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Abstract
Modern processors are complex systems that employ a wide range of techniques to execute
programs as fast and efficiently as possible. However, these hardware intricacies make reason-
ing about the efficiency of code for the processor difficult. Microarchitectural performance
models are therefore indispensable for estimating and improving how efficiently software
takes advantage of the hardware. This dissertation presents several advancements in the field
of microarchitectural performance modeling.

The first part of this thesis proposes techniques to characterize how a processor exploits
instruction-level parallelism. Based on a formal model, we explore ways to infer a processor’s
port mapping from throughput measurements, i.e., how it splits instructions into micro-
operations and how these are executed on the processor’s functional units. Our techniques
enable accurate port mapping inference for processors that prior methods could not reason
about.

In the second part, we introduce AnICA, a method to analyze inconsistencies between
performance models. AnICA takes inspiration from differential testing and abstract inter-
pretation to systematically characterize differences in the outputs of basic block throughput
predictors. It can summarize thousands of inconsistencies in a few dozen descriptions that
provide high-level insights into the differing behaviors of such predictors. These results
have lead to improvements in the scheduling models of the widely used LLVM compiler
infrastructure.
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Zusammenfassung
Moderne Prozessoren sind komplexe Systeme, die ein breites Spektrum an Techniken anwen-
den, um Programme so schnell und effizient wie möglich auszuführen. Diese Komplexität
der Hardware erschwert jedoch auch das Abschätzen der Effizienz von Programmen für den
jeweiligen Prozessor. Um die Hardware-Ausnutzung von Programmen zu beurteilen und
zu verbessern, sind daher Leistungsmodelle nötig. Diese Dissertation präsentiert mehrere
Beiträge zum Feld der Leistungsmodellierung von Prozessoren.

Der erste Teil der Dissertation untersucht die Ausnutzung von Parallelität auf Anwei-
sungsebene innerhalb eines Prozessors. Basierend auf einem formalen Modell leiten wir aus
Durchsatzmessungen ab, wie der Prozessor Anweisungen in Mikro-Operationen aufteilt und
wie diese von den funktionalen Einheiten des Prozessors ausgeführt werden. Die präsentierten
Methoden charakterisieren dieses Verhalten erstmals für eine Reihe von Prozessoren.

Der zweite Teil der Arbeit stellt AnICA vor, ein Verfahren zur Untersuchung von Inkonsis-
tenzen zwischen Leistungsmodellen. AnICA vereint differenzielles Testen mit Konzepten der
abstrakten Interpretation, um Unterschiede in den Ergebnissen von Durchsatzmodellen für
Anweisungssequenzen zu charakterisieren. Tausende von Inkonsistenzen werden so durch
wenige kompakte Beschreibungen zusammengefasst, die direkte Einsichten in die Durch-
satzmodelle liefern. Durch diese Ergebnisse konnten Code-Generierungs-Modelle der LLVM
Compiler-Infrastruktur verbessert werden.

v





Acknowledgments
First, I would like to thank my advisor, Prof. Sebastian Hack, for providing the opportunity to
pursue this research. I am grateful for his encouragement, guidance, and feedback, for the
freedom he gave me to explore new ideas, and for the great times we had along the way.

I would also like to thank Prof. Jan Reineke and Dr. Fabrice Rastello for reviewing this
dissertation, and for the fruitful discussions I had with each of them over the course of my
research. Furthermore, I would like to thank Prof. Sven Apel for leading the examination
committee and Dr. Marvin Wyrich for representing the academic staff in the examination
committee for this dissertation.

Special thanks go to my dear colleagues Tina Jung and Sebastian Hahn, for the many
discussions, collaborations, and distractions we had. Moreover, I am grateful to them and the
additional proofreaders of this thesis – Heiko Becker, Joachim Meyer, and Matthias Ritter –
for their valuable feedback and suggestions.

I would like to thank all my colleagues from the Compiler Design Lab and the Real-Time
and Embedded Systems Lab for providing a supportive and inspiring environment. It was a
pleasure to work with them, and I am thankful for the discussions, collaborations, and fun
we had. I am particularly grateful to Sandra Neumann for her invaluable help in navigating
the administrative challenges and complexities of the university. I am also very thankful for
the Wednesday Tea Parties with Sebastian, Florian, Christoph, Jan, and Shrey for providing
a regular and welcome break from work. For research collaborations and student projects
related to this thesis, I would further like to thank Kallistos Weis, Timo Gros, Luis Paulus, and
Lukas Schaller. My gratitude also goes to the International Max Planck Research School for
Computer Science for supporting me early on during my doctoral studies.

Last, but not least, I would like to thank my family for their continuous support and
encouragement.

vii



Contents
1. Introduction 1

2. Background on CPU Performance 7
2.1. Computer Architecture in a Nutshell . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Port Mapping Inference: The Basics 13
3.1. Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Evaluating the Port Mapping Model . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Port Mapping Inference Problems . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Counter-Example-Guided Port Mapping Inference 37
4.1. The Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Application in the Two-Level Model . . . . . . . . . . . . . . . . . . . . . . . 39
4.3. Extensions for Practical Applicability . . . . . . . . . . . . . . . . . . . . . . 45
4.4. Extension to the Three-Level Model . . . . . . . . . . . . . . . . . . . . . . . 48
4.5. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6. Conclusions: Counter-Example-Guided Port Mapping Inference . . . . . . . 56

5. Evolving Port Mappings with PMEvo 59
5.1. The PMEvo Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3. Conclusions: PMEvo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6. Explainable Port Mapping Inference with Sparse Performance Counters 75
6.1. Starting Point: The uops.info Algorithm . . . . . . . . . . . . . . . . . . . . . 76
6.2. Our Adapted Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3. Case Study: The AMD Zen+ Microarchitecture . . . . . . . . . . . . . . . . . 84
6.4. Conclusions: Explainable Port Mapping Inference with Sparse Performance

Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7. Related Work on Port Mapping Inference 97
7.1. Inferring Port Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2. Basic Block Throughput Predictors . . . . . . . . . . . . . . . . . . . . . . . 100

8. AnICA: Analyzing Inconsistencies in Code Analyzers 105
8.1. The AnICA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



Contents

8.3. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5. Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.6. Conclusions: AnICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9. Conclusions and Outlook 141

Appendix 147

A. Proofs 147
A.1. Proofs for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.2. Proofs for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.3. Proofs for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
A.4. Proofs for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.5. Proofs for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B. SMT and (I)LP Solving Terminology 191

C. x86-64 Register Reference 193

D. Measuring Basic Block Throughput 197

E. Supplementary Examples 201
E.1. Number of Blocking Instructions in the uops.info Algorithm . . . . . . . . . 201
E.2. Facile’s Port Mapping Simulation Algorithm . . . . . . . . . . . . . . . . . . 202

List of Algorithms 205

List of Figures 207

List of Tables 209

Bibliography 211

ix





Chapter 1
Introduction
Increasing the performance of computer programs is a fundamental challenge in computing.
Faster and more efficient software is beneficial, no matter if it runs at the scale of personal
computers, smartphones, supercomputers, or embedded devices. To satisfy the need for im-
proved computing efficiency and performance, hardware is becoming more and more complex.
Achieving peak performance on such complex systems requires software optimizations that
depend on the hardware’s performance characteristics.

Developers of high-performance software therefore rely on performance models of their
target hardware. Performance models enable the developers to estimate how code executes
on a given system and how to adjust it to run more efficiently. Industry and academia
have produced a wide range of performance models for various computing devices – e.g.,
central processing units (CPUs) (Di Biagio, 2018; Intel, 2012), graphics processing units (GPUs)
(Baghsorkhi et al., 2010), specialized accelerators like tensor processing units (TPUs) (Ni
et al., 2022), and field-programmable gate arrays (FPGAs) (Hung et al., 2009) – and for a
variety of applications. They differ in the kind of input they expect – from short sequences
of machine instructions (Intel, 2012) to entire programs (Binkert et al., 2011) – as well as the
accuracy they strive for – from cycle-accurate (Böhm et al., 2010) to “back-of-the-envelope
calculations” (Ofenbeck et al., 2014; Williams et al., 2009).

The focus of this dissertation lies on microarchitectural CPU models that describe how a
processor core executes a stream of machine instructions. Such models are used in a variety
of contexts, for example,

• by developers to guide manual code optimizations (Tan et al., 2023),

• by compilers to generate more efficient machine code (GCC, 2023; LLVM, 2022; Pohl
et al., 2019), and

• for super-optimization tools (Liu et al., 2023; Phothilimthana et al., 2016) to identify
high-performing implementations.

Processor design techniques like out-of-order execution, the decomposition of instructions
into smaller micro-operations, and common-case optimizations render performance prediction
in this setting challenging. Incomplete documentation by the manufactures often amplifies
the challenge further.

This dissertation advances the field of microarchitectural performance modeling for CPUs in
two directions: inferring a processor’s port mapping and analyzing how available performance
models differ.
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Chapter 1. Introduction

Port Mapping Inference
The port mapping describes how a processor with an out-of-order design exploits instruction-
level parallelism. It models how the processor internally splits instructions into simpler
operations, so-called micro-ops or µops, and which execution units, grouped behind so-called
ports of the processor, can execute these µops. Figure 1.1 visualizes an example for this
relationship: Here, the instructions add, sub, mul, and store are implemented with µops
𝑢1, 𝑢2, and 𝑢3 that can be executed on different subsets of the ports 𝑝1, 𝑝2, and 𝑝3. Port
mappings are important components of low-level processor performance models, for example
for predicting the throughput of instruction sequences (Abel and Reineke, 2022; Di Biagio,
2018; Laukemann et al., 2018) or in the cost models of compiler backends (GCC, 2023; LLVM,
2022). Hardware manufacturers usually do not provide a complete port mapping for their
microarchitectures.

Prior work like the instruction tables by Fog (2022), EXEgesis (LLVM, 2023a), and uops.info
(Abel and Reineke, 2019) rely on hardware support in the form of performance counters
to infer port mappings from microbenchmarks. When the hardware can be configured to
count the executed µops per port, determining where each instruction’s µops can be executed
is straightforward. Suitable performance counters are, however, not always available. For
instance, AMD’s processors and many ARM designs do not provide all necessary counters
and are hence not supported by these approaches.

In this dissertation, we explore port mapping inference strategies that reduce or eliminate
the need for hardware performance counters. Instead, our techniques measure the processor’s
instruction throughput for specific microbenchmarks. By benchmarking various combinations
of instructions, we determine conflicting port requirements among the instructions. These
observations characterize the processor’s port mapping, albeit more indirectly than the
performance counter readings used in previous approaches. The key challenges in throughput-
based port mapping inference are to select suitable microbenchmarks and to find a port
mapping that fits this indirect characterization.

The port mapping inference algorithms presented in this thesis are based on a formal port
mapping model. The core of this model is a linear program that describes how a processor’s
port mapping determines the instruction throughput of dependency-free instruction sequences.

Instructions:

Micro-ops/µops:

Ports:

mul add sub store

𝑢1 𝑢2 𝑢3

𝑝1 𝑝2 𝑝3

Figure 1.1. Example of a port mapping. Instructions are connected to the µops that implement
them and µops are connected to the ports that can execute them.
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In contrast to prior presentations of this linear program, this dissertation substantiates the
model with a formal derivation from first principles and a correctness proof. We investigate
the accuracy and the limitations of the port mapping model with a study that compares its
throughput estimates to measurements on a microarchitecture with a known port mapping.
Based on the port mapping model, we develop three port mapping inference algorithms that
represent different trade-offs between applicability and accuracy.

The first port mapping inference algorithm uses a satisfiability modulo theories (SMT) solver
to leverage the port mapping formalization directly. It incrementally constructs a set of mi-
crobenchmarks that determine the processor’s port mapping. In each step, the algorithm finds
a port mapping candidate that explains the measured throughputs for the current benchmark
set. Then, it searches for a second port mapping explaining the collected measurements and a
new microbenchmark where the candidates would yield different throughputs. If one is found,
the new microbenchmark is carried out and added to the set. The algorithm terminates once
it finds a fitting port mapping for the collected benchmarks for which no second candidate
with a distinguishing microbenchmark exists.

Of the presented inference methods, this counter-example-guided algorithm provides the
strongest guarantees. If the processor under investigation follows the port mapping model,
the algorithm finds a port mapping that cannot be distinguished from the correct one via
throughput measurements. However, applying the algorithm to inference problems at a
practically relevant scale leads to prohibitively slow inference times.

The second approach, PMEvo, is more practical. Here, we address the key challenges of
throughput-based port mapping inference approximatively. The microbenchmarks follow
a fixed and potentially incomplete strategy that investigates instructions only individually
and in pairs. We employ a randomized evolutionary optimization algorithm to obtain a port
mapping that minimizes the difference between modeled and observed throughputs in these
benchmarks.

These approximations allow PMEvo to infer port mappings for real-world microarchi-
tectures like Intel’s Skylake, AMD’s Zen+, and ARM’s A72 without relying on dedicated
performance counters. The resulting port mappings match the observed throughputs, but they
do not necessarily follow the actual structure of the hardware. They are therefore suitable
for analytical throughput modeling, but may be lacking when the goal is to analyze, e.g., the
utilization of specific processor resources.

The final inference algorithm finds port mappings that follow the structure of the hardware
– as far as it is documented – more closely. To establish confidence in the resulting port
mappings, the algorithm justifies each inferred µop decomposition with microbenchmarks
that can be validated manually. This algorithm combines our SMT-based counter-example-
guided inference algorithm with the high-level structure of the performance-counter-based
strategy by Abel and Reineke (2019). Compared to the other two inference algorithms, this
approach has stronger requirements on the processor under investigation: For each µop in the
processor’s port mapping, there has to be an instruction that is implemented only with this
µop. Furthermore, there needs to be a hardware performance counter for the total number of
executed µops in a microbenchmark.

3



Chapter 1. Introduction

We demonstrate that this inference method scales to practical problem sizes with an
application to AMD’s Zen+ architecture. The result is, to the best of our knowledge, the most
comprehensive and accurate port mapping available for Zen+.

Analyzing Microarchitectural Performance Models

The performance models of microarchitectural code analyzers like llvm-mca (Di Biagio,
2018), OSACA (Laukemann et al., 2018), and uiCA (Abel and Reineke, 2022) are one of the
main applications of inferred port mappings. These tools model how a processor executes
a given machine instruction sequence and estimate the achieved instruction throughput.
When they are configured to model the same microarchitecture, one might assume that they
produce similar throughput estimations. However, we found in experiments that substantial
inconsistencies in their predictions are very common.

Inconsistently estimated throughputs can have a variety of reasons: The individual per-
formance models may not capture relevant parts of the execution, the tools might rely on
different, possibly implicit assumptions, or they might contain bugs. Understanding the
inconsistencies is vital for improving the tools and for determining their practical limitations.
Gaining such an understanding by investigating individual input instruction sequences is
arduous: Any subset of the instructions, their interactions, and their individual features, e.g.,
if they access memory, use a particular functional unit, or belong to a special instruction set
extension, may trigger the inconsistency.

We therefore develop AnICA to find inputs that exhibit inconsistencies in throughput pre-
dictors and to automatically determine responsible input features. AnICA provides a general
framework to find interesting inputs through randomized differential testing (McKeeman,
1998) and to generalize them with a method based on abstract interpretation (Cousot and
Cousot, 1977). We instantiate this framework for inputs in the form of x86-64 instruction
sequences. Such instruction sequences are considered interesting if they exhibit inconsistent
results in a pair of throughput predictors. AnICA’s results are hence compact characterizations
of classes of inconsistently predicted instruction sequences. These characterizations give
high-level insights into differences between the tools.

Since our implementation treats the throughput predictors as black boxes, it is not limited to
analyzing traditional microarchitectural code analyzers. It further supports machine-learning-
based throughput predictors like Ithemal (Mendis et al., 2019) and DiffTune (Renda et al., 2020)
and throughput measurements on the actual hardware. We explore a series of case studies
where AnICA exposed subtle modeling differences between the tools and identified underrep-
resented constructs in the training sets of learned predictors. Furthermore, it pinpointed a
long-standing crash in llvm-mca with a two-instruction test case and characterized several
inaccuracies in llvm-mca’s model for AMD’s Zen+ microarchitecture. In this process, AnICA
even found a quirk in the Zen+ microarchitecture itself.

4



Structure of the Thesis
Following this introduction, Chapter 2 reviews relevant aspects of computer architecture and
performance modeling. The remaining dissertation relies on these concepts.

Our discussion of port mapping inference strategies begins in Chapter 3 with an introduction
and experimental evaluation of the formal port mapping model. This formal model is integral
for the following Chapters 4 to 6, which describe our three throughput-based port mapping
inference algorithms. We discuss related work regarding the use and inference of port
mappings in Chapter 7.

Chapter 8 presents AnICA, our approach to analyze inconsistencies in microarchitectural
code analyzers. This chapter is independent of the previous chapters on port mapping
inference.

Finally, we draw conclusions from the presented work and outline future research directions
in Chapter 9.

Most of the chapters include formal statements about the presented constraint systems
and algorithms. We present proofs for these statements in Appendix A. Appendix B sum-
marizes pertinent terminology regarding satisfiability modulo theories and (integer) linear
programming. In Appendix C, we provide a short reference of the registers of the x86-64
instruction set architecture to give additional background for the assembly examples in the
thesis. Appendix D provides technical details of the microbenchmarking infrastructure used
in evaluations for the thesis. Lastly, Appendix E discusses supplementary examples that show
limitations of the related work. We refer to these appendices throughout the thesis when they
are relevant.

Publications
This dissertation includes and expands upon results of the following articles:

• PMEvo: Portable Inference of Port Mappings for Out-of-Order Processors by Evolutionary
Optimization, by Fabian Ritter and Sebastian Hack, published in the Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020. (Ritter and Hack, 2020)

• AnICA: Analyzing Inconsistencies in Microarchitectural Code Analyzers, by Fabian Ritter
and Sebastian Hack, published in the Proceedings of the ACM on Programming Languages,
OOPSLA 2022. (Ritter and Hack, 2022)

• Explainable Port Mapping Inference with Sparse Performance Counters for AMD’s Zen
Architectures, by Fabian Ritter and Sebastian Hack, published in the Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2024. (Ritter and Hack, 2024)
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Chapter 2
Background on CPU Performance
This chapter covers the concepts and terminology in processor design and performance
modeling that are relevant for the thesis.

2.1. Computer Architecture in a Nutshell
The capabilities of a processor are determined by the instruction set architecture (ISA) that
it implements. The ISA describes what operations, so-called instructions, the processor can
execute and their meaning. We distinguish instruction instances and instruction schemes:
An instruction instance consists of a mnemonic to determine the performed operation and a
sequence of operands, which determine the values it operates on. Operands can be the names
of registers, memory references, or immediate constants. Each operand has a width in bits.
An instruction scheme, also called instruction form, abstracts a set of instruction instances with
a common mnemonic and matching operands. Instruction schemes can be instantiated with
concrete operands to obtain instruction instances.

Example 2.1. Consider the following instruction schemes for the x86-64 ISA (Intel, 2023b)
and possible instantiations. We represent operand positions of instruction schemes in angle
brackets ⟨·⟩ and annotate them with 𝑅,𝑊 , or 𝑅𝑊 in a subscript if the corresponding operand
is read, written, or both, when executing the instruction. The x86-64 examples in this thesis
follow Intel’s assembly syntax, where destination operands come before source operands.1

(a) An addition of two 64-bit general-purpose registers (where the first operand is also the
destination for the result):

add ⟨GPR[64]⟩𝑅𝑊 , ⟨GPR[64]⟩𝑅
It can be instantiated by specifying both register operands, for example:

add rbx, rdx

(b) An addition of an 8-bit immediate constant to a 64-bit number in memory:
add ⟨MEM[64]⟩𝑅𝑊 , ⟨IMM[8]⟩𝑅

For instantiation, this requires a memory operand and an immediate constant:
add qword ptr [rbx], 42

1See Appendix C for an overview of relevant registers and memory addressing in the x86-64 ISA.
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Chapter 2. Background on CPU Performance

(c) A vector addition of double-precision floating point values from a 128-bit vector register
(xmm0 – xmm15) and a 128-bit memory location:

vaddpd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨MEM[128]⟩𝑅
This instruction scheme can be instantiated with vector registers of the appropriate
width and a memory operand, which can use several registers and constants:

vaddpd xmm3, xmm2, xmmword ptr [rax + 4*rdx + 8]

⌟

It is surprisingly difficult to determine how many (relevant) instruction schemes an ISA
contains. On one hand, the number depends on how instruction instances are grouped into
instruction schemes; e.g., how instructions with different operand widths or with special
encodings are represented. On the other hand, ISAs like x86-64 have grown over decades
with a long history of ISA extensions, some of which are relevant to this day whereas others
are no longer supported by contemporary processors. For this work, we base our instruction
schemes on the instruction tables used by Abel and Reineke (2019), from which we extract
4,042 instruction schemes. However, we observe only a fraction of these in practice: In
our experiments, instances of only 1,036 different instruction schemes were executed when
running the SPEC CPU 2017 benchmarks (Bucek et al., 2018).

While the ISA defines what instructions are supported and what they compute, it does
not specify how the instructions are implemented; this is determined by the processor’s
microarchitecture. Different processor models can use the same microarchitecture, and several
different microarchitectures may implement the same instruction set architecture. Decisions in
the design of a microarchitecture strongly affect the performance of processors that implement
it. Modern microarchitectures are therefore engineering products of immense complexity
whose details are kept confidential by the processor manufacturers.

In contrast to early in-order designs, most modern microarchitectures apply out-of-order
execution (Hennessy and Patterson, 2017, Chapter 3). This concept is based on the observation
that instructions can be executed in any order as long as the results are the same as if they
were executed in program order. A processor may execute instructions in parallel and reorder
them to any extent that preserves the read-after-write dependencies between the operations
and the externally-visible effects specified by the ISA. Current processors are designed to
manage several hundred “in-flight” instructions that are considered for reordering; e.g., 256
for AMD’s Zen3 microarchitecture (AMD, 2020, Section 2.10.3).

Out-of-order execution is often combined with a scheme to decompose instructions into
simpler microarchitecture-specific operations. These so-called micro-ops or µops are then
subject to reordering.

Figure 2.1 shows the relevant parts of a microarchitecture that employs out-of-order execu-
tion and µop decomposition. Instructions are fetched and decoded from the instruction cache
in program order. The decoder produces µops, which are cached for future re-use. The register
management engine resolves write-after-read and write-after-write dependencies by renaming
the ISA-level operand registers of each operation in terms of a larger number of physical

8
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Instruction Cache

µop Cache Decoder

Register Management

Scheduler

Port 0
Integer ALU

Divider

Port 1
Integer ALU

FP ALU

Port 2
Load
Store

Port 3
Load

Data Cache

Execution
Units

M
ai

n
M

em
or

y

Figure 2.1. Simplified overview of a modern processor design (based on Figure 2-8 of the
Intel Software Optimization Manual (Intel, 2023a, Section 2.6)).

registers. A scheduler decides based on operand dependencies and resource availability when
and where to execute the µops.

The execution units, which execute the µops, are grouped behind ports.2 Typical examples
of execution units are arithmetic logic units (ALUs) for integer or floating point (FP) values,
specialized units for complex operations like dividers and multipliers, and load/store units for
accessing the system’s main memory. Processors can have multiple instances of the same kind
of execution unit available at different ports. The number of ports in contemporary x86-64
microarchitectures at the time of writing ranges from eight (e.g., for the Intel Skylake (Intel,
2023a, Section 2.6)) to twelve (e.g., Intel’s Golden Cove microarchitecture (Intel, 2023a, Section
2.3)).

The processor operates in discrete steps of execution, so-called clock cycles or cycles. How
many of these steps are performed per second is determined by the clock frequency. Execution
units are often pipelined, allowing the ports to start processing a new µop in every cycle. Each
µop can be executed on any port that has the necessary execution unit. Once an instruction
or a µop has been executed completely, its results are available for subsequent operations and
it is retired.

The scheme that determines how instructions are decomposed into µops and on which ports
those can be processed is the port mapping of the microarchitecture. As the port mapping

2AMD usually refers to similar constructs in their processors as “pipes”; we use the term “ports” with respect to
microarchitectures of any manufacturer.
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controls the possible instruction-level parallelism, i.e., to what degree instructions of a single
execution thread can be executed in parallel, it plays a significant part in determining how fast
a processor can execute given instruction sequences. How exactly the port mapping relates to
the execution rate is central to a large portion of this thesis and will be discussed in greater
detail in the following chapters.

Computer architects have developed many more techniques to further improve the perfor-
mance of their processor designs, for instance:

• Modern multicore processors contain multiple processor cores that each include an inde-
pendent processing pipeline as described above.

• If a processor core implements simultaneous multithreading or hyper-threading, its µop
scheduler receives operations from multiple independent instruction streams.

• The processor core can predict the likely outcome of branches and execute subsequent
instructions speculatively. In case of a misspeculation, the execution units can be utilized
by operations that are not part of the execution specified by the ISA.

These techniques are relevant for the processor’s overall performance, but they are not in
the scope of this thesis. We only consider individual processor cores for which simultaneous
multithreading is disabled and benchmarks where misspeculations are negligible.

Modern processors give software developers insight into their operation through a perfor-
mance monitoring unit. This unit provides an additional set of registers that can be configured
to count occurrences of certain predefined events in the processor. These hardware per-
formance counters give statistics on how the processor executes code without affecting the
execution itself. They could for instance be configured to count the executed instructions
and µops, cache hits and misses, or the number of executed branch instructions. What events
can be counted depends on the microarchitecture. Recent Intel processors can count the
number of µops executed on each individual port, which is a feature of vital importance for
related work by Abel and Reineke (2019) that we will discuss in later chapters. Tools like
nanoBench (Abel and Reineke, 2020) and LIKWID (Gruber et al., 2023; Treibig et al., 2010)
provide interfaces to configure and access these performance counters.

2.2. Performance Modeling
The complexity of modern processors, combined with the incomplete information provided
by the manufacturers, makes estimating how fast a specific program will execute on a given
processor challenging. Performance modeling therefore is an active research area, with a
wide range of tools and approaches. There are performance models at various scales – from
short sequences of machine instructions (Intel, 2012) to entire programs (Binkert et al., 2011)
– and aiming for various levels of accuracy – from cycle-accurate (Böhm et al., 2010) to
“back-of-the-envelope calculations” (Ofenbeck et al., 2014; Williams et al., 2009).

In this thesis, we focus on performance models that describe how a core of a central
processing unit (CPU) executes a single instruction stream and that aim at being cycle accurate.
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2.2. Performance Modeling

There are different ways to define a notion of performance in this setting. For instance, one
can be interested in the latency of a finite instruction sequence. This is the time (or number
of cycles) required to execute the instruction sequence from start to end. For long-running
systems, measures of the steady-state execution rate are commonly used as performance
metrics. In the context of this thesis, the following execution rate measures are of particular
interest:

Definition 2.2. Consider a sequence 𝐵 of𝑛 instructions that is executed in indefinite repetition.

• The throughput tp (𝐵) is the average number of instances of 𝐵 executed per clock cycle.

• The inverse or reciprocal throughput tp−1 (𝐵) is the average number of clock cycles required
to execute an instance of 𝐵:

tp−1 (𝐵) = 1
tp (𝐵)

• The IPC is the average number of instructions executed per clock cycle:

IPC (𝐵) = tp (𝐵) · 𝑛 =
𝑛

tp−1 (𝐵)

• The CPI is the average number of clock cycles required to execute an instruction:

CPI (𝐵) = 1
IPC (𝐵) =

tp−1 (𝐵)
𝑛

⌟

In this thesis, we usually refer to the execution rate in terms of the inverse throughput tp−1 (𝐵)
and clarify whenever we deviate. We formalize how and under which conditions the inverse
throughput tp−1 (𝐵) is determined by the processor’s port mapping in the following chapter.
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Chapter 3
Port Mapping Inference: The Basics
A major focus of this thesis lies on techniques to infer port mappings, which model how a
processor decomposes instructions into micro-operations (µops) and how these are executed.
This chapter expands on the formal foundations of the port mapping model that we introduced
in the article on PMEvo (Ritter and Hack, 2020). We further provide evidence that the
port mapping model captures the behavior of modern processors in the absence of data
dependencies and discuss limitations in Section 3.2. Lastly, we formally define port mapping
inference problems and present results on their computational complexity in Section 3.3.

The presented port mapping model serves as a foundation for the subsequent chapters of
this thesis, where we provide ways to approach the port mapping inference problem.

3.1. Formal Model
We present two port mapping models: The simpler two-level model is convenient to understand
the techniques we developed, while the more complex three-level model is closer to the
behavior of real processors. Both models describe how a given set I of instruction schemes is
mapped to a given set P of execution ports of a microarchitecture.

In general, the throughput a given processor achieves for a piece of code does not only
depend on the port mapping. Other aspects of the hardware like restrictions in the instruction-
decoding frontend of the processor, non-pipelined functional units, and varying latencies of
memory accesses also affect performance. Furthermore, properties of the code such as data
dependencies contribute substantially to the code’s overall execution rate. The presented
model only aims to accurately describe the throughput of code whose performance is solely
determined by the processor’s port mapping. This goal affects the following definition.

Definition 3.1. An experiment 𝑒 is an unordered multiset of instruction schemes. It is repre-
sented as a function 𝑒 : I→ N that maps instruction schemes to their numbers of occurrences
in the experiment 𝑒 . ⌟

This definition captures two noteworthy modeling choices: It only considers instruction
schemes, which abstract from specific operands, and the experiments do not specify an order
among their instruction schemes. The port mapping model therefore does not distinguish
experiments based on the specific instances of instruction schemes or the instruction order.
This is motivated by our focus on purely port-mapping-bound code, which allows us to assume
that
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Chapter 3. Port Mapping Inference: The Basics

• all instruction instances of a given instruction scheme can be executed on the same functional
units with the same performance characteristics and that

• the code is free of dependencies, which enables modern out-of-order processors to freely
reorder the instructions when executing them.

We discuss limitations induced by these assumptions and how to measure the throughput of
such experiments on a given processor in Section 3.2.

3.1.1. The Two-Level Model
In the first model, the two-level model, we assume that each execution port can execute certain
kinds of instructions directly. The following definition captures this notion:

Definition 3.2. A port mapping𝑀 in the two-level model is a bipartite graph (I ∪· P, 𝐸) with
the vertices split disjointly into finite, non-empty sets I of instruction schemes and P of ports.
The edges 𝐸 ⊆ I × P connect instruction schemes with their ports.

We refer to the ports assigned to an instruction scheme 𝑖 by 𝑀 [𝑖] :=
{
𝑘

�� (𝑖, 𝑘) ∈ 𝐸}. We
require that for all 𝑖 ∈ I, 𝑀 [𝑖] ≠ ∅, i.e., every instruction scheme has at least one port that can
execute it. ⌟

For an example, consider Figure 3.1. The shown two-level port mapping covers four instruction
schemes – mul, add, sub, store – of a hypothetical instruction set architecture. Only one
execution port, 𝑝1, can handle mul instructions. For add and sub instructions, there are more
choices: The ports 𝑝1 and 𝑝2 are both able to execute such instructions. Instances of the store
instruction scheme need to be executed on another port, 𝑝3.

In the two-level model, the processor executes an occurrence of an instruction scheme 𝑖 by
assigning it to one of the ports in 𝑀 [𝑖]. We assume that execution ports are fully pipelined,
which means that they can start executing a new instruction in every cycle. Therefore, when
an instruction scheme occurrence of an experiment is assigned to a port, it occupies this port
exclusively for exactly one cycle. The following definition captures this execution behavior
formally:

Definition 3.3. An execution schedule for a positive number 𝑁 ∈ N+ of iterations of an
experiment 𝑒 according to the two-level port mapping 𝑀 = (I ∪· P, 𝐸) is a sequence Ex :=
[𝑠1, . . . , 𝑠 |Ex | ] of partial allocation functions 𝑠𝑐 : P ⇀ I such that

• all instruction scheme occurrences from each experiment iteration are assigned to a
port at some point in the sequence:

∀𝑖 ∈ I.
���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑖

}��� = 𝑁 · 𝑒 (𝑖)
• instruction schemes are only assigned to ports that 𝑀 allows:

∀1 ≤ 𝑐 ≤ |Ex |, 𝑖 ∈ I, 𝑘 ∈ P. ( 𝑠𝑐 (𝑘) = 𝑖 ) ⇒ 𝑘 ∈ 𝑀 [𝑖]
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3.1. Formal Model

I:

P:

mul add sub store

𝑝1 𝑝2 𝑝3

Figure 3.1. A port mapping in the two-level model. (Ritter and Hack, 2020)

We call the length |Ex | of an execution schedule Ex its execution time. An optimal execution
schedule of 𝑁 iterations of an experiment 𝑒 according to the port mapping 𝑀 is an execution
schedule with a minimal execution time. We refer to the execution time of such an optimal
execution schedule as 𝑇 (𝑀, 𝑒, 𝑁 ). ⌟

This processor model can be viewed from a scheduling perspective: The execution of in-
structions in a processor corresponds to a scheduling problem. Instructions correspond to
independent jobs and the ports are unrelated parallel machines on which a given instruction
can either be executed with processing time 1 (if the port mapping allows it), or it cannot be
executed (i.e., it has a processing time of∞).1

Example 3.4. Consider the experiment
{
add ↦→ 2,mul ↦→ 1, store ↦→ 1

}
and the two-level

port mapping from Figure 3.1. For a single iteration (𝑁 = 1), the following is an optimal
execution schedule: [{

𝑝1 ↦→ mul, 𝑝2 ↦→ add, 𝑝3 ↦→ store
}
,{

𝑝1 ↦→ add
}]

It has entries for two cycles, therefore the optimal execution time 𝑇 (𝑀, 𝑒, 1) is 2.
For two iterations, i.e., 𝑁 = 2, duplicating the above execution schedule yields a valid

schedule with execution time 4:[{
𝑝1 ↦→ mul, 𝑝2 ↦→ add, 𝑝3 ↦→ store

}
,{

𝑝1 ↦→ add
}
,{

𝑝1 ↦→ mul, 𝑝2 ↦→ add, 𝑝3 ↦→ store
}
,{

𝑝1 ↦→ add
}]

However, this execution schedule is not optimal as the iterations can be interleaved to achieve
an execution time of 3 cycles:[{

𝑝1 ↦→ mul, 𝑝2 ↦→ add, 𝑝3 ↦→ store
}
,{

𝑝1 ↦→ add, 𝑝2 ↦→ add, 𝑝3 ↦→ store
}
,{

𝑝1 ↦→ mul, 𝑝2 ↦→ add
}]

⌟
1See, for example, the textbook by Pinedo (2022) for additional background on the classification of scheduling

problems.
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Chapter 3. Port Mapping Inference: The Basics

With this notion of how instructions are executed, we define the throughput that can be
achieved with a given port mapping for an experiment as follows:

Definition 3.5. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a two-level
port mapping 𝑀 is the limit

lim
𝑁→∞

𝑇 (𝑀, 𝑒, 𝑁 )
𝑁 ⌟

Theorem 3.6. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a port
mapping 𝑀 always exists, and it is the infimum of the set

{
𝑇 (𝑀,𝑒,𝑁 )

𝑁

�� 𝑁 ∈ N+}.

Proof. See Appendix A.1.1. □

The throughput characterization of Definition 3.5 closely corresponds to the throughput
notion discussed in Definition 2.2. It does, however, not provide an obvious constructive
method to compute the inverse throughput given a port mapping and an experiment. For
this purpose, we use the following alternative throughput formulation based on a linear
program (LP), which has first been presented in similar form by Abel and Reineke (2019).2

Theorem 3.7. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 : 𝐼 → N with a
port mapping 𝑀 := (I ∪· P, 𝐸) is the objective value of an optimal solution to the following
linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.

Proof. See Appendix A.1.2. □

2See Appendix B for an overview of the terminology regarding linear programming used in this thesis.
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3.1. Formal Model

𝑝1 𝑝2 𝑝3

mul

add

add
store

0

1

2

1.5

Figure 3.2. Visualization of an optimal solution of the linear program. (Ritter and Hack, 2020)

In other words, tp−1
𝑀

(
𝑒
)

is the minimal value that the variable 𝑡 can have in any valuation of
the LP variables that satisfies constraints (A) – (E). This formulation is based on the intuition
that an experiment 𝑒 specifies for each instruction scheme 𝑖 a corresponding mass 𝑒 (𝑖) that
needs to be distributed among the ports as evenly as possible. The real-valued variables 𝑥𝑖𝑘
capture the share of the mass 𝑒 (𝑖) for the instruction scheme 𝑖 that is assigned to the port 𝑘 .
The constraints (A) and (D) ensure that these variables represent a proper decomposition of
the mass of the experiment. With constraint (B), we require that the real-valued variables 𝑝𝑘
carry the total mass of instructions assigned to their corresponding port 𝑘 . Constraint (E)
restricts the assignment of each instruction scheme 𝑖’s mass to ports 𝑘 that can execute 𝑖 .

Constraint (C) defines 𝑡 as an upper bound to the individual per-port masses. Therefore,
the objective to minimize 𝑡 ensures that an optimal solution to the LP distributes the mass
among the ports such that the maximal per-port load is minimized.

Example 3.8. We revisit the experiment
{
add ↦→ 2,mul ↦→ 1, store ↦→ 1

}
and the two-level

port mapping from Figure 3.1 used in Example 3.4. Figure 3.2 visualizes a solution to the linear
program from Theorem 3.7. The value of each variable 𝑥𝑖𝑘 is represented as the height of a
block for the instruction scheme 𝑖 in the bucket for port 𝑘 . The maximal fill of a bucket, 1.5, is
equal to the inverse throughput we found in Example 3.4. ⌟

In contrast to the original Definition 3.5, we can use the linear program from Theorem 3.7
to compute the throughput of an experiment as implied by a given port mapping. Linear
programs can be solved efficiently, in polynomial time.3

A noteworthy special case is the throughput of an instruction scheme 𝑖 executed in isolation
via a singleton experiment

{
𝑖 ↦→ 1

}
. The corresponding mass is distributed equally among the

ports that can execute 𝑖 , leading to an inverse throughput of 1
|𝑀 [𝑖 ] | for any port mapping 𝑀 .

3.1.2. The Three-Level Model
The two-level model of the previous section simplifies the inner workings of real-world
processors in many ways. A critical implementation detail, which we incorporate now, is that
modern processors usually decompose instructions into simpler µops to execute them more

3See, e.g., the textbook by Bertsimas and Tsitsiklis (1997). We present an alternative way to compute the solution of
this linear program with superior performance for practical cases in Section 5.1.4.
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Chapter 3. Port Mapping Inference: The Basics

efficiently. The three-level model takes this into account by introducing a set U of µops as a
middle layer to the model.

Definition 3.9. A port mapping in the three-level model is a tripartite graph (I ∪· U ∪· P, 𝐹 ∪· 𝐸)
with disjoint, finite, and non-empty sets I of instruction schemes, U of µops, and P of ports.
The labeled edges 𝐹 ⊆ I × N × U connect instruction schemes with µops and the unlabeled
edges 𝐸 ⊆ U × P connect µops with ports.

We require that every µop 𝑢 ∈ U has at least one port 𝑘 ∈ P that can execute it:

∀𝑢 ∈ U. {𝑘 �� (𝑢, 𝑘) ∈ 𝐸} ≠ ∅
⌟

A labeled edge (𝑖, 𝑛,𝑢) ∈ 𝐹 in a three-level port mapping means that the µop 𝑢 occurs 𝑛 times
in the µop decomposition of the instruction scheme 𝑖 .

Figure 3.3 shows an example for such a three-level port mapping. Here, add and sub are
implemented as one µop 𝑢2 that can be executed on two ports 𝑝1 and 𝑝2. The mul and store
instructions are decomposed into two µops, the former into two of the same kind, 𝑢1, and the
latter into two different ones, 𝑢2 and 𝑢3. The store instruction has a partial conflict with add
and sub that cannot be represented in the two-level model.

It is important to note the different semantics of the layers of edges: To execute an occurrence
of an instruction scheme 𝑖 , all corresponding µops 𝑢 such that (𝑖, 𝑛,𝑢) ∈ 𝐹 have to be executed
whereas a µop 𝑢 is executed on exactly one of the allowed ports 𝑘 with (𝑢, 𝑘) ∈ 𝐸.

We define execution schedules and the modeled throughput analogously to the two-level
model.

Definition 3.10. An execution schedule for a positive number 𝑁 ∈ N+ of iterations of an
experiment 𝑒 according to the three-level port mapping𝑀 = (I∪· U∪· P, 𝐹∪· 𝐸) is a sequence Ex :=
[𝑠1, . . . , 𝑠 |Ex | ] of partial allocation functions 𝑠𝑐 : P ⇀ U such that

• the µops of all instruction scheme occurrences from each iteration are assigned to a
port at some point in the sequence:

∀𝑢 ∈ U.
���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑢

}��� = 𝑁 · ∑︁
(𝑖,𝑛,𝑢 ) ∈𝐹

𝑒 (𝑖) · 𝑛

• µops are only assigned to ports that 𝑀 allows:

∀1 ≤ 𝑐 ≤ |Ex |, 𝑢 ∈ U, 𝑘 ∈ P. (𝑠𝑐 (𝑘) = 𝑢) ⇒ (𝑢, 𝑘) ∈ 𝐸

We call the length |Ex | of an execution schedule Ex its execution time. An optimal execution
schedule of 𝑁 iterations of an experiment 𝑒 according to the port mapping 𝑀 is an execution
schedule with a minimal execution time. We refer to the execution time of such an optimal
execution schedule as 𝑇 (𝑀, 𝑒, 𝑁 ). ⌟
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3.1. Formal Model

I:

U:

P:

mul add sub store

𝑢1 𝑢2 𝑢3

𝑝1 𝑝2 𝑝3

2 1 1
1

1

Figure 3.3. Example of a three-level port mapping. (Ritter and Hack, 2020)

Definition 3.11. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a three-level
port mapping 𝑀 is the limit

lim
𝑁→∞

𝑇 (𝑀, 𝑒, 𝑁 )
𝑁 ⌟

The linear program from Theorem 3.7 can be slightly modified to compute the inverse
throughput tp−1

𝑀

(
𝑒
)

of an experiment 𝑒 : I → N under the three-level port mapping 𝑀 :=
(I ∪· U ∪· P, 𝐹 ∪· 𝐸).

Theorem 3.12. Given a three-level port mapping𝑀 := (I∪· U∪· P, 𝐹 ∪· 𝐸), the modeled inverse
throughput tp−1

𝑀

(
𝑒
)

under 𝑀 for an experiment 𝑒 : 𝐼 → N is the objective value of an optimal
solution to the following linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑢𝑘 =
∑︁

(𝑖,𝑛,𝑢 ) ∈𝐹
𝑒 (𝑖) · 𝑛 for all 𝑢 ∈ U (A)∑︁

𝑢∈U
𝑥𝑢𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑢𝑘 ≥ 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (D)
𝑥𝑢𝑘 = 0 if (𝑢, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.

Proof. Analogous to Theorem 3.7. □

In this linear program, all occurrences of instruction schemes in the two-level LP are replaced
by occurrences of µops except for the right-hand side of constraint (A). The right-hand side of
(A) ensures that a µop 𝑢 that occurs 𝑛 times in the decomposition of the instruction scheme 𝑖
is taken into account with its appropriate mass.
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Chapter 3. Port Mapping Inference: The Basics

Remark 3.13. We note two valuable observations about this model:

1. Computing the inverse throughput of an experiment 𝑒 : I → N with a port mapping
(I ∪· U ∪· P, 𝐹 ∪· 𝐸) in the three-level model can be reduced to computing the inverse
throughput in the two-level model: We instead compute the throughput of the experiment

𝑒′ =
{
𝑢 ↦→

∑︁
(𝑖,𝑛,𝑢 ) ∈𝐹

𝑒 (𝑖) · 𝑛
}

with the two-level mapping (U ∪· P, 𝐸). The multiset 𝑒′ contains the µops that are needed
to execute 𝑒 according to 𝐹 . These µops are used as instruction schemes for the two-level
model. This construction allows us to use algorithms for the simpler two-level model to
compute the inverse throughput in the three-level model.

2. Without loss of generality, we can identify µops by the set of ports that they can be
executed on, and define U as the power set P(P) of the set of ports, excluding the empty
set: U := P(P) \ {∅}.

⌟

Lastly, we note that the execution of any experiment in either of the port mapping models is
determined by a set of fully utilized bottleneck ports. We will harness this insight throughout
the following chapters.

Theorem 3.14. Let 𝑀 be a two-level or three-level port mapping for a set P of ports and
let 𝑒 be an experiment with inverse throughput 𝑡∗ = tp−1

𝑀

(
𝑒
)
. Let 𝑆 be the set of all optimal

solutions to the corresponding linear program from Theorem 3.7 or Theorem 3.12. Then, there
is a non-empty set BP𝑀 (𝑒) :=

⋂
𝑠∈𝑆

{
𝑘

�� 𝑠 [𝑝𝑘 ] = 𝑡∗} of bottleneck ports.

Proof. See Appendix A.1.3. □

For an example, reconsider the LP solution from Example 3.8, again displayed in Figure 3.4.
When executing this experiment, 𝑝1 and 𝑝2 are the bottleneck ports. They are both fully
utilized for the 1.5 cycles required for the experiment and none of the instructions assigned to
𝑝1 or 𝑝2 could be executed on the remaining port 𝑝3. The only way to lower the utilization of
one of the bottleneck ports is by increasing the utilization of the other, leading to a slower
execution.

3.2. Evaluating the Port Mapping Model
The port mapping model defined in the previous section abstracts from the behavior of actual
processor hardware. Before we derive algorithms to characterize processors based on this
model, we should therefore investigate its accuracy. The objective of this section is to measure
the inverse throughput of experiments on the actual processor and to check if the results are
consistent with the three-level port mapping model.
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𝑝1 𝑝2 𝑝3

mul

add

add
store

0

1

2
1.5

I:

P:

mul add sub store

𝑝1 𝑝2 𝑝3

Figure 3.4. Port mapping in the two-level model and corresponding optimal port utilization
for the experiment

{
add ↦→ 2,mul ↦→ 1, store ↦→ 1

}
. (Ritter and Hack, 2020)

We first describe a method to measure the steady-state throughput for instruction scheme
multisets on a given processor. Then, we compare throughput measurements on an Intel
Skylake processor with predictions of the port mapping model. Since Intel’s Skylake microar-
chitecture provides the hardware performance counters that Abel and Reineke (2019) need
for their port mapping inference method, there is a reference model available from uops.info
for comparison. We present our measurement method in terms of the x86-64 ISA, but it can
be applied to other instruction set architectures as well.

3.2.1. Benchmarking the Experiment Throughput
Accurate throughput measurements are key for our goal of inferring implementation details
of the microarchitecture. Our measurement strategy follows the intuition of Definitions 3.5
and 3.11: We measure the total number of cycles required to execute a large number 𝑁
of iterations of an experiment and divide it by 𝑁 to obtain the inverse throughput for the
experiment.

There are a number of practical issues to address when implementing this strategy. Our goal
is to measure the number of cycles required to execute a multiset of independent instruction
schemes in a steady state. We approach this challenge in two steps: Firstly, a processor does
not execute multisets of instruction schemes but lists of instruction instances with concrete
operands. We therefore need a strategy to instantiate instruction schemes while avoiding
data dependencies. The second step is to benchmark the steady-state execution time of the
resulting basic block while limiting the effect of performance bottlenecks other than the
port usage. Figure 3.5 visualizes this benchmarking process with an example sequence of
instruction schemes.4 The following subsections discuss how to implement both steps. The
described technique builds upon the measurement method we used in the article on PMEvo
(Ritter and Hack, 2020) and work by Weis (2019).

Instantiating Instruction Schemes for Port-Mapping-Bound Experiments

Experiments as defined in Definition 3.1 are multisets of instruction schemes. As a first step
to instantiate an experiment, we fix an arbitrary order among the instruction schemes to
obtain a list of instruction schemes. Since the goal is to instantiate the instruction schemes

4See Appendix C for an overview of the relevant registers of the x86-64 ISA.
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add rax, 43

add dword ptr [r14+160], ecx

sub r10d, r12d

vmulpd xmm0, xmm1, xmm2

. . .
add r8, 43

add dword ptr [r14 + 3232], ecx

sub r9d, r12d

vmulpd xmm0, xmm1, xmm2

add ⟨GPR[64] ⟩𝑅𝑊 , ⟨IMM[8] ⟩𝑅
add ⟨MEM[32] ⟩𝑅𝑊 , ⟨GPR[32] ⟩𝑅
sub ⟨GPR[32] ⟩𝑅𝑊 , ⟨GPR[32] ⟩𝑅
vmulpd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅

1.0 cycles
per iteration

Figure 3.5. Benchmarking workflow with an example input of two read-modify-write addi-
tions (one adding an 8-bit immediate constant to a 64-bit register and one adding a 32-bit
register value to a 32-bit value in memory), a 32-bit read-modify-write subtraction of one
register operand from another, and a vector multiplication of pairs of double-precision
floating point values.

such that data dependencies do not affect the throughput, any order is adequate. We test this
assumption experimentally in Section 3.2.2.

Next, we allocate concrete operands for each instruction scheme to obtain an executable
sequence of instruction instances from the list of instruction schemes. In contrast to code
generation in compilers, there is no specific semantics that the operand selection needs to
achieve. Instead, the objective is to choose valid operands that avoid erroneous input values
for the instructions and that minimize the effect of data dependencies on the throughput.

In the x86-64 instruction set architecture, there are three kinds of operands that we need to
consider:

Register operands: Each register operand of an instruction scheme has a group of allowed
registers. In the instruction schemes that we use, the registers in such a group are
all of the same kind, e.g., only 32-bit general-purpose registers, or only 256-bit vector
registers. Register operands can occur as read, written, or read-and-written operands.

Memory operands: Memory operands represent addresses in the system’s main memory.
They can be expressions of the form

[segment : base + scale ∗ index + displacement]
where base and index are general-purpose registers, scale and displacement are constants,
and segment is a segment register mainly used in legacy execution modes.5 Most of
these components are optional; our benchmarking routine only uses the base and

5Recent AVX ISA extensions also allow vector registers in memory operands, we do not consider these in this thesis.
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displacement components. Memory operands in instruction schemes also have a fixed
bit-width and can occur as read, written, or read-and-written operands.

Immediate operands: An immediate constant is an operand with a fixed value that is
encoded as part of the machine code. It has a fixed bit-width and cannot be overwritten.

Of these operand kinds, immediate constants are the easiest to safely instantiate. Since they
are only read, they cannot cause data dependencies and their value cannot change when their
instruction is executed repeatedly. We therefore instantiate𝑊 -bit-wide immediate operands
with the fixed value 2𝑊 −8 + 42. This is an arbitrary value with convenient properties: The
most and least significant bytes are non-zero (ensuring that the constant is not encoded with
fewer bits by the assembler) and it avoids values for which one might expect special case
handling, like 0, ±1, and maxima or minima of the value range.

The other operand kinds require more care to avoid erroneous values, i.e., values that cause
hardware exceptions or lead to untypical performance corner cases. For instance, memory
operands always need to point to previously allocated memory regions to avoid memory
access faults. Some instructions impose further requirements to their operands: For example,
division operations should not receive 0 as a divisor.

Avoiding erroneous values is non-trivial as executing instructions can change the values
of their operands. To ensure that no such values occur even when the instantiated code
is repeated many times, we reserve registers to carry specific values, like a valid memory
base address or a small positive divisor. These registers are not used as written operands
of the benchmarked instructions and therefore retain their values throughout the entire
microbenchmark. For floating point instructions, subnormal operand values, which require a
special encoding and a special treatment by the hardware, can cause performance penalties.
We avoid such penalties by configuring the hardware to treat subnormal values as zero.

Exploring in how far operand values affect the execution – and, thus, the throughput –
of specific instructions is outside of the scope of this thesis. We therefore omit instruction
schemes for which we cannot ensure consistent throughput measurements from the port
mapping inference algorithms in the following chapters. For an exploration of such input-
dependent behavior we refer to work by Biehl (2021).

Concerning data dependencies, we only need to avoid read-after-write dependencies since
write-after-write and write-after-read dependencies are resolved via register renaming in
modern out-of-order processors.6 To avoid read-after-write dependencies, an ideal strategy
would avoid reading any written value. This would require that we separate the available
registers and memory locations into two groups, one of which is only read whereas the other
is only written. In practice, at least for the x86-64 instruction set, this is not possible as this ISA
contains many instructions that use an operand both for reading and writing. We therefore
partition operand candidates into three sets O𝑅,O𝑊 ,O𝑅𝑊 : those only used for reading, those
only used for writing, and those only used in read-and-written operands. If there are multiple
operand candidates that refer to the same register or memory location (we say that they
alias), only one representative for them is included in any of the sets. For example, of the
x86-64 register operands rax, eax, ax, ah, and al, only one of them may be contained as a

6See Section 2.1.
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Input: List schemes of instruction schemes
1 resultBasicBlock ← []
2 currentTimeStamp← 0
3 lastUses← mapping of operand candidates to the timestamp 0
4 for i ∈ schemes do
5 chosenOperands← {}
6 for op ∈ i.operands do
7 currentTimeStamp← currentTimeStamp + 1
8 if op is a𝑊 -bit immediate operand then
9 chosenOperands[𝑜𝑝] ← 2𝑊 −8 + 42

10 continue

11 O←

O𝑅 if op is read but not written
O𝑊 if op is written but not read
O𝑅𝑊 if op is read and written

12 candidates← {(𝑜, 𝑟 ) �� 𝑜 ∈ op.validOperands ∧ 𝑜 aliases with 𝑟 ∈ O}
13 chosen, representative← arg min(𝑜,𝑟 ) ∈candidates lastUses[𝑟 ]
14 chosenOperands[op] ← chosen
15 lastUses[representative] ← currentTimeStamp
16 resultBasicBlock.append (op.instantiate(chosenOperands))
17 return resultBasicBlock

Algorithm 3.1. Allocating operands for a list of instruction schemes.

representative in any of the sets, since they all refer to different portions of the same register.7
The memory operands are all derived from a single reserved memory base register with a
range of different displacement offsets. This ensures that no memory operands in the O sets
alias.

Since we cannot avoid data dependency chains between read-and-written operands, we
instead introduce as many independent dependency chains between these operands in the
benchmark as possible. While two instructions in the same dependency chain cannot be
reordered, the processor can exploit instruction-level parallelism between the distinct depen-
dency chains. We therefore choose O𝑅,O𝑊 with a small number of operand candidates just
sufficient to instantiate each individual instruction scheme and use the remaining majority of
operand candidates for O𝑅𝑊 .

Algorithm 3.1 shows how we instantiate a list of instruction schemes with concrete operands.
Each operand of each instruction scheme is considered individually and in order. Throughout
the process, we keep a timestamp counter that is increased whenever a new operand is
considered (lines 2, 7) and a mapping for each representative operand candidate to the

7Namely: the full 64 bits, the lower 32 bits, the lowest 16 bits, the second-to-lowest byte, and the lowest byte of the
a register, respectively.
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timestamp when it was last used (lines 3, 15). Immediate operands are initialized directly with
a fixed value, as described above (line 9). For register or memory operands, we first determine
whether they are read, written, or read and written, and select the appropriate set O from the
operand candidate partition (line 11). Of the concrete operands that would fit at this position
in the instruction scheme, we only consider those that are in O or alias with an operand in
O (line 12). From this set, we pick the candidate whose representative has been used least
recently (line 13).

Example 3.15. Consider the experiment from Figure 3.5:

add ⟨GPR[64]⟩𝑅𝑊 , ⟨IMM[8]⟩𝑅
add ⟨MEM[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅
sub ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅
vmulpd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅

We use the following partition of operand candidates:

O𝑊 =
{
rbx, xmm0, [r14 + 32]}

O𝑅 =
{
rcx, r12, xmm1, xmm2, [r14 + 96]}

O𝑅𝑊 =
{
rax, r10, . . .

