
Academic Editor: Rajendra Singh

Adhikari

Received: 22 November 2024

Revised: 18 December 2024

Accepted: 23 December 2024

Published: 8 January 2025

Citation: Meiers, J.; Frey, G.

Interfacing TRNSYS with MATLAB for

Building Energy System Optimization.

Energies 2025, 18, 255.

https://doi.org/

10.3390/en18020255

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Interfacing TRNSYS with MATLAB for Building Energy
System Optimization
Josef Meiers and Georg Frey *

Chair of Automation and Energy Systems, Saarland University, 66123 Saarbruecken, Germany;
josef.meiers@aut.uni-saarland.de
* Correspondence: georg.frey@aut.uni-saarland.de; Tel.: +49-681-302-57590

Abstract: This contribution investigates whether the use of the MATLAB Optimization
Toolbox on a parameter identification problem for a TRNSYS model provides better per-
formance in iteration time. It presents the development of a framework connecting the
MATLAB Optimization Toolbox with TRNSYS on the one hand and coordinating the op-
timization process of a TRNSYS model by GenOpt through MATLAB on the other hand.
A benchmark framework in MATLAB was created to link TRNSYS and MATLAB and to
configure the optimization process of GenOpt and the MATLAB Optimization Toolbox.
Using this framework, a comprehensive comparison of the optimization solvers in GenOpt
and the MATLAB Optimization Toolbox for the identification of the overall heat transfer
coefficient of a TRNSYS heat exchanger model regarding the optimization time and number
of iterations is presented as a use case. The results for the given problem show that GenOpt
gives slightly better results in optimization time, whereas MATLAB has more potential
and flexibility.

Keywords: TRNSYS; MATLAB; GenOpt; co-simulation; optimization; tool coupling

1. Introduction
Control of Building Energy Systems (BES), which are part of the Building Automation

and Control System (BACS), and their model-based design is a complex task comprising
different domains and has increasingly become established in the energy industry and
research. Nevertheless, these systems can further be improved by optimal design and
control to be more cost-effective and reliable.

To this end, a large number of Building Performance Simulaton Tools (BPSTs) have
been developed in recent decades [1]. A comprehensive list of BPSTs is provided in [2]. One
reason for the increasing use of BPSTs is not in the least the increased legal requirements
for BES. The revised Energy Performance of Buildings Directive (EPBD) (EU/2024/1275)
entered into force in all EU countries on May 2024. An entire set of rules is applied
here, for which EN 15232-1 [3] is used in sub-module M10 (Building Automation and
Controls), in which the building is assigned to one of four BACS efficiency classes [4].
The amended version introduces new requirements for nonresidential and residential
buildings, which should help to accelerate the gradual renovation of the entire building
stock. In Germany, the new Building Energy Act (GEG 2023) regulates how the country
will heat predominantly with Renewable Energies (RE) in the future. The GEG 2023 aims to
increase the share of Renewable Energies in buildings sustainably and efficiently. According
to the new requirements, new buildings’ BES will only be installed if they generate at least
65% of the heat provided using RE.
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BPSTs are used in research and increasingly also in industry. They have different levels
of model detail and cover the entire life cycle of BES, from the design, construction and
operation of buildings to the acceleration and improvement of the design and planning
process, improvement of building efficiency, development or optimization of building
controls and evaluation of the market potential of new concepts.

At present, there exist domain-independent software tools with advanced control
modeling features but less building simulation model capability and vice versa. Hence,
an advanced approach is to combine the different software tools and their modular concepts
by runtime coupling to incorporate their domain-specific advantages as model libraries,
optimization algorithms or aided controller design [5].

There is currently no common standard established by all software manufacturers for
the coupling of domain-specific software tools, although there are promising approaches such
as Functional Mock-up Interface (FMI), which has now been developed to version 3.0 [6–8].
For this reason, considerable effort is still required in some cases to be able to use the various
advantages of BPSTs for an application.

From the perspective of developers and researchers, the lack of standardized model
exchange formats in the development of simulation studies poses the challenge of develop-
ing them according to the problems themselves. When faced with a selection of options,
the question often arises as to which approach is easy to implement and also offers the best
performance. The results of this study are intended to provide assistance in this regard.

In this article, we focus on three BPSTs, TRNSYS (17.02.0005 (32-bit)), MATLAB (2017b
(64-bit)) and GenOpt (3.1.1), where TRNSYS is the central software for the creation of
system models from the point of view of this contribution.

TRNSYS (TRaNsient SYstem Simulation Program) [9] is one of the BPSTs that is well-
known for its numerous validation studies and its ability to model buildings incorporated
with other systems, such as Heating, Ventilation and Air Conditioning (HVAC) and renew-
able energy sources. Based on numerical routines, it solves partial differential equation
systems for dynamic system simulation. It enables the balancing of transient processes in a
time-step resolution between hours and minutes. It has a modular structure comprising
modules like multizone buildings and electrical and thermal energy systems. A disadvan-
tage of TRNSYS is that the user-friendly integration of complex control and optimal system
sizing methods is missing.

MATLAB (MATrix LABoratory) is a simulation environment for programming and
numerical calculations [10], with a high variety of toolboxes, e.g., Optimization Toolbox
and Parallel Computing Toolbox.

Generic Optimization Program (GenOpt) [11] is a software tool that allows multidi-
mensional optimization of an objective function computed by any simulation tool that
reads its input from a text file and writes its output to a text file.

This article describes a framework that can be used to combine TRNSYS and MATLAB
in order to utilize the strengths of both programs. The framework is then applied to a
simple optimization problem to investigate whether MATLAB has advantages in terms
of performance for solving the optimization problem in comparison to a solution, where
TRNSYS is coupled with GenOpt.

This paper is organized as follows: Section 2 discusses the most common methods
of software coupling to TRNSYS and previous work in a literature review to identify the
research gap that this paper aims to close. Section 3 describes the benchmark model imple-
mentation in TRNSYS for the one-dimensional optimization problem and the framework
of coordinated optimization by GenOpt through MATLAB, as well as using the MATLAB
optimizer solely with TRNSYS. In Section 4, the chosen solver parameters are listed, and the



Energies 2025, 18, 255 3 of 23

performance results are shown and discussed. A summary of the main findings and an
outlook on further work concludes the contribution in Section 5.

