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Abstract: Wear at the male–female interface of retentive elements in implant-supported removable
prostheses is the most frequent complication in such applications. The lack of an ideal/optimal
insertion path, as well as the fabrication inaccuracies, are the primary contributors to this issue. A
male attachment with a common ball anchor enhanced by lateral flexibility was investigated as a
solution, compared to the widely used rigid ball anchor design. A parametric finite element analysis
was performed to compare the wear-inducing maximum strain at the female polymer counterpart by
various attachment designs made from titanium and Nitinol. The evolution of mechanical strains
causing wear in the female part, as well as the contribution of stresses and martensitic transformation
in the implant’s flexible shaft, were evaluated under several insertion misfit scenarios. Results
indicate that introducing a long flexible shaft in the titanium implant reduced maximum strains in the
female attachment part by up to 61% as compared to the solid ball anchor. Further improvement was
observed by using the shape memory alloy Nitinol as shaft material, leading to a minor reduction in
stress and strain at the contact surface but allowing for a shorter abutment. Finally, the optimized
Nitinol implant design with a short, necked flexible shaft promoting martensitic transformation
at low plateau stress resulted in an approximate 90% reduction in maximum strains at the inner
surface of the female part during manual insertion, which indicates a significantly reduced wear
phenomenon at the contact.

Keywords: implant-supported removable prosthesis; wear in female attachment part; titanium; shape
memory alloy; design optimization; material optimization; finite element method

1. Introduction

In recent years, shape memory alloys (SMAs), particularly nickel–titanium alloys
(Nitinol), have found extensive applications in medical technology [1,2]. Nitinol first
established its presence in the medical market through its use in stents—vasodilating
meshes that support arteries and veins [3–6]. Additionally, SMAs are frequently utilized in
the dental industry [7], notably in brace wires designed to apply constant tension over large
deformation paths of the teeth and in root canal files, which leverage the special properties
of Nitinol to navigate curves without breaking [8,9]. Nitinol’s biocompatibility [10,11]
and unique characteristics have significantly enhanced the quality of life for millions
of patients. In vascular surgery, superelastic Nitinol stents stabilize coronary vessels
minimally invasively, while superelastic brace wires maintain a constant tensile force
between teeth.

Given the remarkable properties and successful applications of shape memory alloys
(SMAs) in various medical fields, their potential to address persistent challenges in dental
prosthodontics is promising. The unique capabilities of SMAs, particularly their supere-
lasticity and biocompatibility, offer innovative solutions to improve the performance and
longevity of dental attachment systems. Integrating SMAs into the design of removable
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implant-supported prostheses makes it possible to mitigate common issues such as wear
and misfit at the male–female interface, which are critical factors influencing prosthesis
durability and patient satisfaction.

Removable implant-supported prostheses have transformed modern dentistry by
providing patients with comfortable and functional alternatives for tooth replacement,
especially in edentulous mandibles [12,13]. However, the persistent issue of component
wear at the male–female interface of attachment systems [12,14] used for retaining implant-
supported removable prostheses remains a significant concern in clinical practice, causing
considerable maintenance costs [15,16]. With individually fabricated options such as
telescopic crowns [17,18] and bars [19,20] often being considered cost-prohibitive, prefab-
ricated single-standing components such as ball anchors (Figures 1 and 2) and locators
have been adopted more widely. Wear phenomena (Figure 3) not only jeopardize the
longevity and effectiveness of the prosthetic device but also lead to patient discomfort
and dissatisfaction, constituting the major complication reported in removable implant
prosthodontics [21].
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Figure 1. Panoramic radiograph of a geriatric patient presenting multiple single-piece implants in 
the maxilla with balls for prosthesis retention (implant placement alio loco several years ago). Please 
note that a common path of insertion has not been established for the maxillary implants. The man-
dibular dentition is failing, but the patient still wanted to postpone treatment. 

 
Figure 2. Maxillary removable prosthesis not covering the palate as per the patient’s request. New 
O-rings have been placed inside corresponding metal housings to fit onto the implants. Two O-rings 
were intentionally removed as the patient was unable to remove the restoration when all six balls 
were engaged. 

