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Abstract

Conventional imaging sensors notoriously fall short in capturing real-world scenes by
clamping image details in dark and bright scene regions. Longer exposures improve
dark region depiction but often result in excessive blur for hand-held cameras, which
is further aggravated for highly dynamic scenes. Conversely, shorter exposures
reduce blur but at the expense of noisy images. In practice, it is often impossible
to strike a balance between all those factors, and even for advanced computational
photography techniques that today employ machine learning image enhancement
techniques, it is difficult to obtain satisfactory, most importantly, veridical, non-
hallucinated depiction.

Multi-exposure sensors enable different exposures for neighboring pixels, where
such exposures can be freely adapted to the dynamic range of the captured scene. In
this thesis, we observe that multi-exposure sensors enable the development of more
robust learning-based techniques for denoising and motion blur removal because
less noisy and less blurred neighboring reference pixels are readily available due
to their different exposure. At the same time, filling gaps in the spatial domain for
such differently exposed neighboring pixels is a trivial super-resolution task so that
full-resolution differently exposed images can be reconstructed from a single multi-
exposure shot. This, in turn, enables merging such exposures into a high-dynamic
range (HDR) image. In the context of video, we demonstrate that motion blur in
longer exposed pixels provides important information to improve the quality of opti-
cal flow computation, where even complex non-linear motion between two captured
frames can be reconstructed. This enables high-quality video frame interpolation
(VFI) to produce high-framerate videos that can be played in slow-motion mode,
where HDR scenes can also be handled for the first time. Overall, our work demon-
strates that alternative sensor designs, such as multi-exposure sensors, can often be
better aligned with the strengths of machine-learning solutions, where additional
information provided by such sensors simplifies more complex tasks such as HDR
image reconstruction and VFI. In contrast, deficits of such sensors in terms of spatial
resolution are easy to compensate for.

Perceptually meaningful image quality evaluation is an important aspect of com-
putational imaging that warrants continuous progress. In this thesis, rather than
devising a novel image quality metric, we seek to develop a coherent methodology
to improve traditional metrics like PSNR and SSIM, as well as more recent learning-
based LPIPS and DISTS. We achieve this by considering visual masking, an important
characteristic of the human visual system that changes its sensitivity to distortions as
a function of local image content. Our approach results in enhanced metrics that are
more in line with human prediction both visually and quantitatively.
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Zusammenfassung

Herkömmliche Bildsensoren sind bei der Erfassung realer Szenen bekanntermaßen
unzureichend, da sie Bilddetails in dunklen und hellen Szenenbereichen festhal-
ten. Längere Belichtungszeiten verbessern die Darstellung dunkler Bereiche, führen
jedoch bei Handkameras häufig zu übermäßiger Unschärfe, die sich bei hochdynamis-
chen Szenen noch verschlimmert. Umgekehrt reduzieren kürzere Belichtungszeiten
die Unschärfe, allerdings auf Kosten verrauschter Bilder. In der Praxis ist es oft
unmöglich, ein Gleichgewicht zwischen all diesen Faktoren zu finden, und selbst für
fortgeschrittene Computerfotografietechniken, die heute Bildverbesserungstechniken
des maschinellen Lernens nutzen, ist es schwierig, eine zufriedenstellende, vor allem
wahrheitsgetreue, nicht halluzinierte Darstellung zu erhalten.

Mehrfachbelichtungssensoren ermöglichen unterschiedliche Belichtungen für be-
nachbarte Pixel, wobei diese Belichtungen frei an den Dynamikbereich der aufgenomme-
nen Szene angepasst werden können. In dieser Arbeit beobachten wir, dass Mehrfach-
belichtungssensoren die Entwicklung robusterer lernbasierter Techniken zur Rauschun-
terdrückung und Entfernung von Bewegungsunschärfe ermöglichen, da weniger
verrauschte und weniger unscharfe benachbarte Referenzpixel aufgrund ihrer unter-
schiedlichen Belichtung leicht verfügbar sind. Gleichzeitig ist das Füllen von Lücken
im räumlichen Bereich für solche unterschiedlich belichteten benachbarten Pixel eine
triviale Superauflösungsaufgabe, sodass unterschiedlich belichtete Bilder in voller
Auflösung aus einer einzigen Mehrfachbelichtungsaufnahme rekonstruiert werden
können. Dies wiederum ermöglicht die Zusammenführung solcher Aufnahmen
zu einem High-Dynamic-Range-Bild (HDR). Im Zusammenhang mit Videos zeigen
wir, dass Bewegungsunschärfe in länger belichteten Pixeln wichtige Informationen
zur Verbesserung der Qualität der Berechnung des optischen Flusses liefert, bei der
sogar komplexe nichtlineare Bewegungen zwischen zwei erfassten Bildern rekon-
struiert werden können. Dies ermöglicht die hochwertige Video-Frame-Interpolation
(VFI), um Videos mit hoher Bildrate zu produzieren, die im Zeitlupenmodus abge-
spielt werden können, wobei erstmals auch HDR-Szenen verarbeitet werden können.
Insgesamt zeigt unsere Arbeit, dass alternative Sensordesigns, wie z. B. Mehrfachbe-
lichtungssensoren, oft besser auf die Stärken von Lösungen für maschinelles Lernen
abgestimmt werden können, bei denen zusätzliche Informationen, die von solchen
Sensoren bereitgestellt werden, komplexere Aufgaben wie HDR-Bildrekonstruktion
und VFI vereinfachen. Defizite solcher Sensoren in der Ortsauflösung lassen sich
dagegen leicht ausgleichen.

Die wahrnehmungsbezogen aussagekräftige Bewertung der Bildqualität ist ein
wichtiger Aspekt der computergestützten Bildgebung, der kontinuierliche Fortschritte
erfordert. In dieser Dissertation wollen wir keine neuartige Bildqualitätsmetrik en-
twickeln, sondern eine kohärente Methodik entwickeln, um traditionelle Metriken
wie PSNR und SSIM sowie neuere lernbasierte LPIPS und DISTS zu verbessern. Dies
erreichen wir durch die Berücksichtigung der visuellen Maskierung, einer wichtigen
Eigenschaft des menschlichen visuellen Systems, die ihre Empfindlichkeit gegenüber
Verzerrungen in Abhängigkeit vom lokalen Bildinhalt ändert. Unser Ansatz führt
zu verbesserten Metriken, die sowohl visuell als auch quantitativ besser mit den
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menschlichen Vorhersagen übereinstimmen.
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Chapter 1

Introduction

This thesis explores optimizing digital image acquisition through specialized sensors
and enhanced quality metrics by leveraging deep learning. Firstly, Section 1.1 moti-
vates further development in the thesis, then is followed by the main contributions
(Section 1.2), and lastly, Section 1.3 presents an overview of the whole thesis.

1.1 Motivation

Photographs play a sophisticated role in the modern world, realizing multiple pur-
poses, such as opening windows into the past, reflecting the present, and expressing
the natural world artistically. In the digital age, they have become more reachable
through cell phones, which record moments of the daily lives of humans. Such an
increase in the number of photographs leads to a development in their digital process-
ing to enhance their visual quality. Photographs are acquired using digital camera
sensors, which collect light for each pixel and convert it into electrical signals, later
transformed into color images. Each step of the image acquisition pipeline, spanning
from analog to digital processing, is prone to optimization, whether through a better
design of an image sensor or image processing algorithms.

In this context, the field of computational photography has gained importance by
proposing diverse techniques and algorithms to enhance, manipulate, or reconstruct
the images captured by digital cameras. The proposed techniques overcome the
limitations inherent to camera sensors and lenses, improving the image quality.
One common use of computational photography is to reduce noise and blur in
images. This involves correcting defects arising from the sensor’s architecture or
environmental conditions to improve captured images’ quality, realism, and clarity.
These distortions could severely affect the resulting images; therefore, the existing
computational photography algorithms might not be able to handle them due to a
lack of additional information.

High Dynamic Range (HDR) imaging is another essential field of computational
photography that aims to create a single composite image with an expanded dynamic
range because standard single-exposure sensors only capture a limited range of
luminance values (LDR). This limitation results in restricted content, in which bright
regions get saturated as a result of clamping while dark regions are exposed to
severe noise. To overcome this issue traditionally, HDR imaging, which typically
relies on merging multiple LDR inputs [Kang et al., 2003; Mangiat and Gibson, 2010;
Gryaditskaya et al., 2015; Kalantari et al., 2013; Kalantari and Ramamoorthi, 2017;
Kalantari and Ramamoorthi, 2019], has gained popularity in recent decades, and
many display and editing tasks would greatly benefit from it [Reinhard et al., 2010].
However, the main limitation is the dynamic content of the scene, possibly caused
by the camera movement and the motion in the scene, which results in motion blur.
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Additionally, the alignment of the exposures gets harder due to missing information
in each captured exposure that complicates optical flow computation as precise pixel
matches between subsequent frames are compromised.

HDR imaging is crucial for capturing the different luminance levels and high
contrast available in real-world scenes. For this reason, it has been used in many ap-
plications in computer graphics to create realistic and visually better world depictions.
Furthermore, HDR images have been essential in autonomous driving due to better
representation of the surroundings in any lighting conditions. While LDR images,
as display-referred formats, are better suited for commonly used displays, they may
not be optimal for emerging displays, including existing HDR displays. Recently,
HDR displays, offering a wider color gamut and richer brightness levels [Reinhard
et al., 2006] and providing end users with a more immersive viewing experience,
have entered the market to meet the growing demand for displaying HDR content.

Considering the aforementioned problems, recently, new sensor architectures
that allow one to configure different levels of exposure for different spatial patterns
have appeared on the market. The ultimate design goal is to overcome the motion
differences between temporally consecutive exposures by combining them into the
same frame. This way, the read-out gap between the different exposures is elimi-
nated, and the capturing time of the different exposures is aligned within the same
frame. Programmable sensors with spatially varying exposures become an attrac-
tive choice for modern machine vision cameras and smartphones, e.g., CMOSIS
CMV12000 [CMV12000, 2021], Sony’s Quad Bayer [Sony, 2022], and Samsung’s Tetra-
cell/Nonacell [Samsung, 2022] technologies. Intrinsically, this new sensor design
expands the dynamic range in a single shot by spatially interleaving different expo-
sures across the sensor. On the other hand, it brings additional issues, such as noise
and blur differences, because of the differing capturing times between the exposures,
creating a new challenge: combining different exposures with different noise and
blur behaviors into a coherent natural image.

Video frame interpolation (VFI) is another important task of computational pho-
tography extended into the temporal domain. The key VFI goal is to estimate the new
frames between the existing primary frames in a video sequence. This increases the
frame rate of the videos and results in a smoother pass in the large-motion regions.
VFI enables many exciting applications, ranging from video compression and framer-
ate up-conversion in TV broadcasting to artistic video effects such as speed ramps in
professional cinematography. The performance of VFI methods is primarily affected
by various factors such as scene lighting conditions, the magnitude and complexity
of motion in the scene, the spatial extension of resulting motion blur, the presence of
complex occlusions, or thin structures in the scene. Recent VFI methods [Sim et al.,
2021; Reda et al., 2022] mainly rely on well-exposed frames in the captured video.
Nevertheless, undesired under- and over-exposure effects might appear in the case of
high dynamic range scenes captured using traditional single-exposure sensors. The
resultant noise and intensity clamping can adversely affect the quality of VFI as find-
ing the pixel correspondence between the frames becomes more ambiguous. Another
major challenge is the large and non-uniform motion in the scene that can affect the
quality of the resulting interpolated frames. In this context, a multi-exposure sensor
provides short and long exposures for spatially interleaved pixel columns in a single
shot. Importantly, while the exposure duration differs, the exposure completion is
temporally aligned, which enables the recovery of two temporal samples of scene
motion that are perfectly spatially registered at the sensor.
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On the other hand, for the evaluation of the reconstructions, full-reference image
quality metrics (FR-IQMs) are vital components that provide quantitative measures
by comparing to its reference. The most commonly used FR-IQMs for evaluating
image quality are the mean square error (MSE), mean absolute error (MAE), and
PSNR. While these per-pixel metrics are easy to compute, they assess image quality
regardless of spatial content, leading to false positive predictions. More specifically, a
perceptual metric should provide correct visible error localization in case of uniform
distortions such as Gaussian noise and motion blur, which means that noise distortion
in high-contrast and textured regions should be penalized less while penalizing
more motion blur distortion at high-contrast edges. Due to the estimation of errors
perceptually correct in the deformed images, they are commonly used as a cost
function in optimizing restoration tasks such as denoising and deblurring. Thus,
optimization with perceptually better metrics leads to better reconstructions that are
more in line with human perception.

Considering the proposed approaches, this thesis mainly focuses on improving
the image acquisition of digital cameras by utilizing a specialized multi-exposure
design and leveraging the power of deep learning methods. The deficiencies in
the digital image sensors are the source for many different distortions occurring
in the resulting images, which can be reduced with a modern sensor design that
accounts for distortions within the spatial frame, providing more information. This
ensures the images with (i) the better quality and (ii) expanded dynamic range that is
complemented with (iii) the high-framerate video reconstruction taking the power
of aligned multi exposures within the same frame. Regarding the judgment of the
quality of the restoration of the images and guiding the training phase can be achieved
with the (iv) enhanced FR-IQMs, which are enhancements over the existing metrics
rather than a new quality metric.

1.2 Contributions

This thesis has two parts; firstly, it includes image and video enhancement through
a new trend in multi-exposure sensor design. The second part proposes a series of
enhanced FR-IQMs to provide quality measurements and optimize restoration tasks.

Image and Video Enhancement and HDR Reconstruction Digital images are
distorted with different sources due to deficiencies within the sensor design, such as
noise and motion blur. Previous LDR work learns to deblur and denoise supervised
by pairs of clean and distorted videos [Nah et al., 2019; Tao et al., 2018]. Regrettably,
capturing distorted sensor readings is time-consuming; as well, there is a lack of clean
HDR videos that can help simulate the multiple exposures that the sensor provides.
On the other hand, previous work made simplifying assumptions, such as Gaussian
and Poisson noise, that are not applicable to real-world sensors. Moreover, HDR
reconstruction with traditional sensors [Kalantari and Ramamoorthi, 2017; Kalantari
and Ramamoorthi, 2019] relies on the incomplete information between the exposures
to derive the optical flow that can be guided inconsistently. Considering all these
issues, Chapter 3 presents the following contributions (based on Çoğalan et al. [2022]):

• a non-parametric noise modeling that is based on simple 2D histograms;

• a training dataset preparation relying only on the existing LDR video, where
emulating required exposures, including exposure-specific motion blur, using
high-speed footage;
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• a better denoising and deblurring performance compared to the existing state-
of-the-art methods;

• a compact solution that creates a sharp and clean HDR image from a single
multi-exposure shot;

• a unique image-capturing framework that extends to HDR video reconstruction;

• a CNN network that merges the flows obtained for different exposures, provid-
ing a better sampling of flows for deriving missing exposures.

Video Frame Interpolation for High Dynamic Range Sequences Although recent
methods [Reda et al., 2022; Sim et al., 2021] have shown progress in handling signifi-
cant motion in VFI, they typically heavily rely on the motion linearity assumption
that might not hold in practice. Explicit handling of non-linear motion becomes
possible by processing more than two subsequent frames [Xu et al., 2019; Park et al.,
2021]; however, temporal sampling might still be too sparse for reliable motion re-
construction. Motion blur due to low shutter speed and long exposure times further
leads to spatial and temporal loss of image details. For this reason, handling blurry
frames is typically treated as a challenge in the VFI task [Shen et al., 2020a; Zhang
et al., 2020], while potentially, motion blur encodes continuous temporal information
on the magnitude and direction of motion, particularly for large motion. Chapter 4
presents a technique to create high-framerate HDR videos leveraging the additional
blur information inherent in multi-exposure sensors (based on Çoğalan et al. [2023]),
and includes the following contributions:

• a compact machine learning solution for VFI that can handle HDR content and
complex non-uniform motion, enabled by deriving two temporal samples of
the scene motion for each frame by joint processing of short and long exposures
as captured using a multi-exposure sensor;

• an adopted PWC-Net [Sun et al., 2018] architecture to estimate the motion flow
from motion blur in the long exposure, which is combined with the sharp image
content in the short exposure;

• a metric of motion complexity that provides insights into existing datasets used
in the training of VFI methods;

• and evaluation of the performance of each method with different levels of
motion non-linearity.

Enhanced Image Quality Measurement The most commonly used image quality
metrics, such as PSNR and SSIM [Wang et al., 2004a], often fall short in predicting
visual errors as perceived by the human observer. Modern metrics like LPIPS [Zhang
et al., 2018b], DISTS [Ding et al., 2022], and DeepWSD [Liao et al., 2022] strive to assess
the perceptual dissimilarity between images by comparing deep features extracted
from classification networks [Simonyan and Zisserman, 2015]. However, they are
designed to generate a single value per image pair, and the focus of underlying deep
features is classification, which makes them less sensitive to some distortions, such
as noise. Furthermore, the ground-truth data for visibility errors is hard to obtain,
such that utilization of mean opinion scores (MOS) data with human subjects is
crucial for supervision. Chapter 5 enhances the existing FR-IQMs penalizing the
perceptually visible errors (based on Çoğalan et al. [2024]), and presents the following
contributions:
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• a methodology predicting the mask that acts as a per-pixel weight, applicable
to most of the existing FR-IQMs;

• a lightweight CNN for generating the masks that demand minimal computa-
tional resources;

• a learned generic masking model that is capable of identifying various types of
distortions and generalization to both deep features and spatial domain;

• a significant enhancement in the accuracy of quality prediction for FR-IQMs
across various test MOS datasets;

• an estimated per-pixel error map that visually aligns more closely with human
perception compared to the original FR-IQMs;

• two potential applications with the enhanced FR-IQMs as a loss function for
training the state-of-the-art image denoising and motion deblurring.

1.3 Outline

This thesis is organized as follows. Chapter 2 reviews and discusses the relevant work
to this thesis. Chapter 3 presents the distortion model that samples the sensor readings
that are later used for the reconstruction of HDR images and videos. Chapter 4 defines
the video frame interpolation technique that increases the framerate of the captured
videos. Chapter 5 explains the enhancement methodology for the existing image
quality metrics, which improves their performance in image restoration tasks such as
denoising and deblurring. The conclusion and future work directions are presented
in the Chapter 6.
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Chapter 2

Previous Work

This chapter reviews the previous work relevant to this thesis. The image acquisition
pipeline for digital cameras is introduced, and proposed algorithms for each stage
are discussed in Section 2.1. Secondly, Section 2.2 discusses the related methods
for creating HDR images and videos. Thirdly, related video frame interpolation
methods are reviewed in Section 2.3. Finally, the image quality metrics are covered in
Section 2.4.

2.1 Digital Image Acquisition Pipeline

Digital images undergo several processing steps before being displayed. Raw sensor
data is not yet understandable by humans, so it needs additional processing on
both the hardware and software sides. This section explains the required steps
for converting the sensor data to meaningful for human vision RGB color images
(Figure 2.1). The utilization of specific algorithms to process raw images directly
impacts image quality.

2.1.1 Photon Collection

Digital camera sensors such as Charge Coupled Devices (CCD) and Complementary
Metal-Oxide-Semiconductor (CMOS) function by collecting light photons during a
specific period, which is known as exposure time. These photons enter the sensor
through the lens and interact with photosites within it, which are sensitive to light.
Subsequently, the sensor converts the collected photons into electrical voltage. In-
ternal processes within the sensor cause different noise types that are explained in
Section 2.1.4.

2.1.2 Bayer Filter & Demosaicking

A Bayer filter, also known as a Color Filter Array (CFA), is used to collect RGB color
information for digital images. Instead of collecting the red, green, and blue color
channels separately, the Bayer filter provides color information in 2 × 2 patterns,
where half of each pattern is green due to the higher sensitivity of the human visual
system to the electromagnetic wavelengths representing green color. The other half
of the pattern is shared between the red and blue channels. However, Bayer filtering
leads to resolution loss, so various methods have been developed to reconstruct
the full-resolution color channels of red, green, and blue (known as demosaick-
ing). Traditional methods typically rely on numerous forms of interpolation that are
content-aware [Gunturk et al., 2002; Lu et al., 2010; Zhang et al., 2011a]. However,
they struggle with the strong edges and textured regions that result in zippering and
moire artifacts. For this reason, CNN-based methods [Gharbi et al., 2016; Kokkinos
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White BalancedRaw Sensor Reading Demosaicked Bias Corrected

FIGURE 2.1: Each step in the process of generating an image from raw sensor readings has a specific
effect. The raw data is in a Bayer pixel format, meaning that each pixel contains information about only
one color. To produce a full-color image, the data must undergo demosaicking to convert it into three
color channels. However, when the camera applies a bias, it can create a black shadow over the image.
This can be corrected with dark frame subtraction. After that, white balancing is applied to remove any
global green casting and make the image ready for display.

and Lefkimmiatis, 2019; Liu et al., 2020a] have been proposed to manage interpolation
better, resulting in further improvements in demosaicking quality.

2.1.3 White Balancing

White balancing is an essential process that ensures the colors of the image look
natural according to human perception. After years of evolution, the human visual
system adapts to different illumination conditions, such as different times of the
day or sky conditions, and can identify the white color. However, digital cameras
are not part of this long evolution period; they can produce images with green,
blue, or orange casts. On the other hand, most digital cameras have the auto white
balancing option that provides the correct weightings of each color channel for
different light conditions. However, in the case of multiple light sources, single
weights per color channel may not be enough. Recently developed methods [Barron,
2015; Afifi and Brown, 2020] aim to enhance image quality by adjusting colors for
different illumination conditions. The most recent method [Afifi et al., 2024] utilizes a
multi-exposure sensor in the context of white balancing.

2.1.4 Sensor Noise

Noise types can be grouped as temporal and spatial noise depending on their char-
acteristics [Janesick, 2001]. Temporal noise types, such as photon shot noise, dark
current shot noise, and read-out noise, can be eliminated by averaging multiple
frames. On the other hand, spatial noise is fixed and can be corrected together with
dark frame subtraction and pixel area correction. Temporal noise types lead to flick-
ering between each captured frame while spatial noise remains constant, but they
are easy to correct with the careful calibration procedure. This section reviews the
different noise types inherent to digital camera sensors. The temporal noise types are
traditionally represented with a combination of parametric Poisson and Gaussian
distributions. However, this thesis (Chapter 3) aims to model different types of noise
with a non-parametric assumption-free solution that better corresponds to real-world
sensors.

Photon shot noise The number of photons that the sensor collects in a given time
interval follows the Poisson distribution. Random fluctuations in the measured
number of photons are called photon shot noise, which is more dominant in low-light
regions. Even with a careful electrical circuit design, photon shot noise is inevitable;
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however, collecting more photons with longer exposure times helps to reduce the
noise to some extent.

Dark current shot noise The randomness of the electrons in charge carriers causes
dark current shot noise that follows a Poisson distribution. Environmental conditions
such as temperature determine the effect of the dark current shot noise, and cooling
the sensor reduces the random variations. The increase in the exposure time increases
the effect of the dark current shot noise; therefore, shorter exposure times are suited
to reduce this type of noise.

Read-out noise Other noise sources, such as white noise, reset noise, and quanti-
zation noise, are combined under the read-out noise, and a Gaussian distribution
represents the combination of them. The reasons vary from voltage amplification to
analog-to-digital conversion (ADC). These fluctuations are inherent to the sensor’s
electronics and are independent of the measured amount of photons.

Row noise At short exposures, more structured forms of noise can become important,
one of them being row noise. This is not to be mistaken with fixed-pattern noise
that is frequently spatially correlated but much easier to correct. In row noise, pixels
do not change independently; rather, all pixels in a row change in correlation, i. e.,
the entire row is darkened or brightened. This is a well-known problem for CMOS
sensors. It is typically caused by random noise that shifts the voltage level(s) in ADC,
which, in turn, affects the ADC slope and results in an offset that is consistent for
all pixels in the row. Sensor manufacturing tries to solve this problem by collecting
on-the-fly statistics for surrounding rows to find voltage level offsets in ADC [Oten
and Li, 2011], which is prone to errors due to variable image content.

Fixed pattern noise The electrical signals can go below zero due to the fluctuations
in the analog-to-digital conversion phase. To prevent such issues, a positive offset is
applied to every pixel. However, this offset can not be spatially uniformed because
of the variations in the columns and pixels, which leads to fixed pattern noise. It is
independent of the amount of light collected and depends on the exposure time and
temperature of the sensor. The dark frame under zero light and identical conditions,
such as the same exposure time and temperature, captures the internal bias of the
sensor together with variations, and subtracting it from the raw measurements
corrects the introduced fixed pattern noise.

Per-Pixel non-uniformity Even with a careful manufacturing process of the sensors,
imperfections in the area of the pixels cause the measured number of photons to
vary between each pixel. This leads to different illumination in the different parts of
the resulting image. These differences could be identified easily, capturing a totally
uniform region, and later, it is helpful for correcting the mismatched pixel areas.

2.1.5 Denoising and Deblurring

Imperfections in the sensors cause distortions in the captured images that impair
the quality of the captured images as mentioned in Section 2.1.4. One of the central
distortions is noise and blur, which have become the main focus of the image pro-
cessing field for years. The first key challenge here is modeling the characteristics of
sensor noise and blur that need to match the real sensor data. The second challenge is
the correction of these distortions by estimating the missing information to enhance
the quality of the images. This section reviews several algorithms for denoising and
deblurring proposed in recent years.
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Noise modeling Different factors affect the sensor’s noise behavior depending on
the sensor’s imperfections and environmental conditions. Noise modeling of digital
camera sensors is crucial in many aspects, such as understanding the sensor’s quality,
optimization, calibration, and correction. Classic solutions involve fitting Gaussian
and Poisson [Healey and Kondepudy, 1994; Liu et al., 2007; Foi et al., 2008; Foi, 2009]
or more involved [Plötz and Roth, 2017] distributions, sometimes under extreme
conditions [Chen et al., 2018], to many pairs of clean and distorted images. Generative
adversarial networks have recently been employed to map between different ISO
levels, and the requirement for paired data is lifted [Bernardo Henz, 2021]. While
parametric noise models are routinely used as mathematically tractable priors, this
thesis (Chapter 3) uses more expressive non-parametric models, as the only need is
to generate distorted training data.