2. Related Work and Research Question
In this study, the focus was placed on TRNSYS as a commonly used BES modeling

tool. This section is divided into two parts. Section 2.1 describes the technical interfaces
of the tool coupling to TRNSYS according to the current state. Section 2.2 then describes
application scenarios in a literature review in order to identify the research gap and pose
the research question in Section 2.3.

2.1. Tool Coupling to TRNSYS

Several interfaces between simulation software tools have been developed or tested
for tool coupling or co-simulation [12–14]. Coupling between different software tools can
be implemented either in a strong or a loose way [15]. In strong coupling, the models of
all the connected simulators iterate in each simulation time step until they converge. This
shows higher accuracy at the cost of higher computational load. Contrary to this, in loose
coupling, the exchange data are only transmitted at the beginning of each time step, and
the feedback between the simulators lags by one simulation time step. In the following,
some methods of tool coupling, especially between MATLAB and TRNSYS, are described.

2.1.1. Functional Mock-Up Interface (FMI)

FMI is an open standard software tool interface for exchanging simulation models.
While exporting a model to a Functional Mock-up Unit (FMU) the resulting FMU file
incorporates an XML description file and compiled C-code in a DLL file. FMU import in
Simulink has been supported since version 2017b by an FMU import block. The importing
and exporting of FMUs is available through an additional toolbox [16]. Within TRNSYS,
only FMU export is available using an open-source adapter called Type 6139 [17].

2.1.2. Building Controls Virtual Test Bed (BCVTB)

Building Controls Virtual Test Bed (BCVTB) is an open-source framework for co-
simulation and acts as middleware between several software tools, e.g., TRNSYS, MATLAB,
Dymola and EnergyPlus as well as the FMI [18]. Data exchange between the tools is
implemented through socket communication. In [13], a building controller was developed
using co-simulation, where BCVTB connects MATLAB for controller design and EnergyPlus
for building simulation. As a drawback, the authors identified the high simulation time.
Furthermore, debugging of the co-simulation proved to be difficult, since BCVTB can only
listen to ports.

2.1.3. TRNSYS Type 155

TRNSYS also has built-in support of external programs. In addition to Microsoft Excel,
ANSYS Fluent, ESP-r, Java and more, it can also directly communicate with MATLAB
via Type 155. This Type implements a connection to the MATLAB engine in a separate
process through the Component Object Model (COM) concept. Type 155 can be used in
two different calling modes, iterative mode (strong coupling) and real-time controller mode
(loose coupling). A thermal use-case example to compare the computational efficiency and
accuracy was published in [14]. The authors stated the system had higher flexibility to the
user in comparison to BCVTB and FMI.

2.1.4. Open Platform Communications Unified Architecture (OPC UA)

Open Platform Communications Unified Architecture (OPC UA) is a platform-
independent service-oriented architecture communication standard. It performs infor-
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mation interchangeability between the real controller and software tools. While MATLAB
has a built-in OPC Toolbox, TRNSYS lacks this interface. In [19], Pan et al. give no details
about the implementation.

2.1.5. TCP/IP

Using this communication protocol, tools are enabled to have a general interface.
While MATLAB offers functions to create a Transmission Control Protocol/Internet Protocol
(TCP/IP) client and server, TRNSYS does not, and the user has to create a custom type, as
shown in [20].

2.1.6. Dynamic Link Library (DLL)

Another approach under Windows is either to compile TRNSYS types into a Dynamic
Link Library (DLL) and call them in MATLAB or to compile MATLAB/Simulink models using
a simulink coder (formerly real-time workshop) into a DLL and call it using TRNSYS [21,22].

2.1.7. TRNSYS Type 163/169

The TRNSYS standard Type 163 and Type 169 enable the transfer of TRNSYS simula-
tion model states to Python. The two Python-calling types differ fundamentally from each
other. Type 163 reads and writes files between TRNSYS and Python at each simulation
step. Type 169, which is coded in C++, uses the C-API principle of Python as a direct
communication interface. Although it embeds Python in the code, it requires extensive C
wrapper code to enable direct communication between TRNSYS and Python.

2.1.8. TRNSYS Type 3157 (CFFI)

Compared to Type 169, the communication with the Python script has been signifi-
cantly improved in Type 3157. This package calls a Python module at runtime, which is
implemented in a Python file located in the same directory as the TRNSYS input file (the
deck file). This script can use any package or library installed in the Python environment.
Communication between the (Fortran) TRNSYS DLL and the Python environment takes
place via a Foreign Function Interface, which is defined using the C Foreign Function
Interface (CFFI) Python package [23].

2.1.9. File Input/Output (FIO)

The TRNSYS simulation engine can be directly executed via command prompt by typing
the following:

Path_to_TRNExe.exe\TRNExe.exe Path_to_Dck_file\Dck_file.dck \switch

where switch can be as follows:

• n: This skips the dialog boxes that inform the user at the end of simulation on errors
during the simulation process and therefore enables a batch mode.

• h: This implies the n-switch and enables the hidden batch mode that makes TRNSYS
completely invisible. Graphical output by online plotter is not possible and has to
be disabled by setting parameter 9 of the online plotter to −1. As an advantage, the
simulation will be speed up noticeably.

By modifying the deck file using text editors, model parameters can be changed
automatically in order to carry out parameter studies. It can also be used to create entire
models, as is possible with pytrnsys [24]. In this context, TRNSYS printer types can be
added to the model, for example, to generate an output file that can in turn be used as
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an input in the optimization loops for optimization processes, which is the principle in
GenOpt [11].

In this study, the File Input/Output (FIO) approach is also used to determine a model
parameter in an optimization problem by means of error minimization. A TRNSYS–MATLAB
framework was developed to enable the automated iteration process.

2.2. Review

There are several studies in the literature that have either examined the coupling of
the various BPSTs or compared them with each other in terms of accuracy and runtime
using a reference model.

Solmaz [25] provided a critical overview of the developments in the field of BPSTs in
the study and evaluated the effectiveness of nine BPSTs in the design process. A group
of validated and accurate BPSTs were examined, categorized and compared based on
general characteristics, validation, interoperability, user adaptation, application/functions,
strengths and limitations. The BPSTs were divided into two groups. The first group
consists of planning tools such as Revit, Rhino and SketchUp and the second of detailed
simulation tools such as EnergyPlus, DOE2 and TRNSYS. In addition, there is other software
(OpenStudio, DesignBuilder, Green Building Studio) that uses the simulation programs of
the other tools.

