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Abstract

Bacteria evolved for millions of years with pathogens plaguing hu-
mankind throughout all of its history. By comparison, the scientific
community could only prove that individual bacterial pathogens
cause infectious diseases around 200 years ago. With the market
release of the first antibiotics, effective treatment against a wide range
of bacterial infections was accessible. Unfortunately, antibacterial-
resistant pathogens emerged, capable of surviving existing antibiotic
treatments initiating a high-stakes arms race between pathogens and
the scientific community. The rapid dissipation of antibiotic resis-
tances and the slow innovation cycle in antibiotic research, made
researchers, governments, and health associations voice their con-
cerns on the sustainability of antibiotic treatments. With an estimated
5 million deaths associated with antimicrobial resistance in 2019, pro-
jections predict up to 10 million deaths in 2050.
The advent of next-generation sequencing and the developments in
the field of metagenomics propagated the interest in microbial com-
munities from ecology into clinical microbiology. While moving away
from 16S amplicon sequencing to complete metagenome shotgun
sequencing and now to long-read sequencing, our understanding of
the role of the human microbiome is constantly improving. More and
more community compositions of different body environments keep
being associated with diseases. However, our causal understanding
of the human-microbiome interactions is likely still in its infancy as
the microbiome displays an enormous diversity of molecules. Among
these, metabolites, especially those encoded by biosynthetic gene
clusters, have been highlighted as potential avenues to uncover new
antimicrobial compounds.
Within this doctoral thesis, we present a total of ten research projects
that fight against the bacterial threat distinguishing three actionable
pillars. The first pillar focuses on the support of ongoing applied stud-
ies in the field of clinical microbiology. In this research context, we
study antimicrobial-resistant pathogens, new emerging pathogens as
well as two dietary interventions. Within resistant clinical isolates, we
were able to identify resistance gene-carrying plasmids. The dietary
interventions we assessed did not yield any differentially abundant
species after dietary interventions. However we did see significant
differences comparing e.g. baseline Parkinson’s disease to control
patients.
The second pillar aims to achieve our research network’s long-term
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goals in the area of natural compound research through data analysis
of metagenomic sequencing data. In two projects, across several host
species, disease cohorts, and biospecimens we search for potentially
disease-implicated or protective natural products. We achieve this
by genome mining for relevant biosynthetic gene clusters through
large amounts of metagenomic assembled short-read sequencing data
derived from over two thousand samples.
Lastly, the third pillar enables of other researchers in the field of
microbiology through the development and maintenance of accessible
online web services and databases. In this context, we updated a pop-
ular natural plasmid database as well as the only online metagenomic
binning web service. Further, we developed a new online web service
for short-read metagenomic sequencing data, while successfully ad-
dressing the challenges of large data transmission.
In conclusion, the herein presented works contributed several applied
research studies in the field of clinical microbiology enabled other
researchers in the same research area, and potentially lay the ground-
work for the discovery of new clinically relevant natural products.



Zusammenfassung

Bakterien evolvieren seit Millionen von Jahren, wobei einige Patho-
gene die Menschheit schon immer plagten. Erst vor etwa 200 Jahren
gelang es jedoch zu zeigen, dass Bakterien tatsächlich für die Entste-
hung von Infektionskrankheiten verantwortlich sind. Mit der späteren
Vermarktung erster Antibiotika wurde eine effektive Behandlung
gegen eine Vielzahl von Bakterien möglich. Nach dieser Erfolgsge-
schichte wurden jedoch leider resistente Pathogene festgestellt, die
eine Behandlung mit bekannten Antibiotika überlebten. Somit begann
ein Wettlauf zwischen Bakterien und der wissenschaftlichen Gemein-
schaft. Die schnelle Verbreitung von antibakteriellen Resistenzen und
die langsame Entwicklung neuer Antibiotika führen zu Zweifeln in
Forschungspolitik und Gesundheitsorganisationen, ob nachhaltige
Antibiotikaforschung noch möglich ist. Mit geschätzten 5 Millionen
Toten im Jahr 2019, die mit Antibiotikaresistenzen in Verbindung
gebracht wurden, liegen mögliche Vorhersagen für 2050 bei bis zu 10

Millionen.
Die Erfindung der Sequenzierung der nächsten Generation und der
Metagenomik hat das Interesse an mikrobiellen Gemeinschaften über
die Grenzen der Ökologie hinweg bis in die klinische Mikrobiologie
erweitert. Durch den Übergang von der 16S-Amplikon-Sequenzierung
zur Metagenom-Shotgun-Sequenzierung und schließlich zur Long-
Read-Sequenzierung verbessert sich unser Verständnis des mensch-
lichen Mikrobioms stetig. Somit werden immer mehr Assoziationen
zwischen Mikrobiomen und Krankheiten hergestellt. Unser Verständ-
nis über die Kausalität dieser Zusammenhänge steckt jedoch wahr-
scheinlich noch in den Kinderschuhen, da die Diversität der von den
Mitgliedern des Mikrobioms ausgeschiedenen Moleküle enorm ist.
Besonders jene Metabolite, deren Kodierung in Biosyntheseclustern
liegt, gelten auch als potenzielle Kandidaten neuer antimikrobieller
Wirkstoffe.
Im Rahmen dieser Doktorarbeit präsentieren wir zehn Forschungs-
projekte, die sich auf drei Kernpunkte im Kampf gegen bakterielle
Pathogene konzentrieren. Der erste Punkt betrifft die Unterstützung
laufender angewandter Studien der klinischen Mikrobiologie. In die-
sem Kontext untersuchen wir antimikrobiell resistente Krankheitser-
reger, neu auftretende Erreger sowie zwei Diätinterventionen. Bei den
resistenten klinischen Isolaten konnten wir Resistenzgene in Plasmi-
den identifizieren. Während wir keine unterschiedlich abundanten
Spezies in den Interventionen beobachten konnten, sahen wir signifi-
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kante Unterschiede im Vergleich zwischen z. B. Parkinson-Patienten
und Kontrollpatienten.
Der zweite Punkt bemüht sich um das Erreichen der langfristigen
Ziele unseres Forschungsnetzwerks auf dem Gebiet der Erforschung
von Naturstoffen mittels metagenomischer Sequenzierungsdaten. In
zwei Projekten suchen wir über mehrere Wirtsspezies, Krankheits-
kohorten und Bioproben hinweg nach krankheitsauslösenden oder
vorbeugenden Naturstoffen. Dieses Ziel erreichen wir durch gezielte
Suche nach relevanten biosynthetischen Genclustern in großen Men-
gen metagenomisch assemblierter Short-Read-Sequenzierungsdaten
von über zweitausend Proben.
Zuletzt unterstützen wir andere Wissenschaftler im Feld der Mikrobio-
logie durch Entwicklung und Instandhaltung von Online-Webdiensten
und Datenbanken. In diesem Zusammenhang haben wir eine Daten-
bank für natürlich vorkommende Plasmide und ein metagenomisches
Binning-Tool aktualisiert. Außerdem haben wir einen neuen Online-
Webdienst für Short-Read-Metagenom-Sequenzierungsdaten entwi-
ckelt und dabei erfolgreich die Herausforderungen der Übertragung
großer Datenmengen bewältigt.
Zusammenfassend lässt sich sagen, dass die hier vorgestellten Ar-
beiten zu mehreren angewandten Forschungsstudien im Bereich der
klinischen Mikrobiologie beigetragen haben, Kollegen im selben For-
schungsbereich unterstützt haben und hoffentlich zur Entdeckung
neuer relevanter Naturstoffe beigetragen haben.
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1
Introduction

A first version of the complete human genome was released in the year
2000 [11; 12]. At the time it was considered a milestone achievement
that was attributed to the collaboration between the fields of molecular
biology and bioinformatics. Following over twenty years of research
and tremendous efforts from the scientific community many insights
on these approximately 3 × 109 base pairs (bps) and 20,000 protein-
coding genes have been gained [13]. However, already well before
completing the human genome project, it was well-understood that
not all diseases are due to genetic factors. Instead, humans live
in and interact with their environment which considerably impacts
their health. Microbial pathogens have been demonstrated to be a
causative agents of diseases ranging from diseases such as typhus to
tuberculosis. Apart from individual pathogenic species, a vast array of
different microorganisms resides in and on the human body defining
the microbiome. This microbiome is estimated to harbor around 2

million genes i.e. 100 fold the number of human genes [14]. Due to
this complexity, researching the impact of the microbiome on its host’s
health does not only require a deep knowledge of the underlying
biological system but also necessitates dedicated bioinformatic tools
and data analysis.

Figure 1.1: General structure of the in-
troduction discussing bioinformatic and
microbiology concepts. Created with
BioRender.com.

In this thesis, we will investigate the clinical importance of microbes
through bioinformatic analysis of genomic sequencing data. The
general structure of this thesis is split into four separate chapters,
beginning with this introduction. In the introduction, we begin in
section 1.1 by presenting overarching concepts in the field of bioin-
formatics that are not bound to a specific type of data (Figure 1.1).
We then elaborate on different concepts that are rather associated
with the discipline of molecular biology. At the end of each of these
sections presenting a concept, we introduce some of the challenges
and best practices that are associated with bioinformatics within these
general topics. After the introduction we concisely present the goal of
this thesis in chapter 2, while also providing a brief digestible outlook
on the various projects. The results are then showcased in full detail
in chapter 3. Lastly, the results are discussed, in chapter 4 providing
further perspective on future work.

https://www.biorender.com/
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1.1 Bioinformatics

The field of bioinformatics can naively be summarized as the pro-
cessing of biological data with computational tools. Located at the
midsection between computer science and biology, it is a relatively
young field of research with its beginnings arguably dating back to
the middle of the last century when software was still written onto
punch cards [15; 16]. With the advent of high throughput sequencing
data, the relevance of bioinformatics in biomedical research became
evident. These days, the rapid incremental innovations in informat-
ics and new discoveries in molecular biology make bioinformatics
a dynamic interdisciplinary research field. Yet also apart from its
relevance for research, more and more bioinformatics services find
their way into the healthcare system [17].
As bioinformatics is closely intertwined with other fields of research,
new discoveries, and technologies are often quickly integrated. Un-
fortunately, through this relationship, bioinformatics not only inherits
many opportunities but also several challenges. On the one hand,
data derived from biological experiments is often noisy, due to mea-
surement inaccuracies as well as many confounding factors acting
upon the measured biological systems [18]. Further, depending on the
experiment, sample sizes may be very limited e.g. due to experimental
costs or low number of disease occurrences [19]. On the other hand,
the rise of personal computing led to software development having
to account for many different hardware environments and software
dependencies making it often more difficult to replicate results across
systems [20]. Apart from inherited problems, bioinformatics faces
also many self-made challenges. Bioinformaticians often must in-
teract with researchers and medical experts who lack programming
expertise. Due to these circumstances, dedicated effort is required
for accessible software design to accommodate the interdisciplinary
nature of bioinformatics. These increased demands for qualitative
software are in direct contradiction with development teams showing
high fluctuations due to many developers being graduate students
on short contracts who also often lack formal experience in software
design [21; 22].

1.1.1 Algorithms

Algorithmic bioinformatics focuses on solving a specific task on bio-
logical data using a set of predefined rules. Especially algorithms that
operate on strings, i.e. sequences of letters, see frequent application
as most high throughput sequencing outputs have string representa-
tions. Classical examples include alignment algorithms, k-mer-based
algorithms, and assembly algorithms. Alignment algorithms such as
Needlemann-Wunsch, Smith-Waterman, and Basic Local Alignment
Search Tool (BLAST) generally aim to compare sequences against
each other [23–25]. K-mer based algorithms are not restricted to only
sequence alignment and are suitable for large amounts of data. K-
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mers are defined as substrings of length k and are frequently hashed
in associated algorithms i.e. a number is derived from the substring
[26]. Assembly algorithms try to concatenate individual sequence
fragments into longer sequences. Among these algorithms, several
subcategories may be distinguished relying on greedy, overlap-layout-
consensus, or de Bruijn graph strategies [27]. SPAdes, a popular
short-read assembler, relies on de Bruijn graphs. Naively, reads are
aggregated into the network representation called a de Bruijn graph,
where edges represent overlap information of different sequences
and nodes represent k-mers [28]. Then, a wide range of dedicated
algorithms and heuristics are applied to simplify this graph using e.g.
coverage and paired-end information to aggregate nodes [29–31]. In
the end, longer fragments are extracted from the simplified graph.
There are also many algorithms in bioinformatics that are not necessar-
ily focused on strings such as the Viterbi algorithm, the Baum-Welch
algorithm, a plethora of algorithms tied to data science, etc. [32; 33].
Independent of the selected theoretical data structure and algorithms
to solve a problem, the implementation of an algorithm will also have
a major impact on the quality of a solution. Frequently, successful
implementations are programmed in low-level programming lan-
guages for improved performance [34]. Tools such as SPAdes, BWA,
or Bowtie2 accumulating many citations and widely across bioinfor-
matics research, are frequently programmed in C++ [28; 35; 36].

1.1.2 Workflow management

True to the Unix philosophy, most bioinformatic software is centered
around solving one very specific task for a given input. The output of
this software should then be forwarded to the next piece of software,
repeating this pattern until the desired outcome is achieved. This
procedure is supported by the most popular tools by adhering to
well-defined filetypes specific to the field, where examples include
formats such as .bam, .vcf, .fastq, etc. [37]. By design, many bioinfor-
matic tools can only be used via the command line. With sample
counts in the thousands, and often at least five different tools required
per sample, a larger study may easily require the execution of five
thousand commands. Manual input is not only a lot of work but
also error-prone. Here, modern workflow management tools such as
Nextflow or Snakemake try to automate large portions of this work
[38; 39]. Instead of executing every command by hand, additional
code is supplied to a workflow manager describing a recipe on how
to invoke a tool, receive its inputs, and forward its output. This leads
to modular pipelines able to perform entire analysis with minimal in-
teraction. Conveniently for users, these workflow management tools
are also able to handle many other aspects important for software
execution. For example, they can orchestrate parallel execution on
large computing clusters, support error logging, manage resource
scheduling such as memory, etc.
Bioinformatics data analysis has been highlighted to contribute to
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the replication crisis in science [40; 41]. Reasons include unclear
documentation of computational methods that were used, missing
code, missing data etc. An important contributor to decreasing re-
producibility are also software libraries to which newly developed
code is dependent on [42]. To solve these dependency issues sev-
eral solutions such as in virtual machines or the usage of various
levels of containerization can be leveraged. One key functionality of
more modern workflow management tool is the support for various
containerization methods such as Conda or Docker environments.
From the over 150 workflow management tools available, we selected
Snakemake for most of this thesis [39; 43].

1.1.3 Web services

Bioinformatic web services on the internet, not to be confused with
cloud computing, come with various functionalities, advantages, and
drawbacks. For example, databases aggregate data from the commu-
nity and redistribute it through the web. The contents usually consist
of sequence information, three-dimensional structure, functional an-
notations, etc. [44–46]. On the one hand, large databases such as
Sequencing Read Archive may store over 20 petabytes of data, under-
lining how integral data is for a data-centric science [47]. They often
play a key role in adhering to good data practices such as the FAIR
concept, where findability, accessibility, interoperability, and reusabil-
ity should be maximized for the benefit of the scientific community
[48]. Further, uploaded data may not be stashed locally anymore
freeing resources for teams with sparse storage infrastructure. On the
other hand, uploading data for users is often tedious as they have
to supply metadata and match predefined formats. Moreover, large
resources frequently suffer from quality issues as manual curation is
unfeasible, and automated detection is usually not perfect [49–51].
Apart from databases, web servers capable of analyzing data through
the web have seen popularity in the bioinformatics community. Identi-
cal to locally executed software their main task is to accept user input,
process or transform the data, and present results. The advantages
of distributing software in the form of web services are plentiful.
First and foremost, they are easily accessible as there is no need for
installation or expensive computing power on the user side. The
only thing required is a browser, internet access, and data, which
most researchers have. Nevertheless, data must be uploaded to the
resource which may take time or be limited in size. Similarly, in case
sensitive clinical data is treated, a convoluted array of data protection
laws may apply that prohibit the redistribution of data [52]. Relevant
for larger studies, computational resources for each user are usually
limited to guarantee smooth operation for other users [53]. Lastly,
most servers are constrained in terms of workflow customization.
While individual projects such as Galaxy provide a wide plethora of
tools and configurations for users, most web servers present only a
restricted set of possible analyses and parameters to explore [54].
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Like any other software, also web services require maintenance and
are occasionally abandoned. As such, about 50% of web services are
no longer reachable after 10 years [55]. Despite the mentioned chal-
lenges, the conveniences appear to outweigh, as to this day, there are
still many web services published. For example, the scientific journal
Nucleic Acid Research dedicates every year two issues to such web
services accumulating several hundred submissions yearly [56–58].
One issue is dedicated only to databases. The other one targets web
servers, where we also contributed to the community by supporting
the editor as software tester since 2020 [57; 59; 60].

1.1.4 Data Science

While many colleagues insist on highlighting all the intricate dif-
ferences between artificial intelligence, machine learning, statistical
learning, etc. we are here, for the sake of simplicity, going to sum-
marize all of these crafts under the term of data science. At its core,
bioinformatics has the goal of processing and interpreting biological
data and is therefore deeply connected to data science. Data science
applications in bioinformatics include statistical modeling of genome-
scale metabolic networks, dimensionality reductions for efficient visu-
alization of higher dimensional data, etc. [61]. The main application
of data science in this thesis will be for the mining of biomarker
sequences in genome sequencing experiments. More specifically, in
metagenomic experiments, further elaborated in subsection 1.4.3, we
will derive a multivariate feature vector for each sample where the
dimensionality is equal to the number of different microorganisms
we consider in the experiment [62; 63]. This data may be interpreted
as compositional data, meaning that the true information of an entry
mostly derives through the ratio to other values in the same sam-
ple [64]. Given feature vectors representing individual samples, the
primary objective is to identify features that are significantly associ-
ated with specific conditions, which may vary based on the study
design. While many publications use methods designed for differ-
ential expression analysis from the field of transcriptomics for this
purpose, such an approach is discouraged in dedicated literature
[65]. Consequently, we opt for a restricted set of specialized models
tailored for conducting differential abundance analysis. Apart from
differential abundance analysis, other statistical methods we rely on
are mostly centered around data visualization. Here dimensional-
ity reduction methods such as Uniform Manifold Approximation and
Projection (UMAP) or non-metric multidimensional scaling (NMDS) are
leveraged to display similarity among data points [66; 67]. To this end,
we first compute dissimilarities or distances among all samples and
reduce them then to a two-dimensional space in a way that preserves
clustering behavior. The dissimilarity among points may be computed
based on various distance functions such as the Bray-Curtis distance
which takes abundances of microorganisms into account, or the Jac-
card distance applied directly on hashed k-mers of the sequencing
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data as e.g. done in Mash or sourmash [68–70]. Another frequent tool
we utilize for data visualization is the center log-ratio transform for
data normalization. As previously stated, metagenomics data exhibits
compositional nature and feature abundances should therefore be
interpreted in relation to the other features. The center log ratio
transformation is frequently applied in metagenomics data analysis,
due to a wide range of advantageous properties. First, it preserves the
relative ordering between feature counts [71–73]. Further, it quickly
allows to estimate whether the feature abundance is below average as
the transformation is performed with respect to the geometric mean
of each sample independently.

1.2 Bacteria

The bacterial domain describes a group of usually single-celled or-
ganisms that are traditionally characterized by a lack of organelles,
internal membranes, and nuclei [74; 75]. Hardly possible to inves-
tigate by eye, bacteria are of microscopic scale ranging from 0.29

µm to 750 µm in diameter [76; 77]. Following the central dogma of
molecular biology, the deoxyribonucleic acid (DNA) found within the
bacterial cytoplasm is transcribed into ribonucleic acid (RNA) which
may be translated into proteins [78]. Proteins perform enzymatic
reactions and partake in large pathways to produce a plethora of
various metabolites [79]. Genes and their products, predispose bac-
terial cells to be a complex dynamic biochemical machinery capable
of interacting with the outside world and able to react to external
conditions [80]. This flexibility combined with the possibility to repli-
cate and mutate over billions of years, enabled bacteria to adapt to
a wide range of different environments, even those considered ex-
treme by measures of pH, pressure, or temperature [81]. Accordingly,
bacterial organisms have been found in the depths of our oceans,
deep caves, and geysers [82; 83]. Therefore, bacteria are often said
to be ubiquitous [84–86]. For example, an estimated 1.3 × 1029 bacte-
ria are expected to be found in in the oceanic subsurface alone [87; 88].
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Figure 1.2: Selection of various taxo-
nomic ranks displaying the classification
of the Escherichia coli K-12 strain.

Bacteria are known to reside in and on higher eukaryotes including
humans. Especially in case of a perturbation of a host e.g. by a
wound, pathogenic species can infect a host [89]. Depending on
the bacterial infection, a host may suffer detrimental consequences
ranging from minor symptoms such as fever to amputation of limbs,
and in the worst cases, death [90]. Accordingly, it has been of historic
importance to understand, characterize, and, in some cases, combat
the bacterial domain. In the last centuries, tremendous progress in
these endeavors could be celebrated. Nevertheless, many questions
remain unanswered in the field of bacteriology while the threat of
microbial infections may become ever more relevant in the future.
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1.2.1 Classification

Starting with Aristoteles’ History of Animals, a major goal in biology
has always been the classification and grouping of similarly composed
and behaving organisms [91]. This grouping allows the transfer of
knowledge gained about one organism to other identically classified
species. Already early classification systems, such as the Systema
Naturae by Carl Linnaeus in the year 1735 built on a hierarchical
structure to organize different organisms at various levels of simi-
larity [92]. Hundreds of years later, after incorporating additional
molecular knowledge and phylogenetics into classifications, hierarchi-
cal structures subdividing taxonomies prevailed [93–95]. In the most
prevalent taxonomic classification systems, in the early branching
structures of their hierarchy, an acknowledged split is separating
eukaryotic and procaryotic organisms, e.g. based on information on
the presence or absence of a nucleus [96; 97]. However, it is currently
assumed that prokaryotes, lacking a nucleus, separated already earlier
in evolution into what we now define as archaea and bacteria [98; 99].
Thus, three domains of life are traditionally distinguished with each
of these domains is then further subdivided into several taxonomic
ranks, such as order or genus (Figure 1.2).
Species diversity estimates within the three domains of life are highly
variable ranging e.g. from the lower millions up to trillions of dif-
ferent species for the bacterial domain [100–107]. A large portion
of microorganisms found in and on humans were successfully put
into culture and isolated [108–111]. However, for other biomes, some
researchers claim that only 1% of microorganisms are culturable on
standard agar, complicating documentation [112–114]. Accordingly,
only about 20,000 bacterial species were successfully isolated and
described [115]. Genome analysis of uncultured bacteria in molecu-
lar experiments motivated the revision of early estimates [116]. The
genome taxonomy database, for example, currently holds around
80,000 different bacterial species which are defined based on genome
similarity [117]. To provide context, there are an estimated 8.7 million
eukaryotic species on Earth, of which about 1.6 million have been
described (Figure 1.3) [102; 118; 119].

Bacteria 

Archaea Eukarya
~8.7×10⁶>2×10⁴

3×10⁶-3×¹² 

Figure 1.3: Estimated number of species
grouped into the three domains of life.
Note, the estimates are highly volatile
and were taken from literature [102; 107;
120].

1.2.2 Pathogens & Infections

On the one hand, there are many commensal bacteria that live on a
host organism without causing harm. Some even maintain mutually
beneficial relationships with their host. Similarly, for the majority of
bacterial species, contact is safe for humans. On the other hand, some
bacterial species have been described as causal disease agents which
defines them as pathogens. As such, bacterial infections are among
the leading causes of death worldwide. Only 33 selected bacterial
pathogenic species, were globally associated with an estimated 7.7
million deaths in 2019 alone, which constitutes approximately every
eighth death [121]. As of today, around 1500 bacterial pathogens are
described [122]. Frequently the difference between obligate and op-
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portunistic pathogens is distinguished, with opportunistic pathogens
requiring an immunocompromised host for successful infection [123].
We present a selection of the most frequent or relevant bacterial
pathogens in Table 1.1.
Until the nineteenth century scientific consensus on infectious dis-
eases was that pathogens emerged and propagated from a miasma
which was linked to the idea of bad air [124]. These days, it has been
shown that bacterial cells or spores are transmitted to hosts where they
colonize in different organs and on surfaces [125]. Hereby, specific
modes of transmission can vary among species [126]. Whereas e.g.
Yesinia pesits is transmitted via flea bites, Salmonella enterica is taken
up with food and water, and Bacillus spores may transmit through
inhalation [127–132]. Despite this diversity in transmission modes,
many bacterial infections have in common that they can be traced
back to a lack of hygiene [133; 134]. In clinics or hospitals, where
a more vulnerable and diseased population coexist closely together
and operations may be performed, nosocomial infections can pose a
serious threat to staff and patients [135–138]. Accordingly, hygienic
measures like disinfecting hands and materials, play an important
role within healthcare facilities and considerably impact budgets
[139–142]. In community-acquired infections, outside of healthcare
facilities, diseases like cholera are associated with poor wastewater
treatment infrastructure [143].

Bacterial Species Associated Diseases
Bacillus anthracis Anthrax
Borrelia burgdorferi Lyme disease
Campylobacter jejuni Gastroenteritis
Chlamydia trachomatis Chlamydia infection
Clostridium botulinum Botulism
Clostridium difficile Diarrheal infections
Clostridium perfringens Gas gangrene
Enterococcus faecalis Urinary tract infections
Escherichia coli Gastroenteritis
Gardnerella vaginalis Bacterial vaginosis
Haemophilus influenzae Respiratory infections
Helicobacter hepaticus Liver inflammation
Helicobacter pylori Peptic ulcers
Klebsiella pneumoniae Pneumonia, UTI
Legionella pneumophila Legionnaires’ disease
Listeria monocytogenes Listeriosis
Mycobacterium tuberculosis Tuberculosis
Mycoplasma pneumoniae Atypical pneumonia
Neisseria gonorrhoeae Gonorrhea
Salmonella spp. Food Poisoning
Shigella spp. Shigellosis
Staphylococcus aureus Pneumonia
Streptococcus pneumoniae Pneumonia
Treponema pallidum Syphilis
Vibrio cholerae Cholera
Yersinia pestis Plague

Table 1.1: Assortment of relevant
pathogens selected based on historic and
clinical relevance.

1.2.3 Historic Relevance of Bacteria

Estimates suggest that bacteria inhabit our planet for up to 3.9 billion
years [144]. Various fossil findings arguably prove that cyanobacteria
existed already 3.5 billion years ago [145–147]. Accordingly, bacteria
inhabited this planet long before humans did, where first fossils only
date back as far as around 300,000 years ago [148]. Interestingly,
early signs of osteomyelitis hint that already dinosaurs have been
subject to bacterial infections [149]. Similarly, paleontological findings
from South Africa suggest that Australopithecus africanus, an ancient
homoinis species, was subject to Brucella infections 2.4 million years
ago [150]. In Homo sapiens, findings from the bronze age dating back
almost four thousand years hint towards plague infections [151; 152].
On a similar note, ancient human mummies from Egypt and Peru
provide the first signs of tuberculosis infections in humans dating
back over two thousand years ago [153–155]. Since methods to iden-
tify and characterize bacterial pathogens as causal disease agents are
rather novel by comparison, written proof of bacterial infections only
existed since 1876 [156]. However, the earliest conserved written doc-
umentations in human history on what were likely bacterial infections
are already described in various ancient texts dating back over three
thousand years ago [157; 158]. Written records of bacterial pandemics
are scattered all over human history too with the worst examples
usually being the bubonic plagues caused by Yesinia pesits infections.
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Including the Plague of Justinian, Black Death and the third plague pan-
demic it is estimated that over 200 million people have succumbed to
this pathogen throughout history [159]. Apart from pandemics deci-
mating entire populations in one sweep, common bacterial infections,
such as tuberculosis constituted a major threat on a daily basis.

1.2.4 Golden age of Bacteriology

With bacterial pathogens historically claiming so many lives, it comes
as no surprise that breakthrough research on microbial organisms
has a tremendous impact on our society. Frequently considered the
earliest microbiologist, Anton van Leeuwenhoek was 1676 the first
person to ever observe and describe the microbial world with the
help of his advancements in microscopy [160]. Ignaz Semmelweis
achieved a pivotal milestone in combating childbed fever through the
implementation of infection control measures in 1847 [161]. Lacking
a profound comprehension of the disease’s intricacies and relying on
evidence-based medicine, he introduced a hand-sanitization protocol
using a chlorine solution before delivering healthcare during child-
birth. This initiative ultimately resulted in a reduction of bacterial
infections and a decline in childbirth-related deaths [162]. The early
beginnings of modern bacteriology as a research field are frequently
attributed to the contributions of Ferdinand Cohn, Louis Pasteur,
and Robert Koch in the 19th century. Ferdinand Cohn elaborated
on the endospores of Bacillus subtilis and proposed early taxonomies
of bacteria in 1875 [163]. Louis Pasteur published a wide range of
contributions across several fields. Some of his most influential works
include his work on pasteurization in 1864 [164], the germ theory of
disease during the 1860s [165], and his work on the rabies vaccine in
1885 [166]. He thus did not only provide a first explanation linking
the cause of many diseases to microorganisms but he also provided a
trivial way to make food and beverages safer for consumption [167].
Around the same time, Robert Koch published his famous postulates,
identifying pathogens as causal disease agents, and his works on the
identification of three different bacterial pathogens namely, Bacillus
anthracis, Mycobacterium tuberculosis, and Vibrio cholerae [156; 168–171].

1.2.5 Bacterial Structure

Due to the large diversity within the bacterial domain, it is difficult
to derive a single description for the structure of a bacterial cell,
encompassing all members of the domain. Nevertheless, we here try
to characterize a majority of noteworthy properties and mechanisms
of known bacteria. Some of these will later be relevant as they serve
as antibiotic targets.

Cell envelope On the outside, bacterial cells possess a rigid cell wall,
which provides structural support and protects the cell [172]. Bacteria
may be categorized into Gram-positive and Gram-negative based on
their susceptibility to Gram staining [173]. In Gram-positive bacteria,
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the cell wall is mostly composed of multiple layers of peptidoglycan
[174]. This peptidoglycan can be deconstructed into linear chains of al-
ternating sugars namely N-acetylglucosamine and N-acetylmuramic
acid. These chains are then cross-linked by a D-alanyl-D-alanine-
cleaving-peptidase using D-alanyl-D-alanine dipeptides as a substrate
to form a mesh-like peptidoglycan layer [175]. In Gram-negative
bacteria, while peptidoglycan may be included in the cell wall, the
overall number of layers is reduced [176]. During Gram staining, e.g.
hexamethyl pararosaniline chloride, or crystal violet, is used to color
the peptidoglycan layer of the cell wall [177]. Depending on the thick-
ness of this layer, staining results will vary allowing this histological
staining technique to be used during species identification. Gram-
positive cell walls also include large amounts of anionic polymers and
a wide range of different proteins [174]. In contrast, Gram-negative
bacteria typically possess lipopolysaccharides as an outer membrane
surrounding the optional peptidoglycan layer i.e. cell wall [178]. This
membrane is composed of a lipid bilayer where the inner layers are
phospholipids and the outer layers are glycolipids.
The cell wall surrounds the plasma membrane of the cell. The cell
membrane, consisting of a phospholipid bilayer, plays an important
role in regulating the exchange of signal molecules, nutrients, and
waste products with the environment [179]. Apart from a cell wall
and cell membrane, some bacterial species own a third cell envelope
layer called a capsule or slime layer [180]. The capsule surrounds the
cell wall and can play key roles in immune evasion and protection
against environmental stress factors [181].
Despite sophisticated, metabolic pathways and the capability to syn-
thesize a plethora of different molecules, bacterial cells are in constant
molecule exchange with their environment to survive. While this
encompasses the uptake of nutrients for cell growth, it also includes
a wide range of metabolites that are excreted into the environment
[182]. To orchestrate these fluxes, a wide range of mechanisms evolved
exploiting e.g. passive diffusion, and active specialized transport sys-
tems. Some of these cellular transport systems, such as pumps are
anchored into the cell envelope [183].
Several bacterial species own one or multiple flagella which are char-
acteristic whip-like appendages that allow a cell to traverse its envi-
ronment [184; 185]. The flagella’s motility mechanism differs across
bacterial species [186]. Other optional external structures that can be
used to differentiate bacterial species are pili or fimbriae, which are
hair-like extensions on the cell surface. They can be used to attach
to other cells and surfaces [187–189] A more exotic structure that
may rarely be observed in bacteria is a magnetosome [190]. These
membrane-bound iron particles or crystals enable magnetotactic bac-
teria to orient themselves along magnetic field lines [191; 192].

Bacterial DNA The inner of the bacterial cell is filled with cytoplasm
which is a fluid with increased viscosity [193]. Here, a wide range
of different macromolecules and metabolites may be found that are
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either synthesized or imported into the cell [193]. Organelles in the
classical sense, such as a nucleus or other structures enclosed by a
phospholipid membrane are typically not found inside bacterial cells.
Nevertheless, other subcellular structures with defined boundaries
have been described [75]. Within the cytoplasm, one cyclic chromo-
some may be found in a region called nucleoid [194]. Due to the
multiploidy of some bacterial species, several chromosomes may ex-
ceptionally be observed [195]. Similarly, linear chromosomes have
been described [196]. Just like eukaryotic DNA, bacterial DNA is
arranged into a double helix, harboring the same four nucleotides.
Further, a wide range of functional genomic regions, such as promot-
ers, mobile genetic elements, etc., despite being of different sequences,
are also found in bacteria [197]. Operons, traditionally associated with
prokaryotes and occasionally observed in eukaryotes, are functional
units of DNA [198]. These units consist of clustered genes that are
co-regulated and transcribed as a single entity. The transcription of
operons may produce polycistronic messenger-RNA (mRNA), encod-
ing multiple proteins [199].
Apart from chromosomal DNA, Prokaryotes can harbor extrachro-
mosomal DNA in the form of plasmids. Generally also described as
cyclic, natural plasmids can appear in multiple copies in the same
cell ranging from 746 bps to several Mb [200; 201]. While multiple
different plasmids may coexist, incompatibility groups have been de-
fined due to shared replication or partitioning mechanisms [202; 203].
As further discussed in subsection 1.3.2, plasmids can be transferred
horizontally among bacteria.

Bacterial Gene Expression The bacterial genome encodes for about
500-7500 genes with lengths up to around 100kb [204; 205]. Hereby,
a gene may be defined as the necessary DNA that contains the re-
quired information to generate a functioning RNA or protein. DNA
information is transcribed into RNA by RNA polymerase during gene
transcription. Resulting mRNA fragments can then be further trans-
lated into proteins by ribosomes. Finally, these proteins can partake in
complex metabolic pathways or compose the cell structure. In order
to remain responsive to outside stimuli and environmental changes,
cells regulate their genes yielding various levels of gene expression
[206]. Gene regulation may happen on many different levels. The
methods of bacterial gene regulation share many similarities to the
eukaryotic domain, yet may generally be described to be simpler
[207; 208].
Whereas epigenetic gene regulation is important in eukaryotic cells
e.g. for cell differentiation, this type of gene regulation is less studied
in bacteria [209]. Histone modifications, i.e. modified versions of the
DNA packaging proteins, play a major role in eukaryotes. In contrast,
bacteria were long thought to lack histones and therefore also to lack
histone modifications [210; 211]. However, recently histones were also
described to be prevalent across the bacterial domain [212; 213]. Thus,
new histone modifications may be found in the future. Certainly, bac-
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teria have been described to perform DNA methylation for epigenetic
gene regulation [214–217]. Using DNA methyltransferases bacteria
can attach methyl groups to adenine or cytosine bases in their DNA
[218]. Based on the presence or absence of these methylation patterns,
subpopulations with different phenotypes may emerge [219].
A well-studied level of regulation is transcriptional gene regulation
dictating how quickly and frequently a gene will be transcribed by
the DNA-dependant-RNA polymerase complex. Here, transcription
start can be regulated based on the recognition of the promoter site,
RNA polymerase activity, and its holoenzyme formation [220; 221].
Promoter recognition behavior may be altered by activator or repres-
sor proteins [222; 223]. The lac operon in Escherichia coli is the classical
textbook example of such acting inducers, activators, and repressors,
where based on the presence or absence of lactose and glucose, differ-
ent regulation patterns are observed [224]. An alternative method for
promoter-based regulation would be the modification of the promoter
e.g. by sequence inversion [225; 226]. Further, the formation of the
holoenzyme, composed of the RNA polymerase and a required sigma
factor subunit, can be regulated [227]. With different sigma factors be-
ing more susceptible to specific promoters, expression can be adapted
based on the concentration of a selected sigma factor [228]. Moreover,
bacteria may alter the activity of their already active holoenzyme
[229]. Here, another well-explained mechanism of transcriptional
regulation is attenuation, where the textbook example would be the
tryptophan operon in Escherichia coli. Through altered stem-loop con-
formation of the mRNA dependent on the tryptophan concentration
in the cell, transcription may end prematurely [230]. Lastly, 20-30%
of transcripts, are terminated via rho factor concentrations, providing
another avenue for regulation [231].
Since bacteria do not possess a nucleus, the transcribed mRNA does
not pass a membrane before translation. Similarly, most bacterial
transcripts do not undergo splicing [232]. Accordingly, translation
can already start before transcription is completed [233]. Once a
functional mRNA has been transcribed regulation may still occur
at the post-transcriptional level. So-called riboswitches have been
described to play an important role in bacteria gene regulation. By
binding ligands, riboswitches alter the conformation of a transcript
prohibiting translation [234]. Frequently, riboswitches regulate the
same mRNA fragment they are located on, called cis-acting. However,
also trans-acting riboswitches have been described which regulate a
different mRNA molecule [235]. Further, small RNAs and antisense
RNAs have been described to bind to mRNA and influence translation
rates [236; 237]. In this context, Hfq, a protein that mediates small
RNA binding, is frequently mentioned alongside [238; 239]. Lastly,
the mRNA may be degraded by ribonucleases, such as the RNase E
[240; 241].
The bacterial translation machinery consists of two ribosomal subunits
namely, 50S and 30S that slide along a transcribed mRNA [242; 243].
Several initiation factors are required as well as the Shine-Dalgarno



33

sequence on the mRNA opening alleyways for translational regula-
tion [244]. After initiation, several factors can influence efficiency,
e.g. codon usage and transfer RNA (tRNA) availability [245–247].
Furthermore, transfer-messenger-RNA have been shown to regulate
translation, as these RNAs are capable of re-initiating translation of
stalled ribosomes [248].
After successful translation into a protein, additional mechanisms
exist to regulate protein activity. Methylation, acetylations, glyco-
sylation, lipidation, and other protein modifications may activate,
deactivate, or alter enzymatic efficiency in proteins [249]. Another
example of post-translational regulation involves the cleavage of pep-
tide bonds as exemplified in the cholera toxin activation where the
toxic-active A-subunit is cleaved by a protease into two fragments
named CTA1 and CTA2 which are then linked via a disulfide bond
[250; 251]. Further, allosteric regulation is observed in bacteria. Here,
effector molecules binding outside of a protein’s active site induce
conformational changes, altering protein activity [252; 253]. Lastly,
protein degradation rates impact protein expression levels. In contrast
to eukaryotic post-transcriptional regulation, ubiquitin degradation
tags are less relevant in bacteria [254]. Instead, protein degradation
is mostly regulated by specific recognition sequences or signals that
mark proteins for degradation called degrons. One common mecha-
nism in bacteria involves the tagging of proteins with small peptides,
known as ssrA tags or tmRNA tags respectively [255].

Metabolism Bacterial cells have developed a large union of chemical
reactions to orchestrate survival, growth, proliferation, energy con-
version, waste product transformation, and cell component synthesis
to stay alive. These reactions required to sustain life are usually
referred to as metabolism [256]. To improve our understanding of
metabolism, researchers group the reactions into structured pathways
consisting of a sequence of chemical and enzymatic reactions. The
pathways are then described to take one or many inputs and provide
several outputs while being labeled according to the main function
of the pathway [257]. An example of such a well-studied pathway is
the folate biosynthesis pathway. Here para-aminobenzoic acid and
pteridine derivatives are converted into dihydrofolate and ultimately
tetrahydrofolate which is vital for purine and thymidine synthesis,
both key components of DNA [258].
Historically bacteria were characterized based on the different kinds
of energy metabolisms characterized by the capability of bacteria to
grow in the presence or absence of oxygen. Obligate aerobe bacteria,
such as Mycobacterium tuberculosis, require oxygen for respiration. For
obligate anaerobes, such as Clostridium difficile, oxygen is toxic. They
may rely on fermentation for energy conversion [259; 260]. Further
groups, such as facultative aerobic, aerotolerant anaerobe, etc. may be
distinguished [261].
Significant in the context of Earth’s history is also the capability
of various bacteria to leverage photosynthesis in their metabolism.
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Cyanobacter as well as some purple sulfur bacteria can transform
carbon dioxide into carbon-rich organic compounds or oxygen using
light [262; 263]. These cyanobacteria are discussed to have played
a vital role in oxygenating our planet [264]. In the wake of ever-
increasing greenhouse gases in our atmosphere, these photosynthetic
bacteria are also explored as a means to reduce e.g. CO2 concentra-
tions [265]. The chemolithotrophy performed by various bacterial
species is similarly important to our environment. Here, bacteria
harvest inorganic compounds as energy sources. Examples include
sulfur-oxidizing bacteria, such as Beggiatoa and Thiomargerita [266].
Other bacteria have the ability to detoxify pollutants, making them
valuable assets in bioremediation efforts [267]. Nitrogen-fixing bacte-
ria convert atmospheric nitrogen into ammonia, making it available
for other organisms [267]. Examples include Rhizobium in plant root
nodules [268].

Reproduction Bacterial reproduction is asexual and happens most
often through binary fission [269]. To prepare for cell division, the
bacterium duplicates its chromosomal DNA through DNA replication.
Typically replication begins at a unique origin of replication by coop-
erative binding of the initiator protein DnaA to multiple recognition
sites [270]. This triggers DNA separation and allows the replisomes
to enter in between strands [271]. The replisome is a protein complex
that is dragged along the DNA double helix during replication. On
each strand, DNA information is copied into a new strand resulting in
two new double strands [272]. While replisomes are reading along the
initial double strand, DNA starts supercoiling. Here, topoisomerases
introduce DNA breaks and heal them to avoid negative and positive
supercoiling of the DNA strand [273]. Once the DNA is duplicated,
the cell elongates and initiates septum formation. The septum is a
wall in the middle of the cell that divides it into two compartments
[274]. It continues to grow during cytokinesis until it fully splits the
cell [275]. As a consequence, one larger cell divides into two cells of
almost identical genetic information. Note that through the distribu-
tion of plasmids during fission and due to errors made during DNA
replication genetic information does not need to perfectly coincide
between offspring.

Specialized Adaptations and Functions There is a wide range of other
functionalities and mechanisms found in bacteria that are maybe less
common within the domain yet interesting nevertheless. Sporulation,
for example, allows some bacteria to form highly resistant dormant
structures to protect their DNA allowing the cell to survive higher
pH or temperature gradients [276]. Other bacteria are capable of
chemotaxis, i.e. navigation based on a chemical gradient in a cell’s
environment [277]. While most described properties so far were at-
tributed to individual bacterial cells, bacteria also evolved to display
interesting properties acting in communities. For example, some com-
munities can form biofilms [278; 279]. Additionally, several species
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developed intercellular communication. Via a mechanism called quo-
rum sensing, bioluminescence, production of virulence factors, or
coordinated cell death may be organized among cells [280].

1.2.6 Host Interaction Mechanisms

The study of bacterial species in isolation and their impact on com-
munity dynamics provides deep insights into the fundamental mech-
anisms governing bacterial life. However, in a clinical context, under-
standing the interaction between bacteria and their host organism is
often of central importance. Bacteria can interact in complex ways
establishing a parasitic, symbiotic, or mutualistic relationship depend-
ing on the derived benefits for bacteria and host [281]. Especially the
parasitic relationships which are detrimental to the host, have enjoyed
special attention in research, and many interaction mechanisms have
been uncovered.
Before consistent interaction with the host is possible, a bacterial cell
must somehow enter, establish contact, or adhere to the host tissue.
Hereby, bacteria may enter the host via simple surface contact with a
wound, with food intake, or via aerosols. Attachment to host surfaces
may be facilitated via adhesins or pili as seen in Neisseria gonorrhoeae
or Escherichia coli respectively [282–284]. In rare cases, invasion of
host cells may happen as done by Salmonella enterica [285–287]. Once
inside or on the host the bacteria has to counteract the host’s immune
response. A wide range of immune response evasion mechanisms
can improve the bacteria’s odds of successfully inhabiting a host [288].
Mycobacterium tuberculosis, for example, can disrupt phagosome matu-
ration which is a vesicle structure formed by macrophages to engulf
pathogens [289]. Apart from host system evasion, bacteria may also
try to improve their own growth condition by competing with host
cells for nutrients. For example, Staphylococcus aureus produces pro-
teins that scavenge iron from host proteins [290]. The most spectacular
pathogenic interaction is probably displayed in the secretion of toxins.
These virulence factors are capable of directly damaging host tissue.
Examples include the diphtheria toxin by Corynebacterium diphtheriae,
tetanospasmin by Clostridium tetani, or the most toxic bacterial toxin
botulinustoxin by Clostridium botulinum [291; 292].