} ∪ {
xmm3, . . .

} ∪ {[r14 + (32 + 𝑖 · 64)]
�� 2 ≤ 𝑖 < 𝑈 }

The upper bound 𝑈 is chosen such that resulting memory addresses are spread among an
allocated region, e.g.,𝑈 = 63 for an allocation with the size of a usual 4 KiB page.

The first instruction scheme requires a read-and-written 64-bit general-purpose register
and an 8-bit immediate operand. Since no register has been used before, the algorithm chooses
any suitable register from O𝑅𝑊 and notes that it has been used at the current time stamp. The
immediate constant is instantiated, as described above, with 28−8 + 42 = 43, resulting in the
following instruction instance:

add rax, 43

The second instruction scheme reads and writes a memory operand and reads from a 32-bit
register operand. It is therefore instantiated with a memory operand from O𝑅𝑊 , namely
[r14 + (32 + 2 · 64)] = [r14 + 160], and a 32-bit register that aliases with an element of O𝑅 :

add dword ptr [r14 + 160], ecx

Here, the last-used timestamps of the used memory operand and the rcx register are updated.
The sub instruction uses two 32-bit registers, the first for reading and writing, the second

only for reading. Of the available registers for the first operand, eax cannot be chosen since it
aliases with the rax instruction that has recently been used. Another register aliasing with
an element of O𝑅𝑊 is chosen: r10d, the lower 32 bits of the r10 register. Analogously, r12d,
which aliases with r12 from O𝑅 , is chosen for the second operand:

sub r10d, r12d
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Lastly, the vector multiplication vmulpd needs one written and two read xmm vector registers,
which the algorithm chooses from O𝑊 and O𝑅 , respectively:

vmulpd xmm0, xmm1, xmm2

⌟

This instantiation strategy ensures that subsequent read-and-written operands do not alias,
allowing the corresponding instructions to be reordered during execution. We further unroll
the experiment before the operand allocation algorithm by duplicating the instruction schemes
of the experiment multiple times. This way, even if the experiment consists only of a single
instruction scheme with a read-and-written operand, we obtain enough instruction instances
that can be executed independently. The necessary amount of unrolling depends on a variety
of factors. We try for each experiment unrolling factors that lead to circa 40, 80, and 200
instructions in the loop body and use the result with the fastest execution rate per experiment
instance.

While we cannot avoid data dependencies between the µops of a single instruction, they
do not pose a problem for this instantiation strategy. Unrolling the benchmark ensures that
there are enough independent instruction instances whose µops have no inter-instruction
dependencies such that the execution of their µops can be interleaved.

However, the strategy falls short for instructions that read from and write to a hardwired
operand, like the integer division instructions in the x86-64 ISA, which use the a and d registers
to read the dividend and to write the result, or the add-with-carry instructions that read and
write the carry flag register. Repeated instances of such an instruction scheme inherently
form a dependency chain, which causes them to be executed sequentially, independent of
their port mapping. Abel and Reineke (2019) insert dependency-breaking instructions when
benchmarking such instructions. For example, a zeroing idiom like “xor rax, rax” sets the
rax register to zero, allowing the processor’s renaming system to use a different physical
register for the rax register before and after the idiom. Since these blocking instructions can
affect the observed throughput, we instead exclude instruction schemes with hardwired read
and written operands for our port mapping inference strategies.

Hardwired operands that are either only written or only read do not come with this problem
since they don’t impose a true read-after-write dependency. We can just add the hardwired
operands to the O𝑊 or O𝑅 set.

Measuring Basic Block Throughput

Once we have unrolled and instantiated an experiment, we need to measure the execution
time of the resulting sequence of instruction instances in a steady state. In general, this is not
a well-defined measure:

• The execution time of certain instructions like, e.g., division instructions can depend on their
input values, which depends on the processor state at the beginning of the benchmarking
process.
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• How the steady state is achieved affects the execution time: Placement in a loop causes
overhead by the loop code whereas long sequences of repeated instances of the code strain
instruction buffers and caches.

• Memory accesses can cause execution time variations in several ways: Data cache misses
come with substantial execution time penalties and the values of the involved address regis-
ters can affect whether two memory accesses alias (and therefore form a data dependency).

In the microbenchmarks that we use for port mapping inference, we address the first source
of uncertainty by initializing all registers and every accessible memory location for the
benchmark with arbitrary but fixed values. Since our goal is to gain insights into the port
mapping rather than the instruction caches and the decoding phase, we need a long-running
loop to achieve a steady state. As the addresses of all memory accesses are loop invariant
by construction, this also addresses the effect of data cache misses: Eventually, all accessed
memory locations of the loop body are resident in the L1 data cache and therefore do not
incur additional delays. Since each accessed memory address differs by a constant offset from
a common base register, no input-dependent aliasing can occur.

We implement this strategy in a benchmarking tool that emits the code to be benchmarked
within a loop as inline assembly in a C program frame. When compiled and executed,
the resulting C program runs the benchmarking loop long enough to achieve a steady state
execution, typically 1 ms, and returns the observed execution rate based on time measurements
and the processor’s clock frequency. Appendix D describes this measurement method in more
detail.

Our instantiation strategy can also be combined with alternative microbenchmarking tools,
for instance nanoBench (Abel and Reineke, 2020), LIKWID (Gruber et al., 2023; Treibig et al.,
2010), and the measurement tool of BHive (Chen et al., 2019). While our tool only uses
common Linux and POSIX features and a C compiler for the throughput measurements, these
approaches explicitly use microarchitecture-specific performance counters. Our approach is
therefore easier to adapt to new microarchitectures. For example, no change is required to
switch between Intel’s and AMD’s recent x86-64 microarchitectures. This comes at the cost
of an increased benchmarking time.

3.2.2. Evaluation of the Port Mapping Model

Our work builds on the hypothesis that the linear program from Theorem 3.12 with a proces-
sor’s port mapping accurately models throughput measurements on the processor as described
in the previous section. We test this hypothesis with the Intel Skylake microarchitecture,
where a reference port mapping from uops.info (Abel and Reineke, 2019) is available.

Individual Instructions

First, we identify a set of instruction schemes for which our hypothesis is applicable. There
are instructions for which benchmarking as described above is not possible or not sensible:
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• Jump and branch instructions, which affect control flow, cannot be meaningfully put into a
basic block for benchmarking. How these instructions affect the performance depends on
whether they are taken and on the processor’s branch predictor.

• System instructions, e.g., for interaction with the memory system (prefetching, paging) and
for interrupt handling, operate with processor components outside of the port mapping
model.

• Combining instructions from the outdated x87, MMX, and SSE floating-point and vector
instruction set extensions with the more modern AVX instructions is known to cause delays
in the pipeline that are not related to the port mapping.

• For instructions with documented input-dependent behavior, like integer division instruc-
tions and instructions with REP prefix, a characterization per instruction scheme is insuffi-
cient.8

• As discussed in the previous section, the throughput of instructions that read from and write
to the same, hard-coded register is dominated by dependencies that we cannot avoid without
introducing other confounding factors on the throughput. This includes instructions like
adc and sbb, which read and write the carry flag; push and pop, which use and modify
the stack pointer; and string operations that automatically increment or decrement the
value in their memory operand register. Similarly, instruction schemes with read and
written operands that must be chosen from the four ah–dh registers do not allow for enough
independent instruction instances.

• NOP and register-to-register MOV instructions do not use any ports according to the uops.info
port mapping. Their throughput is limited by other parts of the processor pipeline.

We extract our instruction schemes from the XML file provided on uops.info (Abel and
Reineke, 2019). We exclude the above-mentioned problematic instructions, and restrict the
floating-point and vector instructions under consideration to the AVX and AVX2 instruction
set extensions. This leaves us with a total of 2498 instruction schemes. For each such
instruction scheme 𝑖 , we measure the achieved inverse throughput of an experiment with
only an 𝑖 instruction on an Intel Core i7 6700 processor with the Skylake microarchitecture.

Figure 3.6 visualizes how these measurements relate to the predictions of the port mapping
model with uops.info’s Skylake port mapping. The results are shown as heat maps, i.e., two-
dimensional histograms. Each experiment is assigned to a bin that is further to the right the
more cycles the experiment took in the measurements and further to the top the more cycles
the port mapping model predicts. Each bin is displayed as a colored square, with darker colors
indicating bins with more experiments. Ideally, predictions and measurements should agree.
The closer the colored bins are to the orange diagonal line, the higher is the accuracy of the
model. We additionally provide accuracy metrics in the top-left corner of the plot:

8Instructions with a REP prefix are repeated for a number of times based on register and memory contents.
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(b) Full dataset.

Figure 3.6. Heat maps displaying the inverse throughput in cycles as predicted by the port
mapping model (vertical axis) and as measured on the hardware (horizontal axis) for
instructions with an inverse throughput of at most 3.0 cycles (a) and for all instructions (b).

• MAPE, the mean absolute percentage error of a collection 𝐷 of data points consisting of a
modeled and a measured value:

MAPE(𝐷) =
∑︁

(modeled,measured ) ∈𝐷

|modeled −measured |
measured

· 100%

A small error indicates that model and measurements agree.

• Pearson’s linear correlation coefficient 𝜌𝑃 , which quantifies how close the data points are to
a linear relationship.9 A value of 1.0 indicates maximal correlation, i.e., maximal modeling
accuracy, 0.0 represents no correlation, and -1.0 indicates a maximal negative correlation.

• The ranking correlation coefficient 𝜏𝐾 of Kendall (1938, 1945), which describes how close
the data is to a monotone relationship. When we order the considered data points in two
different ways, one ranked by the modeled value and one ranked by the measured value,
Kendall’s 𝜏𝐾 is a measure of how similar these orderings are. Similar to 𝜌𝑃 , 1.0 indicates
maximal correlation, 0.0 represents no correlation, and -1.0 indicates a maximal negative
correlation.10

We explore the results of this evaluation in two different resolutions. Figure 3.6 (a) shows
only the experiments with a measured inverse throughput of at most three cycles, these
represent 91% of the instruction schemes. The port mapping model follows the measurements
very closely for these experiments, with a very low average prediction error and strong linear

9See, e.g., Section 3.3 of the textbook by Wasserman (2004) for the definition of Pearson’s correlation coefficient.
10Specifically, we use the Tau-b statistic, which is adjusted such that correlations of 1.0 and -1.0 are possible in the

presence of ties in the rankings.
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and rank correlations. Most commonly, between one and four instruction instances can be
executed independently, which we observe as inverse throughputs of 1

4 ,
1
3 ,

1
2 , and 1 cycle.

Typically, instructions where the port mapping model does not agree with the measurements
have some unusual characteristic in the context of the x86-64 instruction set architecture. This
includes, for instance, vector blend instructions with variable masks, which have four operands;
xadd and xchg instructions with two read-and-written operands, and a mov instruction with
an unusually large 64-bit immediate operand.11

When considering all instructions in Figure 3.6 (b), the prediction accuracy of the port
mapping model decreases. For instructions with a measured inverse throughput of more
than three cycles, the port mapping tends to underestimate the required execution time
substantially. This includes any instruction with a lock prefix, bit test instructions that
access memory, and complex vector or floating point instructions like divisions, square-root
computations, or operations of the AES encryption scheme. We conclude that the throughput
of these instructions is determined by bottlenecks outside of the port mapping model.

Varying Experiment Length

Next, we investigate in how far the port mapping model remains accurate when multiple
instruction schemes are mixed in experiments. For this evaluation, we generate sets of 5,000
experiments each for a range of different experiment sizes 𝑙 . Each experiment consists of
𝑙 randomly sampled instruction schemes. We exclude all instruction schemes for which the
measurements and the predictions of the port mapping model in the previous section differed
by more than 10% to isolate the effect of composing multiple instruction schemes. This leaves
a set of 2,234 instruction schemes from which we sample the elements of each experiment
uniformly at random. The inverse throughput of each such experiment is measured on an
Intel Skylake system and predicted with the uops.info Skylake port mapping as before.

Figure 3.7 displays heat maps for experiments with 𝑙 ∈ {
1, 2, . . . , 6

}
instruction schemes

((a)–(f)) and with 𝑙 ∈ {
10, 15, 20

}
instruction schemes ((g)–(i)). For these heat maps and the

summary metrics in the top left corner of each graph, we considered the throughput in cycles
per instruction (CPI), i.e., the cycles required to execute the experiments are normalized by
the experiment length 𝑙 .

For the experiments with only one instruction (Figure 3.7 (a)), the heat map shows close
to optimal predictions since we excluded any instruction scheme with significant deviations
in Figure 3.6 from consideration here. It is worth noting that the value of Kendall’s rank
correlation metric 𝜏𝐾 is surprisingly low at 0.84 for a data set with such an apparently strong
correlation. The reason for this discrepancy is the discrete nature of the predictions of the port
mapping model – only the values 1

4 ,
1
3 ,

1
2 , 1, 1.5, and 2 occur – and the non-discrete nature of

the measurements. Following the methodology of other works in the field (Abel and Reineke,
2022; Mendis et al., 2019), we round throughput measurements in cycles to the second decimal
place. This is enough resolution for small differences in the throughput measurements due to
noise to lead to different ranks where the corresponding predictions tie instead. The resulting

11The dissertation of Abel (2020) contains a more detailed exploration of discrepancies between the observable
instruction throughput and the port mappings of Intel processors.
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(a) 𝑙 = 1 instruction
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(b) 𝑙 = 2 instructions

0.0 0.5 1.0 1.5 2.0
measured CPI

0.0

0.5

1.0

1.5

2.0

pr
ed

ic
te

d
C

PI

MAPE: 5.47%
d% : 0.95
g: : 0.82

100

101

102

103

(c) 𝑙 = 3 instructions
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(d) 𝑙 = 4 instructions
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(e) 𝑙 = 5 instructions
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(f) 𝑙 = 6 instructions

0.0 0.2 0.4 0.6 0.8 1.0
measured CPI

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
te

d
C

PI

MAPE: 9.96%
d% : 0.82
g: : 0.63

100

101

102

103

(g) 𝑙 = 10 instructions
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(h) 𝑙 = 15 instructions
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(i) 𝑙 = 20 instructions

Figure 3.7. Heat maps that compare measurements and predictions of the port mapping
model for the execution rate on an Intel Skylake CPU in cycles per instruction (CPI).
Each heat map covers 5,000 randomly sampled instruction scheme sequences of length 𝑙 .
Each row has a different axis scale to accommodate the different maximal CPIs, but the
color scales and the number of bins per CPI-unit are equal in every subplot.
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I:

U:

P:

add ⟨GPR[64]⟩𝑅𝑊 , ⟨GPR[64]⟩𝑅 mov ⟨GPR[64]⟩𝑊 , ⟨MEM[64]⟩𝑅

𝑢1 𝑢2

0 1 5 6 2 3

1 1

Figure 3.8. Three-level port mapping for selected x86-64 instruction schemes in Intel’s Skylake
microarchitecture, according to uops.info (Abel and Reineke, 2019).

ranking of the measurements hence differs from the ranking of the predictions, leading to a
lower value of 𝜏𝐾 .

Figures 3.7 (b) to 3.7 (f) show that combining more instruction schemes leads to greater
discrepancies between throughput measurements and the predictions of the port mapping
model. The port mapping model tends to underestimate the execution time here as well,
indicating that the throughput is limited by other bottlenecks. While the discrepancies
are still minor for experiments with two instruction schemes (2.89% MAPE, Figure 3.7 (b)),
the inaccuracy is already pronounced for mixes of six instruction schemes (7.74% MAPE,
Figure 3.7 (f)). For larger experiments of 10 or more instruction schemes (Figure 3.7 (g) –
Figure 3.7 (i)), the differences are substantial with 10–15% MAPE and decreasing correlation
coefficients.

When we base methods to infer port mappings on throughput measurements, we therefore
need to ensure that the experiments contain as few instructions as possible or exclude instruc-
tions that trigger non-port-mapping bottlenecks when combined with other instructions.

However, not all discrepancies in experiments that combine instruction schemes can be
attributed to specific instruction schemes. In the port mapping model, experiments are
executed as fast as their instructions (or the µops that constitute them) can be assigned to
suitable ports. For a microarchitecture with 𝑛 ports, the port mapping model therefore may
predict throughputs of up to𝑛 instructions per cycle. In practice, all modern microarchitectures
that we are aware of, including recent designs by Intel and AMD, cannot sustain a full
utilization of all execution ports. The culprit is often the decoding frontend (including the
caches) or the instruction retirement rate, which limit the processor’s peak throughput.

For an example, consider the following experiment with four integer additions and two
64-bit wide loads from memory:

4 × add ⟨GPR[64]⟩𝑅𝑊 , ⟨GPR[64]⟩𝑅
2 × mov ⟨GPR[64]⟩𝑊 , ⟨MEM[64]⟩𝑅

According to the port mapping (Figure 3.8), the six instruction schemes of this experiment
are executed as six µops: four 𝑢1 = [0, 1, 5, 6] addition µops and two 𝑢1 = [2, 3] load µops.
As enough ports are available to execute all µops in parallel, we would expect an inverse
throughput of 1.0 cycles per iteration, i.e., six instructions executed per cycle. In measurements,
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Table 3.1. Arithmetic mean and maximum of CPI differences Δ𝐶𝑃𝐼 between permutations
of sampled experiments and percentage of samples where Δ𝐶𝑃𝐼 exceeds 0.05 CPI, for
varying numbers 𝑙 of instruction schemes per experiment.

𝑙 mean Δ𝐶𝑃𝐼 max Δ𝐶𝑃𝐼 Δ𝐶𝑃𝐼 > 0.05
2 0.004 0.18 1.2%
4 0.006 0.56 1.2%
6 0.005 0.30 1.6%
8 0.003 0.09 0.4%

10 0.004 0.31 1.2%
12 0.003 0.17 0.6%
14 0.004 0.16 1.8%
16 0.003 0.09 0.6%
18 0.004 0.15 1.6%
20 0.004 0.21 1.2%

however, we observe that only four instructions are executed per cycle. This observation is
consistent with the documented maximal number of instructions that can be retired in a cycle
in the Skylake microarchitecture: According to Intel’s Software Optimization Guide (Intel,
2023a, Section 2.3), the retirement width has only increased from four to eight µops per cycle
in the more recent Golden Cove microarchitecture.

Varying Experiment Order

Lastly, we investigate if excluding the order of the instruction schemes in our definition of
experiments (Definition 3.1) is an adequate modeling decision. For this purpose, we consider
experiment sizes 𝑙 between 2 and 20 instructions. For every length 𝑙 , we construct 500 random
sequences of instruction schemes sampled from the same set as for the previous evaluation. We
generate 10 random permutations of the instruction scheme list for each such sample, measure
their throughputs in cycles per instruction (CPI), and note the difference Δ𝐶𝑃𝐼 between the
minimal and maximal CPI observations.

Table 3.1 summarizes the results of this evaluation. The arithmetic mean of the differ-
ences Δ𝐶𝑃𝐼 does not exceed 0.01 CPI for any experiment length. While rare outliers up to 0.56
CPI occur, we observe potentially significant differences of more than 0.05 CPI only for less
than 2% of the samples. Neither frequency nor magnitude of these outliers increases notably
with the experiment length. Compared to the prediction errors of the port mapping model for
similar experiment sizes that we observed in the previous section, the variance induced by
different experiment orders is therefore negligible.
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3.2.3. Conclusion: Applicability and Limitations
For a substantial portion of the instruction set, the throughput predictions of the port mapping
model accurately capture what we observe with our throughput measurement mechanism.
However, there are restrictions: The throughput of certain instructions cannot be bench-
marked in a meaningful way with the measurement mechanism, e.g., because they affect
the control flow, because data dependencies cannot be avoided, or because their throughput
depends on the operand values. Moreover, most slow-running instructions with an inverse
throughput of more than three cycles and instructions with non-standard operands execute
slower than the port mapping model predicts. Throughput measurements alone cannot yield
an accurate port mapping for these instructions. Which instructions are affected depends on
the microarchitecture under investigation.

Lastly, the throughput prediction accuracy decreases for longer instruction sequences.
The higher the number of instruction schemes involved in an experiment, the more often
performance bottlenecks outside of the port mapping model are hit.

Port mapping inference algorithms based on throughput measurements need to be aware
of these restrictions and should handle them if possible.

3.3. Port Mapping Inference Problems
With the notions from the previous sections in place, we now define the port mapping inference
problems addressed in this thesis. For all problems defined here, we assume that the number
of ports in the microarchitecture is known. We found this assumption to be true in practice:
All manufacturers of processors we investigated provide information about the available
execution ports.

We start by defining a foundational concept: the indistinguishability of port mappings.

Definition 3.16. Two port mappings 𝑀 and 𝑀 ′ (in either two- or three-level model) are
indistinguishable if they yield the same inverse throughput for every experiment 𝑒:

∀𝑒 : I→ N. tp−1
𝑀

(
𝑒
)
= tp−1

𝑀 ′
(
𝑒
)

⌟

Since we only rely on throughput measurements to gain insights into the processor, there are
certain groups of port mappings that we cannot distinguish. For instance, the two-level port
mappings in Figure 3.9 are indistinguishable with throughput measurements since the left
can be transformed to the right by renaming the ports (𝑝1 ↦→ 𝑝3, 𝑝2 ↦→ 𝑝1, 𝑝3 ↦→ 𝑝2). The goal
in our port mapping inference problems is to find a port mapping that is indistinguishable
from the port mapping that the processor under investigation implements.

The first scenario that we consider is the online scenario, where we are given access to a
mechanism for measuring the inverse throughput for arbitrary instruction sequences and
need to devise suitable microbenchmarks to identify the port mapping:

Definition 3.17. The two-level online port mapping inference problem, OnPMInfer2, is the
following task: Given a set I of instructions, a number 𝑘 of ports, and an inverse throughput
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oracle 𝑂 : (I→ N) → R, which provides the inverse throughput of any experiment that it is
given according to some (unknown) two-level port mapping𝑀∗ = (I∪· {1, . . . , 𝑘

}
, 𝐸∗), compute

a two-level port mapping 𝑀 = (I∪· {1, . . . , 𝑘
}
, 𝐸) that is indistinguishable from 𝑀∗. The three-

level online port mapping inference problem OnPMInfer3 is defined analogously. ⌟

The oracle 𝑂 in the above definition models the ability to exactly measure the throughput of
microbenchmarks on the hardware under test. Variations of this oracle can be of interest, for
example:

• The oracle produces results with a non-deterministic (but bounded) measurement error.

• The oracle provides more insight in how the experiment is executed, e.g., how many µops
per iteration are executed on each port. This corresponds to the setting of uops.info (Abel
and Reineke, 2019).

A simplification to make online port mapping inference problems more tractable is to select
a fixed set of experiments beforehand and to only require a port mapping that explains these
experiments. We refer to such simplified versions of the problem as offline port mapping
inference:

Definition 3.18. The two-level offline port mapping inference problem OffPMInfer2 is the
following task: Given a set I of instructions, a number𝑘 of ports, and a set Exps of experiments 𝑒
with measured inverse throughputs tp−1 (𝑒), compute a two-level port mapping 𝑀 = (I ∪·{

1, . . . , 𝑘
}
, 𝐸) such that it simulates the measured throughputs:

∀𝑒 ∈ Exps. tp−1 (𝑒) = tp−1
𝑀

(
𝑒
)

If no such two-level port mapping exists, return an error value.
A problem instance is satisfiable if there is a port mapping as required by the problem; we

call these port mappings satisfying. Otherwise, the problem instance is unsatisfiable. In the
decision version OffPMInfer2-D, the task is to decide if the problem instance is satisfiable or
not.

The three-level variants OffPMInfer3 and OffPMInfer3-D are defined analogously. ⌟

With diverse experiment sets of increasing size, solutions for the OffPMInfer problems
approximate solutions to the OnPMInfer problems.

I:

P:

mul add sub store

𝑝1 𝑝2 𝑝3

I:

P:

mul add sub store

𝑝1 𝑝2 𝑝3

Figure 3.9. Indistinguishable port mappings in the two-level model.
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3.3.1. Computational Complexity Results
The goal in this thesis is to infer port mappings for existing microarchitectures, which have
fixed numbers of instruction schemes, µops, and ports, with inexact throughput measurements.
The asymptotic resource requirements of the algorithms are only of limited relevance as long
as practical problem instances are feasible. We therefore cover results on the computational
complexity of the above port mapping inference problems only briefly with the following
theorems.

Theorem 3.19. The problem OffPMInfer2-D (Definition 3.18) of deciding the existence of
a satisfying two-level mapping for a set Exps of experiments and 𝑘 ports is NP-hard. It is
NP-complete if we assume a unary encoding of 𝑘 .

Proof. See Appendix A.1.4. □

Theorem 3.20. The problem OffPMInfer3-D (Definition 3.18) of deciding the existence of
a satisfying three-level mapping for a set Exps of experiments and 𝑘 ports is NP-hard. It is
NP-complete if we assume a unary encoding of 𝑘 and the observed inverse throughputs for
the experiments.

Proof. See Appendix A.1.5. □

The computational complexity of the online variants of the inference problem remains an
open research problem.
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Chapter 4
Counter-Example-Guided Port Mapping
Inference
In this chapter, we derive algorithms for online port mapping inference as formulated in
Definition 3.17 from the linear programs presented in Theorems 3.7 and 3.12 in the previous
chapter. Whereas these linear programs compute the unknown throughput of a known
experiment with a known port mapping, the goal here is to compute an unknown port
mapping by selecting suitable experiments and measuring their throughput.

Our approach is inspired by a range of counter-example-guided algorithms such as symbolic
abstraction (Reps et al., 2004), counter-example-guided abstraction refinement (CEGAR)
(Clarke et al., 2000), and counter-example-guided inductive synthesis (CEGIS) (Solar-Lezama
et al., 2006). The appeal of these algorithms lies in their simple high-level structure that
directly incorporates a formal model of the problem under investigation. We discuss a suitable
high-level structure for port mapping inference in Section 4.1 before we go into the details for
instantiations with the two-level (Section 4.2) and three-level model (Section 4.4).

Since computationally expensive machinery in the form of a satisfiability modulo theories
(SMT) solver (Biere et al., 2009) is central to the presented algorithm, we investigate its
practicality in Section 4.5. While the SMT-based algorithms do not scale to practical problem
sizes in this evaluation, they are instrumental for our further approaches to infer port mappings
(Chapters 5 and 6).

4.1. The Inference Algorithm
Algorithm 4.1 shows the high-level structure of our online port mapping inference algo-
rithm. It is centered around the set Experiments of microbenchmarks that are annotated
with their inverse throughput measured on the processor under investigation. In each it-
eration, we search a port mapping 𝑚1 that leads to the measured inverse throughputs in
Experiments (line 3). If no such mapping is found, the observations do not match the port
mapping model and the algorithm terminates unsuccessfully (line 5). Otherwise, we search
for a different port mapping𝑚2 that is consistent with the measurements in Experiments, but
that is distinguished from𝑚1 by an experiment newExp (line 6). This means that𝑚1 and𝑚2
yield the same throughputs for Experiments, but different throughputs for newExp. If no such
mapping and experiment exist,𝑚1 is returned as a solution to the port mapping inference
problem, since it is indistinguishable by throughput measurements from the processor’s actual
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1 Experiments← initialExperiments()
2 while true do
3 𝑚1← findMapping(Experiments)
4 if 𝑚1 = None then
5 return None
6 𝑚2, newExp← findOtherMapping(Experiments,𝑚1)
7 if 𝑚2 = None then
8 return m1
9 cycles← measureCycles(newExp)

10 Experiments← Experiments ∪ {(newExp, cycles)}

Algorithm 4.1. Counter-example-guided online port mapping inference.

port mapping (line 8). Otherwise, we measure the inverse throughput of newExp, add it to
Experiments (lines 9–10), and continue with the next iteration.

Example 4.1. Assume that we infer a two-level port mapping for an architecture with two
instructions 𝑖𝐴, 𝑖𝐵 and two ports 𝑝1, 𝑝2. So far, we have measurements indicating that each
instruction achieves an inverse throughput of 1.0 cycles per iteration when executed on its
own:

Experiments = {({𝑖𝐴 ↦→ 1}, 1.0), ({𝑖𝐵 ↦→ 1}, 1.0)}

The findMapping(Experiments) call will find a port mapping𝑚1, for example:

I:

P:

𝑖𝐴 𝑖𝐵

𝑝1 𝑝2

However, this is not the only possible two-level port mapping to explain these measurements.
Therefore, findOtherMapping(Experiments,𝑚1) returns a port mapping𝑚2, e.g.:

I:

P:

𝑖𝐴 𝑖𝐵

𝑝1 𝑝2

A suitable distinguishing experiment newExp is {𝑖𝐴 ↦→ 1, 𝑖𝐵 ↦→ 1}: With 𝑚1, its inverse
throughput is 1.0 cycles per experiment execution while it is 2.0 cycles for𝑚2. ⌟

In principle, the algorithm is guaranteed to terminate as we reject at least one of the found
port mappings in each iteration. In the two-level setting with fixed numbers of ports and
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instructions, there is only a finite number of different port mappings that could be enumerated.
The three-level model is slightly more complex: µops could occur with arbitrarily large
factors in the port mapping. However, if we require that the Experiments set includes a
microbenchmark for each individual instruction and their inverse throughputs are bounded by
a maximal number 𝑡 of cycles, we can bound the number of candidate port mappings as well:
With 𝑘 ports, the factors of the µops in the port usage are bounded by 𝑘 · 𝑡 . As experiments
usually rule out more than just a single candidate port mapping, we expect this to be a coarse
overestimation of the algorithm’s execution time.1 We investigate the practical running time
of the algorithm in Section 4.5.

Algorithm 4.1 describes how we infer port mappings from a high-level view. It relies on
several subroutines that we need to provide for a practical implementation:

• The measureCycles() procedure (line 9) measures the inverse throughput of an experiment
on a given processor. Section 3.2.1 describes the methodology that we use for this task.

• What initial microbenchmarks are provided by initialExperiments() in line 1 does not affect
the algorithm’s correctness: The empty set would be sufficient. In practice, the algorithm
can potentially be sped up by providing reasonable experiments, like one to measure the
inverse throughput for each individual instruction. We discuss this and other extensions of
the algorithm in Section 4.3.

• The remaining procedures, findMapping (line 3) and findOtherMapping (line 6), which
together find two distinguishable satisfying port mappings, are more complex. We describe
their SMT-solver-based implementation for port mappings in the two-level and three-level
models in the following sections.

4.2. Application in the Two-Level Model
The linear program in Theorem 3.7 formally characterizes the connection between a two-level
port mapping (where instructions are mapped directly to the execution ports) and the achieved
inverse throughput for an experiment. We derive SMT-solver-powered implementations of
findMapping and findOtherMapping for the inference algorithm based on this linear program.2
The idea is to augment the linear program such that the port mapping is no longer hardcoded
into the constraints, but rather represented by variables of the linear program. We further
adjust the formulation such that the resulting inverse throughput is also represented by a
free variable. These adjustments enable us to encode findMapping and findOtherMapping as
constraints on the variables of the linear program. An off-the-shelf solver can then produce a
satisfying assignment of values to the variables (called a model), from which we decode the
result.

1For a setting with 8 instructions and 4 ports with inverse throughputs of 2 cycles per individual instruction in the
three-level model, the presented over-approximation leads to a number of different port mappings that is greater
than 10100, which, e.g., greatly exceeds common estimates on the number of atoms in the observable universe.

2See Appendix B for an overview of the terminology regarding linear programming and satisfiability modulo
theories used in this thesis.
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Specifically, we formulate a constraint system

relateThroughput [enc𝑀 , enc𝑒 , enc𝑡 ]

parametrized with collections enc𝑀 , enc𝑒 , enc𝑡 of variables that represent a port mapping,
an experiment, and the experiment’s inverse throughput, respectively. We construct these
constraints such that a model encoding a port mapping 𝑀 , an experiment 𝑒 , and a number 𝑡
satisfies them if and only if tp−1

𝑀

(
𝑒
)
= 𝑡 .

The following sections describe how we encode port mappings and experiments with
variables in logical formulas (Section 4.2.1), how the constraint sets themselves are derived
(Section 4.2.2), and how to use them to implement the findMapping and findOtherMapping
procedures (Section 4.2.3).

4.2.1. Encoding Port Mappings and Experiments
Our goal is that a satisfying model for a system of constraints encodes an experiment and a
two-level port mapping. For this purpose, we need to define suitable sets of variables whose
values we can interpret as concrete experiments and port mappings.

Experiments – as per Definition 3.1 – are multisets of instruction schemes 𝑖 ∈ I. We
represent arbitrary multisets with a set enc𝑒 :=

{
exp[𝑖]

�� 𝑖 ∈ I} of integer-valued variables.
The value of a variable exp[𝑖] determines the number of occurrences of the instruction 𝑖 in
the experiment.

Each such experiment encoding used in a system of constraints needs additional assertions
to enforce that the represented experiment is well-formed. We require that each variable is
non-negative: ∧

𝑖∈I
exp[𝑖] ≥ 0

Additionally, we can encode constraints on the size of experiments for later optimizations:∑︁
𝑖∈I

exp[𝑖] ≤ bound

Such additional assertions are added as conjuncts to the system of constraints.

Example 4.2. Assume an instruction set architecture as in the examples in Section 3.1 with
four instructions: add, sub, mul, and store. We use four variables to model an experiment:

enc𝑒 = {exp[add], exp[sub], exp[mul], exp[store]}

The following model encodes the experiment
{
add ↦→ 2, mul ↦→ 1, store ↦→ 1

}
:

{exp[add] ↦→ 2, exp[sub] ↦→ 0, exp[mul] ↦→ 1, exp[store] ↦→ 1}
⌟

40



4.2. Application in the Two-Level Model

To represent two-level port mappings, the values of the corresponding variables need
to encode bipartite graphs between the instruction schemes I and the ports P. We use a
set enc𝑀 :=

{
mapping[𝑖, 𝑘]

�� 𝑖 ∈ I, 𝑘 ∈ P
}

of binary-valued variables. When a variable
mapping[𝑖, 𝑘] is True in a model, there is an edge from instruction 𝑖 to port 𝑘 in the port
mapping, i.e., 𝑖 can be executed on 𝑘 .

The well-formedness constraints for port mapping encodings require that every instruction
has at least one port that can execute it:∧

𝑖∈I

∨
𝑘∈P

mapping[𝑖, 𝑘]

Example 4.3. Assume the instruction set architecture from the examples in Section 3.1 with
the four instructions add, sub, mul, and store. If we further assume that there are three ports,
𝑝1, 𝑝2, 𝑝3, in the microarchitecture, the encoding enc𝑀 for a two-level port mapping contains
a binary variable for each pair of an instruction and a port, as follows:

enc𝑀 = { mapping[add, 𝑝1],mapping[add, 𝑝2],mapping[add, 𝑝3],
mapping[sub, 𝑝1],mapping[sub, 𝑝2],mapping[sub, 𝑝3],
mapping[mul, 𝑝1],mapping[mul, 𝑝2],mapping[mul, 𝑝3],
mapping[store, 𝑝1],mapping[store, 𝑝2],mapping[store, 𝑝3] }

Every possible two-level port mapping for this microarchitecture can be represented as a
model that assigns values to these variables. Reconsider the example port mapping from
Figure 3.1:

I:

P:

mul add sub store

𝑝1 𝑝2 𝑝3

The following model encodes this port mapping (variables not present are False):

{ mapping[add, 𝑝1] ↦→ True, mapping[add, 𝑝2] ↦→ True,

mapping[sub, 𝑝1] ↦→ True, mapping[sub, 𝑝2] ↦→ True,

mapping[mul, 𝑝1] ↦→ True,

mapping[store, 𝑝3] ↦→ True }

⌟
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4.2.2. A Parametric SMT Formulation to Relate Port Mapping and
Inverse Throughput

Reconsider the linear program from Theorem 3.7:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

Our goal is to adjust this linear program such that the inverse throughput 𝑡 , the experiment 𝑒 ,
and the port mapping 𝑀 := (I ∪· P, 𝐸) occur only as free variables. Then, by asserting any one
or two of them to be equal to fixed values, we can use a solver to find satisfying values for the
remaining variables.

Inverse Throughput. The inverse throughput is present as a variable 𝑡 in the linear pro-
gram, but it is not free: Constraints A-E of the linear program only assert that the experiment
can be executed according to the port mapping within at most 𝑡 cycles. The minimization
objective is necessary to ensure that 𝑡 corresponds to an optimal execution schedule, not just
an upper bound. If the value of 𝑡 was fixed by a constraint, the minimization objective would
effectively be disabled. We therefore replace the optimization objective of the linear program
with more constraints that ensure optimality of the execution. We use SMT formulas in the
theory of linear integer and real arithmetic (LIRA) to obtain a more intuitive formulation with
logical disjunctions and implications:3

Theorem 4.4. The linear program from Theorem 3.7 is feasible if and only if the following
system of constraints is satisfiable:∑︁

𝑘∈P
𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁

𝑖∈I
𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

3Note that the multiplications in constraint I both involve a boolean variable. They can therefore be encoded with
the SMT if-then-else operator ite (𝑐, 𝑡, 𝑓 ) as 𝑏 · 𝑣 :⇔ ite (𝑏, 𝑣, 0) without requiring undecidable theories.
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𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
𝑗𝑖 → 𝑞𝑘 if (𝑖, 𝑘) ∈ 𝐸 (H)∑︁
𝑖∈I

𝑗𝑖 · 𝑒 (𝑖) =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

The optimal objective value 𝑡∗ of the linear program is equal to the value𝑚[𝑡] of the variable 𝑡
in any satisfying model𝑚 of this constraint system.

Proof. See Appendix A.2.1. □

Note that the first five constraints A-E of the constraint system are identical to the constraints
of the linear program. They ensure that the 𝑥𝑖𝑘 variables encode a feasible distribution of
the involved instructions to the ports. The remaining constraints are based on an insight
that expands on Theorem 3.14: A distribution to ports is optimal if and only if there is a
non-empty set𝑄 of bottleneck ports that the distribution utilizes for the full number of cycles
with instructions that can only be executed on ports in 𝑄 .

We encode this notion in the constraints: A port 𝑘 is in the set 𝑄 of bottleneck ports if, and
only if, the boolean variable 𝑞𝑘 is True. Constraint F therefore asserts that 𝑄 is not empty.
With constraint G, we ensure that each bottleneck port is utilized for the full 𝑡 cycles. The
boolean 𝑗𝑖 variables encode a set 𝐽 of instructions 𝑖 that can only be executed on bottleneck
ports in 𝑄 , as enforced by constraint H. Lastly, constraint I ensures that only instructions
from 𝐽 contribute to the utilization of the ports in 𝑄 .

Experiment and Port Mapping. To introduce the experiment encoding, we use the
exp[𝑖] variables instead of the fixed numbers 𝑒 (𝑖) of occurrences for each instruction 𝑖 .

The port mapping 𝑀 := (I ∪· P, 𝐸) occurs in the constraint set of Theorem 4.4 in the
quantification of constraints E and H. We replace these constraints to integrate the port
mapping encoding into the constraints with logical implications:

𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 { ¬mapping[𝑖, 𝑘] → 𝑥𝑖𝑘 = 0 for all 𝑖 ∈ I, 𝑘 ∈ P (E)

𝑗𝑖 → 𝑞𝑘 if (𝑖, 𝑘) ∈ 𝐸 { mapping[𝑖, 𝑘] → ( 𝑗𝑖 → 𝑞𝑘 ) for all 𝑖 ∈ I, 𝑘 ∈ P (H)

This leaves us with the following system of constraints, where all occurrences of the inverse
throughput, the experiment, and the port mapping are as free variables:
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Definition 4.5. The constraint system relateThroughput [enc𝑀 , enc𝑒 , enc𝑡 ] for the two-level
setting, which is parametric in variable sets enc𝑀 =

{
mapping[𝑖, 𝑘]

�� 𝑖 ∈ I, 𝑘 ∈ P
}
, enc𝑒 ={

exp[𝑖]
�� 𝑖 ∈ I}, and enc𝑡 =

{
𝑡
}

is defined as follows:∑︁
𝑘∈P

𝑥𝑖𝑘 = exp[𝑖] for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
¬mapping[𝑖, 𝑘] → 𝑥𝑖𝑘 = 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (E)∨
𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
mapping[𝑖, 𝑘] → ( 𝑗𝑖 → 𝑞𝑘 ) for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (H)∑︁
𝑖∈I

𝑗𝑖 · exp[𝑖] =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

⌟

4.2.3. Implementing the Components of the
Counter-Example-Guided Algorithm

The parametric constraint system relateThroughput [enc𝑀 , enc𝑒 , enc𝑡 ] is the core of the imple-
mentations for the findMapping and findOtherMapping procedures from Algorithm 4.1.
findMapping(Experiments) uses a single free port mapping encoding 𝑀free . For each exper-

iment 𝑒 with inverse throughput 𝑡𝑒 , we assert relateThroughput constraints for 𝑀free and fresh
experiment and throughput encodings that are hardwired to 𝑒 and 𝑡𝑒 , respectively:4

𝜑findMapping :=
∧

(𝑒,𝑡𝑒 ) ∈Experiments

relateThroughput [𝑀free, 𝑒, 𝑡𝑒 ]

The resulting conjunction ensures that the port mapping encoded in a satisfying model yields
the observed inverse throughput for all experiments. We use an off-the-shelf SMT solver to
check for satisfiability. If the constraints are unsatisfiable, the observed throughputs cannot
be explained by a port mapping. Otherwise, we extract and return the port mapping from the
values of the encoding variables in the satisfying model produced by the solver.

findOtherMapping(𝑀1, Experiments) includes the same constraints to require that the found
port mapping satisfies the experiments, and adds more: Another mapping encoding is hard-
wired to the input port mapping 𝑀1. For a free experiment encoding 𝑒free , we use two more

4In practice, we construct simplified formulas where the hardwired values replace the variables and unnecessary
constraints are dropped.
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instances of the relateThroughput constraints to encode the inverse throughputs of both port
mapping encodings in two variables 𝑡1, 𝑡2. Lastly, we assert that 𝑡1 ≠ 𝑡2, i.e., the experiment
distinguishes the hard-wired and the free port mapping:

𝜑findOtherMapping := 𝑡1 ≠ 𝑡2 ∧ relateThroughput [𝑀1, 𝑒free, 𝑡1]
∧ relateThroughput [𝑀free, 𝑒free, 𝑡2] ∧ 𝜑findMapping

In both cases, the auxiliary 𝑥𝑖𝑘 , 𝑝𝑘 , 𝑡 , 𝑞𝑘 , and 𝑗𝑖 variables for each occurring relateThroughput
instance need to be renamed apart.

4.3. Extensions for Practical Applicability
Before we show how the SMT formulation can be extended to the three-level model in
Section 4.4, we discuss adjustments to handle problems one encounters when using the SMT
formulation in practice.

Handling Measurement Noise

When benchmarking modern processors, inexact measurements due to noise and errors are
inevitable. Such inexact measurements are a problem for this method: The constraints in
the previous sections encode the exact (in)equality of the observed inverse throughput with
the (rational-valued) ideal modeled inverse throughput. We therefore adapt the constraints
in practice: A parameter 𝜀 constrains the maximal difference between measured and mod-
eled cycles per instruction (CPI) of the experiments.5 The following constraint encodes the
approximated equality of the measured and modeled inverse throughputs 𝑡𝑒 and enc𝑡 :��� enc𝑡|exp | − measuredCycles

|exp |
��� < 𝜀

⇔ |enc𝑡 −measuredCycles | < 𝜀 · |exp |
The length |exp | of the experiment in an encoding enc𝑒 :=

{
exp[𝑖]

�� 𝑖 ∈ I} is the sum of all
involved variables: ∑︁

𝑖∈I
exp[𝑖]

When asserting that the modeled inverse throughputs of the two port mappings in find-
OtherMapping are different, no observed value may be considered equal to both modeled
inverse throughputs. Otherwise a found experiment might not rule out any of the candidate
mappings. This can be guaranteed if the modeled CPIs differ by at least 2 · 𝜀:��� 𝑡1

|exp | −
𝑡2
|exp |

��� > 2 · 𝜀

⇔ |𝑡1 − 𝑡2 | > 2 · 𝜀 · |exp |
5i.e., inverse throughput divided by the length of the experiment.
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𝑡1𝑡1 − 𝜀′ 𝑡1 + 𝜀′ 𝑡2 𝑡2 + 𝜀′𝑡2 − 𝜀′

observations consistent
with 𝑡1

observations consistent
with 𝑡2

observations consistent
with 𝑡1 and 𝑡2

Figure 4.1. Two ideal inverse throughput values, 𝑡1 and 𝑡2, differing by less than 2 · 𝜀′. It is
possible that throughput observations are consistent with both ideal values.

Figure 4.1 visualizes why 2 · 𝜀′ := 2 · 𝜀 · |exp | is necessary as a bound for this constraint on a
number line. If the difference between 𝑡1 and 𝑡2 was (strictly) greater than 2 · 𝜀′, the region of
observations that are consistent with both ideal throughputs would be empty.

Limiting the noise in terms of the CPI rather than any other throughput metric (cf. Defini-
tion 2.2) has several benefits:

• In contrast to a constraint on the instructions per cycle (IPC), we avoid a division operation
in the constraints.

• Compared with a constraint on (proper) throughput or inverse throughput, a CPI constraint
better matches the measurement errors that we expect: Consider two experiments 𝑒1
and 𝑒2, where 𝑒2 contains twice the number of instructions of each kind as 𝑒1. Since our
measurement method unrolls the experiment until a specific number of instructions is in
the loop body, the corresponding microbenchmark measures the same code, with the same
accuracy, only dividing by a different unrolling factor to obtain the cycles per experiment
copy:6

unrollFactor1 · tp−1 (𝑒1) = cyclesPerIteration = unrollFactor2 · tp−1 (𝑒2)

Constraining the accuracy of the inverse throughputs tp−1 (𝑒1) and tp−1 (𝑒2) would therefore
impose two different constraints on the accuracy of the measurement of the overall number
of cyclesPerIteration: A difference of at most 𝜀 · unrollFactor1 and 𝜀 · unrollFactor2 from
the true value. Increasing the number of instructions in the experiment would further
strengthen the accuracy requirement on the measured cyclesPerIteration. Constraining the
CPI avoids this counter-intuitive behavior.

6See Section 3.2.1 and Appendix D.
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Handling Additional Bottlenecks

The port mapping model – and therefore the linear program at the foundation of the re-
lateThroughput constraints – assumes that the throughput is only limited by the availability
of functional units. As we have seen in Section 3.2.2, this is not the case in practice.

Modern processors usually cannot sustain a full utilization of all ports because of bottle-
necks in the decoding frontend (including caches) or the instruction retirement. When a
bottleneck limits the execution to at most 𝑅max instructions per cycle, experiments that are
faster according to the port mapping model are slowed to meet the limit.

We change relateThroughput [enc𝑀 , enc𝑒 , enc𝑡 ] such that enc𝑡 is the maximum of the number
tp−1
𝑀

(
𝑒
)

of cycles according to the model and the peak inverse throughput |𝑒 |/𝑅max at the
bottleneck. Some port mappings that are distinguishable according to the port mapping model
become indistinguishable with this adjustment.

To implement this adjustment, we need to determine the peak throughput of the proces-
sor under investigation from documentation or via microbenchmarks before we apply the
counter-example-guided port mapping inference algorithm in a realistic setting. A practical
benchmarking strategy to determine the peak throughput can proceed as follows:

1. Select a set of instructions with low individual inverse throughputs, preferably below
1.0 cycles.

2. Construct an experiment by picking one instruction and adding it sufficiently often so
that it achieves an inverse throughput of 1.0 cycles.

3. Incrementally add more of the remaining instructions to the experiment and keep them
if they increase the observed IPC of the experiment.

4. Repeat this process with various processing orders for the instructions. Note the
maximal observed IPC as the processor’s peak execution rate.

Limiting Experiment Sizes

As presented, the findOtherMapping procedure can produce experiments with an arbitrary
number of instructions that need to be benchmarked. We have shown in Section 3.2.2 that large
numbers of instructions in experiments lead to throughput measurements with significant
deviations from the port mapping model. In extreme cases, even the boundaries of µop buffers
and the instruction cache can be hit.

An option to avoid such large experiments is enforcing an upper bound on the number of
instructions per experiment as described in Section 4.2.1. A fixed upper bound 𝑏, however,
means that the algorithm is no longer complete: It would only find a port mapping that is
indistinguishable from the system under investigation by experiments of length up to 𝑏.

We found interleaving the two approaches to be beneficial in practice: We start with a small
bound of 𝑏 = 1 and increase it once findOtherMapping finds no distinguishing experiment
with 𝑏 instructions anymore. When we encounter a value for 𝑏 where no new distinguishing
experiments of suitable length can be found, we attempt an unbounded run of findOtherMap-
ping. If this run also does not find a new experiment, the algorithm terminates; otherwise
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it continues with a larger bound 𝑏. This stratified approach ensures that we only need to
benchmark experiments of minimal size without sacrificing the completeness of the algorithm.

Another related optimization is to add all possible experiments that consist of only a single
instruction to the experiment set before the first iteration of the algorithm. This avoids several
unnecessary solver calls for distinguishing experiments with just a single instruction with
obvious outcomes.

Incremental SMT Solving

In the context of Algorithm 4.1, the implementations of findMapping and findOtherMapping
can make use of incremental solving. State-of-the-art SMT solvers provide an interface for
managing a stack of constraints that can be pushed or popped between successive checks for
satisfiability. Reusing the SMT solver instance for multiple satisfiability checks in this way
allows the solver to reuse information that it previously inferred about the constraint system
to speed up subsequent checks.

The constraint sets for every solver call in the findMapping and findOtherMapping pro-
cedures contain the free port mapping encoding and the constraints for a steadily growing
list of experiments. We therefore only need to add constraints for each newly introduced
experiment to a shared solver instance. The additional constraints in findOtherMapping can
be pushed to the constraint stack when they are needed and popped afterwards.

4.4. Extension to the Three-Level Model
Similar to the two-level setting, Theorem 3.12 provides a linear program that characterizes how
a three-level port mapping determines the inverse throughput of an experiment. A three-level
port mapping is essentially a two-level port mapping (where µops take the instruction role)
with an additional layer mapping instructions to µops. Our goal is to leverage this close
correspondence and to adjust the parametric SMT formulation for the two-level port mapping
model from Section 4.2 to the three-level model.

First, we need to change the port mapping encoding to represent three-level mappings.
A straightforward encoding uses two sets of variables:

enc𝑀 :=
{
insn2uop[𝑖, 𝑢]

�� 𝑖 ∈ I, 𝑢 ∈ U} ∪· {uop2port [𝑢, 𝑘] �� 𝑢 ∈ U, 𝑘 ∈ P}
The integer-valued insn2uop[𝑖, 𝑢] variables encode how many instances of a µop 𝑢 are in
the port mapping of the instruction 𝑖 , while the boolean uop2port [𝑢, 𝑘] variables mirror the
mapping[𝑖, 𝑘] variables from the two-level encoding, mapping µops to their ports. We extend
the well-formedness constraints to ensure that every instruction is decomposed into at least
one µop and that each µop has at least one port that can execute it:(∧

𝑖∈I

∑︁
𝑢∈U

insns2uops[𝑖, 𝑢] > 0
)
∧

(∧
𝑢∈U

∨
𝑘∈P

uops2ports[𝑢, 𝑘]
)

We also need to modify the relateThroughput constraint system from Definition 4.5. Every
occurrence of instructions 𝑖 ∈ I is replaced with µops 𝑢 ∈ U, especially in the indices of the 𝑥
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and 𝑗 variables. The uop2port [𝑢, 𝑘] variables take the role of the mapping[𝑖, 𝑘] variables from
the two-level setting. Lastly, to connect the instructions with the µops, we adjust references to
the number exp[𝑖] of occurrences of an instruction 𝑖 in the experiment. Each such reference is
replaced by the formula for the number of instances of a µop 𝑢 ∈ U that needs to be executed
for the experiment,

∑
𝑖∈I exp[𝑖] · insn2uop[𝑖, 𝑢]. The resulting constraint set looks as follows:∑︁

𝑘∈P
𝑥𝑢𝑘 =

∑︁
𝑖∈I

exp[𝑖] · insn2uop[𝑖, 𝑢] for all µops 𝑢 ∈ U (A)∑︁
𝑢∈U

𝑥𝑢𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑢𝑘 ≥ 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (D)
¬uop2port [𝑢, 𝑘] → 𝑥𝑢𝑘 = 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (E)∨
𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
uop2port [𝑢, 𝑘] → ( 𝑗𝑢 → 𝑞𝑘 ) for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (H)∑︁
𝑢∈U

𝑗𝑢 ·
∑︁
𝑖∈I

exp[𝑖] · insn2uop[𝑖, 𝑢] =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

To use this constraint set, we need to determine a set U of µops. A sound choice would
be the power set P(P) \ {∅} of ports, as we observed in Remark 3.13. Every three-level port
mapping is representable with this set of µops. This choice of U leads to a number of µops
that is exponential in the number of ports, but it also allows us to simplify the formulas: With
U := P(P) \ {∅}, we know for each µop the ports that can execute it. Figure 4.2 visualizes the
fixed and variable components of a three-level port mapping encoding with this set of µops.
Between the instructions I and the µops U, we need |I| · |U| = |I| · (2 |P | − 1) integer-valued
insn2uop[𝑖, 𝑢] variables to determine the port mapping. All connections between µops U and
ports P are fixed and do not need uop2port variables: A µop 𝑢 ∈ P(P) \ {∅} can be executed
on a port 𝑝 if, and only if, 𝑝 ∈ 𝑢. Furthermore, all 𝑥𝑢𝑘 variables where 𝑘 ∉ 𝑢 become obsolete
since they must be zero in any feasible solution. We can therefore simplify the constraint set
as shown in Figure 4.3.

In practice, this still leads to excessively large formulas that make even very small problem
sizes prohibitively expensive to solve: We found instances with four instructions and three
ports to not terminate within 48 hours. A contributor to the excessive solving times is that
the expression for the number of instances of a µop 𝑢 ∈ U that needs to be executed for the
experiment,

∑
𝑖∈I exp[𝑖] · insn2uop[𝑖, 𝑢], contains a multiplication of two integer variables. The

formulas are therefore not in the decidable linear integer and real arithmetic (LIRA) theory
but use the generally undecidable non-linear integer and real arithmetic theory. Modern SMT
solvers like Z3 (de Moura and Bjørner, 2008) can still find solutions or prove unsatisfiability for
some instances of such problems, but termination of the solver can no longer be guaranteed.
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I:

U:

P:

mul add . . .

{
𝑝1

} {
𝑝1, 𝑝2

} {
𝑝1, 𝑝3

} {
𝑝2

} {
𝑝1, 𝑝2, 𝑝3

} {
𝑝2, 𝑝3

} {
𝑝3

}

𝑝1 𝑝2 𝑝3

Figure 4.2. Extract of an SMT encoding of a three-level port mapping with fixed µop-to-
port mapping corresponding to the constraints in Figure 4.3. Single lines correspond
to integer-valued insn2uop[𝑖, 𝑢] variables in the formula, double lines are hardwired
connections without a variable.

∑︁
𝑘∈𝑢

𝑥𝑢𝑘 =
∑︁
𝑖∈I

exp[𝑖] · insn2uop[𝑖, 𝑢] for all µops 𝑢 ∈ U (A’)∑︁
𝑢∈U s.t. 𝑘∈𝑢

𝑥𝑢𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B’)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑢𝑘 ≥ 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ 𝑢 (D’)∨
𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
( 𝑗𝑢 → 𝑞𝑘 ) for all ports 𝑘 ∈ P, µops 𝑢 ∈ U s.t. 𝑘 ∈ 𝑢

(H’)∑︁
𝑢∈U

𝑗𝑢 ·
∑︁
𝑖∈I

exp[𝑖] · insn2uop[𝑖, 𝑢] =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

Figure 4.3. SMT constraints for the three-level model with fixed µop-to-port mapping and
U = P(P) \ {∅}.
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I:

U:

P:

mul add sub store

(mul, 1) (mul, 2) (add, 1) (sub, 1) (store, 1) (store, 2)

𝑝1 𝑝2 . . .