Denoising Denoising aims to correct the pixel fluctuations without corrupting the
image’s content. Denoising has traditionally been performed directly on noisy images
using state-of-the-art algorithms such as BM3D [Dabov et al., 2007], non-local means
[Buades et al., 2005], and Nuclear Norms [Gu et al., 2014]. Most deep denoisers [Chen
et al., 2018; Zhang et al., 2018a; Zhang et al., 2017; Burger et al., 2012; Mao et al., 2016;
Chen et al., 2018a; Guo et al., 2019; Lefkimmiatis, 2018; Jia et al., 2019] are trained on
pairs of noisy and clean images, while some work is trained without pairs [Ulyanov
et al., 2018; Lehtinen et al., 2018; Krull et al., 2019; Laine et al., 2019; Krull et al., 2020;
Batson and Royer, 2019; Quan et al., 2020; Moran et al., 2020; Xu et al., 2020], using
GANs [Chen et al., 2018b] or self-supervision [Wu et al., 2020]. The usefulness of
neural networks in denoising for real sensors has been disputed [Plötz and Roth,
2017; Chen et al., 2018].

Blur modeling Video obtained with a high-speed camera [Su et al., 2017; Nah
et al., 2017; Nah et al., 2019] accurately represents the motion blur (MB) due to
the presence of correct motion continuously in each frame. However, the video’s
frame per second (FPS) affects the quality of simulated motion blur, especially in
large motion areas. Beam splitters [Zhong et al., 2020] enable motion blur synthesis
for generating training data using gyroscope-acquired [Mustaniemi et al., 2020] or
random [Mildenhall et al., 2018] motion.

Deblurring Non-blind deconvolution methods [Zoran and Weiss, 2011; Schuler
et al., 2013; Sun et al., 2014; Schmidt et al., 2013; Xu et al., 2014; Cho et al., 2011;
Whyte et al., 2010] restore sharp images given the blur kernel. Blind deconvolution
methods attempt to derive the kernel based on various priors on either the sharp
latent image or the blur kernel [Fergus et al., 2006; Levin et al., 2009; Xu and Jia,
2010; Michaeli and Irani, 2014; Gong et al., 2017; Sun et al., 2015; Chakrabarti, 2016].
Explicit kernel derivation can be avoided in end-to-end training, where the sharp
image is derived directly [Nah et al., 2017; Tao et al., 2018], by self-supervision
[Liu et al., 2020b] or adversarial training [Kupyn et al., 2018; Kupyn et al., 2019].
Video deblurring additionally capitalizes on inter-frame relationships while assuring
temporal coherence of the result [Kim and Lee, 2015; Kim et al., 2017; Zhou et al.,
2019; Zhong et al., 2020; Su et al., 2017]. Deblurring can be combined either with
spatial [Zhang et al., 2019] or temporal [Purohit et al., 2019; Jin et al., 2018; Jin et al.,
2019] super-resolution. The presence of noise, clamping, and multiple exposures, as
in the condition of this thesis (Chapter 3), adds a further challenge. Methods such as
[Pan et al., 2021] model general distortions using CycleGAN [Zhu et al., 2017] but
have not been demonstrated to perform denoising.
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2.1.6 Multi-Image Denoising

Several solutions have been proposed to capture multiple images of the same content
to provide more information for ill-posed denoising.

Fixed-exposure burst photography Burst photography combines a handful of low-
exposure frames into a high-quality LDR result using efficient hand-crafted solutions
deployed in cellphones [Liu et al., 2014; Hasinoff et al., 2016; Liba et al., 2019; Liba
et al., 2019], based on learning of recurrent architectures [Wieschollek et al., 2017],
unordered sets [Aittala and Durand, 2018], or per-pixel filter kernels [Mildenhall et al.,
2018]. The problem of read noise that accumulates from each contributing frame can
be avoided in quanta burst photography that employs binary single-photon cameras
to capture high-speed sequences [Ma et al., 2020].

Low/high exposure image pairs Short-exposure images are sharp but noisy, while
long-exposure images are blurry but free of noise. Such exposure pairs have been
used for non-uniform kernel deblurring [Yuan et al., 2007; Whyte et al., 2010]. Along
a similar line, Mustaniemi et al. [2020] and Chang et al. [2022] jointly learn how to
denoise and deblur exposure pairs supervised by synthetic training data. Although
all these methods produce LDR output, this thesis (Chapter 3) aims for HDR creation.

2.2 HDR Imaging

HDR imaging aims to expand the dynamic range of images beyond the capacity of
sensors. Digital cameras use imaging sensors that have limited capability to capture
the full range of brightness in everyday scenes. As a result, captured images may
have areas that are too bright and appear washed out, while dark areas may appear
noisy or completely black, resulting in a loss of detail in the image. To eliminate such
problems, a wide range of methodologies aim to handle dynamic range expansion,
either employing specialized hardware or additional information with different
requirements. This section reviews such methods depending on their assumptions
beforehand.

2.2.1 Multi-Shot

Typical digital camera sensors can capture a wide range of luminances, but not within
one shot. For this reason, an exposure sequence, i.e., time-sequential capture of
one scene at different exposure settings, can be merged into a single HDR image
[Mann and Picard, 1995; Mitsunaga and Nayar, 1999; Debevec and Malik, 1997] by
recovering the camera response function (CRF) for linearization of the input images.
Additionally, the following works [Robertson et al., 2003; Granados et al., 2010] aim to
reduce the noise in the resulting HDR image. Alternative methods such as [Mertens
et al., 2007; Prabhakar et al., 2017; Mustaniemi et al., 2020] create the LDR image
directly instead of fusing the multiple exposures into an HDR image. However,
these methods assume that the objects and the camera are static, meaning there is no
occurring motion in the scene. This way, these methods do not need to handle the
registration between the multiple exposures.

On the other hand, multi-exposure techniques are adopted for real-life conditions
with dynamic content, which is more challenging to handle because of a lack of
information possibly caused by under- and over-exposed regions in the captured
LDR exposures. HDR reconstruction is typically performed by aligning the multiple
exposures. As each exposure is employed in a sequence of reconstructed HDR
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frames, missing exposures must be aligned with moving content there, which can be
achieved using optical flow [Kang et al., 2003] or homography registration followed
by rank minimization where possible misalignments are treated as sparse outliers
[Oh et al., 2015]. Even better for handling occlusions, non-rigid and fast motion are
block- [Mangiat and Gibson, 2010; Gryaditskaya et al., 2015] and PatchMatch-based
[Kalantari et al., 2013] motion estimation methods. Recently, neural networks have
been employed for optical flow computation and exposure blending [Kalantari and
Ramamoorthi, 2017; Kalantari and Ramamoorthi, 2019]. Non-flow-based networks
have also been considered [Wu et al., 2018; Yan et al., 2020]. Yan et al. [2020] can handle
large motions by exploiting the non-local correlation in input images. Chen et al.
[2021] consider a coarse-to-fine neural network architecture to handle the alignment
of the temporal exposures in the video sequence. Wu et al. [2018] use homography
background registration followed by direct blending of the input exposures. The
key problem for all those methods is alignment between subsequent frames at larger
exposure ratios [Kalantari and Ramamoorthi, 2017; Kalantari and Ramamoorthi,
2019; Yan et al., 2020], or in the presence of massively saturated, meaning that either
clamped or occluded regions. The alignment of the exposures can degrade the final
reconstruction, and temporal artifacts such as popping and flickering can occur.
This thesis (Chapter 3) demonstrates that such problems can be alleviated using an
exposure ratio of 1:4 to achieve a significantly higher dynamic range.

2.2.2 Single-Shot

Capturing exposure sequences takes time, and their alignment is challenging, partic-
ularly for video. This can be alleviated by single-shot solutions relying on custom
optics and sensors. The logarithmic response does not require any exposure control
[Seger et al., 1999] but remains prone to noise in dark regions. Spatially-varying
exposure (SVE) techniques place a fixed [Nayar and Mitsunaga, 2000; Schöberl et al.,
2012; Schöberl et al., 2012; Serrano et al., 2016; Aguerrebere et al., 2014] or adaptive
[Nayar and Branzoi, 2003; Nayar et al., 2004] mask of variable optical density in
front of the sensor, but face problems with resolution and aliasing. Such problems
can be reduced when a neural network is used for mask learning and HDR image
reconstruction [Alghamdi et al., 2021]. Beam splitting preserves resolution with
different exposures [Tocci et al., 2011; Aggarwal and Ahuja, 2001; Kronander et al.,
2013] but requires involved optics. Dual-ISO sensors, e.g., Gpixel GMAX and some
of the Canon EON sensors, enable varying analog signal gain for odd and even
scanlines. Their key advantage is that variable blur between scanlines is avoided, as
the exposition is fixed for the whole sensor. On the other hand, instead of collect-
ing more photons in the long exposure and reducing noise this way, only a noisy
short exposure is taken, and the long exposure is emulated by increasing ISO, which
leads to further noise amplification. Therefore, denoising and deinterlacing are the
critical challenges for processing dual-ISO frames [Hajisharif et al., 2014; Go et al.,
2019], including data-driven solutions such as learned artifact dictionaries [Choi et al.,
2017], and CNNs that rely on Gaussian noise models when synthesizing training data
[Çoğalan and Akyüz, 2020]. Dual-gain sensors in high-end Canon and professional
cinematographic Alexa (ARRI) cameras employ a similar idea but generate two full
frames with different analog gains to improve the ratio of read noise to the signal in
the high-gain image. Large photosites reduce the noise inherent to short exposures,
which is needed to avoid highlight clipping.
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Column-wise Row-wise Quad Bayer

FIGURE 2.2: Different existing multi-exposure sensor patterns. All patterns result in the same number
of missing pixels for each exposure, regardless of whether the multiple exposures span column-wise,
row-wise, or pixel-wise in Quad Bayer technology.

Multi-Exposure Sensors

Multi-exposure CMOS sensors enable varying exposures for odd and even scanlines
(some Aptina AR and Sony IMX sensors [IMX, accessed on Sept. 17, 2021]) or columns
(CMOSIS CMV12000 [CMV12000, 2021]). The same approach has been applied to
various sensors with different spatial patterns (Figure 2.2) in Sony’s Quad Bayer [Sony,
2022] and Samsung’s Tetracell/Nonacell [Samsung, 2022] technologies. These kinds
of sensors are currently used in cell phones and recent machine vision cameras [Basler
Dual Exposure, accessed on March 7, 2024]. The number of captured exposures varies
between two to three depending on the design of the sensor. The aim is to combine
different exposures into a single frame to skip the alignment of exposures. However,
it brings additional problems of loss of resolution due to interleaved exposures within
a single shot. Moreover, noise is a crucial problem in short exposures, while long
exposures contain motion blur due to longer exposure time. In this context, Gu
et al. [2010] perform flow-compensated interpolation for subimage deinterlacing to
obtain differently exposed, full-resolution images. Cho et al. [2014] directly calibrate
scanlines using bilateral filters followed by motion blur removal [Lenzen and Scherzer,
2011] and sharpening. Along similar lines, Heide et al. [2014] propose an end-to-end
optimization, which jointly accounts for demosaicking, deinterlacing, denoising, and
deconvolution. Lastly, An and Lee [2017] restore under- and over-exposed pixels
using a CNN, but no results for real sensor data are demonstrated.

Without loss of generality, this thesis (Chapter 3) considers a specific sensor design
where every even column is captured with a short exposure and every odd column
with a long exposure [CMV12000, 2021]. This results in distortions that are specific
to such kinds of sensors. One distortion type is the pixel noise within the image
that no longer follows a single model but is correlated with exposure. Furthermore,
different exposures lead to extra noise, which means that the short exposures have
high noise but are not clamped, while the high exposures have less noise but suffer
from clamping. Due to the design choice applied to such sensors, they suffer from
increased levels of row noise, so orthogonal to the exposure layout, entire rows of
pixels change coherently and differently for different exposures. Lastly, and most
distant from other sensors, the additional exposure levels also lead to varying forms
of motion blur. Not only does motion blur lead to spatially-varying blur, but this blur
rapidly alternates between odd and even columns. Short exposures have low motion
blur, while high exposures suffer from vital motion blur. Successful handling of such
distortions guides HDR images that are sharp and noise-free.
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An HDR image reconstructed using such sensors would provide not only a
greater illumination range than general low dynamic range images but also better
clarity of detail in highlights and dark regions, which can potentially improve the
performance of many vision and graphics tasks such as object detection, depth
estimation, scene segmentation, etc. Novel sensor designs, offering great flexibility
of in-pixel processing, have been successfully used in video compressive imaging
[Martel et al., 2020; Iliadis et al., 2020], depth from defocus [Martel et al., 2017],
feature classification [Chen et al., 2017], HDR imaging [Martel et al., 2020] and motion
deblurring [Nguyen et al., 2022]. The functionality of novel sensor designs in the
context of HDR imaging and its possible applications have been comprehensively
discussed in the survey [Wang and Yoon, 2022].

2.2.3 Tonemapping

HDR images are typically represented with 32-bit values that do not fit the dynamic
range of the commonly used low dynamic range display devices. LDR displays
are limited to the 8-bit range, meaning that HDR content with a wider range of
luminance values can not be correctly displayed. To properly visualize a wider
dynamic range of HDR images in LDR displays, the tonemapping technique is
used to compress the HDR images’ dynamic range while preserving the details and
contrast. Global tonemapping operators [Reinhard et al., 2002; Drago et al., 2003; Kim
and Kautz, 2008] consider the global statistics of the HDR images that are applied
uniformly to the entire image. Although they are computationally cheaper, the
resulting tonemapped images can lack contrast and details. On the other hand, other
approaches [Ashikhmin, 2002; Durand and Dorsey, 2002; Fattal et al., 2002; Krawczyk
et al., 2005] aim to locally preserve the contrast and details while compressing the
HDR images. Apart from traditional approaches, modern methods [Rana et al., 2020;
Wang et al., 2022a] utilize deep features to enhance the contrast of the tonemapped
images realistically.

2.2.4 Inverse Tonemapping

Inverse tone mapping is a procedure to revert LDR images to their HDR repre-
sentation. LDR images have a limited dynamic range clipped to 8 bits; therefore,
conversion to HDR requires estimating or hallucinating the loss of information to
represent them in higher bit depth. This can be challenging because either estimated
regions do not match the original content or the reconstruction has artifacts in under
or over-exposed regions. Although immense progress has been made recently based
on CNNs and GANs [Marnerides et al., 2018; Endo et al., 2017; Eilertsen et al., 2017;
Santos et al., 2020; Liu et al., 2020c; Wang et al., 2023] results do not yet match the
quality of multi-exposure techniques or dedicated sensors.

2.3 Video Frame Interpolation

Video frame interpolation has been extensively studied and has gathered the attention
of researchers. Interpolating missing frames between key frames is crucial for many
applications, such as novel view interpolation and framerate conversion. This section
examines previous methods that use different assumptions and input sequences in
the context of frame interpolation.
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2.3.1 Sharp Video Frame Interpolation

Most Video Frame Interpolation (VFI) techniques assume that the motion in the input
video is uniform. However, there are a few methods explicitly designed without
this assumption. Therefore, VFI techniques are categorized based on uniform and
non-uniform assumptions. The methods in both these categories discard motion blur
that can happen even within a single captured image due to possible longer exposure
times.

Uniform Assumption

Video frame interpolation methods rely on the existing two keyframes that are nat-
urally based on uniform motion assumption because they have no chance to track
motion. Traditional methods such as [Werlberger et al., 2011; Yu et al., 2013] have
considered optical flow to synthesize intra-frames utilizing conventional techniques.
In the era of machine learning, the focus has shifted towards convolutional neural
networks (CNNs). To this extent, SepConv [Niklaus et al., 2017] merges flow estima-
tion and frame warping into a single convolution step. They predict spatially-varying
1D kernels and convolve with them input frames to interpolate new frames. Su-
perSlowMo [Jiang et al., 2018] uses bi-directional flows and an occlusion map to
synthesize intermediate frames at arbitrary times. DAIN [Bao et al., 2019] utilizes
additional interpolation kernels and depth maps for blending the input frames. A
cycle consistency loss is introduced to learn frame interpolation with fewer training
pairs [Liu et al., 2019] or without any supervision [Reda et al., 2019]. BMBC [Park
et al., 2020] warps the input frames with a proposed bilateral motion model and
combines them using learned dynamic blending filters. CAIN [Choi et al., 2020] uses
a channel attention module to interpolate video frames without the need for estima-
tion of motion. SoftSplat [Niklaus and Liu, 2020] proposes differentiable forward
warping via softmax splatting and shows its benefits for VFI. AdaCoF [Lee et al.,
2020] proposes a warping module in which a target pixel can refer to not only one
but many pixels at any location in the reference. XVFI [Sim et al., 2021] presents a
high-speed (1000fps) video dataset and proposes a multi-scale recursive approach to
handle large motion in the scene. Recently, FILM [Reda et al., 2022] has introduced
a unified framework that achieves superior results for large and complex motions
by balancing the motion range distribution in the training dataset. Combining large
and strongly non-uniform motions might lead to highly objectionable artifacts for all
methods discussed here.

Non-Uniform Assumption

It is highly possible that non-uniform motion, such as rotatory motion, could be cap-
tured in the video sequences. This challenging case can directly affect the quality of
the synthesized frames due to possible wrong positioning caused by the bi-directional
warping of existing keyframes. For this reason, recent methods focused on handling
non-uniform motion such that QVI [Xu et al., 2019] is one of the first video interpo-
lation methods to model curvilinear motion with the quadratic equation using four
temporal frames. Chi et al. [2020] extend QVI by introducing an additional cubic
term that accounts for the change in acceleration. ABME [Park et al., 2021] handles
the non-uniform motion in the scene by extending the BMBC [Park et al., 2020] for
asymmetric bilateral motion between input frames. In all those methods, more than
two consecutive frames are required to capture the non-uniform motion that might
be challenging for large and complex motions, both because of temporal sampling
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deficits and overall reduced flow estimation accuracy. In this thesis (Chapter 4),
capturing two exposures in a single frame using a multi-exposure sensor helps to
increase the sampling rate twice, so the motion blur inherent to the longer exposure
serves as an additional cue to the flow estimation that helps recover non-uniform
motion.

2.3.2 Motion Flow Reconstruction From Motion Blur

A combination of longer exposure times and rapid motion in the scene or camera
might lead to visible motion blur that typically is considered degradation and elimi-
nated using dedicated image and video deblurring solutions. Extensive surveys on
this topic [Koh et al., 2021; Zhang et al., 2022] have analyzed the recent solutions
for video deblurring. This section focuses on deblurring solutions that explicitly
recover intra-frame optical flow from motion blur. Earlier works [Rekleitis, 1995;
Schoueri et al., 2009] assume global motion models that lead to spatially-invariant
deblurring kernels. More advanced solutions support spatially-varying kernels that
are approximated by linear motion [Hyun Kim and Mu Lee, 2014; Dai and Wu, 2008].
Gong et al. [2017] propose a deep-learning approach to handle heterogeneous blur;
however, they simulate motion flows with a set of constrained flow magnitudes and
directions to generate the training pairs. The following work [Argaw et al., 2021]
alleviates this issue by deploying available synthetic and real scene blur datasets
without any restrictive motion assumptions and estimating a dense optical flow
directly from motion blur in the image. However, their estimation may be subject to
ambiguity in predicting the correct direction of flow, which is crucial in the case of
this thesis. Beyond restoring latent sharp images, a joint estimate of the 3D shape and
motion is feasible, but highly motion-blurred images are required [Qiu et al., 2019;
Rozumnyi et al., 2022]. While these methods aim to recover the motion flow from blur,
they assume that the input blurry image is mostly well-exposed. However, longer
exposure times lead to considerable saturated pixels in the long blurry exposure. This
problem could be alleviated using the sharp short exposure that also bypasses the
image deblurring task.

2.3.3 Joint Deblurring and Interpolation

Recent works demonstrate that joint deblurring and frame interpolation greatly
improves the resulting VFI quality over an independent treatment of these tasks. One
of the recent methods [Jin et al., 2019] adopts a joint optimization scheme to extract
sharp keyframes within a frame by processing four consecutive blurry frames and
then smoothly interpolating the in-between frame using the extracted keyframes. The
following works [Shen et al., 2020a; Shen et al., 2020b] simultaneously remove the
motion blur and interpolate the in-between frames by employing a recurrent pyramid
framework to aggregate the temporal information efficiently. Another method [Gupta
et al., 2020] relaxes the strong assumption that all the input frames in a captured
video are blurry and adapts attention mechanisms to decide on deblurring each
frame based on the information from the neighbor frames. While these methods
mainly attempt to remove the motion blur in the VFI task, the inherent motion blur
can potentially reveal information about the magnitude and direction of the motion,
especially in the case of large non-uniform motion. Along these lines, Zhang et al.
[2020] propose a VFI solution closest to the work presented in this thesis. They
first extract two sharp keyframes corresponding to the start and the end of a blurry
frame, and then, by taking two consecutive frames, they compute the optical flow
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between the resulting four keyframes. By employing a quadratic motion formulation,
they can handle non-uniform motion. However, in this approach, the inaccuracy in
predicting the keyframes affects the quality of the flow estimation, which in turn is
prone to error, especially for large motion, whereas the methodology in this thesis
(Chapter 4) benefits from the less blurred short exposure in each frame to make the
flow estimation more reliable. This enables consideration of more intra- and inter-
frame flows that are independently estimated, and this processing is carried across
subsequent stages of the multi-network pipeline using a multiresolution approach.
This thesis (Chapter 4) aims to create a novel HDR VFI so that dealing with extensive
saturated regions in the blurry long exposure plays an important role.

2.3.4 High-Speed Video Datasets

High-speed cameras are expensive, and collecting high-speed videos is difficult
because daily live cameras mostly do not support higher framerates. High-speed
videos play a crucial role in the development of methodologies such as deblurring,
frame interpolation, and obtaining ground-truth optical flow. Some of the recent
examples of such high frame rate datasets are Adobe240 [Su et al., 2017], GoPro[Nah
et al., 2017], X4K1000FPS [Sim et al., 2021], and SlowFlow [Janai et al., 2017]. While
Adobe240 and GoPro are the standardized datasets, SlowFlow is captured with a
better camera supporting a higher resolution, and it was originally used to obtain
ground truth optical flow. The most recent dataset, X4K1000FPS, which has the
highest resolution with the highest framerate (Table 2.1), gives a great opportunity
to test frame interpolation in case of very high framerates. The magnitude and non-
uniformity of the motion are variable in each scene as a result of a diverse set of
object movements. Comparably, the lower framerates provide discrete motion blur
simulation that could possibly diverge from the camera readings. For this reason, the
X4K1000FPS dataset is more valuable for the simulation of camera motion blur due
to the more continuous readings.

Dataset FPS Resolution # of Scenes
Adobe240 240 1280 × 720 133

GoPro 240 1280 × 720 33
SlowFlow 240 1530 x 928 41

X4K1000FPS 1000 4096 × 2160 110
TABLE 2.1: Commonly used high-speed datasets with varying framerates and different resolutions.
They are captured with the high frame rate cameras, providing more continuous scene readings compared
to conventional cameras. They include various types of scenes to enrich their diversity.

The first purpose of this thesis (Chapter 4) for using high-speed datasets is the
simulation of sensor readings, e.g., camera motion blur, due to continuous captured
motion. Furthermore, they provide ground-truth labels for video frame interpolation
that extra in-between frames indicate the true motion for the missing frames. Lastly,
this thesis focuses on the motion non-uniformity metric that analyzes the motion
linearity within the existing frames. This analysis is useful for measuring the perfor-
mance of the existing VFI methods and the proposed HDR VFI methodology under
different levels of motion non-uniformity.
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2.4 Image Quality Metrics

Image quality metrics have been important since the early days of image processing.
They quantitatively assess the quality of images by considering aspects such as
sharpness, contrast, and color accuracy. Depending on whether a reference image
exists, image quality metrics can be categorized as either full-reference (FR-IQM) or
no-reference (NR-IQM). This section reviews the existing image quality metrics that
employ different strategies for image quality assessment.

2.4.1 Full-Reference Metrics

FR-IQMs can be categorized into classical metrics, which perform the computation
directly in the image space, and learning-based metrics, which leverage deep feature
models to assess image quality.

Classical Metrics

Basic FR-IQMs, such as MSE, RMSE, and MAE, compute the per-pixel difference
to quantify image distortion. While these metrics are straightforward to calculate,
their consistency with human vision is typically low. Such perceptual consistency
can be improved by considering relative instead of absolute error, as in PSNR and
the symmetric mean absolute percentage error (SMAPE) [Vogels et al., 2018]. To
account for the spatial aspects of the human visual system, alternative metrics such as
SSIM [Wang et al., 2004a] are introduced, which consider image patches and measure
local differences in luminance, contrast, and structural information. SSIM is further
extended to multi-scale MS-SSIM [Wang et al., 2003] and complex wavelet CW-SSIM
[Sampat et al., 2009] versions that capture both global and local structural informa-
tion. FSIM [Zhang et al., 2011b] decomposes the image into multiple subbands using
Gabor filters and compares subband responses between the reference and distorted
images. By assuming that natural images have a specific distribution of pixel values,
models based on information theory [Sheikh and Bovik, 2005; Sheikh and Bovik, 2006]
measure the mutual information between images by comparing their joint histograms
and taking into account the statistical dependencies between neighboring pixels.
Classical metrics can offer either a single overall quality score or a visibility map
indicating the distortion intensity. Watson-DCT [Watson, 1993], VDM [Lubin, 1995],
VDP [Daly, 1993], HDR-VDP [Mantiuk et al., 2011a], and FovVideoVDP [Mantiuk
et al., 2021] measure either the visibility of distortions or perceived distortions magni-
tude, or both by considering various visual aspects such as luminance adaptation,
contrast sensitivity, and visual masking. A more recent metric, FLIP [Andersson
et al., 2020], emphasizes color differences, and it is sensitive to even subtle distortions
by emulating flipping between the compared image pair.