Figure 1. Panoramic radiograph of a geriatric patient presenting multiple single-piece implants in the
maxilla with balls for prosthesis retention (implant placement alio loco several years ago). Please note
that a common path of insertion has not been established for the maxillary implants. The mandibular
dentition is failing, but the patient still wanted to postpone treatment.
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Figure 2. Maxillary removable prosthesis not covering the palate as per the patient’s request. New
O-rings have been placed inside corresponding metal housings to fit onto the implants. Two O-rings
were intentionally removed as the patient was unable to remove the restoration when all six balls
were engaged.
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A notable example is the higher wear observed in titanium-to-titanium attachment
systems, which showed substantial abrasion and accumulation of metallic particles due
to friction [22]. In contrast, attachments with dissimilar materials, such as the Locator
R-Tx with a titanium-to-nylon interface, exhibited pronounced wear in the softer nylon
matrix, reducing wear on the metal patrix and offering potentially longer-lasting reten-
tion [23]. Major contributing factors to wear include impression inaccuracies [24,25] and
non-parallelism [26,27] of supporting implants (Figure 1). Industry efforts to address these
challenges have involved the introduction of angulated abutments [28], variations in mate-
rials for the female part [29], and improving the surface topography of male attachment
parts, e.g., through the application of diamond-like carbon coatings to the abutments [30].
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Figure 3. Eight months after prosthesis delivery, the patient complained about loss of retention of
her restoration, presenting with the O-rings shown in the bottom line (top line: new O-rings for
comparison). Unilateral deterioration of the O-rings following compression of the material during
repeated insertion and removal of the prosthesis is obvious.

Studies indicate that resilient attachments show significant wear on plastic components
after cyclic loading, resulting in a marked drop in retention force, sometimes up to 88% [31].
Clinical observations of O-ring attachments further highlight wear-induced retention loss,
typically requiring replacement every 6–9 months, especially under stress conditions such
as misalignment or environmental factors [32]. Additionally, ball attachments with O-
rings made from materials like nitrile rubber show increased wear and retention loss in
non-parallel setups, where lateral forces and high angulation exacerbate degradation [33].

Material selection and environmental considerations play crucial roles in wear dynam-
ics; studies on rubber–metal interactions reveal that inert atmospheres accelerate metal
wear significantly, indicating that oxygen presence can stabilize rubber-induced metal wear
by limiting radical formation [34]. For spherical attachments, implant angulation directly
affects retention, with higher angulation correlating with greater wear due to increased
friction and uneven force distribution [35].

Research comparing prefabricated spherical and cylindrical attachments underscores
the design implications for wear reduction, advocating simpler attachment designs with
frictional stability over their spring-loaded counterparts, which experience rapid retention
loss [36]. Clinical trials on mandibular overdentures suggest that stress-relieving bar
attachments help reduce wear on O-rings, yet still require periodic maintenance due to
retention loss from gradual O-ring deformation [37]. Lastly, in vitro evaluations comparing
O-ring and Locator attachments affirm that, while Locator attachments provide higher
and more stable retention, they also show greater resilience to wear under axial forces
compared to O-rings, which wear faster under lateral dislodging stresses [38]. This evidence
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underscores the significance of material choice, alignment precision, and attachment design
in mitigating wear-related complications in implant-supported removable prostheses.

Additional studies further emphasize the complexities of wear in implant-supported
systems. For instance, biomechanical evaluations of various attachment types and implant
positions in mandibular single-implant prostheses (MSIP) reveal that no single attachment
system minimizes wear optimally, as strain is influenced by both attachment type and
implant positioning [39]. Furthermore, innovative NiTi-based flexible attachments show
promise by reducing strain on implants and addressing positional discrepancies, thereby
potentially enhancing both longevity and patient satisfaction [40]. The adaptability and
durability of these NiTi systems [41] underscore their capability to significantly reduce
wear-associated concerns in implant-supported overdentures.