1.2.7 Combating Bacterial infections

To avoid infection with bacterial pathogens in the first place, a wide
range of prevention measures may be taken. The overwhelming
majority of these actions are centered around the improvement of
hygiene and contact reduction. First, food hygiene is a key aspect to
avoid e.g. infection with Salmonella enterica and Clostridium botulinum
[293–295]. This includes thorough cooking of meat, refrigerating of
perishable items, and proper canning for long-term storage [296; 297].
Also drinking water needs to be clean and proper sewage infras-
tructure should be in place to avoid e.g. Legionella pneumophila and
Campylobacter jejuni infections respectively [298–300]. Respiratory hy-
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giene by following cough etiquette or wearing a mask can reduce
aerosol-based infections, such as Pseudomonas aeruginosa [301–303].
Similarly, as discussed in subsection 1.2.4, regular hygiene and wash-
ing of hands with soap and water can contribute to the prevention
of contact-transmitted infections with e.g. Staphylococcus aureus [304].
Especially in the healthcare environment, disinfection of surgical in-
struments, sheets, and further utilities plays a central role in avoiding
germ spread [141]. Contact avoidance measures can be helpful in
infection prevention too. Apart from the isolation of e.g. infected
patients in isolation precautions, general close contact avoidance can
already show major results on a population scale [305]. Regarding
close contact, safe sex practiced with condoms can already decrease
Chlamydia trachomatis and Treponema pallidum transmission rates by
as much as 90% [306]. Further, proper wound care by keeping the
perturbation site clean can avoid opportunistic pathogens, such as
Pseudomonas aeruginosa. Lastly, another key preventive measure is vac-
cination [307]. Vaccination ahead of infection against e.g. Clostridium
tetani; Heamophilus Influenza B, or Corynebacterium diphtheriae, enables
the adaptive host immune system to fight infections successfully
[308].
With preventive measures likely never being feasible to avoid all
pathogens, methods to combat ongoing infections will remain im-
portant. In fact, there is a lot of active research on new approaches,
investigating concepts, such as phage therapy, CRISPR-based antimi-
crobials, nanoparticles, biofilm disruptors, quorum sensing inhibition,
immune stimulation, etc. [309–313]. While highly intriguing to look
at each of these concepts potentially capable of disrupting the field in
the future, we will instead limit our scope here to methods that are
frequently and reliably applied in state-of-the-art healthcare facilities.
Offering supportive care through hydration, rest, pain relief, and,
if necessary, fever-reducing medications often enables the natural
immune response of the host to eliminate various infections without
the necessity for excessive treatment. In case these measures do not
suffice, a more direct way to combat bacteria is with the prescrip-
tion of antibiotics, which is further discussed in detail in section 1.3.
However, antibiotics are not always a treatment option. Potentially
none of them provide an improvement to the situation. Then, surgical
intervention may be necessary to remove infected tissue before sepsis
can occur. In rare cases, this may imply limb amputation [314; 315].

1.2.8 Bacterial Isolates

The analysis of a cultured bacterial strain in isolation remains one
of the pillars of microbiology. In clinical microbiology this state-
of-the-art analysis, starts with the incubation of the complex native
sample harboring the bacterial community in a growth medium.
Once incubated, selected colonies are transferred to new plates and
incubated again. The results are individual strains that may then be
classified for diagnostic purposes using microscopy, or histological
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staining [316]. One prominent method for microbial identification
in clinical microbiology is the usage of mass spectrometry due to
its high troughput, cost-effectiveness and high accuracy. In Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, a
laser ionizes particles. Next the ions are accelerated using an electrical
field and the time which the different particles need to pass the field
is measured generating a spectrum. This spectrum is then compared
to a database for identification. As not all bacteria can proliferate
in isolation and in the same growth conditions, only a fraction of
all species in a community is often isolated and diagnosed [317].
Clinical isolates often find vast application e.g. in pharmaceutical
and biotechnological research. Here, often molecular profiling of
macromolecules such as e.g. lipids, mRNAs, or proteins, may be
performed to gain additional insights [318].

1.2.9 Biotechnological value of bacteria

Many pathogenic microorganisms are capable of significantly harm-
ing humans. Nevertheless, the positive effects of a few selected
species did not remain unnoticed by our earliest ancestors. Despite
only shallow scientific understanding at the time, successful taming
of microorganisms may date back over 10,000 years [319; 320]. Here,
beer and bread production with the help of yeast presents one of
the oldest and most well-known examples of this success. In the
bacterial domain, domestication has likely happened more recently
with evidence dating back over 8,000 years [321]. The food industrial
application of bacteria is found in the milk fermentation for yogurt,
cheese, etc. [322]. Many years and biotechnological advancements
later, genetic engineering opened up many more ways to exploit
bacteria in other industries [323; 324]. As such bacteria are now
considered for the synthesis of biofuel, biodegradability plastic, and
biopesticides [325–327]. Bacteria are leveraged for environmental and
agricultural purposes bioremediation for detoxification, wastewater
treatment, and nitrogen fixation [328–330]. Newer exploratory meth-
ods aim to harness bacteria for biosensors and biocomputing [331].
Several prominent applications remain in the medical and biotechno-
logical field where bacteria are, among others, used to research new
vaccines, probiotics, and antibiotics. Undoubtedly, one of the most
widely presented breakthroughs in bacteriology in recent years was
the CRISPR-Cas9 system published in 2012 [332; 333].

Biosynthetic Gene Clusters are groups of collocated genes in the
DNA that code for biosynthesis pathways of specialized metabo-
lites [334]. Widely documented in fungi, plants, and bacteria, they
provide blueprints for a wide array of secondary metabolites, such as
pigments, antioxidants, and toxins [335–337]. Due to their physical
proximity in the genome, gene expression of a biosynthetic gene
cluster (BGC) can be tightly orchestrated by the organism. The genes
within a BGC are often categorized by the role they play during the
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synthesis of the compounds. Core biosynthetic genes, for example,
are coding for enzymes relevant for the synthesis of the precursor
molecule, whereas additional biosynthetic genes catalyze subsequent
reactions modifying the precursors. BGCs themselves may be grouped
based on gene similarity which often goes hand in hand with the
similarity of the final compound [338–341].
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Figure 1.4: Streptomycin BGC of Strep-
tomyces griseus. Visualization taken and
adapted from the MIBiG database [342].

BGCs have received a lot of attention within the biotechnology com-
munity due to their capability to produce bioactive compounds [343–
345]. Streptomyces are renowned for their antibiotic production, with
streptomycin constituting a landmark discovery in the fight against tu-
berculosis (Figure 1.4) [346]. The pathway involved in the synthesis is
encoded in a BGC. In the long evolutionary fight, bacteria developed
a whole range of such protective mechanisms and toxins to get an
advantage over other community members. Following this reasoning,
researchers started to systematically search within the genomes of
microbial organisms for BGC that may encode for new compounds.
This procedure is referred to as genome mining [347].
While sounding highly promising, antimicrobial compound discovery
through genome mining faces many challenges. The discovery of
antibiotics with a novel mechanism of action is inherently difficult
since most BGC detection tools rely in one way or another on se-
quence similarity [348]. Especially, machine-learning-based in-silico
prediction of BGCs will generate many false positives [349]. If BGCs
are characterized directly from a bacterial community instead of an
isolate, isolation of the desired strain may pose a challenge in the
laboratory. Lastly, only because the genes can be found in the genome
does not imply that they are expressed [350; 351]. Coupling all these
challenges with the time-intensive lab work requiring a major amount
of expertise, it comes as no surprise that even this methodically sound
approach rarely yields success.

1.2.10 Isolate genome analysis

One method to get a detailed characterization of an isolated bacterial
strain is to perform DNA sequencing [352]. The first fully sequenced
bacterium was Haemophilus influenzae in 1977 [353]. In theory, whole
genome sequencing allows to assign each individual nucleotide in
the bacterial genome to either adenine, cytosine, guanine, or thymine.
In practice, measurement errors arise. Modern next-generation DNA
sequencing captures millions of short fragments of the DNA that are
traditionally limited to several hundred bases, called reads. Thorough
sequencing combined with state-of-the-art bioinformatic analysis al-
lows to assemble the fragments into longer sequences and to identify
individual genes within the DNA sequence [205]. This is combined
with documented database knowledge and similarity search against
existing isolates which allows extrapolating gene functions e.g. for
virulence factors [354]. However, while reads generally tend to have
good quality and low error rates, the short-read sequencing technol-
ogy has many limitations in the analysis of long repetitive regions
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and mobile genetic elements [355]. In recent years, long-read tech-
nologies, such as Oxford Nanopore sequencing or PacBio HiFi reads
emerged, having overall lower accuracy but therefore having aver-
age read lengths of several kilobases [356]. To compensate for this
decreased accuracy, hybrid methods leveraging long and short-read
technology are currently widely used [357]. However, with future im-
provements to long-read technology, accuracy is expected to improve
likely superseding short-read sequencing.
With the increasing amount of available reference data, tools, and
different sequencing technologies, genome sequencing data analysis
pipelines are continuously evolving. For the sake of this thesis, we
will only limit ourselves to short-read sequencing data analysis for
isolate analysis. We will not elaborate on long-read sequencing data
analysis in this context. Several workflows may be distinguished for
analysis, both relying on methods elaborated in subsection 1.1.1 [358].
On the one hand, a reference-guided analysis may be performed
where reads are aligned against a reference genome using aligners
such as e.g. Bowtie 2 or bwa [35; 36]. Once aligned, differences be-
tween reference and alignment can be highlighted with variant callers
such as FreeBayes or GATK HaplotypeCaller [359; 360]. On the other
hand, a de-novo assembly may be performed using e.g. SPAdes [205].
De-novo assembly does not use any reference material and only works
with the reads generated from the sample. Both methods come with
their own disadvantages. As the name suggests, reference-guided
analysis requires reference material that may not be available for
a newly discovered bacterial species. Further, working with small
reads as input, structural variants or large insertions and deletions
remain often undetected. The reference-free workflow is often unable
to provide a fully closed genome and instead returns several longer
fragments which then require additional manual processing [357].
Moreover, de-novo assembly requires a lot of computational power
and data.
Once a satisfactory representation of a strain’s genomic landscape is
attained, a plethora of downstream analyses become available. In case
a new genome has been assembled, often functional annotation of the
genome is required. Here, pipelines such as PGAP annotate genes
based on sequence similarity to other annotated genes in databases
[361]. Annotations may be of clinical relevance including virulence
genes or antimicrobial resistance genes which are further elaborated
in subsection 1.3.7. Similarly, tools such as antiSMASH can mine
genomes for BGCs [344]. Another potential analysis is to identify
plasmids which may be done with dedicated classifiers or via the
comparison to existing databases. Lastly, researchers may want to
compare different genomes to each other. In case different strains
are compared, multi-locus sequence typing may be performed to
classify strains based on a selection of predefined housekeeping genes
[362]. Such comparison can also extend beyond the comparison of
different strains, e.g. with phylogenetic analysis. Often a phylogenetic
tree is constructed representing the evolutionary history of genomes
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included in the analysis. To construct this tree, homologous genes are
compared. Next, either a dissimilarity matrix is derived followed by
the popular neighbor-joining algorithm, or statistical approaches like
maximum parsimony, Bayesian inference, or maximum likelihood
approaches are implemented [363].

1.3 Antibiotics

Antibiotics are substances that are capable of treating ongoing bacte-
rial infections via a reduction of growth rate (bacteriostatic) or active
decimation of pathogenic cells (bacteriocidal) [364]. Starting with
the discovery of arsphenamine in Paul Ehrlich’s lab in 1907, the first
commercially available antimicrobial compound was released in 1910.
In practice, it was used against syphilis infections [365; 366]. This
breakthrough was followed by the well-known discovery of penicillin
in 1928 [367] and prontosil in 1931 [368]. Initiating this golden age
of antibiotics many new antimicrobial compounds were discovered,
e.g. streptomycin in 1944 [369], chloramphenicol in 1947 [370], tetra-
cycline in 1948 [371], and many more. Over 150 antibiotics have been
discovered since the discovery of penicillin [372].

1.3.1 Antibiotic Resistance

With the discovery of new antimicrobial compounds during the
golden age of antibiotics, more and more reports also emerged de-
scribing bacterial strains that resisted treatment [183; 373–376]. Due
to a combination of selective pressure, mutations in the DNA, and
horizontal gene transfers the bacterial pathogens acquired genes
that improved survival in the presence of antibiotics. Through vari-
ous mechanisms described in subsection 1.3.4, antibiotic resistances
allow bacteria to fully or partially avoid the consequences of se-
lected drugs or entire categories of antibiotics. A famous example is
methicillin-resistant Staphylococcus aureus which is frequently found
in healthcare facilities [377–379]. While methicillin was introduced
in 1959, resistance also appeared against more modern antibiotics
to the point where, unfortunately, for the majority of available an-
tibiotic drugs, resistance has been documented [372]. Bacteria may
also resist several categories of antibiotics e.g. through the acquisition
of several resistant genes as exemplified by mobile genetic elements
in Staphylococcus aureus [380]. Frequently labeled as superbugs these
pathogens are claimed to constitute a serious health risk. Especially
multidrug-resistant pathogens may lead to deadly infections if no
more antibiotics display an effect. In this context, multidrug-resistant
Mycobacterium tuberculosis is frequently mentioned [381]. To address
the appearance of new resistances, new antibiotics must be discovered
in a continuous arms race between bacteria and research. However,
whereas in the the golden age of antibiotics, antibiotic compounds
with new mechanisms of action entered the market relatively quickly,
these days they are rather a rare sight [382]. This decrease in new
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discoveries is linked to a combination of economic, political, and
scientific reasons [383].
In 2015 and 2016 estimates of the antimicrobial burden in Europe eval-
uated that around 6 deaths per 100,000 population can be attributed
to antimicrobial-resistant bacteria with overall almost 700,000 total
infections in the European Union (EU) [384; 385]. Globally antimicro-
bial resistance (AMR)-associated deaths were estimated to be around
700,000 per year [386]. Annually, global economic costs due to AMR
may reach up to 100 trillion dollars US dollar and 10 million deaths
may have to be reported by 2050 [387]. Updated estimates predicted
around 4.95 million deaths to be associated with bacterial AMR in
2019 [388]. Accordingly, antibiotic resistance remains a global health
threat.

1.3.2 Antimicrobial Resistance Dissipation

Due to DNA duplication during proliferation, offspring of resistant
bacteria usually inherit the resistant genes from their parent cell if no
mutation happens in the concerned genes and all extrachromosomal
DNA was shared. However, apart from this vertical inheritance of re-
sistances, bacteria can also transfer genetic material horizontally, even
between different species [389]. Here, genes can be passed laterally
between organisms. This phenomenon promotes the rapid spread of
desirable evolutionary traits among bacteria. Unfortunately, as exem-
plified by the dissemination of the New Delhi metallo-beta-lactamase
(NDM-1) gene in Escherichia coli and Klebsiella pneumoniae, also re-
sistance genes may spread [390; 391]. Three canonical mechanisms
are described for the horizontal dissipation of genetic material, all
happening at different frequencies [392; 393].

Conjugation is the most important and prevalent method in nature
for bacteria to transfer genetic material horizontally [394; 395]. During
conjugation, a conjugation pilus is formed which physically connects
the donor to the recipient cells. Then, a secretion channel is estab-
lished and chromosomal mobile genetic elements or plasmid DNA
may be transferred to the recipient [396]. While conjugation has
been described to cross the inter-species boundary, it has even been
highlighted to occur between cells from different kingdoms [397].

Transformation describes the uptake of foreign DNA from the en-
vironment into a cell which is then said to be competent. During
transformation, only one strand of the exogenous double-stranded
DNA passes through a protein channel across the membrane into the
cytosol [398]. In biotechnology, this horizontal gene transfer mecha-
nism is frequently exploited to insert prepared genetic information
into colonies. Here, competence may be induced or increased e.g.
with chemical agents or polarization of the cell membrane [399].
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Transduction describes the gene transfer through viruses. Phages
enter bacterial cells and integrate their DNA into the bacterial genome.
In its lytic cycle, a virus multiplies and assembles. During this process,
a phage can accidentally integrate host DNA into the capsule exclu-
sively or incorporate its own DNA along with host genome fragments.
[400]. Upon infection of the next host cell, the acquired bacterial
genes will then be passed along to the next new host cell dissipating
potential resistance genes. Such phage DNA with resistance genes
has already been detected e.g. in urban sewer water [401].

1.3.3 Consequences of Antibiotic Resistance on Therapy

Antibiotic therapy aims to treat bacterial infections through the use
of antibiotics. Due to the large variety of infected host sites, the
diversity in pathogens that may be targeted, as well as the antimicro-
bial resistances that can be encountered, there is no one-size-fits-all
solution when it comes to prescription. Similarly, depending on
the selected antibiotic compound, dosage and duration of therapy
must be considered in order to maximize efficiency and minimize the
risk of resistance. Accordingly, many guidelines emerged to consult
physicians [402].

AWaRe State-of-the-art treatment of bacterial infections includes the
prescription of antibiotics. However, conscious of the global threat that
the increased prevalence of antibiotic resistance poses to humankind,
the World Health Organization (WHO) proposed the AWaRe classi-
fication in 2017 to promote antibiotic stewardship [403]. Following
the 2021 extension, a total of 258 drugs have been classified into three
groups: Access, Watch, and Reserve [404]. According to this recommen-
dation, physicians should follow a tiered approach when selecting
antibiotics. Access antibiotics, often named first-line antibiotics are
usually antibiotics with a lower resistance potential [405]. They are
widely available, accessible at lower costs, and yield fewer side ef-
fects. They also have a narrow activity spectrum. Examples include
amoxicillin, clindamycin, and cefalexin. Watch antibiotics, such as
azithromycin, ciprofloxacin, vancomycin have a broader spectrum
but usually also higher costs [406]. They select more aggressively for
resistant strains and should generally be prescribed to patients where
the pathogen is expected to be resistant to antibiotics of the previous
category. Reserve Antibiotics, or last-resort antibiotics, are only to be
used when empirical evidence is provided that the drugs of both other
categories failed. Accordingly, they should only be prescribed for
severe multidrug-resistant infections. By closely monitoring the use
of reserve antibiotics, such as linezolid, polymyxin b, or meropenem,
their effectiveness is hoped to be preserved.

Antimicrobial Susceptibility Tests may be done upfront before antibi-
otic prescription or after their intake did not show any improvements.
In a clinical setting, the infected wound from a patient may be sam-
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pled and deposited into agar plates. The clinical isolate can then
be tested quantitatively or qualitatively for antimicrobial resistance.
As a qualitative test, the Kirby-Bauer disk diffusion test is usually
cheap [407]. Here, a paper disk soaked in a selected antibiotic drug is
placed into the plate and incubated together with the bacteria [408].
In case there is no bacteria around the paper disc after incubation, the
isolate is susceptible. In case a quantitative assessment on how high
the required concentration of a drug must be in order to overcome a
potential resistance, the minimum inhibitory concentration test (MIC)
may be performed [409]. For the MIC test, several agar plates are pre-
pared with varying concentrations of antimicrobial compounds. The
isolated bacterium is added to each plate and incubated. Finally, the
MIC score can be deduced depending on the minimum concentration
where no growth was observed.

1.3.4 Antibiotics Mechanisms

With over 250 existing antibiotics of various compound classes, fully
elaborating each molecular mechanism would leave the scope of this
work [405]. Nevertheless, elaborating on the mechanisms behind the
most prominent classes of antibiotics provides some insights into their
effectiveness and potential shortcomings. We thus showcase seven
antibiotic drug classes.

Figure 1.5: Overview of compound
classes and their resistances over the
years. Indication is given when a com-
pound class was first discovered to have
antibiotic activity, when a first antibi-
otic of this class was in clinical use, and
when the first resistant clinical isolate
was observed. Data taken from Stennett
et al. [410].

β-Lactam Antibiotics have a chemical structure that includes an in-
tramolecular amide bond (carbonyl group with a nitrogen molecule)
who causes a cyclization of the molecule. Differences among members
of this drug category lie in the neighboring structures to the beta-
lactam ring [411]. For example, penicillins display a pentagon whereas
a hexagon can be found in cephalosporins. These drugs generally
function by inhibiting the synthesis of the bacterial cell wall’s peptido-
glycan layers by inhibiting the D-alanyl-D-alanine-cleaving-peptidase
activity, which is required to crosslink D-alanyl-D-alanine dipeptide
with the linear polysaccharide chains into a three-dimensional mesh.
Inhibition happens by the beta-lactam ring irreversibly covalently
binding to the active site of the D-alanyl-D-alanine-cleaving-peptidase
[412]. Since Gram-negative bacterial cell walls are surrounded by
a thinner layer of peptidoglycan and possess a lipopolysaccharide
layer that inhibits antibiotic entry (See subsection 1.2.5), β-lactam
antibiotics are more effective on Gram-positive bacteria. Probably the
most famous class of β-lactam antibiotics are the penicillins. Active
molecules include penicillin, amoxicillin, and ampicillin. However,
also cephalosporins, carbapenems, and monobactams follow this
general mechanism of action.

Glycopeptides function similarly to β-lactam antibiotics in that they
inhibit cell-wall synthesis. However, a key difference to β-lactam an-
tibiotics is that the glycopeptides bind to the acyl-D-alanyl-D-alanine
in an intermediate product of the peptidoglycan biosynthesis pathway
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which is called lipid II [413]. Once bound, the glycopeptides prevent
the extension of new units to the peptidoglycan. Vancomycin falls
into this category of drugs.

Tetracyclines are characterized by their chemical structure backbone
consisting of four hydrocarbon rings where different chemical groups
are attached. Tetracyclines achieve bacteriostatic activity by inhibit-
ing elongation during protein translation. By binding to the 30S
ribosomal subunit which is part of the mRNA-ribosome complex,
new aminoacyl-tRNAs cannot bind at the acceptor site prohibiting
the continuation of translation [414]. Examples of tetracyclines are
doxycyclin and minocyclin.

Lincosamides follow a similar mechanism of action to tetracyclines.
However, instead of targeting the 30S ribosomal subunit, they target
the 23S portion of the 50S ribosomal subunit. As a consequence,
the peptidyl transferase activity of the ribosome, which is respon-
sible for catalyzing the formation of peptide bonds between amino
acids, is inhibited [415]. Apart from halting protein synthesis, lin-
cosamides have also been documented to lead to premature release of
incomplete peptide chains from the ribosome [416]. Examples include
clindamycin.

Macrolides bind, similar to Lincosamides, to the 50S ribosomal sub-
unit to inhibit ribosomal peptidyl transferase activity. Chemically
they all share a 12- to 16-membered macrocyclic lactone ring with a
β-glycosidically bound sugar [417; 418]. The first and lead substance
is erythromycin. Due to its acid-labile properties, erythromycin is
usually only used externally. More developed macrolides, such as
azithromycin and clarithromycin, do not have this weakness due to
chemical changes and are therefore more orally bioavailable [419].

Fluoroquinolones inhibit an important enzyme for DNA replication,
repair, and transcription, called topoisomerase. These are present in
humans as well as in bacteria, but they differ enough structurally to
serve as an antibiotic target in bacteria. The specific topoisomerase
attacked in bacteria is called gyrase, hence the general name of the
group as gyrase inhibitor [420]. From a chemical point of view, these
drugs have a quinolone with a keto group in the C4 position and a
carboxylic acid in the C3 position, as well as a fluorine atom in the
neighboring ring. Due to the increased number of side effects on
the muscular system and nervous system, this group should only
be prescribed with caution [421]. Examples include ciprofloxacin,
moxifloxacin, and levofloxacin.

Sulfonamides have a common feature: the sulfanilamide structure.
They imitate p-aminobenzoic acid and thus inhibit the enzyme di-
hydropteroate synthase [422]. This is important for the synthesis
of folic acid. For humans, this is an essential vitamin and can only
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be absorbed through food. Bacteria are dependent on the synthe-
sis pathway. Sulfonamides are rarely used and when they are, it
is primarily sulfamethoxazole in combination with trimethoprim as
so-called cotrimoxazole. Trimethoprim specifically inhibits another
enzyme involved in folic acid synthesis, dihydrofolate reductase.

1.3.5 Antibiotic Resistance Mechanisms

Antibiotic resistance mechanisms may vary among bacterial species
and will also depend on the specific antibiotic. A wide range of
different mechanisms have been described some on individual cell
level, some acting on a community level [423–428]. Here, we elaborate
on four major categories [429].

Spatial exclusion A first category of antibiotic resistance mechanisms
is to try to avoid the accumulation of antibiotic compounds in the cell.
This can be achieved in two directions. On the one hand bacterial cells
have several possibilities to limit compound intake, such as down
regulation of porin expression. On the other hand, efflux pumps may
be used to reduce the amount of compound that already entered the
cell to nonlethal concentrations [430].

Compound modifications Enzymatic reactions enable bacteria to de-
construct antibiotics. An important example are β-lactamase enzymes
which convey resistance against beta-lactam antibiotics. Here, the
four amid bonds within the β-lactam ring are hydrolyzed, disabling
the antibiotic property of the compound [431]. On a similar note, for
aminoglycosides, a whole array of enzymes have been described as
able to modify the drugs and alter their binding affinity as well as
effectiveness, without completely deconstructing the compound [432].

Target modification is another mechanism used by bacteria to avoid
antibiotics [433]. Acquired mutations of the genes forming the drug
targets can lead to alternated target molecule structures, reducing the
binding affinity of the antibiotic compounds [434]. Another target
modification mechanism is exemplified by the many van genes in
glycopeptide resistances, where termini of peptidoglycan precursors
are enzymatically modified yielding the same effect of decreased drug
binding affinity [435]. Accordingly, bacterial cells can also actively
protect a target from antibiotic compounds.

Bypass mechanisms to avoid drugs are diverse. Some bacteria can
tolerate the antibiotic at the cost of a reduced metabolism or growth
rate. Persister cells are dormant cells within a strain that can tolerate
antibiotics exactly trough this mechanism [436]. When the drug
concentration in the environment reduces again, these persister cells
may increase their metabolism again, proliferate, and cause a relapse
of an infection [437]. Another bypass mechanism is the overexpression
of the target molecule to overload the compound has been described
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as a functioning bypass [438]. Lastly, bacteria may activate alternative
pathways or genes that are unaffected by the drug and still perform
a similar role as the drug target. The sul gene conveying resistance
against sulfonamides serves here as an example [439].

1.3.6 Fighting Antibiotic Resistance

Independent studies sporadically display local geographic reduction
concerning the presence of AMR genes for various antibiotic-pathogen
combinations [440; 441]. However, with prophylactic prescription of
antibiotics during the COVID-19 pandemic, the rise of military con-
flicts increasing the need for infectious treatment, and the combination
of increasing inequality and socioeconomic factors linking to AMR,
invite us to speculate on negative developments during the last few
years [442; 443]. Of course, the best method to combat AMR would be
to avoid all bacterial infections. Unfortunately, despite all the hygienic
protocols enlisted in subsection 1.2.7, perfect global avoidance of bac-
terial infections appears currently quite distant [444]. Accordingly,
complementary measures apart from disease prevention are required.

Antibiotic Stewardship Due to the diversity of resistance mechanisms,
the ever-increasing amount of antimicrobial resistance observed in
patients, and the slow development of new antibiotics, scientists,
health organizations as well as many governments have recognized
the need to intervene [445; 446]. Accordingly, promoting antibiotic
stewardship has become a central element in the combat against
antimicrobial resistance [447]. Already presented in subsection 1.3.3,
the AWaRe guideline of the WHO is a famous example. The overall
goal is to expose microorganisms to as few antimicrobial drugs as
possible. As a consequence, less selection is made on strains with
resistance genes, reducing their overall presence.

One health describes the idea that population health is closely in-
terconnected with the health of animals and the environment. The
concept may be considered broadly fetched as it includes also e.g.
the impacts of nutrition or environmental pollution on human health
[448]. Nevertheless, it also captures the idea of AMR dissipation
through animals and the environment [407; 449]. For example, ex-
tensive use of antimicrobial drugs in livestock has been linked to an
increase presence of resistance genes in animal guts. Presumably,
via the food chain, these resistances may then end up in humans
[450]. Accordingly, the previously mentioned antibiotic stewardship
expands even further than just the prescription of drugs to humans.
Already passed EU directives, such as regulation (EU) 2019/4 on
Medicated Feed and (EU) 2019/6 on Veterinary Medicinal Products,
banning all forms of routine antibiotic use in farming, are clear ex-
amples that also governing bodies have recognized the One Health
concept as well as the antimicrobial resistance threat [451]. Interest-
ingly, human-to-animal transfer of resistant pathogens has also been
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documented [452].

Monitoring of AMR in the environment and on a population level
is of key importance. On the one hand, it is important to inform
policymakers and governments on the AMR situation by presenting
reliable numbers [453]. In this context, the WHO initiated 2015 the
Global Antimicrobial Resistance and Use Surveillance System, with the
aim of providing standardized approaches to the data acquisition
and analysis on AMR [405]. Similarly, in 2023 the WHO published
its Global research agenda for antimicrobial resistance in human health
which defines 40 research priorities to generate evidence for the fight
against AMR by 2030 [454]. On the other hand, monitoring is also
important to update prescription recommendations. With resistance
against a few antibiotics on the rise, some antibiotics lose in relevance
and should be substituted. Methicillin is a fitting example for this
circumstance.

New Therapies must be developed in order to combat multidrug-
resistant pathogens. Here, alternatives to antibiotics drugs which
were previously already mentioned in subsection 1.2.7 may present a
compelling solution as they circumvent AMR. Unfortunately, many of
these methods require additional research or have inherent limitations
[455]. Accordingly, many academic research efforts remain channeled
into finding new antimicrobial compounds. The newest marketed
antibiotic compound in Germany at the time of writing is Eravacycline
in August 2022 [456]. However, this is not a new compound class as it
belongs to the drug class of tetracyclines [457]. Thus, the capabilities
of the drug to fight resistant bacteria are limited [458; 459]. The
newest, antibiotic compound class that eventually released on the
market was discovered in 1987. Only five new classes of antibiotics
have seen successful market introduction since 1987 [460]. With only
a few candidates in the clinical trial pipeline, high dropout rates, lack
of incentives for the pharmaceutical companies to partake in the early
stages of drug development, lack of funding in academia, and slow
development cycles, antibacterial drug research requires structural
interventions to remain sustainable [383; 461; 462].
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Figure 1.6: Cumulative number of an-
tibiotic drug classes discovered. Data
taken from Stennett et al. [410].

1.3.7 Bioinformatics in Antibiotics research

The applications of bioinformatics in antibiotics research are plentiful.
First of all, bioinformatics plays an important supportive role during
the design of new antibiotics. Bioinformatic approaches can e.g. be
used to identify new potential drug targets based on metabolic path-
way analysis [463]. The three-dimensional structure of an identified
target’s protein may be predicted in silico [464]. Similarly, docking
algorithms can predict interactions of drug candidates with the target
protein [465].
As mentioned in subsection 1.2.8 and subsection 1.2.10, BGCs can
harbor genetic information for the construction of diverse natural
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compounds and more specifically antibiotic compounds [466; 467].
Here, bioinformatic algorithms for genome mining contribute to the
discovery of novel antibiotic compounds [468–471]. Tools such as anti-
SMASH and PRISM often leverage profile-hidden Markov models for
gene classification and then rely on predefined rules on the absence
and presence of genes to predict BGCs [467]. As an alternative e.g.
DeepBGC relies on neural networks to predict BGCs [470].
Apart from finding new treatments, bioinformatic methods can also
support the monitoring and understanding of dissipating antimicro-
bial resistances [472]. Based on well-documented resistance genes
detected in sequencing experiments, antimicrobial resistance can be
deduced. Again, different approaches may be distinguished for this
analysis. On the one hand, longer fragments resulting from assembly
or long-read sequencing capturing the entire resistance gene may be
compared against databases such as CARD using e.g. AMRFinder-
Plus [473–477]. On the other hand, resistance genes may be profiled
directly from short-reads using tools such as SRST2 or ARIBA, often
preserving adequate accuracy [476–480].

1.4 Community analysis

Under natural conditions, bacterial species rarely occur in isolation.
Instead, they coexist in a mixture with other microbiological entities,
such as archaea, viruses, and lower eukaryotes, that are interacting
competitively as well as symbiotically in an ecological space, the
microbiome [481–483]. Such microbial ecosystems also exist on body
surfaces of higher eukaryotic host organisms [484; 485]. From the
host’s perspective, the symbiotic or parasitic interaction with microor-
ganisms happens through a wide range of different molecules that
are emitted from the microbiome. Early microbiological research fo-
cused heavily on bacterial pathogens that induced strong symptoms
upon infection while closely following Koch’s postulates to establish
causal relationships. However, by observing e.g. protective effect of
commensal microorganisms by conferring a colonization resistance
towards pathogens, the one pathogen - one disease model required
revision [486; 487]. As such, modern approaches try to understand
the role of pathogens existing within their microbial communities
while being subject to the community’s dynamics and interaction
with its surroundings [488]. To analyze these host-associated commu-
nities, medical microbiology leverages many established experimental
methodologies from the field of ecology which are used e.g. to analyze
microbial communities of glacier, soil, or water samples [489–492].
To fully understand the underlying workings of microbial communi-
ties, a wide range of macro-molecules can be experimentally quanti-
fied and qualified depending on the research question [493]. Unfortu-
nately, each of the existing protocols comes with its own drawbacks
and blind spots. To this end, recent trends advocate in favor of multi-
omics experiments that integrate data e.g. from metagenomic, meta-
transcriptomic, and metabolomic experiments to get a holistic view
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of the communities’ inner workings [494; 495]. However, not only is
this type of analysis limited by costs and throughput, but it is also
a methodological challenging task. E.g. heterogeneous composition
of communities combined with uneven sampling across experiments
already reflects itself in the data during integration. Nevertheless,
based on the gained insight of these multi-omics approaches, interac-
tion networks may be built to simulate e.g. in and output fluxes of
entire communities, predict consequences of interventions, or search
for new probiotic therapies [496; 497].

1.4.1 Human Microbiome

The microbiome of a male adult is estimated to harbor around 4× 1013

bacterial cells with the gut housing 500 to 1,000 different species
[14; 498; 499]. While microorganisms have been shown to transmit
from person to person, it is generally agreed upon that the micro-
biome of a person is unique [14; 500]. Community composition has
been shown to considerably differ across body sites, such as skin, or
gut [501–504]. Even further, it has been demonstrated that collocated
microbiota, e.g. within the oral cavity, differ depending on the exact
sampling site, due to differences in pH, oxygen, and temperature
gradients which can impact the growth and survival conditions of
microorganisms [505; 506]. Thus, the concept of a human microbiome
has to capture the ensemble of different local communities which are
each including smaller eukaryotes, viruses, archaea, and bacteria.
The human microbiome project is frequently considered a key impor-
tant deep dive into the various human microbiota, such as the vagina,
gut, skin, etc. moving beyond culture-based approaches [507]. Fol-
lowing these early initiatives, a plethora of studies emerged assessing
the human microbiome accumulating over 2,500 studies in total [508].
With this enormous quantity of data, the human microbiome can be
considered one of the best-described host microbiomes. Nevertheless,
large portions of sequenced, metagenomic DNA, remain unexplained
to the point that even in recent studies many reads remain unmapped
[509]. Accordingly, to this day there are still many ongoing efforts
to catalog and sequence all the different aspects of the human mi-
crobiome such as individual strains and rare community members
[510–519].
The human microbiome has been described as being dynamic and
changing over time [520]. Here especially the early development of
the gut microbiome within infants has received a lot of attention from
the scientific community. Apart from changing over time, the micro-
biome has also been associated with a wide range of demographic
factors such as gender, ethnicity, and diet. Lastly, many microbiome-
disease associations have been described. For example, a follow-up
project to the human microbiome project called the integrative human
microbiome project, focused on associations between inflammatory
bowel disease (IBD) and diabetes with the microbiome [521]. How-
ever, since correlation is not causation the scientific community often
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remains doubtful if new claims of disease-microbiome associations
are truly causal [522]. Especially since within the microbiome research
community, a wide range of misconceptions persisted [111; 523].

1.4.2 Dysbiosis

Microbial communities find themselves in permanent interaction with
their surrounding. As such they take up and metabolize nutrients
from their environment. Similarly, the microbiome releases a diverse
array of macromolecules and metabolites into its environment, known
as the expobiome [524; 525]. For example, microbiota in the human
gut have been described to remove carcinogens and toxins, synthesize
vitamins, and support the decomposition of dietary components for
uptake [526]. Further, a healthy microbiome can prevent pathogens
from colonization and train the host immune system [527]. However,
e.g. consumption of drugs and antibiotics can alter microbiome com-
position and activity [528–531].
Examining the adverse effects of microbiome imbalance beyond the
healthy state of homeostasis reveals an extensive bulk of literature.
Dysbiosis, characterized by an abnormal distribution or reduced di-
versity of microorganisms, can negatively affect host health through
a large array of mechanisms [532]. The gut microbiome has long
been claimed to play a causal role in IBD including Crohn’s disease
and Ulcerative Colitis. Here, several microbial immunomodulatory
molecules are involved in the pathomechanism of IBD such as a re-
duction of short-chain fatty acids concentrations, explicitly butyrate,
which has been associated with immune modulatory capacities via
the induction of regulatory T-cells [533–535]. Nonetheless, also ge-
netic components were associated to IBD [536]. While the relevance
of the gut microbiome in a gut disease may appear obvious due to the
close proximity of events, there are also less obvious, remote-acting
mechanisms described. The gut microbiome is e.g. suspected to im-
pact several neurological and mental disorders including Parkinson’s
disease, autism, and depression [537–541]. Here the vagus nerve is
involved in the bidirectional signal transmission between brain and
gut, defining what is referred to as the gut-brain axis [542–545]. Bac-
teria in the microbiome can release neuroactive compounds, such as
dopamine, which the vagus nerve then transmits to the brain [546].
The oral cavity is a heterologous environment revealing strong dif-
ferences in community compositions between e.g. interdental plaque
and tongue dorsum [547]. Within this environment, several dental
diseases such as caries and periodontitis are associated with dys-
biosis [548; 549]. In caries, acidophilic and acid-producing species
such as Streptococcus mutans were associated with the disease while
nitrate-reducing bacteria like Rothia species were discussed to play a
protective role [550]. Similarly, to the gut microbiome, the oral micro-
biome has been linked to diseases affecting apparently remote organs,
for example by the dislocation of oral microorganisms in periodontal
disease [551]. Apart from the oral cavity and the gut, local as well as
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remote associations have also been described for microbiota of the
skin, vagina, and respiratory tract [503; 552–554].

1.4.3 Metagenomics

Early research on microbiota relied mostly on isolate analysis [555].
With the description of the 16S ribosomal RNA gene as a phyloge-
netic marker and advances in primer design as well as sequencing
technology, first protocols emerged that avoided culturing bias [556].
These amplicon sequencing protocols such as 16S, 18S, and 23S target
specific ribosomal genes of phylogenetic relevance, amplify these
regions via polymerase chain reaction (PCR), and almost exclusively
sequence these genes [557]. Thus, while they allow an insight into the
microbial community without the need for isolate culturing, they are
limited to revealing only a small selection of the total genes present
in a sample. Therefore, amplicon sequencing does not explain the
whole physiological potential of a genome or community. Further,
the amplification step introduces PCR-bias which impacts relative
measurements on community composition [558].
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DNA ExtractionStreaking Isolation

Metagenomics

Whole Metagenome Shotgun Sequencing

DNA Extraction

DNA Extraction

Figure 1.7: Protocols of the vari-
ous genome sequencing workflows.
Whereas isolate sequencing focuses
solely on one species, the metagenomic
methods measure several species at the
same time. Note, the bioinformatic anal-
yses must always be adapted according
to the selected protocol. Created with
BioRender.com.

A competitor to the amplicon sequencing method is whole metagenome
shotgun sequencing (WMGS). Here, all DNA is extracted from the
sample and sequenced without selectively targeting specific marker
sequences [559]. During the humble beginnings of this technology,
only short 40kb fragments of an entire sample could be assessed [560].
However, due to the rapid drop in sequencing costs coupled with
protocol refinements, entire communities can now be deeply charac-
terized, to the point where also the rare biosphere can be captured, i.e.
species with a low relative abundance in the community are traceable

https://www.biorender.com/
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[561]. With this gain in resolution over amplicon sequencing more
genes are available for better taxonomic assignments [562]. Further,
entire chromosomes and plasmids can be assembled and analyzed
directly from the community allowing one to understand phenotypes
in detail [563]. With the further advances in long-read sequencing
technology, assessment even up to strain level is discussed elaborating
on phenotypical differences attributed to within-host evolution [564].
Lastly, some viral DNA can be detected without the need for explicit
amplification [565]. However, despite sequencing costs continuously
decreasing, WMGS studies remain considerably costlier in compari-
son to amplicon sequencing [566]. Moreover, the amount of data that
needs to be generated, stored, and analyzed as well as the complexity
of these analyses are increased for WMGS. [567]

1.4.4 Whole metagenome shotgun sequencing data analysis
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Figure 1.8: Core components of a
WMGS data analysis pipeline. Taxo-
nomic profiling may be performed di-
rectly on reads instead of requiring an
assembly.

The exact workflow used to evaluate WMGS data, as in every bioin-
formatics analysis, depends on the scientific question that is targeted,
the protocol that is employed, and the sequencing technology that is
selected [568]. With the bacterial domain being so diverse and ubiqui-
tous it comes as no surprise that within the field of metagenomics, a
plethora of tools, pipelines, and data repositories emerged leading to a
situation that has been described as the Wild West, where no real gold
standards exist for data analysis [569]. Unfortunately, there exists
plenty of empirical evidence that the results of WMGS studies are de-
pendent on the exact tools, databases, parameters, and statistical tests
that were used during analysis [570–572]. This volatility of results
frequently prohibits straightforward cross-study comparisons [573].
With the many benchmarking efforts such as the Critical Assessment
of Metagenome Interpretation (CAMI) challenges trying to objectively
compare tool performances, efforts were made by the community to
improve on the situation [574–577]. Users are being incentivized to
migrate to the best-performing tools. Nevertheless, a large variety of
workflows persisted, as the field remains far away from unified [578].
Despite the large heterogeneity in the field, we present in Figure 1.8
a generally agreed-upon core of a data analysis workflow as also
presented in several reviews [579–582]. In accordance with most se-
quencing data analysis workflow, WMGS data analysis usually starts
with quality control of reads. Here a plethora of tools is available
[583–585]. For host-associated microbiomes, an optional host-removal
step is recommended where sequencing reads that align to the host
genome or other contaminating sequences are removed [586; 587].
Afterward, roughly two main workflows may be distinguished in the
early phases of the analysis. On the one hand, there is the read-based
approach which heavily relies on databases to be complete enough for
fragment comparison. On the other hand, there is the assembly-based
approach which relies mostly on the data of the experiment [588].
The assembly-based data analysis is considered superior if rarely
analyzed microbiota are analyzed or if functional analysis is desired.
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However, the overall complexity and amount of computational power
is higher in comparison to the read-based analysis. Further down-
stream analysis following these pipelines is closely tailored to the
biological research question.

Assembly-based WMGS data analysis, as the name suggests, is cen-
tered around the step of metagenomic assembly, that is similar to
genome assembly elaborated in subsection 1.1.1[31]. Due to the na-
ture of the experimental setup, the output of metagenomic assemblies
contains several thousand long fragments deriving from a wide range
of different species. To group these fragments by taxonomy, binning is
performed. Metagenomic binning uses various features such as k-mer
frequency, GC content, and coverage information to group assembled
fragments [589–592]. Depending on the quality of the output bins,
individual groups may be interpreted differently. Frequently, bins are
interpreted as a single species being termed species-level genome bin
(SGB). To assess the quality of these bins, so-called unique marker
genes may be used which are expected to occur exactly once per bin
[593; 594]. Multiple occurrences hint towards contamination. The lack
of a gene indicates deficiencies in completeness. In the context of a
larger study where species are expected to occur in multiple samples,
SGB would be dereplicated to select a bin that best represents the
genomes [595; 596]. Once a set of high-quality SGB has been defined,
bins are frequently classified to a certain taxonomic depth based
on e.g. average nucleotide identity with e.g. the Genome Taxonomy
Database (GTDB) serving as reference material [597; 598]. Here, new
genomes worth cataloging may be identified.

Read-based analysis avoids the computationally expensive step of
metagenomic assembly. Instead, sequencing reads are directly com-
pared against a reference database of marker sequences [599–601].
This method of taxonomic profiling frequently yields only informa-
tion on the composition of the community. The quality of the marker
sequence library is central to this method. Due to shared DNA se-
quences, reads may not always uniquely be attributed to a species.
Similarly, if new species are being assessed that have not yet been
documented in the marker gene library, the assignment will fail.
Exceptionally, within the biobakery suite around the group of C.
Huttenhower, tools such as HUMAnN and StrainPhlAn yield results
that go beyond community composition without relying on assem-
bled fragments [602; 603]. Instead, phylogenetic similarity as well
as functional profiles can be assessed. Similarly, there exist several
read-based antimicrobial resistance gene profiler [604; 605].

Further analysis The microorganism abundance information result-
ing from the previous workflows is often used for many state of-
the-art compositional analysis from the field of ecology. One such
assessment is to quantify the taxonomic diversity of an ecosystem,
expressed by the so called alpha-diversity. A wide range of formulas
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and measures including the Shannon index, which is identical to the
Shannon entropy from information theory may be used to describe
alpha-diversity [606]. Similarly, beta-diversity captures the difference
between ecosystems and is often coupled to ordination analysis where
those differences are represented in a two-dimensional embedding.
Again several dissimilarity measures as well as embedding methods
exist. Frequent examples from the literature include Bray-Curtis or
weighted UniFrac distance, and principal coordinate analysis (PCoA)
or NMDS, for distance measures and embedding respectively [607].
As elaborated in subsection 1.1.4 differential abundance analysis is
also performed on abundance data and can be used to highlight rele-
vant operational taxonomic units that explain potential differences in
cohort behavior. These may then serve as future potential biomarkers
[608].
A plethora of additional information may be uncovered from metage-
nomic sequencing data that goes beyond abundance information.
Many of these downstream analysis require metagenomic assembly
beforehand as they rely on longer sequences. Depending on the qual-
ity of assembled genomes all analysis for bacterial isolates elaborated
in subsection 1.2.10 may be applied here, including phylogenetic trees,
resistances gene profiling, and genome mining. Similarly, plasmids
can also be detected in metagenomic experiments [609–616]. Further,
a wide range of functional annotations are possible, with examples
including virulence factor analysis [354]. However, more specific to
metagenomic sequencing, functional analysis spanning several species
is frequently performed. Popular targets for this analysis include e.g.
carbohydrate-active enzymes that are present across several species
[617]. Lastly, community network analysis may be performed. While
some approaches try to understand abundance dynamics in bacterial
communities, more elaborate approaches try e.g. to simulate entire
molecule fluxes which requires a deep functional understanding of
the community members [618].



