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Abstract

Let 27 be a unitarily invariant regular reproducing kernel Hilbert space consisting of
holomorphic functions on the open unit ball in C¢. The aim of the present thesis is to
understand certain elements in the multiplier algebra Mult(.7’) and to investigate how
known results for pure contractions on Hilbert spaces can be transferred to the theory of
tuples of commuting operators.

The work essentially consists of three parts:

The first part deals with transfer realizations for K-inner functions, similar to the char-
acteristic functions of pure contractions as introduced by Sz.-Nagy and Foias. K-inner
functions are a generalization of Bergman-inner functions and of inner functions on the
Hardy space. The results shown generalize ideas of Olofsson and Eschmeier. This part is
a joint work with Jorg Eschmeier.

The second part contains a uniqueness statement for multiplier functional calculi. It
generalizes a uniqueness statement about the H*(ID)-functional calculus of pure contrac-
tions by Miller, Olin, and Thomson for certain tuples of commuting operators. As in the
case of pure contractions, we show that the obvious polynomial functional calculus can
only be uniquely extended to the corresponding multiplier algebra. This part is a joint
work with Michael Hartz.

For the regular unitarily invariant spaces to be studied, the polynomials are contained
in the multiplier algebra Mult(.7’). The elements in Mult(.7#") are in .7, bounded and
holomorphic, that is in H*(B,;) N 7. In the last part, we study elements in the norm-
closure of polynomials A(.7) C Mult(.57).

Many regular unitarily invariant spaces can be described as radially weighted Besov
spaces Bj, with an equivalent norm. One advantage is that multiplier functions can be
characterized with the help of Carleson measures. A version of this characterization can
be found in a paper by Aleman, Hartz, M“Carthy and Richter. Using vanishing Carleson
measures, we establish necessary and sufficient conditions for elements to be in the norm-
closure of polynomials A(Bj,) C Mult(B¢,). This part is a joint work with Michael Hartz.

Finally, we show that Mult(.#") C H*(B,;) N2 if and only if A(J7) C A(By) N
Mult(s¢). Here A(B,) is the ball algebra, the set of all holomorphic functions that can be
continuously extended to the boundary. The results are motivated by a paper by Fang and
Xia on essentially hyponormal multiplication operators on the Drury-Arveson space. The
chapter also contains a short proof of the one-function corona theorem for many Banach
function spaces.
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Zusammenfassung

Sei . ein unitir invarianter reguldrer funktionaler Hilbertraum bestehend aus holomor-
phen Funktionen auf der offenen Einheitskugel in C?. Die vorliegende Arbeit beschiftigt
sich mit Elementen in der Multiplikatoralgebra Mult(.7”) und untersucht, wie man be-
kannte Resultate fiir reine Kontraktionen auf Hilbertrdumen auf die Theorie von Tupeln
vertauschender Operatoren iibertragen kann.

Die Arbeit besteht im Wesentlichen aus drei Teilen:

Der erste Teil beschiftigt sich mit Transferdarstellungen fiir K-innere Funktionen. Die-
se dhnelt der Darstellung fiir charakteristische Funktionen reiner Kontraktionen, wie sie
Sz.-Nagy and Foias eingefiihrt wurde. K- innere Funktionen sind eine Verallgemeinerung
von Bergman-Inneren Funktionen und von inneren Funktionen auf dem Hardy Raum. Die
gezeigten Resultate verallgemeinern Ideen von Olofsson und Eschmeier. Dieser Teil ist
eine gemeinsame Arbeit mit Jorg Eschmeier.

Der zweite Teil enthilt eine Eindeutigkeitsaussage fiir Multiplikator- Funktionalkal-
kiile. Er verallgemeinert eine Eindeutigkeitsaussage iiber den H*(DD)-Funktionalkalkiil
reiner Kontraktionen von Miller, Olin und Thomson fiir bestimmte Tupel von vertau-
schenden Operatoren. Wie im Falle reiner Kontraktionen zeigen wir, dass sich der offen-
sichtliche polynomielle Funktionalkalkiil nur eindeutig auf die entsprechende Multiplika-
toralgebra fortsetzen lédsst. Dieser Teil ist eine gemeinsame Arbeit mit Michael Hartz.