Deep Learning-Based Metrics

In recent years, research in FR-IQM has been placing greater emphasis on perceptual
comparisons in deep feature space rather than image space to enhance the alignment
with human judgments. Prashnani et al. [2018] are among the first to utilize deep
feature models learned from human-labeled data to predict perceptual errors. Zhang
et al. [2018b] demonstrate that internal image representations from classification
networks can be used for image comparison. They propose the Perceptual Image
Patch Similarity (LPIPS) index, which quantifies image similarity by measuring the
ℓ2 distances between pre-trained VGG features. To further improve the correlation
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FIGURE 2.3: Agreement of metric predictions with human judgments. The classic (MAE and SSIM)
and learning-based (LPIPS and DISTS) metrics are considered, and their prediction is compared to
their enhanced versions (E-MAE, E-SSIM, E-DISTS, and E-LPIPS) using the approach in this thesis.
On the left is the situation where MAE and SSIM favor JPEG-like artifacts over slightly resampled
textures. On the right, a scenario is accounted for where LPIPS and DISTS prefer blur over a subtle
color shift. Metric versions with the proposed technique in this thesis are better aligned with human
choice. The images have been extracted from the PIPAL dataset [Jinjin et al., 2020].

with human judgments, they learn per-channel weights for selected VGG features
using their collected perceptual similarity dataset. Recognizing that simple ℓp-norm
measures fail to consider the statistical dependency of errors across different locations,
[Ding et al., 2022] introduces the DISTS, which aims to measure the texture and
structure similarity between feature pairs by comparing their global mean, variance,
and correlations in the form of SSIM. Building upon this work, A-DISTS [Ding et al.,
2021a] extended the approach to incorporate local structure and texture comparisons.
Czolbe et al. [2020] incorporate their extended Watson-DCT model [Watson, 1993]
as a measure of VGG feature distance. Moving away from deterministic point-wise
feature comparisons, DeepWSD [Liao et al., 2022] compares the overall distributions
of features using the Wasserstein distance, a statistical measure for comparing two
distributions. Nevertheless, the majority of the proposed IQM metrics are targeted
toward producing a single quality score and are not primarily designed to generate
per-pixel error maps. In this regard, Wolski et al. [2018] employ a custom CNN model
trained in a fully supervised way using coarse user marking data to predict an error
visibility map that highlights the regions where distortions are more likely to be
noticeable.

This thesis (Chapter 5) extends the classic and deep learning-based full-reference
metrics, as can be seen in (Figure 2.3), by introducing a learnable component trained
on perceptual MOS data in a self-supervised way. By implicitly analyzing local
image content, the trained model derives per-pixel maps that mimic visual masking,
effectively modeling the visual significance of distortions.

2.4.2 No-Reference Metrics

NR-IQMs asses the quality of the images without relying on the reference images.
When ground-truth data is unavailable, certain metrics can still be useful, but esti-
mating errors becomes more difficult without reliable references. Conventionally,
different perspectives have been employed in the no-reference metrics as comprehen-
sively reviewed in [Chandler et al., 2014]. BIQI [Moorthy and Bovik, 2010] proposes
a methodology that uses the statistics of distorted images based on natural image
statistics. BLIINDS-II [Saad et al., 2012] introduces discrete cosine wavelet coefficients
to estimate the features of the distorted images. Recently, deep learning-based no-
reference metrics such as KonCept512 [Hosu et al., 2020], HYPERIQA [Su et al., 2020],
MUSIQ [Ke et al., 2021] and MANIQA [Yang et al., 2022] have been proposed.
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While NR-IQM methods often report impressive performance, their practical ap-
plicability remains limited. FR-IQM metrics are still predominant in CG applications,
as the reference images are typically readily available. The focus of this thesis is not
the NR-IQMs, but they are included in the comparisons (Chapter 5) to see how they
are positioned among the FR-IQMs and their enhanced versions.

2.4.3 Visual Masking Model

There have been several efforts in the past towards incorporating the perceptual
aspects of human vision, specifically visual masking [Legge and Foley, 1980; Foley,
1994; Wilson and Gelb, 1984], into FR-IQM methods [Lubin, 1995; Daly, 1993; Mantiuk
et al., 2011a; Mantiuk et al., 2021]. In simple words, visual masking refers to the
phenomenon in which certain components of an image (in the case of this thesis,
distortions) may be less visible to the viewer due to the presence of other visual
elements in the same image. Visual masking can affect image quality perception,
making some image distortions less visible to the viewer [Ferwerda et al., 1997; Zeng
et al., 2002]. However, existing visual masking models are typically hand-crafted
and struggle to generalize effectively across various distortions. Although learning a
visual masking model appears to be a natural solution, the lack of reliable ground
truth data for visual masking makes direct supervision impractical. In this thesis
(Chapter 5), a self-supervised approach is proposed to predict visual masking using a
dataset of images featuring a variety of distortions of different magnitudes whose
quality has been evaluated in the mean opinion scores (MOS) experiment with human
subjects [Lin et al., 2019]. This thesis aims to improve the quality prediction of existing
metrics to align more closely with human judgment by detecting the presence and
evaluating the magnitude of visible distortion in each pixel.

2.4.4 Image Quality Datasets

Considerable amounts of datasets have been proposed to test the prediction perfor-
mance of the quality metrics. These datasets later served as a purpose of training
for learning-based approaches. They mainly consist of reference images grouped
with different distortions at different levels. Each reference image is coupled with
different types of distortions so that the diversity in the dataset is achieved. Although
the earlier datasets have traditional distortions such as Gaussian noise, Gaussian
blur, and JPEG artifacts, the newer datasets (e.g., PIPAL [Jinjin et al., 2020]) contain
additional artifacts resulting from different types of convolutional neural network
reconstructions. This dataset enables the quality assessment of recently faced artifacts.
Here is the list of the most recent image quality datasets CSIQ [Larson and Chandler,
2010], TID2013 [Ponomarenko et al., 2015], KADID [Lin et al., 2019], and PIPAL [Jinjin
et al., 2020] and the details of the each dataset is reported in Table 2.2. CSIQ, TID2013,
and KADID datasets are MOS datasets, meaning that humans rate how strongly
the distortion is visible to them. On the other hand, the most recent dataset, PIPAL,
employs a statistic-based Elo rating system by collecting people’s opinions.

In addition to these datasets, Wolski et al. [2018] proposed a dataset that indicates
the probability of visibility of the errors in the image regions. However, the exper-
imental procedure is very time-consuming compared to MOS datasets due to the
careful localization of the visual errors by humans, making it harder to repeat for the
new types of distortions, such as CNN artifacts.
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Dataset # of Reference Images # of Distortion Types Total # of Distorted Images
CSIQ 30 6 866

TID2013 25 24 3000
KADID 81 25 10125
PIPAL 200 40 23200

TABLE 2.2: The number of images in the recently proposed image quality datasets. As the older datasets
have less diversity in the number of distortion types, the newer datasets come with a richer set of
distortion types that helps assess how image quality metrics are generalizable.

This thesis (Chapter 5) uses KADID to derive visual masks in a self-supervised
manner. The proposed methodology is evaluated on the CSIQ, TID2013, and PIPAL
datasets to determine how the enhanced metrics correlate with mean opinion scores.
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Chapter 3

Image and Video Enhancement and
HDR Reconstruction

This chapter uses multi-exposure sensors together with a CNN approach to improve
image and video quality by removing CMOS sensor distortions and expanding dy-
namic range. High dynamic range (HDR) video reconstruction using conventional
single-exposure sensors can be achieved by temporally alternating exposures (Sec-
tion 2.2.1). This, in turn, requires computing exposure alignment, which is difficult to
achieve due to the exposure differences that notoriously create problems for moving
content, particularly in larger saturated and dis-occluded regions. An attractive
alternative is multi-exposure sensors that capture, in a single-shot, differently ex-
posed and spatially interleaved half-frames so that they are perfectly spatially and
temporally (up to varying motion blur) aligned by construction (Section 2.2.2). In
this chapter, it is demonstrated that reduced spatial resolution and aliasing in such
sensors are successfully compensated, and overall, the quality and dynamic range of
reconstructed HDR video with respect to single-exposure sensors are improved for a
given number of alternating exposures. Specifically, low, mid, and high exposures
are considered, and the mid exposure is captured for every frame that serves as a
spatial and temporal reference. Here, neural networks for denoising, deblurring,
and upsampling tasks are capitalized so that two clean, sharp, and full-resolution
exposures for every frame are obtained effectively, which are then complemented by
warping a missing third exposure. High-quality warping is achieved by learning opti-
cal flow that merges the individual flows found for each specific exposure. Such flow
merging is instrumental in handling saturated/dis-occluded image regions, while
dense temporal sampling of mid-exposure improves motion quality reproduction
between more sparsely sampled exposures. It is also demonstrated that by capturing
only a limited amount of sensor-specific data and a novel use of histograms instead of
common parametric noise statistics, that makes it possible to generate synthetic train-
ing data that lead to a better denoising and deblurring quality than can be achieved
by existing state-of-the-art methods. As there is not enough high-quality HDR video
available, the method is devised to learn from LDR video instead. The proposed
approach compares favorably to several strong baselines and can boost existing HDR
image and video methods when they are re-trained on the used training data.

3.1 Introduction

Common single-exposure sensors only capture a limited range of luminance values,
while many display and editing tasks would greatly benefit from capturing a higher
range [Reinhard et al., 2010]. Multi-exposure techniques [Mann and Picard, 1995;
Mitsunaga and Nayar, 1999; Debevec and Malik, 1997] allow for HDR image and
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FIGURE 3.1: HDR video reconstruction of a high-contrast scene (left) using three temporally alternating
exposures. Different reconstruction methods are considered for the scene captured with multi-exposure
(rows 1 and 2) and conventional single-exposure (rows 3 and 4) sensors. Insets are locally tone-mapped.
Rows 1 and 3 show a bright part of the scene (outdoor sun), while rows 2 and 4 show a dark part (indoor
shadow). As different sensors are used, the scene is not fully identical, so insets cannot be compared
pixel-wise. The first three columns show that any single exposure on any sensor does either not capture
the bright or the dark part. Note that the waving tissue is dynamic across those exposures in rows 1 and
3. Other methods, designed for conventional sensors, have artifacts discussed in the main text, such
as noise, motion blur, saturation, and color shifts (rows 3 and 4). When using these methods on the
multi-exposure sensor in single-exposure mode, artifacts remain (rows 1 and 2). The proposed method
provides high-quality results across the entire brightness regime (right, columns).

video reconstruction for such sensors [Kang et al., 2003; Mangiat and Gibson, 2010;
Gryaditskaya et al., 2015; Kalantari et al., 2013; Kalantari and Ramamoorthi, 2017;
Kalantari and Ramamoorthi, 2019], but a notorious problem here is spatial and
temporal exposure alignment for moving content, in particular, in the presence of
large saturated and occluded/disoccluded regions. Modern multi-exposure sensors,
such as some CMOSIS CMV and Sony IMX sensors, allow one to configure different
levels of exposure for different spatial patterns [CMV12000, 2021; IMX, accessed on
Sept. 17, 2021]. This allows the expansion of the dynamic range in a single shot
by spatially interleaving different exposures across the sensor [Gu et al., 2010; Cho
et al., 2014]. The challenge is to combine different exposures into a coherent natural
image Figure 3.2. It is even more challenging to not only spatially but also temporally
alternate exposures to expand the dynamic image and video range even further
(Figure 3.1). This chapter addresses those challenges by capitalizing on the strength
of modern machine learning (ML) methods in compensating for distortions inherent
to multi-exposure capturing. Moreover, it is also demonstrated that additional data
provided by such sensors is instrumental in improving the ML method’s performance
beyond what might be possible for single-exposure sensors.

3.2 Overview

This chapter proposes a processing pipeline to create HDR video from a sequence
of frames with spatially-interleaved multi-exposures as shown in Figure 3.3. The
pipeline is composed of three networks denoisedenoisedenoise, flowMergerflowMergerflowMerger, and blendblendblend (denoted
with purple font) that are cascaded with non-learnable, known from the literature com-
ponents: demosaicking [Malvar et al., 2004], flowEstimation [Teed and Deng, 2020],
differentiable warp operator (which consists of backward warping bwarp [Paszke
et al., 2019] and forward warping fwarp [Xu et al., 2019]) and makeHDR [Debevec
and Malik, 1997] (green font). Input to the algorithm is three Bayer raw frames
that are captured at times: It−1, It, and It+1. First, joint debluring, denoising, and
upsampling are performed using a Siamese architecture with three denoisedenoisedenoise networks
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FIGURE 3.2: Example of spatially-varying exposures and reconstructed HDR. Exposure varies between
odd and even columns.
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FIGURE 3.3: The pipeline for temporally-alternating exposures takes three neighboring frames It−1,
It, and It+1 as the inputs and creates an HDR image aligned with the frame It. Each input frame
is a Bayer raw image with two interleaving exposures. In this scheme, the frame It contains mid
and high exposures, and each of the frames It−1 and It+1 contains the low and mid exposures.
The input exposures are deblurred, denoised, and upsampled using Siamese network denoisedenoisedenoise. The
resulting exposures undergo demosaicking. Then, non-learnable flowEstimation derives optical
flows between the corresponding exposure pairs, as denoted with the line arrows, and finally, network
flowMergerflowMergerflowMerger aggregates them into optically consistent forward and backward flows. Afterward, this
way, learned flows are used to warp exposures L̂−1 and L̂+1 to the position of It, and then missing
exposure L̂0 is learned by network blendblendblend. Finally, all three exposures L̂0, M̂0, and Ĥ0 are used to
reconstruct the output HDR image. Note that the length of the bars indicates the exposure time of each
exposure.

to reconstruct clean and full-resolution exposures. Those exposures then undergo
demosaicking to finally derive low and mid exposure L̂−1 and M̂−1 for frame It−1,
mid and high exposure M̂0 and Ĥ0 for frame It, and low and mid exposure L̂+1 and
M̂+1 for frame It+1. Effectively, either low or high exposure is missing for each frame,
as mid-exposures are captured for every frame. In the right part of Figure 3.3, the
focus is on reconstructing such a missing exposure L̂0 for frame It at time t. Note
that the time axis is shown along the vertical direction, so the exposure duration and
its overlap in the temporal domain can be seen. After computing optical flows be-
tween available exposure pairs using flowEstimation as denoted by the line arrows,
network flowMergerflowMergerflowMerger learns optimized forward and backward flows that they are
employed by warp to align exposures L̂−1 and L̂+1 with frame It. Network blendblendblend

combines the resulting warped exposures into the missing L̂0, which is then submitted
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along with M̂0 and Ĥ0 to makeHDR that reconstructs an output HDR frame.
One of the key problems here is to obtain training data, which is synthesized using

only a limited amount of captured data to account for complex sensor-specific noise
characteristics. Pre-captured high-speed videos are also used to model exposure-
dependent motion blur (MB). In Section 3.3, the sensor reading simulation as required
to train the network denoisedenoisedenoise is presented. In Section 3.4, the details on networks
flowMergerflowMergerflowMerger and blendblendblend are provided, as well as the complete pipeline for HDR video
reconstruction. Section 3.6 evaluates the performance of denoisedenoisedenoise and HDR video
reconstructions. Noise analysis of different sensors is presented in Section 3.7, and
additional materials are provided in Section 3.8 and Section 3.9. Section 3.10 discusses
the limitations of the proposed techniques, and finally, this chapter is concluded in
Section 3.11.

3.3 Deblurring and Denoising

Image deblurring and denoising are typically solved by supervising a CNN with pairs
of CLEAN and DISTORTED videos to implement DISTORTED→CLEAN restoration.
For the multi-exposure sensor, it is difficult, as capturing DISTORTED sensor readings
is time-consuming, and there is also a lack of CLEAN video. For this reason, the
methodology is proposed to overcome both limitations.

Addressing the first, instead, a different function is learned: CLEAN→DISTORTED,
which generates samples containing correlated pixel and row noise, as well as motion
blur from CLEAN sensor readings. Previous work has made simplifying assumptions,
such as Gaussian or Poisson noise, none of which apply to the problem of a multi-
exposure sensor. A non-parametric noise model is proposed that is expressive yet can
be trained on a low number of CLEAN-DISTORTED pairs. While simple histograms
are referred to here, they have not been used so far in deep denoising applications.

Second, LDR video is supervised instead because there are not enough CLEAN

samples that require HDR video. Unfortunately, this LDR video does not have the
same type of MB as found in HDR sensor readings. Hence, high-speed LDR video is
used to simulate column-alternating MB in the multi-exposure sensor.

The proposed approach has two steps: learning a model to synthesize distortions
to train on (Section 3.3.1; an example result in Figure 3.4) and learning to remove
distortions (Section 3.3.2).

3.3.1 Clean-to-Distorted

There are three distortion steps described in the order of the underlying physics
(Figure 3.5): motion blur (Section 3.3.1), pixel noise (Section 3.3.1), and row noise
(Section 3.3.1). For all steps, the analysis is evaluated from noisy sensor readings to
devise a statistical model for inference from DISTORTED, and a synthesis step to apply
it to CLEAN.

Motion Blur

With different exposures in different columns, their MB is also different. For example,
at exposure ratio r = 4, MB is also four times longer, and the image is a mix of
sharp and blurry columns. As getting reference data without MB, in particular HDR,
is difficult, the focus turns to existing LDR high-speed video footage to simulate
multi-exposure MB.
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FIGURE 3.4: Given a noise-free low-exposure reference (not shown), the proposed noise synthesis is
compared as well as parametric heteroscedastic Gaussian [Foi et al., 2008] (HetGau) and [Foi, 2009]
noise models with a real sensor reading reference (right column). Note the strong correlation between
the noise synthesis and the reference.

Data The high-speed video dataset from [Janai et al., 2017], which has no, or
negligible, inherent MB, is used. Note that these are not captured with the multi-
exposure sensor, and they have limited dynamic range. They are neither input to nor
output from the proposed approach and only provide supervision.

Synthesis Synthesis starts from a random frame of 8-bit LDR high-speed video ILDR.
It is converted to a floating point, and an inverse gamma is applied at γ = 2.2. This
is called the low frame image, denoted IL = Iγ

LDR. Since the multi-exposure sensor
assures that the low and high exposures are ending at the same time [CMV12000,
2021], to simulate the high frame exposure, four subsequent IL are averaged, then
scaled by the exposure ratio, and clamped as in

IH = clamp(r × Et∈{0,1,2,3}[IL(t)]).

Finally, the low-frame pixels are inserted into the even columns and the high frames
into the odd ones, resulting in the motion-blurred image IMB.
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FIGURE 3.5: The proposed HDR distortion generation pipeline: LDR 240 Hz video is utilized in the
top left, from which frames t to t + n are extracted, integrated, and virtually exposed to produce an
image with MB (first row). Next, pairs of noisy and time-averaged noise-free sensor readings are taken,
and a non-parametric noise model (histogram) for low and high exposure is produced. This noise model
is added to the virtual exposure image MB (second row). Finally, a model of row noise is extracted
by averaging vertically or horizontally; this can be added to the pixel noise image, producing the final
image with all distortions present (third row).

Pixel Noise

Pixel noise occurs in the sensor and is applied after motion blur, which happens in
the sensors. Instead of employing a parametric noise model that has the strengths as
priors and for analysis, the non-parametric histograms are used to capture a noise
model well-suited for generation. Prior to the noise model derivation, the fixed
pattern noise is removed for the sensor, apart from the fixed pixel noise, which also
includes the fixed column noise [Janesick, 2001].

Data Assuming that there is a limited amount of GT sensor readings available. In
practice, no more than 30 pairs of images (not video) are used that are captured with
the target sensor of everyday scenes. Ground truth is acquired by averaging the result
of 100 captures of the scene at a very low exposure (so as to make clipping effects
negligible) and using a very long exposure.

Analysis The noise is different for different exposures and also for different color
channels. The non-parametric model pc,e(x|y) is built, the probability that when
the GT value is y, the sensor will read x for channel c and exposure e. A separate
model is maintained for every channel in every exposure, leading to six models for
three color channels and two exposures although the noise models are similar for
different channels at the same exposure. Histograms Hc,e[x][y] are used to represent
the probability distribution over x for each y in channel c at exposure e. To construct
all histograms, every pair of sensor readings and their ground truth, as well as every
pixel and every channel, are iterated. Bin x for histogram y is incremented when the
GT pixel is y, and the sensor reading is x for channel c and exposure e. The number of
histogram bins depends on the bit depth, typically 12 bits, resulting in 4096 bins. After
analysis, all histograms are converted into inverse cumulative histograms Cc,e[x][y],
allowing to sample from them in constant time.

Synthesis Noise synthesis is applied to IMB, the image with simulated MB. Every
pixel and every channel of the MB image IMB is iterated to obtain a GT value y. A
random number ϕc,e is used to look up the respective cumulative histogram Cc,e to
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produce a simulated sensor value x. Combining all pixels, channels, and exposures
results in a virtual synthetic image IPN involving MB and pixel noise.

Row Noise

At short exposures, more structured forms of noise can become important, one of
them being row noise. This is not to be mistaken with fixed-pattern noise that is
frequently spatially correlated but much easier to correct. In row noise, pixels do not
change independently; rather, all pixels in a row change in correlation, i. e., the entire
row is darkened or brightened. This is a well-known problem for CMOS sensors
that are typically caused by the random noise that shifts the voltage level(s) in the
Analog-to-Digital Converter (ADC) that, in turn, affects the ADC slope and results
in an offset that is consistent for all pixels in the row (refer to [Oten and Li, 2011]
and references therein). As the CMOSIS CMV12000 (global shutter) sensor, which is
used in this chapter, features row-by-row pixel read-out, the row noise can be clearly
observed (Figure 3.4). Similar row noise (dynamic streak noise) has been observed on
many sensors, e.g., Canon 5D Mark III and Grasshopper3 GS3-U3-32S4C. Along with
clipped noise distributions, this noise is notorious in low-light conditions that are of
interest in HDR image capturing.

Sensor manufacturing tries to solve this problem by collecting on-the-fly statistics
for surrounding rows to find voltage level offsets in ADC [Oten and Li, 2011], which
is prone to errors due to variable image content. It would be impractical for each
such sensor and its electronics instance to derive a parametric model that captures
the specifics of their row noise. Even if one distortion followed any assumptions,
their combination does not. Instead, a histogram approach is employed, which is
more descriptive than a parametric model and simpler to implement without any
involved mathematical considerations. This approach is used to synthesize noise and
ultimately remove it.

Analysis All pairs of GT and sensor images are again iterated, but instead of
working on pixels, the work is done on entire rows. In particular, the eight separate
means across every row for every channel and exposure are considered. This mean is
denoted as x̄ in the sensor image and as ȳ in the GT image. The next step is to build
a model in the form of a histogram, resulting in the inverse cumulative row noise
model C̄c,e[x̄][ȳ].

Synthesis Synthesis of row noise starts from the image with synthetic MB and
pixel noise IPN . Every row, channel, and exposure is iterated, the row means ȳc,e is
computed, and again, random number ϕ̄c,e is used to draw from C̄c,e[ϕ̄][ȳ]. To make
the row mean match the desired mean, the difference of the means is added to the
row, resulting in the final synthetic noisy image IAll.

3.3.2 Distorted-to-Clean

The network denoisedenoisedenoise (refer to Section 3.5 for implementation details) is trained under
an L1 loss in linear space to derive clean exposures from the multi-exposure sensor
capturing. The network fully operates in the raw Bayer domain. Non-learnable
demosaicking [Malvar et al., 2004] is then used to derive RGB exposures. In Sec-
tion 3.6.1, the performance of network denoisedenoisedenoise is evaluated in denoising and deblur-
ring tasks.
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3.4 HDR video reconstruction

To reconstruct HDR video, three consecutive frames, It−1, It, and It+1, are consid-
ered, each with a pair of interleaved exposures that partially overlap in the time
domain as shown in Figure 3.6. As one such interleaved exposure, each frame in-
cludes a common mid exposure to facilitate finding spatial and temporal (amount of
motion blur) correspondence between the frames. All frames are captured in a RAW
format.

Denoising, deblurring, and upsampling network The Siamese network architecture
is used for network denoisedenoisedenoise, as introduced in Section 3.3.2, is repeated for each
input frame It−1, It, and It+1. The input frames are jointly denoised, deblurred,
upsampled, and split into six separate exposures as follows:

L−1, M−1 = denoisedenoisedenoise(It−1)

M0, H0 = denoisedenoisedenoise(It)

L+1, M+1 = denoisedenoisedenoise(It+1),
(3.1)

where clean full-resolution low and mid exposure L−1 and M−1 for frame It−1, mid
and high exposure M0 and H0 for frame It, and low and mid exposure L+1 and M+1 for
frame It+1 are reconstructed. The resolution increases here due to upsampling in the
horizontal direction by a factor of 2, while the amount of blur is aligned with mid-
exposures. The resulting exposures are then directly submitted to a non-learnable
demosaicking algorithm as proposed in [Malvar et al., 2004]:

L̂−1 = demosaicking(L−1), M̂−1 = demosaicking(M−1)

M̂0 = demosaicking(M0), Ĥ0 = demosaicking(H0)

L̂+1 = demosaicking(L+1), M̂+1 = demosaicking(M+1), (3.2)

where L̂−1, M̂−1, M̂0, Ĥ0, L̂+1 and M̂+1 denote full-resolution linear RGB exposures. Note
that exposure L̂0 is missing at time t that corresponds to frame It (refer to Figure 3.6).
Further discussion focuses on the reconstruction of this missing exposure (refer to
Figure 3.3, right).

