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Abstract 
With the ever-increasing number of artificial intelligence (AI) systems, mitigating risks associated with their use has become one of the 
most urgent scientific and societal issues. To this end, the European Union passed the EU AI Act, proposing solution strategies that can 
be summarized under the umbrella term trustworthiness. In anti-cancer drug sensitivity prediction, machine learning (ML) methods are 
developed for application in medical decision support systems, which require an extraordinary level of trustworthiness. This review 
offers an overview of the ML landscape of methods for anti-cancer drug sensitivity prediction, including a brief introduction to the 
four major ML realms (supervised, unsupervised, semi-supervised, and reinforcement learning). In particular, we address the question 
to what extent trustworthiness-related properties, more specifically, interpretability and reliability, have been incorporated into anti-
cancer drug sensitivity prediction methods over the previous decade. In total, we analyzed 36 papers with approaches for anti-cancer 
drug sensitivity prediction. Our results indicate that the need for reliability has hardly been addressed so far. Interpretability, on the 
other hand, has often been considered for model development. However, the concept is rather used intuitively, lacking clear definitions. 
Thus, we propose an easily extensible taxonomy for interpretability, unifying all prevalent connotations explicitly or implicitly used 
within the field. 
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Introduction 
While the birth of artificial intelligence (AI) as an academic dis-
cipline dates back to the 1950s, after decades of research and 
development, AI-based systems have become omnipresent: In 
2022, roughly 35% of companies have been integrating AI-based 
software in their workflows [1]. In fact, AI-based systems have 
already arrived in our everyday lives. Social media platforms 
like Instagram and streaming services like Netflix use machine 
learning (ML) based recommendation algorithms [2, 3], search 
engines such as Google use AI to improve the search [4] to pro-
vide the most relevant search results for the specific user, and 
automobile manufacturers use AI systems for self-driving cars 
[5]. It is anticipated that AI-based systems will augment our 
lives tremendously. In particular, the healthcare sector is also 
conducting extensive research into AI-based strategies to improve 
the diagnosis, prognosis, and therapy of diseases. However, the 
unmonitored and unrestricted use of AI systems may jeopardize 
the benefits they were planned for. 

Therefore, the European Commission formed an expert group 
that, in 2019, published guidelines for implementing trustworthy 
AI approaches [6]. Here, trustworthiness is defined as a set of 
properties that should guarantee lawful, ethical, and robust 
use of AI systems in practice [6]. Especially for high-stake 
application cases such as typically encountered in medicine, we 

need to demand the highest degree of compliance with these 
guidelines. 

In medicine, the development of decision support systems for 
diagnostic, prognostic, or therapeutic purposes has long been a 
focus of attention [7–12]. In general, the idea of these systems is 
to match patient data to some form of pre-existing knowledge to 
derive patient-specific recommendations that serve as guidance 
for physicians. During the previous decade, there have been an 
increasing number of research efforts to boost the usefulness of 
decision support systems with AI algorithms, especially in the 
context of complex diseases such as cancer [7]. In cancer research 
specifically, one main goal is to optimize (targeted) drug therapy 
using an AI-based interpretation of molecular patient data. In 
fact, there is a whole research area in bioinformatics that has 
been working on the putative design of AI tools, which are able to 
predict the effectiveness of anti-cancer drug treatment, for over a 
decade: drug sensitivity and synergy prediction. In this research 
field, ML models are developed to predict therapy responsive-
ness based on molecular data of cells from model systems (e.g. 
patient-derived xenografts and cell lines), often combined with 
chemical information of drugs. Moreover, the models are used to 
elucidate the relationship between the molecular characteristics 
of cells and therapy responsiveness [13]. While a plethora of 
different approaches has already been suggested for this task and
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there also exist concrete implementation ideas for such tools in 
decision support systems (e.g. [14]), there are no reports on the 
widespread real-world application as decision support tools yet. 
One main reason for this is data-related challenges [13, 15]: Since 
it is neither ethically justifiable nor technically feasible to explore 
the space of all possible treatments exhaustively in real clinical 
settings, ML models are trained on biomedical model system 
data (e.g. from patient-derived xenografts and cell lines) that are 
significantly more abundant than patient data but reflect tumor 
biology only to some extent. [16–18]. Although model system 
data are more abundant than patient data, this quantity is still 
comparatively small given their high dimensionality (∼1000 cell 
lines versus tens of thousands of multi-omics measurements), 
impeding ML model training. Especially for samples of treatment 
success (drug-sensitive samples), the data are extremely scarce 
[19–21], leading to poor prediction performance. Such challenges 
hinder a straightforward translation of model system-derived 
results to patient data and create a lack of trust in predictions. 
However, with an appropriate design of ML methods, trust in their 
predictions could nevertheless be achieved. Moreover, indepen-
dent of data-related issues, we have to demand the trustworthi-
ness of these systems to ensure maximal benefit for patients 
while preventing any harm. For example, model decisions should 
be traceable, and uncertainties in the model should be reported. 
In this article, we address the question of to what extent trust-
worthiness has already been taken into account in the design of 
ML-based tools for anti-cancer drug treatment. In our analyses, 
we mainly focus on methods for monotherapy prediction, i.e. the 
prediction of a response from a cell line when treated with a 
single drug. However, we also included several well-known drug 
synergy prediction methods (predictions for synergistic effects of 
drug combinations) in our comparison [22–26]. 

Before we assess the trustworthiness of these methods, we 
need to discuss the properties that should guarantee trustwor-
thiness. Traditionally, performance measures [e.g. mean squared 
error (MSE) for regression or Matthews correlation coefficient 
(MCC) for classification] that quantify the difference between 
a known true response and the model prediction have been 
used as the main quality metric in the ML model development 
more generally, and drug sensitivity prediction in particular. The 
evaluation of performance measures can serve as an indica-
tor of performance for future predictions, thereby creating trust 
in a model. However, it is just a single building block in that 
respect: 

(i) In a real application of our model, we wish to make pre-
dictions for new instances where no response is known. 
Consequently, we cannot evaluate a performance measure 
and would like to have a probability estimation for the 
correctness of the predictions of our model instead. 

(ii) More generally speaking, performance evaluation does not 
justify or explain the decisions of the ML system. 