Fiir die untersuchten regulédren unitér invarianten Riume sind die Polynome in der Mul-
tiplikatoralgebra Mult(.7#”) enthalten. Die Elemente in Mult(.7#") sind in 7#, beschrinkt
und holomorph, das heiit in H*(B;) N 7. Im letzten Teil studieren wir Elemente im
Normabschluss der Polynome A (5#°) C Mult(.77).

Viele reguldre unitér invariante Rdume lassen sich als radial gewichtete Besov Rdume
B}, mit dquivalenter Norm darstellen. Ein Vorteil ist, dass sich Multiplikatorfunktionen
mit der Hilfe von Carleson-MalBlen charakterisieren lassen. Eine Version dieser Charakte-
risierung findet sich in einer Arbeit von Aleman, Hartz, M“Carthy und Richter. Unter Ver-
wendung verschwindender Carleson-Maf3e stellen wir notwendige und hinreichende Be-
dingungen dafiir auf, dass Elemente im Normabschluss der Polynome A(BS,) C Mult(Bs,)
liegen. Dieser Teil ist eine gemeinsame Arbeit mit Michael Hartz.

Zum Schluss zeigen wir, dass Mult(.77) C H*(B,) N.7 genau dann, wenn A(#") C
A(By) NMult(#). Dabei bezeichne A(B,) die Ball-Algebra, das heifit die Menge aller
holomorphen Funktionen, die sich stetig auf den Rand fortsetzen lassen. Die Ergebnisse
sind durch ein Paper von Fang und Xia iiber wesentlich hyponormale Multiplikationsope-
ratoren auf dem Drury-Arveson Raum motiviert. Das Kapitel enthilt auch einen kurzen
Beweis fiir das Einfunktions-Corona Theorem fiir viele Banachfunktionenrdume.
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1. Introduction

Sz.-Nagy’s dilation theorem, von Neumann’s
inequality and Hilbert function spaces

It is a frequent challenge to understand the theory of bounded linear operators B(H) on a
Hilbert space H. The theory of contractions known today

B|(H)={T € B(H);

Tl <1},

has been mainly developed by Sz.-Nagy and Foias (cf. [ ]). In the world of
contractions, one often considers the defect operator

Dy = (idy —T*T)"/,

For the particular case of an isometry S € B(H), it can be readily seen that Dg = 0 and
that

U= {g Dsi* } -HoH - H®H (1.1
is a unitary dilation of S. That is,
S" = PyU" |y

for all n € N, where Py is the orthogonal projection onto H.

On the other hand, every contraction 7 € Bj(H) has an isometric dilation

T 0 0
Dr 0 0
s=| O v O 2y o 2 (1.2)
0 0 idyg -
such that
T" =PyS" |y
for all n € N.

The statements (1.1) and (1.2), yield Sz.-Nagy’s dilation theorem from 1953 (see
[ , Section 5, Chapter I] and [ , Theorem 1.1, Chapter I]):
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Theorem (Sz.-Nagy’s dilation theorem). Every contraction T € B|(H) has a unitary di-
lation U : H' — H' to a Hilbert space H', containing H, such that

T" = PyU" |y

foralln € N.

Now, let

H2<D>:{feﬁ<m>>; sup |f<rz>\2dm<z><oo}

O<r<19D
be the Hardy space on the unit disk

D={zeC; |z| < 1},

where m is the normalized Lebesgue-measure. Let 2 = Im Dr+ be the defect space and
let
M,:H*D)® 2 — H*(D)® 2

be the multiplication operator defined by
M (f®x) = (zf) ®x
for foxc H*(D)® 2.

