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Introduction

Constitutional dynamic chemistry (CDC) and dynamic 
covalent chemistry (DCC)  Constitutional dynamic chemis-
try (CDC) involves generating dynamic libraries on supra-
molecular and molecular levels through the formation of 
reversible bonds among basic building blocks, as defined 
by Lehn [1]. The library’s composition, dictated by ther-
modynamic stability, aids in identifying stable structures 
and discovering self-assembling molecules [2–4]. Exter-
nal influences, such as changes in temperature or pH, can 
modify the library’s composition, making dynamic combi-
natorial libraries responsive tools for various applications, 
including discovering compounds with unique properties. 
Supramolecular chemistry includes the self-organization 
and formation of non-covalent bonds, found in. e.g., sec-
ondary, and tertiary structures in nature, vital for receptor 
generation and substrate-to receptor-recognition, only to 
name a few [5, 6]. By extending the dynamicity of supra-
molecular chemistry onto the molecular level, the field of 
dynamic covalent chemistry (DCC) is defined (see Fig. 1) 
[7]. Here, molecular components are linked by dynamic, 
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Abstract
Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of 
reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various 
molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature 
and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), 
which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic 
biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-
responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes 
target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we 
discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and 
their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the 
growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
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reversible covalent bonds, forming all possible combina-
tions of respective building blocks at thermodynamic equi-
librium [3, 5, 7].

Utilizing reversible bond formation, DCC expands syn-
thesis possibilities via the ability to adjust product distribu-
tion post-synthesis after the introduction of environmental 
stimuli, such as temperature, pressure, and pH [3, 5, 8]. The 
resulting formations can further be influenced by molecular 
targets, internal organization (self-recognition), or external 
factors (species binding), leading to the over-expression of 
selected products through target recognition-directed self-
assembly [1, 9, 10].

Dynamers  In the field of polymer science, the incorpora-
tion of DCC via introducing reversible covalent bonds into 
the polymeric chain leads to the design of stimuli-respon-
sive, tunable dynamic polymers (dynamers), opening up a 
variety of pharmaceutical applications such as drug delivery 
and imaging [3, 6, 8–11]. Inspired by the complex confor-
mations observed in natural biopolymers, including second-
ary, tertiary, and quaternary structures, polymer scientists 
have become increasingly interested in designing synthetic 
polymers that self-assemble to create structures of such 
higher orders, mimicking substrate specificity and cata-
lytic activity [12, 13]. This endeavor has led to the devel-
opment of synthetic foldamers, which exhibit remarkable 

self-organization and self-assembly properties in secondary 
structures [2, 14, 15].

Single-chain nanoparticles (SCNPs)  Dynamers, derived 
from DCCs, have been developed into diverse biomaterials 
including injectable hydrogels, self-healing materials, and 
nanoparticles [12]. Moreover, by self-organizing into a sec-
ondary structure, dynamers are capable of forming single-
chain nanoparticles (SCNPs), which is our particular focus 
in this manuscript. SCNPs are ultrasmall soft nano-objects 
formed by folding individual synthetic polymer chains 
through multiple intra-chain bonding interactions at high 
dilution [16–18]. This process, which involves intramo-
lecular crosslinking interactions, results in the collapse of a 
single polymer chain and the formation of stable nanoparti-
cles ranging from 1.5 to 30 nm in size, which resembles the 
sizerange of biopolymers or in general, proteins [19–23].

Application of DCC in SCNPs

Design basis of SCNPs incorporating DCC

In 2011, Murray and Fulton started to merge the concepts 
of DCC into the design of SCNP to create polymer-based 
assemblies with stimuli-responsive properties [24]. As 

Fig. 1  Overview and classification of constitutional dynamic chemistry (CDC) in polymers
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described earlier, DCC utilizes reversible covalent bonds 
to form structures under thermodynamic control, allowing 
for modification of assembly constitution and functional 
properties [1, 3, 7]. By introducing dynamic covalent intra-
molecular bonds and crosslinking interactions into the sin-
gle-linear polymer scaffolds, sub-20  nm nanoparticles are 
designed, capable of further structural reconfiguration in 
response to environmental changes or templates [25, 26]. 
This approach has offered the potential for error correction 
and refinement in binding sites, creating monodisperse, 
“intelligent” and adaptable nano-systems [5]. Focusing on 
dynamic covalent reaction-types, two principal mechanisms 
are included: First, exchange reactions, wherein one reac-
tant displaces another to generate products with analogous 
bonding arrangements. Second, the formation of dynamic 
covalent bonds via condensation and addition reactions [5]. 
Covalent bonds that demonstrate dynamic characteristics 
include disulfides, acylhydrazones, imines, and boronic 
esters, contributing to the versatility of the resulting poly-
mers [25, 27, 28].