2
Goals of the PhD thesis

The central goal of this thesis is to combat the bacterial threat at two
fronts in close collaboration with biotechnologists, microbiologists,
and clinicians by providing the bioinformatic expertise needed to
work on bacterial genome data. The first front targeted the diagnos-
tic aspect of bacterial diseases. Here, we analyzed new emerging
pathogens, we assessed the potential of dysbiosis in the context of
dietary intervention as well as diseases, and we developed web tools
to enable other researchers with less programming knowledge. The
second front was the fight against AMR. Within this scope, we ac-
companied the earliest stages of drug development, we monitored
emerging AMR in conflict regions, and we extended a database focus-
ing on the key mechanism for resistance gene dissipation. Following
this goal, seven manuscripts that target at least one of the two fronts
fully matured into published scientific articles and are herein included.
At the time of thesis submission, an additional three manuscripts are
still ongoing. The submitted versions are included in the thesis. We
will shortly present all works following the grouping depicted in
Figure 2.1. Subsequently, the completed manuscripts are presented in
chapter 3.

2.1 Metagenomics Projects

1 As described in subsection 1.4.3, amplicon sequencing has long
been the method of choice in metagenomics. Transitioning to WMGS
is a costly commitment especially when large-scaled studies at a
higher sequencing depth are considered. Therefore, one central basic
research project focused on establishing a reliable and robust exper-
imental metagenomics workflow. Here, we compared three DNA
extraction protocols across six specimens based on sequencing results
encompassing next-generation sequencing (NGS) as well as Oxford
Nanopore sequencing [1]. Many quality control measures were com-
pared, visualizing e.g. the amount of DNA, reads, assembly quality
etc. From this study we had several conclusions to take away. First,
we decided on a DNA extraction kit that was capable of extracting
decent amounts of prokaryotic DNA even in low-input samples such
as conjunctiva samples. Further, we observed the overall robustness of
larger input samples in cheaper kits. Thus, in the long run, this study
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allowed us to confidently analyze microbial communities deriving
from different specimens at scale while optimizing for costs.
2 Parkinson’s disease is a neurodegenerative disease that killed

around 329,000 people in 2019 with an increasing tendency over the
last 25 years [619]. Frequent symptoms include limb tremors and
muscular rigidity. On a microscopic level, Lewy bodies which con-
sist of aggregated proteins inside nerve cells are characteristic of the
disease [620]. The microbiome acting through the gut–brain axis has
been extensively described as a potential avenue for pathogenesis in
Parinson’s disease [621]. In this context, we analyzed the potential
of resistant starch as a prebiotic for Parkinson’s disease patients us-
ing metagenomics and metabolomics methods [2]. Additionally, two
control cohorts were defined. The main conclusion from the study
was that the prebiotic intervention partially restored short-chain-fatty
concentrations which have consistently been reported to be reduced
in Parkinson’s disease across multiple studies [621].
3 In 2019 the EAT-Lancet commission proposed a diet plan that sup-

posedly is able to sustainably feed a population of 10 billion people
without health deficits [622]. To assess whether a dietary adjustment
to this planetary diet would lead to dysbiosis, we performed a dietary
intervention on sixteen individuals and compared them to a western
and vegetarian/vegan diet using metagenomics [3]. Focusing mostly
on compositional changes, we did not observe any significant differ-
ences in abundance which were due to the intervention. Accordingly,
adopting the planetary health diet does not appear to yield a risk for
dysbiosis, at least for the twelve week time period we assessed.

2.2 Software Development Projects

All software we distributed to the community was provided in the
form of web services. 4 In the field of metagenomics, we released
and published another version of Busybee Web which, to the best of
our knowledge, has remained the only online metagenomic binning
tool [6]. As clarified in subsection 1.4.4 Busybee Web allows re-
searchers to group longer DNA fragments derived from metagenomic
experiments by their taxonomy. Hereby, it is especially interesting
for long read sequences, as no assembly is required, and the over-
all amount of data is smaller which is favorable for network traffic.
Apart from binning, Busybee performs a wide range of annotations
including taxonomy and comparisons to plasmids. Lastly, the tool
also allows to compare cohorts by co-embedding two datasets at the
same time enabling a reference-free differential abundance analysis.
5 Aware of the data limitations of Busybee Web, we also released

Mibianto which is a web server focused on short-read metagenomic
data analysis, that is optimized for larger amounts of data [8]. The
tool does not require longer fragments but instead accepts short NGS
reads as input. We reduce the amount of network traffic by only
sending a selection of hashes computed on the data to our server.
Specifically, we compute so-called FracMinHashes on the user side
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using the sourmash tool which we compiled into web assembly [69].
While this enables us to handle large amounts of data, it comes with
several disadvantages. Functional analysis is impossible as the server
does not have complete gene information. Similarly, quality control
can not be performed on the server side. Lastly, for a web server,
it requires above average computational power on the user side as
the hashes need to be computed before sending. Once arrived on
the server, the data undergoes the proposed workflow for taxonomic
profiling with hashes, which involves the solving of the set cover prob-
lem using a greedy algorithm. Finally, we provide a wide range of
state-of-the-art downstream analysis for compositional analysis such
as differential abundance analysis, and provide proxies for quality
control. At the time of thesis submission, the paper has not yet been
published but is included.

6 In the context of combating AMR, the first central piece of work
we published was the update of the Plasmid Database (PLSDB) [7].
Since conjugation remains one of the most frequent mechanisms for
horizontal gene transfer in nature, plasmids with AMR genes pose a
serious threat at the population scale as described in subsection 1.3.2.
PLSDB aims to aggregate naturally occurring plasmids from multiple
data repositories to provide a valuable resource for the research com-
munity to compare their own detected plasmids against. In PLSDB
we add a wide range of filtering, data cleaning, and new annotations
in order to provide data with an adequate quality. With the over
two-fold increase in entries, an update of the web server as well as
the data collection pipeline was due. In a larger scope, this allows
monitoring of potential emerging resistances.

2.3 Bacterial Isolates Projects

Apart from metagenomic samples, we also investigated clinical iso-
lates that derived from infected patients. 7 A published example of
this work discusses the species Auritidibacter ignavus. In the clinical
microbiology community, this species has recently been suspected to
be a potential pathogen implicated in ear infections [623]. With only
a few dedicated isolates previously analyzed, the reference material
on this organism is rather sparse. In our study, three bacterial isolates
from three different patients with otorrhea were extracted and culti-
vated [5]. Following NGS sequencing, the first goal was to establish
relatedness among the three isolates. Using a reference-based ap-
proach we did not see any signs that the isolates were related. Next,
we assessed the isolates for resistance genes, yet we did not uncover
any genes explaining the resistant phenotype.
8 24 February 2022 marks the day of the invasion of Russian troops

into the Ukraine. Whereas in the early phases of the war, it appeared
that the Russian troops would be able to take in Kyiv, the Ukrainian
troops were able to stand their ground and push back the invaders.
After over two years, as of the time of writing, the conflict is still on-
going with major portions of Ukranian land remaining under Russian
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occupation and a front line that is currently almost static. Most mem-
ber states of the EU, despite not actively participating in the conflict,
support the Ukraine. In this context, after receiving primary care in
Ukraine, several war-wounded civilians were treated at the Saarland
University Medical Center for antibiotic infections. After observing
antibiotic resistance, pathogens were isolated and whole genome
sequencing was performed. Using the techniques mentioned in sub-
section 1.2.10, we were able to capture a wide array of resistance genes.
At one point, we found ourselves in the position of using PLSDB when
we investigated multiple multiresistant Klebsiella pneumoniae strains[4].
By leveraging PLSDB we identified identical plasmids across multiple
patients that carried resistance genes explaining similar phenotypical
behavior.

2.4 Drug Discovery Projects

Whereas two of the previously elaborated published manuscripts
focused on AMR monitoring, we further tried to contribute to the
sustainable discovery of novel antibiotic compounds in two projects
that are currently in submission. These endeavors are based on the
potential of metagenomic assembled genomes to harbor BGCs capable
of synthesizing natural products with antimicrobial properties as pre-
sented in subsection 1.2.9. 9 In one of these projects, we looked into
the BGC landscape of animal oral and gut microbiota by analyzing
metagenomes across a total of 45 host species from the Saarbrücker
Zoo [9]. As exotic animal metagenomes are strongly underrepresented
in data collections and more heterogeneous than human-only datasets,
we documented many novel metagenome-assembled genomes. This
diversity in the landscape of microorganisms reflected itself in the
large diversity in BGCs that we observed during genome mining.
10 The other project in this category, our largest applied research

metagenomics project, is a metagenomics study compromising over
three thousand initial samples and over six hundred participants [10].
Here, we sampled up to eight biospecimens from the same patients
while extensively documenting clinical information. The participants
consisted of healthy controls but also a wide array of diseased pa-
tients with e.g. oral diseases such as caries but also lung cancer or
IBD. We assessed this data pool for potential biomarkers not only on
the bacterial species level but also on a BGC level.
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Figure 2.2: Personal citation data taken
from Google Scholar. Data accessed on
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2.5 Other Projects

11 & 12 Apart from the scientific work mentioned above discussing
the common theme of bacterial research a mixture of scientific curios-
ity and courtesy towards colleagues led to a total of nine additional
publications where seven may not fall into this general research area
[624–632]. Examples, listing only (co-)first or last authorship positions,
were published in the fields of miRNAs, sports medicine, and experi-
mental physics [626; 630; 632]. None of these works are included in

https://scholar.google.com/citations?user=tOTEikQAAAAJ&hl=de&oi=ao
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the thesis.



3
Results

This thesis includes seven peer-reviewed publications and three sub-
mitted manuscripts. The published and submitted versions of the
manuscripts are herein included.
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Christian Herr 8, Robert Bals 8,#, Sören L. Becker 1,#, Andreas Keller 2,#,*,

Rolf Müller 4,#, The IMAGINE Consortium

1 Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany
2Clinical Bioinformatics, Saarland University, D-66123 Saarbrücken, Germany
3Department of Human Genetics, Saarland University, D-66421 Homburg, Germany
4Helmholtz Institute for Pharmaceutical Research Saarland, D-66123 Saarbrücken, Germany
5Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66421 Homburg, Germany
6Department of Ophthalmology, Saarland University Medical Center, D-66421 Homburg, Germany
7Department of Medicine II, Saarland University Medical Center, D-66421 Homburg, Germany
8Department of Internal Medicine V – Pulmonology, Allergology, Intensive Care Medicine, Saarland University, D-66421
Homburg, Germany

Received 23 August 2021; revised 13 May 2022; accepted 19 May 2022
Available online 6 June 2022

Handled by Fangqing Zhao

KEYWORDS

Whole-genome analysis;

Comparative genomics;

Short-read sequencing;

Long-read sequencing;

DNA extraction;

Metagenomics

Abstract High-quality DNA extraction is a crucial step in metagenomic studies. Bias by different

isolation kits impairs the comparison across datasets. A trending topic is, however, the analysis of

multiple metagenomes from the same patients to draw a holistic picture of microbiota associated

with diseases. We thus collected bile, stool, saliva, plaque, sputum, and conjunctival swab samples

and performed DNA extraction with three commercial kits. For each combination of the specimen

type and DNA extraction kit, 20-gigabase (Gb) metagenomic data were generated using short-read

sequencing. While profiles of the specimen types showed close proximity to each other, we observed

notable differences in the alpha diversity and composition of the microbiota depending on the DNA
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3.1 Systematic Cross-biospecimen Evaluation of DNA Extrac-
tion Kits for Long- and Short-read Multi-metagenomic
Sequencing Studies



extraction kits. No kit outperformed all selected kits on every specimen. We reached consistently

good results using the Qiagen QiAamp DNA Microbiome Kit. Depending on the specimen, our

data indicate that over 10 Gb of sequencing data are required to achieve sufficient resolution,

but DNA-based identification is superior to identification by mass spectrometry. Finally, long-

read nanopore sequencing confirmed the results (correlation coefficient > 0.98). Our results thus

suggest using a strategy with only one kit for studies aiming for a direct comparison of multiple

microbiotas from the same patients.

Introduction

In the past decade, microbiome research has become a trend-
ing topic with an exponential increase of available data [1].

Researchers worldwide acknowledge the importance of the
human microbiome for health [2] regarding a variety of dis-
eases, with the gut microbiome taking a leading role [3].

Recently, the link between a healthy gut microbiome influ-
enced by a Mediterranean diet and cardiometabolic disease
risk has been found [4]. In addition, the gut microbiome of

Parkinson’s disease patients has also been associated with
intestinal inflammation [5]. Next to the gut microbiome, the
microbiome of the respiratory tract has been studied exten-

sively. For example, it has been previously shown that certain
bacteria are associated with chronic rhinosinusitis. Bachert
et al. [6], as well as Olzowy et al. [7], detected overgrowth of
Corynebacterium, Curobacteria, Pseudomonas, Staphylococcus,

and Haemophilus influenzae in patients with chronic rhinosi-
nusitis compared to the healthy respiratory microbiota. There
is accumulating evidence that microbiome research should also

identify commensal bacteria and investigate their potential to
protect from diseases. Several species are already known to
synthesize compounds that inhibit the growth of pathogenic

bacteria, thereby establishing a crucial balance within the
microbiome. Besides the intended effects on pathogenic bacte-
ria, antibiotic therapy also affects commensal bacteria, and
may facilitate overgrowth of potentially dangerous microor-

ganisms, as it is frequently seen in Clostridioides difficile infec-
tion, a common intestine complication after previous
antibiotic treatment [8]. How is the growth of pathogens sup-

pressed under normal conditions? During a co-infection, Pseu-
domonas aeruginosa produces rhamnolipids, which disperse the
biofilms of sulfate-reducing bacteria and, additionally, are

effective against the biofilms of opportunistic pathogens such
as Escherichia coli and Bacillus subtilis [9]. Staphylococcus lug-
dunensis has been found to produce lugdunin, which is a

recently discovered thiazolidine with antibiotic activity. Lug-
dunin inhibits the growth of the opportunistic pathogen Sta-
phylococcus aureus [10]. Furthermore, certain lactic acid
bacteria are known to produce a variety of secondary metabo-

lites which inhibit the growth of other bacteria, such as bacte-
riocins, hydrogen peroxide, and diacetyl [11].

Bacteria have evolved for 4.3 billion years, and their meta-

bolism and entire biosynthesis have perfectly adapted to their
environments. They constantly fight for nutrients and space,
trying to inhibit the growth of their competitors which renders

them the perfect target for searching novel natural compounds
to fight bacteria-associated diseases [12]. Also, in the sustain-
able development of new antibiotics, microbiota plays an

essential role [13].
All these aspects can be discovered by examining the

human microbiome of various compartments of the body by

extracting the whole-genome DNA of clinical samples while
depleting the human DNA. The usage of the extracted DNA
for next-generation sequencing (NGS) can then shed light on
all microorganisms that are in the native sample. This very pre-

cise method can be augmented with microbiological cultiva-
tion of the same samples. Which bacteria are cultivatable,
and also during routine diagnostics which are only detectable

by sequencing the native samples?
Many steps in the process of sample collection, DNA

extraction, sequencing, and data analysis can introduce signif-

icant bias. One example is the stool collection kits used that
already affect the reported microbial compositions [14]. Like-
wise, in oral microbiomes, bias is known and addressed [15].

The extraction of the whole-genome DNA is a crucial step.
It is evident that the topic of comparing different DNA extrac-
tion kits is essential and thus has become an evolving field of
research. For different specimen types, respective protocols

have been compared, e.g., for breast milk [16], stool [17], skin
[18], vaginal swabs [19], sputum [20], postmortem eye tissue
[21], nasal washes [22], and meconium [23]. As for one specific

sample type, the most suitable DNA extraction method has
been evaluated over several studies, but an analysis of different
DNA extraction kits on their suitability for a variety of sample

types has, to our knowledge, not been performed yet. It is
interesting, however, to analyze various microbiomes without
causing bias due to the use of different extraction protocols,

to understand the complexity and connectivity of microbiomes
at different body sites in health and disease. Analyses of differ-
ent biospecimens yield inconsistent results, which renders the
selection of the very best protocol challenging. While for stud-

ies on single specimen types the best kit for the respective spec-
imen can be selected, multi-microbiome studies potentially
suffer from bias if different kits are used.

To understand microbiota in health and disease, multi-
metagenomic studies that combine the microbiota from many
samples of the same patients are however promising. We thus

set out to identify a commercially available DNA extraction
kit that is suitable to be used on such diverse biospecimens
(Figure 1A). Here, we presented the data on the comparative
extraction efficiency and sequencing quality obtained by

whole-genome sequencing for six types of clinical samples
(conjunctival swabs, stool, saliva, interdental plaque, bile,
and sputum) after DNA extraction with three commercial kits,

including 1) Qiagen DNeasy PowerSoil Pro (QPS; Qiagen, Hil-
den, Germany), 2) Qiagen QiAamp DNA Microbiome Kit
(QMK; Qiagen, Hilden, Germany), and 3) ZymoBIOMICS

DNA Miniprep Kit (ZYMO; Zymo Research Corp, Irvine,
CA). QMK includes the advantage of host DNA depletion,
presumably without causing taxonomic bias, which is a crucial

step during DNA extraction for biospecimens such as skin and
conjunctival swabs, for which more host material than bacte-
rial mass is expected. This additional processing step might
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Figure 1 Study setup and QC

A. For six specimen types and water, we performed DNA extraction using three different commercial kits. Following library preparation

and sequencing, the metagenomes were evaluated and compared to each other. B. The DNA yield of the different specimen types with

different kits is given as a bar diagram. C. Comparison of the raw sequencing output in Gb before QC. D. Q30 values of the raw

sequencing reads. Colors indicate the various biospecimens, in line with (A). E. Scatter plot of the raw reads to the reads obtained after

QC. Shapes represent the different kits, and colors represent the different biospecimens. F. Percentage of reads filtered in the different QC

steps and remaining dataset size. QC 1 mostly captures loss attributed to read quality, while QC 2 focuses on contamination by host

sequences. G. Principal component analysis of the different samples and kits using the Mash distances after QC. Shapes represent the

different kits, and colors represent the different biospecimens. H. Minimum spanning tree of the Mash distances after QC. Shapes

represent the different kits, and colors represent the different biospecimens. I. Recomputed embedding displaying Mash distances between

replicates. Grey points are without replicates. Colors indicate biospecimens. QC, quality control; Gb, gigabase; PC, principal component;

QPS, Qiagen DNeasy PowerSoil Pro; QMK, QiAamp DNA Microbiome Kit; ZYMO, ZymoBIOMICS DNA Miniprep Kit.
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be a potential explanation for the increased price of QMK in
comparison to the two competitor kits tested in this study.
In contrast to the novel QMK, we tested ZYMO and QPS that

have both been used frequently in regard to microbiome anal-
ysis [24–27]. We followed a staged approach. We first per-
formed a total of 108 DNA extractions and then chose the

most promising samples for library preparation and sequenc-
ing. After evaluation of the sequencing data, we performed
replicates for the best DNA extraction kit to analyze the

reproducibility.

Results

DNA yield and sequencing quality vary between extraction kits

and specimen types

As a first aspect, we compared the DNA yield and sequencing
output for the different sample types and DNA extraction kits.

The results showed that the DNA amount and concentration
varied substantially between the different setups (Figure 1B,
Figure S1F). It is known and expected that the different sam-

ple types — each with a different human background — lead
to varying results in terms of reads and read quality. In line
with the yield of DNA, the number of raw reads from the
sequencing was likewise diverse (Figure 1C). Here again, the

DNA extraction kits had a limited influence as compared to
specimen types. However, the read quality in terms of Q30
value matched well, independent of the specimen type and

DNA extraction kit, indicating that from all combinations
interpretable microbiomes can be extracted (Figure 1D). The
number of reads prior to and following quality control filtering

generally correlated well for the different kits and sample
types. Again, the fraction varied with the different specimen
types depending on the expected human background, e.g.,
introduced by human immune cells and human epithelial cells

in saliva and conjunctiva, respectively (Figure 1E). This fact
became more evident when considering the lost read fraction
in the quality control steps. Again, independent of the kit,

the conjunctival swab samples yielded only a fraction of 5%
of all reads after quality control, dominated by the mapping
of reads to the human genome (Figure 1F). Focusing on the

fractions remaining after quality control, the QMK kit
retrieved the highest amount of metagenomic information
for each specimen type. However, the quantitative aspects were

not the only criteria relevant for the selection of a kit, but also
the composition of contents. Accordingly, we computed a 2-
dimensional embedding using multidimensional scaling based
on the Mash distances between samples (Figure 1G). Both,

the embedding and the minimum spanning tree of the samples
based on the mash distance, confirmed the general considera-
tions: the kit has a limited influence on the output as compared

to the difference introduced by the specimen types (Figure 1H).
To provide further evidence for this behavior, we carried out
technical replicates for five different QMK samples, demon-

strating a high reproducibility of metagenomic measurements
(Figure 1I).

In the light of the results in this section we might conclude
that the variability introduced by the kits is so limited as com-

pared to the difference between sample types and that for each
specimen the very best kit might be selected even when multi-
microbiome studies are performed. The high-level results,

however, also call for a higher resolution analysis of the sub-
stantial metagenomic datasets.

Metagenomes vary strongly between different DNA extraction

kits, yet stronger between different specimen types

First, we computed the bacterial phyla and families contained

in the different samples to get an overview of the taxonomic
profile (Figure 2A, Figure S1A). Overall, the large quantitative
differences in data yield reflect abundance counts. Again,

strong differences in relative composition were present for
the specimen types. A more detailed consideration revealed a
low relative amount of Proteobacteria for several ZYMO-

and QPS-extracted samples compared to those extraced by
QMK. Especially, the relative portion of Firmicutes decreased
in the QMK-extracted samples as compared to those extraced
by the other two kits. Mostly Proteobacteria measurements

profited from this shift, which was most pronounced in saliva.

The alpha diversity crucially depends on the DNA extraction kit

and the sequencing depth

Quantitative differences do not necessarily translate to qualita-
tive differences. Accordingly, we investigated the alpha diver-

sity of the various samples. Again, specimen types
dominated the overall signal. For bile, conjunctiva, plaque,
and water specimens, the ZYMO kit measured the highest
number of differing taxonomies (Figure 2B). In case data anal-

ysis accounts for signals found in negative controls, the alpha
diversity measured in ZYMO began to fall in line with the
other two kits (Figure S1B). Despite high fluctuations in alpha

diversity and total abundance across kits, bacterial species
information recaptured most of the structure previously iden-
tified from read information alone, confirming the quality of

the taxonomic profiling analysis (Figure 2C, Figure S1C).
Investigation of the beta diversity based on dimensionality
reduction showed a tendency to group QMK-extracted saliva

and sputum samples with plaque samples (Figure S1E).
Hereby, the comparably low bacterial abundances of the other
two methods may act as a confounding factor. Consistent with
the previous minimum spanning trees, we observed a clustering

of specimen types into three major categories: 1) the close to
sterile water and conjunctiva, 2) the digestive system-focused
bile and stool, and 3) the oral cavity specimens saliva and pla-

que where sputum integrates. Looking closer into the cluster-
ing, it is clearly visible that a minority of species contributes
a majority of the signal (Figure 2D, Figure S1D). Nevertheless,

often rare taxonomies of minimal statistical weight may also
be of interest for the analysis due to the potential harboring
of e.g., virulence factors. Therefore, to analyze the feasibility

of finding rare species in the various environments, we further
investigated the number of identified taxonomies changing
with sampling depth by doing in-silico downsampling (Fig-
ure 2E). Hereby, we noted that the kits seemed to converge

at a similar rate to their asymptotic behavior. This point of
convergence was reliably achieved at around 10 Gb after qual-
ity control. The maximal number of taxonomies seemed to dif-

fer mostly by specimen types, yet minor differences were also
visible for kits, which is consistent with the previous finding.
Mass spectrometry (MS)-based identification of 42 colonies

indicated for 12 significant results that QMK generated highest
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counts for all but one confirmed species (Figure 2F). We noted
that two species were not detected in our genomic data analysis
at all, but were found during MS, which were Veillonella rogo-

sae and Capnocytophaga granulosa in saliva and sputum,
respectively.

The composition of microbiota considerably varies between DNA

extraction kits

The taxonomic composition of a microbiome is often the key
aspect to reveal during a metagenomic experiment. Hereby,
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the selected DNA extraction kit may play a crucial role on the
qualitative findings of an experiment. While the previously dis-
cussed alpha diversity described the general number of differ-

ent taxonomies captured by an experiment, it failed to discuss
the exact nature of these differences. Therefore, we looked at
the overlapping sets of detected species across both specimen

types and kits (Figure 3A). Hereby, we selected a raw abun-
dance count threshold to decide about the presence of a species
instead of selecting by relative abundance, to also consider rare

species in the analysis whose relative counts may undercut rel-
ative thresholds. We first discussed the common species of the
individual specimen types. The largest intersecting set is usu-
ally the set encompassing all three kits. Only for sputum and

water, the consensus was the largest for ZYMO and QMK.
For the majority of time, ZYMO built the largest intersections,
likely due to frequently constituting the largest stand-alone set.

Next, we glanced at potential species that were found indepen-
dently of input samples for the different kits. Here, the largest
intersections were the ones with the largest initial sets. Due to

higher measured bacterial abundances, QMK proposed four
larger sets including sputum and saliva, whereas ZYMO and
QPS only proposed stool and plaque as larger sets. Ignoring

the underlying specimen types and aggregating the analysis,
ZYMO and QMK had the largest number of species they
detected in any specimen type.

Since taxonomic profiling is often limited by the quality and

amount of reference organisms available, we further investi-
gated ways to discuss potential differences in taxonomic com-
position between experiments that remain uncaptured by

reference-based analysis. Hereby, we fell back on the core algo-
rithm of BusyBee [28]. Accordingly, for reference-free analysis
a Uniform Manifold Approximation and Projection (UMAP)

embedding of normalized k-mer counts was computed on
assembled scaffolds (Figure 3B). Visually, the embedding con-
firmed several findings of the previous taxonomic profiling.

The overall density of the embeddings falls in line with the
findings of the alpha diversities. Overall, it appears that
ZYMO generates the highest density regions and is spreading
all over the two-dimensional plane. While the embedding com-

puted on QPS samples also scatters, there are fewer high-
density regions. Last, QMK produces well defined regions of
higher density. Moreover, the two clusters found in ZYMO

water can be seen in all other samples except for the QPS water
and QMK water. However, the left cluster also seems to disap-
pear in QPS conjunctiva.

Assembly quality depends on the specimen types and the DNA

extraction kits

For the previous reference-free analysis, assembly quality was
comparably of minor importance due to the decomposition of

assembled sequences into short k-mers. Yet, depending on fur-
ther downstream analysis, the quality of metagenomic assem-
bly may play a crucial role. Accordingly, we compared
several assembly quality measures across kits and specimen

types (Figure 4A). Considering length distribution, specimen
types were mostly clustered together. However, for the three
specimen types of saliva, plaque, and sputum, minor differ-

ences were visible with respect to kits, favoring QMK in N50
and N75 measures. Considering the proportion of scaffolds
at changing length, QMK was the only kit where no specimen

started to dominate after a given length. Last, ZYMO gener-
ated the longest assemblies in water and dominated L50 and
L75 for water and conjunctiva.

Taxonomic profiles are consistent across sequencing technologies

With the rising popularity of nanopore sequencing technology
and the immense advantages it brings to metagenomics, in

terms of assembly quality increase and interpretability, hybrid
protocols combining shotgun and nanopore sequencing are
continuously gaining in relevance. Correspondingly, the

demands to kits supporting both protocols are favored. Since
we previously demonstrated clustering behavior into three
major clusters, we selected saliva and bile as representatives

of the non-sterile specimen types and sequenced the same sam-
ples again with nanopore sequencing. Similarly, we removed
the ZYMO kit for the experiment, due to our previous findings
of a high number of false positives shown across several of our

herein presented analyses. Quality control of nanopore reads
of all four samples after filtering suggested minor differences
between specimen types for both kits (Figure 4B). Pearson cor-

relation between length and PHRED scores was around a low
0.1. Considering both, read length and average read quality
scores, Wilcoxon rank sum tests across all reads indicated sta-

tistically significant differences between kits, conditioned on
the specimen types for each sample (P < 1 � 10�12). After
quality control, taxonomic profiling was performed to gauge

the effects of interactions among kits, specimen types, and

Figure 2 Diversity of microbiota

A. Bar plot presenting the composition of bacterial microbiota with respect to different phyla. The color codes represent the phyla.

Specimen types corresponding to each DNA extraction kit are in the following order: bile, conjunctival swab, stool, saliva, plaque,

sputum, and water (left to right). B. For the seven biosamples, the observed unfiltered alpha diversity is presented. The color and bubble

size correspond to the alpha diversity. Large and blue bubbles match samples with highest alpha diversity, and the small and purple

bubbles match samples with lowest alpha diversity. C. Minimum spanning tree on the bacterial species level. Jaccard distance served as

distance measure. Shapes represent the different kits, and colors represent the different biospecimens. D. Heatmap representing the

abundance of different species clustered with respect to the sample type. Only species with a relative abundance above 1% were

considered. Colors used to represent different kits are green for ZYMO, blue for QPS, and pink for QMK, in line with (A). Each

biospecimen (matrix) is represented by a different color consistent with (C). Relative taxonomic counts are depicted in green for 0, black

for 1, and shades of green, orange, and violet with increasing relative taxonomic counts between 0 and 1. E. Fraction of observed taxa with

respect to the sequencing depth computed on sub-sampled decontaminated reads. Shapes represent the different kits, and colors represent

the different biospecimens. F. Barplot displaying unnormalized counts in the NGS experiment for the different taxonomies that were

detected by mass spectrometry. Font colors indicate specimen types, in line with (C). Bar colors represent the different kits, matching (A).

NGS, next-generation sequencing.
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sequencing technologies (Figure 4C). As expected, the number

of different identified bacterial species and overall abundance
were a lot higher for shotgun sequencing due to the generation

of false positives during profiling with short reads and the

increased sequencing depth. Overall, the ordering of experi-
ments based on uniquely quantified bacterial species remains

Figure 3 Similarity of microbiota

A. Combination of ten upset plots each discussing identified species overlap by kit or specimen type. Bottom annotation indicates the

aspect the upset plot focuses on, i.e., which kit or specimen type is kept constant. Area proportional Euler diagrams below the diagonal

capture the proportion of species identified independently of specimen type. Percentages above the diagonal indicate the overlap

numerically. A species is considered identified after surpassing a low count threshold of 20 occurrences. B. Embedded microbiota. Each

spot represents one scaffold with a length above 3 kb after an embedding of the k-mer spectra using UMAP. Colors are indicative of the

point density in the respective area. UMAP, Uniform Manifold Approximation and Projection.
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unchanged across sequencing technologies. The only difference
was that in bile, where QMK detected fewer unique species

than QPS for the nanopore technology which may be linked
to the difference in sampling depth and correlated total

abundance. Glancing at the taxonomic profile on a bacterial
species level, we observed strong correlations between nano-

pore and shotgun sequencing, for all tested kit and specimen
combinations.

Figure 4 Assembly and nanopore comparison

A. Assembly quality. One-dimensional line showing the length of the longest scaffold for each assembly. Relative scaffold length

distribution by kits together with their N50, N75, L50, and L75 values. B. Nanopore QC. Average PHRED scores indicate basecalling

quality per read. Sequence length indicates length after basecalling of each read. Density plots on the right and top discuss the conditioned

distributions for the different kits and specimen types. Visualized data are representative for data after filtering. C. Correlation plot

indicating coherence between nanopore and shotgun sequencing taxonomic counts on bacterial species level without thresholding.

Numerical values represent the rounded Pearson correlation before log scaling. The total number of measurements and unique different

species for the different experiments are shown at the bottom.
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Discussion

We evaluated three DNA extraction kits across six different
specimen types and water to gauge their suitability for metage-

nomic experiments. We note that the QMK kit usually yields
the highest amount of metagenomic information after host
DNA removal. The depletion of human DNA is a significant

advantage of QMK compared to ZYMO and QPS. This is
consistent with the idea, to lyse all eukaryotic cells in a first
step, followed by the degradation of eukaryotic DNA. There-
fore, human DNA in particular is depleted during the first part

of the DNA extraction with the QMK kit. During the second
part, bacterial cells are lysed and the extracted DNA is
purified.

Focusing on both, read information and metagenomic data
analysis, we showed that the selection of the specimen type
dominated the selection of the kit in signal strength. While

for the difference between e.g., water and stool, this result
was to be expected, the same did not hold true for plaque
and saliva samples. Further, we demonstrated the sensitivity

of all kits by confirming a selection of taxa using MS. Consid-
ering specificity, we demonstrated, using a reference-based and
reference-free method, that ZYMO appeared to contain most
contamination, going hand in hand with the fact of ZYMO

generating the samples with the highest relative amount of
human contamination. This effect could be due to unsterile
lysis tubes or columns for DNA extraction. However, we noted

that no sample remained uncontaminated. The lowest contam-
ination was shown for QPS. Especially in comparison to the
QMK water sample, a lower contamination of the QPS sample

can be explained by a general lower variety in identified bacte-
ria species. Partly, bacteria in the environment, that contami-
nate the water samples might be harder to lyse, which the
QPS kit might not have to offer. In contrast to the ZYMO

and QPS kits, a pre-contamination of columns provided by
the QMK kit is highly unlikely, as the special Qiagen ultra-
clean columns were stored at 4 �C until being used for DNA

extraction. Shifting focus away from taxonomic profiling onto
assemblies, except for the ZYMO water sample, assemblies
were of similar quality at first sight. Here we acknowledge that

the scaffold length distribution is not the be-all and end-all of
metagenomic assembly quality assessment; however, it is one
of the more widely spread [29]. Last, for QPS and QMK we

observed that overall, the results after metagenomic analysis
are consistent across shotgun and nanopore sequencing. We
note that our study is limited by the small sample size and
the focus on bacterial microorganisms. Random sampling

error may distort our findings. Thus, larger studies, including
more replicates, are needed to confirm our results, and similar
comparative studies should ideally also assess results for other

pathogen classes, such as viruses or parasites [30].
To conclude, we recommend the QMK kit for samples with

high eukaryotic host contamination, as it clearly has the least

information loss upon host sequence removal. Moreover, if no
detection threshold is set, QMK identifies generally more spe-
cies than QPS, while not showing a strong contamination of
sequencing results in sterile water as compared to ZYMO. In

case host contamination is not an issue to consider, QPS
may be recommended, since it shows the least overall contam-
ination in sterile water.

Materials and methods

Sample collection

In brief, stool samples were collected by each participant using
a paper toilet-hat and a sterile collection tube with an inte-

grated spoon. Approximately 500 mg to 1 g of stool were col-
lected. Plaque samples were collected using 12 disposable
micro applicators (Catalog No. MSF400, Microbrush Interna-
tional, Grafton, WI). Three interdental spaces per quadrant

were brushed, and all micro applicators were placed into a sin-
gle ESwab transport tube (Copan Diagnostics, Brescia, Italy),
including the ESwab Amies Medium (Copan Diagnostics).

Saliva samples were collected using 50-ml sterile, conic falcon
tubes. Participants were asked to release uninduced saliva into
the sterile falcon tube for 5 min. Conjunctiva samples were

obtained using a ESwab. The lower eyelid was everted, and
the conjunctiva was swabbed throughout the entire length of
the lower fornix three times. Afterwards, the swab was placed

in the respective transport medium and the tube was frozen at
�80 �C. Sputum was induced by 7 min of inhalation with 0.9%
NaCl solution. After inhalation, the participant was asked to
release sputum by coughing into a sterile collection tube. Bile

samples were collected during a duodenoscopy by drawing
5 ml to 10 ml into a sterile syringe.

DNA extraction

DNA was extracted from all samples using three different,
commercially available DNA extraction kits: QPS, QMK,

and ZYMO. For each kit, the DNA was extracted according
to the manufacturer’s protocol. Briefly, 1 ml of sterile Milli-
Q water was used for the negative control. The manufacturer’s

protocol was followed, respectively. Fecal samples were
weighed, and 250 mg of stool were used for DNA extraction
with QPS and QMK, and 50 mg of stool were used for ZYMO,
according to the manufacturer’s recommendation. For QPS

and ZYMO, 1.5 ml of saliva samples were centrifuged for
5 min at 6000 g and the pellet was resuspended in the respective
lysis buffer. For QMK, 1 ml of saliva was used directly. Inter-

dental microbrushes and conjunctival swabs were vortexed rig-
orously in the eSwab Amies Medium for 3 min. The Amies
Medium was then transferred to a 1.5-ml sterile Eppendorf

tube and centrifuged for 5 min at 6000 g for further DNA
extraction with QPS and ZYMO. The pellet was resuspended
in the respective lysis buffer. For DNA extraction with
QMK, the liquid Amies Medium was used directly. For

DNA extraction with QPS and ZYMO, bile samples were vor-
texed rigorously and 2 ml of bile were transferred to a 2-ml
sterile Eppendorf tube and centrifuged for 5 min at 6000 g.

The supernatant was discarded, and the pellet was resuspended
in the respective lysis buffer. To extract DNA from bile via
QMK, 1 ml of bile was used directly. Sputum was mixed with

Remel Sputasol (Oxoid L TD, Hants, England) in a 1:1 ratio.
For QPS and ZYMO, 1.5 ml of sputum or sputasol was cen-
trifuged for 5 min at 6000 g and the pellet was resuspended

in the respective lysis buffer. For QMK, 1 ml of sample was
used for DNA extraction without previous centrifuging. The
mechanical lysis of bacterial cells was performed using the
MP Biomedicals FastPrep-24 5G Instrument (FisherScientific
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GmbH, Schwerte, Germany). For ZYMO, the velocity and
duration were adjusted to 6 m/s for 45 s three times with
30 s of storage on ice in between each lysis step. For elution

of DNA during the last step of each DNA extraction kit, the
following elution volumes were used: 1) QPS: 40 ml; 2) ZYMO:
20 ml; 3) QMK: 50 ml. The DNA concentration was determined

via NanoDrop 2000/2000c (ThermoFisher Scientific, Wilming-
ton, DE) full-spectrum microvolume UV–Vis measurements.
For each sample type and each DNA extraction method

tested, we used a total of one biological replicate for sequenc-
ing. However, DNA was isolated from a total of n = 10 bio-
logical replicates for saliva, interdental plaque, and stool, a
total of n = 4 for bile, a total of n = 8 for sputum samples,

and a total of n = 4 for conjunctival swabs. From all samples
that we extracted DNA from, we selected the most promising
samples for library preparation and sequencing. We chose

those samples with the highest amount of DNA, least impuri-
ties, and least fragmentations. For all samples prepared with
QMK we performed an n = 2 technical replicates for library

preparation and sequencing.

Library preparation

DNA libraries were prepared using the MGIEasy Universal
DNA Library Prep Set (MGI Technologies, Shenzhen, China)
according to the manufacturer’s recommendations. In general,
200 ng DNA was sheared into fragments using the M220

Focused-ultrasonicator (Covaris, Woburn, MA), followed by
size selection using Agencourt AMPure XP beads (Beckman
Coulter, Brea, CA). For low-biomass samples, such as the con-

junctival swab and the sterile water control, the entire amount
of isolated DNA was used as an input for the fragmentation
procedure. The fragmented DNA was used for end-repairing

and A-tailing. Next, adaptors containing specific barcodes
were ligated to the 30 and 50 ends, and the ligation products
were amplified by PCR. The concentration of the PCR prod-

ucts was measured using Qubit 1� dsDNA HS Assay Kit
(ThermoFisher Scientific, Waltham, MA). In the following, 8
different barcoded samples were pooled in equal amount and
circularized to generate the single-stranded DNA library.

The concentration of the library was measured using Qubit
ssDNA Assay Kit (ThermoFisher Scientific, Waltham, MA).
Additionally to the different biospecimen samples, a sterile

DNase/RNase-free water sample was prepared using the same
procedure as for all samples.

NGS

For the short-read sequencing, all libraries were sent to BGI
Group for DNA nanoball (DNB) generation and paired-end

sequencing (PE100) on the DNBSEQ-G400 instrument accord-
ing to manufacturer’s instructions and recommendations.

MinION library preparation and sequencing

Upon opening of the flow cell and again immediately prior to
sequencing, flow cell pore count was measured using Min-
KNOW. Library preparation kits, flow cell, and other consum-

ables used for the experiment are described in Table S1. DNA
was quantified via Nanodrop 2000/2000c (ThermoFisher Sci-
entific, Wilmington, DE) and the volume was determinated

by using a pipette (Table S2). The library preparation was con-
ducted according to the protocol ‘‘Native barcoding genomic
DNA (with EXP-NBD 104)” provided by Oxford Nanopore

Technologies (ONT), with the exception of the barcode liga-
tion step and further the adapter ligation step for which the
ligation mix was incubated for 15 min at room temperature

instead of 10 min. The amount of initial DNA used for the bar-
coding kit was above 100 ng for the four specimen types cor-
responding to the DNA extraction kits shown in this study.

In sum, the library consisted of 12 barcoded DNA samples.
The barcoded DNA was stored at 4 �C for 3 days until adapter
ligation. For barcoded libraries, volume-equal quantities of
each sample were used for the final library. The amount of

pooled barcoded DNA exceeded the recommended amount
of 700 ng DNA by an additional 400 ng to reach a final
DNA amount of about 1100 ng for adapter ligation

(Table S3). For the last Agencourt Ampure XP bead clean-
up step, short fragment buffer (SFB) was used. The completed
library was loaded onto a R9.4 flow cell as per instructions

given by ONT. Given the rapid advancement of protocols,
chemicals, and the technology itself, data were generated with
the most up-to-date methods and protocols available from

ONT at the time of library preparation and sequencing. The
Mk1B MinION device was used for data acquisition.

Nanopore sequencing

MinION analysis was carried out at the Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS) at the Depart-
ment Microbial Natural Products, Saarbrücken, Germany.

The barcoded library, consisting of the metagenomic DNA
samples, was generated in a S1 laboratory, whereas the
sequencing of the samples was performed in the office.

Sequencing methods performed simultaneous 1D sequencing
of samples using native barcoding. The sequencing run was
carried out over a time range of three days. At the time of

use, the R9.4 spotON Flow Cell had a pore count exceeding
the guaranteed level (> 800 pores) by the manufacturer. Pore
count was measured by the MinKNOW software with a result
of 808 pores. The majority (> 50%) of sequencing data were

generated in the first 9 h of sequencing, corresponding to the
time in which the first group of pores is actively sequencing.
More than 99% of sequencing data were generated after

28 h of sequencing. The sequencing yield in a total number
of estimated bases is displayed in Figure S2.

Culturing of bacteria

All native samples were streaked out on four different agar
plates: TSA with 5% sheep blood (TSA), MacConkey (MC),

Columbia (Co), and Chocolate Blood (CB) agar plates (Ther-
moFisher Scientific, Wilmington, DE). All TSA, MC, and CB
agar plates were incubated at 35.6 �C and 5% CO2 for a min-
imum of 18 h and a maximum of 24 h. Co agar plates were

used for the cultivation of anaerobic bacteria and therefore
incubated in an anaerobic environment for a minimum of 48 h.

MS-based identification

Bacterial colonies, obtained by culturing on different agar
plates, were spotted onto the MALDI-TOF target plate,
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followed by overlaying with 1 ml of a-cyano-4-
hydroxycinnamic acid (CHCA) matrix solution (Bruker
Daltonics), composed of saturated CHCA dissolved in 50%

(v/v) of acetonitrile, 2.5% (v/v) of trifluoroacetic acid, and
47.5% (v/v) of LC-MS grade water. After drying at room tem-
perature, the plate was placed into the Microflex LT Mass

Spectrometer (Bruker Daltonics) for MALDI-TOF MS. Mea-
surements were performed using the AutoXecute algorithm in
the FlexControl software (v3.4; Bruker Daltonics). For each

spot, 240 laser shots in six random positions were carried
out automatically to generate protein mass profiles in linear
positive ion mode with a laser frequency of 60 Hz, a high volt-
age of 20 kV, and a pulsed ion extraction of 180 ns. Mass

charge ratio range (m/z) was measured between 2 kDa and
20 kDa. Bacterial species were identified by using the MALDI
BioTyper software. Identification scores above 2.0 were con-

sidered a precise identification, scores between 1.7 and 1.99
were considered as possible species identification, and all iden-
tification scores below 1.7 were considered unsuccessful

identification.

Data analysis

First, quality control was performed with MultiQC (v1.9) [31]
and fastp (v0.20.1) [32]. Next, NGS data were decontaminated
of host sequences using kneaddata (v0.7.4). Decontaminated
data were uploaded to the Sequence Read Archive (SRA)

[33]. We counted the exact number of basepairs contained in
the fasta files before the individual steps to get a detailed over-
view on the overall information content. Once the data were

fully cleaned, Mash distances were computed on all remaining
read information with Mash (v2.3) [34]. Taxonomic profiling
was done with Kraken (v2.1.2) [35]. Optional downsampling

of reads was performed with seqtk (v1.3). The PlusPF database
release from 9/19/2020 was used as Kraken2 index. As an
alpha diversity measure, we used either the observed number

of different taxa or the Shannon index. As the beta diversity
measure, the Jaccard index was computed. For clustering anal-
ysis, species with relative species abundance below 1% in all
samples were removed. Samples were then clustered using

Ward’s hierarchical agglomerative clustering in combination
with the Euclidian distance measure. UMAP embeddings were
computed on all scaffolds having a length over 3 kb. To this

end, 5-mers of each scaffold were counted and assembled into
a vector. Each vector was divided by its sum, scaled, and cen-
tered. The normalized counts were then passed to embedded

using UMAP. Assemblies were computed with SPAdes
(v3.15.2) using the --meta flag [36]. Scaffold quality assessment
was made with MetaQUAST (v5.0.2) [37], enabling the split-
ting of scaffolds. Downstream analysis heavily relied on phy-

loseq (v1.36.0). Nanopore reads were basecalled with guppy
(v5.0.7) [38] before undergoing taxonomic profiling.