Using the Wold decomposition theorem for isometries (see [ , Theorem 1.1,
Section 1, Chapter I]) and (1.2), the previous observations yield that every contraction is
up to unitarily equivalence, a compression of the direct sum

M, U
to a co-invariant subspace, where U : H — H is a unitary operator on a Hilbert space H.

Besides, it is well-known that the Hardy space is a Hilbert space with an orthonormal
basis (z"),en. The "canonical" isometric isomorphism

P(N) 5 HX(D), (an)nen — Y an?"
n=0

provides a link between complex analysis and functional analysis. With this identification,

the operator
M, : H* (D) — H*(D), f > zf

is the unilateral shift.

Furthermore, a contraction 7' € B (H) is called pure, if

SOT — lim (T*)Y = 0.

n—oo



It is not difficult to see that M, is a pure contraction. In fact, every pure contraction
T € B(H) is unitarily equivalent to a compression of the operator

M,:H*D)® 2 — H*(D)® 2
to a co-invariant subspace.

It can be very useful to consider the Hardy space H?(ID) as a Hilbert function space
together with the (reproducing) Szegd kernel

1
1—zw

K:DxD—C, K(z,w) =

A reproducing kernel Hilbert space or a Hilbert function space is a Hilbert space .77
consisting of functions
f:X—=>C

on a set X such that the point evaluations
O: X —=C, ffx) (xeX)

are continuous. Therefore, the theorem of Riesz for Hilbert spaces shows that for every
x € X there is a function
ki : X —C

in .77 such that
f(x) = <f7 kx>ff
for all f € 7. The positive definite mapping

K:X xX—C, K(x,y) =ky(x),

called the reproducing kernel, uniquely determines the space 7.

For a reproducing kernel Hilbert space the multiplier algebra
Mult(s7) ={@: X = C; ¢-f e forall f € '}

of A is of special interest and can be easily seen to be a Banach algebra, when Mult(.7¢)
is equipped with the norm || @||muic = ||Me||, where

My: 5 =, f—¢@-f

is the bounded multiplication operator associated with the function ¢ € Mult(.7#). The
multiplier algebra Mult(H?(ID)) of H?(DD) coincides with bounded analytic functions
H*(DD) on the unit disk D.

In several cases in operator theory, one wants to consider the case, when functions can
be applied to operators. One can use Sz.-Nagy’s dilation theorem to prove von Neumann’s
inequality (see for example, [ , Corollary 1.1, Chapter I]):

Theorem (von Neumann’s inequality). Let T € B(H) be a contraction. Then

Ip(T)|l < sup{|p(2)]; z € D} = || pllvure(mzmy)
for every polynomial p € C|z].
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K-contractions

It is an ongoing process in operator theory to evolve Sz.-Nagy dilation theory for com-
muting tuples of operators
T=(T,...,T)) € B(H)".

Especially, ideas of Agler (see [ 1, [ ]) from the eighties, firstly developed for
a single operator T € B(H ), influenced many of the following works.

Many of the theorems that hold for contractions work for row contractions. A tuple
T=(Ti,....T;) € BH)?

is a row contraction if the operator

d
H! = H,(h){_, — Y. Tily
=1

is a contraction. In the theory of commuting row contractions a helpful multivariable
generalization of the Hardy space, is the Drury-Arveson space Hj on the unit ball

By ={(z1,-..,2a) €C% 21 +... +|z* < 1} c ¢

with reproducing kernel

1
K:B;xB; —-C, K(z,w) = ——.
d d ( ) 1— <Z, W>
One part of the name “Drury—Arveson space” comes from a 1978 paper by Drury (see
[ 1), where he proves the analog to von Neumann’s inequality for commuting row

contractions:

Theorem (Drury’s inequality). Let T = (Ti,...,Ty) € B(H) be a commuting row con-
traction, then

1T, Ta) | < Ptz
for all polynomials p € C[z].

