

CXCL 16 22

HB-EGF 21

Endoglin/CD105 19

IGFBP-2 6

Anti-angiogenic

PTX3/TSG-14 637

ADAMTS1 204

Serpin F1/PEDF 204

DPP IV/CD26 195

Ang-3 166

PRL 160

IP-10/CXCL 10/CRG-2 151

PDFG-AB/BB 148

Endostatin/Collagen VIII 148

TIMP-1 111

CXCL4/PF4 69

Serpin E1/PAI-1 33

TIMP-4 30

TSP-2 16
ADAMTS: A Disintegrin And Metalloproteinase with Thrombospondin Motifs; ANG: Angiogenin; Ang: Angiopoi-
etin; AR: Amphiregulin; CCL: Chemokine (C-C motif) Ligand; CCN: Cellular Communication network factor;
CD: Cluster of Differentiation; CINC: Cytokine-Induced Neutrophil Chemoattractant; CRG: Cytokine-Responsive
Gene; CSIF: Cytokine Synthesis Inhibitory Factor; CX3CL: Chemokine (C-X3-C motif) Ligand; CXCL: Chemokine
(C-X-C motif) Ligand; Cyr: Cysteine-Rich Angiogenic Inducer; DLL: Delta-Like Ligand; DPP: Dipeptidyl Pepti-
dase; ECGF: Endothelial Cell Growth Factor; EGF: Epidermal Growth Factor; ET: Endothelin; FGF: Fibroblast
Growth Factor; GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor; GRO: Growth-Related On-cogene;
HB-EGF: Heparin-Binding Epidermal Growth Factor; HBGF: Heparin-Binding Growth Factor; HGF: Hepatocyte
Growth Factor; IGFBP: Insulin-Like Growth Factor Binding Protein; IL: Interleukin; IP: Interferon Gamma-
Inducible Protein; KC: Keratinocyte Chemoattractant; KGF: Keratinocyte Growth Factor; MCP: Monocyte
Chemoattractant Protein; MIP: Major Intrinsic Protein; MMP: Matrix Metalloproteinase; NOV: Nephroblastoma
Overexpressed; OB: Obese; OPN: Osteopontin; PAI: Plasminogen Activator Inhibitor; PD-ECGF: Platelet-Derived
Endothelial Cell Growth Factor; PDGF: Platelet-Derived Growth Factor; PEDF: Pigment Epithelium-Derived
Factor; PF: Platelet Factor, PIGF: Placental Growth Factor; PRL: Prolactin; PTX3: Pentraxin-3; SDF: Stromal
Cell-Derived Factor; TF: Tissue Factor; TIMP: Tissue Inhibitor of Metalloproteinases; TSG: Tumor Necrosis Factor-
Induced Protein; TSP: Thrombospondin; VEGF: Vascular Endothelial Growth Factor; VPF: Vascular Permeability
Factor; VRF: Vascular Remodeling Factor.
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Figure 1. In vitro characterization of control and heat-preconditioned nanofat. (A) Fraction (%) of
vital, apoptotic, necroptotic and necrotic cells in non-preconditioned nanofat (control; white bars,
n = 4) and heat-preconditioned nanofat (heat; black bars, n = 4). Mean ± SEM. (B,C) Immunohis-
tochemical assessment of Casp-3+ apoptotic cells ((B), arrows) and their quantitative analysis (C) in
non-preconditioned nanofat (control; white bar, n = 4) and heat-preconditioned nanofat (heat; black bar,
n = 4). Mean ± SEM. (D) mRNA expression (% of control) of HSP-27, HSP-70, HSP-90 and HSP-32/HO-
1 in non-preconditioned nanofat (control; white bars, n = 4) and heat-preconditioned nanofat (heat; black
bars, n = 4). Mean ± SEM; * p < 0.05 vs. control. (E,F) Immunohistochemical assessment of HO-1+ cells
((E), arrows) and their quantitative analysis (F) in non-preconditioned nanofat (control; white bar, n = 4)
and heat-preconditioned nanofat (heat; black bar, n = 4). Mean ± SEM; * p < 0.05 vs. control.
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3.2. In Vivo Microscopy of Nanofat-Seeded Implants