Ethical statement

All samples were collected at the Saarland University Medical

Center, Germany, after having obtained written informed con-
sent from all participants. The study was approved by the local
ethics committee (Ärztekammer des Saarlandes) under refer-
ence 131/20.

Data availability

Respecting the German Bundesdatenschutzgesetz, we
uploaded the data after human read removal to the SRA of

National Center for Biotechnology Information (NCBI).
Preprocessed data can be found in SRA of NCBI
(SRA: PRJNA802336), and are publicly accessible at

https://www.ncbi.nlm.nih.gov/sra.
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Abstract The composition of the gut microbiota is linked to multiple diseases, including Parkin-

son’s disease (PD). Abundance of bacteria producing short-chain fatty acids (SCFAs) and fecal

SCFA concentrations are reduced in PD. SCFAs exert various beneficial functions in humans. In

the interventional, monocentric, open-label clinical trial ‘‘Effects of Resistant Starch on Bowel

Habits, Short Chain Fatty Acids and Gut Microbiota in Parkinson’s Disease” (RESISTA-PD;

ID: NCT02784145), we aimed at altering fecal SCFAs by an 8-week prebiotic intervention with

resistant starch (RS). We enrolled 87 subjects in three study-arms: 32 PD patients received RS

(PD+RS), 30 control subjects received RS, and 25 PD patients received solely dietary instructions.

We performed paired-end 100 bp length metagenomic sequencing of fecal samples using the

BGISEQ platform at an average of 9.9 GB. RS was well-tolerated. In the PD + RS group, fecal

butyrate concentrations increased significantly, and fecal calprotectin concentrations dropped

significantly after 8 weeks of RS intervention. Clinically, we observed a reduction in non-motor
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symptom load in thePD+RSgroup.The reference-based analysis ofmetagenomes highlighted stable

alpha-diversity and beta-diversity across the three groups, including bacteria producing SCFAs.

Reference-free analysis suggested punctual, yet pronounced differences in the metagenomic signature

in the PD + RS group. RESISTA-PD highlights that a prebiotic treatment with RS is safe and

well-tolerated in PD. The stable alpha-diversity and beta-diversity alongside altered fecal butyrate

and calprotectin concentrations call for long-term studies, also investigating whether RS is able to

modify the clinical course of PD.

Introduction

Gut microbiota composition is altered in Parkinson’s disease
(PD) [1–3]. An increased abundance of Enterobacteriaceae

has been consistently described in the fecal samples of PD
patients, whereas the abundance of Prevotella, Faecalibac-
terium, Blautia, and Bifidobacterium is reduced in PD [1,4–8].

This is of potential relevance since bacteria with anti-
inflammatory properties (e.g., synthesis of short-chain fatty
acids, SCFAs) are less abundant in PD. Potentially pro-

inflammatory bacteria (e.g., endotoxin-containing species)
are more abundant in PD. Members of the families Prevotella-
cae, Ruminococcacae, and Bacteroidacae are capable of fer-

menting resistant starch (RS), a nutritional component that
arrives in the large intestine without previous degradation by
human enzymes [9]. Anaerobic fermentation of RS results in
SCFAs, such as butyrate [10]. Butyrate exerts essential func-

tions in the gut: it represents the main energy source for ente-
rocytes, enhances gut motility, and exerts immunomodulatory
effects [9,10]. Animal studies have shown that butyrate inter-

acts with colonic regulatory T cells, creating an anti-
inflammatory environment [11]. Consequently, a lack of
SCFA-producing bacteria and reduced colonic SCFA concen-

trations presumably lead to reduced gut motility as well as to a
shift in the intestinal immune system toward a more pro-
inflammatory environment [12]. Intestinal inflammation, as
well as altered gut motility (e.g., constipation), has frequently

been described in PD. In addition, we have previously shown
that PD patients have reduced fecal SCFA concentrations
compared to matched controls [6].

With regard to techniques used to characterize the micro-
biome, 16S amplicon sequencing has been most frequently
used in microbiome studies due to its broad availability, mod-

erate costs, and straightforward analysis. In recent years,
whole-genome sequencing (WGS) has become widely avail-
able. Compared to 16S amplicon sequencing, WGS requires

more complex computational and analytical procedures but
is superior in characterizing the metagenomic landscape with
regard to resolution, accuracy, and functional profiling
[13,14]. To characterize the metagenomic landscape, two dif-

ferent approaches can be used: 1) reference-free approaches
characterize the metagenomic landscape based solely on
sequencing data; 2) reference-based approaches rely on exist-

ing databases to compare the generated sequences against. In
the present study, we computed the taxonomic profile with
reference-based approaches. In addition, we also performed

a comparative analysis with a hybrid approach named Busy-
Bee [15]. BusyBee is a software combining both reference-
free and reference-based approaches.

A sensitive and valid marker of intestinal inflammation is
fecal calprotectin. Calprotectin is a protein in human leuko-
cytes. In case of inflammation, leukocytes migrate into the

intestinal lumen, and calprotectin can be measured in the feces
as a stable marker that reflects even subclinical intestinal
inflammation [16]. In accordance with the finding of prevailing
pro-inflammatory bacteria in PD, elevated fecal calprotectin

concentrations have been described in PD, too [17,18].
A prebiotic approach to increase SCFA concentrations is

nutritional supplementation with RS. The efficacy and tolera-

bility of a 12-week intervention with RS have already been
shown in a controlled clinical trial for elderly subjects
(� 70 years old): RS was well-tolerated and, compared with

placebo, elderly subjects on RS showed an altered intestinal
microbiota, an increase in fecal butyrate concentrations, and
a significant reduction in the use of laxatives [19].

Taken together, we set up the following hypothesis con-
cerning a sequence of events: oral supplementation with RS
enhances SCFA synthesis in the gut, probably accompanied
by a shift in gut microbiota composition (due to a survival

advantage for bacteria capable of fermenting RS). Conse-
quently, the increased SCFA concentrations should lead to
improved gut motility (improved constipation, respectively)

and a reduction in markers of intestinal inflammation.

Results

The RESISTA-PD study cohort

Eighty-seven subjects participated in the trial ‘‘Effects of Resis-
tant Starch on Bowel Habits, Short Chain Fatty Acids and
Gut Microbiota in Parkinson’s Disease” (RESISTA-PD).

The study design and workflow illustrating subjects’ allocation
to study-arms, clinical visits, sample collection, and analysis
are summarized in Figure 1. The majority of subjects

(n = 76) completed the study per protocol. The median age
was 64.5 years old in the PD group receiving RS
(PD + RS), 66 years old in the PD group receiving dietary

instruction (PD+ DI), and 61.5 years old in the control group
receiving RS (Co + RS). There was no significant difference
regarding sex ratio between the groups. The majority of sub-
jects were on an omnivorous diet. Additional epidemiologic

and clinical data are summarized in Table 1, and detailed
information regarding the medication of the enrolled subjects
is provided in Table S1. No major side effects were reported

during the 8-week intervention with RS.

Gut microbiota composition differs between PD patients and

controls at baseline

At baseline, PD patients (n = 57) and controls (n = 30)
showed no significant difference with regard to alpha-

diversity with neither of the two applied analytical tools
(MetaPhlAn2 and mOTUs2) (Figure S1A and B; File S1).
With regard to beta-diversity, we observed a significant
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difference between PD patients and controls (P = 0.001) with
both analytical tools applied in this study (Figure S1C and D).

With regard to specific taxa, Lachnospiraceae incertae sedis
(mOTU_v25_12240, P = 0.017) and Faecalibacterium praus-
nitzii (mOTU_v25_06110, P = 0.019) showed significantly

reduced abundances after correction for multiple testing in
PD patients compared to controls (Table S2). Figure 2 illus-
trates descriptive differences at different taxonomic levels
between PD patients and controls prior to the intervention.

Descriptively, taxa of the phylum Firmicutes showed higher
abundances in controls (except for the class Bacilli), while most
taxa of the phylum Proteobacteria, especially Enterobacteri-

aceae, were more abundant in PD.

Intervention with RS alters symptom load and fecal markers in

PD

We next analyzed the intervention-associated changes in
subject-reported symptoms and in fecal markers. We observed
a significant improvement with regard to non-motor symptoms

[measured by the Non-Motor Symptoms Questionnaire
(NMSQ) score, P= 0.001] and a significant improvement with

regard to depressive symptoms [assessed by the Beck Depres-
sion Inventory (BDI), P = 0.001] in the PD + RS group at
8 weeks post intervention compared to the baseline (Table 2;

Figure S2A). No significant changes in these parameters were
identified over the 8-week intervention period for the PD+DI
or Co + RS group. There was no significant change in bowel
habits [assessed with the Constipation Scoring System (CSS)]

between baseline and 8 weeks post intervention for any of
the three investigated groups (Table 2; Figure S2A). Calpro-
tectin concentrations dropped significantly in the PD + RS

group at 8 weeks post intervention compared to the baseline
(P = 0.023; Table 3; Figure S2B). No significant changes in
fecal calprotectin concentrations were observed between base-

line and 8 weeks post intervention in the Co + RS and
PD + DI groups. Concerning fecal SCFAs, the concentration
of the SCFA butyrate increased significantly in the PD + RS
group at 8 weeks intervention compared to the baseline, for

absolute fecal butyrate concentrations (P = 0.029) as well as

Figure 1 Study design

Subjects were assigned to three different study-arms. One group of PD patients and a control group received 5 g RS twice a day for a total

period of 8 weeks. The second group of PD patients solely received DI. Fecal samples and clinical scores were collected at baseline, after

4 weeks, and after 8 weeks for analysis. +RS in the pictograms visualizes subjects receiving RS, �RS in the pictograms visualizes subjects

not receiving RS. PD, Parkinson’s disease; RS, resistant starch; SCFA, short-chain fatty acid; DI, dietary instruction.
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for relative fecal butyrate concentrations (P= 0.026), (Table 4;
Figure S2C); however, there were no significant changes for
the concentrations of other SCFAs (including acetate, propi-

onate, valerate, isobutyrate, and isovalerate) between baseline
and 8 weeks post intervention in the PD+RS group (Table 4).
Moreover, no significant changes in SCFA concentrations

were observed between baseline and 8 weeks post intervention
in the Co + RS and PD + DI groups (Table 4).

Reference-based analysis shows a stable gut microbiome after

RS intervention

In order to investigate whether the observed changes in clinical

symptoms and fecal markers are associated with an
intervention-associated shift in the gut microbiome, we per-
formed metagenomic sequencing. Quality control by FastQC
indicated good data quality of metagenomic sequencing. Dur-

ing preprocessing, less than 1% of reads were removed for
each sample. In addition to the standard quality control, we
analyzed pairwise Mash distances [20] between all samples.

Hereby, the Mash distance gauges similarity between sequenc-
ing libraries using the only sequence features directly derived
from raw reads. Visualizing Mash distances showed that sam-

ples derived from the same individual frequently produced the
lowest Mash distance, indicating correct labeling of samples
and a lack of contamination (Figure 3). No significant
intervention-associated changes with regard to either alpha-

diversity or beta-diversity were detected for any of the three
investigated groups (PD + RS, PD + DI, and Co + RS).
No significant intervention-associated changes were detected

concerning differences in distinct taxa (Table S2). Non-
metric multidimensional scaling (NMDS) visualizing micro-
biome shifts did not reveal uniform shifts associated with the

intervention (Figure S3).

Reference-free analysis points at punctual differences in the

metagenomic signature

Reference-free analysis revealed intervention-associated
changes in taxonomic signatures in the PD + RS group
(Figure 4). The majority (> 54%) of contigs forming one of

the three clusters in the reference-free analysis were derived
from the genus Rhodococcus (Figure S4). Density changes
worth interpreting as clusters identified in the other cohorts

(Co + RS and PD + DI) did not contain significant amounts
of Rhodococcus sequences.

Distinct microbial signatures are associated with fecal butyrate

concentrations

In metagenomic samples, the change in the abundance of one

taxon is likely to entail changes in the abundance of other taxa.
We investigated our data for data compositionality using the
selbal algorithm. Selbal searches for two groups of taxa whose
relation (or balance) is associated with a certain response vari-

able. The relationship is modeled as a linear or logistic regres-
sion model of the taxa on the response variable. Selbal builds
multiple models containing different taxa combinations and

evaluates their performances using cross-validation. In our
dataset, response variables were measurements of acetate, pro-
pionate, butyrate, valerate, and calprotectin, as well as CSST
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and BDI scores. Using the selbal algorithm, results for

MetaPhlAn2 and mOTUs2 data (Figure 5) with butyrate con-
centrations as response variables were highly consistent. For
absolute butyrate concentrations, selbal detected that higher

abundances of Fusicatenibacter saccharivorans to Ruthenibac-
terium lactatiformans were associated with higher absolute

butyrate concentrations (Figure 5A) with an association

slightly below moderate (MetaPhlAn2 data, R2 = 0.126).
The association of Ruthenibacterium lactatiformans with buty-
rate concentrations was verified by mOTUs2 data. Here, selbal

detected that higher abundances of Lachnospiraceae and
Streptococcus parasanguinis to Ruthenibacterium lactatifor-

Figure 2 Taxonomic tree illustrating differences between PD patients and controls at baseline

This taxonomic tree illustrates the number of OTUs per taxon (visualized by the size of the radius) and the difference (visualized by color)

between PD patients and controls prior to intervention (baseline). Yellow shades indicate a higher abundance in PD patients; blue shades

indicate a higher abundance in controls; gray shades indicate no group-specific differences. Low abundant taxa were pruned [46]. OTU,

operational taxonomic unit.

Table 2 Scores on clinical scales at baseline and 8 weeks post intervention

PD + RS Co + RS PD + DI

Baseline Post intervention P value Baseline Post intervention P value Baseline Post intervention P value

CSS score (median [range]) 5 [0–14] 3.5 [0–15] 0.257 1 [0–11] 0 [0–8] 0.125 2 [0–10] 2 [0–12] 0.674

NMSQ score (median [range]) 10.5 [3–20] 7.5 [2–18] 0.001 3 [0–9] 3 [0–10] 0.774 10 [4–19] 10 [5–19] 0.152

BDI score (median [range]) 6.5 [2–25] 3 [0–12] 0.001 2 [0–14] 2 [0–20] 0.202 7 [1–18] 6 [0–13] 0.106

Note: CSS, Constipation Scoring System; NMSQ, Non-Motor Symptoms Questionnaire; BDI, Beck Depression Inventory.

Table 3 Fecal calprotectin concentrations at baseline and 8 weeks post intervention

PD + RS Co + RS PD + DI

Baseline Post intervention P value Baseline Post intervention P value Baseline Post intervention P value

Concentration of fecal

calprotectin (median

[range], mg/g feces)

56.8 [19–327] 20.5 [19–407] 0.023 19 [19–69] 19 [19–155] 1.000 46 [19–219] 31 [19–217] 0.481
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mans were associated with higher absolute butyrate concentra-
tions, and the association was moderate (R2 = 0.198; Fig-
ure 5B). For relative butyrate concentrations, selbal detected

that higher abundances of Dorea longicatena (MetaPhlAn2
data) and Blautia wexlerae (MetaPhlAn2 and mOTUs2 data)
to Ruthenibacterium lactatiformans (MetaPhlAn2 and

mOTUs2 data) were associated with higher relative butyrate
concentrations, and the association was moderate
(R2 = 0.238 for MetaPhlAn2 data, R2 = 0.257 for mOTUs2

data; Figure 5C and D). The model itself was stable, with
Ruthenibacterium lactatiformans and Dorea longicatena being
included in over 95% of all models for MetaPhlAn2 data
and Blautia wexlerae and Ruthenibacterium lactatiformans

being included in over 96% of all models for mOTUs2 data.
Other response variables did not show consistency between
mOTUs2 and MetaPhlAn2 data.

Functional profiling reveals no intervention-associated difference

in metabolic pathways

In order to identify differences in the available metabolic path-
ways, we applied the HUMAnN2 tool to our data. The esti-
mated pathway abundances were used for an exploratory

data analysis of the samples using principal component
analysis (PCA) and a differential analysis using ALDEx2.
The PCA projection indicated a different tendency between
the PD + RS and Co + RS groups, but no differences

associated with the intervention (baseline vs. 8 weeks post
intervention) (Figure S5). The analysis with ALDEx2 did not
result in any pathway that showed a significant difference

between groups nor a difference between baseline and 8 weeks
post intervention (Table S3).

Discussion

Gut microbiota composition is altered in PD [3–6] and might
be a contributing factor for gastrointestinal non-motor symp-

toms (e.g., constipation) in PD. Having recognized the rele-
vance of the intestinal microbiome in PD, probiotics have
been investigated in PD and other neurodegenerative diseases

previously [21,22] and prompted us to perform the RESISTA-
PD trial.

In accordance with other studies in the field [2,4,5,7,23,24],

we observed a difference between PD patients and controls at
baseline regarding beta-diversity. With regard to specific taxa,
we detected significantly different abundances for two taxa

after correction for multiple testing: abundances for Lach-
nospiraceae incertae sedis and Faecalibacterium prausnitzii
were significantly reduced in the fecal samples of PD patients.
Lachnospiraceae as well as Faecalibacterium prausnitzii have

already been reported to be reduced in PD and have also been
confirmed as altered taxa in PD in a recent meta-analysis [25].
Indeed, the lower abundance of Faecalibacterium prausnitzii

might be one explanation for the lower fecal butyrate concen-
trations in PD. On a descriptive level, we also reproduced some
other previously reported alterations of the gut microbiota in

PD, e.g., a lower abundance of Firmicutes and a higher abun-
dance of Proteobacteria, especially Enterobacteriaceae.

For the reference-free analysis of intervention-associated
changes, a metagenomic signature indicating a possible

involvement of Rhodococcus was found in the PD + RST
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group, despite an insignificant change in abundance during the
read-based analysis. As shown in Figure 4, the blue cluster (top
right) in the CO+ RS group contained only sequences derived

from one single sample, and the sequences were assigned to
Rhodotorula toruloides; the two clusters with the highest den-
sity in the PD + DI group contained no sequences of the

genus Rhodococcus (blue cluster) and less than 0.001% of
sequences of the genus Rhodococcus (red cluster). The
reference-free workflow we selected discards all quantity infor-

mation after assembly. In an optimal scenario, sequences
derived from identical genetic information will be collapsed
into the same contig in each sample. In BusyBee, one such con-
tig will appear as one individual point with close to no impact

on the overall density distribution. The strong signal from the
high-density cluster in the PD + RS group suggests the exis-
tence of multiple contigs that are dissimilar enough not to be

collapsed during assembly yet qualitatively good enough to
be assigned to Rhodococcus. Accordingly, the change in the
density of the investigated cluster indicates a more complex

behavior than a quantitative balance shift. Instead, an increase
in genomic diversity may be postulated from this observation.
The relevance of this particular finding remains unclear and

requires further investigations, especially since the genus
Rhodococcus is not a typical representative of the human gut
microbiota. Given the fact that bacteria of the genus
Rhodococcus are not typical part of the human gut microbiota

and also are obligate aerobes, the identification of this genus in
human fecal samples points at potential contamination.
Indeed, Rhodococcus has been identified in human biosamples

due to DNA contamination of reagents [26]. Yet, DNA con-
tamination is mainly a problem when analyzing low microbial
biomass samples (like blood or saliva). In our study that ana-

lyzed high microbial biomass samples (feces), contamination is
further unlikely as contamination would have occurred solely
in PD+RS samples after the intervention and not in the other

two groups. One might also hypothetically consider contami-
nation of a single batch of reagents or tubes used in our study.
However, samples were analyzed in a random way and not
sorted by the group prior to analysis. Hence, contamination

can hardly explain this finding. As the taxonomic assignment
of contigs relies on libraries, misassignment due to similar
sequences of another taxon (not represented in libraries) with

sequences of Rhodococcus should also be considered.
Our finding that a prebiotic intervention with RS signifi-

cantly alters fecal butyrate concentrations and significantly

reduces fecal calprotectin concentrations is also in line with a
controlled clinical trial that investigated RS in mid-age and
elderly subjects and reported an increase in fecal butyrate con-

centrations in subjects aged 70 years or older [19]. While the
study by Alfa and colleagues [19] even indicated a therapeutic
effect (reduction in the use of laxatives), we did not observe a
significant improvement of bowel habits. This divergent obser-

Figure 3 High intra-individual and low inter-individual similarities of samples

The similarity of samples visualized as Mash distance plot (grouped by study-arms). The lower the Mash distance, the higher the similarity

of samples. Red diamonds represent paired samples (baseline and 8 weeks post intervention) of one subject. Dots represent samples of

other subjects (unpaired).
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Figure 4 Reference-free analysis points at punctual differences

This figure shows the density distribution of the 5-mers, after dimensionality reduction with UMAP. The first row contains the baseline.

The second row shows the 8-week follow-up. In the bottom row, the difference between the two previous rows is visualized; blue indicates

a stronger signal at baseline, and red indicates a stronger signal at 8 weeks follow-up. UMAP, uniform manifold approximation and

projection.

Figure 5 Distinct microbial signatures are associated with fecal butyrate concentrations

A. and B. Balance scores for MetaPhlAn2 data (A) and mOTUS2 data (B) with absolute butyrate concentrations as response variables. C.

and D. Balance scores for MetaPhlAn2 data (C) and mOTUS2 data (D) with relative butyrate concentrations as response variables.
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vation between our study and the study by Alfa and colleagues
might be due to the differences in the types of RS (we used RS
type 3, while Alfa and colleagues used RS type 2), the doses of

RS (Alfa and colleagues administered approximately double
the dosage compared to our study), and the duration of the
interventional period (8 weeks in our study versus 12 weeks

in the study by Alfa and colleagues).
Fecal butyrate concentrations and calprotectin concentra-

tions were not altered when PD patients solely underwent

nutritional counseling, including DI concerning a fiber-rich
diet (PD + DI). Considering the fact that the PD + DI
group underwent the same visit schedule as the PD + RS
group, the effect observed with regard to clinical measures

in the PD + RS group is unlikely to be completed due to
unspecific effects such as attention paid to subjects during
clinical visits or answering questionnaires according to social

desirability.
The effect on symptoms related to depression in the

PD + RS group might be explained by the observed increase

in butyrate concentrations. An association between gut micro-
biota and depressive symptoms has been described previously
[27,28]. Administration of SCFAs, including butyrate, has

been shown to reduce depressive symptoms in mice [29]. More-
over, fecal SCFAs have been shown to be reduced in a cohort
of female patients with depression [30]. Increasing evidence
suggests a connection between depressive symptoms and fecal

SCFA concentrations [31]. One explanation for the lack of a
change in clinical measures in the PD + DI group might be
that adherence to DI is likely to be lower compared to the

more convenient approach of consuming a dietary supplement
(dissolved in one glass of water) twice a day. In addition,
changes in dietary habits are much more heterogeneous com-

pared to standardized nutritional supplementation.
The fact that the Co + RS group did not show a reduction

in fecal calprotectin concentrations is likely to be explained by

already normal calprotectin concentrations in control subjects
at baseline. The unchanged SCFA concentrations in the
Co + RS group might be either explained by a ceiling effect
or by a lower adherence (as controls did not expect to benefit

from the intervention).
Even though the effects on fecal calprotectin and fecal buty-

rate were significant in the PD + RS group and also SCFAs

other than butyrate showed a trend towards an increase in con-
centrations in the PD + RS group, our data lack a clear-cut
correlate concerning specific gut microbiota. Assuming that

gut microbiota composition remains stable despite the prebi-
otic intervention, an altered transcription might have led to
the observed effects on fecal markers. The lack of a clear-cut
response to the intervention with regard to gut microbiota or

symptoms of constipation might also be due to various indi-
vidual factors. Our study design controlled for confounding
factors like age, sex, overall type of diet, comorbidities, and

medication. Nevertheless, the investigated cohorts were
heterogeneous (even within groups) with regard to other, more
complex factors that might determine the individual response

(e.g., the composition of the gut microbiome prior to the inter-
vention, adherence to the recommended RS intake, more
specific dietary habits). This said, the limited sample size in this

proof of concept study together with the inter-individual vari-
ability concerning potential confounding factors, is one expla-
nation for the heterogeneous response to the intervention.

Hence, larger cohorts (as well as transcriptomics and pro-
teomics) might have been necessary to detect more subtle
intervention-associated alterations in the gut microbiome

(and possible changes at the transcriptomic level).
In order to identify microbial signatures associated with

SCFA concentrations, we performed an in silico analysis (using

the selbal algorithm): balance analysis of taxa and butyrate
concentrations resulted in concordant results for both analyt-
ical tools (mOTUs2 and MetaPhlAn2). Moreover, we con-

firmed the robustness of the identified balance scores by their
frequency in a cross-validation model. The microbial taxa
Blautia wexlerae, D. longicatena, and Ruthenibacterium lactat-
iformans are involved in butyrate-related pathways [32]. How-

ever, all of these bacteria are not capable of directly producing
butyrate from RS, but they produce lactate and succinate by
fermentation which consecutively serves as substrates for other

bacteria which produce butyrate [10]. Despite the fact that our
in silico approach did not detect classical SCFA producers (like
Faecalibacterium or Roseburia) as determinants for fecal buty-

rate concentrations, the taxa identified by selbal are indirectly
involved in butyrate production (via complex interactions with
other taxa) [10].

In contrast to our initial hypothesis, symptoms related to
constipation (a frequent non-motor symptom in PD) were
not significantly altered during the 8-week intervention. As
there was at least a descriptive decline in CSS scores after

RS supplementation, we suggest longer interventional periods
and increased doses of RS to test such a symptomatic effect on
bowel habits. Given that RS was well-tolerated in the

RESISTA-PD trial, this seems to be a feasible and rational
approach.

Besides the limited sample size and the relatively short

interventional period, one main limitation of the
RESISTA-PD trial is its open-label study design. We aimed
at counteracting this shortcoming by including an additional

PD control-arm (PD + DI) to control for unspecific effects
(as discussed above). Adherence to the intervention was
checked by patient diaries but not by more objective mea-
sures. Probably, an internal motivation to adhere to the

study protocol might have been higher in the PD + RS
group compared to the Co + RS group (as discussed above).

The primary aim of the RESISTA-PD trial was to test the

feasibility, tolerability, and efficacy of this prebiotic
approach. Hence, our study protocol did not include an
additional measurement of the investigated markers several

weeks after withdrawal of RS. We suggest including such
an assessment in future studies.

At this time, we are not able to answer the question of
whether the observed anti-inflammatory effects indicated by

the decline in fecal calprotectin concentrations are mediated
by the increase in butyrate concentrations. Even though other
studies endorse such an assumption [11], further studies are

needed to clarify the exact mechanisms of this prebiotic inter-
vention and the increase in SCFAs in detail.

A general limitation of interventions aiming at altering the

gut microbiome is the question of endurance. This is why long-
term studies and assessment of subjects after withdrawal of the
intervention are mandatory to draw final conclusions.
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Conclusion

RS, as a dietary supplement to increase fiber intake, is safe and
well-tolerated in PD. RS supplementation partially restores

fecal SCFA concentrations in the PD + RS group without
clear-cut changes in the gut microbiome that were attributable
to the intervention. Alterations at the transcriptome level that

are not captured by our approach might explain the
intervention-associated significant increase in fecal markers
in the PD + RS group.

In view of the good tolerability of RS, we suggest long-term

studies with RS. These studies should also aim at clarifying the
underlying mechanisms for the supposed anti-inflammatory
effects. Based on the assumption of an RS-associated anti-

inflammatory effect, these studies should also investigate
whether RS supplementation is able to modify the clinical
course of PD.

Materials and methods

Study design and registration

The interventional study RESISTA-PD is a monocentric,

prospective, open-label clinical trial investigating the effects
of an 8-week prebiotic intervention with the dietary supple-
ment RS (Catalog No. P/N 03647989, SymbioIntest, Sym-

bioPharm GmbH, Herborn, Germany) (5 g RS twice a day
orally) in PD patients (PD + RS) and matched controls
(Co + RS). As a third study-arm, PD patients who received

solely DI (PD + DI) were enrolled in this study. DI was based
on the ‘‘Food-Based Dietary Guidelines in Germany” (for fur-
ther reference, see https://www.dge-medienservice.de/food-
based-dietary-guidelines-in-germany.html) of the German

Nutrition Society. At the baseline visit, the specified guidelines
to support a health-promoting diet were explained to all sub-
jects in the PD + DI group. These recommendations support

a diet rich in whole-grain products and vegetables and moder-
ate consumption of fat and animal products. Subjects also
received a leaflet summarizing these recommendations. This

leaflet included a table with practical orientation values for
each food group (e.g., cereal products and potatoes, vegetable
and salad, and fruit). Primary outcome measures were: change

(prior- vs. post-intervention) in (a) bowel habits, (b) fecal
SCFA concentrations, and (c) gut microbiome (analyzed by
whole genome-wide sequencing). Secondary outcome parame-
ters were: differences in gut microbiome at baseline (between

PD patients and controls), change (prior- vs. post-
intervention) in clinical scales, and change in fecal calprotectin
concentrations (prior- vs. post-intervention).

Subjects

A total of 57 PD patients and 30 control subjects were

enrolled. PD patients were assigned to two different interven-
tional groups: PD + RS (n = 32) received 5 g RS twice per
day orally over a period of 8 weeks; PD + DI (n = 25)
received DI concerning high fiber intake, but no RS supple-

mentation. Control subjects (Co + RS, n = 30) received 5 g
RS twice per day orally over a period of 8 weeks. The main

inclusion criteria were an age > 18 years old, diagnosis of
PD (respective absence of PD or any other neurodegenerative
disorder in the control group), capacity to give written

informed consent. The main exclusion criteria were use of
antibiotics, steroids, antimycotics or probiotic supplements
(during the last 12 weeks), chronic or acute disorders of the

gastrointestinal tract (other than constipation), a history of
colonoscopy within the past 12 weeks, a history of gastroin-
testinal surgery (other than appendectomy) within the past

three years.

Clinical assessments

Subjects were assessed at baseline, 4 weeks post intervention,
and 8 weeks post intervention. Baseline assessment was per-
formed as in-person clinical visit. Assessments for 4 weeks
and 8 weeks post intervention respectively, were performed

as telephone visits. At baseline visit, subjects underwent rating
with the Unified Parkinson’s Disease Rating Scale (UPDRS)
[33] and the Mini-Mental-Status-Test (MMST) [34]. Symp-

toms related to constipation were assessed at each of the three
visits (baseline, 4 weeks post intervention, 8 weeks post inter-
vention) with the CSS [35]. Depressive symptoms and non-

motor symptoms were assessed with the BDI scores [36] and
the NMSQ scores [37], respectively, at baseline and 8 weeks
post intervention. In addition to collecting data on adverse
events, tolerability and subjective improvement of the inter-

vention were assessed in analogy to the seven-point Clinical
Global Impression - Improvement (CGI-I) scale [38] after 4
and 8 weeks of intervention. The clinical change was rated

(compared to baseline, prior to the intervention with RS
respectively) as: very much improved, much improved, mini-
mally improved, no change, minimally worse, much worse,

or very much worse.

Collection of fecal samples

At the baseline visit, all subjects received sterile containers
(Calalog Nos. P/N S1000-150 and P/N H9550T, Suesse,
Gudensberg, Germany) for the collection of fecal samples at
home. The containers were labeled with the subject-ID and

the scheduled time for collection (baseline, i.e., prior to the first
intake of RS; 4 weeks of intervention with RS; and 8 weeks of
intervention with RS). All subjects were instructed how to col-

lect the fecal samples at home and received a leaflet containing
relevant information for sample collection. Subjects were
instructed to send in two samples (collected on two consecutive

days) for each time point. For metagenomic sequencing, the
first baseline sample and the first 8-week sample were used.
For quantitative analysis of fecal markers, the mean of the

two samples was calculated for further statistical analysis. In
case of missing 8-week samples, 4-week samples were analyzed
(last observation carried forward, LOCF) as described below
(see the ‘‘Statistical analysis of clinical data and fecal SCFA

and calprotectin concentrations” section). All subjects were
reminded by telephone to send in samples after 4 weeks and
after 8 weeks of intervention. Stool samples were sent to the

Institute of Microoecology, Herborn, Germany, and immedi-
ately frozen at �35 �C until analysis.
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Measurement of fecal SCFA and calprotectin concentrations

Quantitative analyses of fecal SCFAs and calprotectin were
carried out by the Institute of Microoecology, Herborn, Ger-
many. All persons involved in these analyses were blinded to

clinical data and the diagnosis of the subjects. Fecal SCFAs
were measured by gas chromatography; fecal calprotectin
was measured by enzyme-linked immunosorbent assay as pre-
viously described [6,18].

DNA isolation

DNA from fecal samples was isolated using the DNeasy

PowerSoil Kit (Catalog No. P/N 47014, QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions. To
ameliorate the purity, we performed precipitation of the

DNA in the presence of sodium acetate (pH = 5.5) and cold
100% ethanol at �20 �C for at least overnight. The DNA
was then centrifuged, washed with 80% ethanol once, and

centrifuged another time. The pellet was air-dried and resus-
pended in TE buffer. DNA concentration was measured using
a Nanodrop 2000 spectrophotometer (Catalog No.
P/N ND-2000, ThermoFisher Scientific, Waltham, MA).

Metagenomic sequencing

DNA libraries were prepared using the MGIEasy DNA

Library Prep Kit (Catalog No. P/N 940-200022-00, MGI
Technologies, Shenzhen, China) according to the manufac-
turer’s recommendations. In general, 1 mg of input DNA was

sheared into fragments using the M220 Focused-
ultrasonicator (Catalog No. P/N 500295, Covaris, Woburn,
MA). Size selection was carried out using Agencourt AMPure

XP beads (Catalog No. P/N A63882, Beckman Coulter, Kre-
feld, Germany). Then, 50 ng of fragmented DNA were used
for end-repairing and A-tailing followed by ligation of barcode
containing adaptors to the 30- and 50-ends. The ligation prod-

ucts were amplified by PCR. A total of 16 different barcoded
samples were pooled in equal amounts and circularized using
a specific oligo sequence, which is complementary to the

sequences in the 30- and 50-adaptors. DNA nanoballs (DNBs)
were generated by rolling circle amplification (RCA), and
loaded onto a flowcell using BGIDL-50 DNB loader. Paired-

end sequencing was performed according to the BGISEQ-
500RS High-throughput Sequencing Set for PE100 on the
BGISEQ-500RS instrument (Catalog No. P/N 940-100037-
00, MGI Technologies).

Statistical analysis of clinical data and fecal SCFA and calprotectin

concentrations

In case of missing data for 8 weeks post intervention and avail-
able data for 4 weeks post intervention, we applied the LOCF
method. LOCF was used for 4 subjects [PD + RS (n = 3) and

PD + DI (n = 1)] to replace missing 8-week data concerning
fecal markers. Concerning clinical scores, missing 8-week data
of 5 subjects [PD + RS (n = 2), PD + DI (n = 1), and

Co + RS (n = 2)] were replaced by 4-week data. The normal
distribution of data was tested using the Shapiro-Wilk’s test.

Statistical significance was assumed for P < 0.05. The differ-
ence between groups was tested using the Mann-Whitney-U-
test. Comparisons of the same group at different time points

were performed with the Wilcoxon’s test for paired samples
and the sign test for paired samples. Pre-defined outcome mea-
sures were not adjusted for multiple testing. Spearman’s corre-

lation coefficient was used to analyze correlations between
parameters.

Sequencing data analysis

Preprocessing

FastQC (version 0.11.8) was used to validate sequence quality,
and the reports were summarized using multiQC (version 1.7)
[39]. Adapter contamination was controlled with the Minion
tool from the Kraken package (version 16.098) [40]. None of

the samples showed adapter contamination. Trimming and
host contamination removal were conducted using KneadData
(version 0.7.2; https://huttenhower.sph.harvard.edu/knead-

data/, accessed 30 Aug 2020).

Read-based analysis

Taxonomic composition of the samples was profiled using

mOTUs2 (version 2.5.0) [41] as well as MetaPhlAn2 (2.9.19)
[42]. Both methods are marker-based and were used to profile
all taxonomic levels. Functional profiling was conducted using

HUMAnN2 (version 2.8.1) [43]. The R-package phyloseq (ver-
sion 1.28.0) [44] was used to plot the relative abundances in
each sample at different taxonomic levels, ranging from king-

dom to species. Alpha-diversity was computed using multiple
measurements for each sample. The distributions of the
alpha-diversity values were compared between patient groups
for the same time point and between time points for the same

patient group. Beta-diversity was calculated using the Bray-
Curtis distance. Differential abundance analysis was per-
formed by comparing the taxa abundance between groups at

the same timepoint and within groups for different time points
using the R-package ALDEx2 (version 1.14.1) [45]. Metacoder
R-package [46] was used to visualize differences in taxa abun-

dance between PD patients and controls. Regression-based
balance analysis of the taxa was done using the R-package sel-
bal (version 0.1.0) [47]. For analysis with the selbal algorithm,
we included all samples and all time points. Mash distances

were computed on the preprocessed reads using Mash (version
2.1.1) [20].

Reference-free analysis

Reference-free analysis closely resembled the BusyBee work-
flow [15], which is centered around k-mers. De novo assembly
was performed using SPAdes (version 3.13.1) [48] for all sam-

ples with matching baseline and 8-week follow-up datasets.
The obtained contigs were filtered by length, and sequences
shorter than 5000 bp were discarded. Of these filtered sequences

longer than 5000 bp, 5-mers and reverse complement 5-mers
distributions were computed. Samples were then pooled, and
a uniform manifold approximation and projection (UMAP)

was computed [49]. The embedded data points were then
reassigned to their respective group-time point combination.
Contigs for further analysis were taken from the PD + RS

group lying within the UMAP coordinates 16.8 < X < 18.2
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and 7.5 < Y < 11. The remaining contigs were analyzed with
BusyBee. The reported taxonomic assignment of the filtered
contigs was computed with CAT/BAT (version 5.0.3) [50].
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Abstract: In 2019, researchers from the EAT-Lancet Commission developed the ‘Planetary Health
(PH) diet’. Specifically, they provided recommendations pertaining to healthy diets derived from
sustainable food systems. Thus far, it has not been analysed how such a diet affects the human
intestinal microbiome, which is important for health and disease development. Here, we present
longitudinal genome-wide metagenomic sequencing and mass spectrometry data on the gut micro-
biome of healthy volunteers adhering to the PH diet, as opposed to vegetarian or vegan (VV) and
omnivorous (OV) diets. We obtained basic epidemiological information from 41 healthy volunteers
and collected stool samples at inclusion and after 2, 4, and 12 weeks. Individuals opting to follow
the PH diet received detailed instructions and recipes, whereas individuals in the control groups
followed their habitual dietary pattern. Whole-genome DNA was extracted from stool specimens
and subjected to shotgun metagenomic sequencing (~3 GB per patient). Conventional bacterial stool
cultures were performed in parallel and bacterial species were identified with matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. We analysed samples from
16 PH, 16 OV, and 9 VV diet patterns. The α-diversity remained relatively stable for all dietary
groups. In the PH group, we observed a constant increase from 3.79% at inclusion to 4.9% after
12 weeks in relative abundance of Bifidobacterium adolescentis. Differential PH abundance analysis
highlighted a non-significant increase in possible probiotics such as Paraprevotella xylaniphila and
Bacteroides clarus. The highest abundance of these bacteria was observed in the VV group. Dietary
modifications are associated with rapid alterations to the human gut microbiome, and the PH diet
led to a slight increase in probiotic-associated bacteria at ≥4 weeks. Additional research is required
to confirm these findings.

Keywords: microbiome; Planetary Health; metagenomics; diet; dietary fiber

1. Introduction

In 2019, the EAT-Lancet Commission developed the so-called ‘Planetary Health diet’
(PH), a diet concept framework, which could provide a healthy diet for up to 10 billion
people in 2050 within the planetary boundaries from sustainably sourced food, thereby
reducing the worldwide number of deaths associated with a poor diet. The main focus of
this diet consists of a reduction in animal products and processed food consumption and
an increase in dietary fibre uptake through plant-based products [1,2].

Dietary fibre is a non-digestible carbohydrate for humans, but a main nutrient source
for bacteria, which reside in the human intestine. The human gut microbiome describes all
such microorganisms and their genomic information, including bacteria, viruses, fungi, and
archaea, which are located in several niches in the gastrointestinal tract [3]. Its impact on
health homeostasis and risk-modulating role in developing a variety of chronic, especially
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inflammatory, diseases, as well as disease progression, have been evaluated in a recent
study [4]. The bacterial composition within the human gut can be altered, especially
in the first three years of life, but also later on during adulthood. Major microbiome-
influencing factors include the mode of delivery (i.e., natural passage through the birth
canal or caesarean section), early life nutrition, as well as stress and diet choices during
adulthood [5,6]. Focusing on diet and its consequences for bacteria-derived metabolites
produced in the gastrointestinal tract, dietary fibre has been shown to be one of the main
modulating nutrients [7].

Commensal members of the gut microbiota ferment these poly- and oligosaccharides,
thereby producing short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate.
SCFAs have been shown to influence glucose and lipid metabolism and regulate immu-
nity, inflammation, and blood pressure [8]. Furthermore, the presence of SCFA-producing
bacteria, and thus also the presence of SCFA detected in faeces, has been correlated with
a protection against allergic reactions in the respiratory tract, suggesting their important
role in shaping the immune system [9]. Hence, SCFAs are key elements in health homeosta-
sis [10–12]. Dietary fibre uptake has further been correlated with a greater gut microbiota
diversity and, if compared with the Western diet, less occurrence of chronic inflammatory
disease through SCFA-producing gut microbiota [13,14]. Therefore, an increase in dietary
fibre intake, as suggested by the PH diet, can lead to an increase in microbial-derived
SCFAs, which have a positive and protective effect on overall health.

The Mediterranean Diet, which focusses on an increase in dietary fibre uptake through
plant-based foods and, similar to the PH diet, a reduction in processed foods and saturated
fatty acids, moderate consumption of fish, poultry, and dairy products, as well as low
consumption of red meat, was shown to positively influence the human gut microbiome
and overall health status. The consumption of animal-derived foods is clearly reduced
in the Mediterranean Diet when compared with the Western diet. However, the PH diet
concept suggests to reduce the intake of meat and dairy even further. After following the
Mediterranean Diet, an increase in microbiota diversity and microbiota-derived metabolites,
in particular SCFAs, has previously been reported [15].

Another diet concept that is gaining more popularity is the plant-based diet. This diet
emphasizes the consumption of plant-derived foods, such as fruits, whole grains, nuts,
seeds, and vegetables, whereas animal products are minimised or strictly eliminated [16].
Similar to the Mediterranean Diet, following a plant-based diet has been shown to increase
microbial diversity in the human intestine and positively affect the abundance of beneficial
bacteria, such as Prevotella sp. [17]. Moreover, plant-based diets have been associated
with reduced inflammation, lower risk of cardiovascular diseases, and improved glucose
metabolism [18].

Another popular approach to maintain overall health, as well as weight management,
is a low-fat diet. These diets usually focus on reducing the intake of fat to a maximum of
30% of total energy intake, while on the other hand increasing the consumption of other
macronutrients, such as protein, carbohydrates, and dietary fibre [19]. Low-fat diets can
be a powerful method in weight management; however, they also have been shown to
decrease the diversity and abundance of several beneficial bacteria in the gut, such as
Bifidobacterium sp. As these diet concepts vary greatly in the specific composition of the
chosen foods and nutrients, positive changes within the intestinal microbiota composition
have also been reported, such as an increase in beneficial Prevotella sp., similar to the results
after following a Mediterranean Diet [20,21].

The focus of the PH diet consists of an increase in dietary fibre through the consump-
tion of vegetables, fruits, and whole grains, and could thus lead to similar changes within
the human gut microbiome as, for example, the Mediterranean Diet or plant-based diet
concepts. While the PH diet concept is gaining more and more attention and support
from various stakeholders, e.g., pertaining to an improved cognitive function, criticism
has been raised about a relative lack of scientific evidence pertaining to its actual health
effects [22–24]. To shed light on the controversial discussion about the PH diet concept,
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we aimed to analyse the effects of following the PH diet over the course of twelve weeks
on overall biodiversity and gut microbiota composition in contrast to the most prevalent
omnivorous diet (OV) and the vegan/vegetarian diet (VV). The OV Western diet followed
by the participants consisted of a low intake of dietary fibre through fruits, vegetables,
and wholegrains. Furthermore, individuals following this diet concept had a very high
intake of highly processed foods, dairy products, meat, and refined sugars, forming the
opposite of the PH diet concept. Individuals following a vegan diet are characterised by
the eradication of any animal-derived products as nutrient sources; however, levels of
dietary fibre intake and highly processed foods vary greatly between individuals. The
abdication of meat products from an individual’s diet concept is the central component
of the vegetarian diet, which was included in the VV as well. Yet, similar to individuals
following a vegan diet, ranges of dietary fibre uptake and highly processed foods can vary.

2. Materials and Methods
2.1. Study Design

Healthy adults aged ≥ 18 years were recruited to the study. Volunteers were in-
vited to participate in the Saarland area, southwest Germany from January to April 2022.
Several exclusion criteria were defined to reduce potential bias owing to the relatively
small number of study participants, i.e., pregnancy, active smoking, acute and/or chronic
disease conditions, and the use of antibiotics within the last 6 months prior to inclusion.
We recorded a detailed medical history of each participant, including major factors that
affect the microbiome, such as (i) birth condition, (ii) medication during the first three
years of life, (iii) exposure to animals within the first three years of life, and (iv) breast
milk or formula use. Participants were divided into three groups according to their diet:
two control groups, following a VV or OV for at least one year, and the intervention group.
Participants belonging to the intervention group changed from an omnivorous diet to the
PH diet. Prior to the study, these participants received detailed instructions and recipes
according to the guidelines developed by the EAT-Lancet commission (document available
online at https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Landwirtschaft/
wwf-wochenmenue-besseresser-innen-flexitarisch.pdf, (accessed on 12 April 2023). All
participants collected faecal samples in a sterile collection tube at four different time points:
initiation of the study and after two, four, and twelve weeks (Figure 1). Samples were then
transferred to the laboratory within 24 h and stored at −80 ◦C until further processing.
Furthermore, we asked all participants to document whether they had an excessive alcohol
intake during the course of the study, as well as the exact foods they consumed two days
prior to the collection of each faecal sample in a printed food diary, in order to reduce
any potential bias that might be explained by different food choices shortly before sample
collection. Individuals adhering to the PH diet were asked to track any divergence from
the foods recommended by the EAT-Lancet commission across the entire study duration.