To address the first problem, we would like to quantify the 
degree of trust we have in a prediction for a previously unseen 
instance, which we refer to as reliability. Given such a reliability 
estimate of a model, an expert may more easily decide to abstain 
from a proposed therapy of the ML model. The second mentioned 
problem can be solved by rendering models more interpretable. 
Intuitively speaking, interpretability is the extent to which a human 
can understand the decisions of a model. It may help a clinician 
to identify the molecular causes of therapy responsiveness. Thus, 
reliability and interpretability are particularly important proper-
ties of trustworthy AI systems. 

In this article, we analyze to what extent these two aspects 
have already been taken into account in ML model development 
for drug sensitivity prediction. First of all, we explore what has 
been examined in other reviews in the area of drug sensitivity 
prediction. 

In 2016, De Niz et al. [13] reviewed the field of drug sensitivity 
prediction, focusing on comparing the performance of four differ-
ent ML approaches when applied to drug sensitivity data. They 
also discuss three different challenges when using these models 
as a decision support systems in actual clinical settings, i.e. data 
inconsistency, potential drug toxicology, and limited prediction 
accuracy. In the same year, Cortes-Ciriano et al. [27] revisited 
different ML approaches to predict drug sensitivity and discuss 
challenges in this field caused by the amount and quality of avail-
able data. In 2021, Sharifi-Noghabi et al. [15] published a review 
paper providing guidelines for developing ML models in drug 
sensitivity prediction. Their research should serve as a developers’ 
guidance in terms of datatype and dataset selection. Moreover, 
they report factors that can influence the model performance. 
In 2023, Partin et al. [28] dedicated themselves to reviewing the 
most popular method development direction of the current drug 
sensitivity prediction literature, i.e. deep learning methods. Their 
review focuses on methodological aspects of this field, in partic-
ular the diverse set of model architectures. 

Even though trustworthiness is highly desirable in a medical 
application setting, none of the above-mentioned review arti-
cles explicitly addresses the reliability or interpretability of ML 
approaches in drug sensitivity prediction. In this article, we review 
the current drug sensitivity prediction landscape in terms of 
trustworthiness research with a focus on reliability and inter-
pretability. 

We reviewed 36 articles of the current drug sensitivity (31) and 
drug synergy (5) literature and, in the following text, discuss their 
work in terms of reliability and interpretability. In summary, we 
could reveal that hardly any reliability research has been carried 
out over the last decade: only two approaches take this concept 
into account [29, 30]. A different picture emerges for research in 
terms of interpretability: 22 articles are dedicated to this topic 
[19–21, 24, 25, 29–45]. However, although the term interpretability 
is intuitively understandable, there is no general definition for 
this term [28, 46, 47]. In particular, Partin et al. [28] also noted 
that for drug sensitivity prediction such a definition is absent 
but would be crucial to advance methodological developments 
for deep learning methods. Since no definition is given in the 
mentioned articles, this could lead to ambiguities and misconcep-
tions. This also reflects the fact that the concept of interpretability 
has different connotations in the ML field [47]. To address this 
issue, we propose a general taxonomy for the term interpretability 
and categorize recent work on drug sensitivity accordingly. In 
this way, we can easily recognize which types of interpretability 
have hardly been explored so far. Moreover, this taxonomy may 
serve as a sound and extensible basis for the development and 
categorization of future interpretability methods. 

We structured this review article as follows: First, we pro-
vide definitions for the four major ML realms, i.e. supervised, 
unsupervised, semi-supervised, and reinforcement learning. Here, 
we also place the corresponding papers from drug sensitivity 
prediction in these four realms. Next, we start our discussion 
on trustworthiness with performance. Then, we define reliability 
and assess the investigated papers in this respect. Afterwards, we 
explain the different notions of interpretability that are currently 
used and derive a taxonomy that captures their differences. Lastly, 
we discuss future research directions for trustworthy ML based
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on our findings. In particular, we elaborate on out-of-distribution 
estimation, which is an integral part of model reliability but has 
not been considered by any of the presented approaches. 

The four realms of ML 
ML is a multidisciplinary research area sharing its methodology 
with various other disciplines such as optimization, statistics, and 
information theory. Yet, what all ML methods have in common is 
that they are employed for learning from data. Typically, the ML 
landscape can be divided into four major realms, each designed to 
fulfill specific tasks: supervised learning, unsupervised learning, 
semi-supervised learning, and reinforcement learning [48]. In the 
following text, we briefly contrast the four different realms and 
place the corresponding papers from anti-cancer drug sensitivity 
prediction in these four realms. In Fig. 1, we depict typical data 
sources and ML workflows of all four realms for drug sensitivity 
prediction in cancer. 

Supervised learning 
In supervised learning, we are given a set of observed pairs 
{(x1, y1), (x2, y2), · · ·  , (xN, yN)}, where  xi ∈ X is called the feature 
vector for a sample i and yi ∈ Y the respective response. We 
assume that there is an unknown functional relationship between 
X and Y , i.e.  f : X → Y . Usually, we employ a matrix-vector 
notation to represent the observed pairs. Here, X is an N × M-
matrix where xi is a row vector containing values of M features. 
The vector y is the accordingly ordered N-dimensional response 
vector with each entry corresponding to one yi. Using  f , we  can  
express yi as follows: 

yi = f (xi) + ϵ (1) 

Note that we introduced a random error term ϵ that represents 
the measurement noise. We assume ϵ to be independent of X 
with mean zero [49]. Most supervised ML algorithms addition-
ally assume that the aforementioned pairs are drawn iid, which 
means that the samples are independent of each other and drawn 
from an identical probability distribution with range X × Y [50]. 
However, especially the first assumption is frequently violated by 
real-world (biological) data. 

The task is to find the model f̂ that best approximates f [50, 51]. 
Depending on whether the values of y are continuous or discrete, 
we call this task regression or classification. We hypothesize that f̂ 
belongs to a specific model type (hypothesis space) H containing 
mappings h : X → Y . We  obtain  ̂f by minimizing over some loss 
function l : Y × Y within an empirical risk function Remp(h) [52], 
i.e. 

Remp(h) = 
1 
N 

N∑

i=1 

l(h(xi), yi) (2) 

and 

f̂ = argminhRemp(h). (3)  

By following this approach, our prediction carries a variety of 
uncertainties, which we will discuss in depth in Section 4 (Reli-
ability). 