Figure 4.4. Extract of an SMT encoding of a three-level port mapping with fixed instruction-
to-µop mapping corresponding to the constraints in Figure 4.5, assuming two µops for
mul, one each for add and sub, and two for store like in Figure 3.3 on page 19. Single
lines correspond to boolean uop2port [𝑢, 𝑘] variables in the formula, double lines are
hardwired connections without a variable.

∑︁
𝑘∈P

𝑥𝑢𝑘 = exp[𝑖] for all µops 𝑢 = (𝑖, 𝑟 ) ∈ U (A”)∑︁
𝑢∈U

𝑥𝑢𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑢𝑘 ≥ 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (D)
¬uop2port [𝑢, 𝑘] → 𝑥𝑢𝑘 = 0 for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (E)∨
𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
uop2port [𝑢, 𝑘] → ( 𝑗𝑢 → 𝑞𝑘 ) for all µops 𝑢 ∈ U, ports 𝑘 ∈ P (H)∑︁
𝑢=(𝑖,𝑟 ) ∈U

𝑗𝑢 · exp[𝑖] =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I”)

Figure 4.5. SMT constraints for the three-level model with fixed instruction-to-µop mapping
and U :=

{(𝑖, 𝑟 ) �� 𝑖 ∈ I, 𝑟 ∈ {
1, . . . , uopsPerInsn(𝑖)}}.
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In some scenarios, more information on the µops that occur in the port mapping may be
available. For instance, AMD’s Zen, Zen+, and Zen2 microarchitectures are documented
(AMD, 2019, Section 2.1.15.4.5) to provide a hardware performance counter that allows us to
count the µops that are executed when benchmarking an instruction.7 As a result, we can
obtain an assignment uopsPerInsn that describes for each instruction the number of µops in its
decomposition. This allows us to reduce the size of the constraint set and to avoid non-linear
integer arithmetic.

To this end, we define𝑈 to include enough µops for every instruction:

U :=
{(𝑖, 𝑟 ) �� 𝑖 ∈ I, 𝑟 ∈ {

1, . . . , uopsPerInsn(𝑖)}}
Then, we replace each insn2uop[𝑖, (𝑖′, 𝑟 )] variable with 1 if 𝑖 = 𝑖′ and with 0 otherwise. This
encodes that an instruction must be mapped to all its µops and to no µops of other instructions.
Figure 4.4 visualizes which aspects of the three-level port mapping encoding are fixed with this
construction and which remain variable. The integer-valued insn2uop variables connecting I
and U are no longer required, only |U| · |P| = ∑

𝑖 ↦→𝑛∈uopsPerInsn 𝑛 · |P| boolean uop2port variables
remain.

The resulting simplified set of formulas (Figure 4.5) is very similar to the SMT constraints
for the two-level model (Definition 4.5): They coincide if uopsPerInsn assigns a single µop to
each instruction.

For either choice of U, the extensions for practical applicability from Section 4.3 apply to
the three-level setting unchanged.

4.5. Experimental Evaluation
We evaluate implementations of the algorithm variants from the previous sections with the
Z3 SMT solver (de Moura and Bjørner, 2008).8 The implementations use the optimizations
described in Section 4.3: incremental solving, stratified experiment sizes, and an experiment list
initialized with throughput measurements for each individual instruction. As the SMT solver
with its exponential worst-case running time plays such an integral part in the algorithm,
the primary question that arises for this evaluation is if, and in how far, counter-example-
guided port mapping inference scales to realistic problem sizes. We separately investigate the
two-level and the three-level settings, with varying numbers of instructions and ports for the
two-level setting and varying numbers of involved µops in the three-level setting.

Since current microarchitectures are not very diverse in the problem sizes they pose, we
perform this evaluation with synthetic benchmarks. For each data point, we randomly generate
three ground-truth port mappings with the necessary properties. For each generated ground-
truth mapping, we run the port mapping inference algorithm three times with a simulator
that provides inverse throughput measurements according to the ground-truth port mapping.
We summarize the nine individual results for each data point in the plots in the following
sections with a marker for the median result and error bars to the minimal and maximal result
observed.

7Chapter 6 discusses this setting in more detail.
8We use version 4.12.1 of Z3 in this evaluation.
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The algorithm uses a noise parameter 𝜀𝐶𝑃𝐼 = 0.02 for the shown results. This value can
distinguish experiments that utilize five or four ports for one cycle, as these lead to 0.20 CPI
or 0.25 CPI, respectively. We found this to be a relevant resolution for real-world settings in
experiments performed for Chapter 6. We did not find substantial differences in the results
for this evaluation when reducing this parameter to 𝜀𝐶𝑃𝐼 = 0.001.

Bottlenecks outside of the port mapping model are not considered for this evaluation: The
simulator does not include a non-port-mapping bottleneck and the inference algorithm is
configured to not assume one.

We investigate the time required for these inference runs, in which of the subroutines of the
algorithm this time is mostly spent, and how many experiments (i.e., counter examples) the
algorithm required additionally to the initial set of experiments for the individual instructions.
The evaluation was performed on a system with an Intel Core i9-10900K processor (10 cores,
20 threads, 3.7 GHz; the implementation is single-threaded) and 64 GB of RAM.

4.5.1. Two-Level Model
Figure 4.6 shows the results of our evaluation for inferring two-level port mappings. We
considered microarchitectures with 4, 6, and 8 ports (represented as individual lines in each
plot) and up to 16 instructions.9 The generated two-level port mappings serving as ground
truth map each instruction to 1–4 randomly selected ports.

The execution times in the log-scale plot of Figure 4.6 (a) follow exponential trajectories
with rising numbers of instructions. For microarchitectures with 4 ports, the execution times
range from fractions of a second at the lower end to around 10 seconds for the case with 16
instructions. Series with more ports rise more quickly, reaching around 1,000 seconds for 6
ports and 16 instructions, and exceeding 10,000 seconds (ca. 2.8 hours) for several cases with
8 ports and only 10 instructions.

With growing execution times, their variance grows as well, even between inference runs
with the same ground truth port mapping. For 8 ports and 10 instructions, the algorithm run
time for one ground truth mapping varies between 4 and 13 hours, while the required time
for another varies only between 45 and 60 minutes.

Overall, the findOtherMapping calls dominate the algorithm’s running time. For the smallest
configurations, findOtherMapping causes 80% of the execution time. This percentage rises
above 99.9% for the larger configurations.

For comparison, Figure 4.6 (b) shows the number of microbenchmarks queried by the
inference algorithm (in addition to the singleton experiments that seed the algorithm’s initial
experiment list), on a linear scale. These numbers rise less dramatically than the execution
time. This indicates that excessive numbers of experiments are not necessary to determine
the port mapping. Only the SMT solver calls to find distinguishing experiments or to refute
the existence of one become more demanding with growing configurations. In all considered
runs, the algorithm queried experiments with at most three to five instructions before finding
that no more distinguishing experiment of arbitrary length exists.

9The data series for 8 ports do not cover the full range of 16 instructions since their execution times become
impractical before this point.
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Figure 4.6. Plots for the execution time in seconds with a logarithmic scale (a) and the number
of additional experiments queried on a linear scale (b) for counter-example-guided two-
level port mapping inference with varying numbers of instructions and ports in the
system under investigation at 𝜀𝐶𝑃𝐼 = 0.02.

We validated the inferred port mappings by comparing their throughput predictions with the
ground truth mapping on 1,000 randomly sampled experiments consisting of five instructions
each. With Pearson correlation coefficients greater than 0.95 for all algorithm runs and perfect
correlations of 1.0 for most of them, the inferred mappings match the ground truth accurately.

4.5.2. Three-Level Model

Section 4.4 presents two alternative extensions of the SMT formulas to three-level port
mappings. We found the formulas of Figure 4.3, which emerge when we chooseU := P(P)\{∅},
to be prohibitively expensive: Instances with four instructions and three ports – simpler than
any instance in Figure 4.6 – did not terminate within 48 hours. This evaluation therefore
focuses on the second way of extending the formulas to the three-level model, where each
instruction has a fixed number of µops that we know beforehand (Figure 4.5). If every
instruction is decomposed into a single µop, the formulas for this scenario coincide with
the two-level setting. We therefore expect a similar run-time behavior as we observed in
the previous Section 4.5.1 in this case. Our goal for this evaluation is to determine how the
algorithm’s performance changes when we gradually increase the number of µops in the
target port mapping.
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Figure 4.7. Examples for generated port mappings with three instructions and three ports.
For port mapping (a), there are 2 instructions with more than one µop (𝐴 and 𝐵), and
they have 2 µops. In port mapping (b), 1 instruction has more than one µop (𝐴), and it
has 3 µops.

In contrast to the evaluation of the two-level version in the previous section, all generated
port mappings for this evaluation use four instructions and six ports. We instead vary the
number of instructions that are decomposed into more than one µop and the number of µops
that each such instruction uses. The ground truth port mappings are generated by randomly
choosing for each µop between one and four ports that it can be executed on. Figure 4.7
gives examples of port mappings with different values of the varied parameters in a simplified
setting with three instructions and three ports. The algorithm obtains the number of µops for
each instruction as an input.

Figure 4.8 shows the measurements for this evaluation. Increasing the number of instruc-
tions with more than one µop causes the execution time of the algorithm (Figure 4.8 (a)) to
rise. The more µops each such instruction has, the stronger the increase. For small numbers
of added µops, e.g., one instruction with up to three µops or two instructions with two µops
each, however, the added cost is not excessive. Similar to the two-level setting, the time spent
in the findOtherMapping procedure dominates the execution time.

In the three-level SMT formulation, µops play a similar role as instructions in the two-level
formulation. We therefore investigate if experimental configurations with 𝑛 instructions
in the two-level model behave similarly as configurations with a total of 𝑛 µops in the
three-level model. Table 4.1 compares the median execution times for configurations in this
evaluation and in the evaluation of the two-level variant (Figure 4.6 (a)) with equal numbers
of µops/instructions. Even with the very limited sample size and comparatively large variance
in the observations, there is a consistent trend: The algorithm executions for the three-level
model are slower than for corresponding configurations in the two-level model.

Figure 4.8 (b) indicates that the growing execution times of the algorithm with increasing
numbers of total µops are not caused by larger numbers of required experiments. The
numbers of generated experiments range between 3 and 21, with a variance among individual
experimental configurations that is too large to determine a clear correlation. With up to
18 instructions, the experiments necessary to infer a three-level port mapping are, however,
considerably larger than those for two-level port mappings.
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Figure 4.8. Plots for execution time in seconds with a logarithmic scale (a) and number
of additional experiments queried on a linear scale (b) for counter-example-guided
three-level port mapping inference with 4 instructions and 6 ports in the system under
investigation at 𝜀𝐶𝑃𝐼 = 0.02. The numbers of instructions with more than one µop and
numbers of µops for these instructions are varied.

The inferred port mappings of this evaluation were validated with a comparison of their
throughput predictions against the ground truth mapping on 1,000 randomly sampled experi-
ments consisting of five instructions each. The inferred mappings match the ground truth
very accurately with Pearson correlation coefficients greater than 0.99 for all algorithm runs.

4.6. Conclusions: Counter-Example-Guided Port Mapping
Inference

In this chapter, we derived algorithms for two-level and three-level online port mapping
inference from the formal port mapping model of Section 3.1. In theory, the algorithms can
infer accurate port mappings for any processor that executes instructions according to the
port mapping model.

In practice, the algorithms’ execution time is a problem: While we can infer port mappings
for small numbers of ports and instructions in the two-level model and for three-level instances
that use a known small number of µops, scaling to the thousands of instruction schemes of
the x86-64 instruction set architecture is unrealistic. Extending the formulas to the three-level
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Table 4.1. Comparison of median algorithm execution times for different configurations with
the same total number of µops in the three-level model and instructions in the two-level
model.

2-level 3-level

8 instructions: 42 s 8 = 4 × 2 + 0 µops: 94 s 8 = 2 × 3 + 2 µops: 96 s
10 instructions: 75 s 10 = 3 × 3 + 1 µops: 238 s 10 = 2 × 4 + 2 µops: 542 s
12 instructions: 159 s 12 = 4 × 3 + 0 µops: 884 s
16 instructions: 920 s 16 = 4 × 4 + 0 µops: 5815 s

model in other ways than presented in Section 4.4 is possible, but we did not find evidence
that any such encoding achieves the necessary increase in performance.

A different approach is therefore necessary to solve the port mapping inference problem
practically. The following two chapters discuss alternative approaches that leverage insights
from this chapter:

• In Chapter 5, we use an evolutionary algorithm to find port mappings that explain ob-
served throughputs. The fitness metric of the evolutionary algorithm relies on a simulation
algorithm derived from the SMT formulation in Theorem 4.4.

• Chapter 6 leverages additional assumptions and knowledge about real-world microarchi-
tectures to relax the port mapping inference problem. As a result, full-fledged online port
mapping inference is only necessary for sufficiently small problem instances that can be
solved by the counter-example-guided algorithm presented in this chapter.
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Chapter 5
Evolving Port Mappings with PMEvo
We have seen in the previous chapter that exact, optimal solutions to the port mapping
inference problems are computationally expensive to obtain. For this reason, this chapter
presents a method to approximate optimal solutions to the port mapping inference problems.
We perform this approximation in two steps:

• We generate experiments following a fixed but possibly incomplete strategy instead of
searching for experiments that fully characterize the port mapping.

• We solve the resulting offline port mapping inference problem approximatively with an
evolutionary algorithm.

This method, while not exact, allows us to infer port mappings for hundreds of instructions
within a practical time budget.

Section 5.1 presents the high-level PMEvo algorithm and its components. An evaluation
of PMEvo in the context of its initial publication is included in Section 5.2. In later chapters,
we set PMEvo in context with related work (Chapter 7) and we evaluate it in comparison to
the more recent Palmed (Derumigny et al., 2022a) and an alternative port mapping inference
algorithm (Section 6.3.6).

We originally published the work on PMEvo at the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2020) (Ritter and Hack, 2020). This thesis
expands upon the PLDI article with a brief discussion about handling additional throughput
bottlenecks at the end of Section 5.1.3.

5.1. The PMEvo Framework

PMEvo is a framework to automatically infer port mappings from throughput experiments.
Consider Figure 5.1 for an overview of the framework. PMEvo consists of four main stages,
which we describe in the following subsections: First, PMEvo generates relevant experi-
ments (Section 5.1.1) and measures their inverse throughput on a given processor – in its
original version, PMEvo used a precursor of the method discussed in Section 3.2.1. Next is a
preprocessing step that identifies congruent instructions (Section 5.1.2) before the evolutionary
optimization is performed (Section 5.1.3).
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Experiment
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Evolutionary
Optimization

port mapping

ISA # ports

Figure 5.1. Overview of the PMEvo framework. (Ritter and Hack, 2020)

5.1.1. Experiment Generation
The input of the first stage of PMEvo is a description of the instruction set architecture (ISA)
supported by the processor under test. This description is a set of instruction schemes, i.e.,
instructions with typed placeholders for their operands (cf. Section 2.1). The type of the
placeholder specifies the operand kind (e.g., memory operand, general-purpose or vector
register) and the width of the respective operand.

PMEvo constructs a set of experiments from this information with the following compo-
nents:

1. for each instruction scheme 𝑖 , an experiment {𝑖 ↦→ 1} measuring its individual inverse
throughput tp−1 (𝑖)

2. for each pair (𝑖𝐴, 𝑖𝐵) of instruction schemes, an experiment {𝑖𝐴 ↦→ 1, 𝑖𝐵 ↦→ 1}
3. for each pair (𝑖𝐴, 𝑖𝐵) of instruction schemes with tp−1 (𝑖𝐴) > tp−1 (𝑖𝐵), an experiment
{𝑖𝐴 ↦→ 1, 𝑖𝐵 ↦→ 𝑛} where

𝑛 =
⌈
tp−1 (𝑖𝐴) /tp−1 (𝑖𝐵)

⌉
Experiments with this structure lead to different outcomes depending on the port mapping:

If the µops of two instruction schemes 𝑖𝐴 and 𝑖𝐵 require the same ports, experiment (2) will
result in an inverse throughput that is the sum of the individual inverse throughputs of 𝑖𝐴 and
𝑖𝐵 . In case the µops of 𝑖𝐴 and 𝑖𝐵 are executed by disjoint port sets, the inverse throughput of
experiment (3) will be 𝑛 · tp−1 (𝑖𝐵). More complex partial port conflicts will lead to measured
inverse throughputs for these experiments that are harder to interpret manually. It is the task
of the evolutionary algorithm to find a mapping that explains these inverse throughputs.

Example 5.1. Assume an instruction set architecture with instructions add and mul. We
will first measure their individual inverse throughputs with single-instruction experiments.
Assume that we measure tp−1 (add) = 0.25 cycles and tp−1 (mul) = 1.0 cycles. We perform
two more experiments for this pair of instructions:{

add ↦→ 1, mul ↦→ 1
}{

add ↦→ 4, mul ↦→ 1
}

⌟
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The evolutionary algorithm is not restricted to experiments of this structure. In theory, longer
experiments that combine instances of more than two different instruction schemes can unveil
resource conflicts that cannot be covered by these experiments. However, when exploring the
experiment design space empirically for existing processors, we did not observe benefits in
port mapping quality from more complex experiments with PMEvo.

5.1.2. Congruence Filtering
In a processor microarchitecture, we expect that groups of instruction schemes require the
same execution resources. Instruction schemes whose operations are implemented similarly
in the processor, e.g., addition and subtraction, often lead to such groups.

PMEvo exploits these patterns to reduce the search space of the evolutionary algorithm. It
partitions the set of instruction schemes into congruence classes of instruction schemes that
are not distinguishable with the generated experiment set.

In this partitioning, two instruction schemes 𝑖𝐴 and 𝑖𝐵 are in the same class if and only if
the following conditions hold:

• 𝑖𝐴 and 𝑖𝐵 exhibit equal individual inverse throughputs, i.e., tp−1 (𝑖𝐴) = tp−1 (𝑖𝐵).
• Any two experiments {𝑖𝐴 ↦→ 𝑚, 𝑖𝐶 ↦→ 𝑛} and {𝑖𝐵 ↦→ 𝑚, 𝑖𝐶 ↦→ 𝑛} that combine these

instruction schemes with any other instruction scheme 𝑖𝐶 exhibit equal inverse through-
puts.

For this purpose, we consider inverse throughputs 𝑡1 and 𝑡2 equal (up to measurement errors)
if their symmetric relative difference is limited by a user-specified constant 𝜀, i.e. if

|𝑡1 − 𝑡2 |
|𝑡1 + 𝑡2 |/2 < 𝜀

For each congruence class, PMEvo selects a representative to be included in the instruction
set for the evolutionary algorithm. The evolutionary algorithm then only needs to consider
experiments that consist of these representatives.

5.1.3. Evolving Port Mappings
The core of PMEvo is an evolutionary algorithm that searches for a port mapping that accu-
rately explains the observed inverse throughputs for a given set of experiments. Evolutionary
algorithms are a well-proven technique to approach optimization problems. They mimic
concepts from natural evolution to approximatively optimize complex metrics in non-linear
problem settings.1

Every evolutionary algorithm is centered around a representation scheme that characterizes
the space of possible solutions of the optimization problem. Naturally, the representation that
we use is that of port mappings with µop decomposition in the three-level model as described
in Section 3.1.2. The sets I of instructions and P of ports are given by the user. Following

1We refer to the textbook by De Jong (2006) for a comprehensive treatment.
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1 initialize population randomly
2 while not done do
3 apply evolutionary operators
4 evaluate fitness
5 select new population
6 perform local search
7 return fittest individual

Algorithm 5.1. Structure of the evolutionary algorithm.

Remark 3.13, we identify each µop with the set of ports that can execute it and allow all
non-empty subsets of P as µops. We define the width |𝑢 | = |{𝑘 �� (𝑢, 𝑘) ∈ 𝐸} | of a µop 𝑢 as the
number of ports that can execute 𝑢 in a three-level port mapping 𝑀 := (I ∪· U ∪· P, 𝐹 ∪· 𝐸).

PMEvo’s evolutionary algorithm follows the structure in Algorithm 5.1. Initially, a set of
𝑁 port mappings is sampled randomly to form a population. This population is iteratively
refined through evolution steps. In each such step, 𝑁 additional child mappings are generated
via evolutionary operators. The resulting population of 2 ·𝑁 port mappings is sorted according
to the fitness metric and the best-performing 𝑁 mappings are selected as the new population.
The evolution terminates once the fitness of the population has converged to a single value or
an iteration limit is exceeded. By selecting a value for 𝑁 , the user can find a trade-off between
the computational requirements of the evolutionary steps and the quality of the inferred port
mapping. After the evolution terminates, PMEvo employs a greedy hill-climbing algorithm to
move from the found solutions to a local optimum in the space of possible port mappings.

In the following, we describe the components of the evolutionary algorithm in detail.

Initialization

Each member of the initial population is sampled randomly from the set of possible port
mappings as follows. For each instruction 𝑖 , a random set of 1 to |P| different µops is sampled.
The number of occurrences for each of these µops 𝑢 in the mapping for 𝑖 is sampled from the
interval [1, ⌈tp−1 (𝑖) · |𝑢 |⌉].

The upper bound of this interval is an implication of the throughput model: Executing one
𝑢 µop puts a load of 1/|𝑢 | on each of 𝑢’s ports, leading to an inverse throughput of 1/|𝑢 | cycles.
With |𝑢 | instances of these µops, the load on 𝑢’s ports multiplies by |𝑢 |, causing an inverse
throughput of 𝑢 · 1/|𝑢 | = 1 cycle. If at least 𝑡 · |𝑢 | of the µops are executed, the load on 𝑢’s ports
is further multiplied by 𝑡 , leading to an inverse throughput of at least 𝑡 cycles. Therefore,
an instruction with more than ⌈𝑡 · |𝑢 |⌉ instances of a µop 𝑢 in its decomposition requires an
inverse throughput of more than 𝑡 cycles.

Evolutionary Operators

Evolutionary operators create new individuals from existing individuals in the population.
The most common operators in evolutionary algorithms are recombination and mutation.
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We employ a binary recombination operator that mixes the information of two parent
mappings to generate two child mappings. For each instruction 𝑖 , the lists of occurring µops
with their number of occurrences in the parent port mappings are first concatenated into a
single list. This list is then shuffled and split randomly into two non-empty parts that form
the corresponding assignments for the children. We apply this operator to individuals that
are sampled uniformly at random from the population.

When designing the evolutionary algorithm, we tried various random mutation strategies.
Experiments showed little benefit over a design without a mutation operator while contributing
substantial numbers of fitness computations. Therefore, we eliminated mutation operators
from our design to explore larger populations more effectively in the same execution time.

Fitness Metric

PMEvo’s evolutionary algorithm solves a multi-objective optimization problem (MOP) ap-
proximatively with the goal of minimizing two metrics: The average relative prediction
error 𝐷𝑎𝑣𝑔 and the µop volume 𝑉 . These metrics describe the quality of a port mapping
𝑀 = (I ∪· U ∪· P, 𝐹 ∪· 𝐸) for a set Exps of experiments 𝑒 with measured inverse through-
puts tp−1 (𝑒) as follows:

𝐷𝑎𝑣𝑔 (𝑀) = 1
|Exps |

∑︁
𝑒∈Exps

|tp−1
𝑀

(
𝑒
) − tp−1 (𝑒) |
tp−1 (𝑒)

𝑉 (𝑀) =
∑︁

(𝑖,𝑛,𝑢 ) ∈𝐹
𝑛 · |𝑢 |

A low value for 𝐷𝑎𝑣𝑔 (𝑀) ensures accurate predictions whereas a smaller µop volume
indicates a more compact and therefore more interpretable mapping.

We solve the MOP through a priori scalarization, as described, e.g., in Chapter 4.1 of the
textbook by Miettinen (1998): We combine the objectives into a single fitness function F (𝑀)
as follows:

F (𝑀) = Λ1 (𝐷𝑎𝑣𝑔 (𝑀)) + Λ2 (𝑉 (𝑀))
Λ1 and Λ2 are affine transformations that are chosen in every iteration to normalize both
objective metrics to the range [0, 1000]. They ensure that the extremal objective values of the
current population are mapped to 0 and 1000, respectively, with all other objective values in
between.

Combining the accuracy metric𝐷𝑎𝑣𝑔 with a compactness metric is necessary because inverse
throughput measurements usually do not uniquely identify a single port mapping. The port
mapping model is flexible enough to allow for a wide range of well-performing mappings
with different characteristics. In the available port mappings for Intel microarchitectures by
Abel and Reineke (2019), instructions with large numbers of µops that can execute on many
different ports are considerably rarer than in the results of an evolutionary algorithm that
only optimizes 𝐷𝑎𝑣𝑔.

By default, this fitness metric does not consider the influence of bottlenecks, e.g., in the
processor’s frontend, on the measured throughput (cf. Section 3.2.2). We can adjust the above
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definition of𝐷𝑎𝑣𝑔 (𝑀) for a bottleneck of 𝑅max instructions per cycle by replacing the simulated
inverse throughput tp−1

𝑀

(
𝑒
)

with a version that uses the bottleneck throughput if it is slower
than the simulated throughput:

t̂p−1
𝑀

(
𝑒
)

:= max
(
tp−1
𝑀

(
𝑒
)
,
|𝑒 |
𝑅max

)
Local Search

Once the fitness of the port mapping population converges to a uniform level, every individual
𝑀 = (I ∪· U ∪· P, 𝐹 ∪· 𝐸) of the final population is used as a starting point for a greedy local
search to further increase the fitness scores. For each entry (𝑖, 𝑛,𝑢) ∈ 𝐹 , indicating that the
candidate port mapping includes 𝑛 instances of µop 𝑢 for instruction 𝑖 with 𝑛 > 0, the local
search operates as follows:

• Decrement 𝑛 by one and evaluate the fitness of the resulting port mapping. If the new
mapping is at least as fit as the previous candidate, continue to decrement 𝑛 in steps of one
until the fitness decreases or 𝑛 = 0 is reached.

• Otherwise, if decrementing 𝑛 reduced the fitness of the port mapping candidate, increment
it instead. Increment 𝑛 for as long as the new candidate mapping is strictly fitter than its
predecessor.

In either case, use the value of 𝑛 that yields the best fitness and continue with the next
entry of 𝐹 . The asymmetric construction of this greedy search algorithm – decrementing
𝑛 is performed if it improves fitness or if fitness does not change, whereas incrementing
only happens if it strictly improves fitness – further favors compact, more interpretable port
mappings.

Among the optimized port mappings, the fittest one is returned as PMEvo’s result.

5.1.4. Efficient Bottleneck Simulation Algorithm
The practical applicability of an evolutionary algorithm depends on how fast the fitness of in-
dividuals in the population can be computed. For a given time budget, fitness evaluation speed
directly corresponds to the quality of the obtained solution. With faster fitness evaluation,
more candidates can be considered, resulting in superior solutions.

Therefore, a critical component of our approach is the efficient simulation of experiments
with a given port mapping. Instead of directly solving the linear program from Theorem 3.12,
we use a bottleneck simulation algorithm to compute the optimal solution of the linear
program. We restrict our presentation here to port mappings in the two-level model for a
more concise description. As we have observed in Remark 3.13, this extends to the three-level
model straightforwardly.

The bottleneck simulation algorithm implements the following characterization of the
inverse throughput of an experiment with a port mapping:
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Theorem 5.2. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with the port
mapping 𝑀 := (I ∪· P, 𝐸) can be equivalently characterized as follows:

tp−1
𝑀

(
𝑒
)
= max
𝑄⊆P

∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}
|𝑄 | (5.1)

𝑀 [𝑖] := {𝑘 | (𝑖, 𝑘) ∈ 𝐸} denotes the set of ports that can execute an instruction 𝑖 with 𝑀 .

Proof. See Appendix A.3.1. □

For any subset 𝑄 ⊆ P, the term

𝐵(𝑄) :=
∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}

|𝑄 |
bounds tp−1

𝑀

(
𝑒
)

from below since any instruction 𝑖 with 𝑀 [𝑖] ⊆ 𝑄 needs to be executed on
ports in 𝑄 . The fastest way all such instructions could be executed is if all ports in 𝑄 are fully
utilized with them, which requires 𝐵(𝑄) cycles.

The same insight that also inspired the parametric SMT formulation presented in Theo-
rem 4.4 implies that there is a port subset𝑄∗ such that tp−1

𝑀

(
𝑒
)
= 𝐵(𝑄∗): A distribution to ports

is optimal if and only if there is a non-empty set 𝑄∗ of bottleneck ports that are all utilized
for the full number of cycles with instructions that can only be executed on ports in 𝑄∗. In
other words, tp−1

𝑀

(
𝑒
)

is equal to the total mass of instructions that need to be executed on
ports from 𝑄∗, divided by the size of 𝑄∗, i.e., 𝐵(𝑄∗). Consequently, finding a port subset 𝑄
that maximizes 𝐵(𝑄) gives us precisely the inverse throughput tp−1

𝑀

(
𝑒
)
.

Our algorithmic implementation of this characterization computes the max operation in
Equation (5.1) by enumerating all subsets of the set of ports and evaluating the corresponding
term. The execution time of this algorithm is in Θ(2 |P | ), which is substantially more expensive
than the polynomial execution time of LP solving (Bertsimas and Tsitsiklis, 1997) from a
complexity-theoretic point of view. Nevertheless, this algorithm is considerably faster for
practical problems, as we show in Section 5.2.3. On the one hand, this is due to the small
number of execution ports available in modern systems. Practical port numbers in typical
systems range from eight (e.g., Intel Skylake (Intel, 2023a, Section 2.6) and ARM A72 (ARM,
2015)) over ten (e.g., AMD Ryzen (AMD, 2021b)) to 12 (e.g., Intel Golden Cove (Intel, 2023a,
Section 2.3)). On the other hand, thanks to the simplicity of the above algorithm, it is amenable
to aggressive performance optimizations such as vectorization.

5.2. Experimental Evaluation
In this section, we describe the evaluation of PMEvo as we have performed it for the original
publication (Ritter and Hack, 2020). The evaluated version of PMEvo does not include the
dedicated treatment for throughput bottlenecks outside of the port mapping model described
in Section 5.1.3. Throughput measurements were performed with an earlier version of the
mechanism described in Section 3.2.1. We will revisit PMEvo for another evaluation in
Section 6.3.6, where we compare it to the more recent Palmed (Derumigny et al., 2022a) and
the alternative port mapping inference algorithm we describe in Chapter 6.
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Chapter 5. Evolving Port Mappings with PMEvo

5.2.1. Setup
Evaluated Processors

We use three devices with processors of distinct manufacturers for our evaluation, denoted as
SKL, ZEN, and A72 in the following. Relevant parameters are listed in Table 5.1. SKL has a
separate pipeline for long-running operations, marked as DIV, that has to be modeled as an
additional port. One port of A72 is only used for processing branch instructions (BR). It is
omitted in our model as we do not consider instructions that alter control flow. All evaluated
systems have frequency scaling and flexible overclocking mechanisms (e.g., Intel Turbo Boost)
disabled to facilitate reliable measurements.

A72 and ZEN are of particular interest since they do not provide the per-port performance
counters that other approaches rely on (AMD, 2019; ARM, 2016) whereas SKL allows a
comparison to related work.

Considered Instructions

We select for each instruction set architecture under test a relevant set of instruction schemes.
These sets are derived from the instructions that compilers emit when compiling the SPEC
CPU 2017 benchmarks (Bucek et al., 2018). Our instruction schemes for the ARMv8-A ISA
are extracted from the instructions that GCC emits.2 For x86-64, we only extract the used
instruction mnemonics from the output of Clang3 and use the machine-readable instruction
table of uops.info (Abel and Reineke, 2019) to generate the corresponding instruction schemes.

We exclude the following instructions from these sets:

• Branch and jump instructions, since their throughput heavily depends on the branch
predictor.

• Instructions with implicitly read operands, since these cause dependencies that cannot
be resolved through register allocation. Throughput for these could be measured by
introducing additional dependency-breaking instructions as done by Abel and Reineke
(2019).

• x86 SSE instructions, since these add transition penalties when benchmarked together
with AVX instructions.

• All instruction variants that operate on sub-registers, to keep the run time of the
evaluation bearable.

• x86 instructions that are not supported by Ithemal (Mendis et al., 2019), to have a
common baseline for all comparisons.

The resulting instruction descriptions contain 310 instruction schemes for the x86-64 ISA and
390 instruction schemes for the ARMv8-A ISA.

2We used version 4.9.4 of GCC with the -O3 flag.
3We used version 8.0 of Clang with the -O3 -mavx2 flags.
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Table 5.1. Properties of the systems under investigation.

SKL ZEN A72

Manufacturer Intel AMD RockChip
Processor Core i7 6700 Ryzen 5 2600X RK3399

Microarchitecture Skylake Zen+ Cortex-A72
# Ports 8 + DIV 10 7 + BR

Instruction Set x86-64 x86-64 ARMv8-A
Clock Frequency 3.4 GHz 3.6 GHz 1.8 GHz

RAM 32 GB 32 GB 4 GB

5.2.2. Model Predictions
Directly measuring the quality of a port mapping is hindered by the lack of ground truth
for most processors. We therefore evaluate the inferred port mappings by their ability to
accurately predict the measured inverse throughput of port-mapping-bound experiments. For
each microarchitecture, we use a different benchmark set of 40,000 experiments, which we
instantiate with operands and whose inverse throughput we measure as described in Sec-
tion 3.2.1. These experiments are sampled uniformly at random from the set of all instruction
multi-sets of size 5.

One major use case of PMEvo is to provide port mappings for performance estimation
tools. Therefore, we compare the prediction accuracy of PMEvo’s mappings to the modeling
of port mappings in state-of-the-art performance prediction tools. To this end, we use the
same benchmark sets to evaluate IACA (Intel, 2012) (version 3.0), llvm-mca (Di Biagio, 2018)
(from LLVM version 8.0.14), Ithemal (Mendis et al., 2019), and the port mapping provided by
uops.info (Abel and Reineke, 2019) for their respective supported platforms. Note that these
benchmarks specifically stress the port-mapping aspect of these prediction tools because they
do not contain any data dependencies. They are therefore not representative to evaluate the
overall prediction quality of these tools on compiler-generated code.5 Section 7.2 discusses
the performance estimation tools we evaluate in further detail.

Of these four related approaches, only the port mapping from uops.info is directly compa-
rable to PMEvo’s results because it can only predict the inverse throughput of instruction
sequences without data dependencies. The other approaches are more general in that they can
predict the inverse throughput of arbitrary instruction sequences, but might not be attempting
to provide good accuracy for dependency-free code. For example, Ithemal uses a neural
network model trained via supervised learning rather than an explicit port mapping model.

4Initially, we performed these experiments on the more recent LLVM version 9.0.1 but found a severe regression
in prediction accuracy on our experiments compared to version 8.0.1. See Section 8.3.1 for a discussion of this
regression that has been fixed after our report.

5We refer to the BHive project (Chen et al., 2019) for an evaluation of their accuracy for instruction sequences
extracted from code generated for common benchmarks.
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Table 5.2. PMEvo mapping characteristics.

SKL ZEN A72

benchmarking time 20 h 27 h 74 h
inference time 5 h 21 h 12 h

instructions found congruent 69% 53% 56%
number of µops 17 15 9

Being trained on collected basic blocks from entire programs where dependencies are to be
expected, accurate predictions for dependency-free code might be outside of the scope of
Ithemal.

For all three platforms, we ran our PMEvo prototype with a population size of 100,000
and an 𝜀 of 0.05 for congruence filtering. Table 5.2 gives numbers on the time required to
benchmark inverse throughputs for experiments and to infer a port mapping for all considered
platforms. It further shows that the effectiveness of congruence filtering is considerable: The
relevant instructions are reduced by 53%–69%. The low number of different µops used in the
inferred port mappings indicates that PMEvo developed compact representations for all three
platforms. The uops.info port mapping for SKL uses 12 different µops for the same set of
instructions.

We report the prediction accuracy in terms of the mean absolute percentage error (MAPE),
Pearson’s correlation coefficient 𝜌𝑃 , and Kendall’s ranking correlation coefficient 𝜏𝐾 . A high
𝜌𝑃 indicates a linear correlation of predictions and measurements whereas a high 𝜏𝐾 implies
that sorting the instruction sequences by predicted or measured inverse throughput leads to
similar rankings. The value range for 𝜌𝑃 and 𝜏𝐾 is [−1, 1], ranging from negative correlation
(−1) over no correlation (0) to maximal correlation (1).6

Additionally, we visualize the prediction accuracy of our approach in comparison to related
work with a heat map for each pair of architecture and prediction mechanism. For each heat
map, the experiments are considered as data points with measured and predicted inverse
throughput. The heat map visualizes where these data points fall among 35 × 35 equally
sized bins. Each bin’s shade represents the number of experiments that lie in it. Ideally,
measurement and prediction agree, leading to experiments close to the marked diagonal line.
Experiments below the diagonal indicate an underestimation of the inverse throughput, those
above are overestimated by the predictor.

SKL

For the Intel Skylake platform, we compare the prediction accuracy of PMEvo to all aforemen-
tioned approaches: the port mapping from uops.info, IACA, llvm-mca, and Ithemal using its
publicly-available pre-trained network for the Skylake microarchitecture.

6See Section 3.2.2 for more on these accuracy metrics.
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(a) IACA on SKL
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(b) llvm-mca on SKL
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(c) Ithemal on SKL

0 5 10 15 20 25 30 35
measured cycles

0
5

10
15
20
25
30
35

pr
ed

ic
te

d
cy

cl
es

100

102

104

(d) uops.info on SKL
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(e) PMEvo on SKL

Figure 5.2. Prediction accuracy on port-mapping-bound experiments for SKL. Each heat map
relates predicted and measured inverse throughput in cycles per experiment. Filled bins
closer to the diagonal line indicate better predictions. The experiments were set up and
measured as described in Section 3.2.1. (Ritter and Hack, 2020)

The inputs for IACA, llvm-mca, and Ithemal consist of the loop body of the experiments,
unrolled to a length of ten instructions so that operand allocation can avoid loop-carried
dependencies. For the entire set of experiments, we report the results of the tools for this
input, divided by the number of experiments in the unrolled loop body.

The accuracy metrics for the five tools are listed in Table 5.3.
IACA, llvm-mca, and uops.info all predict with an average error of less than 10% with

high correlation values. This impression is confirmed by the corresponding heat maps in
Figures 5.2 (a), 5.2 (b), and 5.2 (d): Most of the experiments are close to the ideal line. They
also all show a cluster of experiments below the diagonal line. These can be attributed to the
family of bit test instructions (BT, BTC, BTR, BTS), for which the measurable inverse throughput
does not agree with the inverse throughput implied by the port usage. The throughput
measurements of Abel and Reineke (2019) confirm this discrepancy.
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Chapter 5. Evolving Port Mappings with PMEvo

Table 5.3. Prediction accuracy for port-mapping-bound experiments on SKL.

MAPE Pearson’s 𝜌𝑃 Kendall’s 𝜏𝐾
IACA 8.0% 0.86 0.71

llvm-mca 9.7% 0.87 0.71
Ithemal 60.6% 0.35 0.41

uops.info 9.3% 0.91 0.79
PMEvo 14.6% 0.98 0.76

Our approach, PMEvo, has a higher relative error than IACA, llvm-mca, and uops.info, but
comparable correlation coefficients. The corresponding heat map in Figure 5.2 (e) shows a
distribution close to the diagonal line. The bit test instructions that caused inaccuracies for the
other approaches have a representation as multiple µops that map to the same ports. While
differing from the real port mapping, this fits better to the observable inverse throughputs.

For Ithemal, we observe lower correlations and a high prediction error. This differs from
the evaluation by Mendis et al. (2019) where Ithemal exhibits superior results in these metrics
in comparison to IACA. Their findings for the accuracy of IACA are consistent with the ones
presented here. As already noted, the difference in performance is likely a consequence of
the different characteristics of the experiments used here and in the experimental evaluation
of their paper: Ithemal is trained and validated on basic blocks emitted from a compiler for
entire programs, which exhibit substantially more data dependencies than our experiments.

However, an appropriate interpretation of these results needs to be judicious: A high
prediction accuracy for our experiments could have indicated a generalization of Ithemal to
dependency-free code. Yet, the observed low prediction accuracy for our inputs does not allow
conclusions about Ithemal’s performance across real-world programs.

While PMEvo’s inferred port mapping provides reasonably accurate throughput predictions,
the inferred structures rarely match the port mapping from uops.info. For instance, instructions
that only use one µop that can be executed on SKL’s four ports with arithmetic logic units
according to uops.info use a µop with three available ports in PMEvo’s mapping. Generally,
the entries of PMEvo’s port mapping are simpler than the corresponding ones from uops.info.
Double-precision vector additions with and without memory operand, for example, are
represented as follows in uops.info’s port mapping:

vaddpd ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨YMM⟩𝑅 {
{{

0, 1
}}

vaddpd ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨MEM[256]⟩𝑅 {
{{

0, 1
}
,
{
2, 3

}}
PMEvo’s port mapping also identifies an interference between these instructions, but with
fewer µops:

vaddpd ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨YMM⟩𝑅 {
{{

2, 4
}}

vaddpd ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨MEM[256]⟩𝑅 {
{{

4, 6
}}
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Table 5.4. Prediction accuracy for port-mapping-bound experiments on ZEN and A72.

MAPE Pearson’s 𝜌𝑃 Kendall’s 𝜏𝐾
PMEvo (ZEN) 13.5% 0.94 0.76

llvm-mca (ZEN) 50.8% 0.86 0.40
PMEvo (A72) 21.4% 0.68 0.64

llvm-mca (A72) 65.7% 0.67 0.51

As the uops.info port mapping is the result of a constructive inference algorithm that exploits
hardware performance counters, we expect that it is a more faithful characterization of the
Skylake microarchitecture than PMEvo’s mapping.

ZEN and A72

For the AMD and ARM microarchitectures, we compare PMEvo’s results only to llvm-mca
since the other approaches are only available for Intel architectures.

The metrics for both architectures in Table 5.4 show a common trend: PMEvo exhibits a
considerably smaller prediction error than llvm-mca.

For ZEN, PMEvo inferred a port mapping that predicts with close to equal accuracy as its SKL
mapping. With 21.4%, the prediction error of the PMEvo mapping for A72 is notably higher
while correlations are lower. This observation is confirmed by the corresponding heat maps
in Figure 5.3. PMEvo on A72 is prone to underestimating experiments with longer running
times. We attribute this to A72’s less elaborate out-of-order execution engine (according to
the respective optimization guides (AMD, 2021b; ARM, 2015; Intel, 2023a)), which renders
the experiments less representative for the port mapping. Limits on the extent to which
instructions can be reordered and the number of concurrently dispatched µops may slow the
execution in ways that the port mapping model does not capture.

In contrast to its results for SKL, llvm-mca has substantially larger prediction errors. The
heat maps indicate a significant overestimation of the inverse throughput. One possible
explanation is that these architectures are less in the focus of the developers than SKL and
the respective port mapping models might not yet be as elaborate and accurate as the one for
SKL. Especially for these two architectures, the models derived with PMEvo may significantly
increase the accuracy of llvm-mca’s throughput prediction.

5.2.3. Performance of the Bottleneck Simulation Algorithm

This section explores the performance behavior of the bottleneck simulation algorithm as
presented in Section 5.1.4. For this purpose, we compare our optimized implementation of the
bottleneck simulation algorithm to a realization of the linear program from Theorem 3.12 in
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(a) llvm-mca on ZEN
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(b) PMEvo on ZEN
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(c) llvm-mca on A72
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(d) PMEvo on A72

Figure 5.3. Prediction accuracy on port-mapping-bound experiments for ZEN and A72,
note the differently scaled axes. Each heat map relates predicted and measured inverse
throughput in cycles per experiment. Filled bins closer to the diagonal line indicate better
predictions. The experiments were set up and measured as described in Section 3.2.1.
(Ritter and Hack, 2020)

the state-of-the-art LP solver Gurobi (Gurobi Optimization, LLC, 2023).7 The running times
reported for the LP version include model construction via the Gurobi C++ API as well as the
actual solving time. Since Gurobi’s running times with multiple threads were indistinguishable
from single-threaded mode, all reported numbers were obtained with a single thread on SKL.

There are two significant parameters that influence the execution time of both simulation
methods: the number of ports in the microarchitecture and the length of the experiments.8 We
evaluate these parameters with randomly generated microarchitectures with the appropriate
number of ports and an artificial instruction set architecture of 100 instructions. Figure 5.4

7We use version 7.5.2 of Gurobi for this evaluation.
8The number of instructions in the instruction set architecture is not relevant, since both implementations ignore

instructions that do not occur in the experiment.
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Figure 5.4. Execution time comparison of the bottleneck simulation algorithm and the LP

solver with varying port numbers with experiments of length 4 (a) and with varying
length of experiments with 10 ports (b). Both have their vertical axis in a logarithmic
scale.

displays the results of this evaluation. For each (number of ports, length of experiments)
configuration, 128 randomly sampled experiments were simulated with each of 8 randomly
sampled three-level mappings. The resulting seconds per experiment value for each pair of
experiment and mapping is the arithmetic mean over 1000 simulations. The points in the
graph mark the median of these values for each (number of ports, length of experiments)
configuration. In all cases, the variance in execution time around this median is too low to be
visible in the graphs; error bars are therefore omitted.

Influence of the Number of Ports Figure 5.4 (a) shows the results for experiments con-
sisting of 4 instructions with a varying number of ports. For port numbers up to 12 as they
occur in contemporary platforms, the bottleneck simulation algorithm outperforms the linear
program by two orders of magnitude. Starting from 12 ports, the simulation time with the
bottleneck simulation algorithm rises with a stronger incline. The bottleneck simulation
algorithm reaches the simulation time of the LP implementation at about 18 ports. With the
same inputs, the simulation time via the LP solver grows substantially slower with the number
of ports. We conclude that the exponential run-time behavior of the bottleneck simulation
algorithm, as explained in Section 5.1.4, has a negligible impact for inputs of interest.

Influence of the Length of Experiments The experiments we use for the evolution-
ary algorithm are of very limited length to allow reliable execution on actual processors.
Nevertheless, exploring the behavior with different lengths of experiments is worthwhile
for the discussion of the bottleneck simulation algorithm. The results for varying lengths
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of experiments in an architecture with 10 ports are displayed in Figure 5.4 (b). Here, the
bottleneck simulation algorithm consistently outperforms the LP solver by two orders of
magnitude. The execution time for both methods grows sub-exponentially with the length
of experiments, with an almost identical incline in the log-scale plot. This indicates that the
rate at which the execution time rises with growing experiment length for the LP solver is
considerably higher than for the bottleneck simulation algorithm.

5.3. Conclusions: PMEvo
PMEvo is the first published automatic port mapping inference approach that does not
depend on specific hardware performance counters. Instead, it measures the throughput of a
fixed set of port-mapping-bound microbenchmarks and applies an evolutionary algorithm
to search for port mappings whose throughput predictions coincide with the measurements.
The inherently parallelizable evolutionary algorithm in combination with our vectorizable
bottleneck simulation algorithm to compute port mapping fitness allow us to leverage modern
processing hardware effectively for port mapping inference.

As PMEvo only depends on time and clock-frequency measurements, it is widely applicable,
allowing us to infer port mappings for microarchitectures where none have been available
before. A drawback of PMEvo is that it only approximates solutions to the online port mapping
inference problem. While the resulting port mappings may provide adequate throughput
prediction accuracy, their structure usually does not match the actual hardware. When
comparing PMEvo’s inferred port mapping for Intel’s Skylake microarchitecture to available
results by Abel and Reineke (2019), we find substantial structural differences. In contrast to
the port mapping inference algorithm of uops.info (Abel and Reineke, 2019), PMEvo cannot
provide explanatory benchmarks that witness each inferred port usage and therefore bolster
confidence in the resulting models. We address these limitations of PMEvo in the following
Chapter 6.
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Chapter 6
Explainable Port Mapping Inference
with Sparse Performance Counters

In Chapter 5, we presented a method to infer port mappings that is applicable when we can
only observe the execution time of microbenchmarks. While the resulting port mappings
are suitable to estimate how instructions execute in parallel, we cannot ensure that inferred
mappings closely mirror the structure of the actual hardware. The port mapping inference
algorithm for uops.info by Abel and Reineke (2019) can provide more confidence in the
structure of the resulting port mappings. Using hardware performance counters, they can
observe on which ports of the processor µops are executed when running a microbenchmark.
This allows them to design microbenchmarks that serve as an explanation of the resulting
port usage: When the uops.info algorithm determines that a µop 𝑢 for an instruction can be
executed on a set 𝑝 of ports, there are experiments that show that 𝑢 can be executed on any
port in 𝑝 as well as experiments demonstrating that 𝑢 cannot be executed on any other port.

In this chapter, we establish that not all performance counters used in the uops.info al-
gorithm are required for such an explainable algorithm when the investigated processor
adheres to the port mapping model. We present an algorithm in a similar style as the uops.info
algorithm that does not use per-port µop counters. Aside from time measurements, only
one performance counter is required to count the total number of µops executed in a mi-
crobenchmark. In contrast to the uops.info algorithm, our adaptation therefore applies to
AMD’s Zen microarchitectures, which are documented to provide this performance counter
(AMD, 2019, Section 2.1.15.4.5). Our algorithm thus alleviates a practical limitation of the
original algorithm, while providing similar insights into the structure of the actual hardware.

The gain in applicability, however, comes at the cost of robustness: Our algorithm requires
that the processor operates very closely to the port mapping model and that we can perform
very accurate throughput measurements. We evaluate this approach and its trade-offs with
a detailed case study of the AMD Zen+ microarchitecture in Section 6.3. In Section 7.1, we
highlight how our algorithm differs from Palmed by Derumigny et al. (2022a), who also
adapted the basic idea of the uops.info algorithm to infer a different kind of resource model.

The work described in this chapter has been published at the ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2024)
(Ritter and Hack, 2024).
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6.1. Starting Point: The uops.info Algorithm
The port usage algorithm presented by Abel and Reineke (2019, Section 5.1) relies on blocking
instructions. A blocking instruction for a subset 𝑄 ⊆ P of ports in a three-level port mapping
𝑀 := (I ∪· U ∪· P, 𝐹 ∪· 𝐸) is an instruction that is decomposed into a single µop that can be
executed on exactly the ports in 𝑄 . Formally, 𝑖 ∈ I is a blocking instruction for 𝑄 ⊆ P if, and
only if,

∃𝑢 ∈ U. {(𝑖′, 𝑛′, 𝑢′) ∈ 𝐹 �� 𝑖 = 𝑖′} =
{(𝑖, 1, 𝑢)} ∧ {

𝑘
�� (𝑢, 𝑘) ∈ 𝐸} = 𝑄

The algorithm needs blocking instructions for the port sets of every µop in the port mapping.
Abel and Reineke find suitable blocking instructions with microbenchmarks. In contrast to the
experiments that we have seen so far in this thesis, Abel and Reineke do not only observe the
number of cycles required to execute the code in a steady state, but also the results of several
hardware performance counters. They use performance counters that register the number of
µops executed for each individual execution port. These counters make it straightforward to
find and characterize blocking instructions: An instruction 𝑖 is a blocking instruction if we
count a single µop per executed 𝑖 instruction and it blocks exactly the ports where µops are
counted when 𝑖 is executed repeatedly without data dependencies.

Example 6.1. Consider the instruction scheme of a 32-bit integer addition with only register
operands on the Intel Skylake microarchitecture:

add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅
When we benchmark this instruction scheme in a steady state, the hardware performance
counters of the Intel architecture show that

(a) an add instruction requires 0.25 cycles on average, i.e., four of them can execute in a
single cycle,

(b) the processor executes one µop per add instruction, and

(c) the µops are executed in equal parts on ports 0, 1, 5, and 6 of the microarchitecture
(which has a total of 8 ports).

This add instruction scheme can therefore block the port set
{
0, 1, 5, 6

}
. Observation (c)

requires per-port µop counters that are not present in AMD’s processors. ⌟

Abel and Reineke select one blocking instruction for each occurring port set. A special case
are the µops required to store data into memory: On Intel’s microarchitectures, these come
only in pairs: one µop for the address generation and one to transfer the data. Abel and
Reineke use a single blocking instruction for both µops. They then proceed according to
Algorithm 6.1.

Each instruction 𝑖 is investigated individually to infer its port usage. The foundUops multiset
of µops for the instruction 𝑖 (line 2) is filled throughout a run of the algorithm. The algorithm
benchmarks the interaction of 𝑖 with each blocking instruction 𝐵 for a set 𝑄 of ports, starting
with blocking instructions for the smallest port sets and proceeding to increasing port set
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Input: instruction under investigation 𝑖
1 blockingInsns← tuples of blocking instructions with their blocked ports,

sorted by ascending number of blocked ports
2 foundUops← {}
3 for (𝐵,𝑄) ∈ blockingInsns do
4 𝑘 ← sufficient number of blocking instructions 𝐵 to flood 𝑄
5 uops← measureUopsOnPorts({𝐵 ↦→ 𝑘, 𝑖 ↦→ 1}, 𝑄)
6 surplusUops← uops − 𝑘
7 for 𝑄 ′, 𝑛 ∈ foundUops do
8 if 𝑄 ′ ⊂ 𝑄 then
9 surplusUops← surplusUops − 𝑛

10 if surplusUops > 0 then
11 foundUops[𝑄] ← surplusUops
12 return foundUops

Algorithm 6.1. Port mapping inference for uops.info. (Abel and Reineke, 2019)

sizes. Each microbenchmark contains the instruction 𝑖 and enough copies of the considered
blocking instruction 𝐵 such that any µop that can be executed on ports outside of𝑄 is executed
on these alternative ports (lines 4, 5). The number 𝑘 of blocking instruction copies needs to
be high enough to ensure that each blocked port in 𝑄 receives at least as many µops as 𝑖 uses:

𝑘 ≥ |𝑄 | · 𝜇opsOf (𝑖) (6.1)

Otherwise, ports in 𝑄 might be unoccupied while µops of 𝑖 are issued, allowing µops of 𝑖 to
be executed on 𝑄 even though they could be executed on other ports.

When running this microbenchmark, Abel and Reineke count executed µops on ports
in 𝑄 via per-port performance counters. The result is the sum of the number 𝑘 of blocking
instructions and the number of µops of 𝑖 that only use ports in 𝑄 . These surplus µops include
not only µops that can be executed on all ports of 𝑄 but also those that only have a subset
of 𝑄 available. Because we assume that there is a blocking instruction for the port set of
each occurring µop and because the blocking instructions are sorted by ascending number of
blocked ports, all µops for proper subsets of 𝑄 were characterized in previous iterations of
the loop. We can therefore subtract the numbers of these previously characterized µops from
the surplus µops (lines 7–9) to obtain the number of µops of 𝑖 that can use every port in 𝑄
(line 11). Once interactions with each blocking instruction are investigated, the port usage
of 𝑖 is completely characterized.

As a performance optimization, Algorithm 6.1 can terminate early once the number of
characterized µops for 𝑖 is equal to the total number of µops observed when benchmarking 𝑖
on its own.