A work by Arveson (cf. [ ]) brought H§ to prominence.

For the theory of tuples of commuting operators T = (Ti,...,Ty) € B(H)?, to simplify
notation, we use the completely positive map

or : B(H) — B(H), or(X) = i TXT}".
=1

A cornerstone for the generalization of Sz.-Nagy dilation theory is the notion of m-
hypercontractions. For the definition, the spaces A2 (By) (m € N-g) with reproducing

kernel
1

(1= (zw)"

Ky :BgxB; = C, Ky(z,w) =



play a central role. A commuting tuple T = (Ti,...,T;) € B(H)?, fulfilling the positivity

conditions
n

A = (1= ortian) = Y. (1) (] ) o) 2 0

=0
forn=1,...,mis called an m-hypercontraction. Furthermore, we use the following com-
mon notations: { 1
= —(T):= —(T,T*) = A" N

and Z =ImC. Based on the Hardy space case, the tuple M, = (M,,,...,M;,), consisting
of the multiplication operators

M, :A,B)) @D —ALB)RD, fuf
defined by

le<f®x) = (zf)®x

for fox € A2(By)® Z and [ = 1,...,d is sometimes referred to as a weighted shift.
A theorem going back to Miiller, Vasilescu (cf. [ ]), extended by Arveson (cf.
[ 1), proves that m-hypercontractions are, up to unitarily equivalence, compressions
to a co-invariant subspace of the operator tuple

(M, UL,

The tuple U = (Uy,...,U;) € B(H)? is a spherical unitary. That is a commuting tuple of
bounded normal operators U = (Uy,...,Uy) € B(H)? such that

d
Y vUf =idy.
=1

Analogously to the one-dimensional case, an m-hypercontraction
T=(Ti,...,T;) € BH)?

is called pure if
SOT — 1i_r>n or(idy) =0.
n—oo

If T is pure, the same model theorem holds, but without the spherical unitary part U.

In continuation of Agler’s ideas and the work by Miiller and Vasilescu (see [ D,
Agler and M®Carthy (cf. [ 1), Ambrozie, Engli§ and Miiller (see [ 1) and
Arazy and Engli$ (see [ 1), develop a general machinery for studying coextensions.
Consistent with the previous results, Clouatre and Hartz (cf. [ ]) establish opera-
tor models for Nevanlinna-Pick spaces. Inspired by these works, Schillo gives a unified
approach for operator models (see [ 1), which will be used in the present thesis.

Let therefore .7 C O'(B,) be a Hilbert function spaces with reproducing kernel of the
form

K:B;xB; —C, K(z,w) = Z an(z,w)",
n=0
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where ap =1, a, > 0 forn > 1 and

. a
lim —— =1.
=0 dp 4|

We call such a space unitarily invariant and regular. One can show that

Clz] ¢ Mult(#) C ' NH™(By).

Suppose in addition that the power series k(z) = Y.~ a,2" has no zeros in D and

1
%(Z) = Z ann
n=0
such that the ¢, have almost the same sign. A commuting tuple
T=(T,...,T)) € BH)!

is called K-contraction, if the expression

1 1

E(T) = E(T,T*) = nzbcncr?(idH) >0
converges in the strong operator topology and is positive. If K(z,w) = ﬁ (z,we D) is

the kernel of the Hardy space H?(ID), then T € B(H) is a K-contraction if and only if

1
—(T)=idyg—-TT* >0
K() 1o -

which is equivalent for 7 to be a contraction.

Similar to the one-dimensional case, we write C = %(T) 1/2 for the generalized defect
operator and denote by Z = ImC the generalized defect space.

Furthermore, a K-contraction
T=(T,...,T)) € BH)!

is called pure if 7 is the compression of the operator tuple M; = (M;,,...,M,) to a co-
invariant subspace. For contractions this is equivalent to the fact that
T
(T*)N S9% 0 for N — .

It is a frequent challenge to generalize theorems for (pure) contractions to the setting
of K-contractions.