Flow merging network L̂0 can be reconstructed by warping frames L̂−1 and L̂+1 that
require the corresponding optical flow computation. In multi-exposure sensors, dif-
ferent exposure pairs L̂−1/M̂−1, M̂0/Ĥ0, and L̂+1/M̂+1 are perfectly spatially registered,
while as an outcome of deblurring, they are temporally aligned as well. Consequently,
a flow found between frames with the same exposure immediately applies to an-
other exposure. This alleviates the problem of flow computation for pixels that are
saturated at one exposure, which might be challenging for single-exposure sensors
[Kalantari and Ramamoorthi, 2017; Kalantari and Ramamoorthi, 2019]. Moreover,
the outcome of a state-of-the-art optical flow algorithm can be further refined by
checking the flow consistency between different exposures.

The optical flow algorithm flowEstimation [Teed and Deng, 2020] is used for
estimating flows FM

0→−1, FM
0→+1, FL

+1→−1 and FL
−1→+1, where FE

i→j is the flow from
exposure Ei to Ej. Typically, the most reliable are flows FM

0→−1 and FM
0→+1 as exposures

M̂−1, M̂0, and M̂+1 are available for consecutive frames. Nevertheless, saturated image
regions in such mid exposures might reduce the quality of derived flows, and then
relying on flows FL

+1→−1 and FL
−1→+1 between low exposures might be beneficial. As

the latter flows are computed between exposures L̂−1 and L̂+1, and thus are separated
by two frames, they need to be properly split to the time position of missing exposure
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FIGURE 3.6: Optical flow computation for multi-exposure sensor and temporally interleaving exposures.
In each frame, two exposures partially overlap in the temporal domain, and a ratio of four between
the exposure duration is assumed. Following the multi-exposure sensor specification, the end point
of those exposures is temporally aligned. The time interval ∆t corresponds to low exposure duration
(black bar). Each frame contains mid exposure (dark blue bars that overlap with black bars in It−1
and It+1). Frame It also includes high exposure (bright blue bars). The starting and ending points
for flows FM0→−1, FM0→+1, FL−1→+1, and FL−1→+1 in the temporal domain are marked with arrows. te
denotes the exposure time, and tR =5∆t is the read-out time that roughly follows multi-exposure sensor
specification.

L̂0 in frame It (refer to Figure 3.6). This task is relegated to network flowMergerflowMergerflowMerger that
derives refined flows FL

0→−1 and FL
0→+1 by consistently merging information from all

input flows:

FL
0→−1, FL

0→+1 = flowMergerflowMergerflowMerger(M̂0, M̂−1,
M̂+1, L̂−1, L̂+1, FM

0→−1, FM
0→+1,

FL
−1→+1.FL

+1→−1),
(3.3)

Exposure L̂0 blending network The flows FL
0→−1 and FL

0→+1 are used, a non-
learnable warping algorithm [Paszke et al., 2019] is applied to derive two low-
exposure estimates L̂−1→0 and L̂+1→0 that are aligned with frame It:

L̂−1→0 = bwarp(L̂−1, FL
0→−1) L̂+1→0 = bwarp(L̂+1, FL

0→+1)

The warped exposures L̂−1→0 and L̂+1→0 are then supplied to the blendblendblend network:

L̂0 = blendblendblend(M̂0, L̂−1→0, L̂+1→0) (3.4)

which is responsible for creating the missing low exposure L̂0. Here, exposure M̂0
provides an additional reference for spatial positioning. Finally, L̂0, M̂0, and Ĥ0 are
combined into the output HDR Y0 frame using a non-learnable makeHDR technique
similar to [Debevec and Malik, 1997].

The methodology so far, as well as the scheme in Figure 3.3, focused on recon-
structing missing low exposure L̂0 for frame It. Nevertheless, missing high exposures
Ĥ−1 and Ĥ+1 for frames It−1 and It+1 are reconstructed in the same way. Once trained,
the network is employed to derive both low and high exposures.

3.4.1 Loss Function

The training starts from network denoisedenoisedenoise; then its weights are fixed and cascaded
with network flowMergerflowMergerflowMerger, which is trained next. Finally, this procedure is repeated
with network blendblendblend that completes the whole system training. L1 loss is used to
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calculate the following loss functions:

Ld = ||L−1 − L′−1||1 + ||M−1 − M′−1||1 + ||M0 − M′0||1+
||H0 − H′0||1 + ||L̂+1 − L′+1||1 + ||M+1 − M′+1||1, (3.5)

where L′−1, M′−1, M′0, H′0, L′+1 and M′+1 denote the ground truth Bayer RGGB channels,
and

Lf1 = ||L̂−1→0 − L′′0 ||1 + ||L̂+1→0 − L′′0 ||1 (3.6a)
Lf2 = ||L̂−1→+1 − L′′+1||1 + ||L̂+1→−1 − L′′−1||1 (3.6b)
Lf3 = ||M̂+1→0 − M′′0 ||1 + ||M̂−1→0 − M′′0 ||1 (3.6c)
Lf = Lf1 + Lf2 + Lf3 (3.6d)

Lb = ||L̂0 − L′′0 ||1, (3.7)

where L′′0 , L′′−1, M′′0 and L′′+1 denote the ground truth RGB channels, while

L̂−1→+1 = bwarp(L̂−1, fwarp(FL
0→−1 − FL

0→+1, FL
0→+1))

L̂+1→−1 = bwarp(L̂+1, fwarp(FL
0→+1 − FL

0→−1, FL
0→−1))

M̂−1→0 = bwarp(M̂−1, FL
0→−1)

M̂+1→0 = bwarp(M̂+1, FL
0→+1), (3.8)

where fwarp [Xu et al., 2019] is used to align flows to the correct position. Ld, L f
and Lb are the losses for networks denoisedenoisedenoise, flowMergerflowMergerflowMerger, and blendblendblend, respectively.
As discussed, denoisedenoisedenoise is a part of a Siamese network architecture that considers
all input channels in loss function Ld. Eq. 3.6a ensures that forward and backward
flows meet at the missing exposure L′′0 while Eq. 3.6b keeps refined flows consistent
between low exposures L̂−1 and L̂+1. It is made sure that refined flows also work
on previous M̂−1 and next M̂+1 mid exposures by introducing Eq. 3.6c. As such mid
exposures are captured for every frame, typically they lead to a more precise motion
reconstruction, possibly except bright image regions, where flows derived from low
exposures might be more precise. Ablation results of each component of L f are
presented in Section 3.6.2. Finally, Lb compares the output blended L̂0 with L′′0 .

3.5 Implementation

A similar network architecture is used for all three networks: denoisedenoisedenoise, flowMergerflowMergerflowMerger,
and blendblendblend. However, the input and output channels are adjusted according to the
type of the network. The convolutional network with residual connections [He et al.,
2016] that consists of 12 dilated convolutional layers is used. More details on the
number of input and output channels and dilation factors are provided in Table 3.4
in Section 3.8. Residual connections are symmetrically used between corresponding
convolutional layers for a direct gradient flow through the network. Each layer has a
filter size of 3 × 3. After convolutional layer 9, a non-learnable bilinear upsampling
increases the horizontal resolution of internal channels by a factor of 2.

Each network is trained separately as discussed in Section 3.4. The end-to-end
system takes as the input raw Bayer RGGB channels extracted from three dually-
exposed frames: It−1, It, and It+1. During the training time, the patches of size
256 × 128 × 24 are fed, and the networks output a missing exposure of size 512 ×
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FIGURE 3.7: Comparison of different methods (columns) on two scenes (rows). Please see the text for
discussion.

512 × 3. Note that the convolutional network can handle images of any size at the
inference time. 35 videos from the high-speed video dataset [Janai et al., 2017] are
used, where 40,000 patches are selected from 8,000 frames.

The ADAM optimizer [Kingma and Ba, 2015] is used for faster convergence with
suggested parameters β1 = 0.9 and β2 = 0.99. The learning rate is 10−4, and the
batch size of 4 is used. The networks are implemented using PyTorch [Paszke et al.,
2019] with GPU support. An NVIDIA Tesla P100 GPU is used for training and testing
phases. Training takes approximately 1 day for each of the learnable components
denoisedenoisedenoise, flowMergerflowMergerflowMerger, and blendblendblend in the end-to-end system. The running time of the
whole algorithm is 1.81, 0.63, and 0.43 secs for image sizes of 1024 × 1024, 512 × 512,
and 256 × 256, respectively. Such relatively long runtimes can be attributed to the
full-resolution that is employed across all layers in the network solution. As discussed
in Section 3.8, U-Net (encoder-decoder) type architectures, although potentially much
faster, lead to a lower quality of HDR reconstruction.

3.6 Results

The quantitative and qualitative evaluation on image deblurring/denoising (Sec-
tion 3.6.1), flow computation (Section 3.6.2), and video reconstruction (Section 3.6.3)
tasks are presented.

All test images have been captured using an Axiom-beta camera with a CMOSIS
CMV12000 sensor [CMV12000, 2021] and a Canon EFS 18-135 mm lens at resolution
4096 × 3072 RAW 12-bit pixels, using the lowest gain with exposure ratio 4 (or
16 when explicitly mentioned) and (low) exposure time varying from 0.25 to 16
ms. Although the noise model is created for a given fixed ratio, the exposure times
for the two discrete exposures can vary continuously. All results are shown after
gamma correction and photographic tone mapping [Reinhard et al., 2002]. CMOSIS
CMV12000 sensor [CMV12000, 2021] is a CMOS sensor that features a global shutter,
large pixel sizes, low dark current noise, and is relatively inexpensive in comparison
with CCD sensors with similar performance. Therefore, the sensor is suitable for
demanding computer vision applications, and it is offered by many well-known
industrial camera makers [Basler, accessed on Sept. 17, 2021; Omnivision, accessed
on Sept. 17, 2021; vision, accessed on Sept. 17, 2021].
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3.6.1 HDR Image Denoising/Deblurring Evaluation

Now, the combination of the proposed method and the synthetic training data, as well
as other ways to obtain training data and other methods for denoising and deblurring,
are evaluated. This section focuses on denoising and deblurring of differently exposed
frames and HDR images resulting from such different exposure merging [Debevec
and Malik, 1997].

Methods The evaluation considers eight methods (color-coded; “Method” in Ta-
ble 3.1): Direct is a non-learned direct, physics-based fusion of the low and high
frame, with bicubic upsampling [Debevec and Malik, 1997]. Next, BM3D [Dabov
et al., 2007] is a gold-standard, non-deep denoiser. When BM3D is “trained” this
means performing a grid search on the training data in order to find the standard
deviation parameter with the optimal PSNR. FFDNet [Zhang et al., 2018a] is a state-of-
the-art deep denoiser. DBGAN [Kupyn et al., 2019] and SRNDB [Tao et al., 2018] are
recent deblurring approaches. LSD [Mustaniemi et al., 2020] is a deep multi-exposure
method that produces denoised and deblurred LDR images. The final method is
Heide [Heide et al., 2014], which is a general image reconstruction method capable
of working with multiplexed exposures. Note that, in order to run the single-image
denoising and deblurring methods on the multi-exposure frames, each exposure first
is extracted from the raw interleaved frame (refer to Figure 3.2). Each exposure is
then upsampled in horizontal dimension by a factor of two to compensate for the
missing columns. Finally, demosaicing and gamma correction are applied to the raw
Bayer exposures to get the full-resolution sRGB exposures.

Training data Each method is studied to see how it performs when trained with
different data (“Train. data” in Table 3.1). Each type of training data has a different
symbol. If the authors provide a pre-trained version, it is denoted as “Theirs” (▼).
“Sensor” (▲) means training on the image for which paired training data is available
directly without the proposed re-synthesis. Please note that this training is not
applicable to tasks that involve removing MB, as the supervision inevitably contains
MB. Next, heteroscedastic Gaussian noise, “HetGau” (●), and noise simulation from
[Foi, 2009] “Foi” (✺) are studied, which refers to taking the training data, fitting a
linear model of Gaussian parameters of the error distribution and then re-synthesizing
training. Finally, four ablations of the training data generation are studied: only row
noise (“OnlyRN”, ✦), only pixel noise (“OnlyPN”, ★), only motion blur (“OnlyMB”,
✸), and finally (“All”, ✹) as presented in Section 3.3.2.

Metrics The measurements are conducted using PSNR, SSIM[Wang et al., 2004b],
and HDR-VDP-3, which is the latest version of [Mantiuk et al., 2011b], where more is
better. Table 3.5 in the Section 3.9 also shows the standard deviation values for the
mean PSNR measurements in Table 3.1.

Test set The test set for the quantitative comparisons in Table 3.1 consists of both
sensor and synthesized data. The sensor data contains 30 static scenes captured
with the multi-exposure camera in two different exposure settings, and the noise-
free references are obtained by averaging 45 frames per scene and exposure. The
sensor data is only used to evaluate the proposed method in the denoising task
that is uniquely denoted with the subscript “SENSOR” in Table 3.1. As the sharp
and noise-free reference frames are hard to obtain using the multi-exposure sensor
for dynamic scenes, another test set is created by simulating noise and motion blur
as discussed in Section 3.3.1. Such synthetic data enables the proper evaluation of
the proposed method when noise and motion blur are simultaneously present in
differently exposed frames in the context of HDR frame reconstruction (last four
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columns). The synthesized data contains 204 frames from 19 different high-speed
videos [Galoogahi et al., 2017] and features variable dynamic range.

Tasks In Table 3.1, the proposed method is consistently compared with the deblurring
and denoising techniques for different tasks (five rightmost columns in Table 3.1).
First, the input is a noisy low exposure only, and the reference is a clean low exposure
(tasks LO2LOSENSOR and LO2LO that involve evaluations for the sensor reading and
synthetic test sets, respectively). In the second task (HI2HI-MB), the input is a high
exposure only, and the reference is a sharp and noise-free high exposure. Since the
high exposures are typically less noisy while the MB is more pronounced, denoising
methods are evaluated in this task to see their performance in removing the noise in
the presence of MB. Third is a task where the input is both exposures and the output
is an HDR image without noise, while the MB remains intact (LOHI2HDR). The
fourth task also consumes low and high exposures and removes both noise and MB
to output HDR (LOHI2HDR-MB). For the third and fourth tasks, the denoising and
deblurring methods are applied to each exposure separately, and then their outputs
are fused for the final HDR reconstruction [Debevec and Malik, 1997]. Note in the
LO2LOSENSOR task, only the denoising methods are evaluated, while in the LO2LO

task, the deblurring methods are also evaluated so that the resulting low exposures
can be used for the final HDR reconstruction in the LOHI2HDR and LOHI2HDR-MB
tasks.

TABLE 3.1: Performance of different methods and different training data (rows) for different tasks
(columns). Different icon shapes denote different training; colors map to different methods. The
proposed method is comprehensively evaluated for the denoising and deblurring tasks and additionally,
training is conducted with different parametric noise models in order to evaluate the proposed noise
modeling. For denoising comparisons, BM3D [Dabov et al., 2007] and FFDNet [Zhang et al., 2018a]
are compared, and for the deblurring task, recent deblurring approaches DBGAN [Kupyn et al., 2019]
and SRNDB [Tao et al., 2018] are compared. LSD2 [Mustaniemi et al., 2020] is a deep multi-exposure
method that produces denoised and deblurred HDR images. Heide [Heide et al., 2014] is a general image
reconstruction method capable of working with multiplexed exposures. In the bottom rows, the proposed
method of noise synthesis is compared with existing parametric methods: Foi [2009] and heteroscedastic
Gaussian noise [Foi et al., 2008] (HetGau). Four ablations of the training data generation are also
included: only row noise OnlyRN, only pixel noise OnlyPN, only motion blur OnlyMB, and finally
All.

Task
LO2LOSENSOR LO2LO HI2HI-MB LOHI2HDR LOHI2HDR-MB

Input: Low Exp. ✓ ✓ ✗ ✓ ✓

Input: High Exp. with MB ✗ ✗ ✓ ✓ ✓

MB removed ✗ ✗ ✓ ✗ ✓

Output: LDR ✓ ✓ ✓ ✗ ✗

Output: HDR ✗ ✗ ✗ ✓ ✓

Train. data Method Error (PSNR\SSIM\HDR-VDP-3)

▼ Theirs Direct [Debevec and Malik, 1997] 37.66\0.911\9.24 33.27\0.843\8.78 28.86\0.858\9.06 34.23\0.926\9.39 33.26\0.890\9.13

▼ Theirs

BM3D [Dabov et al., 2007]

36.37\0.924\9.53 33.98\0.940\8.78 28.93\0.918\8.93 34.24\0.960\9.60 33.03\0.947\9.19
▲ Sensor 39.74\0.956\9.20 34.47\0.943\9.01 —– 34.35\0.962\9.63 —–
● HetGau 39.12\0.948\9.31 34.97\0.945\8.92 29.05\0.923\9.01 34.63\0.965\9.63 33.30\0.954\9.25
✹ All 39.76\0.956\9.20 34.99\0.946\8.90 29.05\0.921\9.02 34.69\0.964\9.64 33.33\0.953\9.25

▼ Theirs
FFDNet [Zhang et al., 2018a]

38.50\0.938\8.87 34.44\0.924\8.94 28.98\0.914\9.01 33.78\0.956\9.66 32.33\0.943\9.28
▲ Sensor 38.59\0.939\8.90 34.37\0.944\9.07 —– 34.13\0.959\9.66 —–
✹ All 38.67\0.940\8.94 34.23\0.944\8.62 28.96\0.922\8.99 34.37\0.960\9.64 33.14\0.950\9.27

▼ Theirs DBGAN [Kupyn et al., 2019] —– 28.97\0.894\8.78 26.76\0.902\9.14 31.16\0.941\9.35 30.35\0.934\9.18

▼ Theirs SRN-DB [Tao et al., 2018] —– 31.53\0.934\8.94 27.72\0.913\9.17 32.14\0.955\9.49 31.38\0.948\9.25

▼ Theirs LSD2 [Mustaniemi et al., 2020] —– —– —– 29.94\0.935\9.07 32.09\0.951\9.20

▼ Theirs Heide et al. [2014] —– —– —– —– 34.12\0.895\9.32

▲ Sensor

denoisedenoisedenoise

33.79\0.929\9.32 28.05\0.826\8.63 —– 29.01\0.868\8.63 —–
✺ Foi 41.85\0.963\9.44 37.72\0.941\9.69 35.92\0.950\9.58 39.41\0.972\9.80 39.01\0.963\9.61
● HetGau 40.98\0.956\9.22 36.39\0.941\9.37 35.68\0.942\9.56 38.71\0.967\9.73 37.58\0.961\9.57
✦ OnlyRN 39.58\0.945\9.11 33.94\0.891\9.28 32.19\0.900\9.37 35.32\0.937\9.67 35.24\0.919\9.40
★ OnlyPN 38.48\0.950\9.52 35.02\0.926\9.50 31.97\0.922\9.50 36.08\0.947\9.62 36.24\0.926\9.49
✸ OnlyMB 39.97\0.951\9.22 36.06\0.910\9.53 34.90\0.930\9.56 37.91\0.955\7.37 37.62\0.938\9.58
✹ All 42.56\0.967\9.30 38.11\0.950\9.60 36.22\0.952\9.61 39.71\0.975\9.89 39.07\0.966\9.62
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Discussion Results are shown in Table 3.1. The proposed method trained on the
synthetic training data (✹) performs best on all tasks. The ablations (✦, ★ and
✸) all perform worse than the full method, indicating all additions are relevant.
The proposed method also consistently performs better on both the sensor and
synthesized test sets for the denoising task, as shown in the columns LO2LOSENSOR

and LO2LO. It can also be observed that improvement in the performance of other
methods when trained on synthesized data using the distortion model (✹ and ✹)
compared to being trained on their original data (▼ and ▼); however, none can
compete with the full method (✹). The only exception is the HDR-VDP-3 response
for the original BM3D method ▼ in the LO2LOSENSOR task. The proposed network
denoisedenoisedenoise is also trained with other noise models, such as using sensor data directly
(▲), heteroscedastic Gaussian noise [Foi et al., 2008] (●) and noise simulation from
[Foi, 2009] (✺), but none of these was able to capture the combination of motion blur,
pixel noise, and row noise, resulting in larger errors. As a sanity check, BM3D [Dabov
et al., 2007] and FFDNet [Zhang et al., 2018a] are also tuned on sensor data (▲ and ▲),
but it did not lead to a superior result compared to tuned on the synthesized data (✹
and ✹). A further test is to compare to Direct [Debevec and Malik, 1997] (▼), which
is not learned or doing anything except up-sampling and fusion; this should be a
lower bound for any method or task. Finally, the approach compares favorably to
[Heide et al., 2014] (▼), a general and flexible imaging framework that can work on
multi-exposure images. Looking at performance over different tasks, when they get
more involved, i. e., removing MB or producing HDR, other methods start to perform
more similarly, but the proposed method tends to win by a larger margin. When
denoising methods such as BM3D and FFDNet are evaluated, as expected, they fail
to remove the blur in the high exposure. As a result, the low and high exposures are
not aligned with each other, which, in turn, explains the worse performance in the
final HDR reconstruction. In contrast, the full method (✹) successfully removes the
noise and blur in the low and high exposures. The better performance is achieved
for the combined task LOHI2HDR-MB even compared to individual tasks. This is
mainly because, in the HDR reconstruction, the high exposure contributes more to
the dark regions, which are challenging for the low exposure. In summary, using the
right training data helps the proposed methods and others to solve multiple aspects
of multiple tasks.

The quantitative results from above are complemented by the qualitative ones
in Figure 3.7. The first row shows the proposed method (✹) complete image. The
second and third rows show selected low and high input patches, which suffer from
noise or blur, respectively. Directly (▼) fusing both into HDR, as in the fourth column,
reduces noise and blur but cannot remove them. The BM3D (✹) and FFDNet (▼)
columns show that individual frames can be denoised, but blur remains. This is most
visible in moving parts, such as the cup and brochure in the first and third rows
respectively. Using deblurring, as in DBGAN (▼) or SRNDB (▼), can not completely
reduce the blur. The proposed joint method (✹) performs best on these.

3.6.2 Flow Comparison

In Figure 3.8, the quality of warped images using a direct flow computation [Teed
and Deng, 2020] as well as the proposed network flowMergerflowMergerflowMerger (refer to Section 3.4)
are compared. First, a missing low exposure is warped using flow FM

0→−1, which is
unreliable for large saturated regions. Second, the flow FL

−1→+1 is employed, whose
magnitude is adjusted based on the linear motion assumption, and denoted as flow
F̃
L

0→−1, to frame It (refer to Figure 3.6). Finally, the network flowMergerflowMergerflowMerger results in
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FIGURE 3.8: Flow quality comparison. Left: an example of warped low exposure. Right: cropped
patches with moving hand from the warped exposure for different flows: FM0→−1, F̃

L
0→−1, and FL0→−1

as discussed in Section 3.4 and Section 3.6.2. Under each inset, a PSNR measure with respect to the
ground truth in the right column is presented.
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FIGURE 3.9: Comparison of different HDR video reconstruction methods: Kalantari and Ramamoorthi
[2017], Yan et al. [2020], Liu et al. [2020c], Chen et al. [2021], and the proposed method for a dynamic
scene with moving hands and cards. The figure layout follows the one in Figure 3.1.

refined flow FL
0→−1 that leads to a more precise motion reconstruction than its linear

interpolation F̃
L

0→−1 between frames It−1 and It+1.
The upper scene in Figure 3.8 demonstrates the case where flow FM

0→−1 is reliable,
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TABLE 3.2: Ablation results of the loss components of Eq. 3.6d.

Loss function PSNR

L f1 43.36
L f1 + L f2 43.57
L f1 + L f2 + L f3 43.63

and as a result, the flowMergerflowMergerflowMerger successfully maintains this flow information, leading
to a perfect alignment. In the second example, due to large saturation in the hand,
FM
0→−1 fails to align; however, flowMergerflowMergerflowMerger this time uses the flow information from

F̃
L

0→−1 that better aligns with the ground truth. The last example is the special case
where both FM

0→+1 and F̃
L

0→−1 fail, and the refined flow FL
0→−1 successfully corrects

the alternative flows and improves the alignment with the ground truth.
The effect of each component of the loss function in Eq. 3.6d (refer to Section 3.4.1)

are ablated. The effect of different loss components is measured as specified in
Table 3.2 by re-training the network flowMergerflowMergerflowMerger. PSNR measurements have been
done using 70 frames extracted from the HDR video dataset provided in [Froehlich
et al., 2014]. Adding subsequent terms in the loss function (refer to Eq. 3.6d) improves
the flow quality. Note that respective PSNR values for flows between mid exposures
FM
0→−1 and low exposure exposures F̃

L

0→−1 are 42.61 and 42.37. Each variant of the
proposed method outperforms the state-of-the-art flow algorithm as presented in
[Teed and Deng, 2020].

3.6.3 HDR Video Denoising/Deblurring Evaluation

Methods Three methods (color-coded; “Method” in Table 3.3) are used for the com-
parisons: Kalantari [Kalantari and Ramamoorthi, 2017], which blends all exposures
by first aligning the low and high exposure to the mid exposure. Next, Yan [Yan
et al., 2020], which directly fuses all three exposures without estimating the flow be-
tween them. Chen [Chen et al., 2021] is the state-of-the-art HDR video reconstruction
method that takes temporally alternating LDR exposures captured by conventional
sensors as an input and adopts an elaborated coarse-to-fine scheme to output the
final HDR image.

Training data Similar to Table 3.1, also each method is evaluated when trained
with different data (“Train. data” in Table 3.3). It is denoted as “Theirs” (▼) if the
authors provide a pre-trained version. Since all other methods are trained by single-
exposure sensors with different noise characteristics models, they are re-trained with
the synthetic training data, and it is referred to as (“All”, ✹) in Table 3.3.