In their review, Barber and Krarti [26] examined the common optimization tools for
the design and control of building energy systems and their combined use. They looked at
multiobjective optimization problems and showed the typical flowcharts of the approaches
used. The software tools were divided into three categories: simulation engines, graphical
user interfaces and simulation environments. TRNSYS was assigned to the first category
and MATLAB to the third. According to the authors’ classification, the main difference
between simulation engines and environments is that the latter contain several plug-ins or
features, while the former are essentially standalone programs.

Kalkan et al. [27] compared the simulation time for an absorption chiller and PVT
collector model programmed in C++, MATLAB and Python and integrated into TRNSYS
using Type 155 and Type 3157, respectively. Their results showed that the simulation speed
decreases significantly from C++ to Python to MATLAB. The authors recommended the
use of Python if MATLAB libraries do not have to be used explicitly.

Since TRNSYS is unable to estimate the effectiveness of evaporation during cooling,
which is a typical passive design method, Nayak et al. [28] developed a MATLAB–TRNSYS
integration in which TRNSYS was modified to model the simultaneous heat and moisture
transport from the damp roof surface of a building. They used the building model (Type 56)
and coupled MATLAB with TRNSYS using Type 155. The temperature of the underside
of a damp roof calculated with MATLAB was used as the boundary temperature for the
dummy roof in TRNSYS.

In their paper, Mazzeo et al. [29] compare three common simulation tools for building
simulation, namely, EnergyPlus, IDA Indoor Climate and Energy (IDA ICE) and TRNSYS,
with the experimental data of two solar test boxes equipped without and with a Phase
Change Material (PCM) in the floor in three different warm, intermediate and cold periods.
Measurements of the internal air temperature, the internal and external surface temperature
of the glass and the internal surface temperature of the floor were used for this purpose.
Their results showed that the three tools were very comparable in the absence of PCM.
TRNSYS had the highest accuracy in the warm period, while this was the case for IDA
ICE in the cold period. Overall, IDA ICE was the best tool in all periods. In the presence
of PCM, it can be seen that IDA ICE achieved almost the same accuracy as was achieved
without PCM, while the other tools delivered lower accuracies.
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Magni et al. [30] described the modeling approaches of eight widely used BPSTs in
their work and compared them on a monthly and hourly basis for the climate zones of
Stockholm, Stuttgart and Rome using simulation results for the same office cell defined by
International Energy Agency Solar Heating and Cooling (IEA SHC) Task 56. The results of
the cross-comparison show that overall, a good match was achieved between all dynamic
simulation tools. The simulation with EnergyPlus was the fastest, followed by TRNSYS
and ALMABuild. The authors also emphasized that it took several iterations and great
effort on the part of the modelers to achieve a good match between all tools.

Some research has been conducted by applying the free, available software tool
GenOpt in order to automate TRNSYS runs and to minimize a cost function also supporting
parallel computing optimization. However, GenOpt is not capable of handling multiob-
jective optimization. When associated with TRNSYS, GenOpt can automatically generate
building (.bui) and deck (.dck) files, run TRNSYS with those files, save results and restart.

Asadi et al. [31] used a simulation-based multicriteria optimization method in their
work. In their framework, they developed a combination of TRNSYS, GenOpt and a
Tchebycheff optimization technique developed in MATLAB. The objective was to optimize
the refurbishment costs, energy savings and thermal comfort of a residential building in
order to choose the best retrofit strategy for a building (J0, see Table 1).

Magnier et al. [32] used a simulation-based Artificial Neural Network (ANN) to
characterize building behavior and then combined this ANN with the multicriteria Genetic
Algorithm NSGA-II (Nondominated Sorting Genetic Algorithm 2) for optimization. This
methodology was used in the studies to optimize thermal comfort and energy consumption
in a residential building (J1). The combination of the two algorithms was called the GAINN
methodology. The simulation model was integrated into TRNSYS. The multiobjective
optimization was carried out in two steps. In the first step, a database was automatically
generated by varying the model parameters with the help of GenOpt, which was used for
automated parameterization of the model. An ANN was trained on this, and the model
parameters were optimized using NSGA-II in the second step.

Fernandes et al. [33] presented in their work the methodology and results of a
simulation-based optimization and evaluation study of an adsorption storage system
in combination with a solar collector system, which was carried out in TRNSYS and MAT-
LAB. The absorption storage components were modeled in MATLAB and integrated into
the TRNSYS model that included a hot water storage tank. Parameter optimization was per-
formed with GenOpt, which can be coupled with TRNSYS to perform automated parameter
variation. The Generalized Pattern Search (GPS) algorithm was used. Twelve parameters
were varied with the aim of minimizing the additional heating requirement (J2).

Narayan et al. [34] developed a coupled simulation framework for the nonlinear, time-
varying, deterministic, discrete-time power system problem using TRNSYS and MATLAB.
Using this framework, a Model Predictive Controller (MPC) with a moving horizon of
24 h was developed for an integrated thermal and electrical system with multiple energy
sources in a household optimized for self-consumption. The optimization was carried out
using 3 different algorithms: Particle Swarm Optimization (PSO), Genetic Algorithms (GA)
and GPS. The objective function J3 formulates the increase in the noncontrollable renewable
energy on the one hand and a reduction in the use of a gas boiler on the other hand.

A few publications have used the pytrnsys package [24] to automate simulation stud-
ies. The aim of the research work by Mylonas et al. [35] is to demonstrate the reliability,
robustness and computational efficiency of a cloud-based application of an MPC called
Smart Energy Management for an apartment building. This energy management frame-
work was tested on a virtual building model in TRNSYS running via the pytrnsys package
using an open-source distributed-event streaming platform for data exchange and syn-
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chronization. In their work, four different objective function were defined: maximizing
self-consumption of on-site PV energy (J4), minimizing CO2 emissions (J5), minimizing
electricity costs (J6) and minimizing electric consumption of the heat pump (J7).

In the work of Arenas-Larrañaga et al. [36], a parametric analysis was carried out
using pytrnsys and TRNSYS, taking into account 14 European climate zones, two heat
pumps with different natural refrigerants (CO2 and propane), four solar collector areas and
three ice storage volumes. The analysis is based on TRNSYS simulations using previously
calibrated and validated models. The open-source package pytrnsys was used to set up the
system visually and to automate the 700 simulations carried out and the postprocessing of
the data. In order to analyze the energetic performance of proposed system, the Seasonal
Performance Factor (SPF) as objective function (J8) was used as evaluation indicator.