To build on the findings discussed, it is clear that addressing wear phenomena in
attachment systems is critical for improving prosthesis longevity, patient comfort, and
satisfaction. Given the persistent challenges of retention loss due to wear and the limita-
tions of current attachment materials and designs under non-parallel conditions, a novel
approach could involve utilizing attachment systems with flexible male components capa-
ble of compensating for positional errors and non-parallelism [42,43]. Previous work has
demonstrated that such attachment systems utilizing shape memory alloys [44] optimize
the loading conditions of the supporting implants [42] and eliminate the dependence of
prosthesis retention on misfit phenomena. To predict the potential benefits of such an
attachment system in terms of prosthesis performance and longevity, it is the goal of this
parametric study using finite element method (FEM) simulations [45] to analyze the effects
of attachment design, material properties, and misfit between supporting implants and
prosthesis [46] on the stress–strain distribution within the postulated attachment system.

2. Materials and Methods
2.1. FEM Model

Based on an existing ball anchor attachment (Clix, Hader Solutions, Dublin, Ireland),
a one-piece implant including the male attachment part was modeled in four different
designs (see Table 1).

As a reference, a solid attachment without any flexibility was modeled, representing
the current state of the art (Figure 4a), and three configurations where the ball was retained
by a centrally positioned, rod-shaped shaft allowing for lateral movements of the ball
anchor (Figure 4b–d). A secondary (female) component to be mounted in the removable
prosthesis, matching the ball (Figure 5a), was also modeled. The titanium implant placed
in the bone is added (part number 3 in Figure 5b) in a surface-to-surface contact method to
follow the effects of the material and design change in the implant on the induced reaction
forces on the abutment.

Given the inevitable but unknown positional discrepancies between implant and
prosthesis resulting from the insertion process, four misfit scenarios [46] were simulated
(Table 1 and Figure 6, see the movies in the supporting materials to this article). In the
perfect fit situation (Figure 6a), the longitudinal axis of the female component and the
one-piece implant are aligned. In the horizontal misfit situation, the abutment was shifted
horizontally by 0.2 mm (Figure 6b), while for angulation misfit the abutment was rotated
3 degrees (Figure 6c). In addition, a combination of horizontal and angulation misfits was
introduced to better resemble clinical reality; this was only used at the final stage to cover
the analysis of the material and design optimizations on the reaction forces induced on
the surrounding abutment (Figure 6d). For the design and material optimization, only the
angulation misfit was used. This is in line with previous research works, where an angular
mismatch was identified as the most critical contribution to wear, as compared to vertical
or horizontal mismatch [33,46].
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Figure 4. (a) Reference: solid Ti implant; (b) Ti and Nitinol implants, where a flexible long shaft is
embedded; (c) short Nitinol implant, where the embedded long shaft is 3 mm shorter; (d) short-necked
Nitinol implant; (e) representation of a design fault zone denoted as LPZ within the manuscript; and
(f) representation of the optimized design in LPZ for the short-necked Nitinol implant.
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Figure 5. Three-dimensional model of a simplistic one-piece attachment with a ball anchor on top
for retaining a removable prosthesis; (a) a 3D model of the female part fitting the ball anchor in
different views; and (b) representation of the entire assembled FEM model including the surrounding
Ti abutment: 1—female part; 2—male attachment part; and 3—Ti implant.

Table 1. Overview of abutment designs, misfit configurations, and loading situations used in this
parametric FEM study.