Example 6.2. Consider a processor that operates according to the port mapping in Fig-
ure 6.1 (a). With per-port µop counters, the uops.info algorithm finds three blocking instruc-
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U:

P:

add fma mul ld
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1 2 1 1 1

(a) reference port mapping

𝑝1 𝑝2 𝑝3

𝑢1 (fma)
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𝑢2 (fma)

0
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(b) with 𝑘 = 3 mul blocking instructions

𝑝1 𝑝2 𝑝3

𝑢1 (fma)
𝑢1 (fma)

𝑢2 (fma)
𝑢3 (ld)

0
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(c) with 𝑘 = 3 ld blocking instructions

𝑝1 𝑝2 𝑝3

𝑢1 (add) 𝑢1 (add)

𝑢1 (fma)
𝑢1 (fma)

𝑢2 (fma)

0

1

2

3

4

(d) with 𝑘 = 6 add blocking instructions

Figure 6.1. Example port mapping (a) and possible steady-state distributions of µops per port
in benchmarks with different blocking instructions (b-d).

tions: mul for the port set
{
𝑝2

}
, ld for

{
𝑝3

}
, and add for the ports

{
𝑝1, 𝑝2

}
. For this example,

we use 𝑘 := |𝑄 | · 𝜇opsOf (𝑖) blocking instructions per benchmark.
When characterizing the port usage of the fma instruction, the algorithm first benchmarks

fma with the blocking instructions for port sets of size 1, i.e., mul and ld (with 𝑘 = 1 · 3 = 3).
For the benchmark with mul as blocking instruction, µops are distributed to the ports as shown
in Figure 6.1 (b) in steady state execution. Measurements with per-port µop counters therefore
indicate that four µops are executed on the port set

{
𝑝2

}
. With 𝑘 = 3 blocking instructions

and no µops that were characterized for smaller port sets, the algorithm concludes that fma
uses 4 − 3 = 1 µop that can be executed exclusively on

{
𝑝2

}
. For a similar benchmark with ld

as blocking instruction (Figure 6.1 (c)), we observe only the blocking instructions on the port
set

{
𝑝3

}
. This implies that fma has no µops that use (only)

{
𝑝3

}
.

Next, fma is benchmarked with the add instruction, which blocks a port set of size 2 (i.e.,
𝑘 = 2 · 3 = 6). We measure a total of nine µops on the ports

{
𝑝1, 𝑝2

}
. Subtracting the six
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blocking instructions, three surplus µops remain. One of these surplus µops is explained by
the

{
𝑝2

}
µop that we found previously. The remaining two µops therefore need to be executed

on the port set
{
𝑝1, 𝑝2

}
.

No more blocking instructions remain, leaving us with the correct port usage for fma:{{
𝑝2

} ↦→ 1,
{
𝑝1, 𝑝2

} ↦→ 2
}

⌟

For the choice of the number 𝑘 of blocking instructions (line 4 in Algorithm 6.1), Abel and
Reineke (2019) propose in their article the product of the maximum latency of the instruction 𝑖
under investigation and the number of ports of the microarchitecture. This choice does not
satisfy Constraint 6.1: We found that it is, in general, not sufficient to fully flood the blocked
ports, see Appendix E.1 for a counter example. The uops.info implementation1 uses a different,
more complex term for the number 𝑘 of blocking instructions:

𝑘1 ← 2 · |𝑄 | ·max(1, ⌊tp−1 ({
𝑖 ↦→ 1

})⌋)
𝑘2 ← |𝑄 | · 𝜇opsOf (𝑖)
𝑘 ← min

(
max(𝑘1, 𝑘2, 10), 100

)
The result is a number of blocking instructions between 10 and 100 that depends on the size |𝑄 |
of the blocked port set, the number tp−1 ({

𝑖 ↦→ 1
})

of cycles required to execute 𝑖 on its own
in a steady state, and the total number 𝜇opsOf (𝑖) of µops into which 𝑖 is decomposed. Since
this term does not share the problem of the paper version for instructions 𝑖 with a reasonable
number of µops, we use it for our adapted algorithm as well. Compared to an implementation
that only satisfies Constraint 6.1 tightly, we expect the typically larger number of blocking
instructions in this term to be more resilient against non-optimal scheduling decisions in the
hardware.

A key benefit of this port mapping inference algorithm is that the performed microbench-
marks serve as witnesses for the result: For each instruction 𝑖 and each port set 𝑄 , there is an
experiment explaining if 𝑖 uses a µop for 𝑄 .

6.2. Our Adapted Algorithm
For AMD’s Zen microarchitectures and several ARM designs, the uops.info algorithm is not
applicable as they lack performance counters for executed µops per port. The key insight of
this work is that the problems requiring per-port µop counters in the uops.info algorithm can
be solved without them if we assume that the processor follows the port mapping model for
some (unknown) port mapping. In the following, we provide alternatives for the relevant
parts of the uops.info algorithm that do not use per-port µop counters. The only performance
counter used, besides time measurements, counts the total number of µops executed for a
microbenchmark.

1https://github.com/andreas-abel/nanoBench/blob/faf75236cade57f7927f9ee949ebc679fc7864b7/to
ols/cpuBench/cpuBench.py#L3393
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6.2.1. Identifying Unique Blocking Instructions
The uops.info algorithm uses per-port performance counters to identify and characterize the
blocking instructions. We propose an alternative approach:

1. Count the µops issued when executing each instruction individually. Each instruction with
only a single µop is a candidate. Since these candidate instructions correspond to a single
µop each, we can treat them as instructions in the simpler two-level model described in
Section 3.1.1.

2. Determine for each candidate instruction 𝑖 the number of ports that can execute its µop. It
is equal to the number of instances of 𝑖 that can be executed per cycle, i.e., the (non-inverse)
throughput tp

({
𝑖 ↦→ 1

})
= 1/tp−1 ({

𝑖 ↦→ 1
})

, which we can measure.

3. Filter blocking instruction candidates that block the same port set so that only one blocking
instruction remains for each port set. Two blocking instruction candidates cannot be
redundant if their port sets have different sizes, as determined in the previous step. For
two candidates 𝑖 and 𝑗 with equally sized port sets, we exploit the criterion of Theorem 6.3
(below) to check their port sets for equality: If

tp−1 ({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= tp−1 ({

𝑖 ↦→ 1
}) + tp−1 ({

𝑗 ↦→ 1
})

holds, i.e., the inverse throughputs are additive, the port sets of 𝑖 and 𝑗 are equal. We test
this condition with throughput benchmarks.

4. Characterize the port usage of the found unique blocking instructions. This is a port
mapping inference problem in the two-level model (since each involved instruction is
known to correspond to a single µop). We use the counter-example-guided online port
mapping inference algorithm described in Chapter 4 for this purpose. Since we have already
characterized the number of ports per instruction, we additionally encode this information
as constraints on the inferred port mappings.

The result is a set of blocking instructions with corresponding port usages that are indistin-
guishable from the port mapping used by the hardware.

Theorem 6.3. Let 𝑀 = (I ∪· P, 𝐸) be a two-level port mapping and let 𝑖, 𝑗 ∈ I such that
|𝑀 [𝑖] | = |𝑀 [ 𝑗] | and such that the following holds:

tp−1
𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= tp−1

𝑀

({
𝑖 ↦→ 1

}) + tp−1
𝑀

({
𝑗 ↦→ 1

})
Then, 𝑖 and 𝑗 use the same set of ports: 𝑀 [𝑖] = 𝑀 [ 𝑗].

Proof. See Appendix A.4.1. □

We have seen that the SMT-based counter-example-guided algorithm from Chapter 4 does not
scale to infer port mappings for realistic numbers of instructions on its own. It is, however,
applicable in this setting. Since the task is limited to unique blocking instructions, only a
small number of instructions, which behave according to the two-level model, need to be
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considered. For example, the port mapping that Abel and Reineke (2019) inferred for the Intel
Skylake microarchitecture contains only 12 distinct port sets.

Furthermore, the counter-example-guided inference algorithm handles situations like the
storing µops of Intel microarchitectures, where the µops only occur in a fixed constellation
without proper blocking instructions: The extension to the three-level model with a fixed
instruction-to-µop mapping that we present in Section 4.4 and evaluate in Section 4.5.2
can allow more than one µop for specific instructions while treating the remaining blocking
instructions according to the two-level model. We explore this in the case study in Section 6.3.4.

6.2.2. Determining How Many µops Cannot Evade the Blocking
Instructions

The uops.info algorithm also relies on the per-port µop counters to determine how many
µops are executed on ports that are flooded with blocking instructions. In the port mapping
model, we do not need performance counters for this purpose. As in the algorithm, let
the experiment 𝑒 :=

{
𝐵 ↦→ 𝑘, 𝑖 ↦→ 1

}
consist of the instruction 𝑖 under investigation and

𝑘 blocking instructions 𝐵 for a port set𝑄 . Consider further an experiment 𝑒′ :=
{
𝐵 ↦→ 𝑘

}
that

benchmarks the blocking instructions alone. If all µops of 𝑖 can be executed on unblocked
ports, tp−1 (𝑒) = tp−1 (𝑒′) holds. Otherwise, each µop of 𝑖 that needs to be executed on 𝑄
utilizes one of the flooded ports for one cycle per iteration. Each such µop therefore adds 1/|𝑄 |
to the observed inverse throughput, i.e.:

tp−1 ({
𝐵 ↦→ 𝑘, 𝑖 ↦→ 1

})
= tp−1 ({

𝐵 ↦→ 𝑘
}) + µops of 𝑖 executed on 𝑄

|𝑄 |
We can therefore compute the number of non-evading µops with the following formula:

µops of 𝑖 executed on 𝑄 =

(
tp−1 ({

𝐵 ↦→ 𝑘, 𝑖 ↦→ 1
}) − tp−1 ({

𝐵 ↦→ 𝑘
}) ) · |𝑄 |

Example 6.4. Consider the three-level port mapping in Figure 6.2 (a). The instructions a
and b are blocking instructions for the port sets {𝑝1, 𝑝2} and {𝑝2, 𝑝3}, respectively. When we
supply an experiment with a sufficient number 𝑘 of copies of instruction a, the 𝑝1 and 𝑝2
ports are flooded with corresponding 𝑢1 µops. If, as in Figure 6.2 (b), the tested instruction’s
µops (one 𝑢2 µop for b) can be executed on other ports, they will only be executed on these
other ports. The resulting inverse throughput 𝑡1 is therefore the same as if only the blocking
instructions were executed:

𝑡1 =
𝑘

|{𝑝1, 𝑝2}|
In case a number 𝑛 of µops of the instruction under test can only be executed on the flooded
ports, like the 𝑢1 µop of instruction c in Figure 6.2 (c), the load on all flooded ports rises. The
inverse throughput 𝑡2 is therefore higher:

𝑡2 =
𝑘 + 𝑛
|{𝑝1, 𝑝2}| = 𝑡1 +

𝑛

|{𝑝1, 𝑝2}| = 𝑡1 +
𝑛

2
⌟
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I:

U:

P:

a c b

𝑢1 𝑢2

𝑝1 𝑝2 𝑝3

1 1 1 1

(a)

𝑝1 𝑝2 𝑝3

𝑢1 (a) 𝑢1 (a)

𝑢2 (b)

𝑡1

(b) Instruction b under test.

𝑝1 𝑝2 𝑝3

𝑢1 (a)
𝑢1 (a)

𝑢1 (c)

𝑢2 (c)

𝑡1
𝑡2

(c) Instruction c under test.

Figure 6.2. Example with a three-level port mapping (a) and schematic executions where (b)
all µops under test evade the flooded ports or (c) one µop cannot evade.

6.2.3. Handling Pipeline Bottlenecks

As we have shown in Section 3.2.2, there is at least one way in which we expect modern pro-
cessors to not behave according to the port mapping model. On modern x86-64 architectures,
sustained full utilization of all execution ports is usually not possible because of bottlenecks
in other parts of the CPU, commonly the decoding frontend and its caches or the instruction
retirement. With a bottleneck that bounds the execution rate to at most 𝑅max instructions per
cycle, experiments that are faster according to the port mapping model are slowed to meet
the limit.

Such bottlenecks can affect the correctness of our algorithm. When characterizing the port
set sizes of a blocking instruction 𝑖 (step 2 in Section 6.2.1) for a microarchitecture with a
bottleneck of 𝑅max instructions per cycle, one of three cases could occur:

• 𝑖 can use less than 𝑅max ports. Then, the microbenchmark is unaffected by the bottleneck.

• 𝑖 can use exactly 𝑅max ports. This can occur, e.g., on many Intel microarchitectures.

• 𝑖 can use more than 𝑅max ports. We cannot distinguish this from the previous case via
microbenchmarks. However, this is unlikely to occur in practice, since such a processor
would have resources that can never be fully utilized.
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Furthermore, checking blocking instruction candidates from the latter two cases for equiva-
lence (step 3 in Section 6.2.1) is futile: Any combination of two blocking instructions for 𝑅max
ports leads to at least 𝑅max instructions executed per cycle according to the port mapping
model. With an execution rate that is limited to at most 𝑅max instructions per cycle, the condi-
tion for equivalence in Theorem 6.3 is therefore always fulfilled. In case the microarchitecture
under investigation has blocking instructions for more than one port set of size ≥ 𝑅max , the
algorithm thus yields wrong results.

After identifying unique blocking instructions in step 3 of Section 6.2.1, we therefore
determine the processor’s peak execution rate via measurements. This can be done by
iteratively expanding a microbenchmark with instances of all blocking instructions as long
as they increase the number of executed instructions per cycle (IPC). We use the maximal
IPC that we observe with such a microbenchmark as the processor’s peak execution rate. If
the identified bottleneck execution rate is equal to the size of the port set of any blocking
instruction, an implementation of the adapted algorithm can warn the user of the potentially
wrong results.

With the bottleneck characterized, we apply the extension to the counter-example-guided
port mapping inference algorithm described in Section 4.3 to handle the bottleneck in step 4
of Section 6.2.1. Some port mappings that are distinguishable according to the port mapping
model become indistinguishable with this adjustment.

For the detection of evading instructions described in Section 6.2.2, a bottleneck is also only
problematic if it can be hit with instances of a single blocking instruction scheme 𝐵. In this
case, an experiment consisting only of copies of 𝐵 already reaches the bottleneck with 𝑅max
instructions per cycle. We would then need to observe more than 𝑅max instructions executed
per cycle to determine that another instruction’s µops can evade the blocked ports, which is
impossible. Otherwise, if there is a gap between the maximal number of available ports per µop
and the peak execution rate, the experiment consisting of 𝑘 copies of the blocking instruction 𝐵
yields at most (𝑅max − 1) instructions per cycle and the algorithm works unchanged.

6.2.4. Supported Microarchitectures
Our algorithm has the following requirements:

• We need to measure the number of cycles required to execute a piece of code. Such
functionality is commonplace in contemporary Intel, AMD, and ARM microarchitectures.

• There needs to be a counter for the total number of µops executed for a piece of code. Recent
Intel Core architectures support this, and AMD’s Zen, Zen+, and Zen2 are documented to
support this as well.2

• The processor’s throughput bottleneck should not be reachable by executing only instruc-
tions of the same kind. At the time of writing, this is the case for AMD’s Zen-family
microarchitectures (up to Zen4), with at most 4 ports per µop and a peak execution rate of
at least 5 µops per cycle. Most Intel Core microarchitectures to this date do not fulfill this

2See Section 6.3.1 for more on this and the subsequent Zen-family microarchitectures.
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requirement: The limit on the number of retired µops per cycle has only been increased from
4 to 8 with the Golden Cove microarchitecture,3 while the maximal number of available
ports per µop only increased from 4 to 5. (Intel, 2023a, Section 2.3)

Additionally, as the original uops.info algorithm, we assume that there is a blocking instruction
for most µops of the microarchitecture. Where this requirement is not met, replacement
instructions with a throughput dominated by the respective µop need to be specified manually.
In the following case study, we show that, contrary to official documentation, such µops occur
in AMD’s Zen+ microarchitecture.

6.3. Case Study: The AMD Zen+ Microarchitecture
We evaluate our adapted explainable port mapping inference algorithm with the AMD Zen+
microarchitecture. This allows us to use PMEvo (Chapter 5) and Palmed (Derumigny et al.,
2022a) as points of comparison in Section 6.3.6. Since Zen+ does not have full per-port µop
counters, the original uops.info algorithm is not applicable. We also compare our results to
the available documentation for Zen+:

• AMD’s Software Optimization Guide (AMD, 2021b) describes the microarchitecture, includ-
ing a table that documents latencies and throughputs of instructions, if they are microcoded,
and, for simple instructions, their execution units.

• Agner Fog’s microarchitecture guide (Fog, 2023) analyzes the similar Zen architecture based
on manual microbenchmarks.

• Fog (2022) and uops.info (Abel and Reineke, 2019) provide tables with measured latencies,
throughputs, and numbers of µops of individual instructions. They include the port usage of
floating point (FP)/vector instructions since per-port performance counters for these units
are available (AMD, 2019, Section 2.1.15.4.1).

• WikiChip collects information on Zen and Zen+, in parts from AMD’s marketing re-
sources. (WikiChip, 2023a,b)

Our test system has an AMD Ryzen 5 2600X processor and 32 GB of RAM. It runs the port
mapping inference algorithm and automatically performs microbenchmarks when required.
Simultaneous multi-threading and frequency scaling are disabled as far as possible. Similar
to findings by Fog (2023, Section 22.20), we found that (cycle-)accurate measurements are
more difficult to achieve with AMD’s Ryzen processors compared to contemporary Intel
processors: Aggressive frequency scaling optimizations by AMD make extensive warm-up
phases before each measurement and median-aggregation over several runs essential. We
measure inverse throughput with the procedure described in Section 3.2.1 with an extension
to read out the processor’s performance counter for retired µops.4 For each throughput
measurement, we take the median over 11 repeated microbenchmark runs. We consider two

3Golden Cove is used in Alder Lake and Sapphire Rapids processors for client and server applications.
4We use the PMCx0C1 (“Retired Uops”) counter. (AMD, 2019, Section 2.1.15.4.5)
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throughput measurements equal if the implied cycles per instruction (CPI) differ by at most
𝜀𝐶𝑃𝐼 = 0.02. This value allows us to distinguish if experiments use five ports (0.20 CPI) or four
ports (0.25 CPI).

We take the x86-64 instruction schemes from uops.info and remove control flow and system
instructions as well as instructions with known input-dependent performance characteristics
(cf. Section 3.2.2). For floating-point and vector operations, we only consider instructions
from the AVX and AVX2 instruction set extensions. This gives us 2,980 instruction schemes.
We further reduce this set of instruction schemes when the need arises throughout the stages
of the algorithm.

6.3.1. Identifying Blocking Instruction Candidates with Singleton
Experiments

The first stage of the algorithm benchmarks every single instruction under investigation
individually and measures its inverse throughput and the number of µops into which it is
decomposed. Instructions that are executed with a single µop are blocking instructions.

Counting µops. Compared to AMD’s documentation, we measure unexpected numbers of
µops, e.g., for this instruction scheme:

add ⟨GPR[32]⟩𝑅𝑊 , ⟨MEM[32]⟩𝑅
It loads a value from memory, adds it to the value of a register, and writes the result back into
the same register. According to AMD’s Software Optimization Guide (AMD, 2021b, Table 1.
“Typical Instruction Mappings”), such an instruction should be decomposed into two µops:
one that loads and one that adds. However, the “Retired Uops” performance counter only
increases by one for each such instruction. We make the same observation for any instruction
involving memory operands, both with our measurement tool and with nanoBench (Abel and
Reineke, 2020). The instruction tables by Fog (2022), which are also based on this performance
counter, agree with our observations. The involved information sources are therefore in
contradiction:

• the µop decomposition described in the AMD Software Optimization Guide (AMD,
2021b, Table 1. “Typical Instruction Mappings”),

• the documentation of the “Retired Uops” hardware performance counter in the AMD
Processor Programming Reference (AMD, 2019, Section 2.1.15.4.5) (or its implementation
in hardware), and

• our measurement methodology, as well as the one used by Abel and Reineke (2020) and
Fog (2022).

While our inquiry with AMD’s support remains unanswered, there is evidence that the “Re-
tired Uops” performance counter, PMCx0C1, counts macro-ops instead of µops: We observe
counter values that are consistent with the Software Optimization Guide’s macro-op numbers.
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Furthermore, the Processor Programming Reference for the more recent Zen 3 and 4 microar-
chitectures (AMD, 2021a, Section 2.1.15.4.5) documents that the performance counter with
this identifier counts macro-ops on these microarchitectures.

As described in the AMD Software Optimization Guide for Zen+ (AMD, 2021b, Section 2.3
“Instruction Decomposition”), AMD’s macro-ops are a representation between x86-64 instruc-
tions and the µops that are executed by the execution units.5 The Zen+ microarchitecture
implements many instructions with a single macro-op, whereas for example 256-bit-wide
vector operations are implemented as two 128-bit-wide macro-ops. Complex instructions are
microcoded with a greater number of macro-ops.

To the best of our knowledge, there is no detailed published information on how macro-ops
are decomposed into µops and no suitable performance counter for experimental characteriza-
tion on Zen+. Since our algorithm requires a count of µops, we postulate a macro-op-to-µop
correspondence in the Zen+ microarchitecture, based on the high-level description and ex-
amples from AMD’s Software Optimization Guide (AMD, 2021b, Section 2.3 “Instruction
Decomposition”):

Postulate 6.5. Let 𝑛 be the number of macro-ops observed when executing a basic block bb
on the AMD Zen+ microarchitecture. We obtain the µop count by adding

• 1 for each memory operand with a width of at most 128 bits (excluding “load effective
address” (lea) and loading move (mov) instructions),

• 2 for each memory operand with a width of 256 bits (as they are implemented as two 128-bit
operations). ⌟

This strategy deviates in one aspect from the Software Optimization Guide: According to
examples there, mov instructions that store a value from a general-purpose register to memory
do not require an additional µop. This contradicts our observations:

• A store-mov together with four simple register-additions takes 1.25 cycles. Therefore, it has
a µop that is restricted to the four ports with arithmetic logic units (ALUs).

• A vmovapd vector-register-to-memory store (documented with a store µop and one to deliver
the stored data) together with the four additions takes only 1.0 cycles. Hence, no µops of
this instruction are restricted to the ALU ports.

• A storing mov with a storing vmovapd leads to an inverse throughput of 2 cycles. These
instructions therefore interfere, i.e., a µop of the mov instruction uses a port that the vmovapd
instruction also needs.

Hence, the storing mov instruction has a µop that is restricted to one or more ALU ports and
one for a non-ALU port. Therefore, similar to Intel architectures (Abel and Reineke, 2019,
Section 5.1.1), there is no proper blocking instruction for memory store µops.

5AMD’s macro-ops are also referred to as “ops”, “MOPs”, “complex OPs”, or “COPs”. The term is used differently by
Intel in the context of their microarchitectures.
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Problematic Instructions. For several instruction schemes, we observe violations of the
algorithm’s assumptions:

• nops and 32 or 64-bit-wide register-to-register movs use no ports: They execute at a rate of
five instructions per cycle (IPC) whereas, according to documentation, no functional unit
occurs at more than four ports, i.e., at most four instructions of a kind per cycle should be
possible. The processor resolves such movs via register renaming (Fog, 2023, Section 22.13)
and implements nops without µops. No port mapping is necessary for these cases.

• Some floating-point instructions execute slower than the port mapping model permits, e.g.,
divisions, square-root computations and approximate reciprocals.

• A mov of a 64-bit immediate into a general-purpose register causes unreliable measurements:
The throughput observations cluster into groups with 1.0 instructions per cycle and 2.0
instructions per cycle (according to the uops.info tables, we would expect an IPC of 1.0).
As these constants are unusual in the ISA, they use special handling in the hardware. For
example, instructions with 64-bit immediate constants are documented to block multiple
slots in the op-cache of the Zen+ microarchitecture (AMD, 2021b, Section 2.9).

We exclude all these instruction schemes, leaving 2,323 remaining schemes. Of these, 691 are
identified as blocking instruction candidates.

6.3.2. Filtering Equivalent Blocking Instructions
The next step of the algorithm performs microbenchmarks for pairs of blocking instruction
candidates with equally-sized port sets. If the number of cycles required to execute both
instructions is equal to the sum of corresponding numbers for the individual instructions, the
candidates are equivalent.

We encounter further problematic instructions in these experiments: Conditional move
instructions, AES de/encryption operations, numerical conversions of the vcvt* family, and
double-precision floating-point multiplications cause unstable measurements when bench-
marked with other instructions. Floating-point/vector operations with three read operands,
like fused multiply-and-add instructions and some vector blending operations, do not fit the
port mapping model either in Zen+. While these operations can execute on two of the four
ports of the floating-point unit, they use data lines of a third port. (AMD, 2021b, Section
2.11) This third port meanwhile has to idle, which we observe as contradicting equivalence
information. We exclude these instructions from the following steps of the algorithm.

This leaves us with 1,887 instruction schemes in total, with 563 blocking instruction candi-
dates. Of these candidates, 13 are identified as unique blocking instructions. Table 6.1 shows
them with the number of candidates per equivalence class.

This selection of blocking instructions is consistent with the partial data available on
uops.info: If we found two candidates equivalent and if they are covered by uops.info, then
their reported port usages are equal. uops.info does not cover 266 of our 563 candidates.

AMD’s instruction tables do not agree for 33 instruction schemes. For instance, AMD’s
documentation states that all of the following vector comparisons for integers of varying size
can execute on the same two ports:
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Table 6.1. Classes of blocking instructions for AMD Zen+ as identified in our adapted port
mapping inference algorithm. Representatives were selected manually for clarity.

# Ports Instruction Scheme # Equiv. Description

4 add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 242 ALU ops
vpor ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 21 logical vector ops

3 vpaddd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 30 vector int. arith.

2 vminps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 143 FP compare, mul.
vbroadcastss ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅 50 vector layouting

vpaddsw ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 17 saturating vector ops
vaddps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 10 FP additions

mov ⟨GPR[32]⟩𝑊 , ⟨MEM[32]⟩𝑅 6 memory loads

1 vpslld ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 27 vector shifts
vpmuldq ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 10 elaborate vector mul.

imul ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 9 integer mul.
vroundps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨IMM[8]⟩𝑅 4 vector rounding

vmovd ⟨XMM⟩𝑊 , ⟨GPR[32]⟩𝑅 2 vector-to-GPR mov

vpcmpgtq ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅
vpcmpeqq ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅
vpcmpgtb ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅

In our measurements, only the second (testing equality for 2 × 64-bit integers) has two ports,
whereas the first and third have one and three ports available (greater-than tests for 2× 64-bit
and 16 × 8-bit integers, respectively). Fog’s table and uops.info agree with our measurements;
this appears to be an error in AMD’s documentation.

6.3.3. Measuring the Throughput Bottleneck
With the technique from Section 6.2.3, we observe a peak throughput of five instructions per
cycle on the AMD Zen+ microarchitecture. This throughput is achieved with several different
combinations of blocking instructions, e.g.:

2× mov ⟨GPR[32]⟩𝑊 , ⟨MEM[32]⟩𝑅
2× vbroadcastss ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅

1× vroundps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨IMM[8]⟩𝑅
This peak IPC for single-µop instructions is consistent with the measurements of Fog (2023,
Section 22.21): He found that the op-cache of the Zen architecture can issue up to five
instructions per cycle. While he also reports that up to six µops per cycle can be executed,
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this can only be observed when at least one instruction is decomposed into more than one
µop. Since this step only considers blocking instructions, which are executed as a single µop,
this case cannot occur in our setting.

As no µop has more than four ports available, the throughput bottleneck therefore does
not affect our characterization of the microarchitecture as discussed in Section 6.2.3.

6.3.4. Computing a Mapping for the Blocking Instructions

Here, we compute a port mapping for the blocking instructions with the counter-example-
guided port mapping inference algorithm presented in Chapter 4 with the extensions discussed
in Section 4.3. We use version 4.12.1 of the Z3 SMT solver (de Moura and Bjørner, 2008)
and select the same value of 𝜀𝐶𝑃𝐼 = 0.02 as in the rest of the algorithm to address noisy
measurements. Following AMD’s documentation (AMD, 2021b), we use a set of 10 ports:
P =

{
0, 1, . . . , 9

}
.

As there are no proper blocking instructions for store operations, we add “improper”
blocking instructions manually:

• mov ⟨MEM[32]⟩𝑊 , ⟨GPR[32]⟩𝑅 , which stores a 32-bit value from a general-purpose register
into memory, and

• vmovapd ⟨MEM[128]⟩𝑊 , ⟨XMM⟩𝑅 , which stores a 128-bit value from a vector register into
memory.

While we expect to use only the mov instruction in place of a blocking instruction for the
store µop, both are required to infer that the store µop does not use an ALU instruction,
cf. Section 6.3.1. We use the three-level version of the counter-example-guided port mapping
inference algorithm with a fixed instruction-to-µop mapping. This instruction-to-µop mapping
is chosen to ensure that all proper blocking instructions use only one µop and the above
two improper blocking instructions use exactly two µops. We additionally encode for both
improper blocking instructions that one of their µops must be equal to one of the µops of a
proper blocking instruction. With these constraints, we avoid the prohibitively long execution
times that come with the unconstrained three-level inference algorithm.

For three blocking instructions, the generated experiments exhibit throughputs outside of
the port mapping model:

• The imul scheme for scalar integer multiplications, e.g., when combined with four additions:

4× add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅
1× imul ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅

Since add has four ports and imul is restricted to one, two inverse throughputs are possible
in the port mapping model: 1.25 cycles, if imul uses a port of the add instruction, or 1.0
cycles, if their ports are disjoint. While AMD’s Software Optimization Guide (AMD, 2021b,
Section 2.10.2) indicates the former case, we measure ca. 1.5 cycles for this experiment,
matching neither case.
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Table 6.2. Documented and inferred port usage of the blocking instructions for the AMD Zen+
microarchitecture as shown in Table 6.1. The inferred ports were renamed bijectively for
ease of comparison with available documentation.

Instruction Scheme Doc. Ports Inferred Ports

add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 ALU [6,7,8,9]
vpor ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 0,1,2,3 [0,1,2,3]

vpaddd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 0,1,3 [0,1,3]

vminps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 0,1 [0,1]
vbroadcastss ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅 FP 1,2 [1,2]

vpaddsw ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 0,3 [0,3]
vaddps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 2,3 [2,3]
mov ⟨GPR[32]⟩𝑊 , ⟨MEM[32]⟩𝑅 AGU [4,5]

vpslld ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 FP 2 [2]
vroundps ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨IMM[8]⟩𝑅 FP 3 [3]

mov ⟨MEM[32]⟩𝑊 , ⟨GPR[32]⟩𝑅 AGU [5] + [6,7,8,9]
vmovapd ⟨MEM[128]⟩𝑊 , ⟨XMM⟩𝑅 FP 2 [5] + [2]

• vpmuldq, which represents complex vector multiplication operations,6 leads to experiments
that run slower than their port usage would imply. Accommodating for this deviation from
the ideal throughputs would require a larger 𝜀𝐶𝑃𝐼 , which would lead to a loss of accuracy
for other instructions.

• For vmovd, we observe inconsistent resource conflicts when combined with different in-
structions. As this instruction scheme is untypical in that it transfers data between vector
registers and the general-purpose registers, its throughput might depend on resources
outside of the port mapping model.

In the algorithm, these inconsistencies lead to unsatisfiable SMT constraints in the findMapping
method, where we attempt to find a port mapping that satisfies the inverse throughputs mea-
sured in the experiments so far. We exclude them and instructions with the same mnemonics
(as we expect them to share aspects of the problematic instructions) from this investigation.

In three runs with the remaining blocking instructions, the algorithm terminated within 12–
20 hours after generating 55–59 experiments with up to five instructions. Table 6.2 shows the
inferred port mapping together with the documented port usage. For vector and floating-point
instructions, where documented port usages are available, our port mapping is equivalent.

6This specific instruction multiplies the 32-bit integers at even-numbered vector lanes in the source registers without
overflows into a vector of 64-bit integers.

90



6.3. Case Study: The AMD Zen+ Microarchitecture

Results for the add blocking instruction differ across repeated algorithm runs in whether a
port is shared with the floating-point instructions: Besides the mapping in Table 6.2, “[6,7,8,9]”,
variants that use FP ports like “[0,6,7,8]” and “[1,6,7,8]” are possible. These variants are
indistinguishable with the throughput bottleneck of five instructions per cycle. Which result
we get depends on choices of the SMT solver. This ambiguity would be resolved with a less
tight bottleneck or with blocking instructions for the individual FP ports or fine-grained
subsets of the ALU ports. We use “[6,7,8,9]” in the rest of the algorithm as it is consistent with
the documentation.

The results for the improper blocking instructions (at the bottom of the table) are consistent
with the expectations: They have a µop (presumably for storing to memory) for port 5 in
common. vmovapd has an additional µop for port 2, which uops.info reports as its port usage.
For mov, the additional µop is an ALU µop, matching our observations from Section 6.3.1. This
µop could also be restricted to a subset of the ALU ports, the blocking instructions are not
sufficient to distinguish these cases.

6.3.5. Computing the Remaining Port Mapping
In the final step of the algorithm, we systematically benchmark each instruction that uses more
than one µop against the suite of blocking instructions. To combat unstable measurements,
we run this part of the algorithm three times and only report the port usage for an instruction
if at least two of the runs agree. We use mov ⟨MEM[32]⟩𝑊 , ⟨GPR[32]⟩𝑅 to block the store port
5.

The results follow regular patterns for most instructions:

• 256-bit wide AVX instructions (which operate on ymm vector registers) use µops of the same
kinds as the corresponding 128-bit xmm variants, only with twice the number, for instance:

vpcmpeqq ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 { 1 × [0, 3]
vpcmpeqq ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨YMM⟩𝑅 { 2 × [0, 3]

• Instruction schemes with a read memory operand differ from their register-only counterparts
by one load µop (two for double-pumped 256-bit AVX instructions). For example:

add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 { 1 × [6, 7, 8, 9]
add ⟨GPR[32]⟩𝑅𝑊 , ⟨MEM[32]⟩𝑅 { 1 × [6, 7, 8, 9] + 1 × [4, 5]

and
vpcmpeqq ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨YMM⟩𝑅 { 2 × [0, 3]
vpcmpeqq ⟨YMM⟩𝑊 , ⟨YMM⟩𝑅, ⟨MEM[256]⟩𝑅 { 2 × [0, 3] + 2 × [4, 5]

This complies with our postulated macro-op-to-µop decomposition (Postulate 6.5).

• Simple scalar integer instructions with a read and written memory operand use an ALU
µop and a store µop:

add ⟨GPR[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 { 1 × [6, 7, 8, 9]
add ⟨MEM[32]⟩𝑅𝑊 , ⟨GPR[32]⟩𝑅 { 1 × [6, 7, 8, 9] + 1 × [5]

If these operate on less than 32 bits, they require an additional µop on the address generation
units to handle the less common access widths:

91



Chapter 6. Explainable Port Mapping Inference with Sparse Performance Counters

add ⟨GPR[8]⟩𝑅𝑊 , ⟨GPR[8]⟩𝑅 { 1 × [6, 7, 8, 9]
add ⟨MEM[8]⟩𝑅𝑊 , ⟨GPR[8]⟩𝑅 { 1 × [6, 7, 8, 9] + 1 × [4, 5] + 1 × [5]

This is a deviation from our postulated macro-op-to-µop decomposition. For the wider
instruction variants, however, we can confirm that Zen+ does not use separate µops for
the two memory operations in read-modify-write instructions, which stands in contrast to
Intel’s microarchitectures.

Overall, 70% of the remaining 1,819 considered instruction schemes fall into these regular
patterns.

For complex instructions, we observe unexpected results. For instance:

bsf ⟨GPR[64]⟩𝑊 , ⟨MEM[64]⟩𝑅 { 9 × [6, 7, 8, 9] + 1 × [4, 5] + 9 × [0, 1, 2, 3]

vphaddw ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅 {
1 × [0, 1, 2, 3] + 1 × [0, 1, 3]
+ 2 × [1, 2] + 4 × [6, 7, 8, 9]

The former is a bit scan forward instruction, which finds the least significant bit set in its read
(memory) operand and stores its index into the written operand.7 The latter is a horizontal
vector addition that adds pairs of adjacent 16-bit elements of a vector register across the typical
vector lanes.8 Their inferred port usages are unexpected in two ways: They contain more µops
than reported by the performance counter (8+1 counted and adjusted for a memory operand for
bsf and 4 counted for vphaddw) and they include µops for unlikely ports. For the scalar integer
operation bsf, we would not expect a utilization of vector/floating-point ports [0, 1, 2, 3],
whereas the vector operation vphaddw is unlikely to use the scalar ALU ports [6, 7, 8, 9].
We suspect that these µops are spurious observations caused by the processor’s microcode
sequencer. For instructions with many µops, the processor’s instruction decoder only emits an
entry point address for the microcode sequencer ROM. The microcode sequencer then emits
the relevant operations from the ROM. Our observations match a microcode sequencer that
emits four operations per cycle while stalling the remaining frontend, including the operation
cache. Rather than µops that cannot execute on unblocked ports, we measure the overhead of
this bottleneck. This occurs for 8% of the 1,819 considered instruction schemes.

For 7% of the instruction schemes, e.g., for bit shift operations on vector registers, the
experiments yield throughputs that are unstable or outside the port mapping model.

This last stage of the algorithm took 8–10 hours. The last two stages of the algorithm
dominate the running time of the algorithm, with a total of 20–28 hours. Overall, we inferred a
port mapping for 1,700 of the initial 2,980 instruction schemes. uops.info has no port mapping
for 1,142 (67%) of these 1,700 supported instruction schemes.

6.3.6. Prediction Accuracy
We evaluate the inferred Zen+ port mapping quantitatively by comparing its throughput
prediction accuracy against our previous approach, PMEvo, (cf. Chapter 5) and Palmed by

7See https://www.felixcloutier.com/x86/bsf.
8See https://www.felixcloutier.com/x86/phaddw:phaddd.
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Table 6.3. Comparison of IPC prediction accuracy for Zen+ models generated by PMEvo,
Palmed, and our explainable port mapping inference (PMI) algorithm.

MAPE 𝜌𝑃 𝜏𝐾

PMEvo 28.0% 0.83 0.72
Palmed 35.2% 0.79 0.66

explainable PMI 6.6% 0.96 0.90

Derumigny et al. (2022a).9 As port mappings model only the utilization of functional units,
we focus on instruction sequences whose throughput is not limited by data dependencies.

To predict the throughput of an experiment 𝑒 with the inferred mapping, we apply the
fast bottleneck simulation algorithm from Section 5.1.4 and obtain the number 𝑡 of cycles
of an optimal execution with respect to the port mapping. If this number is faster than the
bottleneck of 5 IPC allows, we report an inverse throughput of 5/|𝑒 | cycles, and 𝑡 otherwise.
For Palmed, we use the most recent available model for the Zen architecture. For PMEvo,
we combine the original implementation with the modernized measurement setup described
in Section 3.2.1 and infer a new port mapping. We seed the population of its evolutionary
algorithm with 50,000 random port mappings and let it run until evolution converges after
ca. 59 hours.10 While PMEvo only uses experiments with at most two different instruction
schemes, it benchmarks such experiments for all pairs of instruction schemes. When consid-
ering thousands of instruction schemes, this leads to substantially more microbenchmarks
than in the runs of our explainable inference algorithm. Therefore, to keep benchmarking
times for PMEvo manageable, we restrict this evaluation to instruction schemes that occur in
compiled binaries for the SPEC CPU2017 benchmarks (Bucek et al., 2018) and are covered by
our inferred explainable mapping.11 Overall, this leaves us with 577 instruction schemes.

We evaluate the performance models on a set of 5,000 randomly generated experiments.
Each experiment consists of five instruction schemes that were selected uniformly at random
from the considered 577 instruction schemes. We apply the method described in Section 3.2.1
to benchmark their throughput in instructions per cycles (IPC) on the Zen+ hardware. In
particular, the instruction schemes are instantiated with operands to avoid data dependencies
that would limit the observable throughput.

Table 6.3 shows the IPC prediction accuracy in terms of mean absolute percentage error
(MAPE), Pearson’s correlation coefficient 𝜌𝑃 , and Kendall’s 𝜏𝐾 for each tool. A high 𝜌𝑃
indicates a linear correlation of predictions and measurements whereas a high 𝜏𝐾 implies
that sorting the instruction sequences by predicted or measured IPC leads to similar rankings.
Both metrics can range between -1 and 1.12

9See Chapter 7 for a conceptual comparison to these approaches.
10We follow the original PMEvo design that does not adjust for the IPC bottleneck. Incorporating the adjustment

only causes minor differences in the accuracy metrics of this evaluation.
11Benchmarking PMEvo’s experiments for this setup took 11 days.
12See Section 3.2.2 for more on these accuracy metrics.
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Figure 6.3. Heat maps of predicted vs. measured execution rate in instructions per cycle
(IPC) for Zen+ models generated by PMEvo, Palmed, and our explainable port mapping
inference (PMI) algorithm.

The predictions of PMEvo and Palmed share a similar level of accuracy, with significant
correlations but rather high errors of 28–35%.13 Our inferred explainable port mapping is
substantially more accurate with an error of 6.6% and very strong linear and rank correlations.
The heat maps in Figure 6.3 quantify each model’s prediction accuracy in more detail. They
group the basic blocks into bins based on the IPC we observed in the benchmarks and the
predictions of each model. Bins are displayed darker the more basic blocks they contain; the
closer the darker bins are to the diagonal line, the closer are predictions and observations.
The heat map for our explainable model, Figure 6.3 (c), is notably closer to the diagonal than
PMEvo’s and Palmed’s with few outliers.

The structure of PMEvo’s mapping differs substantially from our inferred explainable port
mapping: There, most instructions have only a single kind of µop in their port usage. Our
explainable approach captures structures of the microarchitecture that PMEvo’s optimization
does not resolve. As shown in Figure 6.3 (b), Palmed’s conjunctive mapping usually predicts
slower executions than what we measure in microbenchmarks. As Palmed depends on
assumptions in its measurement infrastructure, we cannot evaluate whether its model would
be more consistent with our throughput measurements if it used our microbenchmarking
setup.

6.4. Conclusions: Explainable Port Mapping Inference
with Sparse Performance Counters

We have shown that per-port µop counters are not necessary to apply a uops.info-style explain-
able port mapping inference algorithm. With techniques that build on the port mapping model
and our counter-example-guided online port mapping inference algorithm (cf. Chapter 4), we
13Note that, in contrast to previous chapters, the prediction accuracy here is evaluated in terms of IPC rather than

cycles or CPI to enable a comparison with the evaluation by Derumigny et al. (2022a).
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can efficiently infer the port usage for a large number of instructions if the processor under
investigation follows the port mapping model.

Our case study of the AMD Zen+ microarchitecture indicates that the approach is also
practical for a large portion of the processor’s instructions. However, there are practical
hindrances like throughput bottlenecks in parts of the processor, misdocumented performance
counters, and complex micro-coded or non-pipelined instructions. Nevertheless, we uncovered
details of the Zen+ microarchitecture that have, to the best of our knowledge, not been
previously documented. We inferred the first explainable three-level port mapping for over
1,000 instruction schemes on Zen+ that were out of scope for previous work and demonstrated
its ability to accurately model performance characteristics of the microarchitecture.
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Chapter 7
Related Work on Port Mapping
Inference
In this chapter, we discuss how the port mapping inference methods presented in the Chap-
ters 4 to 6 compare to previous and current efforts in the field. To this end, Section 7.1
explores alternative approaches to infer port mappings and similar properties of the hardware.
Since basic block throughput predictors are the most common use cases for port mappings,
Section 7.2 discusses these tools and how they model port-mapping-related information.

7.1. Inferring Port Mappings
The instruction tables by Fog (2022) are a well established source for experimentally
validated information on instruction latency, throughput, and port usage for a wide range
of x86 microarchitectures. They are the product of hand-crafted microbenchmarks that use
hardware performance counters to count the number of executed cycles and the number of
executed µops per port. Abel and Reineke (2019) show that the reported port usage by Fog is
only an under-approximation of the usable ports.

For cases where these counters are not available, Fog uses experiments that execute instruc-
tions with unknown port usage together with instructions whose port usage is known from
some other resource. Observing the running time allows to identify interfering instruction
combinations.

The timing tables by Granlund (2019) fall into a similar category, but they only provide
latency and throughput measurements, without information on the port usage of the instruc-
tions.

Foruops.info, Abel and Reineke (2019) automated the laborious design of microbenchmarks
to measure latency, throughput, and port usage. Their algorithm to estimate port usage
overcomes the inaccuracy of Fog’s approach by using blocking instructions, as discussed in
Section 6.1. Similar to Fog’s method, their method relies on per-port hardware performance
counters. While Abel and Reineke provide throughput and latency measurements for x86-64
microarchitectures by Intel and AMD, they only give complete port mappings for the Intel
platforms as only these provide the required performance counters.

Johnson (2021) adapted the techniques used for uops.info by Abel and Reineke to analyze
the microarchitecture of Apple’s M1 CPU. The M1 implements an ARM ISA, but comes with
adequate performance counters to apply the methodology of Abel and Reineke.
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Another similar approach, initiated by Google, is EXEgesis (Chatelet, 2018; Google, 2018;
LLVM, 2023a). One part of this project seeks to extract latencies, throughputs, and port
usage for Intel architectures from manufacturer-provided documentation. This requires
automatically parsing documents that were intended for human readers: a fragile and work-
intensive process. Since the provided documentation does not include all relevant information,
the EXEgesis developers also created tools to infer the missing information via experiments.
This led to the second part of the EXEgesis project, llvm-exegesis (Chatelet, 2018), a tool inside
the LLVM framework (Lattner and Adve, 2004) that automatically generates benchmarks
similar to those used by Fog. For measuring port usage, llvm-exegesis depends on per-port
performance counters just as the previously discussed approaches.

The main difference between these prior approaches and our port mapping inference
methods is that our approaches do not rely on per-port performance counters. Since the prior
approaches can work with more information, their strategies for port mapping inference can
be less complex than ours while being less dependent on exact throughput measurements.
However, they are restricted to processors with suitable performance counters. The processors
by AMD and many ARM platforms are therefore out of their scope, whereas our approaches
are applicable.

PMEvo (Chapter 5) only requires widely available hardware support to measure the number
of cycles required to execute a benchmark and no specific hardware performance counters.
It is therefore able to infer port mappings for AMD’s x86-64 microarchitectures and ARM
architectures. An advantage of uops.info compared to PMEvo is that the uops.info algorithm
comes to its results through microbenchmarks that can be validated by users of the perfor-
mance model. For every µop that is included or not included in the inferred port usage of an
instruction, the uops.info algorithm finds a microbenchmark that witnesses this decision. The
randomized and approximative nature of PMEvo’s evolutionary algorithm cannot provide this
level of confidence. Inspecting PMEvo’s port mappings shows that, while they may accurately
predict the throughput of port-mapping-bound microbenchmarks, they do not necessarily
follow the structure of the actual hardware.

The variation of the uops.info algorithm that we present in Chapter 6 addresses this
weakness of PMEvo. As it follows the same high-level structure as the uops.info algorithm,
it provides similar witnessing microbenchmarks to justify the inference results. We found
the resulting port mappings to follow available hardware descriptions more closely than
the results of PMEvo. This increased quality of the inference results comes at the cost of
stronger requirements on the investigated microarchitecture: We require hardware support
to count the total number of executed µops in a microbenchmark. While this is still a weaker
requirement than the per-port performance counters required for the original uops.info
algorithm, deviations from the port mapping model in the processor’s behavior, e.g., due to
tight frontend bottlenecks, can further limit the applicability of our algorithm.

Palmed by Derumigny et al. (2022a), which has been concurrently developed and published
after our work on PMEvo, falls into a different category. They share our goal of inferring a
performance model for the resource usage of instructions without requiring the extensive
performance counters used by approaches like uops.info. However, the model that they
produce differs from the standard (three-level) port mappings that our methods and the other
related approaches aim for. Palmed’s conjunctive mappings do not explicitly model how
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I:

U:

P:

mul add sub store

𝑢1 𝑢2 𝑢3

𝑝1 𝑝2 𝑝3

2 1 1
1

1

(a)

I:

R:

mul add sub store

𝑅1 𝑅12 𝑅3

2 1 1/2 1/2 1/2 1

(b)

Figure 7.1. Example port mapping in the three-level model (a) and a mapping in Palmed’s
conjunctive model that yields equal throughput predictions (b).

instructions are decomposed into µops. Instead, they model instructions as using abstract
resources, which do not directly correspond to the execution ports of the processor. If two
instructions decompose into µops that compete for the same ports, Palmed’s model for these
instructions will contain an abstract resource that both instructions use.

For an example, consider the conjunctive mapping in Figure 7.1 (b). The weight of an edge
between an instruction scheme 𝑖 and an abstract resource 𝑟 ∈ R :=

{
𝑅1, 𝑅12, 𝑅3

}
describes

the load that each occurrence of 𝑖 in an experiment 𝑒 puts on 𝑟 . Derumigny et al. model
the inverse throughput tp−1 (𝑒) as the maximal accumulated load on any resource. For the
experiment 𝑒 :=

{
mul ↦→ 1, add ↦→ 2, store ↦→ 1

}
, 𝑅1 receives a load of 2, 𝑅12 receives a load

of 2.5, and 𝑅3 receives a load of 1. The resulting modeled inverse throughput is therefore 2.5
cycles. The three-level port mapping in Figure 7.1 (a) yields the same result with two 𝑢1 µops
and three 𝑢2 µops that are executed on the bottleneck ports

{
𝑝1, 𝑝2

}
.

To infer a conjunctive mapping, one needs to determine adequate real-valued edge weights.
In the appendix of the extended version of the Palmed article, Derumigny et al. (2022b) provide
an algorithm to construct a conjunctive mapping – with a potentially exponential number of
abstract resources – that yields equal predictions as a given three-level port mapping.

The key benefit of this resource model is that Palmed can solve a simpler integer linear
program (ILP) where we use an expensive SMT formulation in Chapter 4 and Chapter 6 or
approximate with an evolutionary algorithm in Chapter 5.

Like the explainable inference algorithm we present in Chapter 6, Palmed takes inspiration
from the uops.info algorithm. Derumigny et al. proceed in two phases, first finding a core
mapping for a small instruction set and then inferring models for all other instructions based on
the core mapping. Rather than identifying blocking instructions with a µop counter, they select
basic instructions for the core mapping heuristically based on throughput benchmarks. Palmed
constructs a set of abstract resources that represent possible bottlenecks in the execution of
core mapping instructions with an ILP-based algorithm. It further generates for each resource
a kernel of basic instructions that saturates the resource, similar to how blocking instructions
flood their corresponding set of ports. Palmed then runs individual benchmarks with the
saturating kernels for every instruction that is not in the core mapping and uses a linear
program to compute the pressure that the instruction puts on the corresponding abstract
resources.
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Besides port sets, Palmed’s resource model inherently represents other potential bottlenecks
like the maximal execution rate of the frontend, which our approaches need to treat explicitly.
However, conjunctive mappings do not integrate straightforwardly with existing performance
models based on three-level port mappings since the inferred abstract resources have no clear
correspondence to documented aspects of the microarchitecture.

7.2. Basic Block Throughput Predictors
In recent years, a variety of tools have been proposed to estimate the throughput a processor
achieves when executing a given instruction sequence. Traditional approaches in this field
rely on a – typically hand-crafted – model of the processor’s microarchitecture that captures
parameters such as instruction latencies, port mapping, and µop queue sizes of the hardware.
This model is used to simulate the execution of one or more instances of the basic block whose
performance is to be predicted.

Basic block throughput predictors reduce the complexity of the simulation task by relying
on assumptions about the context in which basic blocks are executed. The most common
ones are that all memory accesses hit the fastest cache and that the basic block is the body of
an innermost loop that is executed indefinitely. With these assumptions, the main domain
of application for such throughput predictors is in the optimization of short, very hot code
regions in programs where performance is crucial. Depending on their model, these tools
can provide insights into the performance of the analyzed code, e.g., which component of the
processor is most likely to cause a performance bottleneck.

In the following, we describe approaches that match this description and how they model
the processor’s port mapping. Additionally, we discuss recent approaches that use machine
learning to avoid the tedious task of creating a microarchitectural model by hand.

7.2.1. Traditional Approaches
The Intel Architecture Code Analyzer IACA (Intel, 2012) provides for a given instruction
sequence a throughput prediction, an estimation of where in the processor core the bottleneck
for the execution lies, and a distribution of µops to ports. It is a closed-source tool that
the processor manufacturer Intel provides for some of its x86-64 microarchitectures. IACA
can therefore make use of unpublished internal information for its performance predictions.
Nevertheless, previous research, e.g., by Abel and Reineke (2019), has shown cases where the
prediction of IACA differs substantially from the observable behavior. As IACA provides a
distribution of µops to ports, we expect its proprietary model to include a port mapping. In
April 2019, Intel announced that IACA has reached its end of life.

The open-source tools llvm-mca (Di Biagio, 2018; LLVM, 2023b), OSACA (Laukemann
et al., 2018), and uiCA (Abel and Reineke, 2022) all produce similar reports as IACA with a
throughput prediction and an estimated execution port utilization.

The LLVM Machine Code Analyzer llvm-mca (Di Biagio, 2018; LLVM, 2023b) bases its
processor model on the instruction scheduling models of the LLVM compiler infrastructure
(Lattner and Adve, 2004). These scheduling models are the result of human fine-tuning
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effort, proprietary knowledge contributed by processor designers, and experiments via llvm-
exegesis (Chatelet, 2018). As LLVM has scheduling models for a variety of microarchitectures
– including x86-64 architectures by Intel and AMD as well as various ARM designs – llvm-mca
is widely applicable.

LLVM’s scheduling models were, however, designed with code generation and instruction
scheduling, not simulation and performance prediction in mind (Di Biagio, 2020). Instead of
collecting information about how instructions are decomposed into µops and how these are
executed, LLVM’s models only capture resource usage at the instruction level. This abstraction
of how the processor operates limits llvm-mca’s accuracy (Di Biagio, 2020). Nonetheless,
while LLVM’s scheduling models do not capture all details of a port mapping, knowledge of
the port mapping can help to make these models more accurate.

The performance models of OSACA (Laukemann et al., 2018) are based on published
information by the manufacturers, custom microbenchmarks, and the instruction tables of
Fog (2022) and uops.info (Abel and Reineke, 2019). OSACA has models for x86-64 microarchi-
tectures by AMD and Intel, as well as several ARM microarchitectures.

Where port mapping information is available, OSACA’s processor models include explicit
three-level port mappings. Laukemann et al. implement means of validating their port
mappings via experiments with throughput measurements and note that experiments with
multiple different instructions can uncover new details of the port mapping. Our approaches
can be seen as systematic extensions of this line of work to derive new port mappings.
uiCA (Abel and Reineke, 2022) relies on latency data and port mappings from uops.info

(Abel and Reineke, 2019) for a fine-grained simulation of the execution of a basic block. It
further includes detailed reverse-engineered models of the decoding frontends of the supported
microarchitectures. uiCA is specialized in Intel’s x86-64 microarchitectures and therefore
does not provide models for AMD or ARM architectures. Abel and Reineke report that uiCA
outperforms the previous tools in terms of throughput prediction accuracy on a modified
version of the BHive benchmark set (Chen et al., 2019) for the supported platforms.1

With their follow-up work, Facile, Abel et al. (2023) observed that the port mapping is one
of few components that need to be modeled to achieve high throughput prediction accuracy
on the BHive benchmark set. Facile relies on the same microarchitectural models as uiCA, but
uses them differently. It considers potential causes for bottlenecks individually – including
the port mapping, dependency chains, and various components of the decoding frontend
– and estimates how each potential bottleneck on its own would limit the throughput of
the analyzed basic block. Facile reports the slowest among these individual estimates as
its throughput prediction. In the evaluation of Abel et al., this approach achieves similar
throughput prediction accuracy on BHive as uiCA but requires significantly less analysis time.

Facile employs a simplified variant of the bottleneck simulation algorithm that we present
in Section 5.1.4. Where our algorithm enumerates all port subsets as potential bottlenecks,
their algorithm only considers port combinations required by pairs of µops. In general, this
simplified variant does not always yield the same result as our bottleneck simulation algorithm
and the equivalent linear program, see Appendix E.2 for an example.

1We discuss the BHive benchmarks in more detail in Section 8.4.1.
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The Code Quality Analyzer (CQA) of MAQAO (Rubial et al., 2014) searches for opportuni-
ties to improve the performance of innermost loops. Besides throughput estimation and a
break-down of utilized resources in the processor’s decoding frontend, CQA gives a detailed
analysis of how effectively the input code uses single-instruction-multiple-data operations
and recommendations for improvement. The tool supports x86-64 microarchitectures by AMD
and Intel, and several ARM architectures.