2.2. Ethical Considerations

All faecal samples were collected at the Saarland University Medical Center (Homburg,
Germany) after having obtained written informed consent from all participants. For this
study, we obtained ethical approval from the regional ethics committee (‘Ärztekammer des
Saarlandes’, reference no.: 116/22).

2.3. DNA Extraction

We extracted whole-genome DNA from all faecal samples using the ZymoBIOMICS
DNA Miniprep Kit [25]. DNA was isolated and purified according to the manufacturer’s
protocol. Briefly, 50 mg of faecal matter was used for the mechanical lysis step of the proto-
col, according to the manufacturer’s recommendation. The respective lysis of microbial
cells was performed using the MP Biomedicals™ FastPrep-24™ 5G Instrument (FisherSci-
entific GmbH, Schwerte, Germany). The manufacturer’s protocol was adjusted in regards
to the used velocity and duration of the mechanical lysis, which was increased to 6 m/s for
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45 s three times with 30 s of storage on ice in between each lysis step. Finally, we eluted
the DNA in 20 µL of DNase-/RNase-free water. Subsequent concentration determination
of the eluted DNA was performed via NanoDrop 2000/2000c (ThermoFisher Scientific,
Wilmington, NC, USA) full-spectrum microvolume UV/Vis measurements.
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Figure 1. Design of the study. Participants followed three different diets over the course of twelve
weeks. Stool was sampled at different time points and whole metagenome sequencing was performed.
Additionally, bacteria were cultivated on different agar plates and analysed with MALDI-TOF mass
spectrometry. Numbers in white circles depict the numbers of participants and respective stool
samples at the different time points for each group.

2.4. Library Preparation and Sequencing

Extracted whole-genome DNA was sent to Novogene Company Limited (Cambridge,
UK) for library preparation and sequencing. Briefly, samples were subjected to metage-
nomic library preparation and further sequenced via paired-end Illumina Sequencing
PE150 (HiSeq). For all samples, 3 Gb reads per sample were generated.

2.5. Culturing of Bacteria

Native samples from five randomly selected participants per diet group were ho-
mogenised by vortexing after defrosting in order to achieve equal bacterial distribution
within the sample without lysing the cells. Then, samples were streaked out on three
different agar plates: tryptic soy agar with 5% sheep blood (TSA), MacConkey (MC), and
Columbia (Co) agar plates (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). We
incubated all TSA and MC agar plates at 35 ◦C and 5% CO2 for 18 h to 24 h. Anaerobic
bacteria were cultivated on Co agar plates in an anaerobic environment at 35 ◦C for at
least 48 h.
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2.6. Mass-Spectrometry-Based Identification

After incubation of native sample material on different agar plates, grown bac-
terial colonies were identified on the species-level using matrix-assisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To this end, we
picked colonies and spotted them onto the MALDI-TOF target plate and overlaid them
with 1 µL of α-cyano-4-hydroxycinnamic acid (CHCA) matrix solution (Bruker Daltonics),
which is composed of saturated CHCA dissolved in 50% (v/v) of acetonitrile, 47.5% (v/v)
of LC-MS grade water, and 2.5% (v/v) of trifluoroacetic acid. The overlaid spots were then
dried at room temperature and the target was subsequently placed into the Microflex LT
Mass Spectrometer (Bruker Daltonics, Billerica, MA, USA) for MALDI-TOF MS analysis. We
performed all measurements with the AutoXecute algorithm using FlexControl© software
(version 3.4; Bruker Daltonics, Billerica, MA, USA). Each spot was automatically excited
with 240 laser shots at six random positions to generate protein mass profiles in linear
positive ion mode. The laser frequency was set to 60 Hz, high voltage of 20 kV, and a pulsed
ion extraction of 180 ns. We measured mass charge ratio ranges (m/z) from 2 kDa to 20 kDa.
The MALDI BioTyper software was used to identify bacterial species based on their protein
mass profiles measured. In this study, we only considered identification scores ≥ 2.0 for
analyses, which represent a precise identification on the species level, while scores between
1.7 and 1.99 were discarded as they are considered as possible species identification, and all
identification scores below 1.7 were considered unsuccessful identification.

2.7. Data Analysis

The first step of data analysis comprised human read removal with KneadData (version
(v):0.7.4, command line arguments (cla): “–trimmomatic-options=’LEADING:3 TRAILING:3
MINLEN:50′ –bowtie2-options=’–very-sensitive –no-discordant –reorder’”) [26]. Next, we
visualised the quality of the remaining reads with fastp (v:0.20.1) and MultiQC (v1.11) on
default settings [27,28]. We computed a first taxonomic profile of quality-controlled reads
with MetaPhlAn3 (v3.0.13, cla: “-t rel_ab_w_read_stats –unknown_estimation –add_viruses”)
on the ChocoPhlAn (v:mpa_v30_CHOCOPhlAn_201901) resource [29]. A second taxonomic
profile was generated based on sourmash (v4.4.3, cla: “sketch dna -p k = 21, k = 31, k = 51,
scaled = 1000, abund –merge”) and the prepared Genome Taxonomy Database (v:GTDB
R07-RS207 all genomes k51) [30,31]. Sample signatures were computed for k-mer sizes 21,
31, and 51. Distances among samples and database comparison were computed using k-mer
signatures of size 31 and 51, respectively. All taxonomic profiles were then pruned and
rescaled to remove viral counts.

The results of the individual samples were aggregated, and further downstream
analysis was performed in R relying on the phyloseq package (v1.40.0) [31]. β-diversity
was computed using the weighted UniFrac distance. Shannon diversity was used as the
α-diversity measure and a two-sided unpaired Wilcoxon rank sum test was performed to
test significance with a false discovery rate of 0.05. The two-dimensional embedding of
sourmash sketches was performed with UMAP (v:0.2.8) [32].

Differential abundance analysis was performed with ALDEex2 (v:1.28.1) and AN-
COMBC (v:1.6.2) comparing vegetarians and omnivores [33,34]. MetaPhlAn3 relative
taxonomic abundances were scaled by their read count of the sample after quality control
for ANCOMBC. A mean species abundance across all time points was computed for each
participant, adjusting for library size if absolute counts were considered. Further, for a
species to be considered for analysis, it had to be detected in over 10% of samples. Next,
abundance analysis was performed, and the results were sorted by absolute effect size. We
pruned the list, focusing only on the first ten percent, and intersected the sets derived from
the same taxonomic profiles.
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3. Results
3.1. Intestinal Microbial Diversity Stays Relatively Stable over Time

Overall, 41 individuals from the same geographic location (Germany) were included:
16 participants following an OV, 9 following a VV, and 16 individuals who changed from
an OV pattern to the PH diet at inclusion. Participating individuals were between 19 and
59 years old, with age ranges between all diet groups being non-significantly different
(ANOVA p-value ≈ 0.84). Sex ratios differed significantly between the three diet groups
(Fisher’s exact test p-value ≈ 0.024), with more females in the VV group (8/9 individuals).
General information about age, sex, and body mass index (BMI) is summarised in Table 1.

Table 1. General participant information. Listed below are the age ranges, BMI ranges, and sex ratio
for all groups.

OV VV PH

Age ranges 27–56 22–55 19–57

BMI ranges 19.8–32.8 19.9–40.1 20.0–24.4

Male 10 1 4

Female 6 8 12

Over the course of twelve weeks, the average α-diversity remained relatively stable
for all diet groups (Figure 2A). Slight increases and decreases for individual participants
were detectable between the different time points. On the one hand, investigation of the
β-diversity based on dimensionality reduction of species information showed no distinct
cluster formation, suggesting that, independent of the diet and time point, samples were all
rather similar in their microbial composition (Figure 2B). On the other hand, reference-free
diversity analysis based on sequence information alone with sourmash highlighted VV
samples to be similar, whereas samples from OV and PH did not form distinct clusters,
suggesting similarities between those two groups (Figure 2C) [29].
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3.2. Microbiota Composition Is Host-Specific and Varies between Diets

While α-diversity describes the general number of different taxonomies present in
a sample and considers the evenness of their respective abundance, taxonomic profiling
enables the visualization of the exact nature of these differences. Analysis on the genus
level showed variations in the microbiota composition across diets (Figures 3A and S1). In
comparison with OV and PH, individuals who followed a VV diet harboured double to
triple the relative amount of Bifidobacterium spp., Prevotella spp., and Gemmiger spp. within
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their intestine immediately after inclusion. Prevotella spp. could be detected in the OV
group with a relative abundance of only 1.3%.
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Figure 3. (A) Mean genus composition of the different dietary cohorts across different time points.
Explicitly named genera were selected by looking at the highest mean relative abundances across
all samples. (B) Identical information to panel Figure 3A, yet at species resolution. (C) Species
composition of the PH cohort for the first and last measured time point. (D) Mean relative abundances
of species with consistently largest effect sizes differentiating OV from VV. The results for the OV
and VV cohorts were aggregated over all time points. OV, omnivore, VV, veg(etari)an, PH, Planetary
Health group.

The mean relative abundance on the species level showed that the 12.1% of Bifidobac-
terium spp. in the VV consisted of 8% Bifidobacterium adolescentis (Figures 3B and S1). After
following the PH diet for at least four weeks, we detected a two-fold increase in Bifidobac-
terium adolescentis and Coprococcus eutactus. These changes were not identified as significant
during differential abundance analysis. We further investigated the relative abundance for
each individual on the PH diet at the time of inclusion in comparison with twelve weeks
after (Figures 3C and S1). Large variations in microbial composition between individuals
at the time of inclusion could be observed, suggesting a partly host-specific microbiota
composition.

We further analysed the differential abundance between OV and VV to highlight
potentially interesting species, thereby only focusing on the top ten percent effect sizes
(Figures 3D and S1). We detected a 3-fold increase in Prevotella copri, a 4-fold increase
in Paraprevotella xylaniphila, and an 18-fold increase in Bacteroides clarus, whereas, e.g.,
Firmicutes bacterium CAG 94 showed a 6-fold decrease in the PH diet over the course of the
study. The differential abundance depicted in Figures 3D and S1 suggests that following
the PH diet shifts parts of the microbiota composition towards a VV microbiome. However,
these observed changes were not significant.
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Cultivation and species identification with MALDI-TOF mass spectrometry identi-
fied 59 different bacterial species across all time points among the five randomly selected
participants from each group (Figure 4). Most commonly isolated were Escherichia coli, En-
terococcus faecium, Clostridium perfringens, and Bifidobacterium longum. Enterococcus mundtii
and Priestia megaterium were mostly detected in the VV, whereas Streptococcus parasan-
guinis, Streptococcus salivarius, Enterobacter cloacae, and Bacteroides uniformis were mainly
isolated from faecal samples of those participants following the PH diet. A detailed ac-
count of detected bacteria in the different groups is displayed in Supplementary Table S1.
This method, however, represents only cultivable microorganisms, leaving approximately
35–65% undetected when compared with next-generation sequencing (NGS) [35].
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4. Discussion

Our study analysed whole-genome data obtained from faecal samples after following
three specific diets, i.e., OV, VV, and PH, over the course of 12 weeks to investigate the
intestinal microbiota composition associated with these dietary patterns. The main differ-
ence between OV as compared with VV and PH is most likely the intake of dietary fibre.
Western citizens generally ingest between 14 g (United Kingdom) and 26 g (Norway) of
dietary fibre, whereas most countries recommend 25–35 g per day for adults [36]. With
the PH diet suggesting 232 g of whole grains, 300 g vegetables, and 200 g fruits per day
for an intake of 2500 kcal/day, participants following this diet should reach these dietary
fibre recommendations [2]. A sufficient amount of fibre is directly associated with posi-
tively affecting the human intestinal microbiome, and a plant-based diet is proposed to
benefit human and planetary health [15,37]. In this study, we were able to detect a trend
towards an increase in Bifidobacterium adolescentis and Coprococcus eutactus (Figure 3A–C)
after following the PH diet for a minimum of four weeks. An increase in B. adolescentis
has previously been shown after supplementation with inulin, a type of dietary fibre and
naturally occurring plant carbohydrate. B. adolescentis is capable of degrading inulin into
lactate and acetate, which can be used by Anaerostipes hadrus and Enterococcus rectale to
produce the SCFA butyrate [38]. In contrast to the supplementation with inulin from Baxter
et al., we did not find a co-increase in A. hadrus when following the PH diet without track-
ing the exact dietary fibre composition. However, B. adolescentis seems to have a growth
advantage after increasing inulin intake. Similarly, β-glucans have been shown to be the
preferred growth substrate of C. eutactus, suggesting a growth advantage after increasing
β-glucans consumption [39,40]. Differences in taxonomic abundances suggested that sev-
eral species merit particular consideration, such as, e.g., Prevotella copri and Paraprevotella
xylaniphila, for which a non-significant increase was detectable (Figure 3D and Figure S1).
P. copri is capable of dietary fibre degradation, as they harbour vast genomic repertoires
of carbohydrate active enzymes [41]. Similar to B. adolescentis, switching to the PH diet
might favour the growth of P. copri. While SCFA-producing bacteria should be beneficial
for the host due to their anti-inflammatory and regulatory effects, P. copri has also been
correlated with the development of rheumatoid arthritis, although without conclusive
evidence. An overgrowth of P. copri might also inhibit the growth of other beneficial micro-
biota [42]. P. xylaniphila can produce anti-inflammatory SCFAs, but also has the potential
to synthesise pro-inflammatory metabolites, such as, for example, succinic acid. Succinic
acid was previously described in close correlation with the development of hypertension,
inflammatory, and metabolic diseases [43,44]. These two species, identified by differential
abundance, might harbour beneficial potential, but need to be studied more extensively to
analyse their exact effect on health homeostasis and their function within the complex gut
microbiome. However, computing the differential abundance is a powerful tool to identify
both pathogenic species and beneficial bacteria. To the best of our knowledge, no genomic
or phenotypic analyses have been performed to identify the biochemical properties of
Firmicutes bacterium CAG 94, making this species an interesting target for further research.

Several limitations of our study are offered for consideration. First, we performed
a monocentric analysis with a limited number of individuals. Second, participants of
this study received recipes and detailed instructions on what to consume, but we did
not implement exact meal plans. For future studies, we recommend standardised meal
plans to avoid any potential participant compliance issues. Third, we did not perform
culture-based bacteriological analysis in all study participants. Fourth, the VV contained
mostly biologically female participants, thereby creating significant differences in sex
ratios between the groups. Fifth, the study groups were relatively small, and robust
statistical analyses of individual groups at different time points would require a larger
study population in future studies.

In conclusion, this work provides the first metagenomics-sequencing-based appraisal
of the PH diet. While no significant changes were observed within the overall intestinal
microbial composition of individuals opting to follow the PH diet, we identified several
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potentially interesting bacterial species. Indeed, when focusing on differentially abundant
species between OV and VV, non-significant trends of the PH cohort towards VV were
noted. Specific bacterial species are capable of producing anti-inflammatory metabolites
and might be an interesting target for novel probiotics, beneficial bacteria that can be
taken supplementary to a healthy diet [45]. Hence, we encourage further microbiota-
targeted research pertaining to the PH diet, ideally through multi-country longitudinal and
larger-scaled studies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu15081924/s1. Table S1: List of bacterial species identified
by culturing and MALDI-TOF. Listed are all bacterial species that were cultured from native stool
samples and identified via MALDI-TOF. The table is divided in the three dietary groups.; Figure S1:
Identical information as displayed in Figure 3 using sourmash for taxonomic profiling of metagenomic
reads. Note, the relative amount of unknown taxonomies was removed and information was rescaled.
Further, the selected species from Figure 3D were adopted and not recomputed as to highlight
abundance differences among workflows.
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a b s t r a c t 

We analyzed consecutive clinical cases of infections due to carbapenemase-producing gram-negative bac- 

teria detected in war-wounded patients from Ukraine who were treated at one university medical center 

in southwest Germany between June and December 2022. The isolates of multiresistant gram-negative 

bacteria were subjected to a thorough microbiological characterization and whole genome sequencing 

(WGS). We identified five war-wounded Ukrainian patients who developed infections with New Delhi 

metallo- β-lactamase 1-positive Klebsiella pneumoniae . Two isolates also carried OXA-48 carbapenemases. 

The bacteria were resistant to novel antibiotics, such as ceftazidime/avibactam and cefiderocol. The used 

treatment strategies included combinations of ceftazidime/avibactam + aztreonam, colistin, or tigecycline. 

WGS suggested transmission during primary care in Ukraine. We conclude that there is an urgent need 

for thorough surveillance of multiresistant pathogens in patients from war zones. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Introduction 

Antimicrobial resistance (AMR) was associated with an es- 

timated 4.95 million deaths worldwide in 2019 alone, and 

carbapenem-resistant gram-negative bacteria were among the ma- 

jor contributors to this enormous disease burden [1] . All-age death 

rates were the highest in sub-Saharan Africa, followed by South 

Asia and Eastern Europe. The war in Ukraine has led to significant 

migration movements, with ≥7.8 million refugees across Europe 

until December 2022 [2] . We report AMR patterns in war-wounded 

patients from Ukraine. 

∗ Corresponding author: Tel: + 49 6841 16 23901. 

E-mail address: soeren.becker@uks.eu (S.L. Becker) . 
# These authors contributed equally. 

Case descriptions 

Patient P1 

A male patient aged 34 years experienced a femoral shaft 

fracture after an explosion. Swabs from an inserted external 

fixator grew Klebsiella pneumoniae and Pseudomonas aeruginosa . 

Both pathogens were highly resistant to antibiotics, including car- 

bapenems, ceftazidime/avibactam, and cefiderocol. A New Delhi 

metallo- β-lactamase (NDM-1) was detected in the K. pneumoniae 

strain. Both pathogens remained susceptible to colistin, whereas 

tigecycline showed a comparatively low minimal inhibitory con- 

centration (MIC) of 1.5 mg/L ( Table 1 ). The patient developed 

an infection and was successfully treated with colistin plus 

tigecycline. 
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Patient P2 

A male patient aged 43 years had complex fractures of the 

tibia and humerus, which were caused by gunshots and blast in- 

juries. The patient developed fever, and a highly resistant NDM- 

1-positive K. pneumoniae was detected in the blood cultures and 

wound swabs. Furthermore, a multiresistant P. aeruginosa strain 

and Enterococcus faecalis were recovered. The patient was success- 

fully treated with combined colistin and high-dose imipenem (MIC 

of the isolate: 6 mg/L). The infection improved, but the patient 

required further wound debridement and vacuum-assisted closure 

therapy. 

Patient P3 

A female patient aged 58 years had severe wound infection af- 

ter having undergone unilateral below-knee amputation. Wound 

smears revealed an NDM-1-positive K. pneumoniae strain. The an- 

timicrobial treatment comprised colistin and tigecycline (MIC 0.75 

mg/L). The patient’s course improved and she was finally dis- 

charged to a rehabilitation center. 

Patient P4 

A female patient aged 64 years was admitted for severe blast 

injuries of the chest and above-elbow amputation with wound in- 

fection. K. pneumoniae grew in wound smears, which were positive 

for OXA-48 and NDM-1. Initial therapy included tigecycline (MIC 

0.75 mg/L) and colistin. Colistin was discontinued due to acute kid- 

ney failure. Further smears grew NDM-positive Providencia stuar- 

tii strains. After surgical and antimicrobial treatment, the patient’s 

condition improved and she was discharged. 

Patient P5 

A male patient aged 56 years was admitted for thoracic blast in- 

juries and extensive soft tissue damage of one leg after gunshot in- 

jury. Combined femoral and tibial fractures showed signs of infec- 

tion (osteitis) and maggot infestation. The patient developed a sys- 

temic infection with an OXA-48 and NDM-1-positive K. pneumoniae 

strain, which was isolated from the blood cultures and wounds. 

Initial therapy consisted of tigecycline and colistin. Furthermore, an 

NDM-positive P . stuartii grew in the wound swabs. Because the pa- 

tient’s condition did not improve, treatment was switched to cef- 

tazidime/avibactam in combination with aztreonam. Later, the clin- 

ical course was complicated by candidemia and the patient under- 

went amputation of the infected leg due to persistent infection. 

Microbiological characterization and whole genome sequencing 

(WGS) analysis 

Details on the microbiological methods [3] , sequencing tech- 

niques, and analysis models can be found in Supplement 1. Seven 

gene multilocus sequence typing with mlst (v2.22.1) suggested at 

least three different strains by predicting three different sequences 

types (STs) for K. pneumoniae isolates: ST395 (P3.1), ST147 (P2.1), 

and ST23 (P1.1, P4.2, and P5.1) (Supplementary Figure 1A). The 

three STs shared only one house-keeping gene, whereas ST147 and 

ST23 shared two house-keeping genes. Altogether, 25.484 single- 

nucleotide variants (SNVs) were shared by all three ST23 isolates, 

whereas 359 SNVs were unique to P1.1, 253 SNVs were unique to 

P4.2, and 231 SNVs were only detected for P5.1. Hence, the shared 

ST23, in combination with an increased SNV agreement, suggest a 

common epidemiological background and clonality of the K. pneu- 

moniae isolates of patients 1, 4, and 5. 
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Resistance detection with ABRicate (v1.0.1) revealed a wide 

range of different resistance genes (Supplementary Table 1). Re- 

garding carbapenem resistance, the NDM-1 coding gene blaNDM-1 

was found in all analyzed isolates. The gene coding for OXA-48 was 

detected in P4.2 and P5. The blaNDM-1 plasmids of P2.1 and P3.1 

were identical, as well as the plasmids isolated from P4.2 and P5, 

for which even chromosomal comparison showed high similarities, 

thus suggesting at least partial transmission between patients. De- 

tails on the plasmid genes are displayed in Supplementary Figure 

1B. 

Regarding the resistance against ceftazidime/avibactam and ce- 

fiderocol, respectively, neither bla KPC-2 nor bla NDM-35 could be de- 

tected. 

Discussion 

The ongoing war in Ukraine has a profound negative impact on 

the country’s health care system, including the fight against infec- 

tious diseases. Due to the high number of Ukrainian migrants hav- 

ing fled the country, specific challenges have also arisen for pub- 

lic health and appropriate surveillance measures in other countries 

[4 , 5] . Indeed, a French practice guideline has put forth a host of 

recommendations to health care providers who care for migrants 

from Ukraine, which prioritize communicable diseases, vaccination 

catch-up, and psychological sequelae, etc. [6] . After anecdotal re- 

ports of “how war is spreading drug resistant superbugs across 

Ukraine and beyond”, [7] recent genomic surveillance data high- 

lighted the considerable challenges arising from carbapenemase- 

producing gram-negative bacteria [8] . Here, we report on a series 

of Ukrainian patients with contaminated wounds who were found 

to be colonized and/or infected with NDM-1- and NDM-1/OXA-48- 

positive Enterobacterales and nonfermentative bacteria. WGS find- 

ings and the rapid detection of pathogens in swabs taken on ad- 

mission to our hospital suggest a previously established coloniza- 

tion with these bacteria. 

The epidemiology of carbapenemases found in hospitalized pa- 

tients varies considerably across Europe, with the highest rates 

being reported from southern and southeastern Europe. In Ger- 

many, OXA-48 was the most commonly detected carbapenemase 

in 2021, followed in descending order by VIM-1, KPC-2, and NDM- 

1 [9] . Of note, bacterial strains carrying more than one carbapen- 

emase were a rarity ( < 5%). Several international guidance docu- 

ments have been published on the treatment of infections caused 

by carbapenem-resistant gram-negative bacilli, which recommend 

the preferred use of ceftazidime/avibactam, if susceptible in vitro . 

For metallo- β-lactamases, such as NDM-1, the use of cefiderocol 

monotherapy or the combination of ceftazidime/avibactam plus 

aztreonam is conditionally recommended [10 , 11] . Although these 

recommendations are supported by compelling susceptibility data, 

none of the carbapenemase-producing strains in our investigation 

was susceptible to ceftazidime/avibactam, and cefiderocol was re- 

sistant in four of the six tested isolates. Of note, cefiderocol sus- 

ceptibility is notoriously difficult to test [12] , and we also observed 

some discrepancy depending on the testing method. The com- 

bination of ceftazidime/avibactam and aztreonam restores activ- 

ity against NDM-1-producing K. pneumoniae and other Enterobac- 

terales , but its routine use outside clinical studies is currently ham- 

pered by the unavailability of intravenous aztreonam in some Eu- 

ropean countries and the absence of a licensed fixed dose combi- 

nation of these compounds. Furthermore, this combination seems 

much less promising in NDM-1-producing P. aeruginosa isolates 

[13] . 

Our WGS data suggest a high relatedness of the different 

carbapenemase-producing strains, which point to one or multiple 

common origins, e.g ., in the field hospital, where the patients had 

received emergency medical care before being transferred abroad. 

Our investigation is limited by the absence of environmental sam- 

ples from the field hospital so that the exact transmission path- 

ways cannot be reconstructed. 

Conclusion 

There is an urgent need for a thorough surveillance of multire- 

sistant gram-negative bacteria in patients from Ukraine with war- 

related wounds in Europe and elsewhere. These pathogens should 

be subjected to a broad antimicrobial susceptibility testing because 

previously unknown rates of resistance to ‘last-line’ and novel an- 

tibiotics are to be expected. 
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ABSTRACT

Despite recent methodology and reference database
improvements for taxonomic profiling tools, metage-
nomic assembly and genomic binning remain impor-
tant pillars of metagenomic analysis workflows. In
case reference information is lacking, genomic bin-
ning is considered to be a state-of-the-art method
in mixed culture metagenomic data analysis. In this
light, our previously published tool BusyBee Web im-
plements a composition-based binning method effi-
cient enough to function as a rapid online utility. Han-
dling assembled contigs and long nanopore gener-
ated reads alike, the webserver provides a wide range
of supplementary annotations and visualizations.
Half a decade after the initial publication, we revis-
ited existing functionality, added comprehensive vi-
sualizations, and increased the number of data anal-
ysis customization options for further experimen-
tation. The webserver now allows for visualization-
supported differential analysis of samples, which is
computationally expensive and typically only per-
formed in coverage-based binning methods. Further,
users may now optionally check their uploaded sam-
ples for plasmid sequences using PLSDB as a ref-
erence database. Lastly, a new application program-
ming interface with a supporting python package was
implemented, to allow power users fully automated
access to the resource and integration into existing
workflows. The webserver is freely available under:
https://www.ccb.uni-saarland.de/busybee.

GRAPHICAL ABSTRACT

INTRODUCTION

State-of-the-art metagenomics data analysis predominantly
depends on reference databases. Reads are compared
against well-characterized sequences and in case of suffi-
cient sequence similarity, a read may be assigned to a tax-
onomy, an associated operational taxonomic unit count is
incremented, or a genomic function is deduced (1–4). How-
ever, metagenomic studies operating at the boundary of
what is known to humankind, e.g. investigating extreme
maritime or volcanic environments, will inevitably come
to the point where reference data is incomplete or of in-
sufficient quality (5–7). While the overall possibilities for
analysis are limited, a lack of reference information does
not necessarily prevent any analysis. Instead, metagenomic
short-read assembly or long-read metagenomic sequencing
is frequently performed to allow for further hypothesizing,
analysis, and discovery. However, due to high species diver-
sity, sequencing errors, and other conflicts during assem-
bly, metagenomic assemblies frequently yield multiple thou-
sands of contigs of variable lengths and qualities (8,9).
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Since short-read metagenomic read assembly and long-
read metagenome sequencing output a mix of sequences of
all the present species, structured analysis of results remains
difficult. Therefore, longer sequences are usually grouped
using binning methods to separate sequences into taxo-
nomic units. Two features are frequently used to achieve
informed separation into groups. Coverage-based binning
uses coverage profiles of sequences, computed across multi-
ple samples, to cluster into bins. Composition-based bin-
ning utilizes the conservation of sequence features like
tetranucleotide profiles and derives bins from the input se-
quence (10). Many of the state-of-the-art binning methods
such as MaxBin2 are hybrid methods using both kinds of
features (11–13). However, coverage profiles provide limited
information if only one individual sample is analyzed, and
they may even be not applicable depending on the selected
sequencing method. Accordingly, new methods that do not
require coverage profiles are further developed (14,15).

In 2018, we proposed BusyBee Web as a reference-free
composition-based binning tool efficient enough to func-
tion as a webserver (16,17). The underlying pipeline trains
a classifier on a subset of the input data which is then used
to assign sequences into bins. The used features are nor-
malized k-mer profiles of length four or five. The tool op-
tionally provides various functional and taxonomic annota-
tions with Prokka and Kraken respectively allowing for tax-
onomic binning (18,19). Five years after initial publication,
the community used BusyBee Web to analyze >2500 indi-
vidual samples and perform >4500 runs. Here, we present
a major update to the binning resource.

MATERIALS AND METHODS

Developing an update to an existing resource allowed us to
revisit some of the already available functionality and cover
a broad list of minor improvements. Accordingly, the taxo-
nomic annotation was updated to support Kraken 2 with a
newer database and marker genes for bin quality assessment
were extended to include the Archaea genes from the anvi’o
project (20). Further, a sunburst plot was added and several
new expert settings for clustering and embedding methods
were implemented. Namely, we included t-SNE (21), Fit-
SNE (22), UMAP (arXiv:1802.03426), PHATE (23) and
TriMap (arXiv:1910.00204) as embedding and DBSCAN
(24), HDBSCAN (25), k-means and spectral clustering (26)
as new clustering methods. From the list of new features, we
want to highlight three major changes with higher visibility
to newer users.

Plasmids annotations

Due to the random sampling involved in shotgun sequenc-
ing experiments, metagenomic data often includes plas-
mid fragments that may also end up in assemblies, poten-
tially impacting downstream analysis. BusyBee Web now
optionally compares input sequences to the most recent ver-
sion of PLSDB using mash screen (27,28). In case plas-
mid signatures are found, the most relevant information
about the plasmids is displayed. From here, users can take
a deeper look into the findings by continuing their analysis
on PLSDB.

Comparative metagenomics

Group comparison is a frequently requested analysis that is
often neglected in composition-based methods. In BusyBee
Web, we compute a differential density between two user-
defined classes, by first applying a Gaussian 2D kernel to
the embedded sequences for both classes separately. Band-
width and grid size used in the computation can be mod-
ified by the user, within given boundaries. Next, the dif-
ference between both densities is visualized. This usually
results in a picture where various areas are dominated by
different classes. While this method does not directly pro-
vide statistics on coverage differences, it remains indicative
of different phenomena. On the one hand, if long reads are
directly embedded, higher density regions should represent
a higher relative number of sequences with a similar k-mer
spectrum in the sample. On the other hand, if assembled
contigs were provided, interpretation becomes more com-
plex. First, the number of embedded sequences is expected
to increase simply due to technological errors, resulting in
higher density regions for higher sequence counts similar
to the long-read interpretation. Second, increased phyloge-
netic diversity is captured since identical sequences should
ideally be collapsed already during assembly. The differ-
ence in density can be retrieved for each cluster allowing the
user to further analyze potentially interesting patterns and
areas.

Application programming interface

To allow programmatic access to BusyBee Web, we imple-
mented an application programming interface (API). The
API complies with the Open API 3.0.2 standard (29). Users
can start jobs, check their status, and download individ-
ual results over the API. Additionally, a python package is
supported and distributed via conda, which allows for easy
integration into R scripts using reticulate. The package is
available on: https://github.com/CCB-SB/busybee api.

Case studies

In order to benchmark BusyBee Web on a mock commu-
nity in the first case study, we downloaded the ERR3152364
dataset from the sequence read archive and converted the
fastq files into fasta files while also adapting the header
names. Due to the high sequencing depth of the experiment,
the sample had to be pruned to comply with the constraints
imposed by the webserver. Thus, we shuffled the fasta file
randomly and selected the first 200 Mb of data, corre-
sponding exactly to the upload limit and which accounts
for <2% of the initial file. The resulting file contained a to-
tal of 50 679 reads. After data generation, we started analy-
sis with default parameters changing only the embedding to
UMAP. For comparison, various embeddings with different
dimension reduction methods were computed (Supplemen-
tary Figure S1).

The second case study discussing differences between
sequencing technologies was conducted with newly gen-
erated data. Both datasets were derived from the same
1mL of bile sample of a healthy human individual and
DNA was extracted with the same QiAamp DNA Mi-
crobiome Kit allowing for comparison between technolo-
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gies. Next-generation sequencing DNA libraries were pre-
pared using the MGIEasy Universal DNA Library Prep
set following the recommendations of the manufacturer.
The DNBSEQ-G400 was used as short-read sequencing
platform. Oxford nanopore sequencing was prepared with
the SQK-LSK109 Ligation Sequencing kit before sequenc-
ing on an FLO-MIN106D flow cell in a MinION Mk1B.
Basecalling was performed with Guppy v5.0.7. For both
datasets, human-read contamination was removed by first
running kneaddata v0.7.4, followed by sra-human-scrubber
v1.0.2021 05 05 (1,30). After removal of human reads, the
ONT fastq was converted to fasta and read names were
shortened to generic header names. For the short-read
sequencing data, reads were assembled to scaffolds with
metaSPAdes v3.15.2 and scaffolds were retained (8). Before
analysis with BusyBee Web, both datasets, short- and long-
read, were combined and a mapping to the original fasta
entries was generated. Next, data was passed to BusyBee
Web with default settings, but selecting UMAP as embed-
ding algorithm.

RESULTS

With the increasing popularity of whole shotgun
metagenome and long-read sequencing competing with
amplicon sequencing, dedicated analysis of plasmids from
metagenomics data is becoming increasingly tempting to
the metagenomics community (31). However, shared se-
quences between chromosomes and plasmids, variable sizes,
and a wide range of other factors render plasmid assembly
from short reads an algorithmic challenging task often
entailing high misassembly rates (31,32). Similarly, the
prediction of both plasmid reads, and plasmid sequences
remains an intensively debated field of research, also affect-
ing long-read sequencing technology (33–38). Attributed
to these difficulties, plasmid sequences frequently appear
in binning inputs where they may be difficult to interpret.
With the newly added plasmid annotation, BusyBee Web
explicitly notifies the user about the presence of already
known putative plasmid signatures. Further, the newly
adopted differential density-based visualization allows
for visual interpretation of similarity between aggregated
samples. Since cohort and interventional studies comparing
healthy against diseased patients, elderly against young, or
different treatment conditions are increasingly performed
in biomedical research, the field also faces an upsurge of
comparative metagenomic studies. However, many of the
conclusions drawn from cohort studies are either based on
differential taxonomic counts or the functional aspect of
sequences. In both cases, the comparison relies on reference
information. One method to alleviate this constraint is to
assess differential coverage profiles of binned sequences.
However, similar to coverage-based binning, coverage
profiles are required for this approach, which may not be
available. Moreover, minor differences in binning outcomes
may largely impact conclusions weakening the stability
of this approach. The embedding followed by subsequent
kernel application that we implemented alleviates these
drawbacks and the volatility of results is bound to the
characteristics of the selected dimensionality reduction
method. Lastly, with the added application programming

interface (API) BusyBee Web can easily be integrated
into new and existing data analysis pipelines. In combina-
tion with workflow managing tools such as Nextflow or
Snakemake, the API increases experiment throughput and
reproducibility of results (39,40).

In order to highlight the improved functionality of Busy-
Bee Web, we analyzed two datasets of varying ground truth
information. While at the core BusyBee uses a reference-
free algorithm for binning, here we make use of reference-
based taxonomic annotations that were added after bin-
ning. Combining these annotations with the knowledge of
well-characterized microbial environments allows us to bet-
ter gauge binning quality.

Mock community benchmark

To assess the binning quality of BusyBee Web on a well-
characterized example, we used a dataset by Nicholls et al.
as ground truth (41). This nanopore sequencing data repre-
sents a mock community composed of exactly ten known
species. The output of BusyBee Web consists of 27 bins
(Figure 1A and B). However, 14 of these bins each con-
tained <1% of sequences and may be discarded from fur-
ther analysis. Of the remaining 13 bins, five bins, namely 1,
5, 8, 22 and 24, were mostly composed of unclassified se-
quences. We postulate that these bins are mostly made up
of Cryptococcus neoformans and Saccharomyces cerevisiae
which are not included in the selected Kraken 2 database.
The taxonomic composition of bin 9, which is the small-
est remaining bin composing only 515 sequences, is highly
fractioned indicating a low binning quality. While not ex-
empt from cross-contamination, all the remaining bins (2,
11, 13, 16, 17, 21 and 27) can clearly be attributed to the
distinct species from the mock community, indicating that
despite only using a fraction of the input, BusyBee Web is
able to successfully recover the contained major species.

Sequencing technology comparison

To highlight the new analysis functionality added in this up-
date, we compared the suitability of long reads with short-
read assembled scaffolds. With the 19,262 input sequences
passing the default length filter a total of 19 bins were pre-
dicted of which five (5, 7, 8, 15 and 19) contained <1%
of sequences. A total of 340 sequence similarities to po-
tentially relevant plasmids were identified where the major-
ity was reported in Enterococcus faecium. Looking at the
new differential density plot from Figure 1C we observe
six clusters (1, 2, 4, 6, 16 and 17) that are specific to the
short-read sequencing experiment. The taxonomic profile
of cluster 1 has a high relative number of unclassified se-
quences, pointing towards potentially unreliable assemblies
(Figure 1D). Nevertheless, we note that within this bin a few
long reads were found at a relative proportion of ∼15.5%.
Four of the remaining five clusters (2, 4, 16 and 17) have
low contaminations. These four clusters presumably consist
mostly of Lachnospiraceae, Enterobacteriaceae, Actinomyc-
etaceae and Micrococcaceae respectively. Potentially, due to
biological random sampling or decreased sequencing depth,
these genomic signatures mostly escaped the nanopore se-
quencing.
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Figure 1. (A) Embedding of the mock community dataset, using UMAP with default settings. (B) Taxonomic profile at genus level of the different bins
computed on a mock community composed of ten different species. (C) Differential density embedding of a bile sample sequenced with Oxford Nanopore
MinION (Long Read) and DNBSEQ-400 (Short Read) respectively. (D) Taxonomic annotation of bins computed on the comparison dataset.

CONCLUSION

With the new update, we substantially extended the capa-
bilities of BusyBee Web as a versatile composition-based
binning tool. On the one hand, with the newly added clus-
tering methods, embedding algorithms, and API, we in-
creased the data analysis possibilities for expert users. On
the other hand, we hope to widen our user base by provid-

ing new visualizations and annotations. While we always
strive for maximal flexibility, the ease of use of BusyBee
Web as an installation-free webservice comes at a cost. For
example, the data upload is limited to 200Mb per sample
which can quickly be reached if multiple samples are being
analyzed. Moreover, some of the presented clustering and
embedding options will not be able to handle the theoret-
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ical maximal number of contigs that fit into a 200Mb file,
due to time and memory constraints. Therefore, BusyBee
Web provides an option for compressing information be-
fore embedding computation, alleviating some of these lim-
itations. Nonetheless, visualization of the embedding in the
local browser for many data points may become slow or ir-
responsive on less powerful hardware. Here, we recommend
to prefer API usage instead. Moreover, with sufficient cov-
erage information available, state-of-the-art coverage-based
and hybrid metagenomic binning tools are expected to out-
perform composition-based tools on short-read sequencing
data in larger projects.

Potential future development efforts may further focus on
the identification of mobile genetic elements. However, with
large disagreements already observed across plasmid classi-
fication tools, potential counter-strategies, e.g. automated
removal of putative sequences from user input, are likely
unstable and thus currently not advisable. Further, by ex-
tending the BusyBee Web server to allow for a selection of
different embedding and clustering methods, it will be easier
in the future to integrate newer algorithms into the general-
ized framework.
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ABSTRACT

Plasmids are known to contain genes encoding for
virulence factors and antibiotic resistance mecha-
nisms. Their relevance in metagenomic data process-
ing is steadily growing. However, with the increas-
ing popularity and scale of metagenomics experi-
ments, the number of reported plasmids is rapidly
growing as well, amassing a considerable number
of false positives due to undetected misassembles.
Here, our previously published database PLSDB pro-
vides a reliable resource for researchers to quickly
compare their sequences against selected and an-
notated previous findings. Within two years, the size
of this resource has more than doubled from the ini-
tial 13,789 to now 34,513 entries over the course of
eight regular data updates. For this update, we ag-
gregated community feedback for major changes to
the database featuring new analysis functionality as
well as performance, quality, and accessibility im-
provements. New filtering steps, annotations, and
preprocessing of existing records improve the qual-
ity of the provided data. Additionally, new features
implemented in the web-server ease user interac-
tion and allow for a deeper understanding of cus-
tom uploaded sequences, by visualizing similarity
information. Lastly, an application programming in-
terface was implemented along with a python library,
to allow remote database queries in automated work-
flows. The latest release of PLSDB is freely accessi-
ble under https://www.ccb.uni-saarland.de/plsdb.

GRAPHICAL ABSTRACT

INTRODUCTION

Plasmids are extrachromosomal DNA sequences that are
short in comparison to chromosomes and frequently found
in circular form within prokaryotes. They can harbor a wide
range of genes such as antibiotic resistance and virulence
factors (1,2). Due to the appearance of such clinically rele-
vant phenotypes, the analysis of plasmid sequences is widely
acknowledged and often performed in the context of mi-
crobiome sequencing studies (3,4). On the one hand, as-
sociative connections between clinical conditions and plas-
mids may allow untangling specific disease and treatment
patterns. On the other hand, plasmid research furthermore
plays a significant role on a population level (5). Due to sev-
eral mechanisms, e.g., horizontal gene transfer via conjuga-
tion, antibiotic resistance may spread calling for a readjust-
ment of focus in pharmaceutical research on new innovative
antibiotics (6). However, to allow monitoring global distri-
butions of plasmids within populations, a general-purpose
database is required, providing easy access to previously
reported plasmids. Here, PLSDB (7) supports researchers
with an easy-to-use web interface since 2018.
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The original PLSDB was created to complement NCBI’s
plasmid collection on RefSeq, which is partially incomplete,
inconsistent, lacking in functionality, and contains several
chromosomal sequences. PLSDB gathers data from NCBI
& INSDC based on the query formulated by Orlek A et al.
(8) and adds further filtering and annotation steps. The fil-
tering hereby focuses on deduplication, Mash distances (9),
and identification of putative chromosomal sequences using
53rps genes from PubMLST (10). The additional annota-
tions consist of resistance and virulence factors from ARG-
ANNOT (11), CARD (12), ResFinder (13) and VFDB (14).
Apart from the dataset, PLSDB also provides a web inter-
face to present the data in a simple but powerful manner.
A core function of PLSDB is to allow users to upload their
own sequences and compare them to the database contents,
thereby selecting from established search methods such as
Mash (9) or blastn (15).

With the rising popularity of whole metagenome shot-
gun sequencing slowly superseding 16S rRNA sequencing,
more plasmids are getting discovered. Furthermore, ded-
icated algorithms for plasmid extraction from short read
sequencing are gaining attention allowing for more effi-
cient automated analysis of sequencing data (16–18). Simi-
larly, new databases emerge trying to manage and overcome
the resulting flood of plasmid data. A new plasmid collec-
tion by Brooks et al., for example, tries to bundle NCBI
plasmid information in a collection (19). Another recent
database, mMGE (20) has the advantage of unifying phage
and plasmid information in a single catalog. However, the
database creation workflow is solely focused on the human
microbiome. The COMPASS database (21), is of compa-
rable scope to PLSDB and focuses extensively on replicon
typing. Due to the scope, size, functionality, and quality of
its content, PLSDB is widely used in the scientific commu-
nity as a central resource for reference data on natural oc-
curring plasmids. By focusing on this domain, the resource
finds extensive usage in environmental studies (22). Further,
antibiotic resistance analyses with a diverse scope profit fre-
quently from the resistance annotations found in PLSDB
(23,24). Based on aggregated feedback of this primary ex-
pert userbase, we conducted a major update. A sizable por-
tion of the update focuses on improving future mainte-
nance, aggregation, and quality of the data. Further, we saw
this as an opportunity to implement various new utilities
into the online resource (Graphical Abstract).

MATERIALS AND METHODS

The updated version of PLSDB provides easier access to se-
quence files, additional visualizations, further data export
options and other improvements. We want to highlight two
major changes for user interaction and two changes impact-
ing the contents of the database.

Plasmid data collection

PLSDB is prohibitively large to manually curate and is
steadily growing. Based on frequent-user feedback, two ad-
ditional filtering rules were added to satisfy new community
demands. The first rule is a simple threshold cutoff con-
straining the minimal size of a sequence to be considered

a plasmid. This is necessary since the data retrieval rules set
by Orlek et al. require sequences to be complete, yet smaller
sequences not surpassing this threshold were observed to in-
dicate incorrect labeling. The second rule was implemented
to address incomplete assemblies and is a result of the com-
putation of the Mash distance. The underlying designation
of the Jaccard index as in Mash computation does not aim
to test inclusion properties. Even in the case of perfectly cov-
ered subsequences, the set similarity threshold may not be
reached leading to a retainment of both sequences. In order
to address this issue, another filtering step was set in place
specially focused to capture these hierarchical relationships.
To this end, a blastn search querying for exact matches be-
tween plasmid pairs of the same Biosample or the same Nu-
cleotide database description was implemented. Hereby, we
considered that plasmid matches may split into two perfect
matches, due to the linearization of circular plasmids in file
formats. In addition to the new filtering rules, new annota-
tions were integrated into the data collection pipeline. First,
disease information from the BioSample database is now
supported. Second, MOB-typer (18) has been added to an-
notate mobility families and mating pair formation classes.