Meiers et al. [37] proposed a hardware-in-the-loop simulation architecture where
they described a communication procedure between TRNSYS, BCVTB and MATLAB
as the simulation part and LabVIEW (Laboratory Virtual Instrumentation Engineering
Workbench) [38] as the communication node for the hardware of the real system using
the Message Queuing Telemetry Transport protocol. BCVTB serves as middleware for the
communication between TRNSYS and MATLAB, while MATLAB controls the simulation
framework itself and ensures the communication to LabVIEW.

The literature research shows that there is a need for solutions for coupling different
BPSTs, especially with TRNSYS. A distinction can be made between problems relating
to the control of BES, the design of such and the integration of tool-specific models into
larger-scale models. First, both mentioned sub-areas mainly result in the solution of an
optimization problem for which high-performance solution algorithms are required, espe-
cially if there are nonlinear relationships within the systems. To the authors’ knowledge,
no study to date has shown a more comprehensive comparative study of solvers from
GenOpt and the MATLAB Optimization Toolbox for a single-objective optimization prob-
lem, including a more detailed description of the tool coupling between MATLAB and
TRNSYS. Narayan et al. described their framework using a DOS command and the pro-
cessing of the deck file using MATLAB without going into more detail. Mylonas et al. and
Arenas-Larrañaga et al. used the Python-based pytrnsys, whereas MATLAB is considered
here. The cited publications consider a maximum of three solvers (Narayan et al.), while in
this paper, six solvers of GenOpt and nine solvers of the MATLAB Optimization Toolbox
are compared.

2.3. Research Question

The analysis of the reviewed literature shows that there is a research gap with regard
to a comprehensive comparison of algorithms for optimizing a TRNSYS model under the
aspect of system design (cf. Table 1). This is the starting point for the analysis presented in
this contribution. Only the software tools TRNSYS, MATLAB and GenOpt as the solver
engine or the MATLAB Optimization Toolbox, respectively, were considered here.

Therefore, the main research question is as follows:
Is there an advantage to using GenOpt via direct connection to TRNSYS compared to

using the algorithms of the MATLAB Optimization Toolbox via the specially developed
TRNSYS–MATLAB framework in terms of computation time and accuracy of the solution?

In this study, the focus is on model parameter identification by means of an error
minimization process using a TRNSYS model. For this purpose, a simple example of a heat
exchanger is used to determine the heat transfer coefficient.
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Kalkan et al. [27] - - - - - - xC,P,M - -

Type 155M

Type 3157P

DLLC

TRNSYS
MATLAB

C++
tc

Nayak et al. [28] - - - - - - xM - - Type 155M TRNSYS
MATLAB MAE

Mazzeo et al. [29] - - - - - - - - x -
TRNSYS

EnergyPlus
IDA ICE

RMSE,
R2,

NRMSE

Magni et al. [30] - - - - - - - - x -

TRNSYS
EnergyPlus

IDA ICE
Simulink

CarnotUIBK
ALMABuild

Modelica
DALEC
PHPP

RMSE,
R2,

MAE,
MBE

Asadi et al. [31] x - - xM 1 (bintprog)M xG - - - FIOG,M
TRNSYS
MATLAB
GenOpt

J0

Magnier et al. [32] x - - xM 2 (ANN
NSGA-II)M xG - - - FIOG

TRNSYS
MATLAB
GenOpt

J1

Fernandes et al. [33] x - xG - 1 (GPS CS)G - xM - - n/a
TRNSYS
MATLAB
GenOpt

J2

Narayan et al. [34] - x - xM 3 (PSO,
GA, GPS)M - - - - FIOM TRNSYS

MATLAB J3

Mylonas et al. [35] - x xO n/a xpt xP - - Type 1630ct

TRNSYS
Python

pytrnsys
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J4 . . . J7

Arenas-Larrañaga et al. [36] - - - - - xpt - x - FIOpt TRNSYS
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This paper x - xM,G - 6 *,G,9 *,M - - - - FIOG,M
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MATLAB
GenOpt

tC , AE

M: MATLAB. G: GenOpt. pt: pytransys. P: Python. O: OR tools. C: C++. n/a: not available. FIO: File Input/Output.
*: see Section 4. ct: custom TRNSYS type of Type 163 (Python). MAE: Mean Absolute Error. tC : Computation time.
R2: coefficient of determination. RMSE: Root Mean Square Error. NRMSE: Normalized Root Mean Square Error.
MBE: Mean Bias Error. Jx : Objective Functions (see Section 2.2). AE: Absolute Error.
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The framework for two approaches was developed and the results compared, where
both of them are coordinated and automated by MATLAB:

• TRNSYS–GenOpt (TG).
• TRNSYS–MATLAB Optimization Toolbox (TM).

The objective of this study is to address the issues mentioned above in the following
key aspects:

1. Description of the design of both MATLAB–TRNSYS frameworks, TG and TM, re-
spectively, for automated parameterization of models for design optimization and a
parameter estimation as a use case.

2. Comparison of the required computation times for the estimation process.
3. Comparison of the solver accuracy for the estimation process.

In the following, this contribution focuses on calling TRNSYS model simulation runs
via a command shell in the FIO approach through MATLAB.

An application of the framework described in Section 3 to a multiobjective optimiza-
tion problem of BES was already described by Tadayon et al. [39]. The authors minimized
a weighted sum of two single objectives (J9), which are the mean CO2 emissions and the
average electricity costs.

The studies conducted here are limited to a single-objective optimization problem,
which is, however, subjected to a more comprehensive comparison of the solvers.

3. Methodology
In this section, a short introduction to the used software tools is given. This is followed

by the description of the TRNSYS benchmark model for tool coupling and the two frame-
works, MATLAB-coordinated optimization of a TRNSYS model with GenOpt on the one
hand and optimization with the MATLAB Optimization Toolbox on the other hand.