In a second set of in vivo experiments, dermal substitutes seeded with heat-
preconditioned or control nanofat were implanted into dorsal skinfold chambers to analyze
their vascularization by means of repeated intravital fluorescence microscopy (Figure 2A,B).
These analyses did not show marked differences between the two groups (Figure 2C–F).
Six days after implantation, newly formed, blood-perfused microvascular networks could
be detected in the border zones of the implants of both groups, which progressively in-
creased in their density over time (Figure 2C,E). In the group of dermal substitutes seeded
with heat-preconditioned nanofat, this functional microvessel density showed a tendency
towards lower values on day 10 after implantation when compared to controls, albeit with-
out reaching statistical significance (Figure 2E). Furthermore, almost no blood-perfused
microvessels could be detected in the center of the implants in either group throughout the
entire observation period of 14 days (Figure 2D,F). In line with these findings, individual
microvessels within dermal substitutes seeded with heat-preconditioned or control nanofat
did also not markedly differ in terms of diameter, centerline RBC velocity, shear rate and
volumetric blood flow (Table 2).
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Figure 2. In vivo microscopy of nanofat-seeded implants. (A,B) Representative intravital fluorescence
microscopic images of dermal substitutes seeded with non-preconditioned (control, (A)) and heat-
preconditioned nanofat (heat, (B)) (implant border = closed line; border of non-vascularized implant
area = broken line). (C–F) Perfused ROIs (%) (C,D) and functional microvessel density (cm/cm2)
(E,F) in the border (C,E) and center (D,F) of dermal substitutes seeded with non-preconditioned
(control; white bars, n = 8) and heat-preconditioned nanofat (heat; black bars, n = 8). Mean ± SEM.
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Table 2. Diameter (µm), centerline RBC velocity (µm/s), shear rate (s−1) and volumetric blood flow
(pL/s) of microvessels within the border and center zones of dermal substitutes seeded with non-
preconditioned nanofat (control; n = 8) and heat-preconditioned nanofat (heat; n = 8). Mean ± SEM;
* p < 0.05 vs. control.; blanks indicate time points at which the implants lacked blood-perfused
microvessels for microhemodynamic measurements.

d0 d3 d6 d10 d14

diameter (µm):
border: control - - 20.0 ± 4.5 19.4 ± 1.1 15.2 ± 0.9

heat - - 15.5 ± 2.4 17.2 ± 0.7 12.1 ± 0.8 *
center: control - - - - 20.9 ± 4.6

heat - - - - -
centerline RBC velocity (µm/s):
border: control - - 58.0 ± 17.4 96.1 ± 18.2 170.4 ± 14.9

heat - - 69.3 ± 11.3 134.7 ± 31.2 181.8 ± 28.8
center: control - - - - 131.8 ± 113.0

heat - - - - -
shear rate (s−1):
border: control - - 23.0 ± 4.2 43.5 ± 8.4 113.6 ± 19.2

heat - - 39.3 ± 13.2 69.3 ± 15.2 126.4 ± 31.9
center: control - - - - 63.8 ± 57.5

heat - - - - -
volumetric blood flow (pL/s):
border: control - - 15.7 ± 10.7 20.1 ± 5.0 20.4 ± 3.1

heat - - 7.8 ± 1.3 30.6 ± 10.7 15.4 ± 2.5
center: control - - - - 21.7 ± 15.5

heat - - - - -

To additionally investigate implant-induced inflammation, the interactions of leuko-
cytes with the microvascular endothelium were quantified in venules next to the dermal
substitutes seeded with heat-preconditioned or control nanofat. In both groups, these
vessels presented with comparable microhemodynamic conditions (Table 3). Moreover,
they did not show statistically significant differences in the numbers of rolling and adherent
leukocytes during the in vivo experiments (Figure 3A–C).

Table 3. Diameter (µm), centerline RBC velocity (µm/s), shear rate (s−1) and volumetric blood
flow (pL/s) of postcapillary and collecting venules in direct vicinity to dermal substitutes seeded
with non-preconditioned nanofat (control; n = 8) and heat-preconditioned nanofat (heat; n = 8).
Mean ± SEM; * p < 0.05 vs. control.