Annotation preprocessing

While the NCBI BioSample database offers highly rele-
vant additional information for data analysis, it is widely
accepted that the quality of the annotated meta data is
lacking in several ways (25). This is because the database
does not constrain meta data input upon submission. While
this simplifies and encourages data upload, it complicates
data analysis for users (26). Data preprocessing fixing ty-
pographical errors, annotations running under an incorrect
header, incorrectly typed values, etc. is a time-consuming
procedure. Yet, skipping it may negatively impact down-
stream analysis (25). Accordingly, a first step users often
had to take when trying to make further use of the meta data
of PLSDB, was to clean it up. In this update, we integrated
a part of this process into our data collection pipeline, to
shift some of that workload away from our users. With this
goal in mind, additional processed annotations were added,
while also leaving the original meta data intact. The first col-
umn we support in the new workflow indicates the host of
the biosample. Here, we try to link the entry to a valid NCBI
taxonomy entry. If an entry has already been resolved, we
recycle the mapping. If this is not the case, we first split the
text at any common separating characters, and then query
the individual components in the NCBI taxonomy browser
using the taxize (27) R package. If an assignment was
uniquely mapped to a taxonomy, we consider it to be pro-
cessed. For each biosample, we start from the host descrip-
tion and proceed with the isolation source column in case
no result is found. The second meta data type we process
indicates a potential disease of the host. As reference ter-
minology, we use the Disease Ontology (28). Here, we start
again by removing various separating characters, numerals,
and stop words in the ontology terms. Afterward, we com-
pute the case insensitive complete Levenshtein distance ra-
tio between all terms and the query using the fuzzywuzzy
python package (https://github.com/seatgeek/fuzzywuzzy)
and keep the best match. Once the result surpasses a given
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threshold, we keep the result, for which we found a thresh-
old of 80 to work well. In case the threshold is not met,
we compute the token set ratio instead and retain the best
match surpassing a threshold of 95.

Sequence comparison

PLSDB allows a user to compare their sequences against
the database choosing among a variety of search strategies.
While it is useful to filter and sort detected plasmids, the dis-
played similarity scores may be perceived as abstract and
unintuitive. In case a deeper understanding of the results
had been desired, downloading of sequences and a man-
ual investigation was previously necessary. As to improve
user experience, PLSDB now allows users to visualize sim-
ilarities directly and interactively in the web interface as a
bipartite graph. To this end, a blastn search is run and visu-
alization is made using Kablammo (29). Kablammo allows
for filtering of blastn results to display only the most rele-
vant similarities by adjusting blastn cutoff values. The same
view can also be used to compare two selected plasmids in-
cluded in the database. Further, a tblastn search is used if a
user uploads protein sequences.

Application programming interface

In the age of massively parallel sequencing automation
and reproducibility is key in bioinformatics. Accordingly,
PLSDB now provides an application programming inter-
face (API). The main functionalities are focused on data
retrieval and automated sequence search. A user may down-
load information for a specific plasmid, filter the entire
database for relevant subsets, or get sequence information.
Users can upload their sequences through the API and re-
motely search for sequence similarities in PLSDB.

The API complies with OpenAPI guidelines and is
further extended by an open-source python wrapper for
straightforward integration into custom workflows (30).
Similarly, a wrapper based on reticulate allows portability
to R applications. For data analyses exceeding the through-
put of the API, the open data policy of PLSDB offers the
user to freely download the entire database as well as any
matching sequence information.

RESULTS

Content summary

Since the release of PLSDB, the number of contained se-
quences has been continuously growing by ∼250% from the
initial 13 789 to now 34 513 entries (Figure 1A). The cur-
rent update consists of 350 Mb in sequence information.
Focusing only on those sequences where geolocation infor-
mation is available, substantial portions of the data come
from China (21%), USA (21%) and the UK (8%). On the
South American and African continents, Mexico and Egypt
provide most of entries with 1% and less than 1%, respec-
tively. Further, the sequences are not only sampled unevenly
from a geolocational perspective, but also on a taxonomic
level (Figure 1B). The phylum with most entries in PLSDB
is Proteobacteria at 70%. Largely this is due to Escherichia
coli species, making up ∼29% of all Proteobacteria, being

the most predominantly represented species in the database,
likely due to its model organism status. The second leading
phylum, Firmicutes, has only a proportion of 30% compared
to Proteobacteria with the most prevalent species being En-
terococcus faecium. The largest relative growth compared to
the first version is observed in Actinobacteria. Due to a low
presence in the first version, relative growth is over 300-fold
with a little more than one thousand entries in the current
version. The least represented phyla in the current version
are Synergistetes with one and Chlorobi, Deferribacteres,
Gemmatimonadetes, and Nitrospirae with two plasmids, re-
spectively. We observe on the gene level that the number
of annotated sequences where genes involved in antimicro-
bial resistance are observed is growing faster than the over-
all number of plasmids (Figure 1C). The underlying cause
for this observation may not necessarily be due to a spread-
ing of antibiotic resistance genes. A confounding factor in-
fluencing this numerical growth might be attributed to a
stronger focus of researchers on clinically relevant plasmids.
In contrast to antibiotic resistances, virulence annotations
decrease in relative frequency. Finally, manual analysis of
the new annotation preprocessing feature shows the quality
of processed annotations to be robust (Figure 1D). For the
host disease meta data, available information is sparse with
only 4368 entries. With our preprocessing pipeline, we were
able to link 1795 entries to a valid Disease Ontology term.
Considering host information, a total of 13 050 entries orig-
inally contained annotations. Taken together, we provide 12
877 processed terms, where 602 annotations derived infor-
mation, despite an initially empty meta data field. Never-
theless, we note that there remain many plasmids where the
automated annotation was not reliable enough to link either
an ontology or taxonomy term. Here, no processed annota-
tion is given, leaving users the choice to modify, transcribe,
or drop original annotations. To gauge the overall quality
of the database we assessed all sequences with various exter-
nal tools used for differentiating sequences into plasmid- or
chromosome-derived sequences. PlasClass (31), PlasFlow
(32) and PlasForest (33) labeled 91%, 82% and 100% of se-
quences as plasmids respectively, indicating low contamina-
tion from e.g., chromosomal information. We do note that
for PlasClass we used a threshold of 0.5 and that the tool
was trained with an older version of PLSDB, likely biasing
these results. To explore the completeness of the database,
we compared contents to alternative databases with CD-
HIT-EST-2D v4.8.1 (34). We found that 94% and 92% of
sequences from the database of Brooks et al. and COM-
PASS, respectively were replicated in PLSDB at a sequence
identity of 100%.

Case example analysis

PLSDB is frequently used in a wide range of antimicro-
bial resistance-focused analyses as reference material (35).
When observing antimicrobial resistance in a clinical sce-
nario metagenomic sequencing and assembly of whole sam-
ples may not be desired due to cost or time constraints. In-
stead, it may be more interesting to narrow down the re-
sistance to a few potential candidate plasmids responsible
for the resistance, then to either validate it experimentally
with PCR or adjust treatment (36). For demonstration pur-
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Figure 1. New Data of PLSDB: (A) Growth of the PLSDB data collection over time. (B) Taxonomic tree capturing the main composition of PLSDB in
terms of quantity across several taxonomic ranks. Node size indicates frequency in the current database. Color fade represents relative growth compared to
the first release of PLSDB. (C) Yearly growth of annotation data per source collection. Fold change is always computed with respect to the first release. (D)
Manual validation of automatic preprocessing results. For each information type, annotations are compared before and after preprocessing. To generate
the heatmap, all unique lowercase representatives of descriptions were extracted from the current version of PLSDB. Entries were then manually evaluated.
For the preprocessed description, the comparison was drawn to the respective ontologies.

poses, we investigate a resistance qualification in Staphylo-
coccus aureus, which is infamous for e.g., methicillin resis-
tance (37). For the analysis, we search in PLSDB for avail-
able data by filtering for known plasmids in Staphylococcus
aureus. Further, we may narrow down our findings by using
the geolocational information available in PLSDB. There-
fore, we filter for results originating from Germany. The
number of potential plasmid candidates is now reasonably
small to investigate individual plasmids. Since longer plas-
mids have better odds for containing an interesting gene,
we sort by length and check plasmids iteratively for resis-
tances using the plasmid overview of PLSDB. Using the
newly added minimum spanning tree visualization, we may
navigate among similar plasmids searching for a viable can-
didate, once a first interesting plasmid is identified. With
few candidates selected, further investigation can be done
by direct comparison. Following this general analysis gist
for demonstration, we quickly identified two pivotal plas-
mids, NZ CP022909.1 and NZ CP022907.1, harboring sev-
eral �-lactam resistance genes.

CONCLUSION AND FUTURE DIRECTION

With this update, we aim to prepare PLSDB from a widely
accepted data resource to a recognized reference database

in the field of naturally occurring plasmids. The added fea-
tures address both power and casual users alike and with
them, we hope to invite more researchers into the analysis of
plasmids and therein included clinically relevant resistances.
Further, with the new processed meta data and content im-
provements to PLSDB, existing users will find important
quality-of-life changes. At last, changes in the data gather-
ing pipeline will allow us to provide regular content updates
to the database for an extended amount of time.

Upcoming development efforts on the web-server will be
invested into speeding up existing functionalities that may
be affected by the rapid data growth such, as the search by
sequence. Considering the database, future work is centered
around the improvement of annotations and quality assur-
ance of regularly scheduled data releases. Qualitatively, the
goal is to further improve annotation processing by extend-
ing the natural language processing techniques with man-
ual curation of the most frequent correction issues. Quan-
titatively, we aim to add more specific information if de-
sired by the community while still balancing the user ex-
perience for new researchers entering the field. To facilitate
and further automate the rolling out of future releases, we
advocate for automated outlier detection in our data gen-
eration pipeline. We observed that more advanced methods
were unable to provide a concise decision on plasmid clas-
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sification. Yet, rule-based methods would already be able to
signal suspicious annotations and potentially chromosome-
contaminated sequences.

We will continuously adapt our web-server to the needs
of the research community and provide accurate plasmid
information in future data updates. We therefore encourage
users to remain vocal on data quality and feature requests.

DATA AVAILABILITY

The PLSDB web-server is freely accessible at: https://
www.ccb.uni-saarland.de/plsdb. The entire data collection
of PLSDB can be found on the website. The dedicated
python package for API access is available on GitHub
https://github.com/CCB-SB/plsdbapi. Finally, the data col-
lection pipeline can be found on GitHub https://github.
com/VGalata/plsdb where we are also welcoming any user
feedback.
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Auritidibacter ignavus is an aerobic gram-positive, 
rod-shaped bacterium that was described by 

Yassin et al. in 2011 after isolation from an ear swab 
specimen (1). Thus far, all published cases with mi-
crobiological detection of A. ignavus were associated 
with ear infection that clinically manifested as otitis 
externa with otorrhea, which indicates a specific role 
of this pathogen in inflammatory diseases of the outer 
ear (1–3). However, only a limited number of cases 
have been published, and scant data are hampering 
valid conclusions on the clinical relevance and ther-
apeutic implications of this pathogen. In addition, 
there are discrepant results with regard to suscepti-
bility testing (1,2).

We describe 3 cases of patients with otorrhea 
caused by A. ignavus detected during March 2021 and 
October 2022 at the Saarland University Institute of 
Medical Microbiology and Hygiene (Homburg/Saar, 
Germany); the total number of ear swab specimens 
analyzed for diagnostic purposes in the institute’s mi-
crobiology laboratory during 2021 and 2022 was 922. 
We provide an in-depth description of the clinical iso-
lates, including their antimicrobial drug susceptibil-
ity patterns and strain comparison by whole-genome 
sequencing. Furthermore, we review the available lit-
erature pertaining to A. ignavus.

Case Reports
Written informed consent was obtained from the 3 
patients to publish this case report. Patient 1 was 
a 50-year-old man who sought care for a chronic 
right-sided otorrhea caused by treatment-resistant 
external otitis, which had caused symptoms for sev-
eral months. An outpatient topical treatment with 
ciprofloxacin ear drops for several weeks did not re-
sult in clinical improvement. At initial examination,  

the patient described persistent itching and otalgia 
on the affected ear. Clinical examination showed 
an extensive stenosis of the external auditory ca-
nal caused by multiple exostoses that narrowed 
the lumen by >50%. The ear canal appeared swol-
len and red by ear microscopy (Figure 1, panel A). 
The eardrum was covered with black fungal spores. 
Microbiological wound swab specimens showed A. 
ignavus and the dematiaceous fungus Exophiala der-
matitidis. Thus, an alternating topical therapy with 
povidone-iodine drops and ethanol drops was ini-
tiated. Four weeks later, the patient reported major 
clinical improvement and absence of any symp-
toms. The examination showed a dry ear canal 
without any abnormal findings.

Patient 2 was a 72-year-old woman who sought 
care for slowly progressing conductive hearing loss 
of the right ear and occasional otorrhea. She denied 
any pain, dizziness, or tinnitus. Although an otolog-
ic examination of the left ear showed unremarkable 
findings, the right side showed a fibrotic, moist audi-
tory canal with stenosis, which was suggestive of a 
postinflammatory acquired atresia of the external au-
ditory canal (Figure 1, panel B). Audiometry showed 
an air bone gap of up to 20 dB on the right side with 
bilateral sensorineural normacusis. To exclude mid-
dle and inner ear affection or malformations, com-
puted tomography was performed and showed a 
partial obstruction of the right external auditory ca-
nal by fibrous tissue without any additional patho-
logic findings. To widen the external auditory canal 
and to help with outer ear drainage, we performed 
a meatoplasty. Because the otorrhea did not subside 
postoperatively, we obtained a microbiological swab 
specimen, which grew A. ignavus. A topical therapy 
with ethanol drops and nourishing oil drops led to a 
long-lasting improvement of symptoms without re-
curring otorrhea.

Patient 3 was a 76-year-old man who had lichen 
planus and sought care for recurrent otorrhea of both 
ears for >2 months. He reported no otalgia, vertigo, or 
tinnitus. A symmetric presbycusis had remained un-
changed for years and was treated with conventional 
hearing aids. On examination, both auditory canals 
were moist and constricted, clinically manifesting as 
inflammatory meatal fibrosis, a common finding in 
patients who have lichen planus. Result of a comput-
ed tomography scan showed a bilateral circumferen-
tial bony overgrowth of the osseous external auditory 
canal. A microbiological swab specimen led to the 
identification of A. ignavus in both ears. Thus, a topi-
cal therapy with ethanol drops and a tincture of iso-
propyl alcohol, glycerin, acetic acid, and peppermint 

We describe detection of the previously rarely report-
ed gram-positive bacterium Auritidibacter ignavus in 
3 cases of chronic ear infections in Germany. In all 3 
cases, the patients had refractory otorrhea. Although 
their additional symptoms varied, all patients had an ear 
canal stenosis and A. ignavus detected in microbiologic 
swab specimens. A correct identification of A. ignavus 
in the clinical microbiology laboratory is hampered by 
the inability to identify it by using matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry. 
Also, the bacterium might easily be overlooked because 
of its morphologic similarity to bacterial species of the 
resident skin flora. We conclude that a high index of 
suspicion is warranted to identify A. ignavus and that it 
should be particularly considered in patients with chronic 
external otitis who do not respond clinically to quinolone 
ear drop therapy.

Auritidibacter ignavus and Chronic Ear Infections
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oil was initiated. At follow-up after 3 weeks, both 
auditory canals were dry and without signs of acute 
infection but with an unchanged fibrotic stenosis.

Microbiological Characteristics of A. ignavus
In all 3 cases, microbiological ear swab specimens 
were subjected to standard microbiological culture 
methods (i.e., incubation on tryptic soy blood agar 
and chocolate agar for >48 hours). After 1 day of in-
cubation, small white-gray colonies appeared (Figure 
2), which changed to a gray-yellow appearance with 
a slimy surface over the course of few days. On Gram 
staining, gram-positive rods were observed, with a 
partially coccoid morphology.

No distinct identification was achieved by matrix-
assisted laser desorption/ionization time-of-flight 
mass spectrometry (Bruker Daltonics). Thus, we 
performed a 16S broad-range PCR and subsequent 
Sanger sequencing. Analysis using a BLAST search 
(https://www.ncbi.nlm.nih.gov/BLAST) based on 
the National Center for Biotechnology Information 
genome database showed a sequence homology 
>99% for A. ignavus in all 3 cases.

We performed antimicrobial susceptibility testing 
using epsilometry on Mueller-Hinton agar with 5% 

sheep blood. In the absence of specific species-related 
clinical breakpoints for A. ignavus, we assessed the 
MICs by using the non–species-related breakpoints 
put forth by the European Committee on Antimicro-
bial Susceptibility Testing (https://www.eucast.org). 
We consistently noted high MICs for ciprofloxacin, 
which are likely to be associated with clinical failure 
of this drug. In contrast, all isolates were susceptible to 
β-lactam antimicrobial drugs and vancomycin (Table).

We extracted whole-genome DNA from iso-
lates of A. ignavus by using the ZymoBIOMICS 
DNA Miniprep Kit (Zymo Research Corp.). We per-
formed subsequent whole-genome sequencing by 
using Illumina PE150 (HiSeq), conducted by Novo-
gene UK Ltd.. We performed quality control of se-
quencing output by using Fastp version 0.23.2 and 
MultiQC version 1.13a. We aligned reads against 
the reference genome of A. ignavus (CP031746.1 Au-
ritidibacter sp. NML130574) by using Bowtie2 ver-
sion 2.4. Variant calling using Freebayes version 
1.3.2, filtering using Vcftools version 0.1.16 with a 
set threshold of 20, and comparison with Vcftools 
suggested that all 3 isolates were unrelated and 
had only 5,246 single-nucleotide polymorphisms in 
common (Figure 3).

Figure 1. Right ears of 2 patients 
with chronic ear infections who 
were infected with Auritidibacter 
ignavus, Germany. A) Patient 1. 
Auditory canal was swollen and 
red and contained fungal spores. 
B) Patient 2. Fibrotic stenosis in 
the cartilaginous part of the ear 
canal, which was suggestive of a 
postinflammatory acquired atresia 
of the external auditory canal.

Figure 2. Small white-gray 
colonies of Auritidibacter ignavus 
in a sample from a chronic ear 
infection patient, Germany. 
Colonies are shown after 2 days 
of incubation at 37°C on tryptic 
soy blood agar (A) and chocolate 
agar (B).
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Discussion
Auritidibacter spp. infections have rarely been report-
ed in the literature. A systematic PubMed/MEDLINE 
search using the search term “Auritidibacter” yielded 
only 3 results. In 2011, Yassin et al. (1) provided a de-
tailed account of this bacterium with a microbiologi-
cal, biochemical, and phylogenic characterization. The 
phenotypic culture morphology pattern described 
in their work matched our own observations. Eight 
years later, Seth-Smith et al. (3) published a complete 
genome assembly of an isolate from Switzerland and 
compared it with 4 global genomes, which showed a 
high diversity within the species. That finding is con-
sistent with our findings of only 24.4%–29.1% single-
nucleotide polymorphism identity between the 3 dif-
ferent isolates from the 3 case-patients (Ai_01, 29.1%; 
Ai_02, 24.4%; Ai_03, 26.5%). More recently, Bernard 
et al. (2) investigated 4 isolates of the genus Auridi-
tibacter by microbiological and biochemical detection 
methods, as well as whole-genome sequencing, to as-
sess their relatedness to the species A. ignavus.

All of those studies reported only little clinical 
data of the included patients. We present a report 
that includes details on the patients’ clinical courses, 
including the clinical treatment response. Whereas no 
clear associations of A. ignavus infections with pre-
disposing factors was found, outer ear canal stenosis 
was observed in all 3 patients. This anatomic feature 
seems to favor the colonization and probably also the 
infection with this pathogen. However, limited data 
make it difficult to explicitly establish a causal link 
between both conditions. Thus, additional studies or 
case series of a larger number of patients, including a 
control group of patients with ear canal stenosis and 
no clinical symptoms suggestive of acute inflamma-
tion, would be necessary to distinguish between colo-
nization and infection.

According to Yassin et al. (1), A. ignavus is usu-
ally susceptible to β-lactam antimicrobial drugs, 
whereas Bernard et al. (2) reported resistance to 
cefepime. Such discrepancies might partially be ex-
plained by different antimicrobial testing methods, 
which underscores the need for coordinating test-
ing recommendations for rare bacteria such as A. 
ignavus. Particular attention should be paid to our 
observation of ciprofloxacin resistance in all iso-
lates, a finding that is consistent with the report by 
Bernard et al. (2).

Ciprofloxacin ear drops are commonly prescribed 
in clinical practice. Although MICs enable only limited 
conclusions on the clinical effectiveness of local anti-
microbial drug therapy, we suggest that patients with 
therapeutic failure after empiric topical treatment with 
ciprofloxacin ear drops should be assessed for A. igna-
vus by using microbiological tests. The clinical suspi-
cion should be reported to the microbiology laboratory 
because there is a serious risk of overlooking A. ignavus 
caused by its morphologic similarity to bacterial spe-
cies belonging to the residential skin flora.

No specific request for an in-depth analysis was 
made by the treating clinicians in the cases we de-
scribe. Thus, increased awareness among the clinical 
microbiologists was caused by the repeated receipt of 
ear swab specimens from the patients with the clinical  
information otorrhea in context with the bacterial  

 
Table. Antimicrobial drug susceptibility patterns for 10 drugs of 3 Auriditibacter ignavus isolates from patients with chronic ear 
infections, Germany* 

Isolate 
MIC, mg/L 

PEN CRX AMS MEM VAN LIN CLI DOX SXT CIP 
1 0.38 0.5 0.25 1.5 0.064 0.5 32 0.5 0.094 32 
2 0.19 0.094 0.125 0.38 0.125 0.75 2 0.064 0.008 16 
3 0.125 0.125 0.25 0.5 0.064 0.38 1.5 0.125 0.19 12 
*Testing was performed by using epsilometry on Mueller-Hinton-Agar with 5% sheep blood. AMS, ampicillin/sulbactam; CIP, ciprofloxacin;  
CLI, clindamycin; CRX, cefuroxime; DOX, doxycycline; LIN, linezolid; MEM, meropenem; PEN, penicillin, SXT, trimethoprim/sulfamethoxazole;  
VAN, vancomycin. 

 

Figure 3. Venn diagram showing overlapping single-nucleotide 
polymorphism information among Auritidibacter ignavus isolates 
(Ai_01, Ai_02, and Ai_03) from 3 chronic ear infection patients, 
Germany.
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growth of presumed physiologic flora in large 
quantities, which led to a low threshold to submit 
bacterial colonies to additional testing for species 
identification. Finally, the absence of A. ignavus in 
matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry databases poses an addi-
tional threat to correct identification in the clinical 
microbiology laboratory, as has been reported for 
other pathogens (4).

In conclusion, A. ignavus is a novel, potentially 
underrecognized pathogen that seems to be associ-
ated with a distinct clinical pattern in patients with 
ear infections. A high level of disease awareness and 
accurate microbiological diagnostics are required for 
correct identification. In patients who have a clini-
cal course of chronic external otitis and who do not 
respond to empirical treatment with quinolone ear 
drops, Auritidibacter infection should be considered 
and further investigated.
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Hunting, preparing, and selling bushmeat 
has been associated with high risk for zoo-
notic pathogen spillover due to contact with 
infectious materials from animals. Despite 
associations with global epidemics of severe 
illnesses, such as Ebola and mpox, quantita-
tive assessments of bushmeat activities are 
lacking. However, such assessments could 
help prioritize pandemic prevention and pre-
paredness efforts.

In this EID podcast, Dr. Soushieta Jagadesh, a 
postdoctoral researcher in Zurich, Switzerland, 
discusses mapping global bushmeat activities 
to improve zoonotic spillover surveillance.

121



Between Cages and Wild: Unraveling the Impact of Captivity on 
Animal Microbiomes and Antimicrobial Resistance

Georges P. Schmartz1, #, Jacqueline Rehner2, #, Miriam J. Schuff 2, Sören L. Becker2, Marcin 
Krawczyk3, Azat Tagirdzhanov1, 4, Alexey Gurevich4, 5, Richard Francke6, Rolf Müller4, Verena 
Keller1, Andreas Keller1, 4

1 Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
2 Institute of Medical Microbiology and Hygiene, 66421 Saarland University, Homburg, 
Germany
3 Department of Medicine II, 66421 Saarland University, Homburg, Germany
4 Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection 
Research, 66123 Saarbrücken, Germany
5 Department of Computer Science, Saarland University, 66123 Saarbrücken, Germany
6 Zoo Saarbücken, 66121 Saarbrücken, Germany
# Authors contributed equally

ABSTRACT

Understanding human, animal, and environmental microbiota is essential 

for advancing global health and combating antimicrobial resistance (AMR). We 

investigated the oral and gut microbiota of 48 animal species in captivity, 

comparing them to those of wildlife animals. Specifically, we characterized the 

microbiota composition, metabolic pathways, AMR genes, and biosynthetic gene 

clusters (BGCs). We described 585 novel species-level genome bins (SGBs), 

predicted 484 complete BGCs, and observed diet-dependent metabolic pathway 

variations. Furthermore, in comparison to wildlife-derived microbiomes, we 

noticed examples of converging microbiota. Importantly, our study identified AMR 

genes against common veterinary antibiotics and resistance to vancomycin, a 

critical antibiotic in human medicine. The study contributes to a better 
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understanding of the complexity of the animal microbiome, highlights its BGC 

diversity relevant to the discovery of novel antimicrobial compounds, and 

underlines the importance of the ‘One Health’ approach due to the potential for 

zoonotic transmission of pathogenic bacteria and AMR.

INTRODUCTION

The Human Microbiome Project,  launched by  the  United States  National

Institutes  of  Health in  2007,  aimed to describe the microbiota compositions at

various body sites in its initial phase (1). This led to the first characterizations of the

human microbiome in healthy individuals and paved the way for phase two, which

focused on analyzing the role of the human microbiome in several disease states

in detail  (2).  Since the project's launch, researchers worldwide have focused on

understanding which microorganisms are present in and on the human body, their

contributions to disease development,  progression, and exacerbation, and their

potential to protect us, especially against chronic-inflammatory diseases (3-6). The

dynamic nature of the microbiome, which can be altered by various factors such as

diet,  changes  in  the environment,  and frequent  exposure to  other  microbiota,

including those of pets,  emphasizes the importance of analyzing environmental

microorganisms and animal  microbiota,  along with the human microbiome,  as

part of the World Health Organization's 'One Health' approach (7-10).
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This approach acknowledges the interconnectedness of human, animal, and

environmental health and highlights the need to analyze the three components to

understand and address antimicrobial resistances (AMR) along with other factors

(11). As AMR continues to increase globally, it is crucial to investigate the role of

microorganisms in humans, animals, and the environment to contribute to overall

homeostatic  ecosystems,  control  diseases,  and  secure  global  health  (12).

Moreover, the genomic and functional characterization of microorganisms from all

three components of the 'One Health'  approach contributes significantly to the

identification  of  novel  antimicrobial  compounds  to  tackle  the  AMR  crisis  and,

moreover, identify novel species before they disappear from the earth’s diversity

again (13-16). Biosynthetic gene clusters (BGCs) encode the biosynthetic repertoire

of  microbes resulting in the context-dependent  production of  natural  products

such  as  antibiotics.  They  are  thus  a  potential  target  for  the  discovery  of

antimicrobial compounds as the secondary metabolites they encode aid in inter-

species competition between microbes (17, 18). BGC-derived metabolites have the

potential to offer specificity against selected species, in contrast to commonly used

broad-spectrum  antibiotics  (19,  20).  Additionally,  their  existence  for  multiple

millennia minimizes the risk of spontaneous resistance development, making them

an attractive option for human and veterinarian medicine (21). While many studies

have focused on identifying novel BGCs derived from human microbiota and soil
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bacteria that still  represent a major source of new active compounds, few have

investigated the occurrence of BGCs in animal microbiota (22-25).

In  this  study,  we  investigate  the  oral  and  intestinal  microbiota  residing

within various animal  classes in captivity,  a  setting closely intertwined with the

presence of zookeepers and visitors. Our objective was to unravel the intricacies of

these  microbial  communities,  illuminating  their  composition  and  establishing

connections  with  the  animals'  diets.  Beyond mere  identification,  we  sought  to

comprehend  the  functional  contributions  of  microorganisms  to  health  and

disease,  exploring  metabolic  pathways,  AMR  genes,  and  BGCs.  However,  our

investigation  extended  beyond  the  confines  of  captive  environments,  as  we

embarked on a  comparative  analysis  between the microbiomes of  captive  zoo

animals  and  those  of  their  wild  counterparts  (Fig.  1a).  By  scrutinizing  the

microbiota of these captivated creatures, our study not only aims to enrich our

understanding  of  the  microbiome's  complexity  but  also  holds  the  promise  of

unearthing novel antimicrobial compounds sourced from animal microbiota. 
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RESULTS

Deep  sequencing  and  quality  control  results  in  64  metagenomes  from  45

species

First, we assessed the quality of the metagenomics sequencing results in 

light of the diversity of species and sample types included and characterized the 

robustness of our data. We collected a total of 55 stool and 16 saliva samples, 

representing an extensive range of 48 and 15 distinct zoo animal species 

(mammals, birds, and reptiles), respectively (Fig. 1b). Subsequently, after 

sequencing and quality control, we obtained a final dataset comprising 52 stool 

and 14 saliva samples, reflecting 45 and 13 species (Fig. 1c). Our quality control 

measures, including host DNA decontamination, yielded minimal read losses 

during the process, with an average loss of only 6.6% and a standard deviation 

(SD) of ±13.2%. We retained an average of 5.3 gigabases of sequencing data (SD: 

1.7 GB), ensuring a reliable dataset for further analysis.

To account for the species for which a reference assembly was not available

on  RefSeq,  we  employed  substitute  assemblies  that  were  taxonomically  close.

Notably,  this  substitution  did  not  significantly  impact  the  relative  number  of

filtered  reads  (two-sided  Wilcoxon  p-value  of  0.36,  Supplementary  Table  1),

supporting  our  methodology.  Utilizing  reference-free  ordination  analysis,  we
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performed  an  in-depth  examination  of  the  cleaned  reads,  unveiling  distinct

patterns of  sample clustering primarily  based on biospecimen (PERMANOVA p-

value < 0.001, Extended Data Figure 1). This finding underscores the significance of

differentiating between stool and saliva samples and highlights the influence of

the animal's specific microbiota on each biospecimen.

De-novo analysis reveals 585 novel genomes and enhances taxonomic 

assignment

We encountered an expected – yet significant – challenge when performing 

taxonomic profiling based on the Genome Taxonomy Database (GTDB) (21). The 

assignment rate using this database was low, with an average of less than 17% 

(SD: ±16.6%) matches. This scarcity of read assignments prompted us to adopt a 

de-novo analysis workflow. Applying this de-novo analysis workflow proved to be 

instrumental in overcoming some limitations of the taxonomic profiling from 

existing databases and uncovered the hidden microbial diversity within our 

dataset. Through this approach, we successfully recovered a total of 786 

dereplicated species-level genome bins (SGBs) exceeding the criteria of at least 

medium MIMAG quality (namely, less than 10% contamination and a minimum of 

50% completeness) (22). Among these SGBs, 585 genomes (74%) had no 

representatives in the GTDB with ANI (Average Nucleotide Identity) less than 95% 
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(Fig. 2a, Extended Data Figure 2, Supplemental Table 2). Specifically, when 

examining the stool samples, we found that out of the 616 dereplicated SGBs, 446 

had no representatives (72%). In the case of saliva samples, the ratio increased to 

139 out of 170 (82%). Saliva samples, accounting for 21% of the overall samples, 

contributed 22% and 23% of all the dereplicated SGBs and novel dereplicated 

SGBs, respectively, suggesting the importance of the oral microbiome in 

uncovering microbial diversity to be on par with the gut microbiome. Analyzing all 

the recovered SGBs, we observed an average scaffold length of 13 kb (SD: ±2.5kb). 

Additionally, we conducted searches for tRNA sequences as well as 5S, 16S, and 

23S rRNA sequences within the SGBs. In total 11801 tRNAs and 205 rRNAs were 

detected in the SGBs averaging at 15 tRNAs and 0.3 rRNAs per SGB. Whereas these

functional gene statistics are indicative of the overall quality of the assemblies, 

they also highlight the challenges of reliably assembling ribosomal RNA genes.

Importantly, the integration of our SGBs into the GTDB prior to taxonomic 

profiling yielded a substantial improvement in the read assignment rate (paired 

two-sided Wilcoxon p-value < 1.7 × 10-12, Extended Data Figure 3). Nevertheless, for

17 samples the assignment rate remained below the low threshold of 20%. This 

highlights the significance of including the novel microbial genomes discovered in 

this study to enhance the accuracy and comprehensiveness of taxonomic 
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assignments. This analysis is also necessary to assess compositional and functional

differences between microbiomes and to uncover the distribution of BGCs. 

Culture-based taxonomic assignment yields differences between herbivores 

and carnivores

In  our  metagenomic  data,  the  measured  alpha-diversity,  a  sign  of  the

microbial  complexity  of  a  sample,  appears  stable  for  biological  replicates.  In

contrast,  the  alpha-diversity  fluctuates  significantly  across  species  (Fig.  3).

Astonishingly,  we  observed  a  negative  Spearman correlation  of  –0.38  between

assignment rates and diversity. Moreover, the reference-based ordination analysis

does not yield clear clusters,  reflecting neither zoological  classification nor diet

compositions.  Nevertheless,  specific  zoological  proximities  are  reflected  in  the

clustering hierarchy such as similar patterns between sheep and goat, or between

zebra and horse. But in sum, the overall assessment is that the reference-based

ordination analysis remains inconclusive with respect to identifying sub-groups of

animals. One likely reason for this result is the high variability of assignment rates

and missing SGBs. Because differences in the gut microbiota between herbivores

and carnivores are known from the literature, we asked whether a more targeted

approach involving culturing of bacteria highlights such differences (26, 27). 
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Culturing  of  11  saliva  and  49  stool  samples  on  TSA,  Chocolate  blood,

Columbia,  and  MacConkey  agar  followed  by  subsequent  MALDI-TOF  analysis

enabled the identification of overall 79 different bacterial species (Extended Data

Figure 4, Supplemental Table 3). While we identified a total of 29 species in saliva

(37%), only 8 of them (28%) were also detected in stool samples, where 6 of these 8

were of the genus Staphylococcus. In total, 32 species (40%) were only detected in

the  38  samples  of  herbivore  animals  (including  species  such  as  Enterococcus

mundtii,  Bacteroides  ovatus,  and  Bacillus  pumilus).  In  contrast,  8  species  (10.1%)

were observed only in the 7 samples from carnivore animals (including Citrobacter

braakii,  Plesiomonas  shigelloides,  and  Staphylococcus  simulans).  Moreover,  17

bacterial  species  (21.3%)  were  uniquely  detected  in  15  samples  of  omnivore

animals (including Neisseria zoodegmatis  and Staphylococcus hominis depicting the

highest frequency across samples). Across all samples, 7 species (8.8%) are present

in  all  three  diet  forms,  including  prevalent  intestinal  microbiota  such  as

Enterococcus  faecalis,  Escherichia  coli, and  Enterococcus  faecium,  as  well  as

Clostridium  perfringens  and Bacillus  cereus. Before  adjustment  for  multiple

hypothesis testing, 11 species were significantly unevenly distributed within the

cohorts  (χ2 test  p-value<0.05).  After  the  Benjamini-Hochberg  adjustment,  no p-

value remained significant. Performing the same test over all stool samples and

cohorts did not display significant differences between diets (χ2 test p-value=0.51).
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As  for  culturing,  only  a  selection  of  media  was  used,  bias  is  introduced  by

excluding the growth of certain bacteria, that cannot grow on the selected media.

However, all samples were treated the same, which makes these results at least

comparable.  It  is  worth  mentioning,  that  only  30-60  %  of  microorganisms  are

cultivatable  under  laboratory  conditions,  making  the  metagenomic  analysis  a

more powerful and more precise tool to investigate the microbiome. Nevertheless,

the  considerably  different  repertoire  of  microbiota  suggests  unique  functional

characteristics that might be connected to the dietary origin. We thus performed a

functional in-silico gene analysis of the respective microbiota. 

The  statistically  significant  results  from  this  functional  gene  analysis

highlight  elevated  creatinine  degradation  I  pathway  in  herbivore  animals

(Extended  Data  Figure  5).  Contrastingly,  the  superpathway  of  tetrahydrofolate

biosynthesis and salvage is more prevalent in microbiota from carnivore animals.

Enriched  in  both,  carnivore  and  omnivore  animals,  are  bacteria  carrying  the

genomic information for flavin-dependent thymidylate synthase (thyX),  which is

required to synthesize  pyrimidine deoxyribonucleotides  de novo.  Most  notably,

this gene and the encoded protein are present in human and animal pathogens,

such as Helicobacter pylori, Borrelia burgdorferi, and Chlamydia trachomatis (28-30). 

Differences in 484 complete biosynthetic gene clusters depending on the diet 
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After  the  initial  general  functional  gene  analysis  of  the  different  animal

microbiota,  we  looked  into  the  specific  metabolite  landscapes  of  individual

members of the microbiomes. We performed genome mining of the previously

defined SGBs and identified 1,588 potential BGCs. Of those, 1,104 remained partial

and 484 were identified as full BGC clusters of various categories (Fig. 2a, Fig. 2b,

Supplemental Table  4).  Further analysis with BiG-SCAPE categorized BGCs into

1,482 families,  out of which 1,407 families were singletons containing only one

BGC (31). A total of 5 families compromising 6 BGCs are linked to annotated gene

clusters from the MIBiG 3.1 database  (32).  But interestingly,  BiG-SCAPE did not

form any clans of the families. Together with a high number of singleton families,

this suggests a high diversity of BGCs in the collected dataset. 

With  604  (38%)  BGCs,  Clostridia was  the  class  where  we  predicted  most

BGCs.  However,  this  is  mostly  due  to  Clostridia making  up  about  36%  of  our

recovered dereplicated SGBs. If we look at the average number of BGCs per SGB

and exclude singletons we observe that on average most BGCs were predicted for

the class of  Planctomycetia. Averaged over 15 genomes, we observed 3.73 BGCs

per  SGB.  With  only  4  BGCs  in  33  SGBs,  Saccharimonadia had  the  lowest  non-

singleton ratio of BGCs to SGBs. Concerning disparities between the oral and gut

microbiome, we observed a total of 450 BGCs (28%) in the 170 saliva-derived SGBs
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averaging 2.65 BGCs per SGB, which compares to 1,138 BGCs in 616 SGBs at a ratio

of 1.85 in the stool samples. Focusing only on the stool-derived BGCs we observed

an average of 2.01, 1.65, and 1.47 BGCs per SGB for herbivores, omnivores, and

carnivores,  respectively.  These  differences  were  confirmed  to  be  significant

(Kruskal-Wallis  p-value < 0.0053).  Specifically,  the average number of  NRPS was

2.87  and  3.46  times  higher  in  herbivore  SGBs  compared  to  carnivores  and

omnivores respectively.

Through a comparative analysis of predicted BGCs and known annotated

BGCs from the MIBiG database, we observed 37 BGCs (2%) within our SGBs that

shared a similarity  of  over  50% with known entries.  Among these annotations,

various compounds may be of  relevance to the host  organism (Extended Data

Figure 6). We detected virulence factors, such as the toxin tolaasin I, within an SGB

derived  from  tapir  saliva.  Furthermore,  we  uncovered  various  annotations

associated  with  health  benefits,  including  the  bacteriocin  salivaricin  CRL  1328,

present in an SGB derived from a mandrill stool sample (33). We encountered two

further  compounds  with  noteworthy  properties:  α-galactosylceramide,  an

immunostimulating compound found in  an SGB derived from horse  stool,  and

rhizomide, identified in an SGB derived from tapir saliva, exhibiting anti-tumor and

antimicrobial properties in vitro (34). 
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Having captured differences in the repertoire of bacteria from animals with

different  diets  in  the  gut  and  oral  cavity  along  with  unique  functional

characteristics  and novel  BGCs raises the question of  whether captivity  has an

influence on the microbiota or whether wildlife animals reveal similar patterns. 

Animals in captivity present different antimicrobial resistance gene patterns

Comparing  microbiome differences  between captive  and  wildlife  animals

and addressing the complexities in the sample extraction process, we conducted a

comparative analysis with data from Youngblut et al. (35), the – as of now – most

complete study of animal gut microbiota. Their dataset consisted of 289 samples

from 180 different host species, including humans. The large differences between

both studies in the selection of animal species, call for a balanced and stratified

analysis approach. Therefore, we implemented a matching scheme that carefully

selects  a  subset  of  samples  with  close  zoological  similarity  from  both  studies

(Supplementary Table 1). We excluded the oral microbiomes of the zoo animals

from this analysis because no oral microbiota from wildlife animals were present.

It is important to acknowledge the easier collection process in a controlled

environment  as  a  zoo  in  comparison  to  a  wildlife  setting,  likely  leading  to

differences  in  the  sample  quality.  To  quantify  these  differences  and  ensure

methodological consistency, we thus applied our analysis workflow to the selected
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metagenomes from Youngblut et al.  (35). We observed a significant decrease in

read  quantity  after  decontamination  compared  to  the  present  data,  which  is

explained by the above-mentioned challenges in wildlife sampling (Extended Data

Fig. 7a). This reduction also influences the assembly quality, which was lower in the

wildlife samples, finally leading to overall shorter fragments (Extended Data Fig.

7b). Consequently, fewer SGBs were recovered in the wildlife samples compared to

the zoo dataset (Extended Data Fig.  7c). While the samples from animals kept in

captivity retained an average of 9.8 SGBs per sample, the wildlife dataset yielded

just  1.9  SGBs.  Similar  differences  also  apply  to  the  number  and  abundance

distribution of BGCs. Here, SGB derived from wildlife animals present on average

13 fewer BGCs per SGB (Extended Data Fig.  7d). We were only able to recover

partial  BGCs  in  the  wildlife  samples  compared  to  50  complete  BGCs  in  the

matching zoo samples. Further, only one BGC was annotated to have a similarity

>10% to any known MIBiG BGC. It  has a 28% similarity to a carotenoid cluster

derived  from  an  Algoriphagus species.  Again,  the  latter  results  might  seem

counterintuitive, and we might expect more BGCs in wildlife, yet the results are

likely biased by the challenges of wildlife sampling. Most importantly, the quality of

the wildlife samples is still sufficient to enable reference-free comparison. 

As one first aspect, we asked whether the microbiomes between zoo and

wildlife animals present a conserved proximity-dependent on the relatedness of
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host animal species. For the selected samples, we thus performed reference-free

FracMinHash comparisons (Fig. 4a). On average, we computed a large dissimilarity

between any compared pairs. In detail, the average dissimilarity amounts to 0.98

(SD: 0.018), which is close to the maximal dissimilarity value of 1. Importantly, the

dissimilarity  distributions  within  the  wildlife  and  zoo  animals  do  not  differ

significantly (two-sided Wilcoxon p-value > 0.37). Nevertheless, zoo animals display

several  strong similarities  between gut  microbiota.  These include mostly  inter-

replicate comparisons of zebra, camel, and giraffes, yielding an overall significantly

lower  dissimilarity  index  as  compared  to  the  other  zoo  animals  (two-sided

Wilcoxon p-value < 9.44 × 10-7). Of note, no replicates for the wildlife animals are

available, explaining the missing similarities within those samples. Interestingly,

several  of  the  zoo  animal  species  including  the  yak,  giraffe,  camel,  and  goat

displayed  increased  similarities  in  gut  microbiota.  The  same  applies  to  two

kangaroo species that also show similarities in the gut microbiota. Of note, such

similarities are not present in the wildlife animals and may suggest an influence

e.g.  of  the  nutrition in  this  controlled environment.  Further,  the  results  clearly

argue for combining the advantages of studies in wildlife animals (being closer to

nature) and controlled environments (facilitating higher sample quality). 

One immediate question in comparing wildlife to captivity set-ups concerns

the  presence  of  AMR.  AMR  gene  analysis  of  zoo  animals  revealed  potential
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resistances  against  antibiotics  that  are  commonly  used  in  veterinary  medicine,

such as tetracyclines, macrolides, and lincosamides (Fig. 4b) (36). However, we also

observed resistance genes  against  vancomycin,  which  is  a  last-resort  antibiotic

against infections with Gram-positive bacteria in human medicine (37). Specifically,

we  documented  the  well-known  resistance  clusters  vanD and  vanG (38,  39).

However, we also detected the vanO operon, which has not been identified from

animal- or human-derived samples yet (40). As outlined in the One Health concept,

such  resistant  bacteria  could  be  transferred  from  zoo  animals  to  zookeepers,

increasing  the  global  spreading  of  such  organisms.  When  we  compared  our

matching stool zoo samples to the wildlife samples, we observed a significantly

smaller number of antimicrobial compound classes that are targeted by at least

one resistance gene in the wildlife samples (two-sided Wilcoxon p-value < 0.001).

Overall, we only observed a total of four resistance genes in all analyzed wildlife

samples.  This  suggests  that  wild  animals  overall  suffer  from  less  AMR.

Nevertheless, we want to highlight that this result is again to be interpreted in the

light  of  the  inferior  assembly  quality  of  the  wildlife  samples  which impact  the

quality of AMR gene detection.

DISCUSSION
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Our findings, in line with the study by Youngblut et al. (35), indicate that the

microbial  dark  matter  within  animal  microbiomes  remains  inadequately

characterized in existing data repositories. Despite our extensive efforts and the

generation  of  several  novel  SGBs,  we  encountered  17  samples  with  a  low

estimated assignment rate below 20%. This deficiency significantly impacts state-

of-the-art reference-based analysis, as evident in our own investigation.

The  microbial  richness  we  detect,  despite  the  accompanying  challenges,

presents  an  intriguing  opportunity  for  the  discovery  of  BGCs  associated  with

antimicrobial natural compounds within these samples. In this context, it is worth

emphasizing the advantages of combining different study setups. While our focus

lies  on  samples  from  a  highly  controlled  environment,  specifically  a  zoo,

complementary studies like that of Youngblut et al.  (35) provide valuable insights

into  wildlife  microbiomes,  which  are  closer  to  the  natural  microbiota.  By

integrating findings from diverse settings,  we can gain a  more comprehensive

understanding of the animal microbiome and potentially uncover novel microbial

resources with therapeutic potential.