The straightforward modeling of drug response prediction in 
terms of ML is via supervised learning and most publications fall 
within this realm (cf. Table 1). Here, the samples are cancer cell 

lines that are characterized by multi-omics measurements, e.g. 
gene expression values. Each feature vector consists of M entries 
and each entry corresponds to the expression of one gene. The 
response is the observed drug sensitivity from a drug screening 
assay reported in the form of some summary metric such as 
IC50 or AUC [53]. Consequently, each row of the model matrix 
X then contains the characterization of one cell line, and each 
entry of the response vector y is the measured sensitivity. While 
drug response prediction is inherently a regression task, it can 
be formulated as a classification task by discretization of the 
continuous sensitivity value [19–21, 44, 45, 54–56]. 

Unsupervised learning 
Unsupervised learning can be interpreted as the task of finding 
interesting structures in data without a specific variable that 
guides or supervises the model [50]. Thus, in contrast to super-
vised learning, we have the model matrix X, generated by drawing 
samples iid from a distribution with range X , but no desig-
nated response vector y. In low-dimensional spaces (M ⪡ N), we 
usually estimate the density of the distribution. However, high-
dimensionality often seems to necessitate the usage of simpler 
approaches that more loosely learn the structure of the data 
[57]. Examples of such approaches include principal component 
analysis (PCA), clustering, and association rule mining [57]. 

Drug response prediction is not modeled as unsupervised 
learning task (cf. Table 1). Yet, unsupervised learning methods 
can still fulfill various functions within the task of drug response 
prediction: Since data obtained from high-throughput multi-
omics measurements suffer from the curse of dimensionality 
(M ⪢ N), unsupervised learning algorithms such as PCA or 
autoencoders can be employed for reducing the dimensionality 
of the design matrix before training the ML model [58–60]. 
Clustering algorithms, e.g. k-medoid clustering, can help to divide 
the samples into groups when a group association is not known 
beforehand [30]. 

Semi-supervised learning 
Conceptually, classical semi-supervised learning lies between 
supervised and unsupervised learning: the model matrix X can 
be divided into two parts, one sub-matrix Xr with associated 
response vector yr, and a second sub-matrix Xw without an 
associated response vector. One possible approach would be to 
train a supervised model on Xr and then apply the resulting 
predictor to Xw, i.e. to interpret this setting as a supervised 
learning application. However, we could also argue that the 
unlabeled data provide additional information on the structure 
of our data space, and thus can improve our model. There 
exist three popular assumptions describing this idea, i.e. the 
smoothness assumption, the low density assumption, and the 
cluster assumption. 

These three assumptions may even be interpreted as different 
phrasings of the same principle: if two points xi and xj from a 
high-density region lie close by, they should not be separated 
by a decision boundary, i.e. their class labels yi and yj should 
be equal. Currently, we are only aware of one approach that 
employs semi-supervised learning for drug sensitivity prediction: 
Dr.VAE by Rampášek et al. [60] employs both pre- and post-
treatment gene expression data from cell lines to predict their 
drug response. However, neither the post-treatment gene expres-
sion data nor the drug responses are available for all cell lines. 
In the final model, cell lines without post-treatment expression 
and cell lines without drug response are integrated and influence 
predictions.
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Figure 1. Overview of ML workflows for drug sensitivity prediction in cancer; in this figure, we depict typical ML workflows of the four different ML 
realms for drug sensitivity prediction in cancer; independent of the ML realm, the data stem from a variety of biological experiments; the primary data 
source of all drug sensitivity prediction approaches is usually generated as follows: model systems, e.g. cancer cell lines, are molecularly characterized 
and subject to high-throughput drug screening; this results in molecular features (e.g. mutations, copy number variations, and gene expression values) 
of the cell lines complemented with drug response values for a variety of drugs; these primary data are often combined with biomedical knowledge 
from a diverse range of knowledgebases to enhance the overall characterization of the model system, i.e. the features; supervised, semi-supervised, and  
reinforcement learning ultimately utilize both: the drug response and the feature data to generate a model able to predict drug responses for previously 
unseen data points; in contrast, unsupervised learning is generally applied to the feature space only to obtain a new feature representation; this new 
representation can then be employed in the former three ML realms; created with BioRender.com
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Reinforcement learning 
In contrast to the previously discussed types of ML, reinforcement 
learning involves learning dynamically from interactions with an 
environment rather than from a fixed set of data points [66]. Here, 
an agent takes actions from a set of possible actions, while an 
environment can be in a set of different states. Whenever the 
agent performs an action, the environment provides feedback in 
the form of a reward or penalty and changes its state [67]. The 
goal of the agent is to maximize its reward, making reinforcement 
learning similar to supervised learning since the environment 
provides some form of supervision. However, there are also unique 
challenges to reinforcement learning, such as the need to explore 
the environment, known as trial and error search, and the princi-
ple of delayed reward, i.e. the action an agent takes at a specific 
point in time may not only influence the direct reward but also 
all future rewards. In the context of drug response prediction, 
reinforcement learning has not been extensively explored yet 
(cf. Table 1). However, we can interpret drug prioritization as a 
reinforcement learning task. For example, PPORank proposed by 
Liu et al. [65] assumes that an agent needs to generate the correct 
(given) ranking of drugs. The agent constructs the ranking one 
drug at a time. Here, each time step corresponds to one ranking 
position ordered from the most efficient to the least efficient. 
Based on the difference in efficiency between the selected and 
the actual drug at the current position, the environment returns 
a reward or penalty. 

Performance 
Clearly, an ML system is only helpful if its output is correct, i.e. 
if it learned to perform a specific task. In a typical ML workflow 
for supervised, semi-supervised, and reinforcement learning, we 
rely on the assessment of the model performance in terms of 
the difference between the known and the predicted response. 
Typically, we optimize for performance during model training and 
finally compare different models based on the performance on a 
dedicated test set unseen during training. For regression, the (root) 
MSE or the Pearson correlation are commonly used performance 
measures (e.g. [21, 30, 31, 33, 37]). For classification, accuracy, 
sensitivity, specificity, and MCC are often employed (e.g. [19–21, 
54]). We refer the interested reader to Naser and Alavi [68] for def-
initions of the most prevalent performance metrics. Performance 
evaluation can already provide some indication of whether we 
can trust a prediction. In particular, performance evaluation on 
data that systematically deviate from the training data (e.g. data 
collected at different time points or from different sources), such 
as performed in robustness analysis can be beneficial [69, 70]. In 
drug sensitivity prediction, performance has been the main model 
quality criterion and most—if not all—papers conduct some form 
of performance comparison to demonstrate the capabilities of 
the presented approach. However, directly comparing the reported 
performances between papers is impeded by the use of different 
data sets, sensitivity measures, and performance metrics [15]. 
Therefore, several benchmarking studies have been conducted 
(cf. Table 2). Their findings indicate that given the current data 
situation, 

(i) gene expression is the most predictive omics-type, 
(ii) simple models are competitive to complex models (in partic-

ular, all sorts of deep neural networks), and 
(iii) highly drug-sensitive samples (head of the drug response 

distribution) are relatively poorly predicted. 

