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Introduction

The oncogenic Epstein–Barr virus (EBV) has been detected 
in nasopharyngeal carcinoma (NPC), nasal NK/T-cell lym-
phoma (NKTL), Burkitt’s lymphoma (BL), Hodgkin’s lym-
phoma (HL), gastric carcinoma (GC), and posttransplant 
lymphoproliferative disease (PTLD) samples from immu-
nosuppressed patients [16] and appears to play a role in 
multiple sclerosis [20]. Epstein–Barr virus nuclear antigen 
1 (EBNA1) is essential for cell transformation and main-
tenance of episomal EBV DNA in infected cells and is the 
only viral protein present in all types of infected cells [6].

EBNA1 contains a glycine-alanine (GA) repeat that 
varies in length among viral strains and is important for 
immune evasion during primary infection [5]. It also con-
tains arginine-methylated arginine-glycine (RG) repeats 
that are involved in RNA and DNA binding [19] (Supple-
mentary Fig. S1). The RG repeats are located between the 
N-terminal amino acids 34–52 (LR1) and the C-terminal 
amino acids 328–377 (LR2), which play a critical role in 
replication of the viral episome by targeting EBNA1 to the 
origin recognition complex (ORC) [14].
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Abstract
Epstein–Barr virus nuclear antigen 1 (EBNA1) contains two arginine-glycine (RG) repeats that contain symmetric/asym-
metric dimethylarginine (SDMA/ADMA) and monomethylarginine (MMA) residues. We generated mouse monoclonal 
antibodies directed against a monomethylated GRGRGG-containing repeat located between amino acids 328 and 377 of 
EBNA1. In addition to detecting MMA-modified EBNA1, we also had the goal of identifying cellular proteins that bind to 
MMA-modified EBNA1 in EBV-positive Raji cells. Furthermore, we hypothesized that antibodies against MMA-modified 
EBNA1 might also recognize cell factors that use an MMA-modified surface structure similar to that of EBNA1 to bind 
to their common targets. Using a combination of immunoprecipitation and mass spectrometry, we identified a number 
of such cellular proteins, including SNRPD1-3, ALY/REF, RPS15, DIDO1, LSM12, LSM14A, DAP3, and CPSF1. An 
NACA complex protein that was shown previously to bind to the glycine-alanine repeat of EBNA1 was also identified. 
The proteins identified in this study are involved in splicing, tumorigenesis, transcriptional activation, DNA stability, and 
RNA processing or export.
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Posttranslational arginine methylation in proteins plays a 
role in RNA binding, protein‒protein interactions, transcrip-
tional regulation, signal transduction, chromatin remodel-
ing, and DNA repair. The arginine methyl transferases 
PRMT-1, -2, -3, -4 (CARM1), -6, and − 8 generate either 
monomethylarginine (MMA) or asymmetric dimethylar-
ginine (ADMA) residues, PRMT5 and PRMT9 generate 
either MMA or symmetric dimethylarginine (SDMA) resi-
dues, and PRMT7 appears to preferentially generate MMA 
residues [26].

Previously, we showed that a monoclonal antibody 
(mAb) directed against the MMA-modified RG repeat of 
EBV-encoded nuclear antigen 2 (EBNA2) also reacted with 
the N-terminal RG repeat of EBNA1 (aa 34–52) [1]. While 
the EBNA2 RG repeat and the N-terminal RG repeat of 
EBNA1 mainly consist of RGRG sequences, the C-terminal 
RG repeat of EBNA1 (aa 328–377) also contains RGRGG 
sequences. We therefore generated monoclonal antibod-
ies against two synthetic MMA-modified peptides derived 
from the C-terminal RG repeat of EBNA1 to identify cellu-
lar factors that bind to MMA-modified EBNA1. As methyl-
ated RG repeats serve as contact surfaces to bind to target 
proteins and thereby affect downstream pathways [26], an 
additional hypothesis of this study was that these antibodies 
would react with cellular proteins whose function is mim-
icked by EBNA1. The detection of such proteins might help 
to identify previously unknown pathways that are targeted 
during EBV-mediated transformation.