3.1. Introduction to the Used Software Tools

MATLAB is a high-level general-purpose modeling language. With its variety of ex-
tensions, called toolboxes, it is widely used in industry and research in the fields of control
design, signal and image processing, optimization, communication and simulation [10].
The MATLAB Optimization Toolbox provides a set of algorithms that solve optimization
problems. The toolbox includes functions for solving linear, quadratic, mixed-integer
linear, nonlinear programming and least squares problems. TRNSYS is one of the most
used simulation software programs for building and HVAC (Heating, Ventilation and Air
Conditioning) system simulations. It has been commercially available since 1976 and uses
a component-based modeling approach. By its modular structure, the software obtains
flexibility. TRNSYS component models, also known as “Types”, can model complex multi-
zone buildings, HVAC systems and renewable energy systems. For building dynamics, it is
accepted as one of the most compressive and detailed simulation software programs [9].
GenOpt is an open-source optimization software program that evaluates a cost function
by an external simulation program. Supported software tools are, for example, TRNSYS,
Dymola and EnergyPlus. Its integrated libraries can solve one- and multidimensional prob-
lems with local and global solutions. If supported by the hardware, GenOpt automatically
uses parallel computation. There are two modes in which GenOpt can be called, either
in normal mode with a graphical user interface (GUI) or without GUI as a background
process. For the following investigations, TRNSYS version 17.02.0005 (32-bit) with GenOpt
3.1.1 and MATLAB 2017b (64-bit) were used.
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3.2. TRNSYS Benchmark Model

The TRNSYS benchmark model consists of a counterflow heat exchanger (Type 5b)
that obtains measured time series data as input by a data reader (Type 9c), some error
calculations and an error time integrator (Type 24). In Figure 1, the complete TRNSYS
model is shown. The heat exchanger model measured fluid temperature and mass flow
rate on the source and load side as input.

Figure 1. TRNSYS benchmark model of a heat exchanger.

The heat exchange rate UAext in kJ/(hK) is the optimization variable. The error
Q̇error,exchange between the measured heat exchange rate, Q̇meas,exchange, and the simulated
one, Q̇sim,exchange, is calculated according to Equation (1).

Q̇error,exchange =
∣∣∣Q̇meas,exchange − Q̇sim,exchange

∣∣∣ (1)

Using the time integrator block, the complete sum of heat exchange error Qerror,sum in
kJ is calculated and used as the cost function for the optimization, using

Qerror,sum =
∫ t=tend

t=0
Q̇error,exchangedt (2)

3.3. Optimization Frameworks

In the following, the two frameworks, a MATLAB-coordinated optimization of a
TRNSYS model with GenOpt and an optimization with the MATLAB Optimization Toolbox,
are described. As shown in Figure 2, there are four considered optimizer modes: in
the GenOpt framework the standard way with a Grapical User Interface (GUI) or with
suppressed GUI, and in the MATLAB optimization framework, solvers running in serial
mode or in parallel simulation mode were taken into consideration.

Figure 2. Considered optimizer modes.

A Coordinated coupling of TRNSYS and GenOpt by MATLAB
Within the first framework, optimization is performed through GenOpt. In general, the com-
plete process can be divided in three sections:

1 Coordination.
2 Optimization.
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3 Simulation.

By default, GenOpt has no functionality to start several solvers one after another auto-
matically. To circumvent this disadvantage, MATLAB takes this over. In the coordination
part, MATLAB calls GenOpt in different solver configurations in a loop. In the first sec-
tion, MATLAB coordinates the user-defined configuration of the GenOpt files, such as file
locations, algorithm choice and algorithm parameters, simulation configuration and its
input. In general, when the user finishes the configuration in the GUI, GenOpt prepares
the TRNSYS model deck file, which has to be created once in TRNSYS before starting the
optimization process, to be a template as follows:

• It replaces the optimization variable through the variable name %OPTVAL1% in the
case of a one-dimensional optimization problem.

• It adds an output printer, named Type 758, to write the chosen optimization variable
value and the resulting cost variable value to the output files OutputListingMain.txt
and OutputListingAll.txt. Note that in TRNSYS 18, the structure of the deck file
changes at the end of the file, which makes further modifications necessary.

These two steps are also performed in the coordination part of the developed framework in
MATLAB to bypass the configuration in the GenOpt GUI. The second section, optimization,
is then handled mainly by GenOpt. For each optimization step, GenOpt writes a modified
deck file and TRNSYS reads this modified template dck file and simulates the model
(Section 3: simulation).Finally, MATLAB processes the output files of GenOpt for analysis
and visualization of the results. Figure 3 shows the schema of the GenOpt interface [11]
with the above described extensions.

Figure 3. Tool coupling of MATLAB and GenOpt–TRNSYS [39] (based on [11]).

In the following, the process flow of the coordination, optimization and simulation parts
is called generic optimization and will be explained in steps that are more detailed.
The generic optimization process has a main function and the evalGenOpt function. Both
are subdivided into 3 phases (Figure 4):

1 Preprocessing phase.
2 Optimization phase.
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3 Postprocessing phase.

In the preprocessing phase of the main function, configuration steps are performed as
listed below:

• A table of all solver names is created.
• Paths are defined for the model deck file, GenOpt working directory in the TRNSYS

path and new folder of the result files.
• Common solver parameters and boundary settings are defined, such as solver step

size, min and max boundary values, initial start value, maximum iteration number
and maximum number of equal results before optimization process stops.

• Additional parameter settings are defined, like the name of the optimization and cost
variables, the number of repetitions of a complete optimization cycle to calculate a
mean optimization time, mode of the TRNSYS simulation process bar during the
optimization process and the number of time steps in idle state of the GenOpt GUI.
The GenOpt GUI has no capability to close automatically when an optimization
process has finished. Therefore, the process will be observed and terminated when
it comes back to idle mode with no processor load for a user-defined time period as
described later.

Figure 4. Flow chart of coordinated optimization through GenOpt by MATLAB.