Abutment Type Misfit Type (Figure 6) Loading Situation

Solid Ti (Figure 4a) Perfect fit, horizontal misfit,
angulation misfit Maximum, Final

Long Ti (Figure 4b) Angulation misfit Maximum, Final
Long Nitinol (Figure 4b) Angulation misfit Maximum, Final
Short Nitinol (Figure 4c) Angulation misfit Maximum, Final

Necked Nitinol (Figure 4d) Angulation misfit Maximum, Final
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The female part is meshed using C3D4H 4-node linear tetrahedron elements, em-
ploying a hybrid formulation and linear geometric order. It consists of approximately
60,000 elements and 12,500 nodes. The implant utilizes two types of elements: C3D10, a
10-node quadratic tetrahedron element, is used for parts in contact with the female part
and the flexible shaft experiencing major deformations; C3D4, a linear 4-node tetrahedron
element, is used in the low-stress regions of the implant. The number of nodes and ele-
ments in the final design varies slightly, approximately 25,000 nodes and 50,000 elements,
depending on the specific design. All simulations in this study employ curve-following
discretization refinement to ensure result accuracy.
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2.2. Materials

The abutment types “Solid Ti” and “Long Ti” were modeled using the material proper-
ties of titanium (Young’s modulus 116 GPa; Poisson’s ratio 0.34), while the design variants
of the flexible abutment types were realized in Nitinol. The superelastic behavior of the
Nitinol implants in this study is governed by key parameters such as the start and end of
transformation in loading (σCr, load

s , σCr, load
f ), the start and end of transformation in unload-

ing (σCr, unload
s , σCr,unload

f ), elastic moduli for austenite (EA) and martensite (EM), Poisson’s

ratios (νA and νM), and transformation strain (ϵT). These values were adapted from tensile
test data provided by the manufacturer of the prototype NiTi attachment in our previous
study [43]. The tension–compression asymmetry in the elastic moduli and stress plateaus
were assumed to match typical values reported in the literature [45,46]; this asymmetry
is essential for understanding the deformation mechanism under bending loads. Table 2
presents the material properties of the medical-grade Nitinol, experimentally obtained
from our prior study [43]. The material selected for the female part was polyoxymethylene
(POM; Table 3), for which an elastic-plastic material model was implemented, obtained by
parameter fitting to the stress-strain data plotted at 40 ◦C in Figure 5 of the reference [47]
(see Table 4).
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Table 2. Material parameters of the Nitinol shape memory alloy were obtained in a previous study [43].
Tension–compression asymmetry refers to the ratio of the plateau stresses for forward martensitic
transformation in compression to that in tension.

Param./[Unit] σCr,load
s

[MPa]
σCr,load

f
[MPa]

σCr,unload
s
[MPa]

σCr,unload
f
[MPa]

Values 440 450 250 240

Param./[unit] EM[GPa] EA[GPa] νM[-] νA[-] ϵT
eq[-]

Tension–
Compression
Asymmetry

Values 19 61 0.33 0.33 0.049 ~1.2

Table 3. Material properties of polyoxymethylene (POM).

Young’s Modulus (MPa) Poisson’s Ratio Yield Stress (MPa)

750 0.28 60

Table 4. The isotropic plastic behavior of polyoxymethylene (POM) was obtained by fitting parame-
ters into the data taken from [47].

Yield Stress (MPa) Plastic Strain

60 0
65 0.01
70 0.04
71 0.1
72 0.3
73 0.5
74 0.8

2.3. Boundary Conditions

The one-piece abutment was rigidly fixed along the lateral axis, simulating the con-
straints imposed by the surrounding bone on both the implant’s and the abutment’s
movement. Similarly, the female attachment part was immobilized to mimic the constraints
imposed by a removable prosthesis. A general contact with a friction coefficient of 0.1 was
established to mimic the contact between the abutment and the implant and between the
implant and the female part.

To simulate the insertion and removal of the prosthesis by the patient, the bottom
surface of the abutment is displacement-controlled along the axial direction.

Two different loading situations (Table 1) were considered in this study to resemble
the insertion process of the prosthesis. The ‘Maximum’ loading situation was defined as the
moment when the strain at the edges of the female part reached its peak during the insertion
process, coinciding with the maximum deformation of the female plastic inserts. The ‘Final’
loading situation was defined as the conclusion of the insertion process, i.e., when the ball
anchor was fully inserted into the female part. Additionally, the displacement was further
increased by 0.1 mm to simulate an extra force exerted by the patient, e.g., representing the
chewing force.