Materials and methods

Cell lines and transfection

HEK 293E1 cells, which express EBNA1 of EBV strain 
B95-8, were obtained from Aloys Schepers, Helmholtz 
Zentrum München, Munich, Germany, and were maintained 
in DMEM (Sigma‒Aldrich, #D0822, Merck, Darmstadt, 
Germany) supplemented with 0.1 mg of G418 (Sigma‒
Aldrich #A1720, Merck, Darmstadt, Germany) per mL [14]. 
The EBV-positive Raji (ATCC: CCL-86), M-ABA, and 
P3HR-1 (ATCC: HTB-62) [1] cells were grown in RPMI-
1640 medium (Sigma‒Aldrich #R8758, Merck, Darmstadt, 
Germany) supplemented with 10% fetal bovine serum (FBS; 
#S0615, Biochrom, Berlin, Germany) and antibiotics (40 
IU of penicillin and 50 µg of streptomycin [Sigma‒Aldrich 
#P4333, Merck, Darmstadt, Germany], 1 IU of neomycin 
sulfate [#1405-10-3; Roth, Karlsruhe, Germany], and 90 IU 
of nystatin [#700114-0006; Fagrom, Barsbüttel, Germany]) 
per mL. The EBV-transformed marmoset cell line M-ABA 
was originally obtained from Beverly E. Griffin, Imperial 
College of Medicine, London, UK [7].

Animals and antibodies

C57BL6J mice were maintained at the animal facility at the 
faculty of Biology, LMU Munich, in accordance with German 
Animal Welfare Legislation and that of the Government of 
Upper Bavaria, Germany (Gz: 55.2-1-54-2532.0-12-2016). 
For immunization, the peptides Cys-grgrggsggrgrggsggr-
grggsggr and Cys-GGsggrgrggsggrrgrgrerARGGSRE 
containing monomethylarginine (R, MMA) residues cor-
responding to aa 328–377 (grgrggsggrgrggsggrgrggsggrr-
grgrerARGGSRE) were coupled to ovalbumin via their 
Cys residues. Monoclonal antibodies were produced as 
described previously [9] and screened by ELISA for their 
ability to recognize the unmethylated (NMA) peptide or the 
methylated peptide. Clones 5C7, 7C10, and 1H7 (mouse 
IgG2c), which reacted exclusively with the MMA-contain-
ing peptides, were used for further analysis. Because these 
antibodies reacted with both of the methylated peptides 
described above, peptides corresponding to the overlap-
ping GRGRGG sequence were used for release experiments 
(see below). All of the peptides used in this study were syn-
thesized by Peps4LS GmbH (Heidelberg, Germany). The 
rat mAb 1H4, which recognizes EBNA1, was described 
previously [8]. Mouse mAb (IgG2c) against HSV-1 ICP8 
(unpublished) was used as a control.

Cell lysis and immunoprecipitation

Immunoprecipitation with the mAbs 5C7, 7C10, and 1H7 
was performed as described previously [1]. In brief, protein 
A Sepharose beads (Protein A Sepharose 4 FastFlow #17-
5280, GE Healthcare, Freiburg, Germany) were incubated 
overnight with 1.6 mL of mAb 5C7 or 1.6 ml of the isotype 
control antibody at 4°C and washed with lysis buffer (LB) 
(25 mM Tris-HCl [pH 7.4], 150 mM KCl, 2 mM EDTA, 
0.5% IGEPAL-CA360 [Sigma‒Aldrich #18896, Merck, 
Darmstadt, Germany], and protease inhibitors [Roche Com-
plete mini, #4693159001, Merck, Darmstadt, Germany]). A 
total of 1.5 × 107 Raji cells were suspended in 1 ml of LB for 
30 min, centrifuged at 20,000 × g for 30 min at 4°C, washed 
with a buffer containing 50 mM Tris-HCl (pH 7.4), 300 mM 
KCl, 1 mM MgCl2, and 0.5% IGEPAL, and analyzed by 
immunoblotting and enhanced chemiluminescence (ECL) 
(#6883, Cell Signaling Technology, Danvers, Massachu-
setts, USA) detection [1]. For release experiments with the 
unmethylated GRGRGG and MMA-modified GRGRGG 
peptide, mAb-5C7-conjugated beads loaded with Raji cell 
extracts were incubated with the peptides at 0.1 mg/mL in 
10 µL of washing buffer (see above), 10% of the released 
fraction was subjected to Western blotting [1], and the 
remainder was used for mass spectrometry (see below).
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Mass spectrometry analysis