CQA initially came without a detailed model of the out-of-order backend of the supported
microarchitectures. Since version 2.18.0, CQA has the capabilities to report a port usage
breakdown for analyzed code. The CQA models combine port mapping data from uops.info,
the instruction tables by Fog, and documentation by the manufacturers.2

7.2.2. Learning-Based Approaches
A recent line of work leverages machine learning to reduce the effort required to build
accurate microarchitectural models for basic block throughput prediction. The earliest work,
Ithemal (Mendis et al., 2019), uses a hierarchical neural network based on long short-term
memory (LSTM) cells for throughput prediction. Basic blocks under investigation are split into
instructions whose mnemonics and operands are tokenized as input for the neural network.
The neural network outputs a real-valued estimate of the achieved throughput. Ithemal is
trained in a supervised setting, based on a corpus of basic blocks with annotated throughput
measurements from the actual hardware. Mendis et al. extract the basic blocks for their
training data from a varied collection of compiled benchmark programs.

The benefit of this approach is that no information about the microarchitecture, like the
frontend organization or the number of execution ports, are needed when training an Ithemal
model for a new processor. In evaluations against the above traditional approaches, e.g., by
Abel et al. (2023), only uiCA and Facile outperform Ithemal in terms of throughput prediction
accuracy.

A drawback of the Ithemal approach is that the resulting processor model is not straight-
forward to interpret. Since Ithemal’s neural network does not include a dedicated port mapping
model, there is no straightforward way to extract a port mapping from the learned parameters.
DiffTune (Renda et al., 2020), addresses this drawback by learning parameters of llvm-mca’s
microarchitectural models from Ithemal. Renda et al. use surrogate learning with an Ithemal-
based model to learn values for llvm-mca parameters concerning the port mapping, instruction
latencies, and the frontend bandwidth. In particular, the learned parameters include PortMap
values for each instruction that determine for how many cycles the instruction uses each port.
As discussed above, these parameters are oblivious of the port usage of individual µops and
therefore do not capture every detail of the processor’s port mapping.

Abel (2022) reports that they outperform the original llvm-mca parameters as well as those
learned with DiffTune in terms of throughput prediction accuracy on the BHive benchmark
set (Chen et al., 2019) with a parameter set for llvm-mca that, among other changes, sets
every PortMap value to zero. DiffTune’s and llvm-mca’s prediction accuracy on the BHive
benchmarks therefore appears to be determined by factors other than the PortMap parameters.

2This was disclosed in personal communication by the maintainers of MAQAO.
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Granite (Sýkora et al., 2022) advances the Ithemal concept with an updated neural network
structure. Sýkora et al. use a graph neural network that operates on the input basic block’s
data flow graph, instead of the purely syntactic token string used by Ithemal. Additionally,
they design their model architecture such that one model can be used to predict the throughput
for a range of microarchitectures. They report an improvement in prediction accuracy over
Ithemal, but do not include a comparison with uiCA.

PerfVec (Li et al., 2023) aims at performance prediction for entire execution traces of pro-
grams. While these could be considered as very long basic blocks, the difference in magnitude
– billions of instructions rather than less than ten or twenty – requires different techniques.
PerfVec models the performance-relevant features of the instructions and the microarchitec-
ture separately to reduce training complexity. Adapting it to new microarchitectures only
requires training a new microarchitecture model whereas the instruction model remains
unchanged. PerfVec combines contributions of both models to predict each instruction’s
contribution to the latency of the execution trace with a linear predictor.

Granite and PerfVec both share Ithemal’s black-box nature with no straightforward way to
extract a port mapping from the learned parameters.

CATREEN (Amalou et al., 2022) is a machine-learning-based performance predictor on the
basic block level, but it has a different focus than the previously discussed tools. On one hand,
it considers basic blocks in their execution context. Instead of predicting a single execution
time for a given basic block, CATREEN’s predictions additionally depend on which basic
blocks were executed before the basic block under investigation. This allows CATREEN to
model behaviors of the branch predictor and caches that are not in the scope of the other
tools. On the other hand, CATREEN is designed for in-order microarchitectures, compared to
the more complex out-of-order architectures targeted by the remaining approaches. Since the
port mapping is a property of out-of-order architectures, it is not relevant to CATREEN.
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Chapter 8
AnICA: Analyzing Inconsistencies in
Microarchitectural Code Analyzers
In the previous chapters, we have discussed ways to model and infer a processor’s port
mapping. Basic block throughput prediction tools are a central use case for inferred port
mappings. They need a microarchitectural model to estimate how a processor executes a given
instruction sequence. So far, we treated these tools as motivating related work (Section 7.2)
and as points of comparison (Sections 5.2 and 6.3).

In this chapter, we investigate basic block throughput prediction tools like IACA (Intel,
2012), llvm-mca (Di Biagio, 2018), OSACA (Laukemann et al., 2018), uiCA (Abel and Reineke,
2022), Ithemal (Mendis et al., 2019), and DiffTune (Renda et al., 2020) more directly. These tools
typically aim for close to cycle-accurate performance estimations, but cannot perform an exact
simulation of the target hardware because no exact model is available.1 Their performance
predictions are commonly based on assumptions, e.g., that all memory accesses hit the fastest
cache and that execution of the basic block is in a steady state, i.e., it is the body of an innermost
loop that is executed indefinitely. But even with these simplifying assumptions, the task of
predicting the throughput for a given basic block is challenging. Modern processors split
instructions into undocumented µops and reorder them as freely as the data dependencies
allow.2 Numerous undocumented buffers and execution units make the processor fast, but
they also impede accurate throughput estimation. Moreover, as noted, e.g., by Abel and
Reineke (2022), there is often not a single well-defined throughput for a given basic block on
a microarchitecture:

• On many microarchitectures, the execution time of some instructions depends on their
input values.

• Basic blocks might contain data dependencies if certain input values are pointers to the
same memory location.

• Depending on whether the basic block is repeated through a loop or through concatenating
many copies, different bottlenecks determine the throughput.

Tools that predict the throughput of arbitrary basic blocks need to rely on assumptions about
the processor’s behavior for all such cases. Very often, basic block throughput predictors do
not come with an explicit statement of these assumptions.

1See Section 7.2 for a discussion of the individual tools.
2See Section 2.1.
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Figure 8.1. Heat map showing the percentage of basic blocks with inverse throughput
estimates that deviate by more than 50% for each pair of predictors.

When working with basic block throughput predictors for the evaluation of PMEvo (Sec-
tion 5.2), we regularly encountered basic blocks for which throughput predictors for the same
microarchitecture would yield considerably different results. Figure 8.1 shows the results of
an experiment in which we randomly generate 10,000 basic blocks consisting of 4 instructions
each3 and let several throughput predictors give their estimate for these blocks assuming
the Intel Haswell4 microarchitecture. For each pair of throughput predictors, the heat map
contains an entry indicating the percentage of basic blocks for which the difference between
the inverse throughput estimates exceeds 50% of their mean.

Overall, all pairs of predictors exhibit substantial numbers of inconsistencies. As we can
see from the inconsistencies in different versions of llvm-mca (23% of the basic blocks in
Figure 8.1 are predicted inconsistently between llvm-mca versions 9 and 13), even closely
related implementations are affected. There may be several reasons for these deviations, e.g.:

• The individual performance models fail to capture relevant parts of the execution.

• The tools are built with different (implicit or explicit) assumptions.

• The learning-based tools need more training data.

• The implementations contain bugs.

In any of these cases, finding and characterizing such inconsistencies is valuable. If the cause
is unintentional, finding inconsistencies helps to improve the tools. If the inconsistencies are

3A basic block is generated by individually sampling instructions from the machine-readable x86-64 ISA description
from uops.info and instantiating them with valid operands.

4Haswell, which was introduced in 2013, is the only microarchitecture supported by all compared tools.
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the result of deliberate choices of the developers, identifying them helps to explore the limits
of the tools. Our goal in this chapter of the thesis is therefore to discover inconsistencies in
the results of instruction throughput predictors and to give insight into their causes.

To this end, we present AnICA, our work on analyzing inconsistencies in microarchitectural
code analyzers, as published at OOPSLA 2022 (Ritter and Hack, 2022). The idea of AnICA is to
apply differential testing (McKeeman, 1998) to a pair of basic block throughput predictors. We
randomly sample basic blocks and compare the outputs of the tools under investigation. If the
tools do not agree, we found an inconsistency. Similar techniques are used in a variety of do-
mains, prominently for compilers (McKeeman, 1998), SSL/TLS certificate validators (Brubaker
et al., 2014; Chen and Su, 2015), but also for software that simulates aspects of processors like
instruction decoders (Jay and Miller, 2018; Paleari et al., 2010; Woodruff et al., 2021).

The existing approaches, however, do not transfer well to basic block throughput predictors
since those provide an unusual setting for differential testing. The heat map in Figure 8.1
shows that finding inputs that exhibit inconsistencies is not difficult. Hence, elaborate methods
for searching the input space are not necessary. However, just listing the large number of
inconsistencies we find would not be very helpful to understand and improve the tools under
test. The focus of AnICA is therefore to find compact characterizations of large classes of input
basic blocks that cause inconsistencies. We apply concepts from abstract interpretation (Cousot
and Cousot, 1977) to find these compact characterizations and present them together with
witnesses for their derivation. These witnesses give insights in two directions:

• They contain examples of represented basic blocks that exhibit inconsistencies.

• They show the boundaries of the problem through similar basic blocks that do not
exhibit inconsistencies.

For many of the tool combinations shown in Figure 8.1, ten of AnICA’s characterizations
are sufficient to capture more than half of the several thousand encountered inconsistencies.
We investigate results of AnICA in case studies showing that the results are helpful for
improving performance models in several ways: to find modeling bugs and regressions from
one tool version to the next, to understand differing modeling assumptions, and to identify
underrepresented constructs in the training sets of learned predictors.

In this thesis, we expand upon the OOPSLA publication with formal discussions of properties
of the AnICA generalization algorithm and the presented basic block abstraction in the
Sections 8.1.3 and 8.1.4.

8.1. The AnICA Algorithm

On a high level, AnICA follows the structure of differential testing (McKeeman, 1998): An
AnICA campaign searches for inconsistencies between a fixed pair of throughput predictors
and reports them as discoveries. We generate valid input basic blocks, give them to both tools
under investigation, and compare their results. The throughput predictors are required to
support a common instruction set architecture (ISA), i.e., they need to have compatible input
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formats. Given a basic block, they should output a real-valued estimate for the number of
cycles required for its execution or report an error.

Differential testing is a natural fit to overcome the lack of a clear ground truth when
comparing basic block throughput predictors, with their implicit and explicit assumptions
on the input. Differences in the assumptions of the tools under investigation are visible as
inconsistencies for basic blocks that are affected by these assumptions.

Valuable insight can also be gained from comparing the results of a throughput predictor
to measurements on the actual hardware rather than other predictors. AnICA naturally
supports this, by using a microbenchmarking tool as one of the tools under investigation.5
However, even microbenchmarks on the actual hardware rely on assumptions that may not
hold when the investigated basic block is executed in a different context, for instance by
initializing registers and memory with specific values. Therefore, we also use the perspective
of differential testing for such comparisons with hardware measurements to acknowledge that
the involved microbenchmarking tool is also influenced by assumptions and not a definitive
ground truth.

As shown in this chapter’s introduction, a key challenge for AnICA is that inconsistencies
are so common in the randomly sampled inputs that just reporting all basic blocks with
inconsistencies leads to an impractical number of reports. Therefore, we center the algorithm
around the idea of abstract basic blocks, or abstract blocks for short: compact representations
characterizing sets of basic blocks by common properties. AnICA aims for several goals to
make the abstract blocks that are reported as discoveries useful:

• The represented basic blocks should be concise, i.e., not contain instructions that are irrele-
vant to the underlying problem. This makes them easy to interpret.

• Each discovery should be general by representing as many relevant basic blocks as possible.
The more general the discoveries are, the fewer of them need to be inspected.

• The discoveries should be pertinent, i.e., not represent basic blocks that do not exhibit
inconsistencies in the tools under investigation. Significant numbers of such cases would
make the characterization unreliable.

Since the results of AnICA are used to hint at existing problems or to show limitations of
the tools – rather than, e.g., to prove the absence of inconsistencies – none of these goals are
strict formal requirements. This fact allows us to employ approximations rather than heavy
formal machinery at several points in the following sections.

AnICA’s high-level structure, serving as a table of contents for the remainder of this
section, is shown in Algorithm 8.1. We randomly sample a basic block and check whether it is
interesting, i.e., if the throughput predictors under test exhibit an inconsistency (lines 3–5).
AnICA minimizes interesting basic blocks (line 6) by greedily removing as many instructions as
we can while keeping the block interesting. If the minimized basic block is already represented
by a previously discovered abstract block, we do not need to further investigate it (lines 7–8).
Otherwise, the basic block is generalized to an abstract block, which is then noted as a new
discovery (lines 9–10).

5We explore this in a case study in Section 8.3.3.
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1 discoveries← {};
2 while termination condition not reached do
3 candidate← sampleBB() ; // Section 8.1.5
4 if candidate is not interesting then // Section 8.1.1
5 continue;
6 minBB← minimize(candidate);
7 if any 𝑑 ∈ discoveries subsumes minBB then // Section 8.1.6
8 continue;
9 newDisc ← generalize(minBB) ; // Section 8.1.3

10 discoveries← discovery ∪ {newDisc};
11 return filterSubsumed (𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑒𝑠) ; // Section 8.1.6

Algorithm 8.1. Discovering inconsistencies.

We repeat this process until some termination condition is reached (line 2), e.g., a time
budget is exhausted or a number of subsequent samples did not produce new discoveries.
Finally, we check for each discovered abstract block a whether there is a subsequent one
whose represented basic blocks include all of a. Such subsumed discoveries provide only
redundant information and are therefore filtered from the results (line 11).

In the following subsections, we describe the components of Algorithm 8.1 in detail as
indicated in the comments.

8.1.1. Interestingness Metric
Not every difference in the output of the tools under investigation is relevant. Since they
predict real-valued average execution times based on vastly different models, small deviations
are to be expected. Our definition of interestingness therefore takes small variations into
account:

A basic block is interesting if it causes a tool under investigation to crash, or if the relative
difference between their predictions pred𝑎 and pred𝑏 exceeds a specified threshold:

|pred𝑎 − pred𝑏 |
avg(pred𝑎, pred𝑏)

=
|pred𝑎 − pred𝑏 | · 2
pred𝑎 + pred𝑏

> threshold

As we cannot assume any of the predictions to be the “correct” one, this definition normalizes
the absolute difference between the predictions by their arithmetic mean. The interestingness
threshold is a parameter of the algorithm that influences what inconsistencies are found.

Other definitions of interestingness are conceivable and may be useful. For example, our
AnICA implementation also provides an alternative criterion based on the absolute difference:

|pred𝑎 − pred𝑏 | > threshold

Which criterion is the most suitable depends on the inconsistencies we are searching
for. The relative difference is effective for focusing on interesting inconsistencies when the
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predicted numbers of cycles grow larger. With the absolute difference criterion, it is easier to
investigate inconsistencies of a few cycles for short-running basic blocks.

8.1.2. Basic Block Abstraction
We borrow concepts and notation from abstract interpretation (Cousot and Cousot, 1977)
to describe our representation of sets of basic blocks. Abstract interpretation is a technique
commonly used in static program analysis. It provides a framework to reason about approxi-
mations of the possible behaviors of programs. A key insight of the technique is to represent
subsets of conceivable program behaviors (denoted as elements of the concrete domain) by
elements of an abstract domain. This is beneficial since the concrete domain of sets of program
behaviors is generally too large to work with, whereas the abstract domain can be compact.

In AnICA, we apply this notion of abstraction to a different application domain. Instead
of program behaviors, we abstract basic blocks. Therefore, our concrete domain contains
sets of basic blocks and the abstract domain represents features of these basic blocks such as
instruction mnemonics, use of memory, and operand dependencies.

Formally, our concrete domain C is the power set of the set B of instruction sequences from
an instruction set I, ordered by set inclusion ⊆:

C := P(B) with B := I+

An abstract domain A is a set with a partial order ⊑ that relates domain elements by their
generality: If 𝑎 ⊑ 𝑏 holds for two elements 𝑎, 𝑏 ∈ A, 𝑏 represents at least all elements of the
concrete domain that 𝑎 represents. While the abstract domain may be infinite, we require the
ascending chain condition, i.e., infinite sequences of strictly more general elements in the
abstract domain are not allowed.

As usual in abstract interpretation, the AnICA algorithm is independent of the specific
abstract domain. The abstract domain only needs to relate to the concrete domain via two
functions: a concretization function 𝛾 : A→ C and a representation function 𝛽 : B→ A.

The concretization function 𝛾 maps each element of the abstract domain to a set containing
all basic blocks that it represents. Conversely, the representation function 𝛽 maps individual
basic blocks to a representation in the abstract domain.6 Figure 8.2 visualizes these functions
and the constraints we impose on them to constitute an abstract domain:

∀𝑏 ∈ B. 𝑏 ∈ 𝛾 (𝛽 (𝑏)) (8.1)
∀𝑎, 𝑎′ ∈ A. 𝑎 ⊑ 𝑎′ ⇒ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′) (8.2)

These constraints ensure that the functions are consistent with the orders of the domains:
Equation (8.1) assures that a basic block𝑏 is part of the concretization of its representative 𝛽 (𝑏).
Equation (8.2) requires that 𝛾 is monotone with respect to the domain orders, i.e., that if one
abstract block is more general than another, it represents more concrete basic blocks.

6We require 𝛽 instead of the more common abstraction function 𝛼 : C → A since it tends to be easier to define
and since our generalization algorithm only ever needs to abstract individual concrete basic blocks. With an
abstraction function 𝛼 , 𝛽 could be defined as 𝛽 (𝑥 ) = 𝛼 ({𝑥 }) .
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Figure 8.2. Relationships between elements of the concrete and the abstract domain. (Ritter
and Hack, 2022)

While 𝛽 is often straightforward to implement, 𝛾 is unwieldy: If implemented explicitly,
it would need to produce very large sets of concrete basic blocks. To avoid this problem,
abstract domains in AnICA do not come with an explicit concretization function, but with a
concretization sampler 𝛾 (𝑎) that randomly samples a basic block from 𝛾 (𝑎).

Our algorithm does not require an explicit generality relation ⊑ either. Instead, we use
a set Exps ⊆ A ⇀ A of partial expansion functions that each map abstract blocks to their
immediate successors in the generality relation.

In practice, these expansion functions each describe a way to modify abstract blocks in
order to obtain a slightly more general abstract block. Formally, each expansion function
𝐸 ∈ Exps needs to be strictly ascending and monotone:

∀𝑎 ∈ dom(𝐸). 𝑎 ⊑ 𝐸 (𝑎) ∧ 𝑎 ≠ 𝐸 (𝑎)
∀𝑎, 𝑎′ ∈ dom(𝐸). 𝑎 ⊑ 𝑎′ ⇒ 𝐸 (𝑎) ⊑ 𝐸 (𝑎′)

If there is an immediate successor 𝑎′ to 𝑎 in the generality order, there should be an expansion
function 𝐸 ∈ Exps such that 𝐸 (𝑎) = 𝑎′. However, we require that for each abstract block 𝑎,
the number of expansion functions 𝐸 ∈ Exps such that 𝑎 ∈ dom(𝐸) is finite.

Example 8.1. For an informal notion of what an abstract block for the x86-64 instruction set
architecture looks like, consider the following example:

Instructions:
1. mnemonic: mov; memory: read
2. mnemonic: add; category: arithmetic;

memory: read+written
Aliasing:

• operand 1 of instruction 1 must alias with operand 2 of
instruction 2

(AB1)

This abstract block represents all basic blocks consisting of two instructions that satisfy
constraints on their mnemonics, their category, their use of memory, and the aliasing of
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their operands.7 For instance, the following concrete basic block is represented by the above
abstract block:

1 mov rbx , [rdx + 42]

2 add [r8], rbx

The mnemonics fit their constraints, the first instruction only reads from memory at the
location [rdx + 42], whereas the second one reads and writes memory at [r8]. The aliasing
constraint is satisfied by using the common rbx register.8

An expansion function could for example drop the constraint on the mnemonic of the
second instruction. The result of this expansion function is the following abstract block:

Instructions:
1. mnemonic: mov; memory: read
2. category: arithmetic; memory: read+written

Aliasing:
• operand 1 of instruction 1 must alias with operand 2 of

instruction 2

It represents all basic blocks represented by the previous one, and more: All arithmetic
instructions are now allowed as the second instruction. ⌟

The following definition collects the above requirements we pose on an abstract domain.

Definition 8.2. A valid abstract domain (A, ⊑) with a concretization function 𝛾 : A→ C, a
representation function 𝛽 : B→ A, and a set Exps ⊆ A ⇀ A of expansion functions satisfies
the following constraints:

1. (A, ⊑) is partially ordered.
2. (A, ⊑) contains no infinite ascending chains.
3. All expansion functions 𝐸 ∈ Exps are strictly ascending:

∀𝑎 ∈ dom(𝐸). 𝑎 ⊑ 𝐸 (𝑎) ∧ 𝑎 ≠ 𝐸 (𝑎)
4. For each abstract block, the number of applicable expansion functions is finite.
5. For each abstract block, every direct successor in ⊑ is reachable via an expansion

function:
∀𝑎, 𝑏 ∈ A. (

𝑎 ⊏ 𝑏 ∧ �𝑐 ∈ A. 𝑎 ⊏ 𝑐 ⊏ 𝑏
) ⇒ ∃𝐸 ∈ Exps. 𝐸 (𝑎) = 𝑏

6. The expansion functions are monotone:
∀𝑎, 𝑎′ ∈ dom(𝐸). 𝑎 ⊑ 𝑎′ ⇒ 𝐸 (𝑎) ⊑ 𝐸 (𝑎′)

7We use the term “alias” here for instruction operands that refer to the same data. It is therefore not restricted to
memory operands, but also refers to (fully or partially) overlapping register operands.

8See Appendix C for an overview of the registers of the x86-64 ISA.
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7. The concretization function is monotone:
∀𝑎, 𝑎′ ∈ A. 𝑎 ⊑ 𝑎′ ⇒ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′)

8. Concretization and representation functions satisfy the soundness constraint:
∀𝑏 ∈ B. 𝑏 ∈ 𝛾 (𝛽 (𝑏))

⌟

Next, we describe how AnICA automatically generalizes interesting basic blocks to concise and
pertinent abstract blocks. With this generalization algorithm in mind, we then formalize the
details of a modular abstract domain for the x86-64 instruction set architecture in Section 8.1.4.

8.1.3. Generalization Algorithm
AnICA generalizes an interesting basic block 𝑏 as shown in Algorithm 8.2. The first result
candidate is the representative 𝛽 (𝑏), an abstract block that represents the given basic block 𝑏
as specifically as possible in the abstract domain (line 1). After validating that the initial
candidate is interesting (line 2), we choose an expansion to make the candidate more general
(lines 7–8). If the expanded abstract block is still interesting, we use it as a new candidate
(line 9). Otherwise, we note this expansion as rejected (line 10) and choose a different one. As
expansions are monotone and ascending, a once rejected expansion cannot be useful later in
generalization.

Once no expansion is left, we return the now general and still pertinent candidate (lines 5–6).
Termination is guaranteed as the abstract domain has no infinite ascending chains and the set
of expansions that apply to an abstract block is finite, cf. Theorem 8.4.

We extend our definition of interestingness (Section 8.1.1) from basic blocks to abstract
blocks for this algorithm. Ideally, an abstract block should be deemed interesting if all repre-
sented basic blocks are interesting. As this is prohibitively expensive to check, we approximate
this property. We randomly sample represented basic blocks with the concretization sampler 𝛾

Input: basic block 𝑏
1 absBB← 𝛽 (𝑏);
2 if absBB is not interesting then return 𝑏;
3 rejected ← {};
4 while True do
5 avail ← {𝐸 ∈ Exps | absBB ∈ dom(𝐸)} \ rejected;
6 if avail = {} then return 𝑎𝑏𝑠𝐵𝐵 ;
7 exp← choose(avail);
8 t ← exp(absBB);
9 if t is interesting then absBB← t ;

10 else rejected ← rejected ∪ {exp} ;

Algorithm 8.2. Generalization Algorithm.
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and consider the abstract block interesting if all samples are interesting. The number of
samples is a parameter of AnICA.

Example 8.3. Assume that the predictors under test disagree on the latency of reading a
value from memory that was written immediately before. Figure 8.3 visualizes a simplified
run of the generalization algorithm for this problem.

The first hypothesis for an abstract block (1) is the representation of a concrete basic block
exhibiting this behavior. As the represented basic blocks all show the assumed inconsistency,
this abstract block is interesting (marked with green double borders). In the next step, the
algorithm expands the aliasing requirement and reaches abstract block (2). With ⊤, we denote
that the component is unconstrained. Since the sampled basic blocks are then no longer
restricted to using the same memory location, they are not uniformly interesting, which
causes this expansion to be rejected (marked with single red borders). When we expand the
mnemonic of the second instruction, the abstract block (3) continues to only cover interesting
basic blocks. Allowing any of the instructions to not use memory (4,5) leads to more rejections.
Finally, this leaves only the mnemonic of the first instruction to be expanded (6), which results
in another interesting basic block. After that, all components of the abstract blocks are either
⊤ or only affected by rejected expansions. Hence, the algorithm terminates returning abstract
block (6). ⌟

We formulate and prove two statements about this algorithm. The first theorem concerns
the algorithm’s termination, whereas the second one states that, when approximations are
idealized, the algorithm achieves our goals of generality and pertinence for the resulting
abstract blocks.

Theorem 8.4. The generalization algorithm always terminates if a valid abstract domain is
used.

Proof. See Appendix A.5.1. □

Theorem 8.5. Given an ideal check for the interestingness of an abstract block and a valid
abstract domain, the result of the generalization algorithm is

1. interesting and
2. maximal, i.e., every more general abstract block is not interesting,

if the initial representative 𝛽 (𝑏) is interesting. A check for interestingness chk : A →{
True, False

}
is ideal if

chk(𝑎) ⇔ ∀𝑏 ∈ 𝛾 (𝑎). 𝑏 is interesting.

Proof. See Appendix A.5.2. □

114



8.1. The AnICA Algorithm

Concrete Basic Block:

mov [rbx + 96], rax
add rdx, [rbx + 96]

Instructions: (1)
1. mnemonic: mov; memory usage: written
2. mnemonic: add; memory usage: read
Aliasing:

operand 1 of instruction 1 must alias
with operand 2 of instruction 2

Instructions: (3)
1. mnemonic: mov; memory usage: written
2. mnemonic: ⊤ ; memory usage: read
Aliasing:

operand 1 of instruction 1 must alias
with operand 2 of instruction 2

Instructions: (2)
1. mnemonic: mov; memory usage: written
2. mnemonic: add; memory usage: read
Aliasing:
⊤

Instructions: (4)
1. mnemonic: mov; memory usage: written
2. mnemonic: ⊤; memory usage: ⊤
Aliasing:

operand 1 of instruction 1 must alias
with operand 2 of instruction 2

Instructions: (5)
1. mnemonic: mov; memory usage: ⊤
2. mnemonic: ⊤; memory usage: read
Aliasing:

operand 1 of instruction 1 must alias
with operand 2 of instruction 2

Instructions: (6)
1. mnemonic: ⊤ ; memory usage: written
2. mnemonic: ⊤; memory usage: read
Aliasing:

operand 1 of instruction 1 must alias
with operand 2 of instruction 2

Figure 8.3. An example generalization tree. (Ritter and Hack, 2022)
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The order in which expansions are chosen in the generalization algorithm (line 7 in Algo-
rithm 8.2) affects the result. We approximate an optimal expansion order by generalizing each
candidate several times with different random expansion orders. Since we prune subsumed
discoveries from the results, we can try arbitrarily many different expansion orders without
degrading the quality of our discovery results.

The straightforward nature of the generalization algorithm is helpful when interpreting
AnICA’s results. As Parnin and Orso (2011) noted, tools that automatically find bugs and
present them only abstractly to users do not necessarily help to fix the bugs. They formulate
the observation that “[p]roviding overviews that cluster results and explanations that include
data values [and] test case information [. . . ] could make faults easier to identify and tools
ultimately more effective.” (Parnin and Orso, 2011, Section 6.1)

Our generalization algorithm naturally produces such clustered results and explanations
in the form of a generalization decision tree like the one in Figure 8.3. Each decision in this
tree is justified by the set of basic blocks that was sampled and evaluated to gauge their
interestingness. Our implementation of AnICA therefore includes a graphical interface to
inspect the generalization trees of its discoveries to provide users with detailed information
and concrete debuggable inputs for the tools under investigation.

The basic blocks that justify the rejection of an expansion are particularly insightful. They
highlight the limits of an inconsistency’s scope in a way that a plain clustering of inconsistent
basic blocks could not. We demonstrate in Section 8.2 how we can use such results to identify
behaviors of throughput predictors that run counter to common expectations.

8.1.4. Our Abstract Domain
We now define an abstract domain for the x86-64 instruction set architecture (ISA) as this
architecture is supported by most available basic block throughput predictors. The AnICA
algorithm is not conceptually limited to this ISA and similar domains can be designed for, e.g.,
ARM architectures.

Top-Level Abstraction

Our abstract domain (A, ⊑A) separates constraints on the individual instructions of the
represented basic blocks from constraints on how they interact via their operands. An abstract
block thus consists of a sequence of abstract instructions from an instruction abstraction Ain
and abstract alias information from an aliasing abstraction Aal :

A := A+in × Aal (8.3)

The partial order ⊑A only relates abstract blocks with the same number of abstract instructions
and is defined through partial orders ⊑in and ⊑al among its components:

(𝑥in, 𝑥al) ⊑A (𝑦in, 𝑦al) :⇔ 𝑥al ⊑al 𝑦al ∧ |𝑥in | = |𝑦in |
∧ (∀1 ≤ 𝑘 ≤ |𝑥in |. 𝑥in [𝑘] ⊑in 𝑦in [𝑘])

(8.4)
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In a similar way, the concretization 𝛾A : A→ P(B) and representation 𝛽A : B→ A functions
are defined based on per-component-functions:

𝑏 ∈ 𝛾A ((𝑎in, 𝑎al)) :⇔ 𝑏 ∈ 𝛾al (𝑎al) ∧ |𝑎in | = |𝑏 |
∧ (∀1 ≤ 𝑘 ≤ |𝑎in |. 𝑏 [𝑘] ∈ 𝛾in (𝑎in [𝑘]))

(8.5)

𝛽A (𝑏) :=
([𝛽in (𝑏 [𝑖])]𝑖=1,..., |𝑏 | , 𝛽al (𝑏)

)
(8.6)

Expansion functions expand one component of the abstract block, i.e., an abstract instruction
or the aliasing abstraction, and leave all other components untouched:

ExpsA :={
𝜆(𝑎in, 𝑎al). (𝑎in [𝑘 ↦→ 𝐸 (𝑎in [𝑘])], 𝑎al) if 𝑘 ≤ |𝑎in | ∧ 𝑎in [𝑘] ∈ dom(𝐸)

�� 𝑘 ∈ N, 𝐸 ∈ Expsin}
∪ {

𝜆(𝑎in, 𝑎al). (𝑎in, 𝐸 (𝑎al)) if 𝑎al ∈ dom(𝐸)
�� 𝐸 ∈ Expsal}

(8.7)

Note that here and in the following, definitions of sets of expansion functions follow a
common scheme with some term 𝑡 and predicates 𝑃 and 𝑄 :

Exps :=
{
𝜆𝑥. 𝑡 (𝑥,𝑦) if 𝑃 (𝑥,𝑦)

�� 𝑄 (𝑦)}
This structure with two separate predicates is required since Exps is a set of partial functions.
With “𝜆𝑥 . 𝑡 (𝑥,𝑦) if 𝑃 (𝑥,𝑦)”, we denote an individual partial function with the function param-
eter 𝑥 that is only defined if the predicate 𝑃 (𝑥,𝑦) is satisfied. The surrounding set definition{ · · · �� 𝑄 (𝑦)} specifies that Exps contains such a partial function for each value of 𝑦 that
satisfies 𝑄 (𝑦).

Instruction Abstraction

The set Ain contains abstract instructions that describe sets of instruction schemes, i.e., in-
struction representations that are parametric in their operands (cf. Section 2.1). We extract the
instruction schemes for the x86-64 ISA from uops.info (Abel and Reineke, 2019). Additionally,
we collect for each instruction scheme several features such as the mnemonic, the explicit and
implicit operand types, whether and how it uses memory, and to which instruction category
and ISA extension it belongs. Table 8.1 shows examples for such features and their values.
Our domain groups instruction schemes through constraints on these features. The form of
these constraints for a feature 𝑓 is determined by its feature abstraction A𝐹 [𝑓 ]. Table 8.2
introduces the feature abstractions that we use for our abstract domain.

For simple features like the category and ISA extension to which the instruction belongs
or the presence of a lock or rep prefix, we use the singleton abstraction. It expresses that
all represented instruction schemes have a specific value for the feature, e.g., that they are
all part of the AVX vector extension, or that they do (or do not) have a lock prefix to make
memory accesses atomic.

For the mnemonic, we use the edit distances abstraction. It constrains the represented
mnemonics by an upper bound d on the Levenshtein editing distance from a base string 𝐵.
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Table 8.1. Values of various features 𝑓 for two example instruction schemes.

𝑓 𝑓
(
vaddpd ⟨XMM⟩𝑊 , ⟨XMM⟩𝑅, ⟨XMM⟩𝑅

)
𝑓
(
lock sub ⟨MEM[32]⟩𝑅𝑊 , ⟨IMM[32]⟩𝑅

)
mnemonic vaddpd sub

memory usage ∅ {
R,W, Size : 32

}
operand types

{⟨XMM⟩𝑊 , ⟨XMM⟩𝑅} {⟨MEM[32]⟩𝑅𝑊 , ⟨IMM[32]⟩𝑅, FLAGS𝑊
}

has lock prefix no yes
ISA-Extension AVX base

µops in Skylake
{{

0, 1
}
,
{
2, 3

}} {
4 × {

0, 1, 5, 6
}
, 2 × {

0, 6
}
, 2 × {

2, 3
}
,
{
4
}}

Table 8.2. Feature domains used in AnICA. The domains are shown as Hasse diagrams, where
the partial order is indicated through the lines: If 𝑥 is connected to 𝑦 and 𝑦 is closer to the
top, 𝑥 ⊑𝐹 𝑦 holds. The representation function 𝛽 (𝑓 ) of the Log Sizes domain improves
upon the insufficient version from the paper. (Ritter and Hack, 2022)

Domain Hasse Diagram Used for 𝛾
(𝑓 )
𝑋 (av) for av ≠ ⊤ 𝛽

(𝑓 )
𝑋 (𝑖)

Singletons
⊤

𝑥1 𝑥2 . . .

Category,
ISA-Extension,

Prefixes
{𝑖 | 𝑓 (𝑖) = av} 𝑓 (𝑖)

Edit
Distances

⊤
(B : 𝑥1, d : 𝐾) (B : 𝑥2, d : 𝐾) . . .

. . . . . .

(B : 𝑥1, d : 0) (B : 𝑥2, d : 0)

Mnemonic {𝑖 | dist (𝑓 (𝑖), B) ≤ d} (B : 𝑓 (𝑖), d : 0)

Log Sizes

⊤
𝐾

. . .
1

0

Number
of µops {𝑖 | |𝑓 (𝑖) | < 2av}

if 𝑓 (𝑖) = ∅: 0
if |𝑓 (𝑖) | ≥ 2𝐾 : ⊤
otherwise:⌊

log2 ( |𝑓 (𝑖) |) + 1
⌋

Subset-
or-None

⊤
{ } DefNone

{𝑥1} {𝑥2} {. . . }

{𝑥1, 𝑥2} {𝑥2, . . . }{𝑥1, . . . }

Memory
Usage,

Operand
Types

if av = DefNone:
{𝑖 | 𝑓 (𝑖) = ∅}

otherwise:
{𝑖 | 𝑓 (𝑖) ⊇ av}

if 𝑓 (𝑖) = ∅:
DefNone

otherwise:
𝑓 (𝑖)

118



8.1. The AnICA Algorithm

If they share their base, abstract values are ordered by their value of d, which is limited by
a maximum bound 𝐾 .9 This abstraction allows AnICA to group instruction schemes with
similar mnemonics: An abstract value representing only vaddpd (an addition for vectors of
double-precision floats) can be expanded to also represent vaddps (the same operation with
single-precision) and the scalar versions vaddsd and vaddss. The edit distance abstraction
is heuristic in nature: neither do all similar instructions have similar mnemonics nor are
all instructions with similar mnemonics similar themselves. We nevertheless found this
abstraction to be helpful in practice since, for instance, mnemonic suffixes that rarely affect
the instruction’s performance behavior are common in modern ISAs (e.g., specifying the
floating-point format and vector width, or the condition for conditional move instructions).

We use the log sizes abstraction for the (multi-)set of micro operations required to execute
an instruction. AnICA can therefore group instruction schemes by their complexity: An
abstract value represents all instruction schemes that are decomposed into less than 2𝑘 µops
for a certain 𝑘 . To avoid infinite ascending chains of abstractions, a maximal value for 𝑘 is a
parameter 𝐾 of this abstraction.10

Whether and how an instruction accesses memory affects its performance significantly.
Our domain uses the fine-grained subset-or-none abstraction with subsets of {R,W, Size : 𝑛}
to represent memory usage. This enables AnICA to relax constraints on memory usage step
by step. An abstract instruction representing only instruction schemes that read (R) and write
(W) 𝑛 bits in memory can be expanded by dropping any of these constraints. The expanded
abstract instruction might, e.g., represent all instruction schemes that at least read 𝑛 bits from
memory. With DefNone, only instruction schemes that do not access memory are represented.
We also use this abstraction for the set of operand types that occur in the instruction schemes.
Notably, we use this abstraction only with finite sets.

Formally, abstract instructions are tuples of elements of feature abstractions A𝐹 [𝑓𝑗 ] for
each considered feature 𝑓𝑗 :

Ain := AF [f1] × · · · × AF [f𝑁 ] (8.8)

The partial order among abstract instructions relies on the partial orders of the involved
feature abstractions:

(𝑥1, · · · , 𝑥𝑁 ) ⊑in (𝑦1, · · · , 𝑦𝑁 ) :⇔
∧

𝑗∈[1,𝑁 ]
𝑥 𝑗 ⊑𝐹 𝑦 𝑗 (8.9)

The last two columns of Table 8.2 define the feature concretization and representation
functions𝛾 (𝑓 )𝑋 and 𝛽 (𝑓 )𝑋 for each feature abstraction𝑋 . They are parameterized by the feature 𝑓
for which they are used and refer with 𝑓 (𝑖) to the value of the instruction scheme 𝑖 for this
feature.

The feature concretization functions 𝛾 (𝑓 )𝑋 map abstract values from the feature abstraction𝑋
to their set of represented instruction schemes 𝑖 . All feature abstractions have a maximal
abstract value ⊤, which represents the absence of any constraint. Therefore, its concretization

9In practice, we use 𝐾 = 3 for the mnemonic abstraction.
10In practice, we use 𝐾 = 5 to abstract the number of µops.
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is the same for every domain: the entire set of available instruction schemes. The feature
representation functions 𝛽 (𝑓 )𝑋 define the value from the feature abstraction that best describes
an instruction scheme with the value 𝑓 (𝑖) for the feature 𝑓 .

We use these feature concretization and representation functions to define the corresponding
functions for the instruction abstraction. An abstract instruction imposes the conjunction of
the per-feature constraints on the represented instruction schemes. Therefore, it concretizes to
the intersection of the per-feature concretizations 𝛾 (𝑓 )A𝐹 [ 𝑓 ] applied to the abstract instruction’s
component ai[𝑓 ] for each feature 𝑓 :

𝛾in (ai) :=
⋂

𝑓 ∈Features
𝛾
(𝑓 )
A𝐹 [ 𝑓 ] (ai[𝑓 ]) (8.10)

To obtain a representative abstract instruction for a concrete one, we apply the representation
functions for each feature:

𝛽in (𝑖) :=
(
𝛽
(𝑓1 )
A𝐹 [ 𝑓1 ] (𝑖), . . . , 𝛽

(𝑓𝑁 )
A𝐹 [ 𝑓𝑁 ] (𝑖)

)
(8.11)

Analogously, an expansion function for an abstract instruction ai takes a non-⊤ component
and replaces it with one of its immediate successors in the generalization order:

Expsin :=
{
𝜆ai. ai[𝑓 ↦→ 𝑦] if ai[𝑓 ] = 𝑥

��
𝑓 ∈ Features, 𝑥 ∈ A𝐹 [𝑓 ] \ {⊤}, 𝑦 succeeds 𝑥 in ⊑A𝐹 [ 𝑓 ]

} (8.12)

Aliasing Abstraction

The subcomponent Aal represents aliasing constraints among operands of instructions. We
refer to an operand of an instruction via a pair (idx𝑖 , idx𝑜 ) ∈ Idx := (N×N) of indexes into
the sequence of instructions and into the sequence of operands of the instruction. The operand
idx𝑜 of instruction idx𝑖 in the basic block 𝑏 is denoted as 𝑏 [(idx𝑖 , idx𝑜 )].

An aliasing constraint for a pair of such instruction operand designators can state that they
must or must not alias, or that no constraint applies (denoted as⊤). The aliasing subcomponent
is therefore defined as a mapping as follows:

Aal := (Idx × Idx) → {must, mustnot,⊤} (8.13)

A value𝑔 of the aliasing abstraction is more general than or as general as anotherℎ if𝑔 imposes
the same or a weaker constraint than ℎ for every pair of operands:

ℎ ⊑al 𝑔 :⇔ ∀𝑥 ∈ (Idx × Idx). 𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥) (8.14)

Only finitely many entries in an element of the aliasing abstraction may differ from ⊤.
This component of the abstraction is more intricate than one might expect at first: The

instruction abstraction can represent sets of vastly different instruction sequences. One
abstract instruction could for example represent a 2-operand integer addition operation and
a 3-operand floating point addition. Consequently, the aliasing abstraction needs to handle
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cases where operands do not match, i.e., cannot possibly alias, or where they are not present
at all in some of the represented basic blocks.

We handle these cases with a concretization function that only applies constraints on
operands that match and are present in the concrete basic block:

𝑏 ∈ 𝛾al (ℎ) :⇔
∧

( (i1,i2 ) ↦→𝑥 ) ∈h

( (
𝑏 [i1] and 𝑏 [i2] exist and match

)
⇒

(
𝑥 = ⊤ ∨ (

𝑥 = must ∧ (
𝑏 [𝑖1] and 𝑏 [𝑖2] alias

) )
∨ (
𝑥 = mustnot ∧ (

𝑏 [𝑖1] and 𝑏 [𝑖2] do not alias
) ) )) (8.15)

The representation function 𝛽al is defined to capture the must-alias and must-not-alias
relations between matching operands of the concrete basic block:

𝛽al (𝑏) := 𝜆(𝑖1, 𝑖2).

must if 𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, and alias
mustnot if 𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, and do not alias
⊤ otherwise

(8.16)

It is straightforward to decide for a pair of register operands whether they alias: They alias
if and only if they are the same or if one is a sub-register of the other.11 Whether memory
operands alias depends on the values of registers. We approximate this by considering two
memory operands aliasing if they are syntactically identical, and not aliasing otherwise. In
general, this is not a sound approximation: Two memory operands can look entirely different
but refer to the same address or vice versa. It is only adequate for our use case because the
basic block sampling method described in the following section manages memory operands
such that they alias if and only if they are syntactically identical. As there are only finitely
many instructions and operands in any basic block, 𝛽al only produces assignments with a
finite number of non-⊤ entries, as required.

The expansion functions for the aliasing component of an abstract block each replace a
non-⊤ entry in the aliasing abstraction with ⊤:

Expsal :=
{
𝜆ℎ. ℎ[𝑥 ↦→ ⊤] if ℎ(𝑥) ≠ ⊤

�� 𝑥 ∈ Idx × Idx} (8.17)

Properties of the Abstract Domain

The termination and correctness statements of the generalization algorithm given with The-
orem 8.4 and Theorem 8.5 are conditional on using a valid abstract domain, as defined in
Definition 8.2. With the following theorem, we establish that the domain presented in this
section fulfills this requirement:

Theorem 8.6. The presented construction is a valid abstract domain.

Proof. See Appendix A.5.3. □
11We do not consider the legacy floating point extensions x87 and MMX; register aliasing is more complicated for

the x87 register stack.
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8.1.5. Sampling Represented Basic Blocks

Our generalization algorithm relies on a method 𝛾 to randomly sample basic blocks that are
represented by a given abstract block. For arbitrary elements of our abstract domain, this is a
hard problem: Sampling a block that fulfills the aliasing constraints essentially corresponds to
a graph-coloring register allocation problem (Chaitin et al., 1981) because concrete registers
have to be found that comply with the aliasing constraints. Since there are no restrictions on
these constraints, arbitrary interference graphs can emerge in general which renders sampling
NP-hard in theory.

As the concretization sampler 𝛾 is a very common operation in AnICA’s generalization
algorithm, we do not implement a complete solution to the NP-hard sampling problem. Instead,
we proceed greedily as follows:

1. For each abstract instruction, randomly choose a represented instruction scheme.

2. If the schemes have fixed operands, select those and set all related must-alias operands
accordingly.12

3. Repeatedly: Where an operand is not yet selected, randomly choose one that is not forbidden
through must-not-alias constraints. Set all must-alias operands accordingly.

We restrict what registers may be used as register operands to have distinct registers available
for the base registers of memory operands that cannot be overwritten. If two memory
operands are required to alias, we instantiate them with the same combination of base register
and displacement. In case of a no-alias constraint on memory operands, we use different
combinations of base register and displacement.

If, at any point in this algorithm, no selection is possible without violating the alias con-
straints or the requirements of the instruction schemes, the sampling fails and needs to be
repeated. For an example, consider the following abstract block for the x86-64 ISA with two
unconstrained abstract instructions and a must-not alias constraint:

Instructions:
1. ⊤
2. ⊤

Aliasing:
• operand 2 of instruction 1 must not alias with

operand 2 of instruction 2

If, in the first step of the sampling algorithm, we choose shift instructions with variable shift
amount for both instructions, sampling will fail: Both instructions need to have register c as
second operand for the shift amount, which would violate the alias constraint.

12For example, shifts in x86-64 use the c register for their shift amount.

122



8.1. The AnICA Algorithm

In practice, sampling rarely fails for the short instruction sequences that we sample. It
affected 0.01% of the ca. 4.8 × 106 sampling operations in the campaigns presented in Sec-
tion 8.2.3.13

8.1.6. Checking for Subsumption
In Algorithm 8.1, we check whether concrete or abstract blocks are subsumed by an abstract
block to avoid unnecessary generalizations and to prune irrelevant discoveries. The fixed
number and positions of instructions in our abstract domain simplify the sampling of basic
blocks, but they hinder us here. The concretization 𝛾A (𝑎) of an abstract block 𝑎 does not
contain basic blocks that we would like to consider subsumed by 𝑎. For an example, reconsider
abstract block AB1 from Example 8.1:

Instructions:
1. mnemonic: mov; memory: read
2. mnemonic: add; category: arithmetic;

memory: read+written
Aliasing:

• operand 1 of instruction 1 must alias with operand 2 of
instruction 2

(AB1)

The following basic block would not be included in the concretization of AB1:

1 add [r8], rbx

2 mov rbx , [rdx + 42]

However, the instructions here are the same as in the example represented by AB1, only in a
different order that has no impact on the block’s sustained throughput. The throughput is
determined by the rate at which the basic block can be executed repeatedly for an indefinite
number of iterations. What determines the throughput of a basic block bb is therefore the
trace of instructions resulting from repeating bb a large number of times. When a basic block
bb′ results from rotating bb (i.e., removing a sequence of instructions from the beginning and
appending it to the end), its trace differs from the one of bb only by short pre- and suffixes
whose influence on the execution time vanishes with a growing number of repetitions.

Similarly, if this basic block exhibits an inconsistency in the predictions, it is likely to have
the same reason as AB1 as it contains the characteristics described by the abstract block:

1 mov rbx , [rdx + 42]

2 nop

3 add [r8], rbx

13An alternative approach would be to encode the aliasing constraints as SMT formulas and use, e.g., the approach of
Dutra et al. (2019) to sample satisfying solutions. In comparison to our approach this would eliminate the chance
of sampling errors at the cost of an increased execution time of the sampling steps.
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Yet, it is not included in 𝛾A (AB1) since it contains three instead of two instructions.
We therefore do not rely on the partial order of the abstract domain to implement the

subsumption checks in Algorithm 8.1. Instead, we check for the following definition:

Definition 8.7. An abstract block (𝑎1
in, 𝑎

1
al) subsumes another (𝑎2

in, 𝑎
2
al) if there is a mapping𝑚 :

𝐼 1 → 𝐼 2 from the indexes 𝐼 1 of the abstract instructions of 𝑎1
in to the indexes 𝐼 2 of 𝑎2

in s.t.
∀𝑖, 𝑗 ∈ 𝐼 1. 𝑖 ≠ 𝑗 ⇒𝑚(𝑖) ≠𝑚( 𝑗) (C1)
∀𝑖 ∈ 𝐼 1. 𝛾in (𝑎2

in [𝑚(𝑖)]) ⊆ 𝛾in (𝑎1
in [𝑖]) (C2)

∀((𝑖, 𝑜𝑝1), ( 𝑗, 𝑜𝑝2) ↦→ 𝑥) ∈ 𝑎1
al . 𝑥 ≠ ⊤ ⇒ 𝑎2

al ((𝑚(𝑖), 𝑜𝑝1), (𝑚( 𝑗), 𝑜𝑝2)) = 𝑥 (C3)
∀𝑖 ∈ 𝐼 1. ∀𝑘 ∈ 𝐼 2 between𝑚(𝑖) and𝑚((𝑖 + 1) mod |𝐼 1 |). �𝑖′ . 𝑚(𝑖′) = 𝑘 (C4)

An abstract block 𝑎 subsumes a concrete basic block 𝑏 if it subsumes 𝛽A (𝑏). ⌟

In other words,𝑚 needs to be injective (C1) and map abstract instructions to at least as specific
ones (C2). Furthermore, the aliasing constraints imposed by 𝑎2

al on the mapped instructions
need to be at least as strong as those imposed by 𝑎1

al (C3). Lastly, the order of the mapped
instructions𝑚(𝑖) in 𝑎2

in needs to be a rotation of the order of the instructions 𝑖 in 𝑎1
in (C4). All

instructions of 𝑎1
in need to have a counterpart in 𝑎2

in, but not vice versa.
We encode these constraints in a boolean formula that is satisfiable if and only if such a

mapping exists and use a SAT solver to discharge them. In an AnICA campaign, subsumption
checks are not numerous and in our experience, SAT solvers can solve the formulas quickly.

8.1.7. Ranking Abstract Basic Blocks

When evaluating the usefulness of AnICA discoveries, as well as for guiding developers
interested in improving throughput predictors, it is helpful to rank abstract basic blocks by
a notion of importance. In the following, we describe three approaches to ranking abstract
basic blocks that we found useful when evaluating AnICA and carrying out the case studies
presented in Section 8.3.

Ranking by Interestingness

Every abstract block that results from AnICA’s generalization has been checked for inter-
estingness. This means that we sampled a number of represented concrete basic blocks and
computed the (relative or absolute) difference between the predictions of the tools under
investigation for the basic blocks for each discovery. A natural metric for the relevance of
the abstract block is therefore the mean prediction difference over the set of sampled basic
blocks. The higher it is, the more dramatic is the inconsistency characterized by the abstract
block. For inputs that crash a throughput predictor, we set this metric to infinity to indicate
maximal interestingness.
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Ranking by Generality

Inconsistencies do not need to come with large deviations in the predictions to indicate a
significant difference in the tools under investigation. We therefore use generality as an
alternative metric for ranking abstract blocks. The idea is that we want to find discoveries
that affect large classes of concrete basic blocks.

There are several conceivable options to define such a metric, with different trade-offs.
We need to consider the effort required to compute them – an expensive choice would be
to sample a large number of basic blocks and check how many of them are subsumed by
each discovery. It is also not obvious how represented basic blocks should be weighted. For
instance, should instruction schemes with wide immediate constants be considered more
general because each possible immediate value counts as a different instruction?

We chose a notion of generality that is inexpensive to compute and operates, like our
generalization algorithm, on the granularity of instruction schemes: An abstract block’s
generality is the minimal number of instruction schemes represented by any of its abstract
instructions. While this is a simplification of reality – it ignores aliasing constraints and
the number of abstract instructions in the abstract block – this metric was instrumental for
finding several examples for our case studies.

Maximizing the Number of Subsumed Basic Blocks

If users of AnICA have a concrete set of basic blocks that they consider particularly relevant,
e.g., extracted from an important benchmark set, this can be leveraged to a custom-tailored
notion of generality. For instance, we can rank AnICA’s abstract blocks by the number of
basic blocks from the set that they subsume.

An extension to this strategy is to solve the following integer linear program (ILP) to obtain
a subset of 𝑘 discoveries that subsume a maximal portion of the basic block set 𝐵 from the
set AbsBlocks of AnICA’s discoveries:14

maximize
∑︁
𝑗∈𝐵

BB.covered[ 𝑗]

subject to
∑︁

𝑖∈AbsBlocks
AB.used[𝑖] ≤ 𝑘∑︁

𝑖∈AbsBlocks∧ 𝑖 subsumes 𝑗

AB.used[𝑖] ≥ BB.covered[ 𝑗] for all 𝑗 ∈ 𝐵

AB.used[𝑖] ∈ {0, 1} for all 𝑖 ∈ AbsBlocks
BB.covered[ 𝑗] ∈ {0, 1} for all 𝑗 ∈ 𝐵

The ILP uses two groups of binary variables: an AB.used[𝑖] variable for each abstract
block 𝑖 and a BB.covered[ 𝑗] variable for each concrete basic block 𝑗 . If one of the AB.used
variables is 1, the corresponding abstract block is chosen as one of the 𝑘 maximally subsuming
discoveries. The first constraint of the ILP ensures that no more than 𝑘 abstract blocks are
14See Appendix B for an overview of the terminology regarding integer linear programming used in this thesis.
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selected. If one of the BB.covered variables is 1, the corresponding concrete basic block is
subsumed by at least one of the chosen discoveries. We encode this relationship with the
second constraint of the ILP: BB.covered[ 𝑗] cannot be greater than 0 unless an abstract block 𝑖
that subsumes it is chosen with AB.used[𝑖]. With the ILP’s objective term, we require that an
optimal solution covers as many concrete basic blocks as possible.

A set of abstract blocks extracted from the values of the AB.used variables in an optimal
solution to the ILP is a maximally diverse selection of AnICA discoveries. With an appropriate
selection of the parameter 𝑘 , AnICA’s results can thus be summarized as concisely as desired.

8.2. Experimental Evaluation
The main goal of AnICA is to provide insights into the basic block throughput predictors
under investigation. Since this goal is not easily quantified, we evaluate AnICA in two parts:
a general investigation of how inconsistencies are generalized (Section 8.2.3) and a number of
detailed case studies to give examples of actual insights gained (Section 8.3).