Especially the latter finding has implications for personal-
ized treatment recommendation: it means that we have issues 
identifying successful treatments. While this problem is often 
overlooked, classification approaches such as LOBICO [19] and  
MERIDA [20] and regression approaches such as RWEN [36], and 
SAURON-RF [21] place particular emphasis on improving perfor-
mance for drug-sensitive samples. 

Reliability 
The evaluation of performance measures can indicate perfor-
mance for future predictions, thereby creating trust in a model. 
However, it is merely one aspect in that regard. During the model 
deployment phase, i.e. when we apply a model to an unseen 
instance without a known response, we cannot evaluate a perfor-
mance measure. Indeed, in real-world (healthcare) applications, 
the response is usually unknown, and we need an estimate of 
the extent to which we can trust a prediction, e.g. a probability 
estimate. In the ML literature, the degree of trust that we can have 
in a prediction for a single, previously unseen instance is referred 
to as reliability [69, 76, 77]. This definition serves as basis for the 
following discussion on reliability in this review paper. 

One possibility to achieve reliability is via uncertainty quan-
tification [78, 79]. Here, we are interested in estimating the uncer-
tainty about the prediction for a specific instance, also called 
predictive uncertainty [52, 78]. Through uncertainty estimation, 
an ML model can be enabled to abstain from casting a prediction 
for a new instance if it is not certain enough, rendering the 
corresponding model more reliable. 

Since the prediction for a new sample constitutes the end of 
an ML pipeline, the predictive uncertainty contains all uncertain-
ties from data generation to the trained model. Two important 
types of uncertainty currently distinguished in the ML literature 
are called aleatoric and epistemic uncertainty [52, 79]. Aleatoric 
uncertainty denotes the data-inherent uncertainty caused by the 
randomness in the data-generating experiment, e.g. noise [52]. In 
supervised learning, the aleatoric uncertainty corresponds to the 
term ϵ that we introduced in Equation (1). Aleatoric uncertainty 
is irreducible, i.e. it cannot be eliminated by collecting more 
samples. In contrast, epistemic uncertainty arises from the lack of 
knowledge about the model that best approximates f [52]. Thus, 
it can potentially be reduced by gathering more samples, which 
is why it is called reducible [52]. Hüllermeier and Waegeman [52] 
partition epistemic uncertainty into two sub-types called model 
and approximation uncertainty. The former refers to the uncer-
tainty introduced by the choice of our hypothesis space H , while 
the latter denotes the uncertainty in the estimation of the model 
parameters, which depends on the used training data. Thus, it is 
also referred to as estimation or parametric uncertainty in the 
literature instead [79]. There exists a direct connection between 
these uncertainty definitions and the bias-variance tradeoff from 
statistics [79]. The bias-variance decomposition of the expected 
squared loss of an ML model can be written as [80] 

E[(y − f̂ (x))2 ] = Var(f̂ (x)) + [Bias(f̂ (x))]2 + Var(ϵ). (4)  

While we cannot reduce Var(ϵ), we need to minimize the bias 
and variance to minimize the expected loss. The bias corresponds 
to the aforementioned model uncertainty and the variance corre-
sponds to the approximation uncertainty. 

Even though reliable predictions are highly desirable in a medi-
cal application, we found that only two papers of the current drug
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Table 2. Drug sensitivity benchmarking studies; this table provides an overview on benchmarking studies for anti-cancer drug 
sensitivity prediction. We summarize the study design and the key findings of the paper. 

Description Key findings 

Jang et al. (2014) [71] • Seven conventional ML algorithms (principal component 
regression, partial least square regression, support 
vector machines, RFs, lasso, ridge regression, elastic net) 

• four omics-types (gene expression, mutations, copy 
number variations, tumor type) 

• seven response metrics (IC50, AUC, ActArea, EC50 and 
four binary discretizations) 

• two datasets (CCLE, GDSC) 

• elastic net and ridge regression performed best 
• gene expression is the most predictive datatype 

Chen et al. (2021) [72] • 14 state-of-the-art ML methods 
• three conventional ML methods (elastic net, RF, ridge 

regression) 
• four datasets (GDSC, CCLE, NCI-60, CTRP) 
• nine performance measures 

• matrix factorization performed best 
• gene expression in the most predictive datatype but the 

addition of drug structure data and protein interactions 
is beneficial 

• Head and tail of the drug response distributions are 
relatively poorly predicted 

Chen et al. (2022) [73] • Seven state-of-the-art ML methods (mostly deep 
learning), elastic net 

• performance evaluation for previously unseen cell lines 
and drugs 

• deep learning models are prone to overfitting and their 
performance deteriorates in drug-blind tests 

Li et al. (2023) [74] • Four state-of-the-art pathway-based deep learning 
methods 

• two conventional ML methods (RF, simple multi-layer 
perceptron) 

• simple multilayer perceptrons or RFs often performed 
similarly or better compared with the tested deep 
learning models 

Eckhart et al. (2024) [75] • Four conventional ML methods (elastic net, RF, boosting 
trees, (deep) neural networks) 

• one state-of-the-art method (deep neural network) 
• nine-dimensional reduction techniques 
• 30 different feature numbers 
• two omics-types (expression, mutation) 

• elastic net and ridge regression performed best 
• simple models with small feature numbers can 

outperform more complex models 
• the choice of ML algorithm and dimension reduction 

technique can substantially impact prediction 
performance 

• drug-sensitive samples are relatively poorly predicted 

sensitivity prediction literature take this into account [ 29, 30] (cf.  
Table 1). 