One of the structurally adaptable SCNP-types is defined 
through the presence of dynamic covalent nitrogen-based 
bonds (imines and acylhydrazone) and organic, aromatic 
moieties such as carbazoles, which enhance the collapse of 
single-chain polymers into nanoparticles via π-π-stacking 
interactions [27, 29, 30]. As demonstrated by Giuseppone 
and Lehn, the advantageous characteristics of imine-based, 
covalent, and dynamic bonds are highlighted by their adapt-
ability to changes in temperature and pH, laying the foun-
dation for the development of stimuli-responsive materials 
[31].

With a focus on designing biocompatible, biodegradable, 
and optimally distributed nanomedicines in biological sys-
tems, polymer-based nanocarriers have caught special atten-
tion in recent years. In nanomedicine research, SCNPs are 
designed to improve drug and imaging agent delivery by tar-
geting specific tissues. Mimicking protein folding, SCNPs 
are further explored for enzyme replacement, antibacterial 
and cancer treatment, making them a key focus in pharma-
ceutical research [19, 20, 27, 32]. Moreover, the reversibility 
of dynamic covalent chemistry (DCC), including redox- and 
pH-responsiveness, presents distinct advantages in biophar-
maceutical applications [20, 26]. These features offer ben-
efits in fields such as drug delivery and sensing, whether 
through the single chain nanoparticles (SCNPs) themselves 
or as part of a broader assembly of these nanostructures.

Application of DCC in SCNPs

DCC involving disulfides and free thiols is well-documented, 
representing one of the earliest demonstrations of dynamic 
properties within this field. Dynamic disulfide crosslinking 

was demonstrated in SCNPs by employing a precursor poly-
mer composed of hydroxyethyl methacrylate (HEMA) and 
pyridyl disulfide ethyl methacrylate (PDSEMA) [33]. Upon 
deprotection of the PDSEMA block, free thiols were gener-
ated, facilitating the formation of intramolecular crosslinks 
via disulfide bridges. Once formed, they can be cleaved 
under biological conditions through reduction, making them 
useful in stimuli-responsive drug delivery systems. Song et 
al. demonstrated the redox-responsive release of cargo from 
SCNPs by encapsulating Nile red as a model drug. The 
results indicated that the release of the loaded Nile red was 
significantly accelerated in the presence of a reducing agent 
(5 µM DTT).

As mentioned earlier, acidity serves not only as a bio-
marker for tissues in diseases such as cancer and inflamma-
tion but also as a key characteristic of intracellular organelles 
such as endosomes and lysosomes. A polymer containing 
2-(acetoacetoxy)ethyl methacrylate underwent functional-
ization through the introduction of a single enamine group, 
facilitating its interaction with ethylenediamine [34]. With 
the modified polymer, SCNPs were synthesized through 
crosslinking within the polymer by dynamic alkyl amine/
alkyl diamine exchange. The pH-responsive cleavage of the 
DCC crosslinker and the dissociation of SCNPs were con-
firmed under acidic conditions, which can be further applied 
for disease targeting (see Fig.  2). In addition to forming 
stimuli-responsive SCNP through crosslinking using DCC 
within the polymer, DCC can also be incorporated into the 
backbone of the polymers, which subsequently leads to the 
formation of SCNP through self-folding [6, 8, 27, 29, 30, 
35]. In our research on DCC-based SCNPs, we are investi-
gating a polymer known as biodynamer.

Biodynamers, a SCNP incorporating DCC

Proteoid biodynamers

Proteoid biodynamers, a novel category of SCNPs, are 
dynamic biopolymers characterized by their pH-respon-
sive properties [27, 29]. As seen in Fig.  3A, the proteoid 
biodynamers are composed of two types of monomers, 
amino acid-hydrazides, and carbazole-dialdehydes con-
jugating hexaethylene glycol (CA-HG). Polymerized via 
DCC, reversible imine and acylhydrazone bonds are formed 
between the amines and aldehydes on the monomers 
through polycondensation in an acidic aqueous solution [6, 
8, 29]. In particular, the imine bond formed in the polymer-
ization of biodynamers exhibits high dynamicity, indicating 
significant reversible polymerization in mild acidic aqueous 
solutions.
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well-suited for a range of biomedical applications, which 
are discussed later [36]. Nanorod structures can provide 
distinctive attributes in contrast to the prevalent spherical 
SCNPs (see Fig. 3C). In the case of biodynamers, charac-
terized by a hydrophobic and π-π stacked core, they show 
significant interactions with drugs sharing similar character-
istics to their core. Such interactions could be advantageous 
for drug loading and, therefore, drug delivery applications.