K-contractions and K-inner functions

In their studies of contractions Sz.-Nagy and Foias, work with characteristic functions (cf.
[ 1). The characteristic function of a pure contraction 7' € By (H) has the form

Or(z) = —T +Dr<(1—zT*)"'zDp (z€D)

and induces an isometric multiplier from to H?(D) ® 2 to H*(D) ® 2, where 9 = Im Dy
and ¥ = Im Dr+ are the defect spaces. In accordance with Sz.-Nagy’s dilation theorem,
one can show that a pure contraction 7 is unitarily equivalent to the compression of the
unilateral shift to the co-invariant subspace

(H*(D)® 2) & (Mg, (H*(D) ® 2)).

The map Or has the properties of an inner function. That is

1672l 2y 07 = X1l 5

for all x € 2 and

0r(2) L M (6r(2))
for n > 1, where we identify 2 as a subspace of H>(D) ® Z. By Beurling’s theorem,
inner functions 0 : D — C characterize the invariant subspaces of the shift operator M, on
the Hardy space H*(D). Every 8 € H*(D) with ||6||. < 1 has a transfer realization of
the form

0(z) =D+C(1-z4)"'2B (z€D),

where
A|B
is a unitary on a Hilbert space H & C (see for example, [ , Theorem 6.5]).

Motivated by the Hardy space setting and the theory of contractions, Olofsson stud-
ies transfer realizations, which are similar to the one for the characteristic function, of
Bergman-inner functions (see [ 1, [ ]). The idea of Bergman-inner functions,
defined by Olofsson [ ], 1s due to Hedenmalm and his results for wandering sub-
spaces and invariant subspaces of the Bergman shift

M : Lg(D) = Lg(D); £+ zf,

where

I2(D) = {f c o) [ 1P < w}

is the Bergman space A%(D), we have already seen above (cf. [ D.
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In [ ], Eschmeier generalizes Olofsson’s ideas to the multivariable case of the
Euclidean unit ball B,. Chapter 3 is based on a joint work with Eschmeier and appeared in
[ ]. We generalize the previously mentioned paper of Eschmeier for K-contractions.

Let therefore .7# be a regular unitarily invariant space with reproducing kernel
K:B;xB; — C, K(z,w) =k({z,w)).

Suppose in addition that the power series k(z) = Y., a,z" has no zeros in D such that

— Z cnzn
n=0

and the ¢, have almost the same sign.

Motivated by the notion of Bergman-inner functions a K-inner function is an operator-
valued analytic function W : B; — B(&,&’) with values in the bounded linear operators
B(&, &) between Hilbert spaces & and & such that

IWxl| ree = IIx| 6
for all x € &, and
W (&) L MF(W (&)
for all o € N4\ {0} (see [ D.

Now, let T = (Ti,...,T;) € B(H)? be a pure K-contraction. One computes that the
operator

Ar = SOT — lim Z —cp 100 (idg).

N—yoo 7=

is invertible, and that
(xvy) = <ATX,y> ()C,yEH)
defines a scalar product on H. We write H for H equipped with the norm || - ||7 and define

Ir:H—H, x— x.

One checks that 7 = (Ti,...,T;): HY — H is a row contraction. If C € B(H,&) is any
operator with C*C = %( ) and

d a)!
Yo = (Zl 1 l) a:(a17"'7ad)€Nd

Hl 1051
then
Jer H=HRE, je(x) =Y, (Yaaqz®@(C(T%) x))
aeN?
is a well-defined isometry such that jc intertwines the tuples T* = (T},...,T;) € B(H)“

and M7 = (M;,,....M})) € B(H & )¢ componentwise. For our transfer realization we



consider bounded linear operators C € B(H,&), D € B(&,,&) and B € B(&,,H?) such
that

(K1) C*'C= — (T),

(K2) D* C+B (BAF)T* =0,
(K3) D*D+ B*(®Ar)B =id,
(K4) Im((®jc)B) C M A (&).