Fang et al. [29] use a quantile regression random forest (RF) to 
predict intervals instead of single drug response values. Clearly, 
intervals are more likely to hit the true value than point pre-
dictions. Moreover, the interval length provides information on 
uncertainty: given a specific quantile regression forest, a shorter 
interval corresponds to a higher certainty of the prediction. How-
ever, this approach is not sufficient to quantify reliability since no 
specific confidence level is guaranteed. Fang et al. [29] also assess 
the sharpness (i.e. the variability of predictions or predicted prob-
ability distributions): for a given sample and drug, they generate 
predictions for different quantiles and compute their variance. 
Fang et al. [29] assume that a smaller variance corresponds to 
a more stable prediction. They can leverage this assumption to 
compare cases where point predictions of a specific quantile are 
similar (e.g. one drug treatment versus another drug treatment 
for the same sample) using the Levene test [81]. The prediction is 
more stable if one case has a significantly lower variance. 

Recently, we proposed a conformal prediction (CP) framework 
to ensure the reliability of predictions [30]. Our CP framework is 
not only applicable to regression but also classification, and we 
exemplified its capability using our previously published simulta-
neous regression and classification approach SAURON-RF [21]. CP 
represents a mathematically rigorous uncertainty quantification 
approach, which can generally be applied to any ML model that 
delivers a notion of (un)certainty [82]. This notion of (un)certainty 
may correspond to predicted class probabilities for classification, 
or estimated quantiles for regression. Based on this notion and 

a given user-specified maximum error level α ∈ [0, 1], CP derives 
reliable intervals (regression) or sets (classification). These inter-
vals and sets are guaranteed to contain the true value with a 
certainty of at least 1−α, known as the CP certainty guarantee [82]. 
For regression, we also employed quantile regression. Unlike the 
intervals by Fang et al. [29], our intervals are modified such that 
they fulfill the CP certainty guarantee. For classification, we use 
the predicted class probabilities to construct reliable sets using 
three different approaches. 

Interpretability 
As outlined in the introductory section of this review, performance 
evaluation suffers from two major drawbacks. We addressed the 
first drawback, i.e. the inability to quantify performance for an 
unseen sample, in the previous section. In the following text, we 
discuss interpretability, a solution to the second drawback, i.e. 
the inability to provide explanations or justifications for the ML 
system. 

Intuitively, interpretability can be defined as the extent to 
which humans interacting with an ML system can understand its 
decisions and the underlying model [83–85]. While all of us have 
some intuition and preconceptions about what should constitute 
interpretability, from a mathematical perspective, no universally 
agreed approach to achieve or merely assess it exists [46, 86]. 
A system allowing for the distinction of different types of inter-
pretability is absent [28]. Thus, we reviewed the ML literature 
to derive a taxonomy able to capture all prevailing notions of 
interpretability (cf. Fig. 2). Our taxonomy is mainly based on the
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Figure 2. Taxonomy of interpretability in ML; this figure depicts a taxonomy of interpretability in ML that we derived from works by Lipton [47], Biran 
and Cotton [85], and Imrie, Davis, and van der Schaar [84]; the speech bubbles provide brief, intuitive descriptions of the technical terms; note that a 
specific ML model may possess properties from all of the categories in the bottom layer. 

works by Lipton [ 47], Biran and Cotton [85], and Imrie, Davis, 
and van der Schaar [84]. Generally, we distinguish two types 
of model interpretability: model-inherent interpretability, which 
is also known as model transparency [47], and interpretability 
generated from post hoc explanations denoted as explainability 
[84]. These two types can be further subdivided, and a specific ML 
model can possess characteristics from several subtypes. Notably, 
a model can be both transparent and explainable. 

The subtypes of model transparency include the following: 

• Simulatability [47] is the simplicity of a model in its entirety. 
Lipton distinguishes between two forms of simulatability: 
simulatability because of model size (e.g. a low number of 
parameters) and simulatability because of a low time require-
ment to perform manual model inference. 

• Decomposability/Intelligibility [47, 87] is the comprehen-
sibility of individual model components (inputs, parame-
ters, calculation rules, outputs) and their correspondence to 
real-world phenomena (e.g. genes, biological pathways, cell 
lines). Ideally, each component of a model would be indi-
vidually interpretable to fulfill this notion of interpretability 
as defined by Lipton [47] and Lou  et al. [87]. However, often 
only parts of a model are understandable. Moreover, even if 
all parts are understandable, their interplay may preclude 
interpretation of the entire model. 

• Algorithmic transparency [47] is the comprehensibility of the 
learning algorithm including the solution space, convergence 

criteria, or uniqueness of the solutions. Consider linear mod-
els: the shape of the error function is known, and training 
converges to a unique solution. In contrast, deep learning 
methods provide none of these benefits. 

To maximize trust in an ML model, some may argue that 
interpretability in this strict sense has to be achieved. However, 
transparent models can be too simple to represent real-world 
phenomena, causing them to suffer from high bias (cf. Section 
4 (Reliability)). Consequently, commonly applied ML algorithms, 
e.g. neural networks, are of a black-box nature instead. Similarly, 
human decision-making is not transparent. Indeed, what we do 
have are explanations and justifications that humans provide, 
rendering them similar to black-box ML models augmented with 
post hoc explanations. While post hoc explanations are typi-
cally employed when models are not transparent, even inherently 
transparent models can benefit from them. 

Following the work by Imrie, Davis, and van der Schaar [84], we 
divide post hoc explanations into five categories: 

• Feature-based explainability refers to the importance of 
features, either locally for specific samples or globally across 
the model. Arguably, feature-based explainability is the most 
widely applied explainability method: for instance, most 
implementations of tree-based methods supply users with 
the built-in functionality to calculate features importances. 
Here, each input feature is attributed an importance based on 
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the quality of the decision splits in terms of error reduction 
and position of the feature in the tree(s). 

• Sample-based explainability aims to identify samples from 
the training data that the model views as being similar to a 
given sample. Similarity can, for instance, be based on the 
features or the predicted response of the given sample. At 
first, the returned set of training samples does not explain 
why the prediction is cast. The hope is that the user has 
domain knowledge for the samples in the training data, which 
helps to interpret the prediction for the given sample. By 
closer inspection of the properties of the training samples, 
putatively interesting features could be identified. To this 
end, it might be beneficial to employ feature-based explain-
ability methods. 