8.2.1. Considered Tools
We compare a broad range of throughput predictors:

• the Intel Architecture Code Analyzer, IACA (Intel, 2012), version 3.0

• LLVM’s Machine Code Analyzer, llvm-mca (Di Biagio, 2018), as contained in LLVM
version 13 (if not stated otherwise)

• the Open Source Architecture Code Analyzer, OSACA (Laukemann et al., 2018), version
0.4.6

• the uops.info Code Analyzer, uiCA (Abel and Reineke, 2022)15

• the neural-network-based Ithemal (Mendis et al., 2019), with the provided model that
was trained on basic blocks from the BHive data set (Chen et al., 2019)16

• the modified llvm-mca version of DiffTune (Renda et al., 2020), with the parameters
provided by the authors17

See Section 7.2 of this thesis for an overview of these tools. We did not compare the MAQAO
Code Quality Analyzer (Rubial et al., 2014) as the current version at the time of evaluation was
only documented to support entire loops as input for its throughput prediction, which not
all of the other tools support.18 We also omit Facile (Abel et al., 2023), Granite (Sýkora et al.,
2022) and PerfVec (Li et al., 2023) since, at the time of evaluation, they were not available.
15https://github.com/andreas-abel/uiCA, commit 71f2eb6
16https://github.com/ithemal/Ithemal, commit 47a5734 and https://github.com/ithemal/Ithemal-mod

els, commit 87c2468
17https://github.com/ithemal/DiffTune, commit 9992f69
18Our AnICA implementation nevertheless supports tools like MAQAO’s CQA, with an option to wrap each basic

block in a loop when it is given as input to the tools.
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8.2.2. AnICA Parameters
We use the following parameters for AnICA:

• Threshold that the relative difference between two predictions must exceed to be considered
interesting: 0.5

• Number of samples to check whether an abstract block is interesting: 100
• Maximal length of sampled basic blocks for discovery: 5 instructions
• Number of randomized generalizations per basic block: 5

In preliminary experiments, we found that variations in the latter three parameters do not
affect AnICA’s results substantially in terms of the metrics used in the following evaluation.
Only if they are selected widely out of range (e.g., only using very few samples to check
for interestingness or only investigating very short basic blocks), the performance declines.
The threshold of the interestingness metric is of more relevance since it determines what
inconsistencies are found. The selected value is relatively large, which causes AnICA to focus
on substantial output differences. We found such inconsistencies to be more likely to hint at
conceptual differences like the handling of memory dependencies (cf. Section 8.3.1).

We extract the instruction schemes used for sampling from uops.info (Abel and Reineke,
2019). For the evaluation, we exclude instruction schemes if they satisfy any of the following
conditions:

• They are in a single-instruction-multiple-data (SIMD) or floating point extension other than
versions 1 and 2 of the Advanced Vector Extensions (AVX1&2).

• They are not measured by uops.info.19

• They affect control flow.
• They need to be executed in privileged mode.

This leaves us with 2940 instruction schemes. For each campaign, we further exclude all
instruction schemes that are not supported by one of the tools under investigation.20 We
configure the throughput predictors to assume the Intel Haswell microarchitecture since it is
the only one supported by all considered tools.

The AnICA campaigns ran on a system with an Intel Core i9-10900K processor (10 cores, 20
threads, 3.7 GHz) and 64 GB of RAM. Running the predictors to evaluate the interestingness
of basic blocks, which constitutes most of the execution time, is performed with 20 concurrent
threads.

8.2.3. Generalization of Inconsistencies
The heat map shown in Figure 8.1 at the beginning of this chapter, repeated in Figure 8.4,
demonstrates that we can find a large number of inconsistencies among the tools through
19This criterion is intended to exclude instructions that are not supported in the microarchitecture, e.g., because they

are from outdated ISA extensions.
20We consider an instruction scheme supported by a tool if the tool gives a non-zero prediction for a basic block

consisting of only an instance of the instruction scheme.
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Figure 8.4. Heat map showing the percentage of basic blocks with inverse throughput
estimates that deviate by more than 50% for each pair of predictors. Identical to Figure 8.1.

random testing; enough that investigating them all by hand would be infeasible. This section
evaluates how AnICA summarizes these inconsistencies.

The evaluation is based on the same data as Figures 8.1 and 8.4: a test set of 10,000 randomly
sampled basic blocks consisting of 4 instructions each. We sample these as described in
Section 8.1.5 from an abstract block with 4 instructions and no constraints. We ran AnICA for
each pair of tools until around 150 discoveries were found. Table 8.3 contains a column for
each AnICA campaign.21 The first line repeats the data from Figure 8.4: the percentage of
basic blocks in the test set that are interesting, i.e., for which the relative difference of the
predictions exceeds 50% of their average.

The second line shows the percentage of the set of interesting basic blocks from the test set
that are subsumed (cf. Section 8.1.6) by an AnICA discovery. At 74% to 97%, these ratios are
very high for comparisons of IACA, llvm-mca, uiCA, and OSACA. This indicates that AnICA
inferred general descriptions of the differences between these tools.

The third line further demonstrates that AnICA effectively condenses the inconsistent basic
blocks for manual inspection: It gives the ratio of interesting basic blocks in the test set that
are subsumed by a subset of only ten discoveries of the AnICA campaign. In eight of the
campaigns, these numbers were higher than 50%, meaning that in these cases only ten of
AnICA’s discoveries are sufficient to plausibly explain more than half of the inconsistently
predicted basic blocks. In every case except for the Ithemal/uiCA campaign, ten of the AnICA
discoveries subsume more than 1,000 inconsistent basic blocks from the dataset, ranging up to
3,060 subsumed inconsistencies in the IACA/Ithemal campaign. The discovery subsets for this

21For brevity, we use llvm-mca version 9 only for a comparison to version 13 of the same tool.
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Table 8.3. AnICA campaigns to find 150 inconsistencies, with metrics on how many basic
blocks from Figure 8.4 they explain, ordered by the percentage of interesting basic blocks
subsumed.

IACA, OSACA

llvm-mca 13, 9

IACA, uiCA

OSACA, uiCA

llvm-mca, uiCA

llvm-mca, OSACA

IACA, llv
m-mca

DiffTune, OSACA

IACA, Ith
emal

Ithemal, O
SACA

BBs interesting 26% 23% 34% 32% 31% 34% 19% 52% 57% 47%
int. BBs covered 97% 97% 91% 85% 83% 77% 74% 69% 68% 66%

. . . by top 10 68% 92% 82% 53% 72% 55% 70% 34% 54% 33%
run time (h:m) 6:34 0:32 1:35 6:59 1:19 5:28 0:38 9:29 4:34 8:13

DiffTune, llv
m-mca

DiffTune, IA
CA

Ithemal, llv
m-mca

DiffTune, uiCA

DiffTune, Ith
emal

Ithemal, uiCA

BBs interesting 46% 52% 50% 40% 46% 30%
int. BBs covered 63% 62% 62% 59% 57% 38%

. . . by top 10 31% 32% 49% 34% 29% 16%
run time (h:m) 5:55 5:54 5:05 6:25 10:02 5:15

metric were computed with the strategy to maximize the number of subsumed basic blocks
presented in Section 8.1.7, applied to the interesting basic blocks in the test set.

The time required to find these discoveries, as displayed in the last line, mainly depends on
how fast the tools produce their predictions. While not the focus of this work, we observe
that in this setup, IACA, llvm-mca, and uiCA were considerably faster than OSACA, Ithemal,
and DiffTune.

The campaigns that include Ithemal and DiffTune still cover a substantial number of
inconsistencies, but AnICA finds less potential for generalization here than in the other
campaigns. We can identify reasons for this observation from the results for these campaigns:
AnICA’s generalizations terminate early in several instances where these tools produce results
that run counter to common expectations.

For example, Ithemal produces different results for basic blocks that only differ in the
specific register that they use, as can be seen in its predictions for basic blocks consisting of a
single “rotate left” operation:

Basic Block rol r12, cl rol r10, cl

Predicted Inverse Throughput 0.35 cycles 1.01 cycles

All other tools predict equal throughputs for these blocks.
AnICA groups instructions by instruction schemes, i.e., a form that abstracts from the

specific operands of the instruction. It therefore does not generalize inconsistencies that are
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not independent of the concrete registers used. Most throughput predictors share this notion
and do not change their prediction if, e.g., operand registers in the basic block are replaced
(while preserving dependencies). This assumption is evidently not enforced in Ithemal’s
neural network.

AnICA’s results demonstrate this issue and therefore justify the conclusion that Ithemal
might benefit from training data where basic blocks are included multiple times with different
but semantically equivalent register allocations. Since the measured throughputs for these
would be the same, the neural network might learn to abstract from the specific register used.

DiffTune learns parameters for llvm-mca and can therefore not produce different predictions
based on the specific operands of the instructions as Ithemal does. We can, however, observe
that instructions that are very similar are predicted differently by DiffTune. For example,
AnICA finds that the abstract block in Figure 8.5 (e) represents an inconsistency between
DiffTune and IACA. This abstract block covers arithmetic right shift instructions, which – as
the witnessing experiments in AnICA’s generalization decision tree show – DiffTune predicts
slower than IACA if they use memory and faster if they do not use memory. However, this
discovery also indicates that instructions with a mnemonic that is only slightly different, like
the logical right shift operations shr, are not predicted inconsistently. From the experiments
that reject the expansion to a mnemonic edit distance of 1, we can see that DiffTune gives
different predictions for shr and sar instructions, in contrast to most other tools. This
different treatment of similar instructions invites for a closer inspection, but it restricts
AnICA’s generalizations.

In summary, we observe that AnICA’s generalization is very effective for the majority
of considered tools. Where generalization is not as effective, the results are nevertheless
insightful and point to concrete problems.

8.3. Case Studies

The previous section shows that AnICA is able to summarize thousands of inconsistencies
between throughput predictors by a small number of abstract blocks. For DiffTune and
Ithemal, it also presents first lessons learned from AnICA’s results. We further investigated
AnICA’s discoveries and found several kinds of insights, for which we present examples in
the following:

• AnICA uncovers different assumptions in the tools that can lead to dramatically different
predictions. (Section 8.3.1)

• AnICA finds newly introduced regression bugs in subsequent versions of the same tool
(Section 8.3.1) as well as long-existing bugs (Section 8.3.2).

• AnICA characterizes a variety of inaccuracies in llvm-mca’s model for the AMD Zen+
microarchitecture, as well as an unusual quirk in the microarchitecture itself. (Section 8.3.3)
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Instructions:
1. category: logical;

memory: read+written

(a) Inconsistency between llvm-mca 13 & 9 and
between llvm-mca 13 & DiffTune

Instructions:
1. memory: read+written;

category: binary

2. memory: written
Aliasing:

• operand 1 of instruction 1 must alias with
operand 1 of instruction 2

(b) Inconsistency between uiCA & Ithemal

Instructions:
1. memory: read+written;

requires less than 8 𝜇ops

(c) Inconsistency between IACA & uiCA

Instructions:
1. mnemonic: vpsubq + 1 edit;

memory: read

2. mnemonic: fxrstor[64]

(d) Crash in llvm-mca 12

Instructions:
1. mnemonic: sar + 0 edits

(e) Inconsistency between IACA & DiffTune

Figure 8.5. Abstract blocks causing inconsistent behavior found by AnICA. Feature abstrac-
tions are summarized for brevity. (Ritter and Hack, 2022)

8.3.1. Memory Dependencies

Data dependencies through memory operands are a challenge for basic block throughput
predictors. If subsequent writes to and reads from memory refer to the same location, the
write needs to be completed before the read.22 If they access disjoint memory locations, they
can execute independently. However, which of the cases applies may not be obvious or depend
on the inputs. AnICA’s results show that the tools handle these cases quite differently.

Table 8.4 shows how the throughput predictors handle memory dependencies on three
example basic blocks: one with a guaranteed memory dependency (first line), one with
independent instructions (second line), and one where the instructions may be independent,
given suitable register values (third line). We see three plausible inverse throughput prediction
results for executing such basic blocks in a loop:

• Two cycles, if there are no dependencies through memory and each instruction uses the
processor’s store unit for one cycle.

• Six cycles, if there is no memory dependency between the two instructions, but each
instruction depends on its own result from the previous iteration. They then form two
dependency chains with a latency of 6 cycles, which can be executed in parallel.

• Around 12 cycles, if all memory accesses depend on each other, forming a single large
dependency chain.

22More specifically, the written value needs at least to be computed and put into a store buffer, from which it can be
forwarded to subsequent reads.
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Table 8.4. Predictions for the cycles required to execute basic blocks that differ in their
memory dependencies.

Basic Block uiCA
OSACA

IACA
llvm-mca 13

llvm-mca 13 alias

llvm-mca 9

DiffTune
Ithemal

add [rcx+16],rbx; add [rcx+16],rbx 12.0 12.0 2.0 2.1 14.0 14.0 14.1 5.9
add [rcx+16],rbx; add [rcx+128],rbx 6.0 6.0 2.0 2.1 14.0 14.0 14.1 5.9
add [rcx+16],rbx; add [rdx+16],rbx 6.0 6.0 2.0 2.1 14.0 14.0 14.1 6.0

llvm-mca in its default setting (LLVM, 2023b) and IACA23 assume the first case. AnICA shows
that for llvm-mca in the outdated version 9, this was not the case. It discovers, e.g., that
the abstract block in Figure 8.5 (a) represents an inconsistency between llvm-mca versions 9
and 13. The older version was affected by a bug that led to predictions as if all memory
accesses aliased. While we first discovered and reported this bug manually in the context of
the PMEvo evaluation (Section 5.2), AnICA automatically finds this regression with a minimal
example for reproducing the bug.

We also find that DiffTune’s learned parameters for llvm-mca attempt to bypass llvm-
mca’s assumption that memory accesses do not alias: AnICA finds the same abstract block in
Figure 8.5 (a) in the campaign for llvm-mca 13 and DiffTune. The example basic blocks for
this discovery show that DiffTune also predicts throughputs as if all accesses were dependent
on each other. Regarding this, Renda et al. (2020) remark in their evaluation that DiffTune
learned a “degenerately high” latency for instructions that read and write memory from the
same location. llvm-mca also provides an override switch to assume that all memory accesses
alias, which leads to results similar to DiffTune’s.

AnICA’s discoveries like the one in Figure 8.5 (c) indicate that uiCA, OSACA, and Ithemal
do not share IACA’s assumption that no memory operations alias. These three tools recognize
the data dependency formed by a single instruction that reads and writes with itself, therefore
AnICA reports no discovery like those in Figure 8.5 (a) and 8.5 (c) between them. However,
the abstract block displayed in Figure 8.5 (b) allows us to identify the difference in line 1 of
Table 8.4: uiCA and OSACA rightly assume that the two memory locations alias if they are
identical. AnICA provides the basic block shown in line 1 of the table for this abstract block.

For a user of these tools, this discrepancy can significantly affect the outcome: If the memory
operands in the application alias in a non-obvious way, the observed cycles would exceed the
results of uiCA and OSACA by a factor of two, and those of IACA and the default setting of
llvm-mca by a factor of 6.

Since this inconsistency affects a large number of instruction schemes, corresponding
discoveries were easy to find in AnICA’s report with discoveries ranked by their generality
(cf. Section 8.1.7).

23as previously noted by Abel and Reineke (2019)
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8.3.2. FXRSTOR Crash in llvm-mca
To uncover crashes, AnICA can compare a single tool with itself. Figure 8.5 (d) shows an
abstract block we found when investigating the llvm-mca version from LLVM release 12. This
abstract block crashes the tool with an assertion, which AnICA always counts as interesting.
FXRSTOR instructions, which restore the state of floating point control registers from memory,
require the processor to execute a large number of µops. If one of the resources that it accesses
is also used by a different instruction nearby, e.g., a vector subtraction with a memory operand,
a bug in llvm-mca is triggered.

For LLVM release 13, this bug has been reported and fixed independently of our research.24

The report includes a large input with more than 300 instructions to trigger the bug. AnICA
automatically discovered the issue and provides a minimal input of just two instructions.

This discovery appears prominently in AnICA’s results when the discoveries are ranked by
their interestingness (cf. Section 8.1.7) since crashes in a tool under investigation are reported
as maximally interesting.

8.3.3. Comparing llvm-mca to Measurements
AnICA has little requirements on the tools under investigation. They only need to produce an
inverse throughput estimate for a given basic block. Consequently, we can also use AnICA to
compare a throughput predictor to a tool that runs input basic blocks as microbenchmarks on
the actual hardware.

In this case study, we apply AnICA to compare the predictions of llvm-mca for the AMD
Zen/Zen+ microarchitecture to microbenchmarks performed with nanoBench (Abel and
Reineke, 2020) on an AMD Ryzen 5 2600X processor. For these discoveries, we configured
AnICA to consider an abstract block interesting if the absolute difference between measured
and predicted inverse throughput of all of 50 sampled basic blocks is at least 2 cycles. This
ensures that we can identify the more subtle inconsistencies in the results. We further
restrict the instructions considered by AnICA for sampling and generalization: We exclude
instruction schemes that read and write memory to avoid discovering more variants of the
problem described in Section 8.3.1.

It is important to note that nanoBench is just another tool under investigation, not a ground
truth. We configure nanoBench to group 10 instances of the measured instructions in a loop
body that is executed 100 times while the passing processor cycles are measured with a
hardware performance counter after 10 warm-up iterations. We use defaults for the remaining
settings of nanoBench, which entails among other things that most registers are initialized
with arbitrary values (except for those used as memory addresses). These assumptions affect
the measured cycles, rendering the measurements unsuitable for use as definitive ground
truth. The strength of AnICA’s differential testing perspective is that neither tool needs to be
assumed as “correct” to obtain interesting insights.

Table 8.5 shows the selected AnICA discoveries that we discuss in the following. We refer
to the discoveries by the identifier in the first column. The second column contains the
abstract block reported as discovery by AnICA. With the generalization decision tree and
24https://llvm.org/bz50725
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Table 8.5. Abstract blocks capturing inconsistent behavior found by AnICA in llvm-
mca/nanoBench campaigns on the AMD Zen+ microarchitecture. The descriptions
are not generated by AnICA. The “Resulting Cycles” column displays the number of
cycles predicted by llvm-mca (mca) and the cycles measured by nanoBench (nb) for the
basic block in the preceding column.

Abstract Block Example Basic Block Resulting
Cycles Simplified Description

(A) Instructions:
1. optypes: {DF𝑅} cmpsq

mca: 100
nb: 3.0 llvm-mca models com-

plex instructions, certain
shifts, and horizontal vec-
tor operations very pes-
simistically.

(B)
Instructions:
1. optypes: {cl𝑅}

isa-set: I386
shld r11, rdx, cl

mca: 100
nb: 3.0

(C)
Instructions:
1. mnemonic: haddpd

+ 3 edits; category: SSE3
hsubpd xmm15, xmm12

mca: 100
nb: 6.5

(D)

Instructions:
1. mnemonic: bsf + 1 edit

optypes: {⟨GPR[64]⟩𝑊 }
Aliasing:

• operand 1 of instruction 1
must not alias with operand 2
of instruction 1

bsr rcx, r11
mca: 0.3
nb: 4.0

LLVM’s model for bit-
scan instructions implies
a wrong throughput.

(E)

Instructions:
1. mnemonic: add + 2 edits

optypes: {⟨GPR[64]⟩𝑅𝑊 }
memory: DefNone

2. mnemonic: and + 3 edits
optypes: {⟨GPR[64]⟩𝑅𝑊 }
memory: read

Aliasing:
• operand 1 of instruction 1

must alias with operand 1 of
instruction 2

add r8, 0x2a
adc r8, qword ptr [r14]

mca: 5.03
nb: 2.0

llvm-mca misses that
memory loads can start
before other operands
are available.

(F)

Instructions:
1. mnemonic: shl + 2 edits

optypes: {0x0}
isa-set: I186

2. optypes: {OF𝑅}

shl r9w, 0x0
setno r11b

mca: 1.04
nb: 25.7

Reading flags after shift-
ing by 0 incurs a penalty
on Zen+.
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the corresponding evaluated basic blocks, AnICA provides more additional information than
we can present here. We therefore instead only show one example basic block sampled from
the abstract block in the third column and the results of nanoBench (nb) and llvm-mca (mca)
for it in the fourth column. In the last column, we annotate a short summary of the problem
characterized by the discovery.

Microcoded Instructions When ranking AnICA discoveries by their interestingness (cf.
Section 8.1.7), the ones that stand out the most are those concerning instructions that llvm-mca
predicts to require 100 cycles to execute. This mainly affects microcoded instructions, e.g.,
the string operations, which commonly read the direction flag register DF, summarized by
discovery (A). When the processor’s instruction decoder encounters such instructions, it
produces a (potentially large and/or varying) number of µops that need to be executed by the
processor’s functional units. LLVM’s Zen+ scheduling model (and consequently llvm-mca)
handles most such instructions in a coarse way that just assigns them a latency of 100 cycles.

However, this strategy is also used for more unexpected instructions like certain bit shifts
(discovery (B)) and horizontal vector operations (discovery (C)). While these modeling deci-
sions are not per se bugs, they can make the Zen+ model of llvm-mca effectively unusable for
any task that uses such instructions. LLVM’s issue tracker contains a report for this behavior
that has been submitted independently of our work.25

Bit-Scan Instructions Discovery (D) shows an apparent bug in LLVM’s Zen+ schedul-
ing model for bit-scan instructions.26 The measurements with nanoBench, as well as the
instruction latency table provided by AMD (2021b), show that a BSR instruction has a latency
of 4 cycles and requires 4 cycles to be executed in a steady state (an execution rate of 0.25
instructions per cycle).

The aliasing component of AnICA’s abstract block (D) shows that llvm-mca predicts the
latency consistently with measurements: In similar basic blocks that violate the must-not-
alias constraint of abstract block (D), an instance of the bit-scan instruction can only be
executed once the previous instance produced its result, the throughput is therefore deter-
mined by the instruction’s latency. As the must-not-alias constraint could not be dropped
during generalization, llvm-mca models this case – and therefore the instruction’s latency –
consistently.

Without operand aliasing, llvm-mca underestimates the required execution time. The
scheduling model of LLVM (2021, line 235) provides an explanation: The affected instructions
are represented with a plausible latency, but they are modeled to block only one of the
architecture’s four arithmetic logic units. Therefore, llvm-mca assumes that up to four
independent instances of bit-scan instructions can be executed per cycle. We reported this
and four other results from similar AnICA discoveries to the LLVM developers. These reports

25https://github.com/llvm/llvm-project/issues/53242
26The bit-scan instructions BSF/BSR determine the index of the least/most significant bit set in their second operand

and write it to the first operand.
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show errors in LLVM’s Zen+ scheduling model for a total of 72 of our instruction schemes.
The bugs were confirmed and fixed by the developers.27

Inaccuracies in Load Operand Usage With discovery (E), we learn that llvm-mca over-
estimates the time required to execute instructions that depend on the result of a preceding
instruction and load from memory. The hardware is evidently able to issue a new instruction
in every cycle for the corresponding example basic block; the load latency (4 cycles for L1
cache hits on Zen+) completely overlaps with the remaining computation. llvm-mca’s model
does not account for this behavior: Here, the loading instruction always starts executing with
the instruction it depends on, causing the load latency to be visible. This problem has also
been independently reported in the LLVM issue tracker.28

A Microarchitectural Quirk AnICA’s results not only highlight oddities in prediction
tools, they can also show unusual behavior in the processor under test. The discovery (F)
shows how AnICA automatically found a microarchitectural quirk of the Zen architectures
that has been previously described by Abel (2020). Bit shifts by zero cause a severe execution
time penalty if they are followed by instructions that read the flag registers. Such no-op shifts
are a special case in the x86-64 ISA as only for a shift amount of zero the flag registers are not
updated.29 llvm-mca’s model omits the unexpected handling of this corner case in AMD’s
Zen architectures.

In all of the above cases, AnICA automatically discovered an unexpected inconsistency
and provided helpful insight with its generalization. Such insights could otherwise only be
gained through tedious manual effort. The fact that we, additionally to finding new bugs,
automatically rediscovered several previously reported problems in the llvm-mca predictions
indicates that AnICA finds problems that are relevant to the users of llvm-mca.

8.4. Related Work
To the best of our knowledge, AnICA is the first work to apply differential testing to microar-
chitectural code analyzers. This section describes other approaches to evaluate such tools and
contrasts AnICA to previous work in differential testing.

8.4.1. Testing Throughput Predictors
Most of the available basic block throughput predictors come with an evaluation of their
prediction accuracy. A common approach to evaluate throughput predictors is to measure
the relative error from and the correlation with execution time measurements on a chosen
set of basic blocks. This is done for OSACA (Laukemann et al., 2018), Ithemal (Mendis
et al., 2019), DiffTune (Renda et al., 2020), and uiCA (Abel and Reineke, 2022). They all use
27https://github.com/llvm/llvm-project/issues/54811 and https://github.com/llvm/llvm-project/i

ssues/54889
28https://github.com/llvm/llvm-project/issues/50899
29See, e.g., https://www.felixcloutier.com/x86/sal:sar:shl:shr.
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basic blocks that were extracted from the binaries of common benchmarks and open source
programs whose throughput was measured using various methodologies. Of particular note
is BHive (Chen et al., 2019), which is used in the evaluations of DiffTune and uiCA. It is an
openly available set of such basic blocks with annotated measured inverse throughputs for
several Intel microarchitectures. The evaluation of uiCA identifies cases where assumptions
made for the ground truth measurements affect which tool is “more accurate” than another,
motivating our differential approach.

Evaluating the prediction accuracy on basic blocks from compiled programs is helpful when
the expected use of the tools is on similar basic blocks. However, such basic blocks are lacking
when we want to explore inconsistencies of the tools systematically: Of the 2940 instruction
schemes that we use in our evaluation, 2002 (i.e., 68%) do not occur in any basic block of the
BHive data set and 525 (i.e., 18%) of the instruction schemes are enough to represent 99% of
the BHive basic blocks. The BHive benchmarks therefore leave a gap in the input space when
testing throughput predictors that AnICA addresses.

BHive includes an approach to help developers identify problems with their throughput
predictors. They cluster basic blocks from the data set based on their use of execution units in
the processor (e.g., “vectorized code” and “code with mainly memory operations”). If a tool
performs particularly poor on a cluster of basic blocks, the developers can focus on improving
support for the associated category. These categories are, however, considerably less specific
than the inconsistencies that AnICA reports to the user.

Abel (2022) investigated the prediction accuracy of DiffTune, providing a very simple set
of parameters for llvm-mca that outperform the learned DiffTune parameters on the BHive
data set in terms of prediction accuracy. These findings are consistent with the unexpected
predictions we encountered in our DiffTune campaigns (Section 8.2.3).

EXEgesis (Chatelet, 2018; Google, 2018; LLVM, 2023a) is a project to validate LLVM’s per-
formance models and, consequently, llvm-mca. For a given instruction scheme, EXEgesis
executes a microbenchmark on the target machine and measures its performance characteris-
tics. EXEgesis can compare the measured performance to the corresponding information in
LLVM’s scheduling model. In contrast to AnICA, EXEgesis does not generate experiments
with multiple instructions to test their interactions and it is closely integrated with LLVM.
Comparisons with other predictors are therefore not supported.

Approaches that infer models for components of throughput predictors are also evaluated
against existing ones on a measured ground truth. Our previously published approach for
inferring port mappings, PMEvo (Ritter and Hack, 2020, cf. Chapter 5 of this thesis), and
Palmed (Derumigny et al., 2022a) both use basic blocks without data dependencies, whose
throughput is bound by the processor’s functional units. For Palmed, the basic blocks mirror
basic blocks observed in the binaries of benchmark suites (without the dependencies). The
basic blocks we used for PMEvo are more similar to the ones we use here: They are randomly
sampled in a way that avoids data dependencies. The evaluation of uops.info (Abel and
Reineke, 2019) points out some inconsistencies in IACA, but focuses on the usage of resources
for single instructions.

COMET (Chaudhary et al., 2023), which was published after our article on AnICA, explains
the predictions of a basic block throughput predictor with a technique similar to AnICA’s.
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Given a basic block 𝑏, COMET searches a set of features of 𝑏 that determines the predicted
throughput, i.e., changing any other feature of 𝑏 does not affect the throughput prediction
significantly. A key component of the approach is the random generation of basic blocks
that differ from 𝑏 in a given set 𝐹 of features while the remaining features are preserved. In
AnICA’s framework, this operation corresponds to setting the components of the abstract
block 𝛽 (𝑏) that correspond to features in 𝐹 to ⊤ and sampling from the resulting abstract
block.

COMET considers the number of instructions of the basic block, their opcodes, and the
dependencies between the instructions as basic block features. This feature selection is
less expressive than the abstract domain we describe in Section 8.1.4 for AnICA: It loosely
corresponds to replacing the instruction abstraction by a single singleton component for the
mnemonic/opcode.

AnICA’s basic block generalization algorithm could be applied to COMET’s setting with an
interestingness metric that considers basic blocks interesting if their predicted throughput
is (almost) equal to the prediction for 𝑏. When we start the generalization algorithm from 𝑏
with such an interestingness metric, the non-⊤ components of the resulting abstract block
correspond to features of 𝑏 that determine the throughput prediction.

COMET applies a general algorithm for explaining model predictions, the Anchors algorithm
(Ribeiro et al., 2018). On a high level, this algorithm operates dually to our generalization
algorithm:

• AnICA’s generalization starts with a pertinent characterization of an interesting input, low
in the generality order, and goes “up” in the order as long as the result remains pertinent.
For each step “up”, we use random sampling to find a feature to “expand” while preserving
pertinence.

• The Anchors algorithm starts with a most general characterization, maximal in the generality
order, and narrows it “down” in the order until a pertinent characterization is found. For
each step “down”, they follow a sample-based algorithm to identify which feature should be
“shrunk” to increase pertinence.

A future line of research could be to investigate if AnICA’s perspective on generalizing
interesting inputs offers new insights for this setting of explaining models.

8.4.2. Differential Testing
Differential testing (McKeeman, 1998) is commonly used to find bugs in tools where no
ground truth is available. There are general frameworks for differential testing tools like
Nezha (Petsios et al., 2017), but they mainly focus on effectively exploring a sparse space of
inconsistencies. As the space of inconsistencies among basic block throughput predictors is
not sparse, there is little benefit in using these frameworks.

AnICA’s use of minimization and abstraction can be seen as a form of triage in the usual
nomenclature (Manès et al., 2021). The concepts and notations borrowed from abstract
interpretation give us a way to systematically implement a generalized deduplication of
inputs.
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Previous research already used differential testing for other tools operating on machine code.
Several differential fuzzing approaches (Jay and Miller, 2018; Paleari et al., 2010; Woodruff et al.,
2021) focus on instruction decoders. However, these works differ from our setting in their goal
and, consequently, in the inputs that they generate. They generate bit sequences that are (or
are close to) machine instructions, for which they check the results of a group of instruction
decoders. Since we aim to find inconsistencies in the throughput predictions, we only produce
valid instruction sequences. Woodruff et al. (2021) note that they encounter large numbers of
nearly identical discoveries that are difficult to deduplicate, making human analysis essential.
This mirrors our motivation to use abstraction to reduce the manual investigation effort for
analyzing the discoveries.

Revizor (Oleksenko et al., 2021) is a differential testing approach that also generates random
instruction sequences. They compare a CPU’s behavior with that of a simulation that does
not leak information to find side channel attacks. In contrast to AnICA, their instruction
sequences include control flow. They define a number of patterns on the dependencies
between consecutive instructions that are similar to the constraints represented by our aliasing
abstraction. However, Revizor uses these patterns only as a metric to control the size of the
instruction sequences that they sample. Since abstraction is central to AnICA, we designed
the basic block abstraction to cover more complex alias constraints as well as constraints on
the involved instructions, which are beyond the scope of Revizor’s patterns.

8.5. Possible Extensions
A strength of AnICA is that the throughput predictors under investigation are treated as black
boxes. The resulting flexibility opens a range of further use cases for AnICA with no or minor
adjustments to the implementation.

Comparing Different Benchmarking Assumptions

When benchmarking the execution time of basic blocks, tools like nanoBench (Abel and
Reineke, 2020) have to make assumptions on how the blocks should be executed. For instance,
they need to initialize registers and memory regions with specific values and choose whether
basic blocks should be wrapped in a loop or concatenated sufficiently often. If these choices are
configurable (as with nanoBench), AnICA can investigate the effect of different configuration
decisions on the measurements. From discovery (F) in our llvm-mca case study (Section 8.3.3),
we would, e.g., expect to find inconsistencies depending on whether the registers are initialized
with 0 or not.

Comparing Measurements on Different Microarchitectures

We have presented results for comparing pairs of throughput predictor tools (Section 8.2.3)
as well as for comparing a throughput predictor to measurements on the modeled hardware
(Section 8.3.3). A natural next step would be to compare measurements on two different
hardware implementations of an instruction set architecture to each other. This would allow
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us to investigate performance differences of subsequent generations of CPUs by the same
manufacturer, or different trade-offs made by two manufacturers in competing CPU models.

Comparing Port Usage Models

The AnICA algorithm can also be applied to subcomponents of performance models that affect
only individual aspects of basic block throughput prediction. For instance, approaches like
uops.info (Abel and Reineke, 2019), our work PMEvo (cf. Chapter 5), and Palmed (Derumigny
et al., 2022a) build models for how individual instructions use a CPU’s execution resources.
These models are able to predict the throughput of basic blocks without data dependencies.

AnICA could therefore investigate differences between the models produced by the indi-
vidual approaches, as well as deviations between a model and measurements on the actual
hardware. For this application domain, the presented basic block abstraction should be ad-
justed such that only basic blocks with as few data dependencies as possible are sampled.
Consequently, the aliasing component of the basic block abstraction then does not capture
meaningful information anymore and may be dropped.

Since these approaches infer their models from microbenchmarks, the results of AnICA may
be helpful to improve the models by characterizing classes of benchmarks that are missing.

8.6. Conclusions: AnICA
State-of-the-art tools for basic block throughput prediction often do not agree in their results,
for a variety of reasons. With AnICA, we apply differential testing to understand these tools
and to identify ways of improving them. By borrowing notions from abstract interpretation,
we can draw from a pool of well-established techniques and formalisms to generalize incon-
sistencies in a systematic way. Our evaluation shows that AnICA can summarize thousands
of inconsistencies in a few dozen descriptions that directly lead to high-level insights into the
different behavior of the tools.
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Chapter 9
Conclusions and Outlook
Performance models for processors are an important prerequisite for building software that
uses the available hardware to its fullest potential. Accurate performance models are however
difficult to construct because of the complexity of modern processors and lacking documenta-
tion. In this dissertation, we have presented theoretical and practical advancements in two
facets of the CPU performance modeling field. First, we have introduced three novel methods
for inferring the port mapping of an out-of-order processor from throughput measurements.
The port mapping describes the processor’s ability to exploit instruction-level parallelism
as it models how instructions are decomposed into µops and how these are executed on the
processor’s functional units. Each of our port mapping inference methods implements a
different trade-off between applicability and accuracy.

Our first, counter-example-guided port mapping inference algorithm finds a port mapping
that throughput measurements cannot distinguish from the processor’s actual port mapping.
It automatically constructs instruction sequences for benchmarking that are sufficient to
ascertain such an indistinguishable port mapping based on a formal port mapping model.
The algorithm only requires that we can measure the throughput of instruction sequences as
determined by the processor’s port mapping without other interfering bottlenecks.

The strong guarantees of the algorithm come at the cost of practical running time. As
it relies on a satisfiability-modulo-theories solver to construct experiments for throughput
measurements, the counter-example-guided inference algorithm does not scale to practical
problem sizes. With realistic port numbers, inference problems for mappings with more than
ten instructions can take days to solve, whereas modern instruction set architectures contain
hundreds or thousands of instruction variants.

The second port mapping inference method, PMEvo, enables throughput-based port map-
ping inference for practical problem sizes. We achieve this through approximations. Instead
of dynamically constructing a complete set of throughput benchmarks that characterize the
processor’s port mapping, PMEvo follows a fixed benchmarking strategy to determine the
throughput of each individual instruction and of each pair of instructions. PMEvo then uses a
randomized evolutionary algorithm that searches the space of possible port mappings for one
that explains the observed throughputs.

We applied PMEvo to infer port mappings for microarchitectures by Intel, AMD, and
ARM. The designs of the latter two manufacturers are not supported by previous perfor-
mance-counter-based inference approaches. The inferred port mappings model the observed
throughput accurately, but their structure rarely follows the available documentation of the
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processors since throughput measurements for PMEvo’s benchmarks do not fully characterize
the processor’s port mapping. To the best of our knowledge, PMEvo remains the only available
and practical approach to automatically infer a three-level port mapping solely based on
throughput measurements.

Our third port mapping inference method finds port mappings that model the observed
throughput accurately and whose structure agrees with available documentation. The algo-
rithm follows the high-level structure of a performance-counter-based port mapping inference
approach from prior work, but eliminates most uses of hardware performance counters. In-
stead of performance counters for the executed µops at each of the processor’s ports, our
algorithm only needs a single hardware performance counter for the total number of executed
µops in a benchmark. While this imposes a stronger requirement on the hardware than our
previous two inference methods, it still enables port mapping inference for AMD processors
that the previous performance-counter-based approaches do not support.

We demonstrate this port mapping inference method with a case study on AMD’s Zen+
microarchitecture. While practical hindrances like throughput bottlenecks and complex micro-
code prohibit accurate port mappings for some instructions, a large portion of the instruction
set architecture is covered by this approach. In contrast to PMEvo, the resulting port mapping
is in most cases consistent with available documentation and comes with specific benchmarks
to show where the documentation does not agree with the observable behavior for the other
cases. This study uncovers previously undocumented details of the Zen+ microarchitecture
and results in the first explainable port mapping for over 1,000 instruction schemes on Zen+
that were out of scope for previous performance-counter-based approaches. In comparison
to the state of the art in throughput-based port mapping inference – including PMEvo – the
resulting port mapping achieves superior throughput prediction accuracy.

The second facet of CPU performance modeling that this thesis addresses is the analysis
of inconsistencies between basic block throughput predictors. There is a variety of tools
that share the goal of predicting the throughput a processor achieves for short instruction
sequences. However, these approaches often disagree in their predictions. With AnICA, we
propose an approach to test basic block throughput predictors differentially against other
throughput predictors and measurements on the modeled hardware. AnICA automatically
discovers inconsistencies in throughput estimates and derives compact characterizations of
classes of inconsistencies with an abstract-interpretation-based generalization algorithm.

We demonstrate that AnICA can summarize thousands of inconsistencies with a few
dozen descriptions that provide high-level insights into the behavior of the investigated tools.
In a series of case studies, AnICA exposes subtle modeling differences between the tools,
identifies underrepresented constructs in the training sets of learned predictors, and pinpoints
a long-standing crash in llvm-mca with a two-instruction test case. We further show that
AnICA automatically finds and characterizes inaccuracies in llvm-mca’s model for AMD’s
Zen+ microarchitecture. Our reports of these inaccuracies lead to improvements in LLVM’s
upstream scheduling models for Zen+.
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Future Directions
For inferring port mappings as well as for analyzing the results of throughput predictors, our
practical contributions are founded on underlying theoretical frameworks. These frameworks
open up interesting directions for future research.

On the port mapping side, the formal port mapping model and the SMT formulation
that we derived from it can be used for other purposes than port mapping inference. One
idea is to automatically check if – and under which conditions – strategies to construct
microbenchmarks are sufficient to identify a processor’s port mapping. Early experimentation
with this idea lead us to an error in the paper version of the uops.info algorithm1 and to the
insight that underlies our explainable port mapping inference method: The benchmarks of the
uops.info algorithm are sufficient to determine the port mapping even if per-port performance
counters are not available.

The framework that underlies AnICA is not restricted to analyzing basic block throughput
predictors. At its core is a method for identifying and systematically generalizing interesting
structures. Applying this method in other domains may yield interesting results. The AnICA
algorithm with a different abstract domain could for instance be used to explain machine
learning models by characterizing classes of inputs that lead to interesting predictions of
black-box models.

On a broader scale, the port mapping inference field could benefit from a cooperation
with hardware designers. Our complex throughput-based inference methods are only nec-
essary because processors do not provide the performance counters required for the prior
performance-counter-based inference methods. Integrating such performance counters into
more microarchitectures would make inferring performance models considerably easier. A
further step would be to automatically derive open performance models directly from the
hardware designs instead of relying on delicate microbenchmarks.

Lastly, our case studies with AnICA have shown that differing implicit assumptions are
a major cause for inconsistencies between basic block throughput predictors. The tools
choose to assume, e.g., that different memory operands do or do not alias. As the actual
behavior depends on the context in which the basic block is executed, throughput predictors
for individual basic blocks cannot model this accurately. Users of these tools may however
know which behaviors the throughput predictor should assume for their case, e.g., based on
profiling information. For such cases, a performance predictor that makes all assumptions
explicit and user-configurable could advance the state of the art in basic block throughput
prediction considerably.

1See Appendix E.1.
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Proofs

A.1. Proofs for Chapter 3

A.1.1. Proof for Theorem 3.6

Theorem 3.6. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a port
mapping 𝑀 always exists, and it is the infimum of the set

{
𝑇 (𝑀,𝑒,𝑁 )

𝑁

�� 𝑁 ∈ N+}.

For Context:

Definition 3.2. A port mapping𝑀 in the two-level model is a bipartite graph (I ∪· P, 𝐸) with
the vertices split disjointly into finite, non-empty sets I of instruction schemes and P of ports.
The edges 𝐸 ⊆ I × P connect instruction schemes with their ports.

We refer to the ports assigned to an instruction scheme 𝑖 by 𝑀 [𝑖] :=
{
𝑘

�� (𝑖, 𝑘) ∈ 𝐸}. We
require that for all 𝑖 ∈ I, 𝑀 [𝑖] ≠ ∅, i.e., every instruction scheme has at least one port that can
execute it. ⌟

Definition 3.3. An execution schedule for a positive number 𝑁 ∈ N+ of iterations of an
experiment 𝑒 according to the two-level port mapping 𝑀 = (I ∪· P, 𝐸) is a sequence Ex :=
[𝑠1, . . . , 𝑠 |Ex | ] of partial allocation functions 𝑠𝑐 : P ⇀ I such that

• all instruction scheme occurrences from each experiment iteration are assigned to a
port at some point in the sequence:

∀𝑖 ∈ I.
���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑖

}��� = 𝑁 · 𝑒 (𝑖)
• instruction schemes are only assigned to ports that 𝑀 allows:

∀1 ≤ 𝑐 ≤ |Ex |, 𝑖 ∈ I, 𝑘 ∈ P. ( 𝑠𝑐 (𝑘) = 𝑖 ) ⇒ 𝑘 ∈ 𝑀 [𝑖]
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We call the length |Ex | of an execution schedule Ex its execution time. An optimal execution
schedule of 𝑁 iterations of an experiment 𝑒 according to the port mapping 𝑀 is an execution
schedule with a minimal execution time. We refer to the execution time of such an optimal
execution schedule as 𝑇 (𝑀, 𝑒, 𝑁 ). ⌟

Definition 3.5. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a two-level
port mapping 𝑀 is the limit

lim
𝑁→∞

𝑇 (𝑀, 𝑒, 𝑁 )
𝑁 ⌟

As a first observation, we note that there are valid execution schedules for any port mapping
𝑀 and any number 𝑁 of iterations of any experiment 𝑒: By Definition 3.2, every instruction
𝑖 ∈ I has at least one port 𝑝 (𝑖) ∈ 𝑀 [𝑖] that can execute it. Therefore, we can construct an
execution schedule for one instance of the instructions 𝑖1, . . . , 𝑖 |𝑒 | in the instruction multiset 𝑒
as follows:

Ex =
[{
𝑖1 ↦→ 𝑝 (𝑖1)

}
, . . . ,

{
𝑖 |𝑒 | ↦→ 𝑝 (𝑖 |𝑒 | )

}]
This schedule executes each instruction in an individual cycle on a port allowed by the port
mapping. By concatenating this schedule 𝑁 times, we obtain a schedule for 𝑁 iterations of 𝑒
that satisfies the constraints of Definition 3.3. The set of execution schedules for 𝑁 iterations
of 𝑒 with the port mapping 𝑀 is therefore non-empty. Since the execution time of a schedule
is defined as the length of a list, schedule execution times can only be non-negative integers.
𝑇 (𝑀, 𝑒, 𝑁 ) as the smallest such integer is therefore well-defined.

The set T :=
{
𝑇 (𝑀,𝑒,𝑁 )

𝑁

��� 𝑁 ∈ N+
}

is thus clearly a non-empty set of real numbers. It is
bounded from below by 0, therefore the Dedekind completeness of the real numbers ensures
that it has an infimum 𝑏 in the real numbers. This infimum 𝑏 can either be part of T , or for
every 𝜀 > 0, there is an element 𝑏′ of T such that |𝑏′ − 𝑏 | < 𝜀. (Observation (A))1

For every 𝑘 ∈ N+, we can write any integer 𝑁 ≥ 𝑘 as 𝑁 = 𝑘 · 𝐽 + 𝑙 with integers 𝐽 and 𝑙
such that 𝐽 :=

⌊
𝑁
𝑘

⌋
· 𝑘 > 0 and 0 ≤ 𝑙 < 𝑘 . We observe:

𝑇 (𝑀, 𝑒, 𝑘 · 𝐽 + 𝑙) ≤ 𝐽 ·𝑇 (𝑀, 𝑒, 𝑘) + 𝑙 ·𝑇 (𝑀, 𝑒, 1)

This follows from the definition of execution schedules: For a valid (but not necessarily
optimal) schedule for 𝑘 · 𝐽 + 𝑙 iterations, we can take an optimal schedule for 𝑘 iterations,
concatenate it 𝐽 times, and append an optimal schedule for a single iteration 𝑙 times.

1Theorem 3.7 and the corresponding proof in Appendix A.1.2 imply that 𝑏 is indeed contained in T .
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This implies the following relationship:

𝑇 (𝑀, 𝑒, 𝑘 · 𝐽 + 𝑙)
𝑘 · 𝐽 + 𝑙 ≤ 𝐽 ·𝑇 (𝑀, 𝑒, 𝑘) + 𝑙 ·𝑇 (𝑀, 𝑒, 1)

𝑘 · 𝐽 + 𝑙
≤ 𝐽 ·𝑇 (𝑀, 𝑒, 𝑘) + 𝑘 ·𝑇 (𝑀, 𝑒, 1)

𝑘 · 𝐽 since 0 ≤ 𝑙 < 𝑘

=
𝑇 (𝑀, 𝑒, 𝑘)

𝑘
+ 𝑇 (𝑀, 𝑒, 1)

𝐽

For a fixed integer 𝑘 and any integer 𝑁 ≥ 𝑘 , we therefore have:

𝑇 (𝑀, 𝑒, 𝑁 )
𝑁

=
𝑇 (𝑀, 𝑒, 𝑘 · 𝐽 + 𝑙)

𝑘 · 𝐽 + 𝑙
≤ 𝑇 (𝑀, 𝑒, 𝑘)

𝑘
+ 𝑇 (𝑀, 𝑒, 1)

𝐽
=
𝑇 (𝑀, 𝑒, 𝑘)

𝑘
+ 𝑇 (𝑀, 𝑒, 1)⌊

𝑁
𝑘

⌋
· 𝑘

(Observation (B))

We now show that the sequence
(𝑇 (𝑀,𝑒,𝑁 )

𝑁

)∞
𝑁=1 converges to the infimum 𝑏 based on the

above observations. Let 𝜀 > 0. By Observation (A), there is an element 𝑏′ of the sequence such
that |𝑏′ − 𝑏 | < 𝜀

2 (𝑏 may be equal to 𝑏′). Since 𝑏′ is an element of the sequence, there is some
𝑘 ′ such that 𝑏′ = 𝑇 (𝑀,𝑒,𝑘 ′ )

𝑘 ′ . From Observation (B), we know that the sequence
(𝑇 (𝑀,𝑒,𝑁 )

𝑁

)∞
𝑁=𝑘 ′

is bounded from above by the following sequence:

(𝐵𝑁 )∞𝑁=𝑘 ′ :=
(
𝑇 (𝑀, 𝑒, 𝑘 ′)

𝑘 ′
+ 𝑇 (𝑀, 𝑒, 1)⌊

𝑁
𝑘 ′

⌋
· 𝑘 ′

)∞
𝑁=𝑘 ′

This bounding sequence converges to 𝑇 (𝑀,𝑒,𝑘 ′ )
𝑘 ′ = 𝑏′ for 𝑁 → ∞ since the right summand

vanishes for sufficiently large values of 𝑁 . Hence, there is an 𝑁 ′ such that all subsequent
entries of the bounding sequence have a distance less than 𝜀

2 from𝑏′. Without loss of generality,
𝑁 ′ ≥ 𝑘 ′.

Therefore, the following holds for all 𝑁 ′′ ≥ 𝑁 ′:

|𝐵𝑁 ′′ − 𝑏′ | < 𝜀

2 and |𝑏′ − 𝑏 | < 𝜀

2
⇒ |𝐵𝑁 ′′ − 𝑏′ | + |𝑏′ − 𝑏 | < 𝜀

2 +
𝜀

2
⇒ |𝐵𝑁 ′′ − 𝑏′ + 𝑏′ − 𝑏 | < 𝜀

2 +
𝜀

2 by the triangle inequality

⇒ |𝐵𝑁 ′′ − 𝑏 | < 𝜀
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As 𝑁 ′′ ≥ 𝑘 ′, we further know that the following holds:

𝑇 (𝑀, 𝑒, 𝑁 ′′)
𝑁 ′′

≤ 𝐵𝑁 ′′ by Observation (B)

⇒𝑇 (𝑀, 𝑒, 𝑁 ′′)
𝑁 ′′

− 𝑏 ≤ 𝐵𝑁 ′′ − 𝑏

⇒
���𝑇 (𝑀, 𝑒, 𝑁 ′′)

𝑁 ′′
− 𝑏

��� ≤ |𝐵𝑁 ′′ − 𝑏 | since 𝑇 (𝑀, 𝑒, 𝑁
′′)

𝑁 ′′
− 𝑏 ≥ 0

⇒
���𝑇 (𝑀, 𝑒, 𝑁 ′′)

𝑁 ′′
− 𝑏

��� < 𝜀
Consequently, for every 𝜀 > 0, there is a number 𝑁 ′ ∈ N such that for all integers 𝑁 ′′ ≥ 𝑁 ′,

the value of the sequence
(𝑇 (𝑀,𝑒,𝑁 )

𝑁

)∞
𝑁=1 at position 𝑁 ′′ differs by less than 𝜀 from 𝑏. Thus,

the sequence converges to 𝑏. □
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A.1.2. Proof for Theorem 3.7

Theorem 3.7. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 : 𝐼 → N with a
port mapping 𝑀 := (I ∪· P, 𝐸) is the objective value of an optimal solution to the following
linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.

For Context:

Definition 3.3. An execution schedule for a positive number 𝑁 ∈ N+ of iterations of an
experiment 𝑒 according to the two-level port mapping 𝑀 = (I ∪· P, 𝐸) is a sequence Ex :=
[𝑠1, . . . , 𝑠 |Ex | ] of partial allocation functions 𝑠𝑐 : P ⇀ I such that

• all instruction scheme occurrences from each experiment iteration are assigned to a
port at some point in the sequence:

∀𝑖 ∈ I.
���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑖

}��� = 𝑁 · 𝑒 (𝑖)
• instruction schemes are only assigned to ports that 𝑀 allows:

∀1 ≤ 𝑐 ≤ |Ex |, 𝑖 ∈ I, 𝑘 ∈ P. ( 𝑠𝑐 (𝑘) = 𝑖 ) ⇒ 𝑘 ∈ 𝑀 [𝑖]

We call the length |Ex | of an execution schedule Ex its execution time. An optimal execution
schedule of 𝑁 iterations of an experiment 𝑒 according to the port mapping 𝑀 is an execution
schedule with a minimal execution time. We refer to the execution time of such an optimal
execution schedule as 𝑇 (𝑀, 𝑒, 𝑁 ). ⌟

Theorem 3.6. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with a port
mapping 𝑀 always exists, and it is the infimum of the set

{
𝑇 (𝑀,𝑒,𝑁 )

𝑁

�� 𝑁 ∈ N+}.
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We proceed by showing that each execution schedule implies a feasible LP solution and
that each optimal LP solution implies a valid execution schedule. Lastly, we argue that any
execution schedule that requires fewer cycles per iteration than one implied by an optimal LP
solution would imply an LP solution with a better-than-optimal objective value. Optimal LP
solutions therefore must correspond to execution schedules that use the minimal number of
cycles per iteration.

An execution schedule for any 𝑁 implies a feasible solution to the LP: Let Ex =

[𝑠1, . . . , 𝑠 |Ex | ] be an execution schedule for 𝑁 ∈ N+ iterations of an experiment 𝑒 according to
the port mapping 𝑀 . We define a solution 𝑆 for the LP as follows:

𝑆 [𝑥𝑖𝑘 ] :=

���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

𝑁
(A.1)

𝑆 [𝑝𝑘 ] :=
∑︁
𝑖∈I

𝑆 [𝑥𝑖𝑘 ] (A.2)

𝑆 [𝑡] := |Ex |
𝑁

(A.3)

This solution is feasible, i.e., it fulfills all constraints of the LP:

• Constraint (A) holds for any 𝑖 ∈ I:

∑︁
𝑘∈P

𝑆 [𝑥𝑖𝑘 ] =
∑︁
𝑘∈P

���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

𝑁
definition of 𝑆 [𝑥𝑖𝑘 ]

=
1
𝑁
·
∑︁
𝑘∈P

���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

=
1
𝑁
·
∑︁
𝑘∈P

���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

=
1
𝑁
·
���⋃
𝑘∈P

{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}��� size of disjoint union

=
1
𝑁
·
���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑖

}���
=

1
𝑁
· (𝑁 · 𝑒 (𝑖)) = 𝑒 (𝑖) first constraint of Definition 3.3

• That Constraint (B) holds follows immediately from the definition of 𝑆 [𝑝𝑘 ].
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• Constraint (C) holds for any 𝑘 ∈ P:

𝑆 [𝑝𝑘 ] =
∑︁
𝑖∈I

𝑆 [𝑥𝑖𝑘 ] definition of 𝑆 [𝑝𝑘 ]

=
∑︁
𝑖∈I

���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

𝑁
definition of 𝑆 [𝑥𝑖𝑘 ]

=
1
𝑁
·
∑︁
𝑖∈I

���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

=
1
𝑁
·
���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex | ∧ 𝑠𝑐 (𝑘) ∈ I

}��� (∗)

≤ 1
𝑁
·
���{𝑐 �� 1 ≤ 𝑐 ≤ |Ex |}���

=
|Ex |
𝑁

= 𝑆 [𝑡] definition of 𝑆 [𝑡]

For the step marked with (∗), we observe that the term before the transformation counts
the number of corresponding entries for port 𝑘 in Ex for each instruction 𝑖 and sums
the results. This is equivalent to counting the total number of defined entries for port 𝑘
in Ex for any instruction.

• Constraint (D) holds, since the 𝑆 [𝑥𝑖𝑘 ] are defined as the quotient of a non-negative
number and a positive number, which is non-negative.

• Constraint (E) holds, as
{
𝑐
�� 𝑠𝑐 ∈ Ex ∧ 𝑠𝑐 (𝑘) = 𝑖} can only contain any entry if 𝑠𝑐 (𝑘) = 𝑖

for some 𝑠𝑐 in Ex. By the second constraint of Definition 3.3, 𝑠𝑐 (𝑘) = 𝑖 implies that
𝑘 ∈ 𝑀 [𝑖].

Therefore, any valid (but not necessarily optimal) execution schedule Ex for 𝑁 ∈ N+ iterations
of an experiment implies a feasible (but not necessarily optimal) solution to the corresponding
LP, with an objective value of |Ex |𝑁 . (Observation (A))

The LP is feasible and has a finite optimal objective value: As Theorem 3.6 implies
that execution schedules exist for every port mapping 𝑀 and experiment 𝑒 , feasible solutions
to the LP also exist by Observation (A).

By Constraint (C), any variable 𝑝𝑘 – there is at least one since P may not be empty by
definition – is a lower bound to the objective term 𝑡 . By Constraint (B), the value of 𝑝𝑘 is the
sum of the values of 𝑥𝑖𝑘 variables – there is at least one since I is required to be non-empty.
The 𝑥𝑖𝑘 variables are non-negative by Constraint (D). Therefore, the LP’s objective term
cannot be minimized below 0. Hence, the LP has an optimal solution.