3. Results and Discussion
3.1. The Effects of the Design and Material Optimization on the Mechanical Fields in the
Female Part

Figures 7–11 comprehensively represent the results, showcasing the spatial distributions
of stress, strain, and martensite volume fraction (where applicable) across all parameters.
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J. Funct. Biomater. 2024, 15, x  9 of 15 
 

 

 
Figure 9. FEM results for the long Nitinol implant, featuring an embedded flexible Nitinol long shaft 
(see Figure 4b) for the angulation misfit (see Figure 6c). Stresses are depicted as equivalent to von 
Mises stress, while strains represent the maximum principal strain. In (c5), the martensite volume 
fraction is mapped. (c1–c4) angulation misfit: the abutment rotates for 3 degrees (see Figure 6c), (c5) 
detail of the flexible ball head (martensite volume fraction MVF). 

 
Figure 10. FEM results for the short Nitinol implant, featuring an embedded flexible Nitinol short 
shaft (see Figure 4c) for the angulation misfit (see Figure 6c). Stresses are depicted as equivalent to 
von Mises stress, while strains represent the maximum principal strain. (c1–c4) angulation misfit: 
the abutment rotates for 3 degrees (see Figure 6c), (c5) Martensite volume fraction MVF. 

 
Figure 11. FEM results for the short-necked Nitinol implant, featuring a short-necked embedded 
Nitinol shaft (see Figure 4d) in angulation misfit (see Figure 6c). Stresses are depicted as equivalent 
to von Mises stress, while strains represent the maximum principal strain. (c1–c4) angulation misfit: 
the abutment rotates for 3 degrees (see Figure 6c), (c5) Martensite volume fraction MVF. 

  

Figure 11. FEM results for the short-necked Nitinol implant, featuring a short-necked embedded
Nitinol shaft (see Figure 4d) in angulation misfit (see Figure 6c). Stresses are depicted as equivalent
to von Mises stress, while strains represent the maximum principal strain. (c1–c4) angulation misfit:
the abutment rotates for 3 degrees (see Figure 6c), (c5) Martensite volume fraction MVF.
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3.1.1. Solid Ti Implant

The results indicate that, during the ‘Maximum’ loading situation, the edges of the fe-
male part experience the highest strain level, approximately reaching 0.36% (Figure 7) when
the implant is horizontally misfitted or has an angulation misfit (refer to Figure 7(b1,c1)),
compared to 28% strain in the perfect fit case study shown in Figure 7(a1). This underscores
the impact of non-ideal alignment between the axes of the implant and the female part.
Since the angulation misfit represented a worst-case scenario as compared to horizontal
and vertical mismatches [46], it was exclusively used for subsequent design and material
optimization iterations.

3.1.2. Long Ti Implant

Figure 8 illustrates the results for the upgraded Ti implant design, where the implant
design is modified to facilitate deformation by creating a flexible central shaft (see Figure 4b).
At the ‘Maximum’ loading situation (depicted in Figure 8(c1)), it is evident that the flexible
design of the implant’s central shaft notably diminishes the maximum induced strain at
the edges of the female part during insertion (‘Maximum’ loading situation), reducing it
from approximately 36% (Figure 7(c1)) to about 22.8%, which is a 40% reduction. However,
due to increased deformation freedom, the shaft experiences a stress of 167 MPa (as shown
in Figure 8(c2)), significantly higher as compared to the stress depicted in Figure 7(c2),
attributable to the linear Hook’s stress–strain relation.

Furthermore, in the ‘Final’ loading situation, which realizes an additional imprint force
after ball anchor insertion, the results demonstrate that this initial design improvement
leads to a significant reduction in the maximum induced strain at the inner surface of the
female part. Specifically, there is a notable decrease from approximately 21% maximum
strain in Figure 7(c3) to around 8% in Figure 8(c3), representing roughly a 61% reduction.
However, the simulation results for the shaft’s stress at the ‘Final’ loading situation (as
depicted in Figure 8(c4,c5)) reveal a design flaw in the improved flexible configuration.
Notably, the stresses at the sealing disk of the implant exceed 2 GPa, indicating a potential
risk of tearing and preventing further flexibility of the shaft. This pivotal design area
is henceforth denoted as the Locking Point Zone (LPZ) throughout the remainder of
this manuscript, as it will receive further attention later on during design and material
optimization progress.