• Counterfactual-based explainability refers to the generation 
of artificially engineered, yet plausible samples that are sim-
ilar to the query sample but generate a different output. 
Typically, the idea is to modify as few features of the query 
sample as possible to identify features that might be linked 
to changes in the response. 

• Concept-based explainability refers to the examination 
whether specific concepts (e.g. patterns in an image) are 
recognized by the model. Usually, methods that implement 
concept-based explainability compare a set of samples with 
the concept to a set of samples without the concept and 
assess whether internal representations of both sets in 
the model differ. Such representations could include the 
activation of certain nodes in a neural network or traces 
that samples take through individual trees in an RF. 

• Model-based explainability denotes the generation of a sec-
ond, more transparent model trained on the original model. 
The goal of the second model would be to elucidate the deci-
sion process of the original model. Thus, rule-based models 
lend themselves well to be used as second model. 

One interpretability type may not suffice to answer all ques-
tions that the different stakeholders, e.g. patients, clinicians, and 
statisticians, may have. Thus, incorporating several interpretabil-
ity types into one model is often advisable: feature-based explain-
ability may be most suitable to represent tumor characteristics 
that drive the prediction. Counterfactual explanations may be 
most suited to derive recommendations for therapeutic interven-
tions that may change the outcome, e.g. lifestyle changes (dieting, 
smoking, drinking habits, etc.). Concept-based methods are an 
important cornerstone of model validity; they should indicate 
whether samples with known biomarkers of drug response are 
correctly treated by the model, i.e. the model acts as expected. If 
not, the model might not be informative or could have discovered 
novel associations. Imrie, Davis, and van der Schaar provide a 
comprehensive overview on questions of different stakeholders 
and explainability types helping to answer them [84]. 

For each drug sensitivity prediction approach, we checked 
which types of interpretability have been implemented (Table 1). 
Figure 3 shows a hierarchical clustering of these data. Contrary to 
what we would wish for, several approaches consider none of the 
discussed interpretability types and most other approaches focus 
on only a few. We find that the number of papers per interpretabil-
ity type varies. In the following text, we discuss the interpretability 
types from least to most frequent by reviewing all associated 
approaches. Note that neither model- nor sample-based explain-
ability was implemented by any of the 36 approaches, which 
is why we exclude them from the following discussion. There 
were also no approaches that presented or utilized automatized 

evaluation methods for the detection of concepts. However, since 
the verification of successful detection of concepts occupies a 
special position in natural sciences, we will briefly discuss partial 
realizations of this type of explainability. 

Concept-based explainability 
Virtually all of the analyzed methods provide some analysis on 
whether the model and its results align with commonly known 
phenomena of drug response: they test whether samples with 
known biomarkers of drug response are correctly treated by the 
model. Examples of such biomarkers include mutations, gene 
expression patterns, or pathway activities. For example, muta-
tions in BRAF are linked to increased sensitivity to MEK inhibitors 
[88], which Menden et al. [61], Zhang et al. [31], Liu et al. [37], and 
Chawla et al. [64] investigated. This type of analysis is already 
moving in the direction of concept-based explainability. However, 
there are two noteworthy differences: First, the analyses were not 
automated. Second, the analyses did not investigate the internal 
state of the model but only its output. For neural networks, 
there exist automated methods such as TCAV [89] and CAR [90] 
that allow for comparing samples with and without a particular 
concept in the latent space of the neural network. 

Counterfactual-based explainability 
Deng et al. [39] trained a neural network. As input features, they 
consider gene expression and drug–protein interaction scores. 
Their network contains a pathway layer, where each node corre-
sponds to a biological pathway, and the output of each node can 
be interpreted as a measure of pathway activity. By generating 
artificial inputs (setting drug–protein interaction scores of all 
targets to zero), Deng et al. [39] could compare the calculated 
pathway activities with and without drug treatment. They found 
that drugs targeting a certain pathway reduce the activity of the 
target pathway for the original (with drug treatment) samples. 

Algorithmic transparency and simulatability 
LOBICO [19] and MERIDA [20] are both based on integer linear pro-
gramming (ILP), which is concerned with optimizing a system of 
linear (in)equalities over a set of integer decision variables. There 
exist exact problem-solving algorithms for ILPs [91], e.g. branch-
and-bound algorithms, cutting plane methods, and a combination 
of the two, branch-and-cut algorithms. Moreover, the solution 
space of ILP approaches is relatively well studied. These properties 
render ILP approaches algorithmically transparent. For LOBICO 
and MERIDA, the employed (in)equalities model Boolean rules 
specifying sensitivity or resistance to a particular drug, and the 
corresponding ILP solution represents the logic rule that best 
explains the observed drug responses of the training samples. 
Since the derived rules are relatively small in terms of the consid-
ered input features, a human could easily classify novel samples, 
i.e. the models are simulatable. 

Feature-based explainability 
Both SAURON-RF [21] and QRF [29] model drug response predic-
tion with regression RFs. Conventional implementations of RFs 
augment them with post hoc explanations in the form of feature 
importances [92, 93]: one possibility is to quantify how much 
the feature improves prediction error during splitting (impurity-
based); another possibility is to shuffle the feature values across 
the samples and assess the resulting degradation of model perfor-
mance (permutation-based). These methods were also employed 
by SAURON-RF and QRF, respectively.
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Figure 3. Hierarchical clustering of interpretability types; this figure depicts a clustering of the 36 investigated approaches for drug sensitivity prediction 
based on our taxonomy (cf. Fig. 2). 

PathDSP by Tang and Gottlieb [ 42] and TreeCombo by Janizek 
et al. [24] rely on SHAP (SHapley Additive exPlanations) values 
by Lundberg and Lee [94], an extension of Shapley values [95] 
introduced by Lloyd Shapley in 1953 to attribute the contribution 
of a player to a game result. In ML, Shapley and SHAP values are 
commonly applied to estimate the contribution of a feature to a 
prediction. They can be used to obtain both sample- and model-
specific feature importances. 

Knijnenburg et al. [19] compute feature importances that for 
each feature reflect the change in error between the original 
model and the model without the feature. This method is derived 
from a variable activity measure used in Boolean networks 
[96, 97]. 