Proteoid biodynamers in drug delivery

Peptide delivery  Indeed, the biodynamers showed excel-
lent drug loading of fluorescent dye-conjugated proteins 
(FITC-labeled albumin), with loading efficiencies of up to 
78%, due to the interaction between the fluorophore of the 
drug and the core of the biodynamer [37]. In nanomedi-
cine, the observed loading efficiency is exceptional as most 
systems suffer from low loading rates (1 ∼ 5 w%) [38–40]. 
Interestingly, the biodynamers assembled into a cylindri-
cal nanostructure of a hydrodynamic size of 200 nm with 
the FITC-labeled albumin. At the same time, these features 
were not observed when removing the fluorophore from 
the cargo (albumin). These assembled SCNPs gradually 
degraded due to their dynamic nature (imines and acylhy-
drazones) under acidic conditions, allowing for the strategic 

The distinct feature of this biodynamer lies in the amphi-
philic monomer, CA-HG. The CA-HG provides π-π stack-
ing and hydrophobic interactions between repeating units, 
stabilizing the imines in the biodynamer backbone while 
keeping the dynamicity of the imines. Consequently, the 
formed biodynamer has relatively high molecular weights 
ranging from 70 to 130 kDa, despite the unstable imine bond 
being the main linkage in the formation of the biodynamer 
backbone. Also, they show dynamic behavior where their 
molecular weight decreases by 47.5% when the concentra-
tion is reduced tenfold from 10 to 1  mg/mL under acidic 
conditions (pH 5). Furthermore, a hydrophilic shell derived 
from HG contributes to the stabilization of the structure, 
facilitating the folding into nanorod-like nanoparticles, 
thereby indicating their nature as SCNPs (see Fig. 3B) [29]. 
Here, the HG-shell does not only drive and stabilizes the 
formation of biodynamers, but also improves their water 
compatibility and biocompatibility [29].Note that the biody-
namers (Lys-biodynamers) exhibited a 44-fold higher IC50 
value than their conventional poly amino acid form (poly-L-
lysine). However, a degradation product of the biodynamers 
affected the cell viability when the biodynamers degraded 
completely into dialdehyde monomers with > 100 µg/mL.

The unique rod structure surrounded by HG-shell and 
biodegradability as well as compatibility make biodynamers 

Fig. 2  Overview of SCNP formation and reversibility with dynamic covalent chemistry. Legend of Fig. 1 explains the components in the figure
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escape. Notably, this capability is recognized as a crucial 
aspect in overcoming one of the key biological barriers to 
successful mRNA transfection.

Endosomal escape  The effective escape of biodynamers 
from acidic conditions within endosomes can be interpreted 
in two possible ways, each originating from DCC and SCNP, 
respectively. Firstly, it could be due to the protonation buff-
ering effect of DCC under acidic conditions. The buffering 
capacity of this polymer has been explored in previous stud-
ies, with particular emphasis on the high buffering capacity 
of amino acid hydrazide monomers released after degrada-
tion. Another possibility is that the structure of SCNPs, the 
amphiphilic rod structure of biodynamer, changes (shell 
size increase) and interacts with the membrane of the endo-
some under acidic conditions, thereby disrupting the endo-
some [36]. Many cell-penetrating peptides (CPPs), which 
were also explored as endosomal escape enhancers, have 
amphiphilicity and nanorod structures (α-helix structures) 
[41]. Moreover, it is suggested that secondary structural 
changes of the CPPs on the membrane represent an impor-
tant mechanism in their functionality. In this regard, vari-
ous CPP foldamers with well-defined secondary structures 
have been studied [42]. Therefore, further research on the 

release of loaded proteins. As demonstrated in the study, 
excellent loading and release control of proteins, along with 
biodynamer’s high potential as an mRNA vaccine to be dis-
cussed later, is expected to be useful for applications such as 
antigen delivery in vaccines.