Metrics The following metrics are used: PSNR, SSIM [Wang et al., 2004b], and
HDR-VDP-3, which is the latest version of [Mantiuk et al., 2011b], where more is
better.

Tasks Here, two tasks (two columns in Table 3.3) are studied: First, MB remains in the
output HDR (LOMIDHI2HDR). Second, noise and MB are removed (LOMIDHI2HDR-
MB). Note that in both tasks, Liu [Liu et al., 2020c] takes only the mid exposure as an
input.

The exposure ratio of 1:4:16 is considered between the three exposures in all tasks.
The test set for all tasks contains 16 frames from 7 different video sequences from
High-speed Video Dataset [Sim et al., 2021] and [Janai et al., 2017].
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Tonemapped HDR Low Previous Low Next Mid Current High Current Reconstructed

FIGURE 3.10: HDR frame reconstruction for video sequences with large motion magnitudes (first
column). In the presented setup, only mid and high exposures are available for the current frame, while
the missing low exposure is reconstructed from the previous and next frames. The difference between
the low exposures illustrates the magnitude of motion. Note that all three exposures are upsampled to
match their size with the HDR reconstruction (last column).

Discussion Quantitative results are shown in Table 3.3. The proposed method
trained on the synthetic training data (✹) performs best on all tasks. In addition
to this, Kalantari [Kalantari and Ramamoorthi, 2017] and Yan [Yan et al., 2020] rely
heavily on the mid exposure, which causes problems in dark regions as can be seen
in Figure 3.1 and Figure 3.9. As a result, other methods give better results when they
are compared with the HDR ground truth that is blur-free. Moreover, when other
methods are trained exclusively with the proposed training data, their performance
increases (LOMIDHI2HDR-MB).

The quantitative results from above are complemented by the qualitative ones
in Figure 3.1 and Figure 3.9. In both figures, rows 1 and 3 show insets taken from a
bright part of the scene, while rows 2 and 4 show a dark part. Since other methods
were originally trained with single-exposure sensors, similar to the ones used in rows
3 and 4, the single-exposure mode is also used on the multi-exposure sensor for those
methods (rows 1 and 2). Only the proposed method uses multi-exposure mode (last
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TABLE 3.3: Measured PSNR, SSIM and HDR-VDP-3 results between the multi exposure techniques.

Task
LOMIDHI2HDR LOMIDHI2HDR-MB

MB removed ✗ ✓

Output: HDR ✓ ✓

Train. data Method Error (PSNR\SSIM \HDR-VDP-3)

▼ Theirs
Kalantari and Ramamoorthi [2017]

31.12\0.896\8.47 39.67\0.952\9.55
✹ All —– 38.19\0.975\9.81

▼ Theirs
Yan et al. [2020]

30.20\0.846\8.26 32.48\0.848\8.95
✹ All —– 37.36\0.960\9.95

▼ Theirs Liu et al. [2020c] 29.53\0.793\8.78 27.53\0.817\8.97

▼ Theirs Chen et al. [2021] 32.66\0.927\9.70 37.40\0.949\9.90

✹ All The Proposed Method 39.67\0.975\9.77 41.38\0.982\9.85

column). Because of capturing dynamic scenes, the waving tissue in Figure 3.1 and
the moving hands and cards in Figure 3.9, with two sensors, the captured scenes
are not fully identical, so insets cannot be compared pixel-wise. As can be seen, any
single (Low, Mid, and High) exposure on any sensor does not capture the bright or
dark part. In Figure 3.1 Kalantari [Kalantari and Ramamoorthi, 2017], Yan [Yan et al.,
2020] and Chen [Chen et al., 2021] fail to reconstruct the occluded region properly
(rows 1 and 3) due to the saturation in mid and high exposures. Liu [Liu et al., 2020c]
that takes only the mid exposure as an input fails to recover the saturated region
(row 1). In Figure 3.9 Kalantari [Kalantari and Ramamoorthi, 2017] leads to some
shading discontinuity artifacts, while Yan [Yan et al., 2020] and Chen [Chen et al.,
2021] additionally result in color distortions (rows 1 and 3). A consistent color shift
towards yellow can be observed in Liu [Liu et al., 2020c] (rows 1 and 3). All of the
compared methods can not exploit the high exposure to properly reconstruct the dark
region in the curtain (Figure 3.1) and leaves (Figure 3.9), which results in extensive
noise (rows 2 and 4). In contrast, the proposed method handles both the saturated
regions in the background and the dark region (last column).

Figure 3.10 further demonstrates the importance of low, mid, and high exposures
for HDR frame reconstruction in the presence of high-magnitude motion. The red
insets present darker image regions where the mid and high exposures directly
contribute to the currently reconstructed HDR frames. The green insets present bright
image regions, where the mid and high exposures are mostly saturated so that the
current HDR frame reconstruction is mostly based on the low exposures from the
previous and next frames that are first warped and then blended (refer to Figure 3.3).

3.6.4 Application: HDR Illumination Reconstruction

A key application of HDR is to use it for illumination [Debevec and Malik, 1997].
The mirror ball is captured, motion blur and noise are removed using the proposed
method (✹) and re-rendered using Blender’s [Community, 2020] path tracer with
512 samples and automatic tone and gamma mapping. The resulting image is seen
in Figure 3.11. It is found that the non-linear mapping of MC rendering amplifies
structures, making noise, particularly row noise, more visible. Using only the high
exposure removes noise but cannot capture the dynamic range, resulting in washed-
out shadows. The proposed method succeeds in removing it, particularly row noise,
resulting in sharp shadows and noise-free reflections. Note that all images contain
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FIGURE 3.11: Rendering from a spherical illumination map captured at a low exposure (left), a high
exposure (middle) and using the proposed approach (right). The illumination is seen as an inset on
the left for each approach. For the low exposure, the shadows are sharp, as the light source did not
saturate, but the dark regions are clipped and massively noisy. For the high exposure, the dark regions
are reproduced, slightly noisy, but the light source is clamped, leading to a loss in dynamic range and
sharp shadows. However, the proposed method reproduces both. Note that visible overall brightness
differences are expected, as clamping is present in some images, which does not conserve energy.

Axiom

FIGURE 3.12: Noise for contemporary sensors at different exposures and intensity: The horizontal axis
is unit radiance. The vertical axis is variance (less is better). Different hues depict different sensors.
Bright colors are high, and dark colors are low exposure.

some noise due to the finite MC sample count (all images computed 20 min.). The
noise appears less in the high exposure, as reduced contrast results in an easier light
simulation problem that leads to an overall incorrect, strongly biased solution.

3.7 Exposure Control on Modern Sensors

To better understand the trade-off between single- and multi-exposure sensors, a
pilot experiment is conducted to evaluate the exposure-dependent noise for three
different kinds of sensors: iPhone (Apple iPhone 8), Canon (Canon EOS 550D) and
Axiom-beta (CMOSIS CMV12000; a full-frame single-exposure setup). 600 images
of the same scene have been captured in low- and high-exposure (four times longer)
modes for each sensor. A Canon records 14, iPhone, and Axiom-beta 12 bits. All
readings are converted to floating point values between 0 and 4. High exposure is
divided by four to match the same range. For low exposure, an ideal (as the scene
is static) burst fusion is simulated by averaging random four-tuples. The average
of all low-exposure frames is considered the reference for each sensor. Note that by
construction, the reference of the high and low modes is the same. Then, for every
quantized (12- or 14-bit) value L of the reference of each sensor, one pixel is selected
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TABLE 3.4: The network architecture details as discussed in Section 3.5: the number of channels in
convolutional layers and dilation factors. Note that layer pairs: 4-6, 3-7, 2-8, and 1-10 are connected
with residual connections [He et al., 2016].

Layers Input Channels Output Channels Dilation Factor

1 8 64 1
2 64 64 2
3 64 64 4
4 64 64 8
5 64 64 16
6 128 64 16
7 128 64 8
8 128 64 4
9 128 64 2
10-11 64 64 1
12 64 8 1

with that value and the variance Var(L) is computed for all readings in all images. A
high value means that a particular sensor for this mode and this absolute radiance
has more noise (worse).

Figure 3.12 shows that for all sensors, as expected, noise increases with signal
[Granados et al., 2010; Janesick, 2001]. It is further seen that around 0.25, the variance
for high exposure diverges (clipping), indicating that these or even higher values
cannot be used with long exposure. More importantly, it is also observed that low
exposure has a higher variance until the point where the high exposure clips. This
trend is true for all sensors, so between 0 and 1: every sensor (hue) at its low exposure
mode (brightness) has a higher variance than the high exposure. This can be attributed
to the read noise of each burst frame that is accumulated [Ma et al., 2020]. This
indicates that combining low exposures, even under the ideal condition of no motion,
is no immediate solution. In summary, no single strategy of either averaging low
exposures or just using one high exposure is successful across the entire HDR range.
Sensors benefit from having access to different exposures at different spatial locations.
Given ML strengths, which ideally complement sensor weaknesses, it might be worth
revisiting different HDR capturing approaches.

3.8 Network Architecture

Experimental results with U-Net [Ronneberger et al., 2015] resulted in artifacts along
the edges even when there is no motion. This could be attributed to the side effects
of downsampling and upsampling of the channels inside the network, which cause
misalignment problems between high and low-exposure channels. Additionally,
replacing U-Net with bilinear upsampling layers with so-called transposed convolu-
tional layers did not cause such misalignment problems, but it ended with vertical
stripes. Resulting patches can be observed in Figure 3.13. This led to the avoidance of
using U-Net architecture due to its internal structure.
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TABLE 3.5: Standard deviation measurements of the PSNR values in the Table 3.1.

Task
LO2LOSENSOR LO2LO HI2HI-MB LOHI2HDR LOHI2HDR-MB

Input: Low Exp. ✓ ✓ ✗ ✓ ✓

Input: High Exp. with MB ✗ ✗ ✓ ✓ ✓

MB removed ✗ ✗ ✓ ✗ ✓

Output: LDR ✓ ✓ ✓ ✗ ✗

Output: HDR ✗ ✗ ✗ ✓ ✓

Train. data Method PSNR ± standard deviation

▼ Theirs Direct [Debevec and Malik, 1997] 37.66±2.85 33.27±5.04 28.86±7.43 34.23±7.12 33.26±5.96

▼ Theirs

BM3D [Dabov et al., 2007]

36.37±2.74 33.98±6.09 28.93±7.59 34.24±6.89 33.03±5.99
▲ Sensor 39.74±2.81 34.47±5.51 —– 34.35±7.05 —–
● HetGau 39.12±2.83 34.97±6.01 29.05±7.64 34.63±7.21 33.30±5.96
✹ All 39.76±2.83 34.99±6.05 29.05±7.64 34.69±7.24 33.33±6.00

▼ Theirs
FFDNet [Zhang et al., 2018a]

38.50±3.20 34.44±5.91 28.98±7.59 33.78±6.81 32.33±5.68
▲ Sensor 38.59±3.23 34.37±5.73 —– 34.13±6.85 —–
✹ All 38.67±3.23 34.23±6.19 28.96±7.60 34.37±6.99 33.14±5.90

▼ Theirs DBGAN [Kupyn et al., 2019] —– 28.97±4.29 26.76±5.48 31.16±4.88 30.35±4.39

▼ Theirs SRN-DB [Tao et al., 2018] —– 31.53±4.56 27.72±7.21 32.14±5.77 31.38±5.28

▼ Theirs LSD2 [Mustaniemi et al., 2020] —– —– —– 29.94±5.72 32.09±5.06

▼ Theirs Heide et al. [2014] —– —– —– —– 34.12±5.18

▲ Sensor

denoisedenoisedenoise

33.79±2.13 28.05±4.86 —– 29.01±6.04 —–
✺ Foi 41.85±3.36 37.72±4.39 35.92±5.50 39.41±5.20 39.01±3.80
● HetGau 40.98±3.28 36.39±3.79 35.68±6.98 38.71±5.42 37.58±3.53
✦ OnlyRN 39.58±3.96 33.94±4.94 32.19±6.79 35.32±6.00 35.24±5.10
★ OnlyPN 38.48±3.59 35.02±5.04 31.97±5.31 36.08±6.60 36.24±5.40
✸ OnlyMB 39.97±2.78 36.06±3.89 34.90±5.06 37.91±6.19 37.62±3.50
✹ All 42.56±3.12 38.11±4.46 36.22±6.98 39.71±5.20 39.07±4.16

Dilated Network UNet-Tranposed ConvUNet-Bilinear

Im
ag

e

FIGURE 3.13: U-Net with bilinear up-sampling causes severe artifacts along the edges while the
transposed convolutional layer prevents it. On the other hand, U-Net with transposed convolutional
layers produced vertical stripes in dark regions. A dilated network that results in artifact-free images
both along edges and in dark regions.

3.9 Additional Results

In Table 3.5, for completeness, the standard deviation of PSNR values is also measured,
as presented in Table 3.1. An example scene employed with a ratio of 1:16 is provided
in Figure 3.15.

3.10 Limitations

Figure 3.14 shows a failure case in a dynamic water splash sequence that includes
both strongly illuminated and shadowed components. As shown in the inset, the mid
exposure is mostly saturated in the illuminated region, so the missing low exposure
should be interpolated using exclusively captured low exposures. Due to the motion
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Reconstructed HDR Interpolated 
Low Exposure

Groundtruth
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FIGURE 3.14: Example failure case of flowMergerflowMergerflowMerger network in the presence of complex motion.

Reconstructed HDR Low Exposure High Exposure HDR

FIGURE 3.15: Example of scene captured with the ratio of 1:16.

pattern complexity and sparse temporal sampling, the optical flow computation
fails, and clear artifacts can be observed in the reconstructed low exposure. This
indicates that the performance of the proposed solution can be reduced for scenes
that simultaneously include complex motion in dark and bright regions. As shown in
the green insets in Figure 3.10, saturation of mid and high exposures still leads to a
reasonable low exposure reconstruction for simple motion patterns.

It is found that the chosen ratio of 1:4 is a good trade-off between the captured
dynamic range and the quality of the resulting HDR video, and it is expected that
other ratios might be required only sparsely. As increasing gain boosts the noise, re-
capturing the training data might be required. To determine the specific requirements
for re-capturing the training data, an analysis of how much gain changes affect the
proposed noise histograms is needed.

3.11 Conclusion

This chapter presents a CNN solution for HDR image and video reconstruction
that is tailored for both single-shot capturing with spatially interleaving exposures
and multi-shot capturing with spatially interleaving and temporally alternating
exposures. In the single-shot scenario, the proposed solution solves a number of
serious problems inherent to multi-exposure sensors by joint processing low and high
exposures and taking advantage of their perfect spatial and temporal registration.
These include correlated noise and spatially-varying blur, interlacing, and spatial
resolution reduction. In the multi-shot scenario, registration of subsequent frames
for multi-exposure sensors is greatly facilitated with respect to traditional single-
exposure sensors, in particular for large saturated or occlusion regions. The proposed
CNN solution capitalizes on such factors by effectively merging optical flows that are
originally derived between corresponding exposures. The proposed flow merging,
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along with capturing mid-exposure half-frames for every video frame, also greatly
improves the quality of motion for all exposures, particularly in the presence of
non-linear motion. It is demonstrated that synthetic training data is generated by
capturing a limited amount of data specific to multi-exposure sensors and using
simple histograms to represent the noise statistics. This leads to a better denoising and
deblurring quality than achieved by existing state-of-the-art techniques. Moreover, it
is shown that using limited sensor-specific data can greatly improve the performance
of other techniques. This is for two reasons: First, previous methods did not have
access to massive amounts of training data for multi-exposure sensors. A problem is
solved here by proposing the first dedicated distortion model that allows synthesizing
training data. Second, multi-exposure sensors, in combination with proper CNN-
based denoising and deblurring, provide much richer data that can be fused. Finally,
the application of captured HDR environment maps for 3D scene re-lighting is
presented, where the denoising and deblurring improve the quality of Monte Carlo
(MC) rendering. An exciting area of future work is a more systematic investigation of
how CNN solutions can compensate for sensor weaknesses and vice versa, which
should lead to novel sensor designs and new challenges for CNN techniques to
process such data.
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Chapter 4

Video Frame Interpolation for High
Dynamic Range Sequences

This chapter introduces a video frame interpolation (VFI) methodology that aims to
increase the frame rate of captured videos while reconstructing high dynamic range
(HDR) content. Video frame interpolation enables many important applications, such
as slow-motion playback and frame rate conversion. However, one major challenge
in using VFI is accurately handling high dynamic range scenes with complex motion.
To this end, the possible advantages of multi-exposure sensors are that they readily
provide sharp short and blurry long exposures that are spatially registered and whose
ends are temporally aligned. This way, motion blur registers temporally continuous
information on the scene motion that, combined with the sharp reference, enables
more precise motion sampling within a single camera shot. It is demonstrated that
this facilitates a more complex motion reconstruction in the VFI task and HDR frame
reconstruction, which has so far been considered only for the originally captured
frames, not in between interpolated frames. The designed neural network trained
in these tasks clearly outperforms existing solutions. The proposed metric of scene
motion complexity provides important insights into the performance of VFI methods
at test time.

4.1 Introduction

Video frame interpolation enables many interesting applications ranging from video
compression and frame rate up-conversion in TV broadcasting to artistic video effects
such as speed ramp in professional cinematography. The performance of VFI methods
is largely affected by various factors such as scene lighting conditions, the magnitude
and complexity of motion in the scene, the spatial extension of resulting motion
blur, the presence of complex occlusions, or thin structures in the scene. Popular
VFI methods [Jiang et al., 2018; Bao et al., 2019; Sim et al., 2021] mostly rely on
well-exposed frames in the captured video. Nevertheless, in the case of high dynamic
range scenes captured using traditional single-exposure sensors, undesired under-
and over-exposure effects might appear. The resultant noise and intensity clamping
can adversely affect the quality of VFI as finding the pixel correspondence between
the frames becomes more ambiguous. Another major challenge is the large and non-
uniform motion in the scene. Although recent methods [Reda et al., 2022; Sim et al.,
2021] have shown progress in handling large motion, they typically heavily rely on
the motion linearity assumption that might not hold in practice. Explicit handling of
non-linear motion becomes possible by processing more than two subsequent frames
[Xu et al., 2019; Park et al., 2021]; however, temporal sampling might still be too low
for reliable motion reconstruction. Motion blur due to low shutter speed and long
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Long Exposure Interpolated HDRInterpolated HDR Short Exposure

FIGURE 4.1: This section proposes a method for high dynamic range video frame interpolation for
multi-exposure sensors that have gained popularity due to their use in recent smartphones. The first
column shows an interpolated HDR frame, while the insets focus on the dark and bright scene details.
Note that the short and long exposures, as captured by the sensor (middle columns), are shifted with
respect to the interpolated HDR frame (right column). The dark region (the upper row) requires a
long exposure duration and features significant motion blur due to camera motion. The proposed
methodology employs temporally continuous information on the scene motion that is encoded in motion
blur to improve the VFI quality. At the same time, the short exposure avoids pixel saturation in the sky
region (the bottom row) and enables its reconstruction in the interpolated HDR frame.

exposure times further leads to spatial and temporal loss of image details. For this
reason, handling blurry frames is typically treated as a challenge in the VFI task [Shen
et al., 2020a; Zhang et al., 2020], while potentially, motion blur encodes continuous
temporal information on the magnitude and direction of motion, particularly for
large motion.

In this chapter, such sensor capabilities, as in Chapter 3, are explored to improve
the motion estimation accuracy in VFI. In particular, a multi-exposure sensor is con-
sidered that captures short and long exposures for spatially interleaved pixel columns
in a single shot [CMV12000, 2021]. Importantly, while the exposure duration differs,
the exposure completion is temporally aligned, which enables the recovery of two
temporal samples of scene motion that are perfectly spatially registered at the sensor.
It is shown that such an increased temporal sampling rate substantially improves
the accuracy of complex motion interpolation, as motion non-linearity can readily be
reconstructed for two subsequent frames. Furthermore, the short exposure typically
leads to a sharp image, while the long exposure results in substantial motion blur,
providing additional insights into the motion direction and magnitude (Figure 4.1).
This is of particular importance in dark scene regions, where the short exposure might
be strongly underexposed and noisy, and the long exposure becomes the only reliable
measurement of scene motion. As in other works, a multi-exposure technique is
employed to reconstruct HDR video frames, but for the first time, simultaneous VFI is
performed that can handle complex, non-linear motion in the scene. The end-to-end
convolutional network is trained to achieve those goals. Additionally, the metric for
motion non-linearity is proposed to analyze the existing high-speed videos and the
performance of VFI methods as a function of motion complexity.

In the following Section 4.2, the HDR-VFI method for HDR sequences is presented.
In Section 4.3, the metric of scene motion uniformity that enables meaningful compari-
son of existing VFI methods is introduced. Then, Section 4.4 provides implementation
details of the proposed network. Section 4.5 contrasts the HDR-VFI technique with
existing works in a performance comparison and reports an outcome of ablation
studies. Finally, this chapter is concluded in Section 4.6.
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FIGURE 4.2: Overview of the proposed HDR VFI pipeline. Upper row: Two subsequent frames M0
and M1, as captured using the multi-exposure sensor, are independently processed by a learned MakeHDRMakeHDRMakeHDR

network so that the output sharp HDR frames Îei aligned with the end of the long exposure (the
suffix eee stands for the end) and blurry long exposure frames L̂i are obtained. Next, each frame is fed
separately to a feature extractor to build feature pyramids. Middle row: At each pyramid scale l, given
the features Vli and Uli along with ↑ Fl+1ei→si upsampled from the previous scale, the intra-frame flow
Flei→si, the flow between the start (denoted with the suffix sss) and end of the long exposure in each
frame is recovered using a learned Blur2FlowBlur2FlowBlur2Flow network. Then, bidirectional flows Fle0→e1 and Fle1→e0

estimated between Île0 and Île1 (which are the sharp HDR frames Îe0 and Îe1 downsampled by 2l) are
found using the state-of-the-art flow estimation method Raft [Teed and Deng, 2020]. Next, given two
estimated flows for each frame, the additional flows of Fle0→s1 and Fle1→s0 are also derived. The motion
flow triplets (Fle0→e1, Fle0→s0, Fle0→s1) as well as (Fle1→e0, Fle1→s1, Fle1→s0) are independently fed to
a non-learnable FitQuadFitQuadFitQuad module to calculate the forward flows Fl0→t and Fl1→t that are parametrized
using a quadratic motion model for a position t (refer to the two bottom insets). Finally, using the
module BlendBlendBlend, Île0 and Île1 are fused with the forward flows Fl0→t and Fl1→t and a soft occlusion map
↑ αl+1 upsampled from the previous scale to reconstruct the intermediate frame Îlt at scale l. This
procedure is repeated until the scale of the original input frames is reached. Bottom row: A schematic
presentation of all involved flows and their relation to the input and interpolated frames.

4.2 Method

This section proposes a VFI method that reconstructs HDR frames in the continuous-
time domain. Figure 4.2 summarizes the processing pipeline, and the following
paragraphs provide a more detailed description of its key components.

The proposed methodology takes as input two subsequent video frames M0 and
M1 that are captured using the multi-exposure sensor and produces a sharp HDR
frame Ît for any position t between M0 and M1. Each captured frame Mi, where with
the suffix i any input frame is denoted, contains a pair of spatially interleaved short
and long exposures and is processed by the MakeHDRMakeHDRMakeHDR network to produce a sharp
HDR frame Îei that is aligned with the end of the long exposure (the suffix eee stands
for the end), and a blurry long exposure frame L̂i. Both frames are decomposed into
their respective multi-resolution feature pyramids, and from this stage, the whole
processing is performed at different scales, where, as shown in the middle row in
Figure 4.2, information reconstructed at a lower-resolution scale l + 1 contributes
to the higher-resolution scale l. Here, for brevity, the scale index l is omitted. The
feature pyramids are fed to the Blur2FlowBlur2FlowBlur2Flow network to predict the flow Fei→si that
extracts the flow between the start (denoted with the suffix sss) and the end of the long
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exposure.
Next, the flows Fe0→e1 and Fe1→e0 are computed between the sharp HDR frames

Îe0 and Îe1 in both directions using an off-the-shelf flow estimation method such as
Raft [Teed and Deng, 2020]. This way, the flows Fe0→s0 and Fe0→e1 that are aligned
with Îe0 are obtained, then additionally, the flow Fe0→s1 is derived, and all three flows
are employed to fit a quadratic motion model using a non-learnable FitQuadFitQuadFitQuad module.
This process is repeated for the flows Fe1→s1, Fe1→e0, and Fe1→s0 that are aligned
with Îe1. Refer to the bottom row in Figure 4.2 for the depiction of the discussed
flows. Next, to warp the keyframes Îe0 and Îe1 to a novel temporal position t, first
the forward flows F0→t and F1→t are found, and then the backward flows Ft→0 and
Ft→1 are computed using differentiable flow reversal as introduced in [Xu et al., 2019].
Finally, using a multi-scale blending scheme BlendBlendBlend, the warped images are combined
with a soft occlusion weight at different scales to synthesize the frame Ît. More
details are now provided on all the processing steps discussed here.

HDR reconstruction: makeHDR The input video is acquired using a multi-exposure
sensor [CMV12000, 2021] that simultaneously captures each frame’s short and long
exposure. In the proposed capturing setup, the exposure time for the long exposure
is four times higher than the short exposure. Each exposure is stored at odd and even
columns in the sensor. As a result, both exposures are provided as half-resolution
images, and they need to be upsampled in the horizontal direction. Moreover, the
short exposure exhibits strong noise in dark scene regions and requires denoising. On
the other hand, the long exposure is less noisy, while it might contain considerable
motion blur and requires deblurring. To do so, the network design and the training
strategy introduced in Section 3.4 are employed to jointly deblur, denoise, and upsam-
ple the input frames Mi to produce sharp, clean, and full-resolution short and long
exposures. Both exposures are combined using a non-learnable technique, similar to
[Debevec and Malik, 2008], to produce a sharp HDR frame Îei. Also, the network
output is extended to produce an additional full-resolution blurry long exposure L̂i.