Specifically, the zoo animals present higher numbers of SGBs and BGCs per

SGBs  but  also  higher  proximity  of  gut  microbiota  as  compared to  the  wildlife

animals. It is important to acknowledge that the number of BGCs within SGBs can
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vary,  depending  on  the  specific  species  discovered.  However,  the  improved

assembly statistics highlight the advantages of easier sample collection in captivity

compared to  wild  animals,  at  the  cost  of  BGCs  that  might  only  be  present  in

wildlife animals. 

When comparing studies, one limitation we encountered was the need to

perform  inter-species  comparisons,  which  involved  species  from  different

continents  with  potentially  diverse  diets.  This  aspect  adds  complexity  to  the

analysis, as the microbiomes of zoo animals, despite sharing similar diets such as

local seasonal vegetables, still exhibit considerable differences. The convergence

of  microbiome  composition  across  zoo  animals  appears  to  be  limited,  yet

measurable.

Furthermore,  the  presence  of  AMR  genes  in  animal  microbiomes  is  of

considerable importance from the One Health perspective. In addition to detecting

AMR genes against  commonly  used antibiotics  in  veterinary  medicine,  we also

identified  resistance  genes  against  vancomycin  in  certain  animals,  including

prosimians. Considering their close contact with zookeepers, there is a potential

risk of transferring vancomycin-resistant bacteria to humans. As transmission of

multi-resistant  bacteria  has  been  observed  in  clinical  settings,  these  findings

emphasize the need for comprehensive surveillance and management of AMRs in
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zoo settings to mitigate potential health risks and maintain a safe environment for

both animals and humans (41, 42).

METHODS

Study design

For docile  animals  such as horses,  dwarf  goats,  and tapirs,  buccal  swabs were

easily taken from the oral cavity to collect saliva samples. Concurrently, fresh fecal

samples  were  collected  from  the  enclosures  or  stables  and  immediately

transported to the veterinary station. Using a spoon from a stool sample tube,

feces from the inner portion of the excreta were transferred into sample tubes.

Subsequently,  all  samples  were  promptly  frozen  at  -20°C  in  the  freezer

compartment of a refrigerator. Typically, samples were frozen within 30 minutes of

collection.

For non-docile animals, such as primates and large or small carnivores, the same 

sample collection methods were employed during necessary anesthesia, which 

occurred for veterinary examinations, treatment, transport, or gender 

determination. For small animals, fecal samples were collected rectally as swabs, 

following the same protocol described above, and stored frozen until further 

analysis. 

DNA extraction
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We  extracted  whole-genome  DNA  from  all  fecal  and  salivary  swabs  using  the

Qiagen QiAamp Microbiome Kit (Qiagen, Hilden, Germany).8 The DNA extraction

procedure was conducted according to the manufacturer’s  protocol.  Briefly,  all

swabs containing native samples were vortexed in 1 ml PBS for 2 minutes. The PBS

containing  the  microbes  from  each sample  was  then used  for  DNA extraction

according to the manufacturer’s recommendation. We used the MP Biomedicals™

FastPrep-24™  5G  Instrument  (FisherScientific  GmbH,  Schwerte,  Germany)  for

mechanical lysis of bacterial cells. The velocity and duration were adjusted to the

“hard-to-lyse” protocol, meaning 6.5 m/s for 45 s two times and 5 minutes storage

on ice in between each lysis step. DNA was eluted in 50 µl elution buffer. The DNA

concentration  after  elution  was  determined  via  NanoDrop  2000/2000c

(ThermoFisher  Scientific,  Wilmington,  DE)  full-spectrum  microvolume  UV-Vis

measurements (43). 

Library preparation and sequencing

Extracted  whole-genome  DNA  was  sent  to  Novogene  Company  Limited

(Cambridge,  UK)  for  library  preparation  and sequencing.  Briefly,  samples  were

subjected to metagenomic library preparation and further sequenced via paired-

end Illumina Sequencing PE150 (HiSeq). For all samples, 5 Gb reads per sample

were generated. 
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Culturing of bacteria

Native fecal samples were streaked out using the swab they were taken with, on

three different agar plates: TSA with 5 % sheep blood (TSA), MacConkey (MC), and

Columbia (Co) agar plates (Becton, Dickinson and Company, Heidelberg, Germany).

Oral samples were streaked out on TSA, Co and Chocolate blood (CB) agar plates

(Becton, Dickinson and Company, Heidelberg, Germany). All TSA, CB, and MC agar

plates  were incubated at  35.6  °C and 5  % CO2 for  a  minimum of  18  h and a

maximum  of  24  h.  Co  agar  plates  were  used  for  the  cultivation  of  anaerobic

bacteria and therefore incubated in an anaerobic environment for a minimum of

48 h at 35.6 °C (43).

Mass spectrometry-based identification

Bacterial colonies obtained by culturing native fecal and oral samples on different 

agar plates were subjected to species identification using matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. To this end, 

colonies were spotted on the MALDI-TOF target plate, dried, and then overlayed 

with 1 µl of α-cyano-4-hydroxycinnamic acid (CHCA) matrix solution (Bruker 

Daltonics, Bremen, Germany). The matrix solution is composed of saturated CHCA 

dissolved in 50 % (v/v) acetonitrile, 47.5 % (v/v) LC-MS grade water, and 2.5 % (v/v) 

trifluoroacetic acid. After drying the matrix solution at room temperature, each 
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spot was overlayed with 70 % formic acid to pre-disrupt the cells. Followed by 

drying at room temperature, the plate was placed into the Microflex LT Mass 

Spectrometer (Bruker Daltonics) for MALDI-TOF MS. All measurements were 

performed with the AutoXecute algorithm in the FlexControl© software version 3.4 

(Bruker Daltonics). Each spot was excited with 240 laser shots in six random 

positions. Measurements were carried out automatically to generate protein mass 

profiles in linear positive ion mode using a laser frequency of 60 Hz, high voltage 

of 20 kV, and pulsed ion extraction of 180 ns. Mass charge ratio ranges (m/z) were 

measured between 2 kDa and 20 kDa. We identified bacterial species using the 

software MALDI BioTyper. Identification scores above 2.0 were considered a 

precise identification on the species level, scores between 1.7 and 1.99 were 

considered as possible species identification and precise genus identification, and 

all identification scores below 1.7 were considered unsuccessful identification. In 

this study, we only considered scores  2 for analyses ≥ (26).

Next-generation sequencing preprocessing

The first step of data analysis was host read removal with KneadData (version 

(v):0.10.0; command line arguments (cla): “--trimmomatic-options=’LEADING:3 

TRAILING:3 MINLEN:50’ --bowtie2-options=’--very-sensitive --no-discordant -

reorder’”) using the respective genomes as specified in Supplementary Table 1
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(44). The selected, publicly available, host genomes were downloaded with the 

ncbi-datasets-cli (v13.35.0). For several animal species, no exact sequenced 

genome of sufficient quality was available and instead, a taxonomically close 

substitute was selected. Bowtie2 (v2.4.5; -s) databases were prepared for each 

reference (45). After decontamination, we performed sequence overrepresentation

analysis and quality assurance with fastp (v:0.23.2; cla: --

overrepresentation_analysis) and visualized results with MultiQC (v1.13a) (46, 47). 

The two-sided Wilcoxon rank sum test was performed on the relative loss 

attributed to host DNA removal. To reduce bias, replicates were averaged. Saliva 

and stool samples were not averaged.

Metagenome assembly

We assembled  each  sample  with  SPAades  (v3.15.4;  cla:  --meta)  and  monitored

assembly quality with QUAST (v5.0.2; cla: -s )  (48, 49). Next, we aligned each host

decontaminated sample against each set of assembled scaffolds with BWA-MEM2

(v2.2.1) and generated abundance profiles for each combination (50). We extracted

coverage information to bin scaffolds with MetaBAT2 (v2.15;  cla:-l  --seed 420 --

unbinned ), MaxBin2 (v2.2.7), and DAS Tool(v1.1.5; --search_engine diamond)(51-

53)￼.  MAGs  across  all  samples  were  aggregated  and  dereplicated  with  dRep

(v:3.4.0; cla: -comp 50 -con 10 --checkM_method lineage_wf --S_algorithm fastANI --
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S_ani 0.95 -nc 0.5). At last, we used GTDB-Tk (v:2.1.1; cla: classify_wf), tRNAscanSE

(v:2.0.11;--brief -Q), and barrnap(v:0.9; cla: -q) to taxonomically classify MAGs and

annotate  them  with  tRNA  and  rRNA  information  based  on  their  classified

kingdom(54, 55)￼.

Reference-based compositional analysis

FracMinHash profiles were computed for all samples with sourmash (v:4.4.3; cla: -

k51)  (56).  After  FracMinHash  profile  generation,  samples  were  compared  with

sourmash compare.  Dissimilarities  were computed by subtracting the resulting

similarities from one. Samples were embedded with UMAP (v:0.2.8)  (57). Further,

for  each SGB, FracMinHash profiles  were computed as  well,  and an index was

generated.  The  PERMANOVA  analysis  treated  samples  and  replicates  as

independent (58). Taxonmic profiling was performed with sourmash (cla: -k51) our

previously generated indices, GTDB (v:GTDB R07-RS207 all genomes k51), and host

decontaminated reads. Shannon index was used as the alpha-diversity measure

and  computed  with  phyloseq  (v:1.40.0)  (59,  60).  Relative  abundances  were

averaged  if  replicates  were  available.  Clustering  was  performed  with  average

hierarchical clustering on Bray-Curtis distances computed with the vegan package

on mean relative abundances (v: 2.6.2)  (61). Tanglegram was optimized for visual

clarity  with “step2side”  algorithm of  the R dendextend package (v:  1.16.0)  (62).
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Differential  abundance  analysis  was  made  with  ANCOMBC  (v:1.6.2)  comparing

herbivores and the union of omnivores and carnivores (63).

Functional analysis

In  order  to  incorporate  our  own  SGBs  into  the  functional  profiling  step,  we

updated  an  existing  GTDB207-based  database  with  Struo2  (v2.3.0)  (64).  After

database generation,  functional profiling was performed with HUMAnN 3 (v3.6;

cla:  --bypass-nucleotide-index)  (44).  We also  used  ANCOMBC for  exploration  of

differences in function. The default setting of Holm-Bonferroni p-value adjustment

was  employed.  Genes  were  predicted  with  prodigal  (-p  meta)  and  passed  to

antiSMASH (v6.1.1; cla -cb-knownclusters --cb-subclusters --asf) for BGC detection

(65, 66). A BGC was classified as partial if it is shorter than 5 kbp or located on a

contig edge and as full otherwise. Clustering of all BGCs was performed with BiG-

SCAPE (v1.1.5; --mibig) using Pfam (v35.0). BiG-SCAPE failed to process two BGCs

and removed them from further analysis (32, 67). 

Wildlife comparison

Samples specified in Supplementary Table 1 were downloaded from the European

Nucleotide  Archive  and  processed  identically  to  our  dataset,  from  host  DNA

removal to BGC prediction (68). We subsetted our data to only the paired samples

specified in the aforementioned table. Pairings were manually selected based on
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taxonomic  similarity.  Paired  comparison  to  our  data  was  done  based  on

FracMinHash dissimilarities. 

Data availability

Raw unfiltered sequencing reads as well as dereplicated SGBs were uploaded to

the Sequence Read Archive under the accession: PRJNA983076.
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Figure legends

Figure 1, Study setup and data quality: a)  The sampling strategy of the study

focuses on the comparison of saliva and stool samples of different zoo animals.

Extension with the dataset by Youngblut et al. (35). further allows a comparison to

wildlife-derived samples. b) Map of the Zoo Saarbrücken with the position of each

individual  animal  species.  Co-located  animals  are  encircled  in  blue.  Silhouette-

species  mappings  are  elaborated  in  Figure  1c.  Silhouettes  were  taken  from

PhyloPic (phylopic.org)  c)  Species included in the study after quality control and

introduction of their silhouettes for a large portion of the remaining plots in this

study.  d)  Statistics  on  host-derived  read  decontamination  of  the  metagenomic

samples. For datapoints in green, a species-level genome was available to perform

read  decontamination.  Violet  datapoints  used  a  taxonomic  close  substitute

genome instead. The p-value indicates the significance of the two-sided Wilcoxon

rank sum test on the relative read loss attributed to host contamination.
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Figure  2,  Species-level  genome  bins:  a)  Phylogenetic  tree  of  species-level

genome  bins  as  classified  by  the  GTDB-Tk.  The  colored  background  of  clades

indicates class ranks.  The innermost ring named  Novel  indicates if  the GTDB-Tk

found a species-level assignment. The second, third, and fourth rings discuss bin

quality  by  displaying  detected  rRNAs,  tRNAs,  and  scaffold  length  distribution

respectively.  The two outer  rings  indicate  the BGCs  that  were detected  in  the

respective  bins.  BGCs  are  classified  by  type  and  by  completion.  A  more  richly

annotated version of this visualization is available in Extended data Figure 2  b)

Number of SGBs and BGCs recovered from each sample.

Figure  3,  Reference-based  analysis:  Summary  statistics  on  quality,  diversity,

composition, and compositional similarity of microbiomes. Starting from the left,

the taxonomic classification of host animals is displayed. Silhouettes represent the

host species and their color represent the different specimen. If multiple replicates

were available, multiple pie charts are displayed, where each pie chart indicates

the overall  quality of the reference-based analysis.  Further,  diet classification is

provided for each species which is consistently used throughout the manuscript.

Three diets are being distinguished: herbivore,  carnivore,  and omnivore. Alpha-

diversity  of  each  sample  is  indicated  using  the  Shannon  index,  to  visualize

microbiome complexity. On the rightmost side, hierarchical clustering based on

Bray-Curtis  distances  is  displayed.  The  optimized  tanglegramm  displays  the
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accordance  between  taxonomic  class  and  membership  based  on  predicted

microbial composition. The edges are colored by the taxonomic class of the host.

Figure  4,  Potential  consequences  of  captivity: a) FracMinHash  dissimilarity

between samples within our dataset and the dataset of Youngblut et al.  (35). The

cross-comparison matches sample pairs as elaborated in Supplementary Table 1.

For reference, zoo replicates and their dissimilarity are visualized alongside.   b)

Presence of antimicrobial resistance genes for each of the zoo and wildlife samples

classified by antimicrobial compound.

Extended data figure legends

Extended data Figure 1,  Ordination analysis:  Two-dimensional  embedding of

the  dataset  generated  with  UMAP  computed  on  FracMinHash  dissimilarities.

Silhouettes  represent  the  different  animals  as  depicted  in  Figure  1c.  Colors

represent the different specimen and diet combinations.

Extended data Figure 2, SGBs:  Complete version of  Figure 2a.  Visualization of

dereplicated SGBs with color-encoded BGC and class information.

Extended data Figure 3, Assignment rate: Relative amount of reads after quality

control assigned during taxonomic profiling using GTDB and GTDB extended by
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our  SGBs  respectively.  The  indicated  p-value  is  the  statistical  significance  of  a

paired two-sided Wilcoxon rank sum test.

Extended  data  Figure  4,  Mass  spectrometry:  Bacterial  species  identified  by

performing mass spectrometry after culturing in different mediums. The bacterial

taxonomic classes are provided as a tree structure. Counts indicate in how many

different animals the associated bacterial species was detected.

Extended data Figure 5, Differential pathway abundance: Statistically 

significant results of the differential pathway abundance analysis after the 

Benjamini-Hochberg p-value adjustment. During analysis omnivores and 

carnivores were agglomerated and compared against herbivores.

Extended data Figure 6, Known BGCs: Selection of detected BGCs with a >75% 

similarity to MIBiG annotated clusters. Comparisons are minor adaptations of the 

figures directly reported by antiSMASH.

Extended  data  Figure  7,  Study  QC  Comparison:  Detailed  comparison  of  the

matched samples in our dataset and the dataset of Youngblut et al. (35). Two-sided

Wilcoxon rank sum tests were performed to estimate statistical  significance.  a)

Number of reads after host  DNA removal and quality control.  b)  Contig length

distribution after metagenomic assembly. c) Number of SGBs generated with the

two dataset subsets. d) Number of BGCs predicted from each initial input sample.
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Supplementary data

Supplementary data Table 1, Metadata: Table aggregating metadata of the 

different samples including animal species, reference genome used for 

decontamination, suitability of the reference, specimen, relative loss during host 

decontamination, and the assigned diet label for data analysis. 

Supplementary data Table 2, SGB data: Information on each dereplicated SGB 

that matched at least medium MIMAG quality. Displayed information includes 

rRNA, tRNA, and scaffold counts as well as completeness, contamination, and 

overall genome size for quality information. Further two classification schemes are

provided. First, GTDB lineage as provided by GTDB-Tk is given. Second, a best-

matching NCBI taxonomy classification is provided.

Supplementary data Table 3, Mass spectrometry results: Aggregated results of 

the mass spectrometry data. Providing an overview of presence by diet and 

specimen type for each bacterial species on the first sheet. The second sheet lists 

each unique bacterial species – zoo sample combination that was detected. 

Supplementary data Table 4, BGC summary: Overview data of the observed 

partial and full BGCs including positional, type, and location SGB information.
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of saliva and stool samples of different zoo animals. Extension with the dataset by Youngblut et al. (35). 
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taxonomic close substitute genome instead. The p-value indicates the significance of the two-sided 
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ABSTRACT 31 

The human microbiome emerges as a promising reservoir for diagnostic markers 32 
and therapeutics. Given that a human has many microbiomes at various body sites and 33 
that diseases do not occur in isolation, a comprehensive analysis strategy is desirable. 34 
This strategy should encompass diverse specimen types and various diseases to unveil 35 
their intricate potential. To ensure robust data quality and comparability across specimen 36 
types and diseases, we employed standardized protocols to generate sequencing data 37 
from 1,931 prospectively collected specimens, including from saliva, plaque, skin, throat, 38 
eye, and stool, with an average sequencing depth of 5.3 gigabases. Collected from 515 39 
patients, these samples yield an average of 3.7 metagenomes per patient. Our results 40 
suggest significant microbial variations across diseases and specimen types, including 41 
unexpected anatomical sites. Expanding beyond known species, we identify 729 new 42 
species-level genome bins (SGBs) of which 314 are significantly associated with disease. 43 
Of note, the existence of microbial resistance genes in one specimen of a patient was 44 
indicative of the same resistance genes in other samples of the same patient. Annotated 45 
and new SGBs collectively harbor 28,315 potential Biosynthetic Gene Clusters (BGCs), 46 
with 1,050 significant correlations to diseases. Our combinatorial approach identifies new 47 
SGBs and BGCs, emphasizing the value of pan-body pan-disease microbiomics as a 48 
source for diagnostic and therapeutic strategies. 49 
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INTRODUCTION 50 

Recent advancements in the field of microbiota research have spotlighted the 51 
complex interplay between non-communicable diseases and the human microbiome, 52 
offering novel avenues for understanding disease pathogenesis, identifying biomarkers, 53 
and developing new therapies1-7. Respective studies demonstrate site-specific changes 54 
in microbiota linked to disease development and progression. Large-scale metagenomic 55 
initiatives, such as the Human Microbiome Project, International Human Microbiome 56 
Consortium8, the American Gut Project, and other hallmark studies9-11, have compiled 57 
thousands of microbiota samples leading to results arguing all in the very same direction. 58 
Data on the impact of an organ-confined disease process in the microbiota of remote 59 
body sites remain, however, sparse. Understanding the dynamic relationship between 60 
health and disease, especially in the context of frequent co-morbidities, necessitates a 61 
holistic exploration of the human microbiome. One example is the discovery of the gut-62 
brain axis, a refined communication between the intestinal microbiota, intestinal host 63 
cells, and the central nervous system via the vagal nerve12. Overall, the microbiome can 64 
be modified at sites remote from the primary disease process13. Thus, understanding the 65 
composition of metagenomes in health and disease in a systemic manner might be key 66 
to improving patient care.  67 

Especially considering the growing health challenges spurred by demographic 68 
shifts and social influences, the imperative for enhanced treatment strategies becomes 69 
increasingly evident. For example, chronic inflammatory diseases encompass a diverse 70 
array of conditions such as periodontitis, chronic obstructive pulmonary disease (COPD), 71 
cystic fibrosis, cardiovascular diseases, heart failure, and ulcerative colitis, among others 72 
14-19. Respective ailments collectively pose a significant burden on individuals and 73 
healthcare systems alike. This calls for an in-depth exploration of underlying molecular 74 
mechanisms20,21. These and other non-communicable diseases are associated with 75 
chronic local and systemic inflammation and often occur as multimorbidities. Processes 76 
driving the development of multimorbidity are largely unknown but include a state of 77 
systemic hyperinflammation, metabolic changes, and senescence. While the underlying 78 
mechanisms leading to these (co)morbidities are not yet fully explored, emerging 79 
evidence suggests that chronic inflammatory diseases are intrinsically linked to 80 
perturbations in the composition and function of the human microbiota22. Imbalances in 81 
microbial communities residing at various body sites, including the oral cavity, respiratory 82 
tract, gastrointestinal tract, and skin, have been implicated in the initiation and 83 
perpetuation of inflammatory cascades23-26. This has led to the paradigm-shifting 84 
realization that the microbiota, once considered a bystander, plays a pivotal role in 85 
disease progression and resolution.  86 

The pharmaceutical landscape has long drawn inspiration from nature, with a 87 
significant - but reducing - proportion (35% percent) of drugs on the market derived from 88 
natural products (NPs) and their producers. In 2021, 50 drugs were approved by the 89 
FDA27. Of those, 14 approvals represent biologics and 36 small molecules. Only four of 90 
the drugs are based on NPs, indicating the need to improve strategies to identify new 91 
NPs. These NPs are typically encoded by so-called biosynthetic gene Clusters (BGCs). 92 
Considering specific microbial interactions and their underlying chemical processes 93 
promises to identify new NPs that remain hidden in classical culture-based studies. In a 94 
recent investigation (Salazar et al.), a novel dimension of microbial interactions was 95 
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unveiled through the examination of the interplay between Staphylococcus epidermidis 96 
and S. aureus isolated from the human nasal region. Although most isolates are classified 97 
as commensals, the heightened prevalence of specific strains, notably methicillin-98 
resistant S. aureus (MRSA), constitutes a substantial risk factor for severe and frequently 99 
fatal infections and finally lead to epifadin as a new antimicrobial compound class.  100 

Highly accurate, fast, and inexpensive next-generation sequencing paired with 101 
computational tools like antiSMASH28,29 are now used at scale in genome mining 102 
approaches to identify novel BGCs from microbial communities. As a consequence, 103 
important resources such as the BiG-FAM30 database are increasing in size and 104 
complexity, now hosting 1.2 Million BGCs, and being potentially the dominating source 105 
for BGCs. However, the annotation of BGCs originating from humans, especially in the 106 
context of BGCs present at different body sites, is largely absent, presenting a gap in 107 
evidence-based prioritization strategies aimed at identifying BGCs with the highest 108 
therapeutic potential. As an initial effort to address this gap, we developed ABC-HuMi31, 109 
a database featuring BGCs identified across various human body sites. Nevertheless, to 110 
provide a systematic disease context for diverse specimen types and diseases, data e.g. 111 
from meta-analyses might not be sufficient. Here, metagenomes from deeply phenotyped 112 
cohorts must be analyzed in a standardized manner. 113 

The aim of this study is to fill current gaps by comprehensively characterizing the 114 
pan-body alterations of the microbiome in single-organ disease and multimorbidity. The 115 
inclusion of different diseases is crucial in several aspects. The analysis of multiple 116 
disorders allows to understand the specificity of different abundances of species and 117 
BGCs for single diseases32. At the same time, it tremendously improves the definition of 118 
a “healthy” or “normal” microbiome. Admittedly, the combination of multiple diseases 119 
affecting multiple organs and collecting multiple specimen types per patient bears 120 
significant challenges in including patients, measuring the sample with the least possible 121 
bias, and of course computational complexity and interpretation. Yet, a respective data 122 
set is the basis for identifying new diagnostic and therapeutic strategies as the basis for 123 
AI tools with increasing importance in NP development33. 124 

RESULTS 125 

Standardized workflow considering multi-morbid patients  126 

Our study results base on a clinical, experimental, and computational part (Fig. 127 
1A).  Between 2021 and 2023 we collected a total of 3,483 samples from 657 individuals 128 
spanning a broad spectrum of diseases (chronic inflammatory diseases of the lung, heart, 129 
eyes, intestine, skin, and oral cavity). Nine different departments at the Saarland 130 
University Hospital (dentistry, dermatology, cardiology, gastroenterology, pulmonology, 131 
ophthalmology, pediatry, periodontology, and sports medicine) recruited patients. The 132 
standardized sample collection and medical assessment across disciplines (e.g., each 133 
patient, independently of the enrolling clinics, medical assessment, and oral examination) 134 
was a key criterion within the clinical workflow. The enrolling sites transferred the 135 
specimens to the Department of Microbiology for biobanking and metagenomic 136 
sequencing and stored medical data in a database after manual curation. A respective 137 
approach specifically requires standardized protocols for metagenomic sequencing that 138 
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we previously developed34. The computational analysis team obtained both, the raw 139 
sequencing data as well as the clinical information after blinded measurement of the 140 
metagenomes.  We analyzed the microbial composition of multiple body sites, including 141 
the oral cavity (saliva, interdental plaque), the skin, the throat swabs, the gastro-intestinal 142 
tract (stool), and the eye (conjunctiva swabs), largely matching the affected organs (Fig. 143 
1B). The standardized sequencing results and broad and well-curated medical 144 
annotations are the basis for the computational analyses, linking known and not yet 145 
annotated bacterial species and their repertoire of BGCs to human pathologies, finally 146 
representing a unique resource for new NPs. 147 

Metagenomic sequencing and clinical annotation yield 1,931 high-quality samples 148 

The perfect world scenario encompasses a complete dataset where for each 149 
patient each sample is collected, and each sample results in a high-quality metagenome. 150 
The real-world situation presents a more complex scenario. Not each patient consented 151 
to collecting all specimen types and not all collected specimens yielded high-quality 152 
metagenomes. To avoid bias in analyzing the profiles calls for stringent quality control. 153 
From 3,483 samples we obtained 1,931 high-quality metagenomes following quality 154 
assessment. These stem from 515 individuals, marking an average of 3.7 microbiomes 155 
for each proband (Supplemental Table 1). We excluded samples for various reasons, 156 
most importantly an insufficient amount of DNA or lacking DNA quality (c.f. Methods, Fig. 157 
1C). The sample removal process was unevenly distributed with significantly lower losses 158 
of stool, saliva, plaque, and throat specimens and conversely significantly increased loss 159 
of skin and eye specimens. For each metagenome surviving the quality control 160 
assessment we obtained independent of the specimen type an average of 5.3 gigabases 161 
(standard deviation +/- 2.3 gigabases) of metagenomic information after removing 162 
ambient human DNA (Fig. 1D). Together, the sequencing efforts generated 10.2 163 
terabases of non-human sequencing information. We used this curated and annotated 164 
dataset of 1,931 metagenomes and clinical data through the remaining analyses.  This 165 
dataset excels in that over 90% of all samples belong to a patient with at least three 166 
different metagenomes available (Supplemental Figure 1A).  167 

As a first analysis, we considered the observed comorbidity pattern of the enrolled 168 
individuals (Fig. 1E). The majority of 437 individuals were patients, i.e. probands 169 
diagnosed with at least one disease. We included further 46 participants as controls, 170 
encompassing individuals without known disease affection and an additional 36 171 
competitive athletes. The five most frequent disease entities in the cohort were 172 
hypertension (32.4%), diabetes (14.2%), obesity (21.7%), periodontitis (18.8%), and 173 
caries (16.7%). We assessed comorbidities, with many patients suffering from two 174 
(23.7%) or three (17.4%) concurrent diseases, respectively. The most frequently 175 
observed association was diabetes and cardiac failure. Of note, covering a broad 176 
spectrum of diseases intrinsically and intentionally leads to a broad age spectrum 177 
(Supplemental Fig. 1B). Similarly, we observed an uneven gender distribution leaning 178 
towards more males than females, with a ratio of 58.1% to 41.9%. Together, these factors 179 
led to a slight yet statistically significant gender disparity persisting across different age 180 
groups (χ2 test p-value=0.02). To reach sufficient statistical power we propose a three-181 
tiered ontology framework for organizing our cohort analysis (Fig. 1F). By categorizing 182 
samples into hierarchical tiers, we ensured to enhance power while acknowledging the 183 
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potential for increased heterogeneity and confounding factors within the data 184 
(Supplemental Table 2). We defined the associated cohort of a specimen as the second-185 
level ontology category encompassing all diseases logically linked to the disease itself; 186 
for instance, all oral diseases are associated with the plaque specimen. This second 187 
ontology level gave the best overall balance between specificity and still having sufficient 188 
samples in the respective cohorts. We thus used this level throughout the manuscript and 189 
explicitly mention when another ontology level is the basis of a result 190 

Compositional analysis identifies a complex pattern of microbiome-disease 191 
associations  192 

To get insights into the general distribution of metagenomes we computed an 193 
embedding based on the MinHash distances (Fig. 2A). This embedding highlights a 194 
separation of metagenomes with respect to the specimen types, with samples from the 195 
oral cavity clustering together and being most different from the stool samples. Samples 196 
with lower bacterial and DNA abundance from the skin and the eye clustered between 197 
these two groups, however splitting up in two separate clusters. Those two clusters have 198 
no common confounding factors such as sequencing batches, age, gender, and others. 199 
The only difference is within the duplication rate of reads (Two-tailed unpaired Wilcoxon 200 
p-value < 10-41, Supplemental Figure 2). To account for this effect in downstream 201 
analyses, we adjusted our models for the duplication rate within samples. Taking the 202 
Shannon entropy as a measure for the diversity of the sequenced microbiota, we 203 
recognized a broader spread of the specimen types with lower DNA yield (Fig. 2B). Within 204 
the oral cavity samples throat-derived microbiomes are characterized by a decreased 205 
Shannon entropy as compared to saliva and plaque samples. In this regard, the throat 206 
samples followed a similar distribution as the stool samples. This observation posed the 207 
question of which bacterial species are driving the distances and whether those species 208 
are correlated to disease patterns. We thus computed the relative microbiome 209 
compositions at the genus level for each specimen type within each disease (Fig. 2C). 210 
The main driver for differences in microbial composition was the specimen types, 211 
prompting us to group the patterns within each type for the different diseases. Across the 212 
specimen types, our results suggested varying signatures for the most abundant bacterial 213 
genera with the competitive athletes frequently being the most deviating group. Of note, 214 
the patterns of the athletes only partially matched the standard control cohort. Especially 215 
for the skin deviating microbiome compositions are present. Another obvious shift is a 216 
differential stool microbiome composition present in patients suffering from digestive tract 217 
disorders. To find significant changes in microbial compositions between disease cohorts 218 
and species, we carried out a differential abundance analysis at the species level. 219 
Splitting higher and lower abundant species in the different diseases confirms the 220 
complex patterns (Fig. 2D). For metabolic disorders and heart diseases the largest 221 
number of significant species were recorded. Both are marked by a trend towards 222 
increased presence of species scattered between the different specimen types. Among 223 
the specimen types, the oral cavity had overall the highest shares. Digestion disorders 224 
are characterized by a lower abundance of species in the stool samples at an increased 225 
frequency in the oral cavity samples. A similar pattern of higher abundance of species in 226 
the oral cavity is present in eye diseases. But these are also showing decreased species 227 
specifically in the samples taken from the eye. To get a broader overview, we grouped 228 
the patterns per specimen type and per disease (Fig. 2E, Supplemental Table 3). After 229 
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adjusting p-values with respect to the number of species present in each specimen type, 230 
statistically significant differentially abundant hits emerged in nearly all cohort 231 
comparisons. Of note, the effects extended to specimen types not directly linked to the 232 
diseases; for example, 63 significant species were identified in the saliva in the case of 233 
neural disorders. Overall, for each disease group over 200 significant species are present 234 
and saliva samples yielding the largest number of significant hits across the diseases. 235 
Remarkable was the small number of significant results between controls and competitive 236 
athletes following adjustment for multiple testing. The comorbidity patterns might impact 237 
the results, making us split the dataset into those patients with more than one diagnosed 238 
disease (Fig. 2F) and those with exactly one diagnosed disease (Fig. 2G). In the latter 239 
case, a reduced number of significant hits remained. Because this might be partially due 240 
to the smaller number of patients with exactly one disease and the different number of 241 
samples per specimen type might impact the results, we further analyzed the effect sizes 242 
as a robust measure in addition to the p-values. The results provided evidence for the 243 
validity of the reported patterns in general, however, also demonstrated substantial 244 
effects (absolute Cohens D > 0.5) in cases where the regression-based hypothesis test 245 
did not yield significance (Supplemental Figure 3). 246 

 One motivation for including multiple diseases in our study was to define a healthy 247 
microbiome. To this end we analyzed the highest hierarchy level in our disease ontology: 248 
all patients versus all controls (Fig. 2H, Supplemental Table 4). Our results suggested 249 
that Staphylococcus epidermidis and Corynebacterium pseudogenitalium are significantly 250 
more frequent in skin swabs from patients suffering from coronary artery disease. 251 
Moreover, we detected a significant increase of Capnocytophaga gingivalis in saliva 252 
samples from aniridia patients, as well as Porphyromonas endodontalis in interdental 253 
plaque from obesity patients, and Lachnoanaerobaculum saburreum in interdental plaque 254 
from aniridia patients. Furthermore, Streptococcus australis. Lachnospiraceae bacterium 255 
oral taxon 096, Streptococcus sp. A12, Streptococcus sp. HMSC067H01, and 256 
Aggregatibacter aphrophilus appeared in decreased abundance in saliva in most 257 
analyzed diseases. These commensal bacteria are the five species, which across all 258 
analyzed diseases displayed a significant decrease. Only two species demonstrated 259 
differential abundance across the disease comparisons. Specifically, Bacteroides 260 
cellulosilyticus exhibited a significant decrease in stool samples from patients with 261 
digestive ailments, while Streptococcus vestibularis displayed a significant decrease in 262 
saliva samples from aniridia patients and an increase in saliva samples from Parkinson's 263 
disease patients. Overall, the abundance analysis of known and annotated bacteria 264 
yielded significant disease annotations. However, the body still seems to harbor microbes 265 
that are not characterized and annotated in databases35. This motivated the following 266 
analysis of assembled metagenomic data, specifically in the context of existing 267 
antimicrobial resistance (AMR) genes.  268 

AMR analyses suggest pan-microbiome resistance within patients 269 

From the 10.2 terabases of sequencing information, we generated 450 million 270 
scaffolds by computing metagenomic assemblies for each sample separately. Following 271 
the nature of short-read metagenomic sequencing, metagenomics assemblies yield short 272 
contigs. Nonetheless, 19 million fragments exceeded 1 kilobase and 300,000 fragments 273 
surpassed the 50 kb mark (Fig. 3A, Supplemental Table 5). Intriguingly, long contigs 274 
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were present in samples from all specimen types, including the skin and the eye. One of 275 
the main reasons for metagenomic assemblies is to search for the presence of 276 
antimicrobial resistance genes. We thus performed resistance gene profiling based on 277 
the assembled fragments (Fig. 3B), pinpointing a consistent prevalence of the mef(A) 278 
resistance gene. This gene was present in 1,484 of 1,931 samples (77%), spanning a set 279 
of 493 of 515 distinct individuals (96%).  280 

Overall, our data suggested that when a resistant gene is identified in one 281 
specimen of a patient, there is an increased likelihood of detecting the same resistance 282 
gene in other specimens from the same patient. (Fig. 3C). We report 120 of such 283 
significantly associated biospecimen and gene combinations after p-value adjustment 284 
(Fisher exact test p-value < 0.05; Supplemental Table 6). Particularly noteworthy is the 285 
significant prevalence of resistance genes observed within skin samples, which maintain 286 
continual contact with the external environment. In this context, our results suggested that 287 
the detection of a resistance gene within either the arm or forehead microbiome 288 
corresponds to a probability of 16.1% for the arm microbiome and 13.1% for the forehead 289 
microbiome to encounter the same resistance gene within the patient's stool. 290 
Furthermore, we screened for emerging resistance genes in Gram-negative bacteria 291 
against carbapenems and colistin, which display a global health threat. In our data, we 292 
detected several bla-Oxa genes, encoding various β-Lactamases in Acinetobacter sp., 293 
Klebsiella sp., Pseudomonas sp., and more (Fig. 3B). Of note, we did not detect the most 294 
prevalent bla-Oxa-48 across the study cohort. In conjunctiva swabs, we however 295 
observed the New Delhi metallo β-lactamase-1 (NDM-1) in Citrobacter sp. Moreover, the 296 
plasmid-mediated resistance to colistin, mcr-1, was found in one conjunctiva swab and 297 
one stool sample. When correlating the AMR genes to the different cohorts, we found 298 
surprisingly few statistically significant hits, suggesting that the presence of resistance 299 
genes is similar in cases and controls independent of the specimen type.   300 

314 species genome bins associated with diseases 301 

In light of the observed disease associations of known bacteria and the limited 302 
association patterns of AMRs in health and disease states, it is reasonable to ask for 303 
disease annotations of the not yet annotated bacteria. Therefore, we generated species 304 
genome bins (SGBs) and probed their potential links to diseases. Among 4,380 305 
dereplicated SGBs, 729 (16.6%) lacked species-level assignments. Utilizing the available 306 
coverage data, we assessed SGB enrichment within cohort-specimen combinations, 307 
revealing 10,170 statistically significant combinations with an absolute log fold change 308 
exceeding two (Supplemental Table 7). Among these combinations, 1,364 involved 309 
novel species. Finally, 314 SGB were associated with diseases (absolute log fold change 310 
>2 & p-value <0.05). The pattern of disease associations in known and unannotated 311 
species, and the limited number of significant AMR genes between patients and diseases 312 
suggest other factors that might impact physiological or pathophysiological conditions in 313 
the host caused by bacteria. Here, the potential of microbes as natural producers that 314 
carry BGCs with broad functional scope must be recognized.     315 

Coverage-guided genome mining highlights 814 disease-related core biosynthetic 316 
genes 317 
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Among all metagenomic assembled scaffolds surpassing the 50 kb length 318 
threshold, we predicted a total of 28,315 BGCs. To identify pertinent candidates for further 319 
examination, we tailored the BigMAP36 workflow to harmonize with our data strategy (Fig. 320 
4A). Employing coverage profiles for each sample-predicted core biosynthetic gene pair, 321 
we acquired an informed assessment of whether a BGC exhibited enrichment or depletion 322 
within specific disease cohorts. Notably, our observations reveal that numerous BGCs 323 
demonstrate remarkable specificity to the originating samples. Nonetheless, upon 324 
focusing exclusively on matching specimen-disease cohort pairings, we unveiled a total 325 
of 1,050 statistically significant differentially altered coverages following p-value 326 
adjustment for the plethora of tested genes (Fig. 4B). Further exploring these findings 327 
and specifically examining individual BGCs, we searched for potential pathogenic or 328 
protective attributes (Fig. 4C), including the coverage information (i.e. whether higher or 329 
lower coverage within the control cohort was observed). It is crucial to note, however, that 330 
this methodology offers insights into the genomic presence but does not encompass the 331 
transcriptional activity of BGC genes or the overall concentration of potentially bioactive 332 
compounds. Nevertheless, the presented data strongly advocate for prioritizing future 333 
investigations into the functionality of the identified BGCs concerning their association 334 
with diseases. 335 

Impact of confounders on the microbiota showcased by the diet of individuals  336 

 As the last aspect of our study, we emphasize the importance of considering 337 
confounding factors. Inherent to study designs, such as the one applied in this study, it is 338 
a broad spectrum of confounders that might impact the results. Correlations between 339 
individuals' early-life breastfeeding experience, gender, and educational attainment in 340 
relation to the microbial communities across various body sites exists37. Especially the 341 
sex has a large impact38 but also factors such as ethnicity and geography39-41. The 342 
regional proximity and a largely shared ethnology of individuals in our study account for 343 
these factors but other obvious and non-obvious confounders  remain, potentially 344 
impacting our results. One of those is the diet, that impacts microbial compositions42. 345 
Because the diet was one of the variables included in our questionnaire, we performed a 346 
specific analysis of the diet, testing the dietary information related to the disease context. 347 
To this end we also added data from a longitudinal investigation of the planetary health 348 
diet on the gut microbiome43. In the vegetarian stool cohort, we identified eleven 349 
significantly diminished microbial species, including those previously linked with 350 
alternative diets. Notably, species like Bifidobacterium animals, Alistipes inops, and 351 
Phascolarctobacterium faecium, known for producing short-chain fatty acids through 352 
dietary fiber fermentation, were more abundant in omnivorous participants. In contrast, 353 
Dialister sp. CAG 357, associated with inflammation, exhibited higher levels in omnivores. 354 
With respect to the SGBs, only one hit with respect to the diet remained, derived from 355 
plaque: Saccharimonas sp013333645. The absence of statistically significant differences 356 
in our coverage analysis might be due to the limited number of vegetarians/vegans. 357 
Nonetheless, we asked for shared signatures concerning disease correlations. 358 
Accounting for limitations in using p-values, we again evaluated effect sizes for each BGC 359 
and correlated them with disease effect sizes. In this analysis, we identified negative 360 
Spearman coefficients such as -0.35 for coronary artery disease in the forehead skin 361 
microbiome, -0.30 for heart diseases in the eye, and -0.28 in the plaque of diabetes 362 
patients (Fig. 4D, Supplemental Table 8). In sum, our results provide evidence that 363 
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confounding factors do have an influence on the metagenomic patterns, but despite these 364 
relevant factors, disease signals seem to remain. 365 

DISCUSSION 366 

In our extensive metagenomic sequencing investigation, we analyzed 1,931 367 
samples following rigorous quality control. We maintained a standardized data generation 368 
protocol across multiple biospecimen samples obtained from the same individuals. 369 
Having the different microbiomes measured from the same patient offers a fairer 370 
comparison of differentially abundant microbes between different sample types and 371 
disease entities. We deliberately included and categorized a diverse spectrum of 372 
dominantly chronic inflammatory diseases, as well as globally widespread diseases. 373 
While the standardized sampling strategy and the inclusion of multiple disease cohorts 374 
represent a core strength of our study, we acknowledge the challenges that remain. One 375 
of those is the impact of obvious and less obvious confounders. The broad spectrum of 376 
diseases with different ages of onset leads to a broad age distribution. With an additional 377 
gender distribution leaning towards more males than females, with a ratio of 58.1% to 378 
41.9% we have a second confounding factor. Others include concomitant medications, 379 
ethnicity, geographic location, and the diet. Of note, respective confounding factors are 380 
correlated to each other (e.g. the nutrition is linked to the geographic origin), making the 381 
local sampling characteristics an advantage of our study. Further, standardized SoPs add 382 
to the stability of the results. To investigate the impact of one confounder in detail, we 383 
compared the dietary association with microbiomes in the context of disease associations 384 
with the microbiomes. These results suggest that this confounder has an impact on the 385 
metagenomes, but that the disease trajectories remained despite this influence. 386 

One major aim of our study was the identification of diagnostic patterns. Indeed, 387 
our results suggest a complex pattern of disease-to-microbiome associations depending 388 
on the specimen types. We reached the highest diagnostic power from gut and oral cavity 389 
samples. Here, the low abundance of DNA in the eye or the skin and smaller cohort sizes 390 
might lead to lower overall diagnostic values. Still, several interesting hits remained in 391 
those specimen types, especially in the case of acne inversa and the skin. It is important 392 
to highlight that all associations discovered in this study need in-depth considerations and 393 
validation. Examples of associations include the increased presence of otrichia sp. oral 394 
taxon 225 species in the saliva of patients suffering from Parkinson´s disease. 395 
Parkinson´s disease remains challenging to diagnose, for which additional testing for 396 
biomarkers in easily accessible body fluids, such as saliva, would provide great potential 397 
for improved diagnostic procedures44. However, the question of what comes first - the 398 
microbes or the disease, remains to be solved in functional studies.  399 

Beyond diagnostic associations of microbiota to diseases, one aim of our study 400 
was the examination of antimicrobial resistances because we speculate that microbial 401 
dark matter carries resistance gene information that needs to be monitored. The most 402 
prevalent resistance gene identified across all specimens was mef(A), encoding a 403 
resistance against macrolide antibiotics. This macrolide efflux gene was first described in 404 
1996 and has emerged rapidly in Streptococcus sp. worldwide45-48. Therefore, it is not 405 
surprising that we observed such a high prevalence in our study cohort. Furthermore, we 406 
identified emerging resistance genes against carbapenem and colistin, both used to treat 407 
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infections with Gram-negative bacteria. These resistances display a global health threat 408 
as treatment options are limited. The most prevalent carbapenem resistance genes are 409 
related to Oxacillin-hydrolysing (OXA) carbapenemases and New Delhi metallo beta-410 
lactamases (NDM)49,50. Colistin had been abandoned for the treatment of Gram-negative 411 
infections for many decades but has been reintroduced as a last-resort antibiotic in the 412 
last decade. First described in 2011, the plasmid-mediated colistin resistance gene mcr-413 
1 displays another challenging global health threat, as it spreads rapidly and decreases 414 
the options for last-resort antibiotics in case of multi-resistant Gram-negative infections 415 
51,52. In our study cohort, including 515 patients from southwest Germany, we identified 416 
two patients colonized by NDM-1 positive Citrobacter freundii, two patients colonized by 417 
mcr-1 carrying Gammaproteobacteria, and a variety of OXA mediated resistances against 418 
carbapenems. Interesting are blaOXA-50 carrying Pseudomonas aeruginosa, blaOXA-419 
270 carrying Acinetobacter pittii, and blaOXA-58 carrying Acinetobacter baumannii. The 420 
carbapenem hydrolyzing activity of blaOXA-50 and blaOXA-270 has neither been 421 
confirmed nor denied. The carbapenemase blaOXA-58, however, was first described in 422 
1995 and has spread globally ever since, posing one of the major carbapenem resistance 423 
genes in Acinetobacter baumannii53. We did not observe any bacterial blaOXA-48, which 424 
displays a now emerging resistance against carbapenems54. Our study setup also allows 425 
us to compare resistance genes across different specimens of the same patient. Here, 426 
resistance genes on the skin were indicative of carrying the same resistance genes in the 427 
gut.  428 