Anoptimal LP solution implies an execution schedule for some𝑁 : The linear program
has only rational coefficients. Therefore, there is a rational optimal solution 𝑆∗ for the LP with
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a rational objective value 𝑡∗.2 Since the values 𝑆∗ [𝑥𝑖𝑘 ] for all 𝑥𝑖𝑘 variables in 𝑆∗ are rational,
there is a number 𝐿 ∈ N+ (e.g., the least common multiple of all divisors) such that for each 𝑥𝑖𝑘 ,
𝐿 · 𝑆∗ [𝑥𝑖𝑘 ] is an integer.

We define for each port 𝑘 a sequence 𝜎𝑘 of instructions, where each instruction 𝑖 occurs
𝐿 · 𝑆∗ [𝑥𝑖𝑘 ] times:

𝜎𝑘 :=
[

𝑖1, . . . , 𝑖1︸   ︷︷   ︸
𝐿 · 𝑆∗ [𝑥𝑖1𝑘 ] times

, . . . , 𝑖 |I | , . . . , 𝑖 |I |︸      ︷︷      ︸
𝐿 · 𝑆∗ [𝑥𝑖 |I|𝑘 ] times

]

These sequences allow us to define an execution schedule Ex∗ = [𝑠1, . . . , 𝑠 |Ex∗ | ] for 𝐿 iterations
of 𝑒 as follows:

𝑠𝑐 (𝑘) := 𝜎𝑘 [𝑐]

We can show that Ex∗ is a valid execution schedule for 𝐿 instances of the experiment 𝑒 ,
following Definition 3.3: Let 𝑖 ∈ I be an instruction. Then the following holds:

���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex∗ | ∧ 𝑘 ∈ P ∧ 𝑠𝑐 (𝑘) = 𝑖
}���

=

���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex∗ | ∧ 𝑘 ∈ P ∧ 𝜎𝑘 [𝑐] = 𝑖
}��� definition of Ex∗

=

���⋃
𝑘∈P

{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex∗ | ∧ 𝜎𝑘 [𝑐] = 𝑖
}��� partition by port

=
∑︁
𝑘∈P

���{(𝑐, 𝑘) �� 1 ≤ 𝑐 ≤ |Ex∗ | ∧ 𝜎𝑘 [𝑐] = 𝑖
}��� size of disjoint union

=
∑︁
𝑘∈P

𝐿 · 𝑆∗ [𝑥𝑖𝑘 ] definition of 𝜎𝑘

= 𝐿 ·
∑︁
𝑘∈P

𝑆∗ [𝑥𝑖𝑘 ]

= 𝐿 · 𝑒 (𝑖) Constraint (A)

Hence, the first constraint of Definition 3.3 is fulfilled. Constraint (E) ensures that only
instructions that can be executed on port 𝑘 occur in the sequence 𝜎𝑘 , therefore the second
constraint of the definition is also fulfilled.

2Whenever a linear program has an optimal solution, it has a basic feasible solution that is also optimal. Each
basic feasible solution of an LP satisfies a linear system of equalities consisting of constraints of the LP where
inequalities are replaced by equalities. For an LP with rational coefficients, the basic feasible solutions – including
optimal ones – are therefore rational.
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Lastly, we observe that the length of the execution schedule Ex∗ is given by the maximal
sequence length max𝑘∈P |𝜎𝑘 |. The length of a sequence 𝜎𝑘 relates to the LP’s objective value 𝑡∗
as follows:

|𝜎𝑘 | =
∑︁
𝑖∈I

𝐿 · 𝑆∗ [𝑥𝑖𝑘 ] definition of Ex∗

= 𝐿 ·
∑︁
𝑖∈I

𝑆∗ [𝑥𝑖𝑘 ]

= 𝐿 · 𝑆∗ [𝑝𝑘 ] Constraint (B)
≤ 𝐿 · 𝑆∗ [𝑡] Constraint (C)
= 𝐿 · 𝑡∗

Since the optimization goal is to minimize 𝑡 , the above inequality needs to be tight for at least
one port 𝑘 . Therefore, |Ex∗ | = max𝑘∈P |𝜎𝑘 | = 𝐿 · 𝑡∗.

The execution time of the implied schedule is the modeled inverse throughput: We
show that 𝑡∗ = inf

{𝑇 (𝑀,𝑒,𝑁 )
𝑁

�� 𝑁 ∈ N+}.
As we have seen, 𝐿 · 𝑡∗ is the execution time of an execution schedule for 𝐿 iterations of

the experiment 𝑒 with the port mapping 𝑀 . Therefore, 𝑇 (𝑀, 𝑒, 𝐿) ≤ 𝐿 · 𝑡∗ and consequently
𝑇 (𝑀,𝑒,𝐿)

𝐿 ≤ 𝑡∗ must hold. Thus, 𝑡∗ cannot be smaller than inf
{𝑇 (𝑀,𝑒,𝑁 )

𝑁

�� 𝑁 ∈ N+}.
Assume there is some 𝑁 ∗ such that 𝑇 (𝑀,𝑒,𝑁

∗ )
𝑁 ∗ < 𝑡∗. By Observation (A), the correspond-

ing optimal execution schedule implies a feasible solution for the LP with objective value
𝑇 (𝑀,𝑒,𝑁 ∗ )

𝑁 ∗ < 𝑡∗. This contradicts the optimality of 𝑡∗, hence 𝑇 (𝑀,𝑒,𝑁 )
𝑁 ≥ 𝑡∗ for every 𝑁 . Con-

sequently, 𝑡∗ is the infimum of
{𝑇 (𝑀,𝑒,𝑁 )

𝑁

�� 𝑁 ∈ N+}, which is equal to the modeled inverse
throughput tp−1

𝑀

(
𝑒
)

by Theorem 3.6. □
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A.1.3. Proof for Theorem 3.14

Theorem 3.14. Let 𝑀 be a two-level or three-level port mapping for a set P of ports and
let 𝑒 be an experiment with inverse throughput 𝑡∗ = tp−1

𝑀

(
𝑒
)
. Let 𝑆 be the set of all optimal

solutions to the corresponding linear program from Theorem 3.7 or Theorem 3.12. Then, there
is a non-empty set BP𝑀 (𝑒) :=

⋂
𝑠∈𝑆

{
𝑘

�� 𝑠 [𝑝𝑘 ] = 𝑡∗} of bottleneck ports.

For Context:

Theorem 3.7. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 : 𝐼 → N with a
port mapping 𝑀 := (I ∪· P, 𝐸) is the objective value of an optimal solution to the following
linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.

Let 𝑀 be a two-level port mapping (the argument for three-level port mappings follows
analogously).

Assume the set BP𝑀 (𝑒) was empty. We know that the linear program is feasible (since any
execution schedule implies a feasible solution to the LP, see Appendix A.1.2). Therefore, 𝑆 is
not empty.

For each optimal solution 𝑠 ∈ 𝑆 , the set 𝑄 (𝑠) :=
{
𝑘

�� 𝑠 [𝑝𝑘 ] = 𝑡∗} is not empty: otherwise,
𝑡∗ could not be the optimal objective value of the LP. Let 𝑠∗ ∈ 𝑆 be an optimal solution. For
each port 𝑘 ∈ 𝑄 (𝑠∗), there needs to be another optimal solution 𝑠′ ∈ 𝑆 such that 𝑘 ∉ 𝑄 (𝑠′) –
otherwise, 𝑘 would be in BP𝑀 (𝑒) – and, consequently, 𝑠′ [𝑝𝑘 ] < 𝑡∗. Let 𝑆 ′ be the set containing
𝑠∗ and the other solutions 𝑠′ for each 𝑘 ∈ 𝑄 (𝑠∗).

We now consider the midpoint of the solutions in 𝑆 ′, i.e., an assignment 𝑠𝑚 of variables
to values such that for each variable 𝑣 of the LP, 𝑠𝑚 [𝑣] =

∑{
𝑠 [𝑣]

�� 𝑠 ∈ 𝑆 ′}/|𝑆 ′ |. For each
port 𝑘 , 𝑠𝑚 [𝑝𝑘 ] < 𝑡∗ holds, since 𝑠𝑚 [𝑝𝑘 ] is the arithmetic mean of a finite set of values with no
value larger than 𝑡∗, but at least one value smaller than 𝑡∗. From LP theory, we know that the
set of feasible solutions of a linear program is a convex polyhedron, meaning that all points

156



A.1. Proofs for Chapter 3

between feasible solutions are also feasible solutions. As a consequence, the midpoint of a set
of optimal solutions like 𝑆 ′ must also be included in the convex set of feasible solutions. This
contradicts the premise that 𝑡∗ is the optimal objective value, since 𝑠𝑚 is a feasible solution
with a lower objective value. □
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A.1.4. Proof for Theorem 3.19

Theorem 3.19. The problem OffPMInfer2-D (Definition 3.18) of deciding the existence of
a satisfying two-level mapping for a set Exps of experiments and 𝑘 ports is NP-hard. It is
NP-complete if we assume a unary encoding of 𝑘 .

For Context:

Definition 3.18. The two-level offline port mapping inference problem OffPMInfer2 is the
following task: Given a set I of instructions, a number𝑘 of ports, and a set Exps of experiments 𝑒
with measured inverse throughputs tp−1 (𝑒), compute a two-level port mapping 𝑀 = (I ∪·{

1, . . . , 𝑘
}
, 𝐸) such that it simulates the measured throughputs:

∀𝑒 ∈ Exps. tp−1 (𝑒) = tp−1
𝑀

(
𝑒
)

If no such two-level port mapping exists, return an error value.
A problem instance is satisfiable if there is a port mapping as required by the problem; we

call these port mappings satisfying. Otherwise, the problem instance is unsatisfiable. In the
decision version OffPMInfer2-D, the task is to decide if the problem instance is satisfiable or
not.

The three-level variants OffPMInfer3 and OffPMInfer3-D are defined analogously. ⌟

We show two results: OffPMInfer2-D is NP-hard, and OffPMInfer2-D is in NP if 𝑘 is unary
encoded.

Hardness. To prove NP-hardness, we reduce the well-known NP-complete graph 𝑘-coloring
problem to OffPMInfer2-D. We are given an undirected graph 𝐺 = (𝑉 , 𝐸) to color. The
following OffPMInfer2-D instance is satisfiable if and only if 𝐺 is 𝑘-colorable:

I = 𝑉
|P| = 𝑘

Exps = {({𝑣 ↦→ 1}, 1) | 𝑣 ∈ 𝑉 } ∪ {({𝑢 ↦→ 1, 𝑣 ↦→ 1}, 1) | {𝑢, 𝑣} ∈ 𝐸}
The idea is to represent graph nodes as instructions and colors as ports. A graph coloring
then directly corresponds to an instruction-to-port mapping. The experiments enforce that a
satisfying port mapping implies a valid graph coloring. Consider Figure A.1 for an example of
this construction for a 3-colorable graph and a satisfying mapping to three ports.
We argue that a 𝑘-colorable graph implies a satisfying port mapping and vice versa:

⇒ Let𝐺 be𝑘-colorable with a node-to-color mapping𝑀 . 𝑀 is also a satisfying port mapping
for the corresponding OffPMInfer2-D instance: The per-node experiments are satisfied
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A C

B

D

E

(a)

I :=
{
𝐴, 𝐵,𝐶, 𝐷, 𝐸

} |P| := 𝑘
Exps :=

{({𝐴}, 1), ({𝐵}, 1), ({𝐶}, 1), ({𝐷}, 1),
({𝐸}, 1), ({𝐴, 𝐵}, 1), ({𝐴,𝐶}, 1),
({𝐴, 𝐸}, 1), ({𝐵,𝐶}, 1), ({𝐵, 𝐷}, 1),
({𝐶, 𝐷}, 1), ({𝐶, 𝐸}, 1), ({𝐷, 𝐸}, 1)}

(b)

I:

P:

A B C D E

Col1 Col2 Col3

(c)

Figure A.1. A 3-colorable graph (a), the corresponding offline port mapping inference instance
(b), and a satisfying port mapping (c).

since 𝑀 maps each node to a single color, meaning that each instruction in the port
mapping can be executed on exactly one port. Executing such a singleton experiment
therefore blocks the corresponding port for one cycle in every iteration, leading to an
inverse throughput of one cycle. For each of the per-edge experiments, we know that the
corresponding instructions (graph nodes) are mapped to different ports (colors). Hence,
these experiments can be executed with the involved ports blocked for one cycle per
iteration. All experiment constraints are therefore satisfied.

⇐ Let𝑀 be a satisfying port mapping for the OffPMInfer2-D instance that corresponds to
a graph 𝐺 . 𝑀 maps each instruction to a single port: Otherwise, if an instruction could
be executed on 𝑛 > 1 ports, the inverse throughput of the corresponding experiment
would need to be 1

𝑛 cycles, violating the requirements of the singleton experiments.
𝑀 can therefore be interpreted as a functional assignment of graph nodes to colors.

Let 𝑎, 𝑏 be two adjacent nodes of 𝐺 . From the per-edge experiments, we know that the
inverse throughput of {𝑎, 𝑏} with the port mapping 𝑀 is one cycle. If 𝑀 [𝑎] was equal
to 𝑀 [𝑏], this inverse throughput could not be achieved: When two instructions that are
assigned to the same port are executed together in an experiment, they block this port
for two cycles per experiment instance. The adjacent nodes 𝑎 and 𝑏 are thus mapped to
a different color (port).
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Lastly, we note that a OffPMInfer2-D instance constructed in this way consists of one
experiment per graph edge and one experiment per graph node, it can therefore be encoded
with polynomial space requirements.

Membership. To show that OffPMInfer2-D is in NP, we have to verify that a two-level
port mapping is a solution to a given problem instance in a time that grows polynomially
with the input. Theorem 3.7 provides a linear program of polynomial size (with respect to the
size of the sets of instructions and ports, which are part of the instance) whose solution is the
throughput of an experiment with a given port mapping. Since solving a linear program is
possible in polynomial time (Bertsimas and Tsitsiklis, 1997), it requires only polynomial time
to evaluate all experiments with the given candidate port mapping and compare the results
with the throughputs given in the problem instance.

□
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A.1.5. Proof for Theorem 3.20

Theorem 3.20. The problem OffPMInfer3-D (Definition 3.18) of deciding the existence of
a satisfying three-level mapping for a set Exps of experiments and 𝑘 ports is NP-hard. It is
NP-complete if we assume a unary encoding of 𝑘 and the observed inverse throughputs for
the experiments.

For Context:

Theorem 3.14. Let 𝑀 be a two-level or three-level port mapping for a set P of ports and
let 𝑒 be an experiment with inverse throughput 𝑡∗ = tp−1

𝑀

(
𝑒
)
. Let 𝑆 be the set of all optimal

solutions to the corresponding linear program from Theorem 3.7 or Theorem 3.12. Then, there
is a non-empty set BP𝑀 (𝑒) :=

⋂
𝑠∈𝑆

{
𝑘

�� 𝑠 [𝑝𝑘 ] = 𝑡∗} of bottleneck ports.

Definition 3.18. The two-level offline port mapping inference problem OffPMInfer2 is the
following task: Given a set I of instructions, a number𝑘 of ports, and a set Exps of experiments 𝑒
with measured inverse throughputs tp−1 (𝑒), compute a two-level port mapping 𝑀 = (I ∪·{

1, . . . , 𝑘
}
, 𝐸) such that it simulates the measured throughputs:

∀𝑒 ∈ Exps. tp−1 (𝑒) = tp−1
𝑀

(
𝑒
)

If no such two-level port mapping exists, return an error value.
A problem instance is satisfiable if there is a port mapping as required by the problem; we

call these port mappings satisfying. Otherwise, the problem instance is unsatisfiable. In the
decision version OffPMInfer2-D, the task is to decide if the problem instance is satisfiable or
not.

The three-level variants OffPMInfer3 and OffPMInfer3-D are defined analogously. ⌟

Hardness. We cannot use a direct reduction from OffPMInfer2-D since the existence of a
satisfying three-level port mapping for a problem instance does not imply a two-level one in
general.3 Instead, we show that the specific problem instance used for the reduction in the
proof of Theorem 3.19 has a satisfying two-level mapping if and only if there is a satisfying
three-level mapping.

One of the constituting implications of this statement is straightforward: If any problem
instance has a satisfying two-level mapping 𝑀 , the three-level mapping that maps each
instruction 𝑖 to a µop that can be executed on 𝑀 [𝑖] is also satisfying (see Figure A.2 for an

3For example, the three-level mapping in Figure 3.3 on page 19 cannot be represented as a two-level port mapping.
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Two-Level Model: Three-Level Model:

I:

P:

mul add sub store

𝑃1 𝑃2 𝑃3

⇒

I:

U:

P:

mul add sub store

𝑈1 𝑈2 𝑈3

𝑃1 𝑃2 𝑃3

1 1 1 1

Figure A.2. Example for the straightforward translation of a two-level port mapping to the
three-level model.

example). To prove the other implication, we need properties of the specific problem instance
we use to encode a graph (𝑉 , 𝐸):

I = 𝑉
|P| = 𝑘

Exps = {({𝑣 ↦→ 1}, 1) | 𝑣 ∈ 𝑉 } ∪ {({𝑢 ↦→ 1, 𝑣 ↦→ 1}, 1) | {𝑢, 𝑣} ∈ 𝐸}

Let 𝑀1 be a satisfying three-level port mapping for this problem instance. We construct a
two-level port mapping 𝑀2 where each instruction is mapped to one of its bottleneck ports
(cf. Theorem 3.14) with 𝑀1:4

𝑀2 :=
(
I ∪· {1, . . . , 𝑘

}
,
{
𝑖 ↦→ (

𝜀𝑥 . 𝑥 ∈ BP𝑀1 ({𝑖 ↦→ 1})) �� 𝑖 ∈ I})
We now assume that 𝑀2 is not a solution to the OffPMInfer2-D problem and show that this
implies a contradiction. As 𝑀2 is not satisfying, there needs to be an experiment 𝑒 ∈ Exps
whose throughput is simulated incorrectly by 𝑀2. Since 𝑀2 maps every instruction to exactly
one port, the inverse throughput of every experiment consisting of only one instruction is 1,
as required by Exps. The experiment 𝑒 therefore needs to be of the form

{
𝑖 ↦→ 1, 𝑗 ↦→ 1

}
, and

tp−1
𝑀2

(
𝑒
)
≠ 1.

By construction, 𝑀2 maps both, 𝑖 and 𝑗 , to exactly one port. The inverse throughput tp−1
𝑀2

(
𝑒
)

can therefore only be 2 (if both instructions are mapped to the same port) or 1 (if they map to
different ports). Since we ruled out the latter case, the former needs to apply, i.e.,

𝑀2 [𝑖] =
{
𝑘
}
= 𝑀2 [ 𝑗] .

This however means that 𝑘 is a bottleneck port for
{
𝑖 ↦→ 1

}
and for

{
𝑗 ↦→ 1

}
in 𝑀1. Therefore,

there is no way to execute the µops of 𝑖 in 𝑀1 with an inverse throughput of 1 cycle without
utilizing port 𝑘 for 1 cycle per iteration (and the same holds for the µops of 𝑗 ).

4With 𝜀𝑥 . 𝑃 (𝑥 ) we denote an arbitrary value 𝑥 that satisfies the predicate 𝑃 (𝑥 ) .
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As 𝑀1 satisfies the problem instance, tp−1
𝑀1

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= 1 holds. Therefore, a solution

to the corresponding linear program uses port 𝑘 for less than 1 cycle for the µops of at least
one of 𝑖 and 𝑗 ; without loss of generality: 𝑗 . Since the solution still needs to accommodate all
µops of 𝑗 without utilizing any port for more than 1 cycle, we can extract an optimal solution
for the LP for the experiment

{
𝑗 ↦→ 1

}
with 𝑀1 where the bottleneck port 𝑘 is underutilized,

a contradiction.
In the proof for Theorem 3.19, we have shown that a graph (𝑉 , 𝐸) is 𝑘-colorable if and only
if there is a satisfying two-level port mapping for the corresponding problem instance. The
above construction shows that there is a satisfying two-level port mapping for such a problem
instance if and only if there is a satisfying three-level port mapping. Together, this proves
that (𝑉 , 𝐸) is 𝑘-colorable if and only if a satisfying three-level port mapping for the problem
instance exists, i.e., we can solve a 𝑘-coloring problem by solving a OffPMInfer3-D instance
with polynomial input size.

Membership. To show that OffPMInfer3-D is in NP, we have to prove that for every
satisfiable problem instance there is a satisfying polynomially-sized three-level port mapping
that we can validate in a time that grows polynomially with the input. This is more involved
than in the two-level setting: In general, three-level port mappings do not necessarily qualify
as a checkable certificate for a solution to the OffPMInfer3-D instance since they could use
exponentially many µops arbitrarily often. Their size is therefore not polynomially bounded
as it would be required for a certificate (see, e.g., the text book by Arora and Barak (2009,
Chapter 2)).
We can however show that there is a polynomial bound to the total number of µops involved
in an experiment 𝑒 with inverse throughput 𝑡 : In the worst case, each of the 𝑘 ports is fully
occupied for 𝑡 cycles with an iteration of the experiment. The summed total utilization is
therefore 𝑡 · 𝑘 cycles. Each involved µop contributes 1 cycle to this total utilization, possibly
spread among several ports. Thus, only 𝑡 · 𝑘 µops can be involved. Therefore, and since we
assume 𝑘 and 𝑡 to be encoded unarily in the input, the parts of a satisfying port mapping
that are constrained by the experiments in the instance are polynomially bounded. Any
satisfying port mapping for a set of experiments can therefore be transformed into one that is
polynomially bounded by replacing the port usage for unconstrained instructions with some
trivial port usage.
Such polynomially-bounded port mappings can be checked in polynomial time with the linear
program from Theorem 3.12.

□
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A.2. Proofs for Chapter 4
A.2.1. Proof for Theorem 4.4

Theorem 4.4. The linear program from Theorem 3.7 is feasible if and only if the following
system of constraints is satisfiable:∑︁

𝑘∈P
𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁

𝑖∈I
𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)∨
𝑘∈P

𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
𝑗𝑖 → 𝑞𝑘 if (𝑖, 𝑘) ∈ 𝐸 (H)∑︁
𝑖∈I

𝑗𝑖 · 𝑒 (𝑖) =
∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

The optimal objective value 𝑡∗ of the linear program is equal to the value𝑚[𝑡] of the variable 𝑡
in any satisfying model𝑚 of this constraint system.

For Context:

Theorem 3.7. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 : 𝐼 → N with a
port mapping 𝑀 := (I ∪· P, 𝐸) is the objective value of an optimal solution to the following
linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.
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As a part of the proof for this theorem, we first formulate and prove a helpful intermediate
result:

Lemma A.1. Let 𝑀 := (I ∪· P, 𝐸) be a two-level port mapping, let 𝑒 be an experiment, and let

• 𝑆 be the set of optimal solutions and 𝑡∗ the optimal objective value for the linear program
from Theorem 3.7 for 𝑀 and 𝑒 ,

• 𝑄 (𝑠) :=
{
𝑘 ∈ P

�� 𝑠 [𝑝𝑘 ] = 𝑡} be the set of ports that are fully utilized in such an optimal
solution 𝑠 ∈ 𝑆 , and

• 𝐽 (𝑠) :=
{
𝑖 ∈ I

�� ∃𝑘 ∈ 𝑄 (𝑠). 𝑠 [𝑥𝑖𝑘 ] > 0
}

be the set of instructions that are executed on
ports in 𝑄 (𝑠).

There is an optimal solution 𝑠 ∈ 𝑆 such that instructions in 𝐽 (𝑠) can only be executed on ports
from 𝑄 (𝑠):

∀𝑖 ∈ 𝐽 (𝑠). 𝑀 [𝑖] ⊆ 𝑄 (𝑠)

Proof. From Theorem 3.7, we know that 𝑆 is not empty. Let 𝑠 ∈ 𝑆 and let

𝐽Δ (𝑠) :=
{
𝑖 ∈ 𝐽 (𝑠)

�� ∃𝑘 ∉ 𝑄 (𝑠). (𝑖, 𝑘) ∈ 𝐸}
If 𝐽Δ (𝑠) is empty, 𝑠 fulfills the requirements of 𝑠 . Otherwise, the following algorithm can

modify 𝑠 to obtain a feasible solution 𝑠′ with identical objective value and an empty 𝐽Δ (𝑠′):
1. Pick an 𝑖′ ∈ 𝐽Δ (𝑠) and a 𝑘 ′ ∉ 𝑄 (𝑠) such that (𝑖′, 𝑘 ′) ∈ 𝑀 .

2. Determine the set 𝑄 ′ (𝑠) :=
{
𝑘 ∈ 𝑄 (𝑠)

�� 𝑠 [𝑥𝑖′𝑘 ] > 0
}

of ports in 𝑄 (𝑠) that execute mass
of 𝑖′.

3. Determine the smallest amount of 𝑖′-mass that we can remove from every port in 𝑄 (𝑠)
that have 𝑖′-mass

𝑥removable := min
{
𝑠 [𝑥𝑖′𝑘 ]

�� 𝑘 ∈ 𝑄 ′ (𝑠)}
and the least upper bound to the mass that we can add to 𝑘 ′ without reaching a total
mass of 𝑡∗ on 𝑘 ′

𝑥addable := 𝑡∗ − 𝑠 [𝑝𝑘 ′ ] .

Both are greater than zero since 𝑖′ ∈ 𝐽Δ (𝑠) ⊆ 𝐽 (𝑠) and 𝑘 ′ ∉ 𝑄 (𝑠). Then,

𝜀 := min(𝑥removable, 𝑥addable/|𝑄 ′ (𝑠) |)

bounds the amount of 𝑖′ mass that we can remove from every port in 𝑄 ′ (𝑠) and add to
𝑘 ′ from above. It is greater than zero as well.
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4. Define a new solution 𝑠′:

𝑠′ [𝑥𝑖′𝑘 ′ ] = 𝑠 [𝑥𝑖′𝑘 ′ ] +
𝜀

2 · |𝑄
′ (𝑠) |

𝑠′ [𝑥𝑖′𝑘 ] = 𝑠 [𝑥𝑖′𝑘 ] −
𝜀

2 for ports 𝑘 ∈ 𝑄 ′ (𝑠)

𝑠′ [𝑥𝑖𝑘 ] = 𝑠 [𝑥𝑖𝑘 ] otherwise

𝑠′ [𝑝𝑘 ] =
∑︁
𝑖

𝑠′ [𝑥𝑖𝑘 ] for ports 𝑘

𝑠′ [𝑡] = max
𝑘
𝑠 [𝑝𝑘 ]

5. If the set 𝐽Δ (𝑠′) that is implied by 𝑠′ is empty, stop. Otherwise, go to (1) with 𝑠′ as the
new starting solution 𝑠 .

After every step of the algorithm, the updated mapping 𝑠′ is still a feasible solution to the
linear program:

• Constraint (A) holds since the values for the 𝑥𝑖𝑘 variables only change for 𝑖 = 𝑖′ and∑︁
𝑘∈P

𝑠′ [𝑥𝑖′𝑘 ] =
(∑︁
𝑘∈P

𝑠 [𝑥 ′𝑖𝑘]
)
+ 𝜀2 · |𝑄

′ (𝑠) | − 𝜀2 · |𝑄
′ (𝑠) | =

∑︁
𝑘∈P

𝑠 [𝑥 ′𝑖𝑘] = 𝑒 (𝑖′)

• The constraints (B) and (C) hold trivially because of how 𝑠′ is constructed.

• Constraint (D) could only be violated if values of 𝑥𝑖𝑘 variables would be reduced below
zero. This is impossible since 𝜀

2 is chosen to be smaller than the value of every 𝑥𝑖𝑘
variable that is to be reduced.

• As the algorithm only modifies values of 𝑥𝑖𝑘 variables for which (𝑖, 𝑘) ∈ 𝑀 , the integrity
of (E) is preserved.

Furthermore, the updated solution 𝑠′ preserves optimality: The objective value 𝑡 is tied to the
maximal occuring port pressure 𝑝𝑘 . The only 𝑘 for which 𝑠′ [𝑝𝑘 ] is greater than 𝑠 [𝑝𝑘 ] is 𝑘 ′.
However, the following holds:

𝑠′ [𝑝′𝑘 ] =
∑︁
𝑖∈I

𝑠′ [𝑥𝑖𝑘 ′ ] =
(∑︁
𝑖∈I

𝑠 [𝑥𝑖𝑘 ′ ]
)
+ 𝜀2 · |𝑄

′ (𝑠) | ≤
(∑︁
𝑖∈I

𝑠 [𝑥𝑖𝑘 ′ ]
)
+ 𝑡
∗ − 𝑠 [𝑝𝑘 ′ ]
2 · |𝑄 ′ (𝑠) | · |𝑄

′ (𝑠) |

= 𝑠 [𝑝𝑘 ′ ] +
𝑡∗ − 𝑠 [𝑝𝑘 ′ ]

2 =
𝑡∗ + 𝑠 [𝑝𝑘 ′ ]

2 ≤ 𝑡∗

Therefore, no 𝑝𝑘 is increased to a value greater than 𝑡∗. As a feasible solution cannot have a
smaller objective value than the optimal solution 𝑠 , at least one port 𝑘 with 𝑠′ [𝑘] = 𝑡∗ remains.

The transformation algorithm terminates since at least one of the finite number of ports in
𝑄 (𝑠) is removed in each iteration. □
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We now show both directions of the equivalence between LP and SMT constraints individually.
Let 𝑀 := (I ∪· P, 𝐸) be a two-level port mapping and let 𝑒 be an experiment.

• Let the corresponding SMT formulation be satisfiable with a model𝑚 that fulfills constraints
(A)–(I) and let𝑚[𝑡] be the value of the 𝑡 variable in the model𝑚. We define two sets capturing
bottleneck ports and instructions:

𝑄 = {𝑘 ∈ P | 𝑚[𝑞𝑘 ] = 1}

𝐽 = {𝑖 ∈ I | 𝑚[ 𝑗𝑖 ] = 1}
These enable the following shorthand notations for any functions 𝑓 : I→ R and 𝑔 : P→ R:∑︁

𝑖∈I
𝑗𝑖 · 𝑓 (𝑖) =

∑︁
𝑖∈ 𝐽

𝑓 (𝑖)

∑︁
𝑘∈P

𝑞𝑘 · 𝑓 (𝑘) =
∑︁
𝑘∈𝑄

𝑓 (𝑘)

Since all constraints of the linear program are also constraints of the SMT formulation,𝑚 is
a feasible solution for the LP. We therefore only need to show that its objective value𝑚[𝑡] is
optimal. Assume𝑚 was not an optimal solution of the LP, i.e., there is a “better” solution 𝑠∗
such that 𝑠∗ [𝑡] < 𝑚[𝑡]. Since 𝑠∗ [𝑝𝑘 ] ≤ 𝑠∗ [𝑡] (as 𝑠∗ has to satisfy constraint (C)) and
𝑚[𝑡] =𝑚[𝑝𝑘 ] for all 𝑘 ∈ 𝑄 (by constraint (G)), we can conclude that 𝑠∗ [𝑝𝑘 ] < 𝑚[𝑝𝑘 ] for all
𝑘 ∈ 𝑄 . Because of constraint (F), we know that 𝑄 is not empty.
We find the following to hold because of constraint (I):∑︁

𝑘∈𝑄
𝑠∗ [𝑝𝑘 ] <

∑︁
𝑘∈𝑄

𝑚[𝑝𝑘 ] =
∑︁
𝑘∈𝑄

𝑚[𝑡] (I)
=

∑︁
𝑖∈ 𝐽

𝑒 (𝑖) (A.4)

By constraint (B) and because (D) ensures that 𝑠∗ [𝑥𝑖𝑘 ] > 0 for any 𝑖 ∈ I and 𝑘 ∈ P, we can
rewrite and bound the left-hand side of this inequality:∑︁

𝑘∈𝑄
𝑠∗ [𝑝𝑘 ] (B)

=
∑︁
𝑘∈𝑄

∑︁
𝑖∈I

𝑠∗ [𝑥𝑖𝑘 ] ≥
∑︁
𝑘∈𝑄

∑︁
𝑖∈ 𝐽

𝑠∗ [𝑥𝑖𝑘 ] (A.5)

Inequalities (A.4) and (A.5) together yield the following inequality:∑︁
𝑘∈𝑄

∑︁
𝑖∈ 𝐽

𝑠∗ [𝑥𝑖𝑘 ] <
∑︁
𝑖∈ 𝐽

𝑒 (𝑖) (A.6)

Using constraint (A) and by reordering and decomposing sums, we can further deduce:∑︁
𝑖∈ 𝐽

𝑒 (𝑖) (A)
=

∑︁
𝑖∈ 𝐽

∑︁
𝑘∈P

𝑠∗ [𝑥𝑖𝑘 ] =
∑︁
𝑘∈P

∑︁
𝑖∈ 𝐽

𝑠∗ [𝑥𝑖𝑘 ] =
∑︁
𝑘∈𝑄

∑︁
𝑖∈ 𝐽

𝑠∗ [𝑥𝑖𝑘 ] +
∑︁
𝑘∉𝑄

∑︁
𝑖∈ 𝐽

𝑠∗ [𝑥𝑖𝑘 ]
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By Inequality (A.6), the left summand
∑
𝑘∈𝑄

∑
𝑖∈ 𝐽 𝑠∗ [𝑥𝑖𝑘 ] is strictly smaller than

∑
𝑖∈ 𝐽 𝑒 (𝑖).

This implies that the right summand
∑
𝑘∉𝑄

∑
𝑖∈ 𝐽 𝑠∗ [𝑥𝑖𝑘 ] is strictly greater than zero. In other

words, mass from some bottleneck instruction 𝑖 ∈ 𝐽 is scheduled to a non-bottleneck port
𝑘 ∉ 𝑄 . With constraint (E), this entails that (𝑖, 𝑘) ∈ 𝐸 whereas constraint (H) requires
that (𝑖, 𝑘) ∉ 𝐸, a contradiction. Hence, there cannot be such a “better” solution 𝑠∗,𝑚 is an
optimal solution to the LP.

• Let the LP be feasible with a solution 𝑠 with optimal objective value 𝑡∗. In the following,
we show how to construct a model𝑚 that satisfies the constraints of the SMT formulation
with𝑚[𝑡] = 𝑡∗. We start by defining sets of bottleneck ports and bottleneck instructions:

𝑄 = {𝑘 ∈ P | 𝑠 [𝑝𝑘 ] = 𝑡}

𝐽 = {𝑖 ∈ I | ∃𝑘 ∈ 𝑄. 𝑠 [𝑥𝑖𝑘 ] > 0}

By Lemma A.1, we can assume that the set

𝐽Δ =
{
𝑖 ∈ 𝐽

�� ∃𝑘 ∉ 𝑄. (𝑖, 𝑘) ∈ 𝐸} =
{
𝑖 ∈ 𝐽

�� 𝑀 [𝑖] ⊈ 𝑄
}

is empty without loss of generality.

We construct our model𝑚 for the SMT formulation as follows:

𝑚[𝑥𝑖𝑘 ] = 𝑠 [𝑥𝑖𝑘 ] for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P
𝑚[𝑝𝑘 ] = 𝑠 [𝑝𝑘 ] for ports 𝑘 ∈ P
𝑚[𝑡] = 𝑠 [𝑡]

𝑚[𝑞𝑘 ] ↔ (𝑘 ∈ 𝑄) for ports 𝑘 ∈ P
𝑚[ 𝑗𝑖 ] ↔ (𝑖 ∈ 𝐽 ) for instructions 𝑖 ∈ I

This model satisfies the SMT constraints (A)-(I):

– The first five constraints (A)-(E) hold as 𝑠 is a solution of the LP, which already requires
these constraints.

– Constraint (F) holds as 𝑠 is optimal, i.e., there is a 𝑘 such that 𝑠 [𝑝𝑘 ] = 𝑡∗.

– The construction of 𝑄 ensures that (G) holds.

– Constraint (H) follows from the emptiness of 𝐽Δ: Let (𝑖, 𝑘) ∈ 𝐸 such that 𝑖 ∈ 𝐽 , which
entails𝑚[ 𝑗𝑖 ] = 1. As 𝐽Δ = ∅, 𝑘 ∈ 𝑄 holds. Therefore,𝑚[𝑞𝑘 ] is true.
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– Lastly, relying on constraints whose satisfaction we have already shown, we can see
that constraint (I) also holds:∑︁

𝑖∈I
𝑚[ 𝑗𝑖 ] · 𝑒 (𝑖) =

∑︁
𝑖∈ 𝐽

𝑒 (𝑖) by the definition of𝑚[ 𝑗𝑖 ]

=
∑︁
𝑖∈ 𝐽

∑︁
𝑘∈P

𝑚[𝑥𝑖𝑘 ] by (A)

=
∑︁
𝑖∈ 𝐽

∑︁
𝑘∈𝑄

𝑚[𝑥𝑖𝑘 ] as 𝐽Δ = ∅ and by (E)

=
∑︁
𝑖∈I

∑︁
𝑘∈𝑄

𝑚[𝑥𝑖𝑘 ] by the definition of 𝐽 and by (D)

=
∑︁
𝑘∈𝑄

∑︁
𝑖∈I
𝑚[𝑥𝑖𝑘 ] reorder sums

=
∑︁
𝑘∈𝑄

𝑚[𝑝𝑘 ] by (B)

=
∑︁
𝑘∈P

𝑚[𝑞𝑘 ] ·𝑚[𝑝𝑘 ] by the definition of 𝑄

=
∑︁
𝑘∈P

𝑚[𝑞𝑘 ] ·𝑚[𝑡] by (G)

We therefore constructed a satisfying model𝑚 for the SMT constraints with𝑚[𝑡] = 𝑡∗.
Together, this proves the theorem. □
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A.3. Proofs for Chapter 5
A.3.1. Proof for Theorem 5.2

Theorem 5.2. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with the port
mapping 𝑀 := (I ∪· P, 𝐸) can be equivalently characterized as follows:

tp−1
𝑀

(
𝑒
)
= max
𝑄⊆P

∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}
|𝑄 | (5.1)

𝑀 [𝑖] := {𝑘 | (𝑖, 𝑘) ∈ 𝐸} denotes the set of ports that can execute an instruction 𝑖 with 𝑀 .

For Context:

Theorem 3.7. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 : 𝐼 → N with a
port mapping 𝑀 := (I ∪· P, 𝐸) is the objective value of an optimal solution to the following
linear program:

minimize 𝑡

subject to
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all instructions 𝑖 ∈ I (A)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)
𝑥𝑖𝑘 ≥ 0 for all instructions 𝑖 ∈ I, ports 𝑘 ∈ P (D)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (E)

In particular, this linear program is feasible and has a finite optimal objective value.

Lemma A.1. Let 𝑀 := (I ∪· P, 𝐸) be a two-level port mapping, let 𝑒 be an experiment, and let

• 𝑆 be the set of optimal solutions and 𝑡∗ the optimal objective value for the linear program
from Theorem 3.7 for 𝑀 and 𝑒 ,

• 𝑄 (𝑠) :=
{
𝑘 ∈ P

�� 𝑠 [𝑝𝑘 ] = 𝑡} be the set of ports that are fully utilized in such an optimal
solution 𝑠 ∈ 𝑆 , and

• 𝐽 (𝑠) :=
{
𝑖 ∈ I

�� ∃𝑘 ∈ 𝑄 (𝑠). 𝑠 [𝑥𝑖𝑘 ] > 0
}

be the set of instructions that are executed on
ports in 𝑄 (𝑠).

There is an optimal solution 𝑠 ∈ 𝑆 such that instructions in 𝐽 (𝑠) can only be executed on ports
from 𝑄 (𝑠):

∀𝑖 ∈ 𝐽 (𝑠). 𝑀 [𝑖] ⊆ 𝑄 (𝑠)
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Let 𝑆 (𝑀, 𝑒) be defined as follows:

𝑆 (𝑀, 𝑒) :=
{∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}

|𝑄 |
��� 𝑄 ⊆ P

}
With this notation, the right-hand side of Equation (5.1) can be written as

max 𝑆 (𝑀, 𝑒) =: t̂p−1
𝑀

(
𝑒
)

The proof proceeds by showing that the result t̂p−1
𝑀

(
𝑒
)

of the bottleneck simulation algorithm
is equal to the throughput tp−1

𝑀

(
𝑒
)

according to Theorem 3.7 for any experiment 𝑒 and any
(two-level) port mapping 𝑀 := (I ∪· P, 𝐸). We do this by showing that tp−1

𝑀

(
𝑒
)

is included in
𝑆 (𝑀, 𝑒) (I) and that each element of 𝑆 (𝑀, 𝑒) is upper-bounded by tp−1

𝑀

(
𝑒
)
(II).

(I) Let 𝑠 be an optimal feasible solution of the linear program. We denote the value of a
variable 𝑣 chosen in 𝑠 by 𝑠 [𝑣]. Since 𝑠 is optimal, there is a non-empty maximal set 𝑄 ⊆ 𝑃
such that for all 𝑘 ∈ 𝑄 holds that∑︁

𝑖∈I
𝑠 [𝑥𝑖𝑘 ] = 𝑠 [𝑝𝑘 ] = 𝑠 [𝑡] = tp−1

𝑀

(
𝑒
)

(A.7)

By Lemma A.1, we assume without loss of generality that each instruction that 𝑠 executes
on a port in 𝑄 can only be executed on ports in 𝑄 , that is:

𝑘 ∈ 𝑄 ∧ 𝑠 [𝑥𝑖𝑘 ] > 0⇒ 𝑀 [𝑖] ⊆ 𝑄 (A.8)

By defining 𝐽 := {𝑖 | 𝑀 [𝑖] ⊆ 𝑄}, we identify the following equalities:∑︁
𝑖∈ 𝐽

𝑒 (𝑖) (A)
=

∑︁
𝑖∈ 𝐽

∑︁
𝑘∈P

𝑠 [𝑥𝑖𝑘 ] (E)
=

∑︁
𝑖∈ 𝐽

∑︁
𝑘∈𝑄

𝑠 [𝑥𝑖𝑘 ] =
∑︁
𝑘∈𝑄

∑︁
𝑖∈ 𝐽

𝑠 [𝑥𝑖𝑘 ]

(𝐴.8)
=

∑︁
𝑘∈𝑄

∑︁
𝑖∈I

𝑠 [𝑥𝑖𝑘 ] (𝐴.7)=
∑︁
𝑘∈𝑄

𝑠 [𝑡] = tp−1
𝑀

(
𝑒
) · |𝑄 |

The equality of the leftmost term and the rightmost term proves that tp−1
𝑀

(
𝑒
) ∈ 𝑆 (𝑀, 𝑒):∑︁

𝑖∈ 𝐽
𝑒 (𝑖) = tp−1

𝑀

(
𝑒
) · |𝑄 |

⇔ tp−1
𝑀

(
𝑒
)
=

∑
𝑖∈ 𝐽 𝑒 (𝑖)
|𝑄 | =

∑{
𝑒 (𝑖)

�� 𝑀 [𝑖] ⊆ 𝑄}
|𝑄 |

(II) Let 𝑄 ′ ⊆ P and 𝑡 ′ :=
∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄 ′}/|𝑄 ′ |. We assume 𝑡 ′ > tp−1

𝑀

(
𝑒
)

and show
that this leads to a contradiction, proving that tp−1

𝑀

(
𝑒
)

is an upper bound to each element of
𝑆 (𝑀, 𝑒).

For this argument, we form the dual of the linear program.5 First, we transform the LP to
an equivalent form that allows for a more straightforward construction of the dual:

5See Chapter 4.2 in the textbook by Bertsimas and Tsitsiklis (1997)
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min 𝑡

s.t.
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for 𝑖 ∈ I (𝐴)∑︁
𝑖∈I

𝑥𝑖𝑘 = 𝑝𝑘 for 𝑘 ∈ P (𝐵)

𝑝𝑘 ≤ 𝑡 for 𝑘 ∈ P (𝐶)
𝑥𝑖𝑘 ≥ 0 for 𝑖 ∈ I, 𝑘 ∈ P (𝐷)
𝑥𝑖𝑘 = 0 if (𝑖, 𝑘) ∉ 𝐸 (𝐸)

{

min 𝑡

s.t.
∑︁
𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for 𝑖 ∈ I (𝐴)∑︁
𝑖∈I

𝑥𝑖𝑘 − 𝑡 ≤ 0 for 𝑘 ∈ P (𝐶′)

𝑥𝑖𝑘 ≥ 0 for 𝑖 ∈ I, 𝑘 ∈ P (𝐷)
𝑚𝑖𝑘 · 𝑥𝑖𝑘 = 0 for 𝑖 ∈ I, 𝑘 ∈ P (𝐸′)

This transformation incorporates information about the edges 𝐸 of the port mapping via
boolean coefficients 𝑚𝑖𝑘 = 1 ⇔ (𝑖, 𝑘) ∉ 𝐸. If 𝑚𝑖𝑘 = 1, the constraint (E’) restricts the 𝑥𝑖𝑘
variable to 0, otherwise𝑚𝑖𝑘 is 0 and constraint (E’) does not restrict 𝑥𝑖𝑘 . Furthermore, the
transformation eliminates the 𝑝𝑘 variables by substituting their occurrences with

∑
𝑖∈I 𝑥𝑖𝑘 .

Lastly, we drop the now obsolete constraint (B) and adjust constraint (C) such that variables
only occur in its left-hand side. This transformation does not affect the optimal objective
value of the linear program.

The dual to the transformed linear program is as follows:

maximize
∑︁
𝑖∈I

𝑒 (𝑖) · 𝑦𝑖

subject to 𝑦𝑖 + 𝑧𝑘 +𝑚𝑖𝑘 · 𝑣𝑖𝑘 ≤ 0 for all 𝑖 ∈ I, 𝑘 ∈ P∑︁
𝑘∈P
−𝑧𝑘 = 1

𝑧𝑘 ≤ 0 for all 𝑘 ∈ P
Here, the 𝑦𝑖 , 𝑧𝑘 , and 𝑣𝑖𝑘 are real-valued variables.

By the strong duality theorem6 for linear programs, an optimal solution for this dual linear
program has the same objective tp−1

𝑀

(
𝑒
)

as an optimal solution for the primal linear program.
Given the assumption that 𝑡 ′ > tp−1

𝑀

(
𝑒
)
, we construct a solution 𝑠′ for the dual with a

higher objective value, which contradicts the optimality of tp−1
𝑀

(
𝑒
)
. The construction of 𝑠′ is

as follows for each 𝑖 ∈ I and 𝑘 ∈ P:

𝑠′ [𝑧𝑘 ] =
−1
|𝑄 ′ | if 𝑘 ∈ 𝑄 ′

𝑠′ [𝑦𝑖 ] = 1
𝑄 ′

if 𝑀 [𝑖] ⊆ 𝑄 ′

𝑠′ [𝑣𝑖𝑘 ] = −1

All other variables are set to 0. This solution fulfills all constraints:

1. With variables set as above, violating the constraint 𝑦𝑖 + 𝑧𝑘 +𝑚𝑖𝑘 · 𝑣𝑖𝑘 ≤ 0 for any 𝑖 ∈ I,
𝑘 ∈ P would require all of the following:

6See Theorem 4.4 in the textbook by Bertsimas and Tsitsiklis (1997)
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• 𝑠′ [𝑦𝑖 ] = 1
𝑄 ′ , which implies that 𝑀 [𝑖] ⊆ 𝑄 ′

• 𝑠′ [𝑧𝑘 ] = 0, which implies that 𝑘 ∉ 𝑄 ′

• 𝑚𝑖𝑘 = 0, which implies that 𝑘 ∈ 𝑀 [𝑖]

It is impossible that all three of these hold, therefore the solution satisfies this constraint.

2.
∑
𝑘∈P −𝑠′ [𝑧𝑘 ] = |𝑄 ′ | · − −1

|𝑄 ′ | = 1

3. 𝑠′ [𝑧𝑘 ] is either −1/|𝑄 ′ | or 0, either is less than or equal to 0.

Furthermore, the solution has the following objective value:∑︁
𝑖∈I

𝑒 (𝑖) · 𝑦𝑖 =
∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄 ′}

|𝑄 ′ | = 𝑡 ′ > tp−1
𝑀

(
𝑒
)

This contradicts the optimality of tp−1
𝑀

(
𝑒
)
.

Overall, we conclude that tp−1
𝑀

(
𝑒
)

is the maximal element of the set 𝑆 (𝑀, 𝑒). This proves the
correctness of the bottleneck simulation algorithm. □
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A.4. Proofs for Chapter 6
A.4.1. Proof for Theorem 6.3

Theorem 6.3. Let 𝑀 = (I ∪· P, 𝐸) be a two-level port mapping and let 𝑖, 𝑗 ∈ I such that
|𝑀 [𝑖] | = |𝑀 [ 𝑗] | and such that the following holds:

tp−1
𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= tp−1

𝑀

({
𝑖 ↦→ 1

}) + tp−1
𝑀

({
𝑗 ↦→ 1

})
Then, 𝑖 and 𝑗 use the same set of ports: 𝑀 [𝑖] = 𝑀 [ 𝑗].

For Context:

Theorem 5.2. The modeled inverse throughput tp−1
𝑀

(
𝑒
)

of an experiment 𝑒 with the port
mapping 𝑀 := (I ∪· P, 𝐸) can be equivalently characterized as follows:

tp−1
𝑀

(
𝑒
)
= max
𝑄⊆P

∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}
|𝑄 | (5.1)

𝑀 [𝑖] := {𝑘 | (𝑖, 𝑘) ∈ 𝐸} denotes the set of ports that can execute an instruction 𝑖 with 𝑀 .

Let 𝑀, 𝑖, 𝑗 be as required in the theorem and let 𝑛 := |𝑀 [𝑖] | = |𝑀 [ 𝑗] |. By Theorem 5.2, we
know that

tp−1
𝑀

({
𝑖 ↦→ 1

})
= max
𝑄⊆P

1 if 𝑀 [𝑖] ⊆ 𝑄 else 0
|𝑄 | = max

𝑀 [𝑖 ]⊆𝑄⊆P
1
|𝑄 | =

1
|𝑀 [𝑖] | =

1
𝑛

(A.9)

tp−1
𝑀

({
𝑗 ↦→ 1

})
= max
𝑄⊆P

1 if 𝑀 [ 𝑗] ⊆ 𝑄 else 0
|𝑄 | = max

𝑀 [ 𝑗 ]⊆𝑄⊆P
1
|𝑄 | =

1
|𝑀 [ 𝑗] | =

1
𝑛

(A.10)

tp−1
𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= max
𝑄⊆P
(1 if 𝑀 [𝑖] ⊆ 𝑄 else 0) + (1 if 𝑀 [ 𝑗] ⊆ 𝑄 else 0)

|𝑄 | (A.11)

We now investigate possible values of the term that is subject to maximization in Equa-
tion (A.11) for different choices of 𝑄 :

• If 𝑀 [𝑖] ⊈ 𝑄 and 𝑀 [ 𝑗] ⊈ 𝑄 both hold, the term is 0.

• If 𝑀 [𝑖] ⊆ 𝑄 and 𝑀 [ 𝑗] ⊈ 𝑄 , the term is 1
|𝑄 | . The largest value achievable this way uses

a minimal 𝑄 = 𝑀 [𝑖], leading to the value 1
|𝑀 [𝑖 ] | =

1
𝑛 .

• Analogously, if 𝑀 [𝑖] ⊈ 𝑄 and 𝑀 [ 𝑗] ⊆ 𝑄 , the maximal achievable value is 1
|𝑀 [ 𝑗 ] | =

1
𝑛 .

• If 𝑀 [𝑖] ⊆ 𝑄 and 𝑀 [ 𝑗] ⊆ 𝑄 , the term is 2
|𝑄 | . The largest value achievable this way uses

a minimal 𝑄 = 𝑀 [𝑖] ∪𝑀 [ 𝑗], leading to a value of 2
|𝑀 [𝑖 ]∪𝑀 [ 𝑗 ] | .
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The inverse throughput tp−1
𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
is the maximal of these four possible values.

Since we require that

tp−1
𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
= tp−1

𝑀

({
𝑖 ↦→ 1

}) + tp−1
𝑀

({
𝑗 ↦→ 1

})
=

1
|𝑀 [𝑖] | +

1
|𝑀 [ 𝑗] | =

2
𝑛
,

we can rule out the first three of the above cases, as they cannot yield a sufficiently large
value. Therefore, the following needs to hold:

2
|𝑀 [𝑖] ∪𝑀 [ 𝑗] | = tp−1

𝑀

({
𝑖 ↦→ 1, 𝑗 ↦→ 1

})
=

2
𝑛

If 𝑀 [𝑖] ≠ 𝑀 [ 𝑗], and, consequently, |𝑀 [𝑖] ∪ 𝑀 [ 𝑗] | > |𝑛 | held, this could not be the case.
Therefore, 𝑀 [𝑖] = 𝑀 [ 𝑗] = 𝑀 [𝑖] ∪𝑀 [ 𝑗] needs to hold, which proves the statement. □
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A.5. Proofs for Chapter 8
A.5.1. Proof for Theorem 8.4

Theorem 8.4. The generalization algorithm always terminates if a valid abstract domain is
used.

For Context:

Input: basic block 𝑏
1 absBB← 𝛽 (𝑏);
2 if absBB is not interesting then return 𝑏;
3 rejected ← {};
4 while True do
5 avail ← {𝐸 ∈ Exps | absBB ∈ dom(𝐸)} \ rejected;
6 if avail = {} then return 𝑎𝑏𝑠𝐵𝐵 ;
7 exp← choose(avail);
8 t ← exp(absBB);
9 if t is interesting then absBB← t ;

10 else rejected ← rejected ∪ {exp} ;

Algorithm A.1. Generalization Algorithm.

Definition 8.2. A valid abstract domain (A, ⊑) with a concretization function 𝛾 : A→ C, a
representation function 𝛽 : B→ A, and a set Exps ⊆ A ⇀ A of expansion functions satisfies
the following constraints:

1. (A, ⊑) is partially ordered.
2. (A, ⊑) contains no infinite ascending chains.
3. All expansion functions 𝐸 ∈ Exps are strictly ascending:

∀𝑎 ∈ dom(𝐸). 𝑎 ⊑ 𝐸 (𝑎) ∧ 𝑎 ≠ 𝐸 (𝑎)
4. For each abstract block, the number of applicable expansion functions is finite.
5. For each abstract block, every direct successor in ⊑ is reachable via an expansion

function:
∀𝑎, 𝑏 ∈ A. (

𝑎 ⊏ 𝑏 ∧ �𝑐 ∈ A. 𝑎 ⊏ 𝑐 ⊏ 𝑏
) ⇒ ∃𝐸 ∈ Exps. 𝐸 (𝑎) = 𝑏

6. The expansion functions are monotone:
∀𝑎, 𝑎′ ∈ dom(𝐸). 𝑎 ⊑ 𝑎′ ⇒ 𝐸 (𝑎) ⊑ 𝐸 (𝑎′)

7. The concretization function is monotone:
∀𝑎, 𝑎′ ∈ A. 𝑎 ⊑ 𝑎′ ⇒ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′)
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8. Concretization and representation functions satisfy the soundness constraint:
∀𝑏 ∈ B. 𝑏 ∈ 𝛾 (𝛽 (𝑏))

⌟

In each (non-terminating) iteration of the generalization algorithm, one of two operations is
performed: Either the current abstract block is replaced by an expanded version (line 9), or an
expansion is rejected (line 10). Neither of these operations can occur infinitely often in an
execution of the algorithm:

Assume there was an execution of the generalization algorithm with infinitely many ex-
pansion steps. Since expansion functions are strictly ascending (Requirement 3), the sequence
of values for absBB in this execution is an infinite ascending chain, which is forbidden by our
requirements on an abstract domain (Requirement 2).