For GraphDRP Nguyen et al. [43] investigated feature attribu-
tions by inspection of saliency maps [98]. Saliency maps are typi-
cally employed in image processing and computer vision applica-
tions to visualize the most relevant pixels of an image [99]. 

Lastly, in DeepCDR, Liu et al. [44] compute feature importances 
for an individual sample in their deep neural network using the 
gradient of the predicted response with respect to each feature. 

Decomposability 
Decomposability was by far the most often employed inter-
pretability type for drug sensitivity prediction in cancer (20 out of 
36 investigated models). 

Partially, this is the direct result of the fact that several 
approaches use inherently interpretable model types, i.e. ILP 
[19, 20], RFs [21, 25, 29, 30, 33, 35, 38], boosting trees [24], and 
elastic net [36]. An integer linear program can be decomposed into 
individual constraints. For LOBICO [19] and MERIDA [20], these 
constraints directly correspond to the rules for drug sensitivity 
or resistance. Similarly, an RF can be divided into single trees 
that each generate straightforward if-then-else rules for decision-
making when tracing a route from the root to a leaf. Lastly, elastic 
nets are linear models where each prediction consists of a linear 
combination of features multiplied by their coefficients, which 
can be interpreted as feature attributions. 

A substantial proportion of the remaining decomposable 
approaches exploits the similarity between cell lines, drugs, 
or other biological entities, often combined with modeling 
interactions between entities [31, 32, 34, 37, 40, 41]. Many 
approaches represent these similarities as graphs where nodes 
correspond to the different biological entities and edges between 
nodes are weighted by the similarity between the corresponding 
entities. While such graphs can be rather large, the individual 
components can easily be understood by a human, rendering 
the models decomposable. The standard procedure of these 
methods entails the computation of cell line similarity on 
omics-profiles and drug similarity on molecular properties or 
fingerprints. Depending on whether the considered data types are 
continuous or discrete, different similarity and distance measures
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are employed. Usually, Pearson correlation (e.g. [31, 32, 34, 37, 
40, 41]) is used for continuous data and the Jaccard similarity 
coefficient (e.g. [32, 37, 41]) for binary data. 

In the last group of decomposable approaches, other types of 
graphs are used to render the models decomposable. Nguyen et al. 
[43] model the molecular structure of a drug as a graph, where 
nodes are atoms and edges represent bonds between atoms. In 
contrast, Stanfield et al. [45] use graphs to depict protein–protein 
interactions, the presence of mutations in cell lines, and drug 
sensitivity. Lastly, Deng et al. [39] incorporate a pathway layer into 
their neural network, which can be interpreted as a graph that 
connects all available genes to their respective pathways. 

Perspectives 
Overall, our review of the 36 articles revealed that hardly any 
reliability research has been carried out over the last decade: 
only two articles take this into account. Interpretability has been 
considered an essential concept in 22 articles. While these 22 
articles considered different connotations of interpretability, they 
did not provide a definition of the type of interpretability they 
investigated. In the ML literature, interpretability is known to 
be an elusive concept that is difficult to formalize, leading to 
ambiguities and misconceptions [46, 47]. To address this issue, we 
proposed a general taxonomy for interpretability using the exist-
ing body of knowledge in ML and categorized the drug sensitivity 
prediction approaches accordingly. Based on our findings, we will 
discuss promising future research directions for trustworthiness 
in ML-based drug sensitivity prediction in the following text. 
We start with reliability, then cover interpretability, and finally 
highlight other important aspects of trustworthiness, e.g. data 
security, safety, and privacy. 

How to achieve reliability 
Only a few approaches to achieve reliability have been investi-
gated for drug sensitivity prediction in cancer. Common to all of 
the mentioned ML methods and reliability estimation approaches 
described up to this point is that they rest on the idea that the 
data used to train and test the ML model were drawn iid. Given 
this assumption, CP as, for example, applied by Lenhof et al. [30], 
guarantees the validity of the intervals or sets produced from 
a model [82, 100]. Yet, in real-world application scenarios, this 
assumption is unlikely to hold. Among others, there can be shifts 
in the input (feature) space (called covariate shifts [101, 102]), the 
conditional probability distribution of the response on the fea-
tures (called concept shifts [101]), and the response labels (called 
label or semantic shifts [102]), i.e. by introduction or alteration 
of response labels. Consequently, additional countermeasures are 
required to achieve reliability under these circumstances. In par-
ticular, we expect that human tumor data deviate from our model 
system-based training data. If we know about the shift, we may 
mitigate its effects, e.g. using a modified CP procedure [82]. In 
our application case, we may, for example, be able to quantify a 
covariate shift by comparing molecular tumor data with the cell 
line profiles. In many cases, however, quantifying shifts will hardly 
be feasible. For instance, in vitro and in vivo cellular mechanisms 
of drug responses likely differ, introducing a concept shift. Yet, we 
cannot detect or quantify it without sufficient amounts of tumor 
omics and drug response data. Thus, we would prefer models that 
generalize well to out-of-distribution data, e.g. as described by Liu 
et al. [101]. Note that semantic shifts as described by [102] are  
unlikely to occur in drug sensitivity prediction: Our drug response 
data entail the complete sensitivity scale from highly resistant to 

highly sensitive. We can partition the scale into arbitrarily fine-
grained classes (e.g. sensitive, ambiguous, and resistant samples) 
but any definition will always cover the scale in its entirety. 
Consequently, an unseen sample cannot belong to any new class. 

How to achieve interpretability 
Most of the investigated publications on drug sensitivity pre-
diction acknowledge the importance of having interpretable ML 
models and attempt to incorporate some type of interpretability 
into their models. By far, the most frequently and often the solely 
used interpretability type was decomposability, which refers to 
the understandability of single components of a model. How-
ever, the intelligibility of each component does not imply the 
interpretability of the entire model: there can be many compo-
nents involved in a complex interplay, precluding interpretations, 
explanations, or justifications of model predictions. Moreover, 
in Section 5 (Interpretability), we discussed that it is crucial to 
consider several interpretability types at once to address the 
diverse set of questions that arise during medical decision support 
and to render models as interpretable as possible. Indeed, many 
of the 36 investigated approaches need additional explainability 
layers to provide meaningful explanations for model predictions. 
Here, it would be particularly interesting to investigate the types 
of interpretability that have not or only rarely been considered: 
concept-based, sample-based, model-based, and counterfactual-
based explainability. For all these types of explainability, Imrie 
et al. [84] summarize methods that realize them. While some 
methods can sit on top of any ML model, others are limited to cer-
tain models, e.g. neural networks. On the other hand, the question 
arises to what extent the subsequent addition of explainability 
to complex models is required given the current data scarcity. 
There is increasing evidence that relatively simple (transparent) 
methods currently suffice to predict anti-cancer drug response 
(cf. [19, 20, 74]) and that the apparent outperformance of complex 
deep neural networks might be linked to data leakage [103] or  
technical artifacts instead [74]. Like Rudin [86], we believe simple 
models should be preferred as long as complex ones do not 
significantly outperform them. Moreover, these simple models 
can also be augmented by explainability methods. 