d0 d3 d6 d10 d14

diameter (µm):
control 42.5 ± 2.3 38.7 ± 1.4 37.8 ± 1.6 35.1 ± 1.4 33.0 ± 2.0
heat 36.6 ± 1.4 34.4 ± 1.3 37.0 ± 1.3 36.2 ± 1.3 38.9 ± 1.3 *
centerline RBC velocity (µm/s):
control 516.0 ± 61.1 522.9 ± 71.7 608.2 ± 75.3 512.8 ± 74.2 440.5 ± 125.0
heat 651.0 ± 97.6 674.0 ± 42.7 667.6 ± 86.1 658.1 ± 103.3 714.9 ± 109.2
shear rate (s−1):
control 97.3 ± 8.7 98.3 ± 10.6 134.9 ± 20.1 112.5 ± 13.4 101.4 ± 28.0
heat 144.0 ± 22.4 157.3 ± 11.2 * 146.2 ± 20.2 148.7 ± 22.4 152.1 ± 25.0
volumetric blood flow (pL/s):
control 510.9 ± 110.6 450.8 ± 86.7 438.5 ± 66.9 347.2 ± 69.1 292.5 ± 86.3
heat 445.2 ± 72.4 423.8 ± 42.2 481.8 ± 68.8 436.7 ± 79.4 553.8 ± 76.8 *
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Figure 3. Interaction of leukocytes with the microvascular endothelium in response to nanofat-
seeded implants. (A) Representative intravital fluorescence microscopic images of a venule
next to an implanted dermal substitute seeded with non-preconditioned nanofat (blue light epi-
illumination, contrast enhancement by 5% fluorescein isothiocyanate (FITC)-labeled dextran (left
panel); green light epi-illumination, in situ staining of leukocytes with 0.1% rhodamine 6G (right
panel); arrows = leukocytes). (B,C) Rolling leukocytes (min−1) (B) and adherent leukocytes (mm−2)
(C) within venules next to dermal substitutes seeded with non-preconditioned (control; white bars,
n = 8) and heat-preconditioned nanofat (heat; black bars, n = 8). Mean ± SEM.

3.3. Histological and Immunohistochemical Analysis of Nanofat-Seeded Implants

After the in vivo experiments (day 14), the implants were investigated by means of
histology and immunohistochemistry. The analysis of HE-stained sections showed a com-
parable tissue integration of dermal substitutes seeded with heat-preconditioned or control
nanofat (Figure 4A–D). This was confirmed by the immunohistochemical assessment of the
Col I and Col III content within the implants, which did not significantly differ between the
two groups (Figure 5A–D).
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Figure 4. Tissue incorporation of nanofat-seeded implants. (A,B) HE-stained sections of implanted 
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Figure 4. Tissue incorporation of nanofat-seeded implants. (A,B) HE-stained sections of implanted
dermal substitutes seeded with non-preconditioned (control, (A)) and heat-preconditioned nanofat
(heat, (B)) (implant border = closed line; border zone = broken line; ROIs in the border and center
zones of the implants shown in higher magnification in (C,D) = blue and red frame; panniculus
carnosus muscle = arrows; granulation tissue = asterisks). (C,D) Higher magnification of blue and
red frames in (A) and (B) in the border (C) and center (D) zones of the implants.