Motion from blur: Blur2FlowBlur2FlowBlur2Flow Motion blur can potentially reveal information about
the motion in the scene. This idea is pursued, and the Blur2FlowBlur2FlowBlur2Flow network is proposed
that derives the motion flow Fei→si that is associated with the blur pattern in the
long exposure L̂i. The sensor design ensures that the short and long exposures are
completed precisely at the same time, and in the HDR reconstruction, the sharp frame
Îei is aligned with the short exposure. Given L̂i and Îei provided in each frame,
one can employ a standard motion estimation method to estimate the intra-frame
flow. However, in the case of multi-exposure frames, the two inputs overlap in time,
and finding the correct correspondence of Îei in the long exposure L̂i is ambiguous.
Therefore, an existing method such as PWC-Net [Sun et al., 2018] cannot be adopted
as is, so the following modification to the PWC-Net architecture is applied, tailoring
it to the available inputs. In the original PWC-Net, the two nearby frames are fed to
the same feature extractor to build the feature pyramids. Then, at each pyramid scale
l, the feature of the second frame is warped to the position of the first frame using
the upsampled flow, and a cost volume is created to compare the features of the first
frame with the warped features from the second one. In the case of multi-exposure
frames, as the sharp HDR frame and long exposures are different in type, they are
processed with two independent feature extractors, and multi-scale features Vli and
Uli are created that correspond to the sharp HDR frame Îei and long exposure L̂i,
respectively. Then, at each scale l, the intra-frame flow Flei→si is estimated as follows:

Flei→si = Blur2FlowBlur2FlowBlur2Flow(Vli, Uli, ↑ Fl+1
ei→si) (4.1)
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where Blur2FlowBlur2FlowBlur2Flow is a multi-layer CNN with DenseNet connections [Sun et al., 2018;
Huang et al., 2017] and ↑ Fl+1

ei→si is the upsampled flow from the previous layer. Note
that at each scale, the features of the sharp HDR frame do not need to be warped;
hence, no cost volume must be computed. This process is repeated until a desired
scale l0 is reached.

Quadratic motion model: FitQuadFitQuadFitQuad Such multi-scale processing procedure continues
with the non-learnable quadratic motion modeling. Given the intra-frame flows
Fle0→s0 and Fle1→s1 that are recovered by Blur2FlowBlur2FlowBlur2Flow separately for each frame, the
inter-frame flows Fle0→e1 and Fle1→e0 between the HDR frames Île0 and Île1 (down-
scaled to a given scale l) are also found using a state-of-the-art flow estimation method
as proposed in [Teed and Deng, 2020]. While in practice, a quadratic motion model
that is aligned with Île0 can be derived with only two flows (Fle0→s0 and Fle0→e1),
another possible flow is established, namely Fle0→s1, which corresponds to the flow
between Île0 and Îls1. It is computed as follows:

Fle0→s1 = Fle0→e1 + warp(Fle0→e1, Fle1→s1) (4.2)

where warp is a differentiable warping operator using bilinear sampling [Jaderberg
et al., 2015]. Here, the flow Fle1→s1 is aligned with the frame Île1; therefore, Fle1→s1

needs to be warped using the flow Fle0→e1 to become aligned with Île0 (refer to the
bottom row in Figure 4.2). Since the two flows are opposite in their directions, the
flows are summed up instead of subtracting them. Similarly, for the frame Île1, the
additional flow Fle1→s0 is computed as:

Fle1→s0 = Fle1→e0 + warp(Fle1→e0, Fle0→s0) (4.3)

Now, for warping Île0 to a novel time t, a quadratic motion flow is derived as:

Fl0→t =
1

2
a0 × t2 + v0 × t (4.4)

where a0 and v0 express the acceleration and velocity of a non-uniform motion, and
they are derived from Fle0→s0, Fle0→e1, and Fle0→s1 using the least square fit. Note that
the derived model explains the non-uniform motion for the entire range of Îls0 to Île1.
For a curvilinear motion, e.g. a rotatory motion, these parameters can be considered
as the first two terms in the Taylor approximation of the curvilinear motion. Similarly,
the flow Fl1→t is computed:

Fl1→t =
1

2
a1 × t2 + v1 × t (4.5)

where the parameters a1 and v1 are calculated from the triplet of flows Fle1→s1, Fle1→e0,
and Fle1→s0 using a least square fit. Existing VFI methods with non-uniform motion
assumptions usually require more than two frames as the input. However, this
enforces that the parameters of non-uniformity (acceleration and velocity) are fixed
along multiple frames, which might not hold in practice. In contrast, the proposed
method only relies on two immediate frames, and as a result, such constraints are
imposed in a closer temporal range that allows the modeling of more complex non-
uniform motion. Moreover, providing the additional flow Fle0→s1 not only allows
the approximation of a higher order motion, e.g., a cubic motion model, but also
incorporates the motion flow information from the other frame to increase flow
consistency between Fl1→t and Fl0→t. In Section 4.5.4, the effect of including Fle0→s1

and Fle1→s0 in the motion model is ablated. Since the time interval between Îls1 and
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Île1 is shared when computing the motion model for the frame pairs M0 and M1, and
then M1 and M2, the temporal consistency is also preserved.

Multiscale blending: BlendBlendBlend In the last step, a multi-scale blending scheme is
introduced to reconstruct the final interpolated image Ît. Specifically, at each scale
l, given the forward flows Fl0→t and Fl1→t, the backward flows Flt→0 and Flt→1 are
computed using the flow reversal introduced in QVI [Xu et al., 2019]. Then the sharp
HDR frames Île0 and Île1 are warped to the novel position t using the backward flows
as:

Îl0→t = warp(Île0, Flt→0) and Îl1→t = warp(Île1, Flt→1) (4.6)

where Île0 and Île1 are the input frames Îe0 and Îs0 downsampled by 2l . Afterward,
the soft occlusion weight αl is predicted to control the contribution of input warped
images Îl0→t and Îl1→t:

αl = BlendBlendBlend(Îl0→t, Îl1→t, Flt→0, Flt→1, ↑ αl+1) (4.7)

where BlendBlendBlend is a multilayer CNN and ↑ αl+1 is the upsampled weight from the
previous scale. Note the input flows Flt→0 and Flt→1 aid the network in reasoning
about the occlusion regions. Given the occlusion weight, the warped images are
combined as follows:

Îlt =
(1 − t)αl ⊙ Îl0→t + t(1 − αl)⊙ Îl1→t

(1 − t)αl + t(1 − αl)
(4.8)

where Îlt is the synthesized intermediate frame at scale l, as required in the loss
computation (Eq. 4.11). The operator ⊙ stands for per-pixel multiplication. Finally, at
the finest scale l0, the interpolated frame Ît is derived.

Loss function The loss function comprises three components targeted to train the
MakeHDRMakeHDRMakeHDR, Blur2FlowBlur2FlowBlur2Flow, and BlendBlendBlend networks. First, the output of the MakeHDRMakeHDRMakeHDR network
is supervised with the ground truth Iei and Li (refer to Section 4.5.1 on details of
how the ground truth frames are acquired from high-speed video datasets) using the
reconstruction loss:

Lhdr = ∑
i=0,1

∥Iei − Îei∥1+∥Li − L̂i∥1 (4.9)

As the ground truth flow is not available, a multiscale image loss is employed to
supervise the Blur2FlowBlur2FlowBlur2Flow network:

Lflow = ∑
i=0,1

L

∑
l=l0

∥Ilei − warp(Ilsi, Flei→si)∥1 (4.10)

where Ilei and Ilsi are the ground truth frames Iei and Isi downsampled by 2l . At
each scale l, Ilsi is warped using the predicted flow Flei→si and compared with Ilei.
Note that this loss component will try to align the warped image and the input frames
for all regions in an image, including the occluded part. However, it is argued that
this is not a significant issue because the intra-frame motion captured in the long
exposure is relatively small compared to the inter-frame motion. Hence, the small
disoccluded areas within a frame are handled, and the only degradation that can
occur is over-smoothed flow at occlusion boundaries, which can be resolved with a
more sophisticated occlusion treatment. Lastly, the output of the BlendBlendBlend network is
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Adobe240 GoPro

SlowFlow X4K1000FPS

FIGURE 4.3: Trajectories of pixels (red dots) for 16 consecutive frames in a sample scene from four
different datasets. The scenes in Adobe240 and GoPro datasets mostly have globally non-uniform
motion due to non-uniform camera motion, while in datasets such as X4K1000FPS and SlowFlow, the
scenes mostly contain locally non-uniform motion.

supervised using the reconstruction loss at each scale:

Lsynth =
L

∑
l=l0

∥Ilt − Îlt∥1 (4.11)

where Ilt is the corresponding ground truth for interpolated frame Îlt at each scale l.
The final loss Ltotal is then computed as:

Ltotal = Lhdr + Lflow + Lsynth (4.12)

It is worth mentioning that based on the observation, optimizing the network
based solely on the final loss would create ambiguity as to whether the network
should improve Blur2FlowBlur2FlowBlur2Flow or BlendBlendBlend network to decrease the loss; therefore, inter-
mediate supervision (Eq. 4.10 and Eq. 4.11) is essential to train each component
properly.

4.3 Motion Non-Uniformity Analysis

In order to properly validate the proposed method, it must be ensured that the dataset
contains diverse examples of scene motion non-uniformity. To this end, the motion
non-uniformity in some popular high-speed video datasets, including Adobe240 [Su
et al., 2017], GoPro[Nah et al., 2017], X4K1000FPS [Sim et al., 2021], and SlowFlow
[Janai et al., 2017] are analyzed. The procedure is as follows: For each pixel in a
given frame, Raft [Teed and Deng, 2020] is used to track the corresponding pixels
for N consecutive frames. The number of consecutive frames N = 8 is chosen for
the Adobe240, GoPro, and SlowFlow datasets as they are captured with 240FPS,
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FIGURE 4.4: The histogram of measured non-uniform motions for different datasets, where the
horizontal axis shows the normalized motion error (×10−2) with respect to the linear motion fit, and
the vertical axis denotes the probability of the observed frames given an error value.

and eight frames represent the time gap between two consecutive frames in a 30FPS
video, and N = 33 is chosen for X4K1000FPS containing 1000FPS videos. Note that
in some cases, such tracking might fail due to occlusions and textureless regions.
The occlusion regions are found by applying a forward-backward flow consistency
check [Jonschkowski et al., 2020] between the first and last frames and excluding
them in the measurements. Likewise, as the estimated flow in the textureless regions
is usually erroneous, the flow is clipped to zero if its value is less than one pixel.
Figure 4.3 shows the trajectories of pixels for four sample scenes that contain regions
with non-uniform motion. In the next step, a linear model is found, in the least
square sense, that fits the motion trajectory for each pixel. Then, the mean square
error is considered with respect to such a linear fit, where higher errors indicate more
motion non-uniformity. Note that for each pixel, the error value is normalized by
the aggregated pixel displacement across the consecutive frames. Since the error is
calculated for individual pixels, the amount of motion non-uniformity is measured
in a frame by taking the 50th percentile of the calculated error over all pixels. This
procedure is then repeated for non-overlapping sets of N consecutive frames in each
scene in each dataset. Figure 4.4 shows the histogram of measured non-uniform
motions for each dataset, where the horizontal axis denotes the error of the linear
fit (×10−2) divided into eight discrete bins, and the vertical axis is the probability
of observing the scene for a given error value. The Adobe240 and GoPro datasets
feature significant percentages of non-uniform motion as they are captured with a
handheld camera. Although large motions are present in the X4K1000FPS dataset,
the camera moves along mostly linear trajectories.
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4.4 Implementation

The network architecture of MakeHDRMakeHDRMakeHDR follows the one introduced in Section 3.4. The
network output is provided in the Bayer domain, and demosaicking is applied using
OpenCV [Bradski, 2000], followed by a gamma correction to create the final short and
long exposures in the sRGB format. The Blur2FlowBlur2FlowBlur2Flow network employs an architecture
similar to the PWCNet [Sun et al., 2018], and also outputs the motion flow at a quarter
resolution and employs the context network for refining the flow. Then, bilinear
interpolation is applied to obtain the half- and full-resolution flows. The BlendBlendBlend

network is implemented as a 12-layer conventional neural network with dilated
convolutions and skip connections. During training, the patch size of 768 × 768 is
used; nevertheless, at the inference time, the convolutional network and all non-
learnable components scale with resolution.

4.5 Results

In this section, the training and evaluation datasets are introduced first. Then, the
quantitative and qualitative comparisons of the proposed method with existing VFI
methods are shown. Finally, the ablation is provided to justify the proposed method’s
training set and different components.

4.5.1 Dataset

As it is impossible to capture ground truth high-speed HDR videos using the multi-
exposure sensor, and third-party high-speed HDR videos are unavailable, the training
and evaluation datasets using existing LDR high-speed videos are synthesized. In
the experiments, the scenes from X4K1000FPS [Sim et al., 2021] and SlowFlow [Janai
et al., 2017] are taken as the training datasets, and Adobe240 [Su et al., 2017] and
GoPro [Nah et al., 2017] are considered as the evaluation datasets. The training and
testing video sequences are defined as follows: 16 consecutive frames are taken in a
high-speed video, where the 1st and 4th frames are the sharp beginning and ending
frames (Îs0 and Îe0). The four neighboring frames starting from 1 to 4 are summed up
to simulate the long exposure L̂0. Then, 9 frames are skipped to simulate the camera
readout gap. Similarly, the 13th and 16th frames are taken as the Îs1 and Îe1, and
the frames from 13 to 16 are summed up to create the long exposure L̂1. Frames 7
and 10 are considered as the target frames for the reconstructions. Note that in the
simulation of long exposures, the aggregated pixel intensity is clipped if it exceeds
the value of 255. In the simulation, each patch is ignored if more than 20% of its
content is already saturated in the original high-speed video. In order to make the
HDR-VFI method robust to high blur and saturation, data augmentation is performed
by creating different amounts of blur and different amounts of saturation. For the test
set, the proposed method is evaluated against the other methods for different ranges
of non-uniformity; hence, all scenes in the Adobe240 [Su et al., 2017] and GoPro [Nah
et al., 2017] datasets are split into four different categories of Easy, Medium, Difficult,
and Extreme based on the error magnitude of the linear fit derived in Section 4.3.
Specifically, the entire histogram range (15 × 10−2 here) is divided into four equal
segments (expressing the four motion non-uniformity categories), and 125 sample
frames are drawn both for the Adobe240 and GoPro datasets per each category.
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TABLE 4.1: Quantitative comparison of the proposed method with state-of-the-art VFI methods. The
ABME and QVI methods are designed to handle non-uniform motions, while the XVFI and FILM
methods rely on a linear motion assumption but can handle large motions. Methods are indicated with *
when they are trained from scratch with the training set.

Adobe240 GoPro

Methods PSNR SSIM PSNR SSIM

ABME [Park et al., 2021] 31.28 0.83 30.98 0.82
QVI [Xu et al., 2019] 31.30 0.86 30.80 0.84
QVI* [Xu et al., 2019] 31.16 0.86 30.70 0.84

XVFI [Sim et al., 2021] 31.07 0.83 30.75 0.82
XVFI* [Sim et al., 2021] 30.66 0.83 30.41 0.82
FILM [Reda et al., 2022] 31.11 0.83 30.75 0.82
FILM* [Reda et al., 2022] 31.04 0.83 30.74 0.82

HDR-VFI 34.82 0.93 35.01 0.92
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FIGURE 4.5: Quantitative comparison of the proposed method with state-of-the-art VFI methods for
four different motion non-uniformity categories (refer to Section 4.5.1). Each bin reports the average
reconstruction error over 250 sample frames per category for a given method.

4.5.2 Quantitative Comparison

The proposed method is compared with state-of-the-art sharp VFI methods: FILM
[Reda et al., 2022] and XVFI [Sim et al., 2021], which rely on a uniform motion
assumption, and QVI [Xu et al., 2019], and ABME [Park et al., 2021] which explicitly
support the non-uniform motion. QVI employs four consecutive frames as the input,
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Long Exposure Short Exposure Interpolated HDRBlur2Flow MapInterpolated HDR

FIGURE 4.6: Visualization of flow maps reconstructed by the proposed Blur2FlowBlur2FlowBlur2Flow network. Otherwise,
the figure layout follows the one in Figure 4.1.

Long Exposure Blur2Flow Map

FIGURE 4.7: Visualization of flow maps of Blur2FlowBlur2FlowBlur2Flow network for the synthetically created motion
blur.

and FILM and XVFI require just two frames. While ABME also uses only two frames
as input, it relaxes the uniform motion constraint by first estimating symmetric
bilateral motion fields and then refining them to become asymmetric. As the LDR
(sRGB) images in the high-speed dataset are used to synthesize the training and
evaluation set, they can directly be fed as input to the VFI methods. For the proposed
method, though, they are fed along with the simulated long exposure as described in
Section 4.5.1. Note that it is not possible to compare the reconstructions with the blurry
VFI methods, as they require well-exposed blurry input frames (effectively, blurry
HDR frames) while long exposure in multi-exposure typically contains a considerable
amount of saturation that poorly handled by these methods. Table 4.1 summarizes
the comparisons with the VFI methods (used with their pre-trained weights) for each
of the test datasets (Adobe240 and GoPro) separately as specified in Section 4.5.1.
Note that XVFI uses almost the same training set as HDR-VFI while applying extra
data augmentation, and a method such as FILM carefully prepared their dataset to
include all the possible motion ranges, with a much larger training data size than
the considered dataset in this chapter. Nevertheless, for a fair comparison, XVFI,
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FIGURE 4.8: Visual comparisons of the proposed HDR-VFI method with the state-of-the-art VFI
methods using the synthetic dataset described in Section 4.5.1. For each of the three scenes, the
first row of insets shows the performance of respective VFI methods, while the second row presents
the corresponding per-pixel error maps between the interpolated results and the ground truth. The
PSNR/SSIM values written below each error map are computed for each inset rather than the entire
image. In the upper scene taken from the X4K1000FPS test set, the wheel moves in a non-linear
trajectory, and the existing VFI methods struggle to position the wheel correctly for the interpolated
frames, while the HDR-VFI leads to a good alignment with the ground truth. In the middle scene taken
from the GoPro dataset, the camera is moving with an extremely non-uniform motion as shown in
Figure 4.3. While the existing VFI methods produce visually plausible results, they are not correctly
aligned with the ground truth, as the error map reveals. The bottom scene, taken again from the
X4K1000FPS test set, contains a combination of camera and object movements. In this case, the existing
VFI methods fail to properly handle occlusion boundaries.

FILM, and QVI are retrained using the training set of HDR-VFI (indicated with *
in Table 4.1) and observed a lower performance. Unfortunately, the training code
for ABME is not publicly available. Moreover, Figure 4.5 provides a deeper insight
into each method performance when those datasets are aggregated and split into
four different categories with respect to motion complexity (Section 4.3). Overall, the
competing VFI methods perform similarly for more uniform motion, while the QVI
method clearly has advantages for more complex motion. In all cases, the proposed
method HDR-VFI outperforms the existing VFI methods by a large margin. It is also
more stable in the interpolation quality for higher motion non-uniformity. It can be
hypothesized that this stability could be attributed to the quadratic motion fitting
part, which has no learnable parameters and only relies on the accuracy of flows,
which might drop off slightly at higher non-uniform motion. Other VFI solutions that
mostly learn how to handle non-uniform motion might impose higher requirements
on the training set.

4.5.3 Qualitative Comparison

The examples of HDR scenes captured in daylight and dark conditions are first vi-
sualized in Figure 4.1 and Figure 4.6. The flow map reconstructed by the Blur2FlowBlur2FlowBlur2Flow

module in Figure 4.6 and the motion blur magnitude in the long exposures indicate
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Short Exp. QVI ABME XVFI FILM HDR-VFIHDR-VFI Interpolation Long Exp.

FIGURE 4.9: The visual comparisons of the interpolation results for three scenes captured using the
camera with a multi-exposure sensor. HDR-VFI is able to correctly interpolate the frames in the scenes
with the challenging cases of a rolling disc (the upper scene), a rotary camera motion (the middle scene),
and a moving object behind a refractive object (the bottom scene).

the complexity of motion. Additionally, the flow maps for the synthetic data are
visualized in Figure 4.7. In Figure 4.1, the HDR-VFI method benefits from additional
information that is encoded in the motion blur pattern to improve the interpolation
quality. Visual comparisons are then provided with the state-of-the-art VFI methods
for three synthesized scenes with ground truth in Figure 4.8. Moreover, HDR-VFI is
compared to other methods using the captured sequences in Figure 4.9. All the cap-
turing processes were done with the Axiom-beta camera with a CMOSIS CMV12000
sensor [CMV12000, 2021]. In both setups, the exposure ratio of 4 is used between the
short and long exposures. Since the frames captured using a multi-exposure sensor
cannot be fed directly to the other VFI methods, the sharp HDR images Îe0 and Îe1
are first reconstructed using the MakeHDRMakeHDRMakeHDR network. They are then tonemapped using
Reinhard-Global 2002 [Reinhard et al., 2002] and gamma-corrected are fed to the LDR
VFI methods. The upper scene in Figure 4.9 shows an example of a rolling disc in
which the existing VFI methods, even the ones designed to deal with non-uniform mo-
tion such as ABME and QVI, fail to properly interpolate an intermediate frame due to
non-uniform motion caused by the rotatory motion of the disc. In the next examples,
the crystal ball is captured while the camera is rapidly rotating (the middle scene) or
an object is moving behind the crystal ball (the bottom scene). In these challenging
examples where even a uniform motion in the scene might appear non-uniform in
the refracted image, other methods struggle to correctly reconstruct an in-between
frame. In all cases, it is observed that the proposed method faithfully reconstructs
the in-between frames even in difficult conditions where there are reflections on the
crystal ball (the middle and bottom scenes).
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HDR-VFI InterpolationLong Exp. Groundtruth

FIGURE 4.10: The interpolation failure example in a case where the moving content is highly saturated
in the long exposure.
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FIGURE 4.11: Ablation results. The figure layout is similar to Figure 4.8. Refer to Section 4.5.4 for
more details on each ablation scenario.

4.5.4 Ablation Study

A series of ablations are performed to show the contributions of each key component
in the proposed method, and the alternative solutions are analyzed. The obtained
results are summarized in Figure 4.11 and Table 4.2, where each ablation component
is denoted with a unique label that is also included in the related paragraph title.

Impact of Blur2FlowBlur2FlowBlur2Flow network: NoBlur2Flow The contribution of the Blur2FlowBlur2FlowBlur2Flow

network is analyzed where it is attempted to reconstruct the intermediate frames
using only the backward and forward flows between the sharp HDR frames Îe0
and Îe1 using Raft [Teed and Deng, 2020]. This experiment suggests the version
of the proposed HDR-VFI method that makes the linear assumption, in which the
flow is split linearly at any position t between the frames; however, this leads to
large positional errors in the interpolated content, as seen in Figure 4.11. The results
clearly indicate the effectiveness of including the Blur2FlowBlur2FlowBlur2Flow network in the proposed
pipeline (Table 4.2).

Impact of sharp HDR frame: NoSharp The effect of including the sharp HDR frame
Îei, along with the long blurry exposure L̂i, is investigated on the accuracy of motion
from blur derivation. To do so, L̂i is considered as the only input to the Blur2FlowBlur2FlowBlur2Flow

network, and Îei (note that Îei is still available for other components in the pipeline)
is excluded. As it can be seen in Figure 4.11, the availability of Îei reduces geometric
image distortions, and Îei compensates for the lack of information for saturated
pixels that are inherent for L̂i in the setup with a multi-exposure sensor. Following
this observation, it is expected that replacing the Blur2FlowBlur2FlowBlur2Flow network with a solution,
where the intra-frame flow is extracted solely based on L̂i [Zhang et al., 2020] should
lead to a similar outcome as this ablation.

Quadratic model with temporal flows: TemporalFlows Considering more than two
consecutive frames involves a larger time span; as a result, fine-grained motion cannot
be properly handled. Such observations are made when comparing the HDR-VFI
method with a method like QVI, which uses four frames to compute the quadratic
model. Nonetheless, to highlight the advantage of the intra-flow Fei→si estimated
from the Blur2FlowBlur2FlowBlur2Flow module, an ablation is conducted where the quadratic motion
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TABLE 4.2: The ablation results indicate the performance of alternative solutions for major design
choices in the proposed method. Refer to Section 4.5.4 where more details are provided on each ablation.

PSNR SSIM

NoBlur2Flow 30.97 0.82
NoSharp 30.28 0.82
TemporalFlows 31.93 0.85
SharpStart 34.35 0.91
CubicModel 33.84 0.92
TwoFlows 34.00 0.90

HDR-VFI 34.92 0.93

is fit using the temporal flows extracted from four consecutive HDR frames (similar
to QVI); however, a lower performance is observed than HDR-VFI with two frames,
while it still has a better performance compared to QVI.

Alternative approach to Blur2FlowBlur2FlowBlur2Flow network: SharpStart Instead of directly re-
covering the motion flow from the blur, a 12-layer conventional neural network is
employed with dilated convolutions to predict the sharp frame Îsi aligned with the
beginning of the frame, then the Raft [Teed and Deng, 2020] is used to estimate the
intra-frame flow Fei→si between the Îei and predicted Îsi. This ablation demon-
strates that the particular method of deriving the intra-frame flow from motion is less
important under the condition that sharp, saturation-free reference Îei is available.
Still, the proposed method leads to slight quality improvement.