In the optimization phase of the main function, the GenOpt optimization with the user-
defined parameters can be called as a MATLAB function:

[output] = evalGenOpt(input)

where input are the configurations performed in the preprocessing part and the solver algo-
rithm name of GenOpt. The output is a MATLAB data structure containing the optimization
time, solution value, number of solver evaluations and objective value. In the postpro-
cessing part, the result files are accumulated and processed for visualization. Within the
evalGenOpt, function preprocessing is composed of extracting the date from the function
input structure and writing the configuration files TRNSYS17.ini, TRNSYS.cfg, command.txt
and template.dck. Then, sequentially, the optimization phase will be started once with
GenOpt in normal mode with GUI using MATLAB’s system() command with the following
input string:

cmd /C java -jar genopt.jar TRNSYS.ini &
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cmd starts a new instance of the Microsoft Windows command interpreter. /C carries out
the command specified by the string and then terminates. The trailing & dispatches the
command window to the background, while MATLAB can continue. This is required due to
the drawback that the GenOpt GUI will not close itself or be closed by command attribute
after the optimization has finished. Therefore, observation and manual termination of the
task is implemented with the following .NET methods:

System.Diagnostics.Process.GetProcessesByName(process_name)},

System.Diagnostics.PerformanceCounter(process_name)}.

where java.exe is the GenOpt process name.
Both GenOpt and the command window will be terminated when the CPU utilization is
zero for a certain time (here 10 s) using the following in the MATLAB system() function:

“C:\Windows\System32\taskkill.exe” /F /im java.exe /im cmd.exe

where /F forces the termination of the task specified with the parameter /im for the im-
age or executable names. In hidden mode, without GUI, GenOpt can be started with the
following command:

java -classpath genopt.jar genopt.GenOpt TRNSYS.ini

After each of these two optimization phases, a timer is started to measure the optimization
time for the benchmark, the GenOpt result txt file is read and data are collected.

B Coupling of TRNSYS and MATLAB Optimization Toolbox
In the second framework, the complete process can also be divided into the three sections
coordination, optimization and simulation. In contrast to the first approach, the coordi-
nation and optimization are handled by MATLAB and its Optimization Toolbox, which
triggers the simulation in TRNSYS. This approach is similar to that of GenOpt. MATLAB
creates a copy of the dck files and modifies the optimization variable to fulfill the objective
function. This takes into account the user configuration information of file paths and solver
algorithm parameters. A TRNSYS output printer (Type 25) is added to the dck file, printing
the objective value after each optimization iteration. MATLAB reads the objective value
from this TRNSYS output file.
When the solver finishes, the results of the optimization iteration process are written to a
log file and an output file (Figure 5).

Figure 5. Tool coupling of MATLAB and TRNSYS [39].
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The complete framework contains three function layers: main(), evalMatOpt() and run-
TRNmodel(). Each of the function layers can also be subdivided into a preprocessing,
an optimization and a postprocessing phase (Figure 6).
In the preprocessing phase of the main function, starting an optional timer to measure
the overall processing time (not used for this benchmark) and declaring the optimization
boundaries and the solver take place. In addition, a mat file with function arguments is
created, which is loaded by the runTRNmodel function in every optimization iteration step.
In the same way as it was developed with GenOpt, and as described in the section above,
in the optimization phase, the second function layer call

[output] = evalMatOpt(input)

allows the user to run the complete optimization process, which also includes calling the
TRNSYS model. The preprocessing phase of evalMatOpt() is composed of reading the
function input data structure, starting the MATLAB Parallel Computing Pool, included in
the MATLAB Parallel Computing Toolbox, and writing the solver’s individual optimization
options file using optimoptions().

Figure 6. Flow chart of optimization by MATLAB.

In the third function layer, the TRNSYS model with the modified deck files is simulated
using the following function call:

[output] = runTRNmodel(input)

In the preprocessing part of this function layer, the modified TRNSYS deck file is built by
replacing the value of the optimization variable and adding an output printer (Type 25) to
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write the value of the optimization and cost variable to a txt file which will be read in again
in the postprocessing part to create the function output.
When the simulation has finished and the output in runTRNmodel() has been prepared,
the temporary folder containing the TRNSYS dck file and the log file and output file of the
printer with the final value of the cost function will be deleted. When running GenOpt
optimization, TRNSYS sometimes throws an error due to collisions in multiple file access
during parallel computing. The MATLAB function parfeval() executes the simulations
asynchronously on a parallel computing pool, but the described error also arises and
cannot be avoided by the function.
The simulated value of the cost function will be returned to evalMatOpt() as an input for
the solver’s calculation in the next iteration step.

4. Evaluation Indicators, Solver Settings and Benchmark Results
For the evaluation, the Absolute Error (AE) for the measurement period is used, which

is defined as follows according to Equation (2):

AE =
∫ t=tend

t=0
Q̇error,exchangedt (3)

The derived quantity Mean Absolute Error (MAE) can be calculated according to
the equation

MAE =
1
n

∫ t=tend

t=0
Q̇error,exchangedt (4)

where n represents the number of measurement points, which in our experiment consists of
721 equidistant time points, which thus represents a simple scaling of AE and is therefore
not explicitly shown here.

System specifications of the computer used to run the simulations are listed in Table 2.

Table 2. System specifications.

System Parameters Values

Processor i5-3320M
Total cores 2
Processor clock rate (GHz) 2.6
RAM (GB) 16
Type of hard drive SSD
Operating system Windows 10 Pro
Architecture x64

For both the GenOpt and MATLAB optimizations, the initial start point of the opti-
mization variable UAext in kJ/(hK) is chosen as the middle between the lower and upper
boundaries, which are 0 and 5000, respectively. The limit of the optimization iteration
cycles is set to 500. The initial start point 2500 is chosen as the middle of these boundary
values (Table 3).

Table 3. Common solver boundaries.

Solver Parameters Values

Lower boundary 0
Upper boundary 5000
Initial start point 2500
Maximum iteration steps 500

Table 4 shows the detailed parameter settings of the considered seven GenOpt solvers
that were used:
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1. Generalized Pattern Search implementation of the Coordinate Search algorithm (GPS
Coordinate Search).

2. Hooke–Jeeves Generalized Pattern Search implementation (GPS Hooke-Jeeves).
3. Hooke–Jeeves Generalized Pattern Search implementation combined with leaded Par-

ticle Swarm Optimization algorithm with Constriction Coefficient as particle update
Equation (GPS-PSOCCHJ).

4. Golden Section.
5. Particle Swarm Optimization algorithm with Constriction Coefficient (PSO-CC).
6. Particle Swarm Optimization algorithm with Constriction Coefficient restricted to

Mesh (PSO-CCMesh).
7. Particle Swarm Optimization algorithm with Inertia Weighting (PSO-IW).

If a solver, e.g., Generalized Pattern Search (GPS) Coordinate Search (GPSCoordinate-
Search), uses a fixed step size, this is set to 10.

All of the GenOpt solver parameters were chosen as the default values. Except for the
common solver boundaries (parameters), solvers ran with default values.

Table 4. Individual solver boundaries in GenOpt.