Besides, we use the operator-valued function
Fr:By— B(H), Fr(z) = Y an1 < Y Ya(Ta)*Za>
n=0 |ot|=n
as well as the row operators
d
Z(W) :Hd —H, (hl,...hd) — Zwlhl (W S Bd).
I=1
We shall show that (see Theorem 3.2.1):

Theorem. Let
W: By —)B((g)*,(g))

be an operator-valued function between Hilbert spaces &, and & such that
W (2) = D+CFr(2)Z(2)B.

where T € B(H)? is a pure K-contraction and the matrix operator

7| B\ d
< c D).H@é‘;%H ®&
satisfies the condition (K1)-(K4). Then W is a K-inner function.

If T € Bi(H) is a contraction and K is the Szegd kernel, then the canonical operator-
valued K-inner function belonging to 7 is the classical characteristic function introduced
by Sz.-Nagy and Foias. Conversely, we show that (see Theorem 3.2.2):

Theorem. IfW: B; — B(&%, &) is a K-inner function, then there exists a pure
K-contraction T € B(H)? and a matrix operator

T*| B d

satisfying the conditions (K1)-(K4) such that

W(z) =D+CFr(z)Z(z)B (z € By).
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Uniqueness of multiplier functional calculi

Functional calculi play an important role in the theory of Banach algebras. The analytic
or Riesz-Dunford functional calculus of an operator T € B(H) on a Hilbert space H is an
algebra homomorphism

0(U) — B(H), f — f(T).

It extends the polynomial calculus and is defined for all functions analytic in a neighbor-
hood U of the spectrum o (7). One can ask whether the class of admissible functions
can be enlarged by requiring certain properties for the operator 7. An example is the
continuous functional calculus for normal operators.

Another interesting class of operators or more precisely contractions are completely
non-unitary contractions. That is a contraction 7' € Bj(H) having no invariant subspaces
such that the restriction of the operator to the invariant subspace is unitary. Every con-
traction 7 € B (H) can be written as the direct sum 7' = U & Ty, of a unitary operator U
and a completely non-unitary operator 7;,,,. A special case of such a decomposition is the
Wold decomposition for isometries.

Sz.-Nagy and Foias show that the analytic functional calculus for completely non-
unitary contractions can be extended to H*(ID). That is, for every completely non-unitary
contraction 7 € B (H), there exists a bounded and weak-* continuous algebra homomor-
phism

H*(D) = B(H), ¢ = ¢(T).

Extending works by Eschmeier (see [ ]) and by Clouatre and Davidson (cf. [ D,
Bickel, Hartz, and M°Carthy establish a multidimensional analog to the classical result of
Sz.-Nagy and Foias (cf. [ ]). They show that:

Theorem (Bickel, Hartz, and M“Carthy). For a completely non-unitary K-contraction
T = (Tla"'7Td) S B(H>d7
there exists a completely contractive unital algebra homomorphism
w:Mult(s7) — B(H), ¢ — @o(T,...,Ty)
with n(z;) = T;.

In[ ], Miller, Olin, and Thomson study whether any H**(ID)-calculus for a com-
pletely non-unitary contraction 7' is weak-* continuous and hence unique. In [ ,
Example 13.4] they give an example of a completely non-unitary contraction 7 € By (H)
for which the polynomial calculus has multiple continuations. For pure contractions a par-

ticular class of completely non-unitary contractions, they show the following uniqueness
result (see [ , Theorem 13.3]):

10



Theorem (Miller, Olin, and Thomson). Let T € Bi(H) be a pure contraction and let
n:H”(D)— B(H)

be a bounded unital homomorphism with ©(z) = T. Then T is weak-* continuous and
therefore agrees with the Sz.-Nagy—Foias functional calculus of T.

Chapter 4 is joint work with Hartz. We establish the following analog to Miller, Olin,
and Thomson’s result for multiplier functional calculi (see Theorem 4.1).