Quadratic vs. cubic motion model: CubicModel Since the HDR-VFI method
provides three estimated flows in each frame, it is possible to approximate a higher-
order motion, e.g., cubic. Hence, ablation is performed where the quadratic motion
model derived in Section 4.2 is replaced with a cubic model. Overall, the obtained
results are comparable in terms of the SSIM prediction, but the quadratic model is
slightly better in terms of PSNR and visual results (Figure 4.11). A key difference is
that while the cubic model involves a closed-form solution, the quadratic model is
derived in a least-squares fashion that allows for the correction of slight errors in the
derived flows.

Two vs. three flows: TwoFlows To see the effect of including the additional flows
Fe1→s0 and Fe0→s1 in the derivation of the quadratic motion model, they are excluded
from the input to the FitQuadFitQuadFitQuad module. The obtained results (Table 4.2) indicate that
including an independent estimate of the third flow contributes toward correcting
for potential inconsistencies in the other two flows. For example, in Figure 4.11,
ghosting artifacts along higher contrast edges are clearly visible when only two flows
are employed.

4.5.5 Limitations

Saturation is inevitable in long exposure for bright scene regions. In the case of a
local motion blur that is fully covered with saturation, the predicted flow using the
Blur2FlowBlur2FlowBlur2Flow network becomes less accurate. Figure 4.10 shows an example of this case
where the saturation is increased synthetically in the long exposure for the wheel
example shown in Figure 4.8, and the HDR-VFI method fails to correctly reconstruct
the intermediate frame. However, in case of a local motion blur with partial saturation
or a global camera motion, even with fully saturated regions, as shown in Figure 4.8
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and Figure 4.11, the HDR-VFI method can recover the flow by propagating the flow
information from the unsaturated regions.

The dynamic range that can be reconstructed is limited by the exposure ratio of
four that is assumed in this chapter. For larger ratios, the accuracy of HDR frame
reconstruction by the MakeHDRMakeHDRMakeHDR network might be reduced (Chapter 3), which could
adversely affect the accuracy of HDR video interpolation. Moreover, when capturing
an HDR scene, the lowest exposure time is adjusted in such a way that the long
exposure is not very saturated so that there is enough valuable blurry information.

4.6 Conclusion

This chapter presents a method for high-dynamic-range video frame interpolation
using multi-exposure sensors. The proposed method outperforms the existing VFI
methods both in terms of quantitative metrics as well as visual results for the challeng-
ing scenes containing non-uniform motions. In particular, high-precision alignment
of scene motion with the ground truth is achieved, where other methods clearly
fail, although they may produce visually plausible results. The HDR-VFI method
can handle complex motion with consistently high performance as it depends little
on explicitly training this reconstruction aspect. Instead, the increased temporal
sampling rate due to motion reconstruction from blurred information is capitalized.
Also, the HDR-VFI is less dependent on scene lighting conditions, whereas other
methods designed for single-exposure sensors may suffer from image saturation in
bright regions or excessive noise in dark conditions.
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Chapter 5

Enhanced Image Quality
Measurement

Full-reference image quality metrics (FR-IQMs) aim to measure the visual differences
between a pair of reference and distorted images, with the goal of accurately predict-
ing human judgments. However, existing FR-IQMs, including traditional ones like
PSNR and SSIM and even perceptual ones such as HDR-VDP, LPIPS, and DISTS, still
fall short in capturing the complexities and nuances of human perception. Rather
than devising a novel IQM model, this chapter seeks to improve upon the perceptual
quality of existing FR-IQM methods. This is achieved by considering visual masking,
an important characteristic of the human visual system that changes its sensitivity
to distortions as a function of local image content. Specifically, for a given FR-IQM
metric, a methodology is proposed to predict a visual masking model that modulates
reference and distorted images in a way that penalizes the visual errors based on
their visibility. Since the ground truth visual masks are difficult to obtain, it is demon-
strated how they can be derived in a self-supervised manner solely based on mean
opinion scores (MOS) collected from an FR-IQM dataset. The proposed approach
results in enhanced FR-IQM metrics that are more in line with human prediction both
visually and quantitatively.

5.1 Introduction

Full-reference image quality metrics, which take as an input a pair of reference and
distorted images, play a crucial role in a wide range of applications in digital image
processing, such as image compression and transmission, as well as in evaluating
the rendered content in computer graphics and vision. They are commonly used
as a cost function in optimizing restoration tasks like denoising, deblurring, and
super-resolution [Ding et al., 2021b].

Consequently, it is critical to develop FR-IQMs that accurately reflect the visual
quality of images in accordance with the characteristics of the human visual system
(HVS). The most commonly used FR-IQMs for evaluating image quality are the mean
square error (MSE) or mean absolute error (MAE). While these per-pixel metrics are
easy to compute, they assess image quality regardless of spatial content, leading to
false positive predictions. This can be seen in Figure 5.1a, where Gaussian noise is
less noticeable in textured regions, while MAE predicts uniformly distributed error.
Similarly, a depth-of-field blur is primarily visible on high-contrast fonts Figure 5.1b,
while MAE predicts the blur visibility also in smooth gradient regions. Other classic
metrics like SSIM [Wang et al., 2004a], while accounting for spatial content, often
result in false positive predictions (the JPEG artifact and image-based rendering (IBR)
artifact in Figure 5.1c-d, respectively). A recent hand-crafted metric FLIP [Andersson
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FIGURE 5.1: This chapter introduces self-supervised visual masking that enhances image quality
prediction for existing quality metrics such as MAE, SSIM, FLIP, and VGG. The work is inspired by
the well-known characteristic of the Human Visual System (HVS), visual masking, which results in
locally varying sensitivity to image artifact visibility that reduces with increasing contrast magnitude of
the original image pattern. The experimental results show that the learned masking clearly outperforms
its traditional hand-crafted versions and better adapts to specific distortion patterns. The reference and
distorted images are shown in the first two rows, while the third and fourth rows show the error maps
as predicted by the original metrics and their enhanced versions using our masking approach. As can be
seen, mask-enhanced metrics better predict the visibility of local distortion by the human observer. Each
error map is scaled to fit within the mean opinion scores (MOS) range for a more intuitive comparison.
In this color scale, darker indicates less visible distortion.

et al., 2020] is specifically designed to predict the visual differences in time-sequential
image-pair flipping, which can make it too sensitive for side-by-side image evaluation,
e.g., noise is less visible in high-contrast texture (Figure 5.1e) or motion blur is
not equally visible across different parts of an image (Figure 5.1f). Recognizing
that hand-crafted image features may not adequately capture the HVS complexity,
modern metrics [Zhang et al., 2018b] strive to assess the perceptual dissimilarity
between images by comparing deep features extracted from classification networks
[Simonyan and Zisserman, 2015]. These metrics appear to better account for the
HVS characteristics; however, they are designed to generate a single value per image
pair and cannot provide correct visible error localization, as can be seen in the
impulse noise example (Figure 5.1g). Moreover, the features learned through training
the classification networks tend to be less sensitive to global distortions, such as
moderate color and brightness changes (Figure 5.1h) that have less impact on reliable
classification.

This chapter extends the classic and deep learning-based full-reference metrics
by introducing a learnable component trained on perceptual MOS data in a self-
supervised way. By implicitly analyzing local image content, the proposed model
derives per-pixel maps that mimic visual masking, effectively modeling the visual
significance of distortions. The self-supervised masking methodology is introduced
in Section 5.2 and Section 5.3 present a comparison of existing FR-IQMs and their
enhanced versions together with an outcome of ablation studies. Section 5.4 pro-
vides the source code of the proposed method. Finally, this chapter is concluded in
Section 5.5.
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FIGURE 5.2: The proposed visual masking for enhancing classic metrics such as MAE and SSIM (left)
and learning-based metrics such as DISTS or LPIPS (right). For classic metrics, the input to mask
predictor network F are sRGB images, while for learning-based metrics, the inputs are the VGG features
extracted from the images. The visual masks are learned in a self-supervised fashion by minimizing the
difference between the metric final score and human scores collected from an FR-IQM dataset.

5.2 Self-Supervised Visual Masking

This section elaborates on the proposed methodology for perceptually calibrating the
existing FR-IQMs. Given a reference and distorted pair (X and Y) ∈ RH×W×C, firstly,
a visual mask is learned, M ∈ RH×W×1, which has the same spatial dimensions as
the inputs. For classical metrics (Figure 5.2-left), the input X and Y are sRGB images
(C = 3), while for learning-based metrics such as LPIPS, DISTS, or DeepWSD, the
input X, and Y are the VGG features extracted from the images and C is the number
of channels in a given VGG layer (Figure 5.2-right). The predicted mask is then
element-wise multiplied with X and Y before being fed into an FR-IQM, D. Note
that, for learning-based metrics, the direct modulation of the input sRGB images by a
mask M would distort their content and consequently reduce the VGG performance
as it is originally trained on complete, non-masked images. The proposed solution
with VGG feature modulation draws inspiration from classic FR-IQMs [Lubin, 1995;
Daly, 1993; Mantiuk et al., 2011a; Mantiuk et al., 2021], where the response from
hand-crafted filter banks is transduced using a fixed, perception-motivated masking
model [Legge and Foley, 1980; Foley, 1994; Wilson and Gelb, 1984]. In this approach,
the response from pre-trained VGG filters is modulated with a learned per-pixel mask
M, where perception modeling is learned from the MOS data. The visual mask M is
estimated by utilizing a lightweight CNN denoted as F , which takes both X and Y
as input. Mathematically, this can be expressed as:

M = F (X, Y) (5.1)

It is important to note that the network F is trained specifically for a metric D. In
the case of metrics such as LPIPS, DISTS, and DeepWSD, their specific architecture
is followed, and a mask is computed for each layer using a separate F , then the
same mask is applied for all channels in a given layer (Figure 5.2-right). The original
spatial pooling is preserved for each metric, such as ℓ1 distance in LPIPS, structural
similarity in DISTS, or Wasserstein distance in DeepWSD. Since the output of the
mask generator network can not be directly supervised, a self-supervised approach is
adopted to train it using an IQM dataset with a single quality score. The network’s
parameters are optimized by minimizing the ℓ2 difference between the metric output
value and human scores. The loss function is formulated as follows:

Loss = ∥G(D(M ⊙ X, M ⊙ Y))− q∥2
2 (5.2)

Here, q ∈ [0, 1] represents the normalized mean opinion score when comparing
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FIGURE 5.3: Visual comparisons of distortion visibility maps for Gaussian noise (upper row) and
superresolution artifacts (middle and bottom rows). The distortion examples are taken from the
PIPAL dataset. The first two columns present the reference and distorted images, followed by the
respective metric predictions: MAE, HDR-VDP-2 [Mantiuk et al., 2011a], LocVis [Wolski et al., 2018],
FovVideoVDP [Mantiuk et al., 2021], and E-MAE. Here, the MAE map is additionally visualized to
understand each distortion’s characteristics better. As can be seen, the existing metrics tend to either
underestimate or overestimate the distortion visibility. Note that LocVis and E-MAE have not seen
distorted images with superresolution artifacts in their training.

the images X and Y. As the metric response can vary in an arbitrary range, following
a similar approach in [Zhang et al., 2018b], a small network G is jointly trained to
map the metric response to the human ratings.

5.2.1 Training and Network Details

For training, the KADID dataset [Lin et al., 2019] is used, which comprises 81 natural
images that have been distorted using 25 types of traditional distortions, each at five
different levels, making roughly 10k training pairs. Note that the mask generator
network F is trained for all the distortion categories together rather than for one
specific category. It is experimentally found that a lightweight CNN with three
convolutional layers, each consisting of 64 channels, suffices for successful training.
ReLU activation is applied after each layer, while Sigmoid activation is used for the
final layer to keep the mask values in the range between 0 and 1. The computation
overhead of the mask generator network is very negligible, and it takes only 12 ms
to compute the mask on a 1080Ti GPU with an input resolution of 768 × 512 × 3. The
mapping network G consists of two 32-channel fully connected (FC) ReLU layers,
followed by a 1-channel FC layer with Sigmoid activation. The batch size for training
is set to 4. The Adam optimizer [Kingma and Ba, 2015] is employed with an initial
learning rate of 10−4 and a weight decay of 10−6.

5.3 Results

In this section, the experimental setup is first presented, which is used to evaluate the
proposed method, and the ablations of different training strategies follow.

5.3.1 Experimental Setup

The visual masking approach is employed to enhance some of the classical metrics
(MAE, PSNR, SSIM, MS-SSIM, FLIP, and fovVideoVDP) and recent learning-based
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TABLE 5.1: Performance comparison of existing FR-IQMs and their enhanced versions using the
proposed approach (specified by the prefix E) on three standard IQM datasets. The prefix R denotes
the original metric retraining on the KADID dataset, while the prefix S refers to employing a visual
saliency mask instead of the visual mask. At the bottom, the corresponding results for NR-IQMs are
included. Higher values of SRCC, PLCC, and KRCC indicate better quality prediction. The first and
second best metrics for each dataset are indicated in bold and underlined, respectively. Additionally, the
version with superior correlation is highlighted in dark gray for each metric.

CSIQ TID PIPAL

Metric PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

FSIM 0.900 0.913 0.740 0.847 0.789 0.611 0.651 0.617 0.441
VIF 0.826 0.841 0.642 0.820 0.813 0.616 0.584 0.538 0.378
HDR-VDP-2 0.761 0.886 0.704 0.715 0.753 0.571 0.514 0.503 0.354
PieAPP 0.827 0.840 0.653 0.832 0.849 0.652 0.729 0.709 0.521

MAE 0.819 0.801 0.599 0.639 0.627 0.409 0.458 0.443 0.304
S-MAE 0.656 0.697 0.493 0.498 0.496 0.347 0.369 0.365 0.248
E-MAE 0.871 0.917 0.738 0.857 0.863 0.673 0.597 0.606 0.429
PSNR 0.851 0.837 0.645 0.726 0.714 0.540 0.468 0.456 0.314
E-PSNR 0.901 0.910 0.728 0.855 0.844 0.656 0.637 0.629 0.446
SSIM 0.848 0.863 0.665 0.697 0.663 0.479 0.550 0.534 0.373
E-SSIM 0.869 0.910 0.732 0.842 0.868 0.677 0.671 0.656 0.469
MS-SSIM 0.826 0.841 0.642 0.820 0.813 0.616 0.584 0.538 0.379
E-MS-SSIM 0.862 0.895 0.709 0.806 0.825 0.621 0.642 0.634 0.453
FLIP 0.731 0.724 0.527 0.591 0.537 0.413 0.498 0.442 0.306
E-FLIP 0.871 0.902 0.715 0.859 0.858 0.666 0.621 0.612 0.434
FovVideoVDP 0.795 0.821 0.632 0.742 0.727 0.544 0.565 0.509 0.358
E-FovVideoVDP 0.841 0.882 0.685 0.830 0.816 0.623 0.662 0.626 0.449
VGG 0.938 0.952 0.804 0.853 0.820 0.639 0.643 0.610 0.432
E-VGG 0.914 0.938 0.776 0.895 0.889 0.710 0.695 0.675 0.485
LPIPS 0.944 0.929 0.769 0.803 0.756 0.568 0.640 0.598 0.424
R-LPIPS 0.931 0.917 0.756 0.898 0.886 0.697 0.670 0.640 0.447
E-LPIPS 0.922 0.933 0.771 0.884 0.876 0.689 0.705 0.678 0.490
DISTS 0.947 0.947 0.796 0.839 0.811 0.619 0.645 0.626 0.445
E-DISTS 0.938 0.925 0.754 0.903 0.915 0.725 0.725 0.697 0.507
Watson-VGG 0.944 0.940 0.785 0.808 0.763 0.573 0.627 0.606 0.429
E-Watson-VGG 0.917 0.936 0.776 0.886 0.895 0.716 0.697 0.678 0.488
DeepWSD 0.949 0.961 0.821 0.879 0.861 0.674 0.593 0.584 0.409
R-DeepWSD 0.955 0.961 0.823 0.895 0.88 0.695 0.654 0.633 0.449
E-DeepWSD 0.937 0.937 0.775 0.905 0.892 0.710 0.704 0.672 0.485

HYPERIQA 0.769 0.757 0.573 0.679 0.662 0.489 0.325 0.363 0.250
MANIQA 0.874 0.827 0.642 0.784 0.760 0.572 0.404 0.407 0.276

methods (VGG, LPIPS, DISTS, Watson-VGG, and DeepWSD). Note for MS-SSIM,
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the same F is used across all scales, while the inputs are images at different scales.
Moreover, the metric called VGG is computed by simply taking the ℓ1 difference
between VGG features for the same layers as originally chosen for LPIPS and DISTS.
Deploying the masking model to PieAPP or any other metrics that create new CNN
architectures from scratch is not practical as there is no intermediate component
to which the masking model can be applied. Thus, the main focus remains on
mainstream metrics that use features extracted from pre-trained networks for quality
prediction. The performance of the proposed approach is assessed on three well-
established IQM datasets: CSIQ [Larson and Chandler, 2010], TID2013 [Ponomarenko
et al., 2015], and PIPAL [Jinjin et al., 2020]. The first two datasets mainly consist of
synthetic distortions, ranging from 1k to 3k images. On the other hand, PIPAL is
the most comprehensive IQM dataset due to its diverse and complex distortions,
consisting of 23k images. Each reference image in this dataset was subjected to 116
distortions, including 19 GAN-type distortions. For evaluation, following [Ding et al.,
2022], the smaller side resolution of input images is resized to 224 while maintaining
the aspect ratio. Note that rescaling is only performed on the test datasets to match
the image resolution in which the MOS data were collected. The proposed approach
does not require rescaled inputs, and all visual figures in this section are processed
in their original resolution. For each dataset, three metrics are used for evaluation:
Spearman’s rank correlation coefficient (SRCC), Pearson linear correlation coefficient
(PLCC), and the Kendall rank correlation coefficient (KRCC). The PLCC measures
the accuracy of the predictions, while the SRCC indicates the monotonicity of the
predictions, and the KRCC measures the ordinal association. The PLCC measures
linear correlation, requiring both variables (metric output and MOS) to be on the same
scale. Hence, the metric scores are mapped to the MOS values using a four-parameter
logistic function, consistent with established IQM methods [Ding et al., 2022; Liao
et al., 2022]. The network G is not used for PLCC remapping; otherwise, a specific G
needs to be trained for each metric on a given test set. Importantly, SRCC and KRCC
scores do not require additional remapping, thus directly reflecting the correlation
between metric output and MOS data.

5.3.2 Evaluations

This section presents the outcome of the quantitative (agreement with the MOS data)
and qualitative (the quality of error maps) evaluation of the proposed method. The
mask content is also analyzed and related to perceptual models of contrast and blur
perception. Finally, the error map prediction of different distortion levels is analyzed,
and the potential use of enhanced E-MAE metric as a loss in denoising and deblurring
image restoration tasks is investigated.

Quality prediction The experimental results are presented in Table 5.1, and the pro-
posed extension is denoted with the prefix E for each specific IQM. The extension for
traditional metrics, such as MAE, PSNR, SSIM, FLIP, and fovVideoVDP, consistently
improves their performance for all datasets. This is remarkable as those metrics are
commonly used, and the simple extension can make their distortion prediction closer
to the human observer. Interestingly, the enhanced E-MAE and E-PSNR outperform
recent learning-based VGG, LPIPS, and DISTS in the TID dataset while showing
a comparable performance for the PIPAL dataset. Notable improvements are also
observed in both datasets for the recent learning-based metrics (E-VGG, E-LPIPS,
E-DIST, Watson-VGG, and E-DeepWSD), positioning them at a level comparable to
other state-of-the-art IQMs, such as PieAPP [Prashnani et al., 2018]. The only excep-
tion is the case of the small-scale CSIQ dataset, where the original learning-based
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metrics achieve high correlations with the MOS data and leave little space for further
improvements.

Retraining LPIPS per-channel weights (denoted as R-LPIPS in Table 5.1) using
the KADID dataset is also considered. The strategy improves correlation for TID
and PIPAL datasets with respect to the original LPIPS. Compared to E-LPIPS, such
retraining is more prone to overfitting; it performs marginally better for the TID
dataset, which has more distortion similarities with KADID, while it is significantly
worse for the larger and more diverse PIPAL dataset. Similarly, training layer-specific
weights for DeepWSD (R-DeepWSD) improves correlation. However, E-DeepWSD
achieves better performance. Moreover, channel/layer-wise weighing can not be
reasonably applied to image-based metrics (MAE, SSIM, FLIP).

Moreover, the performance of recent NR-IQM methods MANIQA [Yang et al.,
2022] and HYPERIQA [Su et al., 2020] that are trained on the KADID dataset is
evaluated. As it can be seen in Table 5.1, the NR-IQM methods show significantly
lower correlations with the MOS data, particularly for the PIPAL dataset, which
indicates that FR-IQM methods can better generalize to unseen distortion types.

Visual saliency methods incorporate semantic information. However, they are not
trained to discriminate between dominant distortions and salient features (e.g., faces).
This seems to be a limiting factor in the direct saliency use in the proposed image
quality evaluation framework. To validate this observation, the predicted saliency
map from an off-the-shelf saliency network [Jia and Bruce, 2020] is employed as a
mask to the MAE metric that is denoted as S-MAE in Table 5.1. While significantly
lower correlations with the MOS data are observed in this simple attempt, the pro-
posed visual masking approach can be complemented by saliency so that effective
distortion predictions are narrowed to image regions that are likely to be visually
attended.

Analysis of poorer performance for the CSIQ dataset The correlation of each
metric across six distortion categories for the CSIQ dataset is further investigated.
The proposed approach slightly improves or maintains high correlations for the
majority of the distortion categories; the only exception is the global contrast decrements
category, where a significant decrease in the correlation can be seen across all metrics,
resulting in an overall negative impact on the correlation. This can be attributed to
the fact that the global contrast change results in strong brightness differences where
the proposed masking model apparently can not generalize to this specific unseen
distortion category. Figure 5.4 illustrates two sample images from this category
where the predicted mask for the E-MAE metric exhibits less sensitivity to changes in
brightness, particularly noticeable in the sky regions.

Error map prediction In Figure 5.1, the error maps predicted by various existing
IQMs and their enhanced versions for a set of images featuring different types of
distortions are shown. As the output of each metric can be in an unbounded range
and vary across different metrics and their improved versions with the proposed
approach, for a more intuitive and fair comparison, instead of simply normalizing
them within the range from zero to one using a Sigmoid function [Andersson et al.,
2020], the output of each metric after being scaled to the MOS range using a pre-
trained scaling network G are visualized. Specifically, the KADID dataset is utilized,
and a separate G is trained for each metric to transform their raw response into
values that align with human ratings (MOS). Note that for the enhanced version of
each metric, the network G is already provided from the training step. This scaling
process is generally akin to mapping the metric scores to the MOS values using a
four-parameter function when computing the correlation. As can be seen in Figure 5.1,
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Reference Distorted MAE E-MAE Mask

FIGURE 5.4: Visualizations of error maps for MAE and its enhanced version (E-MAE) alongside the
predicted masks for two sample examples within the "global contrast decrements" category from the
CSIQ dataset.

the enhanced error maps using the proposed approach better align with the human
perception of the distortion. A notable example is the case of Gaussian noise, where
a metric like MAE predicts uniformly distributed error, and the visual masking
approach effectively redistributes the error in terms of both their magnitude and
local visibility. Additionally, Figure 5.3 showcases three examples where the E-MAE
metric achieves better localized error maps compared to well-established visibility
metrics such as HDR-VDP-2 [Mantiuk et al., 2011a], LocVis [Wolski et al., 2018], and
FovVideoVDP [Mantiuk et al., 2021].

Mask visualization It is also intriguing to see the learned mask, i.e., the output of the
network F , and to compare it with a traditional visual contrast masking model, such
as the one used in JPEG2000 compression [Zeng et al., 2002]. To this end, Figure 5.5
presents visual masks generated for noise and blur distortions. The same distortion
level and three levels of image contrast enhancement (×0.5,×1, and ×2) are consid-
ered. In the case of noise distortion, learned masks predict stronger visual masking
in the high-contrast butterfly and better noise visibility in the out-of-focus smooth
background. Increasing image contrast (×2) leads to even stronger visual masking
in the butterfly area and the plant behind it. Reducing image contrast (×0.5) leads
to the inverse effect. Such behavior is compatible with the visual contrast masking
model [Zeng et al., 2002; Tursun et al., 2019], where due to self-contrast masking, the
higher the contrast of the original signal (e.g., on edges), the stronger the distortion
should be to make it visible. Along a similar line, due to neighborhood masking, the
higher the contrast texture, the stronger the visual masking as well. In the case of
blur distortion, the learned mask predicts its strong visibility on high-contrast edges.
The stronger the image contrast (×2), the blur visibility improves. Assigning a higher
weight by visual mask to high contrast regions agrees with perceptual models of blur
detection and discrimination [Watson and Ahumada, 2011; Sebastian et al., 2015].
Note that each mask is derived by taking as an input both the reference and distorted
images; the mask can resolve even per-pixel distortions, as in the case of noise (Fig-
ure 5.5), and accordingly informs the E-MAE metric on the perceptual importance
of such distortions. What is also remarkable is that the HVS might impose contra-
dictory requirements on hand-crafted visual models that become specific for a given
distortion. This is well illustrated in Figure 5.5, where noise can be better masked by
strong contrast patterns [Zeng et al., 2002; Tursun et al., 2019] while blur is actually
better revealed by strong contrast patterns [Watson and Ahumada, 2011]. The learned
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FIGURE 5.5: Comparison of the E-MAE metric masks for the noise (fifth row) and blur (sixth row)
distortions as a function of different image contrast (×0.5,×1, and ×2). In the fourth row, a map with
the human sensitivity to local contrast changes as predicted by a traditional model of visual contrast
masking [Tursun et al., 2019, Eq.4] is shown. In all cases, darker means more masking (less sensitive to
distortion).
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FIGURE 5.6: Error map prediction for the MAE and E-MAE metrics along with learned weighting
masks for two perception patterns from Čadík et al., 2013. These patterns were specifically designed
to investigate various perceptual phenomena, including contrast sensitivity and contrast masking. In
the first row, the background consists of a high-frequency pattern with increasing contrast toward the
right and a stimulus pattern with decreasing contrast from bottom to top (which becomes more apparent
when zoomed in). In this scenario, contrast masking is more pronounced with increasing background
contrast that, in turn, reduces the stimulus visibility, and E-MAE correctly predicts this effect. The
second row presents another example, showing a set of patterns where their spatial frequencies increase
toward the right while their contrast decreases toward the top. In this case, the learned masking roughly
follows an inverse U-shape characteristic, akin to the contrast sensitivity function (CSF) Daly, 1993;
Barten, 1999; Wuerger et al., 2020. The visual masking well approximates the sensitivity drop for high
frequencies but tends to excessively suppress the visibility of low-frequency patterns. In spite of this
drawback, it is still quite remarkable that the CSF shape becomes apparent in learned visual masks
without any explicit training with calibrated near-threshold CSF data.
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FIGURE 5.7: Visualisation of predicted mask across different metrics for a given pair of reference and
distorted images with Gaussian noise from the TID dataset. Note that the SSIM values have been
remapped to 1-SSIM, where lower values indicate less visible errors. In the case of the PSNR, the error
map for the measured MSE is shown. For the VGG metric, the predicted mask for all layers is visualized,
while the error map is shown only for the first layer.