Solver Parameters

Solver/Values
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NeighborhoodTopology - gbest gbest gbest gbest
NeighborhoodSize - 1 1 1 1
NumberOfParticle - 5 5 5 5
NumberOfGeneration - 40 40 40 40
Seed - 0 0 0 0
CognitiveAcceleration - 0.5 0.5 0.5 0.5
SocialAcceleration - 0.5 0.5 0.5 0.5
MaxVelocityDiscrete - 0.5 0.5 0.5 0.5
ConstrictionGain - 0.5 0.5 0.5 0.5
MeshSizeDivider 2 2 - 2 -
InitialMeshSizeExponent 0 0 - 0 -
MeshSizeExponent Increment 1 1 - - -
NumberOfStepReduction 4 4 - - -
InitialInertiaWeight - - - - 0.5
FinalInertiaWeight - - - - 0.5
Max Equal Results 5 5 5 5 5

The Golden Section Solver has no solver parameters that can be configured by the
user. The Nelder–Mead–O’Neill algorithm cannot be used for one-dimensional optimiza-
tion problems. Discrete Armijo–Gradient and Fibonacci do not converge. Hence, out of
the 10 solvers implemented in GenOpt, for the considered optimization problem in this
benchmark, 7 solvers were used for the comparison.

Each solver has a loop of three complete optimization cycles. Out of these three result
sets, mean, minimum and maximum values were identified. In Figure 7, mean values and
the minimum and maximum values as deviations are presented. Note, that the abscissa is
in logarithmic scale.

As these results show (Figure 7), the Particle Swarm Optimization algorithm with
Constriction Coefficient and continuous independent variables restricted to a Mesh (PSO-
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CCMesh) performs best for the given constraints and problem formulation. Mean opti-
mization time for PSO-CCMesh is about 26 s. It takes nearly half the time compared to the
second fastest solver, Hooke–Jeeves Generalized Pattern Search implementation combined
with leaded Particle Swarm Optimization algorithm with Constriction Coefficient (GPS-
PSOCCHJ), with 44 s. PSO-CCMesh also has fewer iteration loops (81) than GPS-PSOCCHJ
(233). PSO-CC, GPSHookeJeeve and Golden Section are about the same, with values between
72 and 87 s, and PSO-IW and GPSCoordinateSearch are far behind in last place with values
of approx. 162 and 209 s. PSO-CC and GPS-PSOCCHJ also show higher fluctuations in the
evaluation time, while the other solvers show relatively constant times.

By running GenOpt without a GUI, optimization time could be shortened to between
2 s (GPSCoordinateSearch) and 11 s GPSHookeJeeve in absolute values or between 1% (GP-
SCoordinateSearch) and 25% (PSO-CCMesh).

Figure 7. GenOpt optimization results.

In MATLAB, nine solvers were taken into account (Table 5):

1. Find minimum of unconstrained multivariable function using derivative-free method
(fminsearch).

2. Find minimum of single-variable function on fixed interval (fminbnd).
3. Particle Swarm Optimization (particleswarm).
4. Simulated annealing algorithm (simulannealbnd).
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5. Pattern search algorithm (patternsearch).
6. Genetic Algorithm (ga).
7. Find minimum of constrained nonlinear multivariable function (fmincon).
8. Find global minimum (GlobalSearch).
9. Find multiple local minima (MultiStart).

Note that the solvers fminbnd and fminsearch do not require the Optimization Toolbox
license. Their configuration can be performed by using the optimset function instead
of optimoptions. Global search, multistart, Genetic Algorithm, particleswarm, simulated
annealing and patternsearch are global optimizers. By giving a MATLAB function handle
to a local solver such as fminsearch, they could optionally become a hybrid solver.

Table 5. Individual solver boundaries in MATLAB.

Solver Parameters

Solver/Values
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Display iter iter iter iter iter iter iter iter iter
TolFun 10−4 10−4 10−4 - - - - - -
TolX 10−4 10−4 10−4 - - - - - -
FunValCheck off off - - - - - - -
MaxFunEvals 500 - - - - - - - -
OutputFcn @fun @fun @fun @fun @fun @fun @fun @fun @fun
OutputFcn fun fun fun fun fun fun fun fun fun
PlotFcns (1)–(3) (1)–(3) (4) (5)–(10) (11)–(14) (15)–(19) (1)–(3),

(20)–(21)
(22)–(23) (24)–(25)

setParallel - - false - false false false false false
HybridFcn - - - - - - - - -
ObjectiveLimit - - - 10−4 - - - - -
MaxIterations/MaxIter 500 500 500 500 500 500 500 - -
SearchFcn - - - - (a) - - - -
StepTolerance - - - - 10−4 - 10−4 - -
FunctionTolerance - - - - 10−4 - 10−4 - -
Algorithm - - - - - - sqp sqp sqp
FiniteDifferenceStepSize - - - - - - 10−7 10−7 10−7

FiniteDifferenceType - - - - - center center center -
ConstraintTolerance - - - - - - 10−4 10−4 10−4

StartPointsToRun - - - - - - - bounds bounds
XTolerance - - - - - - - 10−4 10−4

NumTrialPoints - - - - - - - 10 -
NumStageOnePoints - - - - - - - 10 -
NumberOfStartPoints - - - - - - - - 30

(1) @optimplotx. (2) @optimplotfunccount. (3) @optimplotfval. (4) @pswplotbestf. (5) @saplotbestf.
(6) @saplotbestx. (7) @saplotf. (8) @saplotx. (9) @saplotstopping. (10) @saplottemperature. (11) @psplotbestf.
(12) @psplotmeshsize. (13) @psplotfuncount. (14) @psplotbestx. (15) @gaplotbestf. (16) @gaplotscorediversity.
(17) @gaplotscores. (18) @gaplotselection. (19) @gaplotbestindiv. (20) @optimplotstepsize. (21) @optimplotconstrviola-
tion. (22) @gsplotbestf. (23) @gsplotfunccount. (24) @gsplotbestf. (25) @gsplotfunccount. (a) @GPSPositiveBasis2N.

Mean objective values of solvers fmincon, ga, GlobalSearch and MultiStart are higher
than the chosen upper limit of 0.05 kJ. They are in the range of 0.061 kJ (MultiStart) to
3300 kJ (ga).