Let therefore .7# be a regular unitarily invariant complete Nevanlinna-Pick space with
unbounded kernel K. That is, K : B; x B; — C has the form

nd 1
K 7W - a 7W " - [e%e) )
(z,w) n;) n(z,w) S ST

where ag =1, a, > 0 forn > 1, lim,, e a“il =1,Y oa, =coand (b,),>] is a sequence
n -

of non-negative real numbers satisfying } > b, = 1.

Then, our statement is as follows:

Theorem (Analog to Miller, Olin, and Thomson’s theorem). Let T = (Ty,...,T;) a pure

K-contraction and let
7 :Mult(s2) — B(H)

be a completely bounded unital algebra homomorphism with n(z;) = T; for 1 <1 <d.
Then 7 is weak-x continuous.

Norm-closure of polynomials in the multiplier algebra

Let us take a step back when considering functional calculi for a contraction T € By (H).
Due to von Neumann’s inequality, the polynomial functional calculus map

Clz] = B(H), p— p(T)

is itself a contraction regarding the supremum-norm. The calculus naturally extends con-
tinuously to the norm-closure of the polynomials A(ID) in H*(ID). The disk algebra A(D)
is classically defined as the intersection

AD) =Cc(D)no(D).
Analogously, using Drury’s inequality for a commuting row contraction
T=(Ty,...,T;) € B(H),
the polynomial functional calculus map in multi-variables

C[Z] —>B(H), p>—)p(T1,...,Td)

11



1. Introduction

is itself a contraction regarding the Mult(Hg)—norm. The calculus has a continuous exten-
sion to the closure

A(H3) = Cg e Mult(H3).

In Chapters 5 and 6, we study this norm-closure of polynomials

A(#) = TR ™« Mule(2)
for regular unitarily invariant spaces .77 .

For a characterization, observe that in the Dirichlet space

9-{reom) [Irorame <=},

with reproducing kernel

1 1
K:]D>><]D)—>(C7K(z,w):—_10g< _)7
w 1—zw

the multiplier algebra Mult(Z) can be characterized in the following way (see, for exam-
ple, Theorem 5.1.7 in [ D:

Theorem. A function ¢ : D — C is in Mult(2) if and only if
@ € H*(D) and ¢’ € Mult(2,L%(D)).

Here we use again the notation L2(ID) for the Bergman space on the unit disk. In
Chapter 5 we obtain the following characterization for the norm-closure of polynomials
A(2) (particular case of Theorem 5.1):

Theorem. A function ¢ : D — Cis in A(D) if and only if ¢ € A(D) and the multiplication
operator
My:2—LiD), f— ¢ f

is compact.

We generalize this idea for radially weighted Besov spaces
B, ={fcO0By,); RfcL*(wdV)} (scR).

In the definition the space B, the fractional radial derivative R* : 0'(B;) — O(B,),

Z faZa'—> Zﬂs Z faZa

aeNd n=1 |o|=n

is a generalization of the classical radial derivative R = R' : O(B,) — 0(By),

9
fHZ_ZiZla_zlf
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and ® : By — R.q in L!(dV) is a radial weight. For the constant weight @ = 1, these
spaces already contain various interesting examples, including the Dirichlet space

9 ={f € 0(By); Rf € L*(dA)},
and the Drury-Arveson space
Hj = {f € 0(Ba); R*f € L*(aV)},
where equality means equality of spaces with equivalence of norms.

Motivated by the characterization of the multiplier algebra Mult(Bg,) in [ 1,
which has its origin in [ ]and [ 1, we show that (see Theorem 5.1):

Theorem. A function ¢ :B; — C is in A(B,)) if and only if ¢ € A(B,) and the multipli-
cation operator
Mgy By = By ™, [ — (RY9)f

is compact for N > 1.