Nucleotide acid delivery  DCC-based SCNPs, in this man-
ner, can be utilized for drug delivery by assembling into 
higher-order nanostructures. Particularly, the biodynam-
ers can be advantageous in nucleotide delivery due to the 
dynamic changes in cell organelles like endosomes. By uti-
lizing Arg-, His-, and Lys-hydrazide as monomers, we syn-
thesized positively charged biodynamers [36]. Upon mixing 
with negatively charged mRNA, they formed dynamic par-
ticles (dynaplex) with a size of 120 nm. The dynaplexes effi-
ciently delivered mRNA with toxicity levels 80 times lower 
than the most commonly used polymer, polyethylene imine 
(PEI), in similar applications. Additionally, they exhibited 
1.4 times higher transfection efficiency in terms of trans-
fected cell population compared to lipid-based vectors, the 
non-viral mRNA delivery vectors currently receiving sig-
nificant attention. Such a high level of efficiency is attrib-
uted to the dynamic nature of biodynamers within the acidic 
endosomal environment, enabling effective endosomal 

Fig. 3  (A) Schematic illustration of proteoid biodynamers. After the 
DCC formation between aldehydes and amine/hydrazide (i), the bio-
dynamers fold into a nanorod structure (ii). (B) cryogenic transmis-
sion electron microscopy (cryo-TEM) image of biodynamers showing 

their nanorod structure. (C) DCC-derived dynamic size and molecular 
weight changes of biodynamers under the acidic condition analyzed 
by small angle neutron scattering (SANS). Reproduced with permis-
sion [36]
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Potential application of biodynamers

Antimicrobial agent  The advantageous characteristics 
of SCNPS regarding their interactions with the cellular 
membrane are not only due to their small size but also to 
their amphiphilic properties. Many SCNPs were formed 
by self-folding hydrophobic interactions in water [49–51]. 
Therefore, in addition to the previously discussed cellular 
uptake and endosomal membrane disruption, they can also 
be utilized as an antimicrobial material by disrupting bacte-
rial cell membranes. The antimicrobial efficacy of SCNPs 
against Gram-negative bacteria Pseudomonas aeruginosa 
(P. aeruginosa) and Escherichia coli (E. coli) was assessed 
based on the functional groups present on the SCNPs [20, 
52, 53]. Here, studies have shown that SCNPs with higher 
hydrophobicity demonstrate enhanced antimicrobial activ-
ity against pathogens by disrupting the cell membrane. This 
observation aligns with previous studies indicating that 
polymer nanoparticles with higher hydrophobic content 
tend to demonstrate greater antimicrobial efficacy [52, 53]. 
Considering these studies, it is expected that DCC-based 
SCNPs, such as biodynamers, will be effective in achieving 
increased targeting and reduced toxicity due to their effi-
cient biodegradability. Therefore, we recently explored their 
application as safe, biodegradable, potentiators to enhance 
antibiotics. Consequently, due to the particular interac-
tion with LPS on the Gram-negative bacteria (E. coli), we 
observed that the biodynamers formed pores on the bacte-
rial membrane and enhanced the efficiency of the antibiotic 
up to 32-fold in the case of colistin [47].

Molecular sensors  Finally, because DCC is responsive to 
external stimuli, including physical changes and the pres-
ence of chemicals in the body, SCNPs could potentially be 
used in sensing applications by integrating DCC into their 
design. Specifically, the inclusion of moieties that facilitate 

structural impact of SCNPs in membrane interactions and 
disruption may broaden their design possibilities for bio-
medical applications. Indeed, it was observed that positively 
charged spherical SCNPs, which are anticipated to possess 
low buffering capacity due to 60 to 70% of quaternary 
amines, showed efficacy in cellular uptake due to their posi-
tive charges. However, unlike biodynamers, the spherical 
SCNPs remained confined within the endosome. Regarding 
the amphiphilicity of the biodynamers, their interaction with 
the cell membrane is further discussed in Sect. Antimicro-
bial Agent.

Cellular uptake   The size of SCNPs is advantageous for 
biomedical applications due to their suitability for effec-
tive cellular uptake. Bai et al. compared the cellular uptake 
efficiency of SCNPs with various sizes ranging from 7 to 
40 nm [43]. The results showed that the smallest size, 7 nm, 
exhibited the most effective cellular uptake. Due to their 
smaller sizes compared to conventional polymer nanoparti-
cles, SCNPs offer an advantage in cellular uptake. Typically, 
self-assembled, precipitated, and emulsified nanoparticles 
range from 30 to 250  nm for comparable applications 
[44–46]. Notably, it has been extensively studied that the 
molecular weight of the biodynamer and the resulting size 
of SCNPs depend significantly on concentration, compo-
sition, and structure. Under higher polymerization con-
centrations, larger nanorods are typically formed, with 
hydrodynamic sizes ranging from 7 to 11  nm, influenced 
by the concentration and acidity of the solutions [36]. Fur-
thermore, as depicted in Table 1, the morphology, including 
size, is known to vary based on the side chain, specifically 
the amino acid monomer. Hence, incorporating DCC into 
SCNPs like biodynamers may offer an opportunity to con-
trol cellular uptake at specific targets, representing a poten-
tial avenue for future research for the design of DCC-based 
SCNPs.