3.1.3. Long Nitinol Implant

Here, superelastic Nitinol is used as the material of the long shaft design (see Figure 4b).
Critical stress at the LPZ is partially addressed by employing Nitinol material, which
reduces the maximum stress level at the LPZ to around 600 MPa (compare Figure 8(c4) and
Figure 9(c4)), as the phase transformation occurring in Nitinol allows for a high degree
of deformation at the plateau stress level. This is evident when observing the martensite
volume fraction evolved at the LPZ depicted in Figure 9(c5). Nevertheless, the transition
from Ti into Nitinol material for the long embedded shaft does not result in any significant
change in the maximum strain experienced at the edges of the female part during the
‘Maximum’ loading situation (compare Figure 8(c1) and Figure 9(c1)). This is because
the maximum stress level reached at the shaft during this loading situation remains well
below the martensitic phase transformation plateau stress (refer to Figure 9(c2)), so that the
superelasticity of Nitinol does not occur during the deformation process at the ‘Maximum’
loading situation.

In other words, the deformation of the shaft is not big enough for Nitinol to transform
into martensite at the ‘Maximum’ loading situation. However, the maximum strain reduc-
tion of the female part at the ‘Final’ loading situation, from approximately 8% to about 6%,
equating to a 25% reduction (compare Figure 8(c3) and Figure 9(c3)), is attributed to a slight
martensitic phase transformation at the LPZ of the implant (see Figure 9(c5)), facilitating
increased flexibility of the shaft. The results indicate only a marginal improvement when
changing from elastic Ti to NiTi as the material of the long flexible shaft. The advantage of
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the superelastic NiTi comes into play in the following design, which requires less vertical
space in the implant.

3.1.4. Short Nitinol Implant

In an attempt to manipulate the stress levels in the Nitinol shaft, the flexible shaft was
shortened (see Figure 4c), leading to increased stress levels in the shaft in both loading
situations, ‘Maximum’ and ‘Final’. Although the induced stresses in the shaft were suc-
cessfully heightened, they remained within the elastic regime, i.e., below the martensitic
transformation plateau stress at either loading situation (see Figure 10(c2,c4)). This means
that the triggered stresses in the shaft were not high enough for Nitinol to transform into
martensite. As a result, there were no significant changes in strain observed in the female
part (see Figure 9(c1) vs. Figure 10(c1) and Figure 9(c3) vs. Figure 10(c3)).

3.1.5. Short-Necked Nitinol Implant

To enhance the flexibility of the superelastic Nitinol shaft, a weak point was delib-
erately incorporated through cross-section reduction. This weak point was strategically
introduced into the stress concentration pivotal zone of the shaft (see Figure 4d), where the
bending–compression-induced strains are shown to be maximal, as demonstrated in the
previous simulation (refer to the shaft’s stress distributions in Figures 8–10). This technique,
commonly referred to as necking in mechanics, allows the shaft to endure elevated local
stress levels under an equivalent deformation history, i.e., at an equivalent nominal axial
reaction force. Consequently, it promotes a greater degree of martensitic transformation
evolution in the deformation process of the shaft. In addition, the deformation blocking in
the LPZ was addressed by introducing local fillets (see Figure 4f).

While Figure 11(c2) shows slightly higher stress levels developed in the shaft at the
‘Maximum’ loading situation, it remains within the elastic regime below the martensitic
transformation stress plateau, thus not affecting the maximum strain experienced at the
edges of the female part during this loading situation. However, this design modification
demonstrates a notable contribution of the martensitic transformation in the shaft’s defor-
mation at the necked region at the ‘Final’ loading situation (refer to Figure 11(c5)), leading
to significant strain relaxation in the female part to approximately 2% (Figure 11(c3)), com-
pared to around 8% in Figure 10(c3). This represents a ~75% strain reduction compared to
the long Nitinol implant and short Nitinol implant, and a ~90% reduction compared to the
solid Ti implant, where the maximum strains experienced at the female part in the ‘Final’
loading situation could reach up to 21% (compare Figure 7(c3) to Figure 11(c3)).