Solver fminbnd, which is a one-dimensional optimizer for a bounded problem, per-
forms best for the described problem. As the results, given in Figure 8, show, it takes
21 iteration loops and 48 s in serial mode and 27 s in parallel mode, respectively, which is
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nearly 80% faster than in serial mode. Due to processing overhead in establishing the pool
communication environment, the benefit in time savings is less than the linear behavior
between the number of used processor cores and the optimization time. With average
values between 54 and 74 s in parallel mode (107 to 130 s in serial mode), the solvers
fmincon, fminsearch and patternsearch are in the midrange; GlobalSearch is behind with 289 s
in parallel mode (382 s in serial mode); MultiStart, simulanneal and particleswarm follow
with times between 500 and 718 s or 1156 and 1335 s in serial mode; and ga is in last place
with times of over 2700 and 6300 s, respectively. Since global search, multistart, Genetic
Algorithm and particleswarm are stochastic—that is, they make random initial guesses and
choices—the number of evaluations changes in every optimization loop.

Figure 8. MatOpt optimization results.

As noted before, the MATLAB solvers fmincon, ga, multistart and global search have a
poor objective value. In direct comparison to the results of GenOpt’s mode without GUI
and MATLAB in parallel mode, the remaining solvers have nearly the same objective value;
GenOpt’s Particle Swarm Optimizer with Constriction Coefficient and continuous indepen-
dent variables restricted to Mesh (PSOCCMesh) performs best among all considered solvers
regarding time of evaluation. In the meantime, it takes 20 s compared to the second one,
MATLAB’s fminbnd solver, which needs 27 s in mean and parallel modes (Figure 8).
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5. Conclusions and Outlook
This benchmark study aims at comparing the numerical performance of GenOpt and

MATLAB solvers for the identification of the overall heat transfer coefficient of a TRNSYS
heat exchanger model. Four modes were implemented and investigated: GenOpt with a
GUI and without a GUI, and MATLAB in serial optimization and in parallel optimization
using the Parallel Computing Toolbox. Considering GenOpt, an interesting finding is that
running without a GUI gives better performance, while MATLAB is faster in parallel mode,
as was expected. The MATLAB solvers fmincon, ga, multistart and global search have a poorer
objective value, while remaining solvers have nearly the same objective value. Hiding the
GenOpt GUI increased the performance of solving the considered optimization problem up
to 23% (PSO-CCMesh) compared to the time with a GUI. Running in this mode, the GenOpt
solver PSO-CCMesh gave the best performance in optimization time with 20 s, followed by
the MATLAB solver fminbnd (27 s) in parallel computing mode. The top two solvers from
GenOpt and MATLAB were followed by GPS-PSOCCHJ with approx. 38 s and MATLAB’s
fmincon (54 s) and fminsearch (69 s). These were followed by GenOpt’s PSO-CC (72 s) and
GPSHookeJeeve (73 s). With an average value of 74 s, patternsearch was close behind. This
was followed by the remaining three GenOpt solvers, and the remaining five MATLAB
solvers bring up the rear. Furthermore, it can be seen that most GenOpt solvers reach a
solution faster than most MATLAB solvers; in a direct comparison between GenOpt with a
GUI and the serial mode in MATLAB, the difference was consistently between 0.86 (fastest
solvers PSO-CCMesh/fminbnd) and 29.2 (slowest solvers GPSCoordinateSearch/ga).

In the end, and in order to answer the research question posed at the beginning, it can
be said that for the continuous single-objective optimization problem considered here, it is
better to take the simpler route of using GenOpt.

The results suggest that the advantage in terms of time savings is particularly no-
ticeable for complex single-objective optimization problems, such as the design of BES,
which require many iteration loops. There are also advantages in simulation time for
single-objective optimization problems in the area of optimal control using model pre-
dictive control and moving horizon in BES. This aspect should be taken into account
for hardware-in-the-loop applications where the control task must fulfill corresponding
real-time conditions. As already mentioned at the beginning, GenOpt can only handle
single-objective optimization problems, which is why the TRNSYS–MATLAB framework
used shows advantages, preferably in a Pareto optimization. Furthermore, well-known
commercial solvers such as Gurobi, MOSEK and CPLEX have not yet been taken into
consideration. Both GenOpt and MATLAB allow the user to integrate custom solvers;
while this is only possible directly in the Java programming language in GenOpt, MATLAB
is more flexible due to the availability of C++, Fortran and Python interfaces. Furthermore,
as an integrated development environment, MATLAB offers a wider range of application
options for extending the framework. Possible use cases here would be the connection
of databases, network communication and cloud services or hardware connections and
digital twins. On the other hand, the comparison with a Python-based framework such as
pytrnsys and corresponding solver packages (e.g., pymoo) is of particular interest. These
aspects have already been partially addressed and will be considered in future work.
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List of Acronyms

ANN Artificial Neural Network

BACS Building Automation and Control System

BCVTB Building Controls Virtual Test Bed

BES Building Energy Systems

BPST Building Performance Simulaton Tool

CFFI C Foreign Function Interface

COM Component Object Model

DLL Dynamic Link Library

EPBD Energy Performance of Buildings Directive

FIO File Input/Output

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

GA Genetic Algorithms

GEG 2023 Building Energy Act

GenOpt Generic Optimization Program

GPS Generalized Pattern Search

GPS CS Generalized Pattern Search Coordinated Search

GPS-PSOCCHJ Generalized Pattern Search–Particle Swarm Optimization algorithm with Constriction
Coefficient as particle update equation

GUI Grapical User Interface

HVAC Heating, Ventilation and Air Conditioning

IDA ICE IDA Indoor Climate and Energy

IEA SHC International Energy Agency Solar Heating and Cooling

LabVIEW Laboratory Virtual Instrumentation Engineering Workbench

MATLAB MATrix LABoratory

MOPSO MOPS]Multiobjective Particle Swarm Optimization

MPC Model Predictive Controller

NSGA-II Nondominated Sorting Genetic Algorithm 2

OPC UA Open Platform Communications Unified Architecture

PCM Phase Change Material

PSO Particle Swarm Optimization

PSO-CC Particle Swarm Optimization algorithm with Constriction Coefficient

PSO-CCMesh Particle Swarm Optimization algorithm with Constriction Coefficient restricted to Mesh

PSO-IW Particle Swarm Optimization algorithm with Inertia Weighting

RE Renewable Energies

TCP/IP Transmission Control Protocol/Internet Protocol

TRNSYS TRaNsient SYstem Simulation Program
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