Table 1  Proteoid biodynamers and their applications the values were obtained from [8]unless noted
Amino acid-Hyd Mw Morphology Application Remark
Arg 138,000 Nanorod Behavior mRNA delivery [36]

Peptide delivery [37]
Adjuvants for antibiotics [47]

Endosomal escape
Nanocomplex formation: human insulin, ovalbumin
Emulsification: ovalbumin
Potentiation effect of colistin (32-folds)

His 31,995 Globular Nano-Objects Nucleotide delivery [36]
Lys 71,738 Nanorod Behavior mRNA delivery [36]

siRNA delivery [48]
mCherry mRNA
Survivin siRNA
Endosomal escape

Lys-His-Arg 75,500 [36] - mRNA delivery [36] mCherry mRNA
Endosomal escape

Ser 21,447 Globular Nano-Objects - -
Thr 18,489 Globular Nano-Objects - -
Asp 6,277 Oligomer - -
Glu 3,000

67,300 [37]
Oligomer
-

-
Peptide delivery [37]

-
Nanocomplex formation with GLP-1
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action within specific cellular organelles. Moreover, with 
their favorable functional groups and characteristics, bio-
dynamers are promising candidates for ion recognition, 
potentially allowing for effective detection and analysis of 
ions across various applications. Last but not least, their 
amphiphilic nature significantly increases their water solu-
bility, making them exceptionally biocompatible, dynamic 
polymer-based nanoparticles for a variety of pharmaceuti-
cal applications. Limitations, however, lie in the creation of 
synthetic polymers that include higher-ordered structures 
(tertiary, quaternary), mimicking folded biomolecules such 
as enzymes. Although further research is needed in the field 
of in-vivo applications and biodistribution, the potential of 
DCC-based SCNPs in pharmaceutical and biotechnological 
research is highly promising.
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the easy readout of rapidly analyzable changes, such as 
fluorophores, is ideal. The development of fast and precise 
fluorescent molecular sensors is increasingly crucial in envi-
ronmental and biological chemistry, especially since a dis-
ruption in essential metal ion homeostasis can quickly lead 
to the manifestation of various illnesses [54, 55]. Recent 
research on our proteoid biodynamers has primarily been 
directed toward drug and protein delivery, but their poten-
tial in ion recognition and sensing utilizing their distinct 
fluorescence emission remains largely unexplored [30, 36]. 
Derived from amino acids, biodynamers feature metal-ion-
coordinating functional groups in their backbone, including 
acylhydrazones and imines, and offer the option to integrate 
ion-affine sidechains, such as histidine derivatives [56–58]. 
Given that the fluorescent core (CA) has been reported to 
potentially signal ion presence through changes in fluores-
cence, biodynamers are considered promising for detecting 
physiologically important metal ions such as Cu(II). This 
makes them suitable for applications that demand rapid and 
precise metal ion monitoring, which we are currently inves-
tigating [59–61].

Summary and outlook

In this paper, we discussed the individual concepts of DCC 
and SCNPs, and explored their synergy in the biomedical 
field when combined. For SCNPs formed by factors such as 
amphiphilicity or π-stacking, they were able to load drugs 
with similar moieties effectively or form nanostructures of 
SCNP clusters. Based on this, the potential of SCNPs as 
drug delivery vehicles can be further explored from two 
perspectives: when drugs are loaded onto single-chain 
polymers with the small size of SCNPs (7 ∼ 40  nm), and 
when SCNPs assemble and form larger structures in the 
presence of drugs. In previous studies, it has been observed 
that SCNPs can regulate drug release more effectively at 
target sites when combined with DCC, suggesting promis-
ing future utilization strategies. Exploring the opportunities 
linked to the morphology of SCNPs, we further discussed 
the architectural design of SCNPs, which resembles pro-
tein secondary structures such as nanorods and is antici-
pated to broaden their functional scope to act like peptides. 
This includes similarities to CPPs or antimicrobial peptides 
(AMPs), as shown by foldamers. In this regard, biodynamers 
are potent candidates exploring this field as one example of 
DCC-comprising SCNPs, based on their unique self-folding 
forming nanorod structure. Although further investigation is 
necessary, the dynamic properties of biodynamers such as 
the DCC-originated dynamic rod-structure make them par-
ticularly effective for selective cellular uptake and targeted 
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