3.2. The Effects of the Design and Material Optimization on the Abutment Reaction Stresses

For a comprehensive investigation of the effect of the design–material optimization
journey, the resultant reaction force on the surrounding Ti abutments is compared between
the solid Ti implant and the short-necked Nitinol implant. To this end, a similar misfit
between the female part and the implant, combining horizontal and angulation misfits [46],
is considered during the insertion (see Figure 6d, equally represented in Figure 12(a1,b1)).

The findings demonstrate a reaction stress reduction from 183 MPa in the reference
solid implant design (see Figure 12(a2)) to ~110 MPa in the final optimized implant design
(see Figure 12(b2)), marking a significant 39% performance improvement.

In summary, based on the assumption that wear phenomena at the male–female in-
terface of current attachment systems used for retaining removable implant-supported
prostheses are due to misalignment of the supporting implants and fabrication inaccu-
racies [24–27], an attachment system incorporating a flexible male component was pro-
posed [42,43]. Using a systematic combined design–material optimization approach, this
finite element analysis [45] aimed to optimize the male attachment part concerning the
deformations occurring in the female retentive components under different misfits [46] and
loading situations. Compared to an existing solid ball anchor, incorporating an embedded
flexible long shaft led to a significant (~40%) reduction in maximum strain on the edges of
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the female part during the insertion process. Additionally, a notable (~61%) reduction in
strain was observed upon completion of the insertion process. Switching the shaft material
from titanium to superelastic Nitinol only led to a minor reduction in the female part’s criti-
cal strain at the maximum loading situation, but further reduced the maximum strain at the
final loading situation by about 25%. Finally, shortening the flexible Nitinol shaft did not
yield substantial changes in strain levels, while a necked central shaft allowed further im-
provements in strain reduction during the final insertion process, facilitating a ~90% strain
reduction compared to the solid ball anchor. Future research should focus on assessing the
dynamic effects of chewing forces on wear, as well as the long-term performance of Nitinol
components under clinical conditions, using dedicated experimental approaches and FEM
packages like FEMFAT. Indeed, from a clinical perspective, it seems difficult to predict
attachment performance purely based on the factors investigated here. A variety of factors
come into play when attachment systems are used in patients, including the distribution of
lever arms created by the prosthesis [48], masticatory function and parafunction, chemical
and microbiological effects on materials (especially the female plastic components), and
the quality of the fabrication processes.

Figure 12. The effect of the ultimate design and material optimization on the reaction stresses on
the surrounding Ti abutment. (a1,b1) The solid Ti implant and the flexible-necked Nitinol implant,
respectively. In both trials, the implant is rotated (θ = 3 degrees) and shifted horizontally by 0.1 mm
in relation to the female part. (a2,b2) The resultant reaction stresses on the surrounding Ti abutment
for the reference solid Ti design and the final optimized Nitinol implant design, respectively.

4. Conclusions

This study aimed to address the ongoing issue of wear at the male–female interface in
implant-supported removable prostheses by optimizing the attachment system design. The
proposed flexible attachment system, featuring a short-necked superelastic Nitinol shaft,
demonstrated a significant reduction in strain on the female part during prosthesis insertion.
Nitinol’s superelastic properties, together with the promoted design, allow the shaft to
accommodate large deformations under low plateau stress, effectively mitigating wear at
the retentive interface. The optimized design achieved up to a 90% reduction in maximum
strain compared to traditional solid ball anchors, indicating significant improvements in
both prosthesis durability and patient comfort.

While this study presents promising results, predicting the attachment system’s clinical
performance based solely on these factors remains difficult. Clinical outcomes are influ-
enced by multiple variables, including prosthesis-induced force distribution, masticatory
behavior, material interactions in the oral environment, and the quality of fabrication.
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