E-MAE mask recognizes the distortion context and reacts as expected by penalizing
less noise distortion in high-contrast and textured regions while penalizing more blur
distortion at high-contrast edges. Interestingly, such local, seemingly contradictory
behavior has been learned solemnly by providing multiple pairs of reference and
distortion images along with the corresponding quality MOS rating, which is just a
single number. No annotation on specific distortion types was required during the
training stage. Figure 5.6 shows further examples that the learned masking is also
informed about contrast masking by texture [Ferwerda et al., 1997] and the contrast
sensitivity function (CSF) [Daly, 1993; Barten, 1999; Wuerger et al., 2020].

Masks vs. metrics analysis Masks typically vary with distortion type, as demon-
strated in Figure 5.5 for noise and blur. In Figure 5.7, the predicted masks across
various metrics are further illustrated, including MAE, PSNR, SSIM, FLIP, and VGG
for a given pair of reference and distorted images with Gaussian noise. As can be seen,
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FIGURE 5.8: Visualisation of predicted mask across different metrics for a given pair of reference and
distorted images with motion blur from the PIPAL dataset. The SSIM values have been remapped to
1-SSIM, where lower values indicate less visible errors. In the case of the PSNR, the error map is shown
for the measured MSE. For the VGG metric, the predicted mask is visualized for all layers, while the
error map is shown only for the first layer.

Denoised with MAE + E-MAE Noisy Reference Denoised with MAE + E-MAEDenoised with MAE

FIGURE 5.9: Visual results in the image denoising task when employing MAE and MAE+E-MAE
as loss functions. Considering that denoiser networks typically reduce noise through smoothing, the
objective was to investigate whether the use of the E-MAE loss component could encourage the network
to retain or hallucinate details, even if they do not precisely match the reference but their discrepancy
from the ground truth is possibly not perceivable. As can be seen, the denoised images with the MAE+E-
MAE loss yield sharper content and higher contrast.

metrics with similar characteristics, such as MAE, PSNR, and FLIP, tend to learn simi-
lar maps. For a more perceptually-informed metric like SSIM that partially models
visual masking, the predicted mask adjusts its sensitivity by assigning lower weight
to regions where SSIM exaggerates the error (e.g., in the grass area) and identity
weight when accurately predicting the error magnitude (e.g., the body of lighthouse).
When it comes to VGG, the mask learned for the early layer resembles the MAE mask
since the initial convolutional layers tend to learn basic image features like edges and
textures, whereas for the deeper layers, as the VGG learns more abstract features, the
interpretation of the masks become less obvious.

In addition to Figure 5.7, the visual masks are further inspected in Figure 5.8
predicted by the proposed approach across multiple metrics, using an example of
motion blur distortions from the PIPAL dataset. As can be seen, the presence of
blur is not uniform across the entire image; it becomes particularly noticeable when
the direction of the motion blur is different from the pattern of the shirt (the right
and upper parts). Here are the similar characteristics of predicted masks for MAE,
PSNR, FLIP, and the first layer of VGG metrics, as in Figure 5.7. For SSIM, which
already includes a divisive contrast component akin to visual masking modeling, the
predicted mask assigns identity weights to regions where SSIM accurately predicts
errors and lowers weights in areas where SSIM exaggerates the error.

Employing the enhanced metric as a loss In this part, the benefit of the enhanced
IQMs in optimizing image restoration algorithms is investigated. To this end, MAE
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TABLE 5.2: Evaluation of a blind Gaussian denoising task when employing MAE and the equal
combination of MAE and E-MAE as loss functions. The performance of the trained models is shown
on synthetic Gaussian noise created with four distinct noise levels (σ) averaged across five benchmark
datasets, consistent with the ones used in Zamir et al., 2022.

σ = 15 σ = 25 σ = 50 σ = 60

Loss PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
MAE 34.36 0.94 0.058 31.94 0.90 0.092 28.82 0.84 0.163 28.02 0.81 0.182
MAE + E-MAE 34.37 0.94 0.055 31.92 0.91 0.087 28.71 0.84 0.152 27.88 0.81 0.167

TABLE 5.3: Evaluation of a blind Gaussian denoising task when employing VGG and the equal
combination of VGG and E-VGG as loss functions. The performance of the trained models is shown
on synthetic Gaussian noise created with four distinct noise levels (σ) averaged across five benchmark
datasets, consistent with the ones used in Zamir et al., 2022.

σ = 15 σ = 25 σ = 50 σ = 60

Loss PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
MAE + VGG 34.16 0.936 0.033 31.68 0.900 0.056 28.51 0.826 0.111 27.66 0.797 0.132
MAE + E-VGG 34.34 0.939 0.049 31.91 0.905 0.078 28.78 0.835 0.139 27.98 0.811 0.155

and MAE+λ· E-MAE are employed as loss functions for training image denoising and
motion deblurring using the state-of-the-art image restoration method, Restormer
[Zamir et al., 2022]. For the denoising task, the images in the BSD400 dataset [Martin
et al., 2001] are selected as the training set, and synthetic noise to these images is
introduced by applying additive white Gaussian noise with a randomly chosen
standard deviation ranging between 0 and 50. Each training is performed with
the same number of iterations in an identical setup (e.g., learning rate). Then, the
trained models are evaluated on five benchmark datasets, consistent with the ones
used in [Zamir et al., 2022]. The evaluation is conducted for various noise levels,
and the results are reported in Table 5.2. It can be observed that training just with
the MAE loss leads to higher PSNRs, in particular for higher noise levels, but at
the same time, image blur and contrast loss can be observed (refer to Figure 5.9).
More perceptually inclined quality metrics penalize for such visual quality reduction,
e.g., LPIPS is sensitive to excessive blur [Zhang et al., 2018b]. Combining with an
E-MAE loss component clearly improves such metrics’ scores consistently across
various noise levels as well as the visual quality. For the motion deblurring task, the
GoPro dataset [Nah et al., 2017] is employed for the training and evaluation. The
combination of MAE and E-MAE enhances the deblurring results across different
quality metrics (Table 5.4) and leads to a sharper appearance (Figure 5.10). In both
tasks, it is empirically found that λ = 1 gives the best performance. It can also
be observed that relying exclusively on the E-MAE loss component leads to worse
results, which is expected, as indicated in [Ding et al., 2021b].

Employing the enhanced VGG metric as a loss Following the experiments in opti-
mizing image restoration algorithms, the state-of-the-art image restoration method,
Restormer [Zamir et al., 2022], is trained for the image-denoising with MAE + VGG
and MAE + E-VGG in identical conditions. The results are reported in Table 5.3. The
trained method with VGG shows a better LPIPS score as expected; however, it is
found that denoising with E-VGG looks visually better, particularly in smooth low
contrast regions (Figure 5.11).
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TABLE 5.4: Evaluation of a motion deblurring task when employing MAE and the equal combination
of MAE and E-MAE as loss functions. The performance of the trained models is shown on synthetic
blur created using the GoPro dataset Nah et al., 2017.

Metric PSNR↑ SSIM↑ LPIPS↓ E-MAE↓
MAE 31.70 0.92 0.1030 0.0192
MAE + E-MAE 31.78 0.93 0.1018 0.0184

Deblurred with MAE + E-MAE Blurry Reference Deblurred with MAE + E-MAEDeblurred with MAE

FIGURE 5.10: Visual results for the motion deblurring task when employing MAE and MAE + E-MAE
as loss functions.

Denoised with MAE + E- VGG Noisy Reference Denoised with MAE + VGG Denoised with MAE + E- VGG

FIGURE 5.11: Visual results in the image denoising task when employing MAE+VGG and MAE+E-
VGG as loss functions. Denoising with MAE+VGG typically remains the noise in the dark region. On
the other hand, MAE+E-VGG removes the noise successfully, which matches human perception better.

5.3.3 Ablations

A set of ablations is performed to investigate the impact of reduced training data in
terms of distortion levels, reference image number, and distortion type diversity on
the E-MAE metric prediction accuracy.

Distortion levels The first experiment analyzes the importance of incorporating
various distortion levels into the training set. In this regard, the E-MAE metric is
trained using only one distortion level per category, and the results are reported in
Figure 5.12. Interestingly, for all the datasets (except PIPAL), an inverse U-shape
trend emerged across five different distortion levels, where the lowest correlation
is observed when training with the minimum and maximum distortion levels (lev-
els 1 and 5). Conversely, a moderate amount of distortion (level 3) appears to be
sufficiently representative for each distortion category and achieved a comparable
correlation to training with all five levels. This behavior can be anticipated because,
at the lowest and highest distortion levels, the distortions are either barely visible or
strongly visible, leading to the consistent selection of mostly extreme rating scores.
Consequently, when the network is exclusively exposed to images with one such
extreme distortion and rating levels, it fails to learn to differentiate between them. On
the other hand, at moderate distortion levels where distortions are partially visible or
invisible, the network has a better opportunity to learn masks that behave differently
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FIGURE 5.12: Evaluation of E-MAE training performance using only selected distortion levels for
each distortion category. The SRCC correlation is measured with the MOS data, and as a reference, the
results of complete training with all distortion levels are included.
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FIGURE 5.13: Evaluation of E-MAE training performance using different numbers of the reference
images (scenes). Multiple training runs have been performed for 20, 40, and 60 randomly selected
scenes from the full set of 81 reference images. The data points represent the respective SRCC correlation
averages over such runs, while the vertical bars depict the standard deviation.

for varying spatial locations.

Dataset size Although employing a large-scale KADID dataset in the training (25
distortion types × five distortion levels), the number of reference images is limited
to 81. This ablation aims to investigate the training performance by even further
reducing the number of reference images. To this end, multiple runs of E-MAE
metric training using randomly selected subsets of 20, 40, and 60 reference images are
performed. Figure 5.13 presents the SRCC correlations averaged over multiple runs.
The correlation differences between 40, 60, and the full set of 81 reference images are
minor. In the case of 20 reference images, the performance is slightly lower and the
variance higher, which indicates that 20 scenes might not be enough to capture image
content variability.

Distortion diversity The impact of separate E-MAE training is investigated on
specific distortion subsets such as noise, blur, combined noise, and blur, as well as
the complete KADID dataset. At the test time, trained E-MAE versions on noise
and blur subsets of the TID dataset, as well as its complete version, are evaluated.
The results, presented in Table 5.5, reveal that training solely on the noise category
unsurprisingly improves the SRCC correlation within that category; however, it also
enhances the overall correlation for the TID dataset with respect to the original MAE.
Conversely, training exclusively on blur does not improve the performance within
the blur category itself, as the blur distortion already exhibits a strong correlation
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TABLE 5.5: The SRCC correlation with the MOS data for the E-MAE metric trained with specific
distortion categories (noise, blur, noise&blur) and the entire (all) KADID dataset, as indicated in the
brackets. The TID dataset is used for testing, where the “Category” columns indicate whether only the
noise and blur subsets are considered or the entire dataset.

Metric Category: noise blur all

MAE 0.601 0.934 0.545
E-MAE (noise) 0.847 0.927 0.674
E-MAE (blur) 0.732 0.926 0.655
E-MAE (noise & blur) 0.841 0.936 0.726
E-MAE (all) 0.906 0.955 0.857

Reference Distorted (1) (2) (3) (4) (5) (All)

FIGURE 5.14: Visualization of E-MAE error maps for Gaussian noise when it is trained with different
levels of distortion.

(0.934) for the MAE metric, making any improvement marginal. On the other hand,
training with all categories combined significantly improves the correlation in both
the noise and blur categories compared to training with only noise or blur categories,
which can suggest that exposing the network to a wider range of distortion types
enables better generalization.

Mask visualization for the ablation experiments The impact of separate E-MAE
training is investigated in terms of how the quantitative measures in ablation experi-
ments are reflected in the predicted error maps. To this end, the E-MAE error map
is shown within various experimental setups (refer to Section 5.3.3) for a Gaussian
noise distortion example from the TID dataset. Figure 5.14 shows the error maps
when the metric is trained with only one distortion level per category. It is observed
that the enhanced error maps have less visual similarity compared to training across
all five levels when it is trained using the lowest and highest distortion levels, while
it has the highest similarity when trained with distortion level 3. This observation is
aligned with the correlation measurement in Figure 5.12. Additionally, Figure 5.15
shows the error maps when E-MAE is trained with a subset of images in the training
set. Training with 20 reference images appears insufficient in generating accurate
visual masking, which is aligned with the findings in Figure 5.13, where a reduction
in correlation is observed with just 20 images. Conversely, training with 40 or 60
images closely approximates the results of training with the entire dataset, similarly
reflected in the error maps. Lastly, in Figure 5.16, the maps obtained through training
with different subsets of distortion categories from the training set are presented.
Here, training exclusively with noise and blur can not produce precise masking, and
including more categories is necessary to produce more localized masking. This is
consistent with the correlation measures reported in Table 5.5.

Additional results for the error maps In addition to the presented results, Figure 5.17
shows the enhanced error maps for the MAE, SSIM, and FLIP metrics. It can be
observed that the different enhanced metrics have almost the same error visibility
maps.
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Reference Distorted (20) (40) (60) (All)

FIGURE 5.15: Visualization of E-MAE error maps for Gaussian noise when it is trained with a different
number of training images.

Reference Distorted (Blur) (Noise) (Noise & Blur) (All)

FIGURE 5.16: Visualization of E-MAE error maps when it is trained with different distortion categories.

5.4 Source Code

The source code for the enhanced MAE metric using the Pytorch [Paszke et al., 2019]
is shared below to illustrate the simplicity of the visual masking approach:

class E_MAE(torch.nn.Module):
# Initialize all the components
def __init__(self):

super(E_MAE, self).__init__()
self.cuda()
self.chns = [3]
self.L = len(self.chns)
self.mask_finder = []
self.mask_finder_1 = MaskFinder(self.chns[0] * 2).cuda()
self.mask_finder_1.requires_grad = False
self.scaler_network = ScalerNetwork()
model_path = os.path.abspath(os.path.join('weights',

'E_MAE.pth'))↪→

self.load_state_dict(torch.load(model_path,
map_location='cpu'), strict=False)↪→

# Returns the metric score
def forward(self, y, x, as_loss=True, resize = True):

mask = self.mask_finder_1(torch.cat([x, y], 1))
score = ((mask * torch.abs(x - y))).mean()
return score

# Outputs the error map
def E_MAE_map(self, y, x):

C, H, W = x.shape[0:3]
masks = self.mask_finder_1(torch.cat([x, y], 1))
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return self.scaler_network((masks*torch.abs(x - y)).mean([1],
keepdim=True)) -
self.scaler_network(torch.tensor(0.0).cuda().reshape(1,1,1,1)),
masks[0]

↪→

↪→

↪→

5.5 Conclusion

This chapter presents a new approach to reducing the notorious gap between the
existing quality metric prediction and the actual distortion visibility by the human
observer. It is achieved by self-supervised training of a metric-specific network using
the existing distortion datasets labeled with mean opinion score (MOS). Although
overall image quality is rated with a single MOS value in the training data, by securing
sufficient diversity of such training, as detailed in the ablation study, the network can
leverage global MOS into a meaningful per-pixel mask. The mask, through different
weighting of local distortion visibility, which also adapts to specific distortion types,
helps a given metric to aggregate such local information into the comprehensive MOS
value, as imposed by the training data. The mask can be learned directly in the image
space for traditional metrics or in the feature space for recent learning-based metrics.
In either case, it is trivial to incorporate into most of the existing metrics. Remarkably,
the proposed approach improves the performance of commonly used metrics, such
as MAE, PSNR, SSIM, and FLIP on all datasets tested. The prediction accuracy of
recent learning-based metrics is typically substantially enhanced.
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FIGURE 5.17: Visualization of E-MAE, E-SSIM, and E-FLIP error maps across the same distortion
types.
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Chapter 6

Conclusion

This thesis introduces innovative methods to improve image and video quality
using a multi-exposure sensor. In addition, the quality of the reconstructions is
evaluated with enhanced quality metrics, which further leads to developments in the
reconstructions when employed as a loss function.

One of the methodologies described in Chapter 3 presents a non-parametric noise
modeling that characterizes the sensor behavior better compared to the existing
methods. Furthermore, Chapter 3 proposes an HDR reconstruction scheme that
results in HDR images and videos that are free from motion blur. Then, Chapter 4
shows a pipeline that creates jointly high-speed HDR videos for the first time that
include multiple interpolated frames enabling high-quality slow-motion display.
The existing high-speed videos are examined with the proposed non-uniformity
metric, providing valuable insights for future research. Lastly, Chapter 5 presents a
methodology that enhances quality prediction of the existing full-reference image
quality metrics by utilizing a visual masking approach. The proposed approach
results in enhanced quality metrics ranging from traditional to feature-based metrics.
Also, the enhanced metrics are employed as a loss function to improve the quality of
the state-of-the-art denoising and deblurring algorithms.

Besides the contributions presented in this thesis, the following sections explore
insights and potential future directions from each chapter.

6.1 Image and Video Enhancement and HDR Reconstruction

The proposed non-parametric noise modeling for pixel noise relies on a per-pixel
matching. The observation leads to separate histograms for different exposures and
color channels. Another dimension to discover is the effect of the neighboring pixels
on the target pixel. The CMOS sensors distribute the collected voltage charges to the
neighboring frames, known as pixel cross-talk [Blanksby and Loinaz, 2000]. Another
well-known effect point spread function (PSF) is the measure of how the illumination
of the neighboring pixels affects the target pixel. These effects are not considered in
the proposed technique but could contribute to better modeling of the sensor noise
characteristics.

Current multi-exposure sensors provide two or three exposures within the same
spatial layout. Although the multi-exposure sensor with two exposures is utilized
in this thesis, more than two exposures can better help the deblurring presented in
Chapter 3 due to possible non-saturated overlapping regions. The same benefit can
also be obtained in the case of alternating multi-exposures that can result in a better
alignment between the exposures, leading to a wider dynamic range. Furthermore,
the futuristic sensor design idea is that such a hardware architecture allows each
pixel to change the exposure time independently. When combined with a smart
capturing algorithm, this novel design can solve many vision tasks, such as denoising,
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deblurring, and HDR, without much effort. Considering a high dynamic range scene
example, conventional sensors fail to capture all the radiance available in the scene,
so very dark and bright regions are clipped. Such a sensor design can adjust the
exposure time in dark regions to higher to get rid of the clamping and noise problems.
In the same way, exposure time can be lowered in bright regions to prevent saturation.
This design eventually gives a freedom to control the local regions of the captured
scene. On the other hand, the sensor can decrease the motion blur to some extent.
For example, if there is rapid motion, exposure time can be lowered for that specific
region so that large motion blur, which is dependent on the exposure time, can be
avoided.

6.2 Video Frame Interpolation for High Dynamic Range Se-
quences

The blur difference between the two exposures is successfully handled in Chapter 4,
resulting in better frame interpolation, including the challenging scenes with non-
uniform motions. The optical flow within the spatial frame is derived using the
motion blur, and the defocus blur is not considered while handling the deblurring.
Investigating optical blur and finding ways to remove it along with motion blur could
be an interesting but challenging future direction. The current state-of-the-art image
restoration methods [Zamir et al., 2022; Wang et al., 2022b] still treat them as two
separate tasks due to the difficulties in removing the coexisting blur. However, the
employed multi-exposure sensor design can significantly facilitate disentangling the
motion blur that changes with exposure from the optical blur that remains constant
between exposures.

Moreover, when capturing an HDR scene, the lowest exposure time is adjusted
so that the long exposure is not very saturated, leaving enough valuable blurry
information. This procedure is currently done manually; automatic selection of the
optimal exposure time is an interesting future work direction that could lead to
further performance improvements. It is important not to saturate local regions with
complex motions to retain information. Otherwise, non-linearity can not be captured,
as shown in Figure 4.10.

It is also interesting to port the proposed HDR-VFI technique to other multi-
exposure sensors that are used in modern smartphones [GSMArena, 2022], such as
Sony’s Quad Bayer [Sony, 2022] and Samsung’s Tetracell/Nonacell [Samsung, 2022]
sensors. Such sensors with more than two exposures can expand the dynamic range
further. The motion blur information encoded in the medium and long exposures
provides continuous motion blur information that makes finding optical flow easier.
The proposed methodology could also be applied to conventional sensors without
a multi-exposure mode. Even if the misalignment between the long and short ex-
posures decreases the performance of the optical flow derivation from the blurry
long exposure, it is interesting to see the overall performance of frame interpolation.
On the other hand, capturing short and long exposures starts at different times but
ends simultaneously in the multi-exposure setup. By taking advantage of its unique
features, HDR-VFI significantly outperforms the current state-of-the-art VFI methods.

The existing high-speed videos are analyzed to measure the non-uniformity levels
by proposing a unique metric in Chapter 4. These measurements are later used to test
the performance of state-of-the-art VFI methods together with the proposed HDR-VFI
method. They were not included in the training phase due to the handling of the non-
uniformity with the non-learnable component. However, the metric can be used to
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balance the training dataset for any method in terms of motion non-uniformity. This
strategy has been employed in [Reda et al., 2022] but only for the motion magnitude.
It could be interesting to see the effect of the balanced dataset with different levels
of motion non-uniformity. That could also be employed for the preparation of the
training set in Chapter 3 due to the direct supervision of splitting the optical flows.
Increasing the number of samples with non-uniform motion makes the network more
robust against such cases.

6.3 Enhanced Image Quality Measurement

As introduced in Chapter 5, the enhanced metrics with the visual masking approach
better correlate with the perceptual dataset. However, the training is conducted with
one of the commonly used datasets, KADID [Lin et al., 2019], which has an unknown
experimental setting due to the collection of mean opinion scores in an uncontrollable
remote setup. This condition can possibly affect the error map predictions, which is
unknown at this stage. For example, the unknown and possibly inconsistent distance
to the screen during the mean opinion score collection could affect the error map
prediction for incompatible observer distances.

Another possible approach is to extend the metrics to handle the hallucinated
content. Existing image quality metrics are tested with perceptual datasets having
a limited number of distortions without covering the hallucinated content. In this
context, inverse tone mapping methods [Endo et al., 2017; Liu et al., 2020c; Wang
et al., 2023] are the direct targets that hallucinate the non-existing content regarding
the realistic look of the final reconstructions. For this reason, it is worth creating a
new perceptual dataset that focuses on the hallucinated content with mean opinion
scores. This dataset can be used to train the proposed visual masking approach that
aligns the enhanced metrics better with human perception in case of hallucinated
content.

Additionally, although shown in Section 5.3.3 that reducing from 80 to 40 images
the training dataset has limited impact on the visual masking performance, it could
be attributed to certain redundancy in image content in the KADID dataset, where all
distortions categories are repeated for all images. However, it would be interesting to
radically increase the number and variability in the training dataset, which is difficult
due to the lack of perceptual MOS data. Here, one inexpensive alternative would be
to derive an artificial mean opinion score to increase the number of images. For this
purpose, the authors of the KADID generated the KADIS dataset with 140k reference
images without assigned mean opinion scores. The distortions are generated using
the same parameters so that they match the original KADID dataset. This brings
the challenge of finding the closest pairs of reference images that have common
perceptual properties. To achieve this problem, the existing full-reference image
quality metrics such as LPIPS [Zhang et al., 2018b], E-LPIPS, DISTS [Ding et al.,
2022] and E-DISTS or the recently proposed OPENCLIP [Cherti et al., 2023] can
be employed. The problem is that all these metrics find the most similar images
sticking to the visual properties such as object and color matching, which means
that the similarity of the images is evaluated in terms of content similarity. However,
correct estimation of the mean opinion score requires identifying the perception of
different distortion categories based on the percentage of textured and flat regions.
Each distortion has its own characteristics, so using image similarity metrics that
measure the distance between two clean images can not be generalized. The metric
should evaluate the unique features of each distortion category. One way could be
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to estimate the distance of mean opinion scores specific to each distortions category.
Existing image classifiers [Simonyan and Zisserman, 2015; He et al., 2016; Liu et al.,
2022; Tu et al., 2022] with pre-trained weights can be adapted to this problem due
to meaningful features in the early layers. The desired CNN should output distance
measurement separately for each distortion type using a fully connected layer as
in the classification task. This way, the average mean opinion scores of the closest
matches can be assigned to the new distortions available in the KADIS dataset. In
the end, the dataset with artificially created mean opinion scores should improve the
quality estimations of the existing metrics using the same methodology proposed
in Chapter 5. Additionally, fully evaluating the distance measurements of different
categories could yield an overall similarity measurement. Then, it would also be
interesting to check the behavior of the further enhanced metric as a loss function
on the tasks of denoising and deblurring [Zamir et al., 2022] and whether it leads
to further improvements. Considering all these concepts, this approach could be an
exciting future research.
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