Combining reliability and interpretability 
In principle, reliability and interpretability are independent con-
cepts, i.e. one can be achieved without the other. To become 
trustworthy, however, we want our model to fulfill not only one 
of the trustworthiness-related properties but all of them simul-
taneously, e.g. in our case, models should be both reliable and 
interpretable. From our analysis, it becomes apparent that only 
two approaches (Fang et al. [29] and Lenhof et al. [30]) consider reli-
ability and interpretability at once. Yet, neither of the approaches 
addresses the question of how to interweave the two concepts. 
For instance, we could pursue the goal of assessing the reliability 
of the explanations of an ML model. Likewise, we could derive 
explanations for the confidence that we have in predictions. 

Tailoring models to real-world applications to 
increase trustworthiness 
While numerous ML algorithms for drug sensitivity prediction 
exist, it is crucial for these models to effectively address real-
world issues to be truly valuable in decision support systems. 
In this context, we have focused on rendering the models more 
reliable and interpretable. However, further aspects of model 
design need to be considered in that respect. For example, most 
of the approaches we discussed are concerned with optimizing
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the prediction of some drug response measure. However, the true 
aim of a decision support system would be to prioritize drugs, 
i.e. to provide a list of recommendable drugs sorted by their 
efficiency. Currently, only a few approaches cover this overarching 
question (PPOrank [65], KRL [59], pLETORg [55], reliable SAURON-
RF [30]). For this task, accurate predictions for the drug-sensitive 
samples are paramount. However, as described in Section 3 (Per-
formance), this is an unresolved issue mainly caused by the 
current data scarcity. Given this scarcity—especially for drug-
sensitive samples—surprisingly little attention has been paid to 
the potential of combining data from different model systems 
(such as cell lines, patient-derived xenografts, and organoids) and 
even publicly available tumor data to increase the robustness of 
the predictions. While data scarcity is already an issue for training 
models to predict responses to single drugs, training synergy 
prediction models is even more challenging because of the expo-
nentially growing number of putative drug combinations severely 
limiting the number of feasible lab experiments. Consequently, 
combining data from various sources, including monotherapy and 
drug interaction data, is crucial to estimating the effect of two or 
more simultaneous treatments and potential polypharmacy side 
effects arising from drug combinations [104–106]. On top of that, 
combining data from heterogeneous sources is also essential for 
clinical applications since clinics often have private data that they 
would like to combine with publicly available sources. Methods 
such as transfer-learning and meta-learning could be leveraged 
to accomplish this objective. We refer the interested reader to 
comprehensive surveys by Zhuang et al. [107] and Vanschoren 
[108] for further information. 

Another relevant question regarding the usefulness of models 
in the clinic is how the results of (bulk sequencing from) model 
systems can be transferred to single-cell sequencing data of 
patients, where the heterogeneity of a tumor is represented by 
sequencing results from different tumor clones, each of which 
may have a unique drug response [109]. 

In this article, we discuss the use of methods for drug sensi-
tivity (and synergy) prediction in the context of decision support 
systems. However, these methods and all trustworthiness-related 
concepts presented in this paper can also be valuable tools in the 
drug discovery pipeline, where the estimation of drug sensitivity, 
synergy, toxicology, and side effects is an important goal as well. 

Other important aspects of trustworthiness 
This review focused on reliability and interpretability as essential 
factors of trustworthiness particularly crucial for designing an ML 
method. When embedding such an ML method into a decision-
support framework, other factors of trustworthiness also play at 
least as important a role [110]. For instance, the following factors 
may not be relevant for the development of ML models on publicly 
available model-system data, but are crucial for the deployment 
of ML models in decision support systems working with patient 
data: 

• privacy mechanisms protecting the used data, 
• security mechanisms protecting the system against external 

threats and intentional misuse, 
• safety mechanisms protecting the system against accidental 

misuse, 
• bias-awareness and fairness of the system, protecting against 

harm caused by the usage of data considered sensitive, e.g. 
ethnicity or gender. 

Qayyum et al. [111] provide an overview of privacy and security 
mechanisms for clinical treatment recommendation using ML 

models. Another crucial factor for real-world deployment of ML 
models in decision support systems is the human interaction with 
this system: If the system is difficult to use, and information 
(e.g. treatment recommendations and justifications thereof) is not 
presented clearly and intuitively, this can significantly reduce the 
user’s trust in a system. Consequently, user-friendliness should 
be a primary concern when developing decision support systems. 
They should be tailored to specific user groups, including medical 
doctors, bioinformaticians, or patients. Usability studies are thus 
required to determine factors that contribute to or impede system 
usability. In order to meet all the requirements of a trustworthy 
decision support system, interdisciplinary cooperation is thus 
necessary. This should not only include researchers and profes-
sionals from the life sciences such as medical doctors, biologists, 
pharmacists, and bioinformaticians, but also security researchers, 
psychologists, and UI/UX designers. 

Key Points 
• We present a comprehensive review of ML-based anti-

cancer drug sensitivity approaches encompassing 36 
articles published during the previous decade. 

• We place the approaches in the four major ML realms 
and analyze to what extent the trustworthiness-related 
properties reliability and interpretability have been consid-
ered for model development. 

• On the one hand, our analysis reveals that reliability 
has hardly been considered during model development 
despite being of utmost importance for deploying ML 
systems in practice. 

• On the other hand, interpretability has often been con-
sidered. However, the concept is used rather intuitively, 
lacking clear definitions. 

• To solve the latter problem, we propose a sound and eas-
ily extensible taxonomy of interpretability that will serve 
as a reference for the development of future methods. 
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