Another important aim was to explore the disease association of biosynthetic gene 429 
clusters BGCs. Such BGCs encode for molecular machineries, building natural products 430 
that are screened as a source of therapies. Our study setup was thought to enable a 431 
prioritization of BGCs with respect to therapeutic potential. By categorizing the data into 432 
distinct cohorts at various disease ontology levels, we identified BGCs that exhibited 433 
differential abundance and coverage. Beyond potential pathogenic species markers, we 434 
uncovered benign BGCs that displayed heightened coverage in healthy control groups. 435 
These BGCs warrant further exploration in vitro, offering promising avenues for medical 436 
discoveries, including the potential development of antibiotic compounds. As a next step, 437 
we plan to thoroughly investigate these promising BGCs for their potential beneficial 438 
properties.  439 

METHODS 440 

Clinical sampling: Clinical samples were obtained from study participants after 441 
having obtained written informed consent at Saarland University Medical Center in 442 
Homburg, Germany. Approval for the study was granted by the ethics committee of the 443 
local medical association (Ärztekammer des Saarlandes) with the identification number 444 
131/20. Per patient, an extensive medical examination was conducted by medical staff 445 
and diseases of interest for this study were identified. If such a disease was present, an 446 
in-depth medical history was obtained, including major factors that might influence 447 
microbial compositions in and on the human body, such as medication, lifestyle choices 448 
pertaining to diet, activity, smoking and for example alcohol uptake, as well as co-449 
morbidities. After, clinical samples were obtained: saliva, interdental plaque, conjunctiva 450 
swab, throat swab, stool, and skin swabs of the forehead and arm region, as well as in 451 
case of Acne inversa – affected skin areas. Concisely, fecal samples were procured from 452 
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participants through utilization of a paper toilet-hat and a sterile collection tube complete 453 
with an integrated spoon, yielding an approximate range of 500 mg to 1 g of stool. Plaque 454 
samples were gathered through the use of twelve disposable micro applicators (Catalog 455 
No. MSF400, Microbrush International, Grafton, WI). Each quadrant involved brushing 456 
three interdental spaces, and subsequent transfer of all micro applicators to an ESwab 457 
transport tube (Copan Diagnostics, Brescia, Italy) along with ESwab Amies Medium 458 
(Copan Diagnostics). Saliva samples were obtained using 50-ml sterile, conic falcon 459 
tubes. Participants were instructed to deposit unstimulated saliva into the sterile falcon 460 
tube for a duration of 5 minutes. Conjunctiva specimens were acquired utilizing an 461 
ESwab. Eversion of the lower eyelid facilitated swabbing along the complete extent of the 462 
lower fornix thrice. Throat swabs were taken cautiously by medical staff, avoiding contact 463 
to saliva, tonsils, gums, and teeth, by streaking the throat-area 3-5 times. The forehead 464 
and arm were swabbed using an ESwab and wetting the nylon-flocked swab with the 465 
provided Amies Medium prior to contact with the skin. The areas were swabbed roughly 466 
to ensure removing bacterial mass not just from the surfaces, but also from hair follicles 467 
for example. Subsequent placement of the swabs into the designated transport medium 468 
was followed by freezing the tube at -80 °C.  469 

DNA extraction: DNA was extracted from all native samples using the Qiagen 470 
QiAamp Microbiome Kit (Qiagen, Hilden, Germany). The DNA was extracted according 471 
to the manufacturer’s protocol. Briefly, swabs were vortexed in 1.5 ml Amies Medium for 472 
2 minutes. The Amies medium containing the microbial mass from each sample was then 473 
used for DNA extraction according to the manufacturer’s recommendation. For fecal 474 
samples, 250 mg of stool was used and mixed with 500 µl of buffer AHL. Micro applicators 475 
used to collect interdental plaque were mixed with 1 ml 1x PBS (pH = 7.4) and vortexed 476 
rigorously for 2 minutes. 1 ml PBS containing bacterial cells was then used for DNA 477 
extraction. Saliva samples were vortexted briefly to allow homogenization of the sample. 478 
Then, 1 ml of saliva was used for DNA extraction according to the manufacturer`s 479 
recommendations. Utilizing the MP Biomedicals™ FastPrep-24™ 5G Instrument 480 
(FisherScientific GmbH, Schwerte, Germany), mechanical disruption of bacterial cells 481 
was carried out. The operational parameters were set to a velocity of 6.5 m/s for 45 482 
seconds, executed twice, with intervals of 5 minutes of ice storage separating each lysis 483 
cycle. After the lysis procedure, DNA was extracted into 50 µl elution buffer. To determine 484 
the DNA concentration, comprehensive microvolume UV-Vis measurements were 485 
performed using the NanoDrop 2000/2000c (ThermoFisher Scientific, Wilmington, DE)34. 486 

Library Preparation, sequencing, and quality control: Extracted DNA from all 487 
native samples was sent to Novogene Company Limited (Cambridge, UK) for 488 
metagenomic library preparation and subsequent paired-end (PE150) Illumina 489 
sequencing (HiSeq). From the study we excluded sparsely collected biospecimens 490 
(n=47), substandard (n=1304), and anomalous samples (n=201). 491 

Next-generation sequencing data preprocessing: The first step of data analysis 492 
was host read removal with KneadData 55 (version (v): 0.7.4; command line arguments 493 
(cla): “--trimmomatic-options=’LEADING:3 TRAILING:3 MINLEN:50’ --bowtie2-options=’-494 
-very-sensitive --no-discordant --reorder'"). Due to the high contamination load among 495 
skin and eye samples, we additionally ran the human sra-human-scrubber 56 (v: 496 
1.0.2021_05_05) after KneadData. Paired-end reads were only kept if none of the read 497 
pairs mapped to the human reference. After decontamination, we performed sequence 498 
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overrepresentation analysis and quality assurance with fastp 57 (v: 0.20.1; cla: “--499 
overrepresentation_analysis”) and visualized results with MultiQC 58 (v: 1.11).  500 

Reference-free analysis and outlier removal: Mash 59 (v: 2.3; cla: “sketch -S 23 501 
-k 31 -s 5000 -r -m 2”) was used to compute and compare MinHash distances. A two-502 
dimensional embedding was generated in R with the UMAP package 60 (v: 0.2.8). After 503 
noticing the separation of the low-input biospecimen into two clusters, we split the low-504 
input samples by their clustering behavior during outlier removal. During this outlier 505 
removal, we performed for each biospecimen a Grubb’s test on the mean of all pairwise 506 
MinHash distances and removed the most significant outlier. This procedure was 507 
repeated iteratively until no more significant outliers were left. In the case of low-input 508 
biospecimen, this algorithm was performed for each subcluster instead. 509 

Reference-based compositional analysis: MetaPhlAn3 55 (v: 3.0.13; cla: “-t 510 
rel_ab_w_read_stats --unknown_estimation –add_viruses") on the 511 
mpa_v30_CHOCOPhlAn_201901 database was used to profile quality controlled 512 
samples. Relative counts were rescaled to absolute counts based on the number of reads 513 
and virus counts were removed. Shannon diversity was used as an alpha-diversity 514 
measure. Reference-based beta-diversity was assessed with non-metric 515 
multidimensional scaling on Bray-Curtis distances. Differential abundance analysis was 516 
performed with ANCOM-BC 61 (v: 1.6.2). P-values were adjusted via Benjamini-Hochberg 517 
adjustment. Note, that we only tested specimen-cohort combinations with more than ten 518 
samples in each cohort. While the athletic and sports cohorts were tested against healthy 519 
controls, all other diseases were tested against the union of healthy control and sports 520 
cohorts, i.e. the healthy cohort. Samples that were part of the control and disease cohort 521 
during testing, such as athletes with diseases, were removed. Based on the differential 522 
abundance analysis results, we searched for interesting pathogens and commensal 523 
bacteria to further investigate. To this end, we defined the pathogenicity score as the 524 
number of various diseases where a pathogen is predicted to be significantly more 525 
abundant in the diseased cohort in at least one biospecimen. Similarly, we define the 526 
commensal score as the number of disease cohorts where a bacterial species is 527 
significantly reduced in the diseased cohort for at least one biospecimen. In visualizations 528 
of abundances, absolute counts were center log ratio normalized. 529 

Metagenomic Assembly: We assembled each sample with SPAdes 62 (v: 3.15.4; 530 
cla: “--meta”) and monitored assembly quality with QUAST 63 (v: 5.0.2; cla: “-s”). Scaffolds 531 
were binned with MetaBAT2 64 (v: 2.15; cla: “--seed 420”). MAGs across all samples were 532 
aggregated and dereplicated with dRep 65 (v: 3.4.2; cla: “-comp 50 -con 5 --533 
checkM_method lineage_wf --S_algorithm fastANI --S_ani 0.95 -nc 0.5”). GTDB-TK 66 (v: 534 
2.3.0; cla: “classify_wf”) in combination with GTDB database release 214 67 was used to 535 
annotate SGBs with taxonomic information. On each dereplicated SGB, we ran PathoFact 536 
68 (commit v: 55d8240). To capture resistances that did not end up in any final bins, we 537 
ran AMRFinderPlus 69 (v: 3.11.4) and complemented the information with Kraken 2 70 538 
(v:2.1.2; cla: “--use-mpa-style"; database version: k2-pluspf_20220908) taxonomic 539 
classifications for each contig. Differential coverage analysis on SGBs was performed by 540 
first, aggregating all bins creating one reference file, and then aligning all samples against 541 
the newly created reference file with Bowtie2 71 (v: 2.3.4.3; cla: “-a”). Afterward, coverage 542 
information was extracted from each alignment with SAMtools idxstats 72 (v: “1.16.1”). 543 
Differential coverage analysis was organized identically to the differential abundance 544 
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analysis, i.e. cohort-specimen multiplicity needed to be larger than ten and the control 545 
cohorts altered if sports or athletes were considered for testing. However, here, a 546 
Wilcoxon rank sum test was executed, performing Benjamini-Hochberg adjustment to 547 
adjust for the total number of tested dereplicated SGBs. 548 

Genome mining: After assembly, all contigs with a length > 50,000 bp were mined 549 
for BGCs with antiSMASH 73 (v: 6.1.1; cla: “--genefinding-tool prodigal --cb-knownclusters 550 
--cb-subclusters –asf"). Next, all core biosynthetic genes that were annotated by 551 
antismash were extracted and aggregated into one file. Reads of all samples were then 552 
aligned against this reference and coverage information was extracted for each contig-553 
sample combination, following the procedure described for the SGB analysis. Similarly, 554 
differential coverage analysis was repeated identically to the SGB analysis. P-value 555 
adjustment was performed using Benjamini-Hochberg adjustment, adjusting for the 556 
number of tested core biosynthetic genes. 557 

Dietary alterations comparison: All day zero samples from the dataset of Rehner 558 
et al. 43 were taken and processed according to the new data. The dataset was then 559 
extended by our dataset, however, only using our healthy controls. The dataset was from 560 
then on analyzed independently. If comparisons were performed, e.g. in statistical tests, 561 
the vegan/vegetarian cohort was always compared to the omnivore cohort. 562 

Data Availability: All sequencing data are freely available from the sequence read 563 
archive (SRA). Please note that only data after removing ambient human DNA can be 564 
made available.  565 
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Figure Legends 593 

Figure 1, Study set up, metagenomics data and clinical information: A) Schematic 594 
Workflow describing the sample (upper arrow) and data flow (lower arrow) between 595 
clinicians, microbiology, and data science. The clinical data were kept separated from the 596 
measurement of microbiomes and only combined after measurement in the 597 
computational analysis. B) Clinical sampling was focused on seven biospecimens (left 598 
blue part). We included patients from a wide range of clinical diseases that allows us 599 
analyzing the diagnostic potential of different specimen types across diseases. C) Sankey 600 
plot for the number of samples included in the study at different intervals of the data 601 
generation process in relation to our quality control strategy. Specimen types are ordered 602 
vertically at each step in the pipeline by frequency of the respective specimen. D) Number 603 
of reads for each sample colored by specimen. The horizontal line represents the 5 604 
gigabase threshold at a paired-end read length of 150bp. E) Pruned upset plot displaying 605 
the most frequent co-occurrence of diseases within the dataset. The combinations are 606 
ordered with decreasing frequency, marking the combination of Hypertension and obesity 607 
as most common comorbidity in our study. F) Ontology used throughout the study 608 
grouping diseases by biological systems and separating healthy control from diseased 609 
patients. Areas are proportional to the number of patients falling into each category. 610 
Patients may be represented multiple times if multiple diseases are diagnosed.   611 

Figure 2, Compositional analysis, and link of microbiota to diseases: A) Two-612 
dimensional UMAP embedding of pairwise computed mash distances, colored by 613 
biospecimen of the sample B) Alpha-diversity of all samples, colored by specimen. As a 614 
measure of species richness, we selected the Shannon diversity. C) Relative genus 615 
abundance for each cohort of the second ontology level, divided by biospecimen. D) 616 
Sorted log-fold changes of differentially abundant species matching the visualized results 617 
of the previous panel. Each panel is split vertically separating positive and negative log-618 
fold changes. E-G) Number of differentially abundant species after p-value adjustment 619 
revealed during analysis across all cohorts and specimen combinations. Numbers in the 620 
circles represent the number of specimens included in the respective analysis. H) Center-621 
log ratio normalized abundance counts of selected species-cohort-specimen 622 
combinations. The visualized diseased cohort is indicated by the text above each panel, 623 
whereas the selected biospecimen is indicated by the color of the writing. The first row of 624 
panels displays potential pathogen candidates with the highest statistical significance and 625 
a pathogen score of one. The second row of panels displays saliva samples of 626 
commensal bacteria candidates with a commensal score larger than eighteen. 627 

Figure 3, Assembly and resistance gene analysis: A) Distribution of the number of 628 
scaffolds in each sample at various length limits, colored by specimen as box-whisker 629 
plot. B) Sequence of pie charts indicating the presence of emerging antimicrobial 630 
resistance genes. Panels are subdivided by genus that was assigned to the contig where 631 
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resistance genes have been detected. Pie charts scale with the number of measurements 632 
in different samples and are colored by the relative frequency of the sample’s 633 
biospecimen. C) Network visualization of counts of shared resistance genes among 634 
different biospecimen samples derived from the same patient. Note, any resistance gene 635 
annotated by AMRFinderPlus was used for this plot. D) Dereplicated SGBs defined from 636 
our data. Visualized information includes biospecimen of the initial sample where the SGB 637 
was derived from, selected resistance information taken from Pathofact, and effect size 638 
of differential coverage analysis for selected cohorts. Note, the visualized differential 639 
coverage focuses only on the biospecimen of the initial sample where the SGB has been 640 
defined from that is also visualized in the central ring. 641 

Figure 4, Evidence-supported genome mining and disease association: A) 642 
Schematic representation of our proposed BGC prioritization strategy representing an 643 
adapted version of the BiGMAP workflow. Metagenomic assembly is performed for each 644 
sample, followed by BGC prediction. Next, all samples are aligned against all core 645 
biosynthetic genes of predicted BGCs. Coverage information is extracted, and 646 
downstream analysis is performed. B) Volcano plot of the differential BGC coverage 647 
analysis results. In this visualization, only matching biospecimen – initial BGC contig 648 
combinations are visualized, constituting only a fraction of all results. C) Randomly drawn 649 
BGC examples of each region of the previous volcano plot. The visualized coverage 650 
includes all biospecimens. D) Comparison of the highest correlating effect sizes, 651 
comparing differential BGC coverage results between alternative diets and diseases. The 652 
effect size of the vegetarian-omnivore comparison is visualised on the y-axis. On the x-653 
axis, the cohort named above the panel is compared against the healthy cohort. For the 654 
fourth panel, the minimum effect size across all cohort comparisons is taken for each 655 
BGC and compared against the diet comparison.  656 
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Figure 1, Study set up, metagenomics data and clinical information: A) Schematic Workflow describing 
the sample (upper arrow) and data flow (lower arrow) between clinicians, microbiology, and data science. 
The clinical data were kept separated from the measurement of microbiomes and only combined after 
measurement in the computational analysis. B) Clinical sampling was focused on seven biospecimens (left 
blue part). We included patients from a wide range of clinical diseases that allows us analyzing the 
diagnostic potential of different specimen types across diseases. C) Sankey plot for the number of samples 
included in the study at different intervals of the data generation process in relation to our quality control 
strategy. Specimen types are ordered vertically at each step in the pipeline by frequency of the respective 
specimen. D) Number of reads for each sample colored by specimen. The horizontal line represents the 5 
gigabase threshold at a paired-end read length of 150bp. E) Pruned upset plot displaying the most frequent 
co-occurrence of diseases within the dataset. The combinations are ordered with decreasing frequency, 
marking the combination of Hypertension and obesity as most common comorbidity in our study. F) 
Ontology used throughout the study grouping diseases by biological systems and separating healthy 
control from diseased patients. Areas are proportional to the number of patients falling into each category. 
Patients may be represented multiple times if multiple diseases are diagnosed.
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Figure 2, Compositional analysis, and link of microbiota to diseases: A) Two-dimensional UMAP 
embedding of pairwise computed mash distances, colored by biospecimen of the sample B) Alpha-diversity 
of all samples, colored by specimen. As a measure of species richness, we selected the Shannon diversity. C) 
Relative genus abundance for each cohort of the second ontology level, divided by biospecimen. D) Sorted 
log-fold changes of differentially abundant species matching the visualized results of the previous panel. 
Each panel is split vertically separating positive and negative log-fold changes. E-G) Number of differentially 
abundant species after p-value adjustment revealed during analysis across all cohorts and specimen 
combinations. Numbers in the circles represent the number of specimens included in the respective 
analysis. H) Center-log ratio normalized abundance counts of selected species-cohort-specimen 
combinations. The visualized diseased cohort is indicated by the text above each panel, whereas the 
selected biospecimen is indicated by the color of the writing. The first row of panels displays potential 
pathogen candidates with the highest statistical significance and a pathogen score of one. The second row 
of panels displays saliva samples of commensal bacteria candidates with a commensal score larger than 
eighteen. 
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Figure 3, Assembly and resistance gene analysis: A) Distribution of the number of scaffolds in each 
sample at various length limits, colored by specimen as box-whisker plot. B) Sequence of pie charts 
indicating the presence of emerging antimicrobial resistance genes. Panels are subdivided by genus that 
was assigned to the contig where resistance genes have been detected. Pie charts scale with the number 
of measurements in different samples and are colored by the relative frequency of the sample’s 
biospecimen. C) Network visualization of counts of shared resistance genes among different 
biospecimen samples derived from the same patient. Note, any resistance gene annotated by 
AMRFinderPlus was used for this plot. D) Dereplicated SGBs defined from our data. Visualized 
information includes biospecimen of the initial sample where the SGB was derived from, selected 
resistance information taken from Pathofact, and effect size of differential coverage analysis for selected 
cohorts. Note, the visualized differential coverage focuses only on the biospecimen of the initial sample 
where the SGB has been defined from that is also visualized in the central ring. 
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Figure 4, Evidence-supported genome mining and disease association: A) Schematic representation 
of our proposed BGC prioritization strategy representing an adapted version of the BiGMAP workflow. 
Metagenomic assembly is performed for each sample, followed by BGC prediction. Next, all samples are 
aligned against all core biosynthetic genes of predicted BGCs. Coverage information is extracted, and 
downstream analysis is performed. B) Volcano plot of the differential BGC coverage analysis results. In 
this visualization, only matching biospecimen – initial BGC contig combinations are visualized, 
constituting only a fraction of all results. C) Randomly drawn BGC examples of each region of the 
previous volcano plot. The visualized coverage includes all biospecimens. D) Comparison of the highest 
correlating effect sizes, comparing differential BGC coverage results between alternative diets and 
diseases. The effect size of the vegetarian-omnivore comparison is visualised on the y-axis. On the x-
axis, the cohort named above the panel is compared against the healthy cohort. For the fourth panel, 
the minimum effect size across all cohort comparisons is taken for each BGC and compared against the 
diet comparison.  
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ABSTRACT  

K-mer-based approaches in bioinformatics were long established to expedite the analysis of large 

sequence data in genomic studies of higher organisms but are now widely applied in annotating 

metagenomic data. Here, we make use of k-mer counting techniques for efficient and effective 

compositional analysis of microbiota in whole metagenome sequencing data. The quantification 

of microbiome species composition, a fundamental step in metagenomic studies, often poses 

challenges due to its time-consuming nature and computational complexity. The Mibianto web 

server addresses these challenges by enabling direct operations on read files, thus eliminating 

the need for preprocessing or comprehensive data exchange. It handles diverse sequencing 

platforms, including short single-end, paired-end, and long read technologies. Our sketch-based 

workflow significantly reduces the data volume transferred from the user to the server (0.41% of 

the original FASTQ file size) to subsequently perform taxonomic profiling, enhancing both 

efficiency and data privacy. Mibianto offers functionalities beyond k-mer quantification; it supports 

advanced community composition analyses, including diversity, ordination, and differential 

abundance analysis. Our tool aids in the standardization of computational workflows, thus 

supporting the reproducibility of scientific sequencing studies. Its adaptability to small- and large-

scale experimental designs, coupled with its user-friendly interface, makes it an invaluable tool 

for both clinical and research-oriented metagenomic studies. Mibianto is freely available without 

the need for a login: https://www.ccb.uni-saarland.de/mibianto. 
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INTRODUCTION  

Technological advancements are rapidly transforming the research practices of molecular 

microbiology and ecology. Although the initial application of high-throughput sequencing focused 

on bacterial isolates only, further refinement of DNA preparation protocols has enabled the 

profiling of entire micro-ecosystems via metagenomics (1). It appears, if the challenges arising 

from whole metagenome sequencing data analysis can be overcome, unprecedented valuable 

insights into diverse research areas such as bioremediation, natural compound discovery, and 

human health can be gained (2-5). In practice however, whole metagenome sequencing 

experiments generate enormous quantities of sequencing data, rendering sufficient expertise in 

computational analysis indispensable (6). To support researchers in their data evaluation 

workflow, a wide variety of online data processing tools have emerged. MG-RAST (7), MGnify 

(8), Galaxy (9), and similar tools accept uploads of whole datasets and process them on their 

servers through custom data analysis pipelines. While this method of data management is intuitive 

and allows for in-depth analysis, it requires a fast internet connection on the user side, a solid 

infrastructure on the service provider side, and a considerable amount of processing time. For 

studies involving sensitive clinical data, users must consider all legal aspects before trusting any 

third parties. Furthermore, with continuously decreasing sequencing costs, most cohort studies 

steadily increase their data output, rendering large data exchange pipelines a major 

inconvenience. One way to circumvent this issue is to request users to preprocess data on their 

end before uploading it to a service for further downstream analysis. For instance, our tool 

BusyBee Web provides comprehensive binning functionality at the expense that users need to 

upload a complete assembly (10). In a similar manner, the tool MicrobiomeAnalyst, performs 

extensive downstream analysis on taxonomic counts (11), for which users are required to 

generate and upload a count matrix from the raw sequencing data. Even though many out-of-the-

box solutions exist to solve both mentioned user-imposed challenges, lack of sufficient 

computational expertise prevents many researchers from accessing them. 

Here, we propose Mibianto, an online whole metagenome sequencing data analysis web server 
centered around compositional analysis. It is light on user connection requirements, trivial to get 
started, and capable of quickly processing small to medium-sized studies. The tool leverages 
recent progress made in MinHash-based data analysis to compute and transmit a compressed 
representation of the data to the remote server where it performs taxonomic profiling (12,13). 
Once the job submission is finished, it provides a wide range of state-of-the-art analysis options, 
visualizations, and recommendations for further interactive analysis. 

 

MATERIALS & METHODS 

Mibianto is composed of three main components. First, the initial submission interface, where 
users are prompted to select metagenomic reads and metadata. Second, our server-side data 
analysis pipeline, which handles most of the computationally intensive tasks. Lastly, the result 
interface offers interactive data exploration, sharing and exporting capabilities. 

Taxonomic profiling 

Mibianto prevents transfering sequencing reads directly. Instead, a selection of specifically 
calculated hashes is sent to the server. A hash function takes one read at a time and generates 
a numerical value based on the actual sequence. When working with sets of subsequences that 
have the same length as the original sequence, a MinHash is the smallest value obtained from 
hashing each subsequence (14). FracMinHashes are a subset of MinHashes collected from 
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multiple sequences and below a specified threshold value. We calculate FracMinHashes from 
user provided FASTQ files with a WebAssembly version of sourmash (15). To be able to perform 
this computation on the client side, sourmash was compiled from Rust to WebAssembly. We 
achieved this conversion with the rust package manager cargo (v:1.65.0), rustc (v:1.65.0), wasm-
pack (v:0.9.1), and sourmash (v:4.6.1). Via JavaScript the user input files get decompressed and 
streamed to the WebAssembly package after which it is transmitted to the server. For reference, 
the computation of a 150 bp paired-end sample containing 8 Gbp takes around 15 minutes on a 
standard consumer laptop. Users may select to save their metadata and hashes on the web 
server for later reusage. Once the data upload is completed, taxonomic profiling starts, and the 
user may enter a waiting queue and receive a unique job identifier. To ease software 
maintenance, we implemented the taxonomic profiling pipeline in snakemake (v:7.18.2) (16). Data 
processing closely follows the sourmash documentation from GitHub at a fixed k-mer size of 51. 
Sketches of each sample are compared against the Genome Taxonomy Database (GTDB) 
(v:rs207) to collect feature abundances (17). Next, taxonomic counts of all samples are 
aggregated, taxonomic annotations, sample data, and a phylogenetic tree are attached, and a 
phyloseq (v: 1.42.0) object is saved (18). Upon successful completion of the server-side 
processing pipeline, the user is forwarded from the queue to the results page, where a wide range 
of further analyses can be performed, and two download options are available. A phyloseq object 
and an Excel file with taxonomic counts can be downloaded, aiming to serve users with and 
without programming skills, respectively. 

Compositional analysis 

Users that prefer additional support can refer to our results page for state-of-the-art compositional 
analyses supported with rich interactive visualization and customization options. We also 
implemented various data normalization options, namely compositional, z-score, log10, log10p, 
hellinger, centered log-ratio and additive log-ratio. Moreover, users may filter their data by 
removing individual samples or operational taxonomic units (OTU) based on abundance criteria. 
Alpha diversity can be visualized and checked for significant differences among cohort or sample 
groups. Further, ordination analysis is supported by a range of dimensionality reduction methods 
and dissimilarity measures. To this end, we integrated major parts of microViz, which allows for 
an interactive selection of samples in the embedding and displays their relative composition (19). 
We also provide a table view where estimated abundances are numerically displayed for each 
taxonomy. Individual OTUs can be selected, and their normalized abundances are displayed 
across samples. Most relevant for clinical applications, we keep a manually curated list of 
potentially pathogenic species automatically highlighted in the table. In case higher taxonomic 
ranks are of interest, we highlight an OTU as a potential pathogen when it contains at least one 
potentially pathogenic species. Finally, we implemented differential abundance analysis with 
ANCOMBC (v:2.0.1) (20). 

Proxies for Quality Control 

Quality control (QC) is a crucial step of every sequencing analysis workflow. Performing QC on 
the user side would aggravate the computational burden on their end. However, since Mibianto 
only transfers hashed information to the server, QC on the server side becomes a challenge. We 
addressed this issue by computing several proxies for QC and forwarding users to further online 
analysis with e.g. BusyBee Web in case of apparent data anomalies. First, the estimate of the 
overall assignment rate from sourmash is displayed to the user on the results page indicating how 
robustly the community of each sample was quantified. Low assignment rates indicate either that 
the submitted community is not adequately represented in the database or that quality issues 
exist. Second, we compare user hashes against a precomputed QC dataset by computing 
distances with the built-in comparison from sourmash. This QC dataset was built by downloading 
metagenomics samples along with annotations from SRA. Adapter and host DNA contaminations 
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were estimated with trimgalore (v: 0.6.10) (21) and bowtie2 (v: 2.5.1) (22) alignment against the 
human genome, respectively. Spatial proximity in co-embeddings of QC samples with increased 
contamination might be indicative of similar issues in user data. For clinical cohort studies, we 
annotate potential outliers using the local outlier factor (LOF) from DescTools (v: 0.99.47) (23). 
We note that the local outlier factor highlights abnormal clustering behavior of individual data 
points. Yet, depending on the experimental setup, this may be expected. 

Case studies 

To explore the potential and limitations of our new online tool, we provide an example analysis of 
two different datasets, comprising one classical cohort study, seven biospecimens, four DNA 
extraction protocols, and two different sequencing technologies. The datasets Rehner et al. (24) 
and Becker et al. (25) were fully processed with our implemented snakemake pipeline to ensure 
that results can be replicated. Original metadata classes were curated. Pipeline outputs were 
integrated into the web server and explored using the results page. In the cohort study, the 4-
week timepoint was removed. 

 

RESULTS 

The impact of the human microbiome on host health through various exogenous molecules such 

as peptides and metabolites are well established (26,27). While extensive research is improving 

our understanding of the causal mechanisms linking microbiota and the immune system, disease 

associations with microbiome composition can provide valuable insight for clinicians (28,29). 

However, quantifying microbiome composition from metagenomic sequencing reads remains 

time-consuming and computationally challenging. Recent developments in the field of sketch-

based taxonomic profiling have resulted in an efficient solution for exchanging large quantities of 

metagenomic sequencing data between client and server. By leveraging sourmash as a 

taxonomic profiling backbone, we have developed Mibianto, an online solution for convenient 

microbiome composition analysis. We provide a wide range of state-of-the-art downstream 

analyses with many customization options that are partially based on the microViz package. The 

functionality includes assessment of different taxonomic ranks, data filtering, diversity analysis, 

pathogen highlighting, and more. We are aware of the workflow's QC limitations and have 

therefore provided several indicators to detect potentially contaminated samples. 

Mibianto handles metagenomes from saliva, skin, plaque, stool and eye samples.  

We aimed to rigorously evaluate the performance of Mibianto across diverse experimental setups. 
A critical factor influencing metagenomic outcomes is the type of sample being analyzed. 
Metagenomes derived from saliva, gut, dental plaque, skin, or the eye exhibit significant variations 
in microbial composition, reflecting the unique microbiota habitats of these biological sources. 
Moreover, the choice of DNA extraction protocols can greatly impact the variability of results. 
Different methodologies may preferentially extract certain microbial groups, leading to variation in 
observed community structures. Therefore, comprehensive testing across these varying 
conditions is crucial to ensure tool robustness and reliability in accurately capturing and reflecting 
the intricate diversity and dynamics of microbial communities. In the first dataset by Rehner et al. 
we thus compare three different DNA extraction kits on seven different biospecimens compiling a 
total of 30 data points (24). DNA was extracted from bile, stool, saliva, plaque, sputum, 
conjunctiva, and water control samples with Qiagen DNeasy PowerSoil Pro (QPS), Qiagen 
QiAamp DNA Microbiome Kit (QMK), and ZymoBIOMICS DNA Miniprep Kit (ZYMO). For each 
biospecimen, all samples were derived from the same biological sample. Additionally, to the short 
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read MGI sequencing datasets, matched Oxford nanopore sequencing is available for saliva and 
bile samples. Full details on experimental design may be found in the corresponding manuscript. 

As QC proxies, Mibianto displayed the assignment rates of the almost sterile samples, water and 
conjunctiva, which are low with only one sample surpassing 25% (Figure 1A). Further, in Saliva 
and bile samples, nanopore reads have lower assignment rates compared to their short-read 
counterpart. The MinHash-embedding without Mibianto’s internal data indicated QPS sputum as 
an outlier (Figure 1B). We note that the samples we investigate here were already human-read 
decontaminated by Rehner et al. beforehand, accordingly the samples did not cluster with our 
selection of highly contaminated samples. Partially reconstructing the original analysis from the 
manuscript with Mibianto on a species level, the highest number of observed species is found in 
the oral cavity in QMK and ZYMO, which corroborates the findings in the results of the original 
manuscript (Figure 1C). Water contamination is highest with ZYMO. Principal coordinate analysis 
on Bray-Curtis distances of short reads clusters samples by biospecimen (Figure 1D). Bile and 
stool cluster closely together. Following the decision in the original manuscript, we do not perform 
differential abundance analysis due to the high number of confounding variables and missing 
replicates. 

Mibianto identifies significantly de-regulated gut microbiome species in Parkinson's 
disease.  

After testing its robust performance across various species types and DNA extraction methods, 
we next evaluate Mibianto's efficacy in executing case-control metagenomic studies. It is 
designed to facilitate the dissection of microbial variations between control and case groups, 
offering valuable insights into microbial dynamics. In that, we aim positioning Mibianto as a 
powerful tool for medical and life-scientific researchers with an interest in understanding 
differences within microbiomes across diverse research settings. The second dataset is a next-
generation sequencing dataset of an interventional cohort study on Parkinson’s disease by 
Becker et al.￼￼. The dataset consists of 140 stool samples and three cohorts, namely 
Parksinon’s Disease (PD), Parkinson’s Disease with a resistant starch intervention (PD+RS), and 
the control cohort. The PD cohort received dietary instructions, whereas the control and PD+RS 
cohorts received resistant starch as a nutritional supplement. Measurements were taken at 
different timepoints. Full details may be found in their manuscript. 

Data exploration with Mibianto on the species level indicates a high assignment rate with a few 
outliers. We observed statistically significant differences in alpha diversity before adjustment 
comparing PD+RS against PD (Wilcoxon Mann-Whitney p-value ≈ 0.0306) and the control (p-
value ≈ 0.0002), yet no significant difference was observed between PD and control (p-value ≈ 
0.3185) (Figure 2A). Ordination analysis clusters control samples visibly closer together (Figure 
2B). Differential abundance analysis with ANCOMBC and Benjamini-Hochberg p-value 
adjustment highlighted 33 and 17 OTUs as significantly differentially abundant among control and 
PD+RS, and control and PD, respectively. No significant differences were detected when 
comparing PD with PD+RS. We want to highlight that the significance of all p-values mentioned 
in this section is inflated since the samples are not statistically independent due to the aggregation 
across timepoints. In both contrasts, the most significantly differentially abundant OTU was 
Faecalibacterium prausnitzii_C (Figure 2C). F. prausnitzii is described to have anti-inflammatory 
effects, produce butyrate, and known to be depleted in Parkinson’s disease patients (30,31). 

Mibianto compresses metagenomic data sets by a factor of X 

An important aspect of Mibianto is to facilitate the online analysis of larger studies by reducing 
the transferred data set at the client site. From the previous studies we estimate how many bytes 

191



   

 

   

 

are transferred from the user site to the server site of Mibianto, after the k-mer spectra are 
generated on the local computer. XXX 

 

Enabling specific analyses using BusyBee Web 

While Mibianto excels at managing large-scale studies through efficient data compression, it is 
recognized that certain in-depth analyses fall outside the scope. To address this, we have 
seamlessly integrated Mibianto with our previously developed BusyBee Web platform. BusyBee 
Web is tailored for a distinct purpose: conducting extensive in-depth analyses of a smaller number 
of metagenomic samples. Unlike Mibianto, which operates on compressed data, BusyBee Web 
requires a full upload of metagenomic datasets. This complementary approach allows Mibianto 
to identify and propose a subset of samples that warrant more detailed examination. Leveraging 
both platforms in tandem enables researchers to navigate from broader metagenomic surveys to 
focused, in-depth analyses with ease and precision. XXX  

 

Outlook: ultra-high processing performance for eukaryotic reads 

We demonstrate that Mibianto can handle small- to large-scale metagenomic studies using small 
footprint k-mer spectra and complement its application scope in combination with BusyBee web. 
Towards a more complete set of tools, we evaluated the possibility to extend the concept of 
Mibianto – namely to use k-mer spectra with a reduced size for performing web-based analyses 
at client side – to human nucleic acid data sets. As one of the most frequent use-cases we 
considered gene expression profiling. We selected XX. 

 

CONCLUSION 

Mibianto is a web server that specializes in the compositional data analysis of metagenomic 

sequencing data. It distinguishes itself from existing online solutions by input flexibility, ease of 

use, and minimal connection requirements. However, incorporating functional analysis, de-novo 

assembly, genome mining, or any analysis requiring access to larger pieces of DNA sequence is 

currently not possible due to the design of our client-server data exchange model. Additionally, 

further research is required in the field of MinHash-based taxonomic profiling to refine results for 

nanopore sequencing reads (32). Nonetheless, Mibianto already provides a wide range of 

features and functionalities that enable rapid insights into microbial communities with extensive 

result visualization and the ability to customize to individual workflows. Based on two previous 

publications, we demonstrated how our tool was able to confirm central findings in metagenomic 

experiments without the need for any bioinformatics expertise. We are confident that Mibianto will 

serve as a valuable tool for researchers in metagenomics and related fields and we invite users 

to suggest additional desired features or ideas on our GitHub project page  

(https://github.com/CCB-SB/mibianto). 
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 FIGURE LEGENDS 

Graphical Abstract: Mibianto is a web server that accepts metagenomic short- and long-reads 
as input, performs taxonomic profiling, and reports on compositional analysis. We provide 
numerous downstream options for interactive exploration and support cohort studies. 

Figure 1: Mibianto results of the protocol comparison after minor adjustments to the visualizations 
downloaded from the server. A) Assignment rate for all samples. Samples with the prefix SRR18 
were sequenced with nanopore sequencing. B) Quality control proxy computed on FracMinHash-
based dissimilarities without co-embedding of our precomputed samples. C) Number of observed 
species in each sample, split by DNA extraction kit. D) Short-read sequencing samples were 
embedded with principal coordinate analysis on Bray-Curtis distances computed on the species 
level. 

Figure 2: Mibianto results of the cohort study after minor adjustments to the visualizations 
downloaded from the server. A) Shannon diversity computed on species level grouped by cohort, 
split by timepoint. B) Ordination analysis using non-metric multidimensional scaling on Bray-Curtis 
distances. C) Abundance of F. prausnitzii_C in the different cohort groups after center log-ratio 
normalization. 
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Figure 1: Mibianto results of the protocol comparison after minor adjustments to the visualizations 
downloaded from the server. A) Assignment rate for all samples. Samples with the prefix SRR18 
were sequenced with nanopore sequencing. B) Quality control proxy computed on FracMinHash-
based dissimilarities without co-embedding of our precomputed samples. C) Number of observed 
species in each sample, split by DNA extraction kit. D) Short-read sequencing samples were 
embedded with principal coordinate analysis on Bray-Curtis distances computed on the species 
level.
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Figure 2: Mibianto results of the cohort after minor adjustments to the visualizations 
downloaded from the server. A) Shannon diversity computed on species level grouped by 
cohort, split by timepoint. B) Ordination analysis using non-metric multidimensional scaling on 
Bray-Curtis distances. C) Abundance of F. prausnitzii_C in the different cohorts after center log 
ratio normalization.
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Figure 3: Scatter plot of normalized base-2 logarithms of k-mer counts vs. kallisto FPKM values; 
one point per expressed gene per sample from 10 different samples (103.415 points overall), with 
a trend line (dashed red) obtained by robust regression. Partial transparency was used to 
visualize regions of low vs. high point density. Overall, a strong correlation is visible (Pearson 
correlation coefficient 0.983).
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4
Discussion

The role of bioinformatics in the field of microbiology as well as clini-
cal microbiology seems to be ever increasing also beyond the scope of
research as a diagnostic tool in clinics. While adequate bioinformatic
analysis provides immense gains in insights and a better understand-
ing of the causal mechanisms of underlying infections, it comes at
the cost of high complexity, workload, and resource requirements. In
the works included in this thesis, we aimed to improve accessibility
to bioinformatic evaluations and resources with our implemented
and updated web services and databases. Further, we supported
ongoing efforts in a wide range of applied research projects in the
context of antimicrobial resistance, emerging pathogens, and dietary
interventions. Lastly, we aided in the earliest steps of natural com-
pound research by searching for disease-associated BGCs across many
biospecimens, diseases, and host species.
The applied interventional clinical research metagenomics projects
presented within this work, yielded several differentially abundant
species at baseline condition. As we mentioned in subsection 1.4.4
the stability of these results may be second-guessed. Not only did
we select ANCOM-BC and ALDEX2 for our differential analysis that
have been consistently been recommended across benchmarks, but
there have also been several studies confirming our findings e.g. for
the Parkinson’s disease study underlining the validity of these results
[524; 570; 633–636]. Furthermore, as can be seen in in both of our
studies, the dietary interventions did not yield any significantly differ-
entially abundant species highlighting the specificity of the analysis
after all.
The herein presented various clinical research projects were not ex-
clusively centered around metagenomic studies. Instead within the
bacterial isolates of the Ukrainian war-wounded refugees, we were
able to conjecture about the relatedness of several infections. Even
more crucial, we detected likely causal drivers for the resistance phe-
notype highlighting the importance of plasmid research. Concerning
the Auritidibacter ignavius isolates, since the initial submission of our
manuscript Gatermann et al. published eight more strains isolated
from ear infections, further cementing its position as a pathogen im-
plicated in ear infections [637].
Busybee Web and Mibianto are both services we provide to the sci-
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entific community as web servers. Initially designed for assembled
contigs of short-reads, Busybee Web remained relevant with the intro-
duction of long-read sequencing. Here, we implemented a reference-
free approach to identify differences among cohorts based on an
unsupervised embedding method. Further analysis may then assess
the exact contigs responsible for the difference in signal. Moreover,
aware of the challenge of large amounts of data for Busybee Web, we
developed Mibianto. Unlike other online methods requiring a count
matrix as input, Mibianto is able to efficiently compress NGS data
directly and transmit hashed information to the web server where
additional downstream analysis is possible. Open challenges we face
with Mibianto are mostly focused on quality control and potential
preprocessing. A major challenge hereby is that these steps would
have to be performed on the user side. Similar to the compression,
k-mer-based approaches may be used for quality control, however,
methods such as the BBTools are notorious for having a major mem-
ory footprint to store the reference genome k-mers [638]. Thus, more
research is required on this end. Nevertheless, we believe that the
concept of using FracMinHashes for efficient data transmission of
metagenomic data bears a lot of unexplored potential.
Plasmids from PLSDB have served as ground truth in sequence clas-
sifier training and as reference material for large-scaled studies on
mobile DNA [639; 640]. With the immense potential of metagenomics
sequencing several voices in the scientific community advocate to in-
tegrate metagenomic assembled plasmids into plasmid databases and
also successfully published these results [641]. However as we pre-
viously demonstrated, these plasmids assembled from metagenomic
experiments are frequently misassembled and incorrectly classified
[642]. Due to recent advancements, in nanopore sequencing e.g. with
the transition to the new R10.4 flowcell, the long-read sequencing
technology tremendously improved accuracy upon previous develop-
ments [643]. Currently, this improvement is coming at higher costs.
Yet expenses are likely going to decrease, following the general trend
of other sequencing methods over the years. With reliable long-read
sequencing at scale, a wide range of challenges in metagenomics data
analysis would see improvements, including misassemblies. Likely
plasmid sequencing and assembly from metagenomic experiments
will profit from these developments, potentially justifying their inte-
gration into PLSDB in future iterations.
The two metagnome studies discussing BGCs yield their own merit
displaying a wide range of compositional microbiome associations
with the inclusion of many confounding factors. Here, they mostly
serve as associative biomarkers and are not to be interpreted in a
causal context. To fully leverage this data, additional research efforts
are already ongoing in close coordination between medical experts
and bioinformaticians. However, to see the main value of the two
studies, interpretation in a larger research context is necessary. As
discussed in subsection 1.2.9, natural products deriving from BGCs
are known to encode toxins and are discussed as a potential alley to
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find new drug candidates. In this study, we predicted over 28,000

BGCs. A manual scan of these predictions implicates elevated costs,
labor, and time. In order to find health or disease-associated BGCs,
our adapted coverage-based prioritization method aims to highlight
the most promising BGCs for further assessment. As of the time
of writing, the first BGCs have been selected for further investiga-
tion in close coordination with biotechnologist, experts in different
natural product classes. Furthermore, considerable value lies in the
biobanking of the original samples that can be leveraged later in the
laboratory pipeline.

4.0.1 Future directions

Challenges and opportunities lie ahead for the field of bioinformat-
ics with the seemingly ever-increasing scales of sequencing data,
refinement of existing as well as development of new protocols, and
plentiful innovations in the realm of machine learning. Improvements
of multimodal, single cell, and spatial omics approaches are contin-
uously being reported also for prokaryotes which is most relevant
also for microbiome research [644]. Steadily increasing in scale while
reducing the costs, these methods allow us to observe the microbiome
from a new perspective. Sequencing of individual cells could de-
crease the number of misassemblies in metagenomic experiments
and provide better estimates for the true community composition on
strain level. Similarly, spatial information as well as other omics types,
bring insight into the host-microbiome interactions at tissue interfaces.
This improved understanding can hopefully be leveraged to reveal
more causal mechanisms of community-born diseases and help in the
design of targeted probiotic treatment plans to avoid dysbiosis. While
the many innovations from the field of molecular biology deeply open
up the realm of new possibilities, new developments in data science
and computational sciences are also not to be underestimated. Land-
mark studies such as AlphaFold as well as progresses in graph neural
networks, propelled drug discovery research into a blooming field
full of potential [464; 645; 646]. Lastly, quantum computing promises
massively parallel computing as never seen before and may serve as a
valuable resource for drug discovery in the more distant future [647].

4.0.2 Conclusions

As a final conclusion, the herein presented work contributed short,
intermediate, and long-term benefits to the combat against bacte-
rial pathogens by directly supporting clinical microbiologists in their
applied research, highlighting potential antibiotic leads to biotechnol-
ogists, and enabling future researchers with bioinformatic tools.
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