The immunohistochemical detection of CD31+ microvessels demonstrated that dermal
substitutes seeded with heat-preconditioned nanofat exhibited a 3.5-fold lower microvessel
density in both their border and center zones when compared to controls (Figure 6A,B). Of
interest, GFP/CD31 co-stainings revealed that ~80% of the microvessels within implants
seeded with control nanofat were GFP+, while in implants seeded with heat-preconditioned
nanofat this fraction was significantly reduced (Figure 6C,D). In addition, immunohisto-
chemical analyses of LYVE-1-stained sections showed that there were only a few lymphatic
vessels surrounding the implants and almost none in the center with no significant dif-
ferences in lymph vessel density between the two groups (Figure 6E,F). Most of these
lymph vessels were GFP+ in the group of dermal substitutes seeded with control nanofat
(Figure 6G,H). In contrast, none of the lymph vessels in the group of dermal substitutes
seeded with heat-preconditioned nanofat exhibited a GFP+ signal (Figure 6H).
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Figure 5. Collagen content of nanofat-seeded implants. (A,C) Immunohistochemical assessment
of Col I (A) and III (C) in the border and center zones of dermal substitutes seeded with non-
preconditioned (control) and heat-preconditioned nanofat (heat). (B,D) Total Col I (B) and Col III
(D) ratio (implant/skin) in the border and center zones of dermal substitutes seeded with non-
preconditioned (control; white bars, n = 8) and heat-preconditioned nanofat (heat; black bars, n = 8).
Mean ± SEM.
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Figure 6. (A) Immunohistochemical assessment of CD31+ microvessels in the border zones (arrow-
heads) and the center (arrows) of dermal substitutes seeded with non-preconditioned (control) and
heat-preconditioned nanofat (implant border = closed line; border zone = dotted line). (B) Microvessel
density (mm−2) of dermal substitutes seeded with non-preconditioned (control; white bars, n = 8) and
heat-preconditioned nanofat (heat; black bars, n = 8). Mean ± SEM. * p < 0.05 vs. control. (C) Immuno-
histochemical assessment of CD31+/GFP− (arrowheads) and CD31+/GFP+ (arrows) microvessels
within dermal substitutes seeded with non-preconditioned (control) and heat-preconditioned nanofat
(heat). (D) CD31+/GFP+ microvessels (%) in the border and center zones of dermal substitutes
seeded with non-preconditioned (control; white bars, n = 8) and heat-preconditioned nanofat (heat;
black bars, n = 8). Mean ± SEM. * p < 0.05 vs. control. (E) Immunohistochemical assessment
of LYVE-1+ lymph vessels in the border zones (arrowheads) of dermal substitutes seeded with
non-preconditioned (control) and heat-preconditioned nanofat (heat) (implant border = closed line;
border zone = dotted line). (F) Lymph vessel density (mm−2) of dermal substitutes seeded with
non-preconditioned (control; white bars, n = 8) and heat-preconditioned nanofat (heat; black bars,
n = 8). Mean ± SEM. (G) Immunohistochemical assessment of LYVE-1+/GFP− (arrowheads) and
LYVE-1+/GFP+ (arrows) lymph vessels in a dermal substitute seeded with non-preconditioned
nanofat (control). (H) LYVE-1+/GFP+ microvessels (%) in the border and center zones of dermal
substitutes seeded with non-preconditioned (control; white bars, n = 1–5) and heat-preconditioned
nanofat (heat; black bars, n = 0–5). Mean ± SEM.

Finally, CD68 (macrophages), MPO (neutrophilic granulocytes) and CD3 (lympho-
cytes) staining procedures were performed to quantify the immune cell infiltration of
the implants. The quantitative analysis of these staining results did not show marked
differences between the two groups (Figure 7A–F).
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Figure 7. Immune cell infiltration of nanofat-seeded implants. (A,C,E) Immunohistochemical assess-
ment of CD68+ macrophages ((A), arrows), MPO+ granulocytes ((C), arrows) and CD3+ lymphocytes
((E), arrows) in the border and center zones of dermal substitutes seeded with non-preconditioned
(control) and heat-preconditioned nanofat (heat). (B,D,F) CD68+ macrophages (mm−2) (B), MPO+

granulocytes (mm−2) (D) and CD3+ lymphocytes (mm−2) (F) in the border and center zones of der-
mal substitutes seeded with non-preconditioned (control; white bars, n = 8) and heat-preconditioned
nanofat (heat; black bars, n = 8). Mean ± SEM. * p < 0.05 vs. control.

4. Discussion
Heat preconditioning has previously been shown to stimulate the upregulation of

HSPs and angiogenic growth factors and, thus, to promote nutritive perfusion and survival
of different tissues exposed to challenging hypoxic conditions [13–21]. In contrast to these
findings, we demonstrated in the present study that heat preconditioning of nanofat does
not further enhance its well-known regenerative properties but even reduces its in vivo
vascularization capacity. Accordingly, we found that implanted dermal substitutes seeded
with heat-preconditioned nanofat exhibit a significantly lower microvessel density and are
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equally integrated into the surrounding host tissue when compared to dermal substitutes
seeded with non-preconditioned nanofat.

In recent decades, various heat preconditioning protocols have been proposed with
different temperatures (between 40 and 44 ◦C or even 48 ◦C), exposure durations (20 s,
15–45 min or 1–2 h) and methods of heat supply (thermal chambers, blocks, pads, blankets
or water baths) [13,14,17,22–27]. Of note, among the different temperatures 43 ◦C seems to
be the most promising one [13–16,28–30], leading to an upregulated expression of HSPs
and, thus, to stress protection already after 1 h of exposure [31–34]. Accordingly, we herein
detected a significantly higher HSP-70 and HSP-32 gene expression and number of HO-1+

cells in nanofat that was exposed to 43 ◦C for 1 h in a heating incubator when compared
to control. Furthermore, and of importance, it can be stated that this heating intervention
did not affect the viability of the fat derivative. This indicates that the herein applied heat
preconditioning approach is also suitable to effectively induce the previously described
basic stress-responsive mechanisms in nanofat.