Samples from the protein release experiments were boiled 
with an equal amount of 2x Laemmli buffer and loaded onto 
a polyacrylamide gel (TGX Stain-Free Precast Gels 4–20%, 
Bio-Rad, Hercules, CA, USA, # 4568091), and proteins 
were separated by the application of 200 V for 3 min. The 
gels were stained with InstantBlue (#AB119211, Abcam, 
Cambridge, UK), and the protein-containing regions were 
excised. For reduction and alkylation, the gel pieces were 
incubated first in 45 mM dithiothreitol (30 min, 55°C) and 
then in 100 mM iodoacetamide (2 × 15 min, at room tem-
perature). The gel slices were minced, and 70 ng of modified 
porcine trypsin (#V5111, Promega, Fitchburg, WI, USA) 
was added. After overnight digestion at 37°C, peptides were 
extracted with 70% acetonitrile and dried in a SpeedVac 
vacuum concentrator. The samples were dissolved in 0.1% 
formic acid (FA), and LC‒MS/MS was performed using an 
UltiMate 3000 Nano liquid chromatography system (Thermo 
Fisher Scientific, Dreieich, Germany) coupled online to a Q 
Exactive HF‒X mass spectrometer (Thermo Fisher Scien-
tific, Dreieich, Germany). Separation was performed at 250 
nl/min on an EasySpray column (PepMap RSLC C18, 50 
cm length, 75 µm ID, # ES903, Thermo Fisher Scientific, 
Dreieich, Germany). Solvent A was 0.1% FA in water, and 
solvent B was 0.1% FA in acetonitrile. A 30-minute gradi-
ent from 3–25% solvent B followed by a 5-minute gradient 
from 25–40% solvent B, was used for peptide separation. 
Spectra were collected via a top-12 acquisition method. 
For protein identification and quantification, MaxQuant 
V1.6.1 [23] was used in combination with the human and 
EBV subsets of the UniProt database. Statistical validation 
and volcano plot generation were performed using Perseus 
V1.5.3.2. Enrichment analysis was performed using Web-
Gestalt [10]. The mass spectrometry proteomics data have 
been deposited into the ProteomeXchange Consortium data-
base via the PRIDE [15] partner repository under the dataset 
identifier PXD051181.

Results

Generation of monoclonal antibodies against 
monomethylarginine (MMA)-modified EBNA1

Using monoclonal antibodies, we showed previously that 
Epstein–Barr virus nuclear antigen 2 (EBNA2) contains 
SDMA, ADMA, and MMA-modified residues within its 
RGRG repeat, but these antibodies also reacted with the 
N-terminal RG repeat (LR1) of nuclear antigen 1 (EBNA1) 
[1]. Therefore, in this study, we generated mAbs against 
the large C-terminal RGRGG-containing repeat (LR2) of 

EBNA1 to determine whether these mAbs would recognize 
EBNA1 as well as similarly modified cellular proteins.

Clones 5C7, 7C10, and 1H7 were used for immunopre-
cipitation of EBNA1, as shown in Fig. 1A. Equal loading 
was confirmed (Supplementary Fig. S2A). mAb 5C7 was 
used in the subsequent analyses for the precipitation of 
EBNA1 from EBV-containing Raji, M-ABA, and P3HR1 
cells and from B95.8-strain-containing HEK 293E1 cells. 
The corresponding EBNA1 proteins contain GA repeats of 
varying length, resulting in slightly different mobility on 
SDS-PAGE gels, as shown in Fig. 1B. P3HR1 cells harbor 
type 2 EBV, and the other three lines harbor type 1 EBV. 
The precipitation of the EBNA1 protein by mAb 5C7 is 
shown in Fig. 1B, and the corresponding control reactions 
are shown in Fig. 1C. mAb 5C7 reacted with both peptides 
used for immunization. We determined that the sequence 
GRGRGG was the most likely overlapping sequence. We 
used two peptides, one with, and one without MMA modi-
fication, for release experiments. As shown in Fig. 2A, 
only the MMA-modified peptide was able to release the 
precipitated EBNA1, indicating that mAb 5C7 recognizes 
MMA-modified EBNA1. The Raji cell extract was used for 
immunoprecipitation with mAb 5C7 in a peptide release 
assay as described above. The proteins from four indepen-
dent experiments and the corresponding controls (Supple-
mentary Fig. S2B) were analyzed via mass spectrometry. 
A list of proteins that were identified in the protein release 
experiments but were not present in the control precipitates 
is shown in Table 1. EBNA1 was not present in any of the 
corresponding control precipitates.