Assume there was an execution with infinitely many rejection steps. As there cannot be
infinitely many expansion steps in the execution, the execution eventually expands to a final
abstract block absBB⊣. In an execution with infinitely many rejection steps, there need to
be infinitely many expansions applicable to (and rejected for) absBB⊣. This contradicts the
requirement that only a finite number of expansions is applicable for each abstract block
(Requirement 4).

Therefore, the generalization algorithm can only perform a finite number of operations
and eventually terminates. □
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A.5.2. Proof for Theorem 8.5

Theorem 8.5. Given an ideal check for the interestingness of an abstract block and a valid
abstract domain, the result of the generalization algorithm is

1. interesting and
2. maximal, i.e., every more general abstract block is not interesting,

if the initial representative 𝛽 (𝑏) is interesting. A check for interestingness chk : A →{
True, False

}
is ideal if

chk(𝑎) ⇔ ∀𝑏 ∈ 𝛾 (𝑎). 𝑏 is interesting.

For Context:

Definition 8.2. A valid abstract domain (A, ⊑) with a concretization function 𝛾 : A→ C, a
representation function 𝛽 : B→ A, and a set Exps ⊆ A ⇀ A of expansion functions satisfies
the following constraints:

1. (A, ⊑) is partially ordered.
2. (A, ⊑) contains no infinite ascending chains.
3. All expansion functions 𝐸 ∈ Exps are strictly ascending:

∀𝑎 ∈ dom(𝐸). 𝑎 ⊑ 𝐸 (𝑎) ∧ 𝑎 ≠ 𝐸 (𝑎)
4. For each abstract block, the number of applicable expansion functions is finite.
5. For each abstract block, every direct successor in ⊑ is reachable via an expansion

function:
∀𝑎, 𝑏 ∈ A. (

𝑎 ⊏ 𝑏 ∧ �𝑐 ∈ A. 𝑎 ⊏ 𝑐 ⊏ 𝑏
) ⇒ ∃𝐸 ∈ Exps. 𝐸 (𝑎) = 𝑏

6. The expansion functions are monotone:
∀𝑎, 𝑎′ ∈ dom(𝐸). 𝑎 ⊑ 𝑎′ ⇒ 𝐸 (𝑎) ⊑ 𝐸 (𝑎′)

7. The concretization function is monotone:
∀𝑎, 𝑎′ ∈ A. 𝑎 ⊑ 𝑎′ ⇒ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′)

8. Concretization and representation functions satisfy the soundness constraint:
∀𝑏 ∈ B. 𝑏 ∈ 𝛾 (𝛽 (𝑏))

⌟

With a complete induction over the number of iterations in the algorithm, we can show that
absBB is interesting in every iteration of the algorithm. For the induction base, the check
in line 2 ensures that absBB is interesting at the beginning of the initial iteration. In each
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iteration, absBB is either replaced with an interesting abstract block or remains the same. If it
is interesting before an iteration – as the induction hypothesis guarantees – it is therefore also
interesting after the iteration. Consequently, the result of the algorithm is also interesting.

Assume that the result 𝑎 of the generalization is not maximal, i.e., there is a strictly more
general abstract block 𝑎∗ than the result that is interesting. As 𝑎∗ is more general than 𝑎, there
is a chain 𝑎 ⊑ 𝑎′ ⊑ · · · ⊑ 𝑎∗ of immediate successors in the generality order from 𝑎 to 𝑎∗.
Each abstract block on this chain is at most as general as 𝑎∗ and therefore also interesting.
Since we assume that each immediate successor in the generality order is reachable through
an expansion function (Requirement 5), there is an applicable expansion function 𝐸 such that
𝐸 (𝑎) = 𝑎′. The generalization terminated with the result 𝑎, therefore 𝐸 was rejected in a
previous iteration.

The expansion 𝐸 can only be rejected if its result 𝐸 (𝑎𝑝 ) for a previous value 𝑎𝑝 ⊑ 𝑎 for
absBB is not interesting, i.e., a basic block 𝑏∗ in 𝛾 (𝐸 (𝑎𝑝 )) is not interesting. Expansions and
the concretization function 𝛾 are required to be monotone (Requirements 6 and 7), therefore
the following holds:

𝑎𝑝 ⊑ 𝑎 ⇒ 𝐸 (𝑎𝑝 ) ⊑ 𝐸 (𝑎) ⇒ 𝛾 (𝐸 (𝑎𝑝 )) ⊆ 𝛾 (𝐸 (𝑎))

So, the non-interesting basic block 𝑏∗ is also in the set 𝛾 (𝐸 (𝑎)), which means that 𝐸 (𝑎) is not
interesting, a contradiction. Hence, the assumption is wrong: There cannot be a more general
interesting abstract block 𝑎∗. □
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A.5.3. Proof for Theorem 8.6

Theorem 8.6. The presented construction is a valid abstract domain.

For Context:

Definition 8.2. A valid abstract domain (A, ⊑) with a concretization function 𝛾 : A→ C, a
representation function 𝛽 : B→ A, and a set Exps ⊆ A ⇀ A of expansion functions satisfies
the following constraints:

1. (A, ⊑) is partially ordered.
2. (A, ⊑) contains no infinite ascending chains.
3. All expansion functions 𝐸 ∈ Exps are strictly ascending:

∀𝑎 ∈ dom(𝐸). 𝑎 ⊑ 𝐸 (𝑎) ∧ 𝑎 ≠ 𝐸 (𝑎)
4. For each abstract block, the number of applicable expansion functions is finite.
5. For each abstract block, every direct successor in ⊑ is reachable via an expansion

function:
∀𝑎, 𝑏 ∈ A. (

𝑎 ⊏ 𝑏 ∧ �𝑐 ∈ A. 𝑎 ⊏ 𝑐 ⊏ 𝑏
) ⇒ ∃𝐸 ∈ Exps. 𝐸 (𝑎) = 𝑏

6. The expansion functions are monotone:
∀𝑎, 𝑎′ ∈ dom(𝐸). 𝑎 ⊑ 𝑎′ ⇒ 𝐸 (𝑎) ⊑ 𝐸 (𝑎′)

7. The concretization function is monotone:
∀𝑎, 𝑎′ ∈ A. 𝑎 ⊑ 𝑎′ ⇒ 𝛾 (𝑎) ⊆ 𝛾 (𝑎′)

8. Concretization and representation functions satisfy the soundness constraint:
∀𝑏 ∈ B. 𝑏 ∈ 𝛾 (𝛽 (𝑏))

⌟

The proof for this theorem mostly consists of bookkeeping tasks as the abstract domain was
constructed with these requirements in mind. We prove the claims of the theorem in order:

1. The domain is partially ordered. We start by noting that each of the feature domains is
partially ordered. These domain components are by definition ordered by the reflexive
and transitive closure of the adjacency relation of the Hasse diagrams in Table 8.2 on
page 118. This adjacency relation is free of cycles since elements with a lower vertical
position are only related to elements with a strictly higher vertical position. For this reason,
the adjacency relation as well as its reflexive and transitive closure are antisymmetric.
Consequently, the feature domains are partially ordered. Since the instruction order ⊑in
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(Equation (8.9)) is the product order of the orders of several feature domains, it is also a
partial order.
Similarly, the aliasing abstraction (Equation (8.14)) is a partially ordered set:

• The aliasing order ⊑al is reflexive: Let ℎ ∈ Aal . Then:

ℎ ⊑al ℎ ⇔ ∀𝑥 ∈ (Idx × Idx). ℎ(𝑥) = ⊤ ∨ ℎ(𝑥) = ℎ(𝑥)
Since ℎ(𝑥) = ℎ(𝑥) always holds, this condition is fulfilled.

• The aliasing order ⊑al is antisymmetric: Let ℎ,𝑔 ∈ Aal such that ℎ ⊑al 𝑔 and ℎ ≠ 𝑔. Then:

ℎ ⊑al 𝑔⇔ ∀𝑥 ∈ (Idx × Idx). 𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥)
Since ℎ ≠ 𝑔, there is an 𝑥 ∈ (Idx × Idx) such that ℎ(𝑥) ≠ 𝑔(𝑥). Therefore, 𝑔(𝑥) = ⊤ and
ℎ(𝑥) ≠ ⊤, which implies that 𝑔 ⊑al ℎ cannot hold.

• The aliasing order ⊑al is transitive: Let ℎ,𝑔, 𝑓 ∈ Aal such that ℎ ⊑al 𝑔 and 𝑔 ⊑al 𝑓 . This
means: (∀𝑥 ∈ (Idx × Idx). 𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥))∧(∀𝑥 ∈ (Idx × Idx). 𝑓 (𝑥) = ⊤ ∨ 𝑔(𝑥) = 𝑓 (𝑥))
⇒ ∀𝑥 ∈ (Idx × Idx).

( (
𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥)) ∧ (

𝑓 (𝑥) = ⊤ ∨ 𝑔(𝑥) = 𝑓 (𝑥)) )
⇒
∀𝑥 ∈ (Idx × Idx).

( (
𝑓 (𝑥) = ⊤ ∧ (𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥)))

∨ (
𝑔(𝑥) = 𝑓 (𝑥) ∧ (𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥))) )

⇒ ∀𝑥 ∈ (Idx × Idx) . 𝑓 (𝑥) = ⊤ ∨ (
𝑔(𝑥) = 𝑓 (𝑥) ∧ (𝑔(𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑔(𝑥)))

⇒ ∀𝑥 ∈ (Idx × Idx). 𝑓 (𝑥) = ⊤ ∨ (
ℎ(𝑥) = 𝑓 (𝑥) ∨ 𝑓 (𝑥) = 𝑔(𝑥) = ⊤)

⇒ ∀𝑥 ∈ (Idx × Idx). 𝑓 (𝑥) = ⊤ ∨ ℎ(𝑥) = 𝑓 (𝑥)
⇒ ℎ ⊑al 𝑓

We lift this insight to the full abstract domain order (Equation (8.4)):

• The domain order ⊑A is reflexive: Let (𝑎in, 𝑎al) ∈ A. Then:

(𝑎in, 𝑎al) ⊑A (𝑎in, 𝑎al)
⇔ 𝑎al ⊑al 𝑎al ∧ |𝑎in | = |𝑎in | ∧ (∀1 ≤ 𝑘 ≤ |𝑎in |. 𝑎in [𝑘] ⊑in 𝑎in [𝑘])

The first conjunct is true since ⊑al is reflexive, the second because = is reflexive, and the
third because ⊑in is reflexive.

• The domain order ⊑A is antisymmetric: Let (𝑎in, 𝑎al), (𝑏in, 𝑏al) ∈ A be abstract blocks
such that (𝑎in, 𝑎al) ⊑A (𝑏in, 𝑏al) and (𝑎in, 𝑎al) ≠ (𝑏in, 𝑏al). Then:

𝑎al ⊑al 𝑏al ∧ |𝑎in | = |𝑏in | ∧ (∀1 ≤ 𝑘 ≤ |𝑎in |. 𝑎in [𝑘] ⊑in 𝑏in [𝑘])
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Since (𝑎in, 𝑎al) ≠ (𝑏in, 𝑏al), at least one of 𝑎in ≠ 𝑏in and 𝑎al ≠ 𝑏al holds. As ⊑in and ⊑al
are both antisymmetric, 𝑏al ⊑al 𝑎al or 𝑏in [𝑘] ⊑in 𝑎in [𝑘] for some 1 ≤ 𝑘 ≤ |𝑎in | = |𝑏in | is
false. Therefore, (𝑏in, 𝑏al) @A (𝑎in, 𝑎al).

• The domain order ⊑A is transitive: Let (𝑎in, 𝑎al), (𝑏in, 𝑏al), (𝑐in, 𝑐al) ∈ A be abstract blocks
such that (𝑎in, 𝑎al) ⊑A (𝑏in, 𝑏al) and (𝑏in, 𝑏al) ⊑A (𝑐in, 𝑐al). Then:(

𝑎al ⊑al 𝑏al ∧ |𝑎in | = |𝑏in | ∧ (∀1 ≤ 𝑘 ≤ |𝑎in |. 𝑎in [𝑘] ⊑in 𝑏in [𝑘])
)∧(

𝑏al ⊑al 𝑐al ∧ |𝑏in | = |𝑐in | ∧ (∀1 ≤ 𝑘 ≤ |𝑏in |. 𝑏in [𝑘] ⊑in 𝑐in [𝑘])
)

⇒
(
𝑎al ⊑al 𝑏al ⊑al 𝑐al

) ∧ ( |𝑎in | = |𝑏in | = |𝑐in |)
∧ (∀1 ≤ 𝑘 ≤ |𝑎in | = |𝑏in |. 𝑎in [𝑘] ⊑in 𝑏in [𝑘] ⊑in 𝑐in [𝑘])

⇒ (
𝑎al ⊑al 𝑐al

) ∧ (|𝑎in | = |𝑐in |) ∧ (∀1 ≤ 𝑘 ≤ |𝑎in |. 𝑎in [𝑘] ⊑in 𝑐in [𝑘])
⇒ (𝑎in, 𝑎al) ⊑A (𝑐in, 𝑐al)

2. The domain contains no infinite ascending chains. None of the feature domains contains
infinite ascending chains by construction:

• The Singletons domain has only ascending chains with up to two different elements.

• For the Edit Distances and the Log Sizes domains, the length of ascending chains depends
on the chosen value for the parameter 𝐾 . In both, the longest ascending chains can only
have 𝐾 + 2 elements (one for each number in [0, 𝐾] plus the ⊤ element).

• The Subset-or-None domain allows arbitrarily long finite ascending chains: A finite set
value 𝑀 can be expanded |𝑀 | + 1 times until the ⊤ element is reached. Since we only
use finite sets as values in this domain, no infinite ascending chains occur.

The instruction abstraction is the product order of a configurable but fixed number of
feature domains, therefore it does not contain infinite ascending chains either. Neither
does the alias abstraction: Let 𝑎al ∈ Aal be a value of the alias abstraction. In the domain
construction, we required that any element of the alias abstraction contains only finitely
many non-⊤ entries. An ascending chain starting from 𝑎al will set one of the (finitely
many) non-⊤ entries of 𝑎al to ⊤ in each step. It can therefore also only be finite.
An abstract block 𝑎 ∈ A consists of a finite list of instruction abstractions and some abstract
aliasing information. In an ascending chain starting from 𝑎, each step must increase one
of the instruction abstractions or the alias abstraction, each of which can only be done a
finite number of times. Every such ascending chain is therefore finite.

3. The expansion functions are strictly ascending. Expansion functions for the instruction
abstraction (Equation (8.12)) are strictly ascending: They are defined such that one compo-
nent of the instruction abstraction is replaced by a strictly larger one whereas all other
components remain unchanged.
Similarly, expansion functions 𝐸al for the alias abstraction (Equation (8.17)) replace a non-⊤
entry in the mapping with a ⊤ entry while leaving all other entries unchanged. Therefore,
for any ℎ ∈ dom(𝐸al), ℎ ⊑al 𝐸al (ℎ) and ℎ ≠ 𝐸al (ℎ) holds.
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Expansion functions for abstract basic blocks can have one of two forms (Equation (8.7)):

• 𝜆(𝑎in, 𝑎al). (𝑎in [𝑘 ↦→ 𝐸in (𝑎in [𝑘])], 𝑎al) if 𝑘 ≤ |𝑎in | ∧ 𝑎in [𝑘] ∈ dom(𝐸in) for some 𝑘 ∈ N
and 𝐸in ∈ Expsin – an instruction abstraction is expanded and all other components are
left unchanged.

• 𝜆(𝑎in, 𝑎al). (𝑎in, 𝐸al (𝑎al)) if 𝑎al ∈ dom(𝐸al) for some 𝐸al ∈ Expsal – the alias abstraction
is expanded and all other components are left unchanged.

Since all expansion functions for the instruction and alias abstractions are strictly expanding,
basic block expansion functions of either kind are also strictly expanding.

4. For each abstract block, the number of applicable expansion functions is finite. Expansions
functions that are applicable for an abstract block (𝑎in, 𝑎al) can either be expansions for
one of the (finitely many) instruction abstractions or for the aliasing abstraction.

For the aliasing abstraction, one expansion function per non-⊤ entry in 𝑎al is applicable.
Since any aliasing abstraction can only have finitely many non-⊤ entries, the aliasing
abstraction can only contribute finitely many applicable expansion functions for the abstract
block.

For an instruction abstraction, there is an applicable expansion function for each successor
of a non-⊤ entry in a feature component. Since an instantiation of the abstract domain
uses a finite number of feature components, what remains to be shown is that all elements
of each feature domain only have finitely many direct successors in the domain order.

• For the Singletons, Edit Distances, and Log Sizes domain, each element has either exactly
one or zero (for ⊤) direct successors.

• In the Subset-or-None domain, ⊤ also has no successors, DefNone and {} have one
successor, and every other set has one direct successor per element. Since we only use
finite sets, they all have a finite number of successors.

5. For each abstract block, every direct successor in ⊑A is reachable via an expansion function.
Let 𝑎, 𝑏 ∈ A such that 𝑏 = (𝑏in, 𝑏al) is a direct successor of 𝑎 = (𝑎in, 𝑎al) in ⊑A.

As 𝑎 ⊑ 𝑏, the following holds by Equation (8.4):

𝑥al ⊑al 𝑦al ∧ |𝑥in | = |𝑦in | ∧ (∀1 ≤ 𝑘 ≤ |𝑥in |. 𝑥in [𝑘] ⊑in 𝑦in [𝑘])

Since they are direct successors, exactly one of the ⊑al or ⊑in inequalities is not tight. If
they were all tight, 𝑎 and 𝑏 would be equal, and if more than two were not tight, adjusting
𝑏 to tighten one of them would give us an abstract block 𝑐 between 𝑎 and 𝑏 in the order ⊑A.

If they differ in the alias abstraction, there needs to be exactly one index pair 𝑥 ∈ Idx × Idx
such that 𝑎al (𝑥) ≠ 𝑏al (𝑥) = ⊤ – otherwise, 𝑏 would not be a direct successor of 𝑎, by an
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analogous argument as in the previous paragraph. Then, the set Exps contains an expansion
that expands 𝑎 to 𝑏, based on Equations (8.7) and (8.17):

𝜆(𝑎in, 𝑎al). (𝑎in, 𝐸 (𝑎al)) if 𝑎al ∈ dom(𝐸)
with 𝐸 := 𝜆ℎ. ℎ[𝑥 ↦→ ⊤] if ℎ(𝑥) ≠ ⊤

If 𝑎 and 𝑏 do not differ in the alias abstraction, they differ in the 𝑘th instruction abstraction.
Then, they need to differ in the domain for exactly one feature 𝑓 , such that 𝑏 𝑓 := 𝑏in [𝑘] [𝑓 ]
succeeds 𝑎𝑓 := 𝑎in [𝑘] [𝑓 ] in ⊑A𝐹 [ 𝑓 ] – otherwise, 𝑏 would not be a direct successor to 𝑎,
by an analogous argument as in the previous paragraphs. For this case, the set Exps also
contains an expansion that expands 𝑎 to 𝑏, based on Equations (8.7) and (8.12):

𝜆(𝑎in, 𝑎al). (𝑎in [𝑘 ↦→ 𝐸 (𝑎in [𝑘])], 𝑎al) if 𝑘 ≤ |𝑎in | ∧ 𝑎in [𝑘] ∈ dom(𝐸)
with 𝐸 := 𝜆ai. ai[𝑓 ↦→ 𝑏 𝑓 ] if ai[𝑓 ] = 𝑎𝑓

Thus, every possible direct successor of 𝑎 is covered by an expansion function.

6. The expansion functions are monotone. Let 𝐸 be an expansion function from the basic
block abstraction and let (𝑥in, 𝑥al), (𝑦in, 𝑦al) ∈ dom(𝐸) such that (𝑥in, 𝑥al) ⊑A (𝑦in, 𝑦al). Let
further (𝑥 ′in, 𝑥 ′al) := 𝐸 ((𝑥in, 𝑥al)) and (𝑦′in, 𝑦′al) := 𝐸 ((𝑦in, 𝑦al)). From the definition of the
ordering relation (Equation (8.4)) follows:

𝑥al ⊑al 𝑦al ∧ |𝑥in | = |𝑦in | ∧ (∀1 ≤ 𝑘 ≤ |𝑥in |. 𝑥in [𝑘] ⊑in 𝑦in [𝑘])

The expansion function 𝐸 can either be derived from an expansion function for the aliasing
abstraction or from one for an instruction abstraction.

• If it concerns the aliasing abstraction, 𝐸 only affects the aliasing information 𝑥al (𝑖) and
𝑦al (𝑖) for an index pair 𝑖 ∈ Idx × Idx and is applicable if 𝑥al (𝑖) ≠ ⊤ and 𝑦al (𝑖) ≠ ⊤. The
resulting expanded alias abstractions are 𝑥 ′al := 𝑥al [𝑖 ↦→ ⊤] and 𝑦′al := 𝑦al [𝑖 ↦→ ⊤]. Only
the entries for the index pair 𝑖 are replaced with ⊤ values, all other entries remain the
same. Therefore, 𝑥 ′al ⊑al 𝑦′al holds. As the instruction abstractions 𝑥 ′in = 𝑥in and 𝑦′in = 𝑦in
are unchanged, (𝑥 ′in, 𝑥 ′al) ⊑A (𝑦′in, 𝑦′al) holds.

• If 𝐸 concerns the instruction abstraction, it does not affect the aliasing abstraction,
therefore 𝑥 ′al = 𝑥al ⊑al 𝑦al = 𝑦′al holds. Since instruction expansions do not affect the
length of the list of instruction abstractions, |𝑥 ′in | = |𝑥in | = |𝑦in | = |𝑦′in | also holds. 𝐸 can
only affect the instruction abstractions 𝑥in and 𝑦in at a single common position 𝑘∗, all
others stay unchanged:

∀𝑘 ∈ {
1, . . . , |𝑥in |

} \ {𝑘∗} . 𝑥 ′in [𝑘] = 𝑥in [𝑘] ⊑in 𝑦in [𝑘] = 𝑦′in [𝑘]
What remains to be shown is that the affected entries 𝑥 ′in [𝑘∗] and𝑦′in [𝑘∗] remain properly
ordered: 𝑥 ′in [𝑘∗] ⊑in 𝑦′in [𝑘∗].
By construction (Equation (8.12)), 𝐸 only affects a single feature 𝑓 in the instruction
abstractions by applying an expansion function of the feature domain. As each such
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expansion function only applies to a specific value 𝑣 in the feature domain and replaces
it with a specific direct successor 𝑣 ′, we can conclude that 𝑥in [𝑘∗] (𝑓 ) = 𝑣 = 𝑦in [𝑘∗] (𝑓 )
and 𝑥 ′in [𝑘∗] (𝑓 ) = 𝑣 ′ = 𝑦′in [𝑘∗] (𝑓 ). Therefore, 𝑥 ′in [𝑘∗] = 𝑦′in [𝑘∗] holds, which implies
𝑥 ′in [𝑘∗] ⊑in 𝑦′in [𝑘∗].

7. The concretization function is monotone. Let (𝑥in, 𝑥al), (𝑦in, 𝑦al) ∈ A such that (𝑥in, 𝑥al) ⊑A
(𝑦in, 𝑦al). From the definition of the ordering relation (Equation (8.4)) follows:

𝑥al ⊑al 𝑦al ∧ |𝑥in | = |𝑦in | ∧ (∀1 ≤ 𝑘 ≤ |𝑥in |. 𝑥in [𝑘] ⊑in 𝑦in [𝑘]) (A.12)

Let further 𝑋 := 𝛾A ((𝑥in, 𝑥al)) and 𝑌 := 𝛾A ((𝑦in, 𝑦al)). We need to show that 𝑋 ⊆ 𝑌 , i.e.,
any basic block 𝑏 ∈ 𝑋 is also in 𝑌 .
Let 𝑏 ∈ 𝑋 . By the definition of 𝛾A (Equation (8.5)), the following holds:

𝑏 ∈ 𝛾al (𝑥al) ∧ |𝑥in | = |𝑏 | ∧ (∀1 ≤ 𝑘 ≤ |𝑥in |. 𝑏 [𝑘] ∈ 𝛾in (𝑥in [𝑘])) (A.13)

We need to show that

𝑏 ∈ 𝛾al (𝑦al) ∧ |𝑦in | = |𝑏 | ∧ (∀1 ≤ 𝑘 ≤ |𝑦in |. 𝑏 [𝑘] ∈ 𝛾in (𝑦in [𝑘])) (A.14)

We consider each conjunct individually:

• Since 𝑏 ∈ 𝛾al (𝑥al) by Equation (A.13), Equation (8.15) ensures the following:∧
( (i1,i2 ) ↦→𝑣) ∈𝑥al

(
𝑃 (𝑏, 𝑖𝑖 , 𝑖2) ⇒

(
𝑣 = ⊤ ∨𝑄 (𝑏, 𝑖1, 𝑖2, 𝑣)

))
with

𝑃 (𝑏, 𝑖𝑖 , 𝑖2) :=
(
𝑏 [i1] and 𝑏 [i2] exist and match

)
and

𝑄 (𝑏, 𝑖1, 𝑖2, 𝑣) :=
(
𝑣 = must ∧ (

𝑏 [𝑖1] and 𝑏 [𝑖2] alias
) )

∨ (
𝑣 = mustnot ∧ (

𝑏 [𝑖1] and 𝑏 [𝑖2] do not alias
) )

As 𝑥al ⊑al 𝑦al , we know that ((𝑖1, 𝑖2) ↦→ 𝑣) ∈ 𝑥al implies that 𝑦al ((𝑖1, 𝑖2)) ∈
{
𝑣,⊤}.

Therefore, whenever (𝑣 = ⊤ ∨𝑄 (𝑏, 𝑖1, 𝑖2, 𝑣)) holds for an entry ((i1, i2) ↦→ 𝑣) ∈ 𝑥al , then(
𝑣 ′ = ⊤∨𝑄 (𝑏, 𝑖1, 𝑖2, 𝑣 ′)

)
with 𝑣 ′ := 𝑦al ((𝑖1, 𝑖2)) also holds. Hence, the constraint from the

definition of 𝛾al (Equation (8.15)) is fulfilled for 𝑦al :∧
( (i1,i2 ) ↦→𝑣) ∈𝑦al

(
𝑃 (𝑏, 𝑖𝑖 , 𝑖2) ⇒

(
𝑣 = ⊤ ∨𝑄 (𝑏, 𝑖1, 𝑖2, 𝑣)

))
Consequently, 𝑏 ∈ 𝛾al (𝑦al).

• From Equation (A.12) and Equation (A.13), we learn that |𝑦in | = |𝑥in | = |𝑏 |.
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• Let 𝑘 ∈ {
1, ..., |𝑦in |

}
. Equation (A.12) implies that 𝑥in [𝑘] ⊑in 𝑦in [𝑘]. From Equation (A.13),

we further know that the 𝑘th instruction 𝑏 [𝑘] of 𝑏 is in 𝛾in (𝑥in [𝑘]). We need to show
that 𝑏 ∈ 𝛾in (𝑦in [𝑘]). Unfolding the definitions of the instruction concretization 𝛾in (Equa-
tion (8.10)) and the corresponding order ⊑in (Equation (8.9)) reduces the proof obligation
to showing that the concretization function of each feature domain is monotone. Let
av1, av2 be a pair of elements of a feature domain 𝑋 such that av1 ⊑𝐹 av2. We first
consider two cases independent of the specific feature domain:

– If av1 = av2, 𝛾 (𝑓 )𝑋 (av1) = 𝛾 (𝑓 )𝑋 (av2) needs to hold as well since 𝛾 (𝑓 )𝑋 is a function.

– If av2 = ⊤, 𝛾 (𝑓 )𝑋 (av1) ⊆ 𝛾 (𝑓 )𝑋 (av2) = I necessarily holds.

Otherwise:

Singletons: No case other than the above two is possible.

Edit Distances: The values need to follow the form av1 = (B : 𝑠, d : 𝑛) and av2 = (B :
𝑠, d :𝑚) with editing distances 𝑛 < 𝑚 and a common base string 𝑠 .
Let 𝑖 ∈ 𝛾 (𝑓 )𝑋 (av1) =

{
𝑖
�� dist (𝑓 (𝑖), 𝑠) ≤ 𝑛}. Then, the following holds:

dist (𝑓 (𝑖), 𝑠) ≤ 𝑛 < 𝑚

Therefore, 𝑖 ∈ {
𝑖
�� dist (𝑓 (𝑖), 𝑠) ≤ 𝑚}

= 𝛾
(𝑓 )
𝑋 (av2). Thus, 𝛾 (𝑓 )𝑋 (av1) ⊆ 𝛾 (𝑓 )𝑋 (av2) holds.

Log Sizes: With the above two cases eliminated, av1 < av2 must hold.
Let 𝑖 ∈ 𝛾 (𝑓 )𝑋 (av1) =

{
𝑖
�� |𝑓 (𝑖) | < 2av1

}
. Then, |𝑓 (𝑖) | < 2av1 < 2av2 must hold.

Therefore, 𝑖 ∈ {
𝑖
�� |𝑓 (𝑖) | < 2av2

}
= 𝛾
(𝑓 )
𝑋 (av2). Thus, 𝛾 (𝑓 )𝑋 (av1) ⊆ 𝛾 (𝑓 )𝑋 (av2) holds.

Subset-or-None: Any case involving DefNone or ⊤ is already captured by the above
two cases. Therefore, 𝑎𝑣1 ⊋ 𝑎𝑣2 needs to hold.
Let 𝑖 ∈ 𝛾 (𝑓 )𝑋 (av1) =

{
𝑖
�� 𝑓 (𝑖) ⊇ av1

}
. Then, 𝑓 (𝑖) ⊇ av1 ⊋ 𝑎𝑣2 must holds.

Therefore, 𝑖 ∈ {
𝑖
�� 𝑓 (𝑖) ⊇ av2

}
= 𝛾
(𝑓 )
𝑋 (av2). Thus, 𝛾 (𝑓 )𝑋 (av1) ⊆ 𝛾 (𝑓 )𝑋 (av2) holds.

The instruction concretization function is therefore monotone.

Overall, this shows that the concretization function 𝛾A is monotone.

8. Concretization and representation functions satisfy the soundness constraint. Let 𝑏 ∈ B be a
basic block. We need to show that 𝑏 ∈ 𝛾A (𝛽A (𝑏)). By the definitions of 𝛾A (Equation (8.5))
and 𝛽A (Equation (8.6)), the following therefore needs to hold:

𝑏 ∈ 𝛾al (𝛽al (𝑏)) ∧ |𝑏 | = |𝑏 | ∧
(∀1 ≤ 𝑘 ≤ |𝑏 |. 𝑏 [𝑘] ∈ 𝛾in (𝛽in (𝑏 [𝑘]))) (A.15)

The length constraint on the lists of instructions and instruction abstractions is trivially
fulfilled. This leaves us with two proof obligations:
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• 𝑏 ∈ 𝛾al (𝛽al (𝑏)): By the definition of 𝛾al (Equation (8.15)), this is equivalent to:∧
( (i1,i2 ) ↦→𝑥 ) ∈𝛽al (𝑏 )

( (
𝑏 [i1] and 𝑏 [i2] exist and match

)
⇒

(
𝑥 = ⊤ ∨ (

𝑥 = must ∧ (
𝑏 [𝑖1] and 𝑏 [𝑖2] alias

) )
∨ (
𝑥 = mustnot ∧ (

𝑏 [𝑖1] and 𝑏 [𝑖2] do not alias
) ) )) (A.16)

𝛽al (𝑏) is defined as follows by Equation (8.16):

𝛽al (𝑏) := 𝜆(𝑖1, 𝑖2).

must if 𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, and alias
mustnot if 𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, and do not alias
⊤ otherwise

We consider the conjuncts of Equation (A.16) individually, let ((i1, i2) ↦→ 𝑥) ∈ 𝛽al (𝑏).

– If 𝑏 [𝑖1], 𝑏 [𝑖2] do not exist or match, the premise of the conjunct’s implication is
not satisfied, the conjunct is True.

– If 𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, and alias, 𝛽al (𝑏) (𝑖1, 𝑖2) is “must”. Then, the second
disjunct of the implication’s consequent is satisfied.

– Otherwise,𝑏 [𝑖1], 𝑏 [𝑖2] exist, match, but do not alias and 𝛽al (𝑏) (𝑖1, 𝑖2) is “mustnot”.
Then, the third disjunct of the implication’s consequent is satisfied.

All conjuncts of Equation (A.16) are therefore satisfied: 𝑏 ∈ 𝛾al (𝛽al (𝑏)) holds.

•
(∀1 ≤ 𝑘 ≤ |𝑏 |. 𝑏 [𝑘] ∈ 𝛾in (𝛽in (𝑏 [𝑘]))) : Let 𝑘 ∈ {

1, . . . , |𝑏 |}. Using the definitions for
𝛾in and 𝛽in (Equations (8.10) and (8.11)) transforms our proof obligation as follows:

𝑏 [𝑘] ∈
⋂

𝑓 ∈Features
𝛾
(𝑓 )
A𝐹 [ 𝑓 ]

(
𝛽
(𝑓 )
A𝐹 [ 𝑓 ] (𝑏 [𝑘])

)
We therefore need to show that every feature domain 𝑋 is sound for any instruction
feature 𝑓 , i.e.,

∀𝑖 ∈ I. 𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
Let 𝑖 ∈ I be an instruction scheme and let 𝑓 (𝑖) be its feature value for the feature 𝑓 .
Singletons:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 (𝑓 (𝑖)) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� 𝑓 ( 𝑗) = 𝑓 (𝑖)} Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ True
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Edit Distances:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 ((𝐵 : 𝑓 (𝑖), 𝑑 : 0)) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� 𝑑𝑖𝑠𝑡 (𝑓 ( 𝑗), 𝑓 (𝑖)) ≤ 0

}
Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� 𝑓 ( 𝑗) = 𝑓 (𝑖)}

⇔ True

Log Sizes: If 𝑓 (𝑖) = ∅:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 (0) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� |𝑓 ( 𝑗) | < 20} Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� |𝑓 ( 𝑗) | < 1

}
⇔ 𝑖 ∈ {

𝑗
�� 𝑓 ( 𝑗) = ∅}

⇔ True by assumption

If |𝑓 (𝑖) | ≥ 2𝐾 :

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 (⊤) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ I Def. 𝛾 (𝑓 )𝑋

⇔ True

Otherwise:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋

( ⌊
log2 ( |𝑓 (𝑖) |) + 1

⌋ )
Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� |𝑓 ( 𝑗) | < 2⌊log2 ( | 𝑓 (𝑖 ) | )+1⌋ } Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ |𝑓 (𝑖) | < 2⌊log2 ( | 𝑓 (𝑖 ) | )+1⌋
⇔ log2 ( |𝑓 (𝑖) |) <

⌊
log2 ( |𝑓 (𝑖) |) + 1

⌋
log2 is strictly increasing, 𝑓 (𝑖) ≠ ∅

⇔ True property of ⌊·⌋
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Subset-or-None: If 𝑓 (𝑖) = ∅:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 (DefNone) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� 𝑓 ( 𝑗) = ∅} Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ 𝑓 (𝑖) = ∅
⇔ True by assumption

If 𝑓 (𝑖) ≠ ∅:

𝑖 ∈ 𝛾 (𝑓 )𝑋

(
𝛽
(𝑓 )
𝑋 (𝑖)

)
⇔ 𝑖 ∈ 𝛾 (𝑓 )𝑋 (𝑓 (𝑖)) Def. 𝛽 (𝑓 )𝑋 , Table 8.2

⇔ 𝑖 ∈ {
𝑗
�� 𝑓 ( 𝑗) ⊇ 𝑓 (𝑖)} Def. 𝛾 (𝑓 )𝑋 , Table 8.2

⇔ True

Therefore, all feature domains and, consequently, the instruction abstraction are
sound.

□
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AppendixB
SMT and (I)LP Solving Terminology
Satisfiability modulo theories and (integer) linear programming are important concepts for
this dissertation. This appendix collects the related terminology that we use throughout the
thesis. We refer to the textbooks by Bertsimas and Tsitsiklis (1997) and Biere et al. (2009) for
more background on linear optimization and satisfiability modulo theories.

Linear Programming
A linear program – or short: LP – consists of an objective function and a set of constraints.
Both are formulated in terms of real-valued variables. Variables may only occur linearly in
the objective and the constraints. Therefore, each involved term is only a sum of constants
and variables with a constant coefficient.

For instance, consider the following linear program:

minimize 𝑥 + 𝑦
subject to 3 · 𝑥 − 4 ≥ 𝑦

𝑦 ≥ 0

The objective of this LP is to minimize the value of the sum 𝑥 + 𝑦 under the constraints
3 · 𝑥 − 4 ≥ 𝑦 and 𝑦 ≥ 0 with the variables 𝑥 and 𝑦.

A feasible solution to a linear program assigns values to the variables that do not violate any
of the LP’s constraints. An optimal solution to a linear program is a feasible solution for which
the value of the objective function – the objective value – is minimal (or maximal, depending
on the objective formulation). For the above example,

{
𝑥 ↦→ 3, 𝑦 ↦→ 1

}
is a feasible solution

with the objective value 4. A better, and indeed optimal, solution with the objective value 4/3
is

{
𝑥 ↦→ 4/3, 𝑦 ↦→ 0

}
. We refer to the value that a solution 𝑠 assigns to a variable 𝑣 as 𝑠 [𝑣].

In general, linear programs could have one or more optimal solutions, their objective value
could be unbounded, or they may be infeasible, i.e., have no feasible solutions at all. An LP
solver is a program that determines which of these cases applies for a given linear program and
that finds an optimal solution if one exists. There are polynomial-time algorithms (Bertsimas
and Tsitsiklis, 1997, Chapter 8) and practical implementations for solving linear programs.

Integer Linear Programming
An integer linear program – or short: ILP – differs from a linear program in the requirement
that the variables need to be integer-valued. If we interpret the above example linear program
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as an ILP,
{
𝑥 ↦→ 4/3, 𝑦 ↦→ 0

}
is no longer a feasible solution since the value for 𝑥 is not an

integer. An optimal solution to this ILP is
{
𝑥 ↦→ 2, 𝑦 ↦→ 0

}
. In a mixed-integer linear program

(MILP), only a subset of the variables is required to be integer-valued.
Solving ILPs and MILPs is NP-complete – a simplified variant is one of Karp’s NP-complete

problems (Karp, 1972) – but modern (M)ILP solvers can nevertheless solve instances of
considerable size.

Satisfiability Modulo Theories
Satisfiability modulo theories – or short: SMT – is the problem of determining if a formula
in first-order logic that involves some predicates and functions with defined meanings is
satisfiable. These predicates and functions are grouped in theories. The constraints of a linear
program can be considered as a conjunction of atomic formulas in the linear real arithmetic
(LRA) theory. The constraints of mixed-integer linear programs require the linear integer and
real arithmetic (LIRA) theory.

SMT formulas can further involve boolean variables and arbitrary boolean operators.
Typically, there is no objective function for optimization in SMT solving.1

For instance, the following formula constrains a variable 𝑦 depending on another variable 𝑥 :((𝑥 ≥ 0) → (𝑦 = 𝑥 + 1))
∧(¬(𝑥 ≥ 0) → (𝑦 = 0))

If the value of 𝑥 is greater than or equal to 0, 𝑦 = 𝑥 + 1 must hold. Otherwise, 𝑦 = 0 must hold.
The terminology of satisfiability modulo theories differs from the one used for integer linear

programming: If an assignment of variables to values exists that does not render the formula
contradictory, the formula is satisfiable. Such an assignment is called a model. Otherwise, the
formula is unsatisfiable.

The above example formula is satisfiable, for instance with the models
{
𝑥 ↦→ 1, 𝑦 ↦→ 2

}
or

{
𝑥 ↦→ −3, 𝑦 ↦→ 0

}
. If we extend the example formula with the conjunct ∧(𝑦 ≤ 𝑥), the

resulting formula is unsatisfiable.
The computational complexity and decidability of satisfiability modulo theories depends

on the involved theories and the use of quantifiers. If only boolean variables and operators
are involved, checking for satisfiability is NP-complete (Garey and Johnson, 1990, Section
2.6). With linear theories and quantifiers, the problem is at least exponential (Fischer and
Rabin, 1998), and with non-linear integer theories, it is undecidable (Matiyasevich, 1993). For
decidable theories, SMT solver implementations are available that check if a given formula is
satisfiable and that construct a model if this is the case.

1The Z3 SMT solver (de Moura and Bjørner, 2008) does however support optimization objectives.
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AppendixC
x86-64 Register Reference
This reference summarizes the registers and the structure of memory operands in the x86-64
instruction set architecture that we use in examples throughout the thesis. It is based on
Sections 3.4, 3.7, and 14.1 of the Intel 64 and IA-32 Architectures Software Developer’s Manual
(Intel, 2023b). Intricacies that are not relevant for this thesis are omitted.

General-Purpose Registers

The x86-64 ISA provides 16 general-purpose registers (GPRs) with a width of 64 bits: rax,
rbx, rcx, rdx, rsi, rdi, rbp, rsp, and r8 – r15. Instructions may operate on smaller parts of
these 64-bit registers through names of subregisters. For rsi, rdi, rbp, and rsp, the names
for the least significant 32 and 16 bits follow the following scheme:

rsi:
63 031 15

esi

si

The rax, rbx, rcx, and rdx registers provide additional names for the two least significant
bytes:

rax:
63 031 15 7

eax

ax

ah a, al

For r8 – r15, the least significant 32, 16, and 8 bits can be accessed individually:

r8:
63 031 15 7

r8d

r8w

r8b
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Vector and Floating-Point Registers

The x86-64 ISA includes a variety of instruction set extensions and related registers for vector
and floating-point operations. For this thesis, we consider only the AVX and AVX 2 ISA
extensions. They provide 16 registers that are 256 bits wide, named ymm0 – ymm15. The
128-bit-wide lower halves can be accessed via the names xmm0 – xmm15.

Flag Registers

x86-64 further includes a range of 1-bit flag registers that are set by arithmetic operations and
that are, e.g., read by conditional branch and move instructions:

CF: The carry flag is set in case an operation’s result is out of range if it is treated as unsigned
integer.

OF: The overflow flag is set in case an operation’s result is out of range if it is treated as
signed integer.

AF: The auxiliary carry flag is set in case an operation’s result is out of range if it is treated
as binary-coded decimal.

ZF: The zero flag is set if an operation produces zero as its result.

SF: The sign flag is set to the most significant bit of an operation’s result, i.e., the sign bit of a
signed integer.

PF: The parity flag indicates if the least significant byte of an operation’s result contains an
even number of set bits.

The direction flag register DF also counts towards the flag registers, but plays a different
role. Its value controls if string instructions increment or decrement their address register.

Memory Operands

The x86-64 ISA provides complex addressing modes for references to the system’s main
memory. In this thesis we consider memory operands of the following form:

[segment : base + scale ∗ index + displacement]

There are restrictions on each component:

• base and index are general-purpose registers.

• scale can be one of the constants 2, 4, or 8.

• displacement is a constant.

• segment is a segment register mainly used in legacy execution modes.
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Most of these components are optional.
In the Intel assembly syntax that we use for the examples in this thesis, memory operands

are prefixed with descriptors that indicate their access width:

• byte ptr for 8-bit accesses (1 byte)

• word ptr for 16-bit accesses (2 bytes)

• dword ptr for 32-bit accesses (4 bytes)

• qword ptr for 64-bit accesses (8 bytes)

• xmmword ptr for 128-bit accesses (16 bytes)

• ymmword ptr for 256-bit accesses (32 bytes)

Consider the following examples:

• The following instruction instance reads and writes 64 bits (= 8 bytes) from the memory
location determined by the base register rbx.

add qword ptr [rbx], 42

• The following instruction instance reads 128 bits (= 16 bytes) from the memory loca-
tion determined by the sum of the base register rax, the index register rdx, which is
multiplied by the scale factor 4, and the constant displacement 8.

vaddpd xmm3, xmm2, xmmword ptr [rax + 4*rdx + 8]
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AppendixD
Measuring Basic Block Throughput
Accurate throughput measurements for basic blocks are important for our port mapping
inference methods. For this purpose, we designed a throughput measurement infrastructure
with a focus on portability, building upon the measurement method used for PMEvo (Ritter
and Hack, 2020) and the Bachelor’s thesis of Weis (2019).

As laid out in Section 3.2.1, our benchmarking tool emits the to-be-benchmarked instruction
sequence within a loop as inline assembly in a C program frame. The resulting C program is
compiled into a binary that performs several repetitions of the benchmark when executed. It
reports the observed execution rates based on time measurements and the processor’s clock
frequency.

Alternative approaches like nanoBench (Abel and Reineke, 2020) and the BHive test har-
ness (Chen et al., 2019) consist of a C program with assembly components that is compiled once
and modifies its own code when executed to insert instructions that are passed via command
line parameters. Compared to them, our approach is slower, since every new benchmark
requires invoking a C compiler. It is however also more easily portable and maintainable as
no complex self-modifying binaries are involved and we do not directly use hardware-specific
performance counters. Since our framework only uses widely available Linux and POSIX
features, it is applicable to a wide variety of hardware platforms.

Figure D.1 shows a simplified version of the C benchmarking frame. The measurement tool
instantiates this frame with the investigated assembly instructions (inserted in line 8) and
values for configurable parameters (represented as identifiers in capital letters in Figure D.1)
for each benchmark. The resulting program is compiled with a C compiler for the platform
under test and executed.

The core measurement procedure (lines 1–12) wraps the benchmarked code in a loop
that runs for a given number num_iters of iterations. Before each measurement, a clean
memory and register state is established (lines 2, 5) to allow reproducible measurements.
The loop itself uses a general-purpose register (r15) as a loop counter that may not be used
by the benchmarked basic block. Two calls to the POSIX clock_gettime function (Linux
Programmer’s Manual, 2020) with a monotonic clock wrap the loop to measure its execution
time.

The benchmarking process needs to handle arbitrary instruction sequences of varying length
fully automatically. For any benchmarked instruction sequence, the number of iterations of
the benchmarking loop needs to be high enough for stable measurements, but not excessively
high to ensure reasonable overall benchmarking times. For this reason and in contrast to
nanoBench and the BHive test harness, our implementation is parameterized by a target time
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1 double measure(int num_iters) {
2 initialize_memory ();
3 double start_time = gettime ();
4 asm volatile(
5 ... // initialize registers , align loop
6 "mov␣r15 ,␣[num_iters ]\n"
7 "loop:\n"
8 ... // benchmarked code is inserted HERE
9 "dec␣r15;␣jnz␣loop\n"

10 : ... ); // clobber all registers and memory
11 return gettime () - start_time;
12 }
13
14 int main(void) {
15 allocate_memory ();
16 for (int rep = 0; rep < NUM_SAMPLES; ++rep) {
17 // determine number of iterations and clock frequency
18 double prerun_time = measure(PRERUN_ITERATIONS);
19 int num_iters = (PRERUN_ITERATIONS * TARGET_TIME) / prerun_time;
20 double freq_before = getfreq ();
21 // actual measurements
22 double time = measure (2 * num_iters) - measure(num_iters);
23 // check if the clock frequency was unstable
24 double freq_after = getfreq ();
25 double freq = (freq_before + freq_after) / 2;
26 if (abs(freq_before - freq_after) > FREQ_THRESHOLD * freq) {
27 print("measurement␣discarded");
28 } else {
29 print ((time * freq) / num_iters); // return cycles per iteration
30 }
31 }
32 }

Figure D.1. Schematic benchmarking frame, in C with inline assembly.

for which the benchmarked code should approximately run (configured via the TARGET_TIME
parameter), rather than the number of loop iterations. Our tool automatically estimates a
suitable number num_iters of loop iterations based on the time required for a short pre-run
(lines 18, 19) with a fixed number of iterations (configured via PRERUN_ITERATIONS, typically
1,000). In experiments with the processors evaluated for this thesis, we obtained stable results
with 1 ms as target for the individual benchmarking time. This parameter value is therefore
used in the benchmarks for this thesis.

For the actual measurements, we follow an approach similar to nanoBench and measure
the difference between num_iters and 2 · num_iters iterations. The assumption is that non-
steady-state parts of the execution of the benchmark occur in the beginning and the end of
both runs in equal magnitude, so that these parts cancel out in the difference of the execution
times.
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We need to determine the processor’s clock frequency to convert the measured execution
time into clock cycles. Therefore, the clock frequency is read directly before and after the
benchmark code via the Linux kernel’s CPUFreq subsystem (Wysocki, 2017). If the difference
between the frequency readings exceeds a threshold (we typically use 1% of the arithmetic
mean of the readings), the results are discarded (lines 26–27). Otherwise, we consider the
arithmetic mean of the readings as the processor’s clock frequency.

Frequency scaling features of the processor should be disabled as far as possible to obtain
reliable results. For systems with unreliable frequencies like AMD’s Zen processors, we add
additional measure(num_iters) calls before the first frequency measurement (line 20) and
before the actual measurements (line 22) as warm-up runs.

Lastly, we compute the measured inverse throughput tp−1 (𝑒) of the experiment with the
following formula:

tp−1 (𝑒) = measured time × frequency
#executed copies of 𝑒

The benchmarking binary outputs the observed inverse throughput for multiple (configured
via the NUM_SAMPLES parameter) such measurements. We take the median of the non-discarded
measurement samples to accommodate for occasional fluctuations in the processor’s clock
frequency.

This measurement method is most effective when applied to unrolled basic blocks as
described in Section 3.2.1. Longer instruction sequences in the loop reduce the relative
overhead of the loop’s decrement and branch operations. We typically perform measurements
with a range of unroll factors that yield approximately 40, 80, and 200 instructions in the code
inserted into the program frame. Among these, we select the minimal observed number of
cycles per experiment instance as the inverse throughput.

This measurement method comes with limitations:

• The benchmarked code may not use the r15 register, since it is reserved for the loop iteration
counter. The instruction scheme instantiation strategy in Section 3.2.1 can ensure this in
the benchmarks we perform for port mapping inference.

• Only a fixed range of memory addresses may be accessed. Unless the benchmarked code is
crafted very carefully, this precludes memory accesses with addresses that are computed in
the benchmarked instruction sequence. The instantiation strategy in Section 3.2.1 ensures
that our benchmarks fulfill this requirement as long as no (unbalanced) push/pop operations
or other instructions with hard-coded or changing memory operands are involved. The
framework could be extended to automatically record faulting addresses in a page fault
handler and map them into valid address ranges, similar to the BHive test harness.

• System instructions are not supported since our tool does not operate in kernel mode. Our
tool could support such instructions with an extension that transfers the benchmarking
binary to a custom kernel module for execution, similar to nanoBench’s kernel module for
the same purpose. We leave this extension for future work.
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AppendixE
Supplementary Examples

E.1. Number of Blocking Instructions in the uops.info
Algorithm

The uops.info port mapping inference algorithm, as described by Abel and Reineke (2019,
Algorithm 1), combines an instruction instr with 8 ·maxLatency(instr) blocking instructions 𝐵
(where 8 is the maximal number of ports in any considered microarchitecture). The intention
is that, when executing the resulting experiment with an optimal scheduler, µops of instr are
only executed on ports that are blocked by 𝐵 if they cannot be executed anywhere else.1 Here,
we give a counter example consisting of a (contrived) microarchitecture and experiments
that shows that this number of blocking instructions is insufficient in general. This counter
example was confirmed by the authors of uops.info. Their software implementation does not
share this issue.

Consider a microarchitecture for five instructions, I, B1, B01, B12, B02 and three ports P0,
P1, P2. It uses the following port mapping:

I: 1 × {
P1

} + 1 × {
P0, P1

} + 4 × {
P0, P2

}
B1: 1 × {

P1
}

B01: 1 × {
P0, P1

}
B02: 1 × {

P0, P2
}

B12: 1 × {
P1, P2

}
All B instructions are blocking instructions, each with a latency of 1 cycle. Instruction I

has a latency of 2 cycles, utilizing all ports for 2 cycles if it is executed on its own as shown in
Figure E.1.

Since our microarchitecture has three ports and the maximum latency of the instructions is
two cycles, the experiments for the uops.info algorithm contain six blocking instructions. For
the blocking instruction B1, this leads to an execution like the one shown in Figure E.2. Since
we can observe that seven µops are executed on the blocked port P1, the algorithm correctly
concludes that 1 × {

P1
}

is part of the port usage of I. With the blocking instruction B12, we
obtain executions like the one displayed in Figure E.3. Here, the performance counters observe
a total of eight µops on the blocked ports P1 and P2, leading to the wrong conclusion that a{
P1, P2

}
µop is part of the port usage. This happens because one

{
P0, P2

}
µop is executed on

the blocked port P2 even though it could be executed on P2. The six instances of the blocking
instruction are however not enough to force it to this unblocked port.

1See the paper or Section 6.1 of this thesis for more background.
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P0 P1 P2

{
P1

}
(I)

{
P0, P1

}
(I){

P0, P2
}

(I)
{
P0, P2

}
(I)

0

1

2

Figure E.1. An optimal port utilization when executing the experiment
{
I ↦→ 1

}
.

P0 P1 P2

{
P1

}
(B1)

{
P1

}
(I)

{
P0, P1

}
(I)

{
P0, P2

}
(I)

0

1

2

3

4

5

6

7

Figure E.2. An optimal port utilization when executing the experiment
{
I ↦→ 1, B1 ↦→ 6

}
.

E.2. Facile’s Port Mapping Simulation Algorithm
Abel et al. (2023) describe a variation of the bottleneck simulation algorithm from Section 5.1.4
(first presented in our work on PMEvo (Ritter and Hack, 2020)) as a component of their fast
throughput predictor Facile. Reconsider the characterization of an experiment 𝑒’s inverse
throughput with a port mapping 𝑀 that our algorithm computes:

tp−1
𝑀

(
𝑒
)
= max
𝑄⊆P

∑{𝑒 (𝑖) | 𝑀 [𝑖] ⊆ 𝑄}
|𝑄 |

Their approach differs from ours as follows:

Rather than considering every port combination that some subset of a bench-
mark’s µops can be dispatched to, we heuristically consider only port combina-
tions required by pairs of µops.

— Abel et al. (2023, Section 4.8)
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P0 P1 P2

{
P1, P2

}
(B12)

{
P1, P2

}
(B12)

{
P1

}
(I)

{
P0, P1

}
(I)

{
P0, P2

}
(I)

{
P0, P2

}
(I)

0

1

2

3

4

Figure E.3. An optimal port utilization for the experiment
{
I ↦→ 1, B12 ↦→ 6

}
.

While this simplification is likely to produce accurate results for practical port mappings,
it does not compute the correct inverse throughput (according to the linear program from
Theorem 3.12) in general. Consider the following example: Let I =

{
𝐴, 𝐵,𝐶

}
, U =

{
𝑎, 𝑏, 𝑐

}
,

and P =
{
1, 2, 3, 4

}
with the following port mapping:

I:

U:

P:

𝐴 𝐵 𝐶

𝑎 𝑏 𝑐

1 2 3 4

1 1 1

Consider the experiment
{
𝐴 ↦→ 1, 𝐵 ↦→ 1,𝐶 ↦→ 1

}
. An optimal execution achieves an inverse

throughput of 0.75 cycles and may distribute the µops as follows:

1 2 3 4

a

a
b

c

b c

0

1

0.25

0.5

0.75 0.75
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However, the Facile algorithm computes the maximum of the following values:

𝑀 [𝑎] ∪𝑀 [𝑎] = {
1, 2

}
: 1

2

𝑀 [𝑏] ∪𝑀 [𝑏] = {
2, 3

}
: 1

2

𝑀 [𝑐] ∪𝑀 [𝑐] = {
2, 4

}
: 1

2

𝑀 [𝑎] ∪𝑀 [𝑏] = {
1, 2, 3

}
: 2

3

𝑀 [𝑎] ∪𝑀 [𝑐] = {
1, 2, 4

}
: 2

3

𝑀 [𝑏] ∪𝑀 [𝑐] = {
2, 3, 4

}
: 2

3

The result, 2
3 , only underapproximates the correct inverse throughput 3

4 .
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