Several studies reported that the upregulation of HSPs, including HSP-70 and HSP-90,
can promote blood vessel formation [17,35,36]. However, this was not the case in the
present study. In fact, we found that heat-preconditioned nanofat even exhibits a reduced
in vivo vascularization capacity when compared to non-preconditioned nanofat. This
unexpected result may be explained by the mechanism of cellular quiescence, as it has been
described to be induced by other stressors, such as serum deprivation [37,38]. Cellular
quiescence is a reversible state, in which cellular activity and proliferation are prevented
to improve stress resistance and survival [39–41]. When cells and tissues enter this state,
survival mechanisms are often prioritized over other functions. In line with this concept,
the overexpression of HSPs, such as HO-1/HSP-32, has been demonstrated to upregulate
the cyclin-dependent kinase inhibitor p21, which increases resistance to apoptotic cell death,
but decreases cell proliferation [42–45]. Moreover, we could show, by means of a proteome
profiler mouse angiogenesis array, that the expression of many pro-angiogenic factors
is downregulated in heat-preconditioned nanofat, whereas the expression of most anti-
angiogenic factors is upregulated, indicating a shift towards an anti-angiogenic, quiescent
phenotype. Accordingly, we also detected a markedly lower density of CD31+ microvessels
in implanted dermal substitutes seeded with heat-preconditioned nanofat when compared
to controls. This was associated with a significantly reduced fraction of GFP+/CD31+

microvessels within the border and center zones of the implants. The latter finding confirms
a reduced angiogenic activity of the GFP+ microvascular fragments originating from the
heat-preconditioned nanofat that had been seeded onto the dermal substitutes prior to their
implantation into dorsal skinfold chambers of GFP− recipient mice. Finally, it should be
considered that heat preconditioning may not only induce cellular quiescence but may also
negatively affect nanofat components that have been shown to contribute to blood vessel
formation, such as extracellular matrix proteins [46]. For instance, from tumor studies it
is well known that hyperthermia can promote the degradation of collagen [47]. However,
since we did not detect marked differences in the Col I and Col III content of the implanted
dermal substitutes, this may not primarily explain our finding of a reduced vascularization
capacity of heat-preconditioned nanofat.

There is a close link between inflammation and angiogenesis. Immune cells have
been shown to release various pro-angiogenic factors [48]. Furthermore, regenerative
processes, such as wound healing, typically involve an initial inflammatory phase that
is followed by a phase of blood vessel development [49]. To address this inflammation-
driven angiogenesis in the present study, we also analyzed whether heat preconditioning
changes the inflammatory activity of nanofat. For this purpose, we repeatedly assessed
leukocyte–endothelial cell interactions in postcapillary and collecting venules in direct vicin-
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ity of nanofat-seeded dermal substitutes by means of intravital fluorescence microscopy
and the immune cell infiltration of the implants at the end of the in vivo experiments by
means of immunohistochemistry. However, no marked differences could be detected be-
tween dermal substitutes seeded with heat-preconditioned or non-preconditioned nanofat.
Hence, it can be excluded that the reduced vascularization capacity of heat-preconditioned
nanofat has been caused by an altered inflammatory activity.

Taken together, this is the first study that performed heat preconditioning of nanofat.
The novel results demonstrate that exposure of nanofat to a temperature of 43 ◦C for 1 h
does not enhance its vascularization capacity. However, one limitation of our study is
the fact that we only tested one heat preconditioning protocol. Hence, it remains unclear
whether another supraphysiological temperature or exposure duration would result in the
same outcome. In addition, we primarily focused on the effects of heat preconditioning
on angiogenic factors and blood vessels. However, the exposure to heat may also affect
other biological components within nanofat, such as inflammatory cytokines, cellular lipids,
extracellular matrix proteins or ASCs. Therefore, it may be interesting to clarify, in more
detail, the fate of these components in response to heat. Moreover, our findings do not
necessarily mean that other preconditioning approaches also fail in the case of nanofat.
For instance, hypoxic preconditioning of fat grafts has already been shown to improve
their vascularization and survival when compared to freshly generated controls [12,50,51].
This suggests that hypoxic preconditioning strategies should also be tested for nanofat in
future studies.
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