To identify less prominently enriched proteins, volcano 
plot analysis was performed (Fig. 2B). The entire set of 
significantly enriched proteins is listed in Supplementary 
Table S1. Overrepresentation analysis of this set of proteins 
revealed significant enrichment of RNA binding or process-
ing proteins (Fig. 2C). RNA binding of EBNA1 via its RG 
repeats has been demonstrated experimentally [12]. Nota-
bly, many of the proteins identified in this study have RG 
repeats, e.g., SmD3. References (PMIDs) to possible or 
known roles of the significantly enriched proteins in tumor 
progression or inhibition or to potential roles in apoptosis 
are listed in Table 1. The references corresponding to the 
PMIDs and the known or possible roles of the proteins in 
tumorigenesis are listed in Supplementary Table S2. For 
example, DIDO1 promotes the progression of melanoma 
and inhibits the apoptosis of melanoma cells [3]. In dengue-
virus-infected cells, DIDO1 supports virus production by 
interfering with the interferon response [4]. DIDO1 forms 
a complex with HNRNPK [17], another confirmed EBNA1 
interactor [1] that was also detected in the present study.
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whether EBNA1 contains MMA residues within its C-ter-
minal RG repeat and to identify proteins that share similarly 
modified surface epitopes. In addition, we predicted that 
cellular proteins that interact with EBNA1 might be identi-
fied by coimmunoprecipitation with mAbs. It is therefore 
noteworthy that NACA (nascent polypeptide-associated 
complex subunit alpha), which is one of the proteins shown 
in Table 1, was shown recently to be an EBNA1-binding 
protein. The association of EBNA1 with NACA is mediated 
via the glycine-alanine (GAr) stretch of EBNA1 rather than 
its RG repeats [29]. Some proteins that were precipitated 
with antibodies against MMA-modified EBNA2 were also 
precipitated with the mAbs used in this study: ALY/REF, 
SNRPD3, and some proteins of ribosomal subunits were 
identified in both analyses.

Discussion

Viral proteins often affect cellular regulatory pathways by 
binding to cellular proteins to interfere with or alter their 
function. For example, by binding via its TrpTrpPro (WWP) 
motif, nuclear antigen 2 of EBV (EBNA2) alters the func-
tion of the repressor JBPjK to activate otherwise silent 
genes [11]. Using monoclonal antibodies against SDMA-
modified EBNA2 [2], we showed that this modification 
confers binding ability to the survival motor neuron (SMN) 
protein, possibly by interfering with SMN’s cellular partner 
protein DDX20 (DP103/Gemin-3) [24].

As mentioned above, mAbs against MMA-modified 
EBNA2 reacted not only with EBNA2 and various other 
cellular proteins but also with EBNA1 [1]. Two of the 
goals of the experiments presented here were to determine 

Fig. 1 Characterization of mouse monoclonal antibodies (mAbs) 
directed against MMA-modified EBNA1 via Western blotting. (A) 
Extracts of the BL cell line Raji (EBV-positive) were precipitated 
with the mAbs 7C10, 5D7, and 1H7 as well as the control antibody 
“anti-ICP8” (isotype IgG control). Bound EBNA1 was analyzed by 
SDS-PAGE and visualized by immunoblotting with the rat monoclonal 
antibody 1H4 and the appropriate horseradish-peroxidase-conjugated 
mouse anti-rat IgG secondary antibody using enhanced chemilumines-

cence (ECL). (B) Extracts of the indicated cell lines were analyzed by 
Western blotting. EBNA1 was visualized by ECL after immunoblot-
ting using the rat mAb 1H4 and the appropriate secondary antibod-
ies. The cell lines expressed EBNA1 proteins of different sizes due 
to strain variability. (C) Extracts of the indicated cell lines were used 
for precipitation with mAb 5C7 or the isotype control antibody “anti-
ICP8”. The precipitated EBNA1 was visualized by immunoblotting 
with mAb 1H4
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Fig. 2 Peptide release of EBNA1 and its interactors. (A) Extracts of 
Raji cells were subjected to immunoprecipitation using the mouse 
mAb 5C7. The resin was incubated with the peptide RGRGRGG con-
taining either MM-modified arginine residues (“Release Me+”) or 
unmodified arginine residues (“Release Me-”). The released EBNA1 
was visualized by ECL after immunoblotting using the rat mAb 1H4. 
A 10-µL aliquot of the cell extract was run in an adjacent lane. (B) 
Volcano plot analysis of mass-spectrometry-based label-free quanti-

fication (LFQ) values of proteins released with the MM-modified and 
unmodified RGRGRGG peptides. Proteins that were more abundant in 
the release experiment with the MM-modified peptide are highlighted 
in red. (C) Overrepresentation analysis of this set of proteins was 
performed with WebGestalt (www.webgestalt.org). The volcano plot 
includes the enriched functional categories. The size and color of the 
dots in the scale indicate the sizes of the gene sets
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of EBV function and EBNA1-associated factors involved in 
cellular transformation or multiple sclerosis.
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