For our further results we use the concept of Carleson measures, which Carleson uses
in his solution of the Corona problem. A finite positive Borel measure y on the unit ball
By is called Carleson measure for B, if and only if BS, C L?>(u). In this case, by the
closed graph theorem, the linear operator

Ju:By = LX), fr f

is continuous, that is there exists a constant ¢(tt) > 0 such that

[ 1#Pdu < ()1, foral £ € By,
d
The measure U is called a vanishing Carleson measure if and only if the linear operator

Jui By~ LP(W), f = f

is compact. Carleson measures have many applications. Now, suppose that N > s > 0.
Since BY~ can be described as a weighted Bergman space L2(@y_s), by the previous
theorem it is immediate that ¢ € A(Bj,)) if and only if ¢ € A(By,) and

ton(z) = [RY ¢(2) P on—s(2)dV (2)

is a vanishing Carleson measure for B},. Besides, to simplify notation, we use the abbre-
viations:

(a) B =B,

®) B =By = {1 € O(By); Jy, IRF ()P dV (z) <} and

13



1. Introduction

(c) B' =B = {f € O(Ba); [y, IRf(2)aV(z) < oo}.

Using the reformulation of the previous theorem in terms of Carleson measures, we
obtain the following version of Theorem 5.9 (2) in [ ] (see Theorem 5.2.17):

Theorem. Let 1 <2s<d+1andp > <L If
¢ € BSP NA(By),
then @ € A(B®).

We will also consider the particular case of the Dirichlet space . For f € & the
Sarason function is defined as

ViD= C, Vi(2) =2(f,k.f) o — | 1%

This definition makes sense in several (normalized) complete Nevanlinna-Pick spaces .77 .
In [ , Theorem 4.5], Aleman, Hartz, M®Carthy and Richter show that if f € 7
and ReV; is bounded, then f € Mult(.7#’). We show that (see Theorem 5.3.5):

Theorem. Let ¢ € 2. If

sup |Re Vo (w) — Re Vy, (rw)| 25 0

weD
forr 11, then ¢ € A(2).

Before, we have already indicated that for the reproducing kernels Hilbert spaces .7¢
with kernel functions k,, : B; — C (w € B,), we want to consider, we always have

Mult(.2) C H* N, A() C Mult() NA(By)

and || £l + || flle < ||f|IMui for all f € 2. Indeed this basically follows, since 1 € .77
and Mgk, = @(w) for all w € B, and ¢ € Mult(57). In [ ] Arveson shows that
the supremum-norm || - || does not dominate the operator norm || - ||y on the Drury-
Arveson space Hj. Fang and Xia use the multivariable Mobius transformation and this
factin [ ] to show that

A(H?) C A(By) "\Mult(H3) C A(Bg)NH3.

Using the one-function Corona theorem for the multiplier algebra of the Drury-Arveson
space, the main result in [ ] shows that there exist functions ¢ € Mult(Hj) such that
the corresponding multiplication operator My, is not essentially hyponormal. The one-
function Corona theorem applies to a lot of Hilbert or even Banach function spaces .7
(see below). It states that, if ¢ € Mult(.#) and ¢ is bounded below, then % € Mult(.7).

In[ ], Luo obtains similar statements as in Fang and Xia’s paper for the Dirichlet
space Z.

In Chapter 6 we use techniques from [ ] to establish the following result (see The-
orem 6.1):

14



Theorem. Let 77 be a regular unitarily invariant space. The following are equivalent:
(i) Mult(s#) = H*(By) N7,
(ii) A(By) NMult(57) = A(By) N2,

(iii) A(S) = A(By) NMult(s7),

(iv) || Myplle = ||@]|e for all ¢ € Mult(2) NA(B,), where || - ||. is the essential norm of
an operator.

Similar to Fang and Xia’s results, there exists a multiplier function ¢ € Mult(#) such
that My, is not essentially hyponormal, whenever

Mult(#) C 2 N H*(By)

and the one-function Corona theorem holds for Mult(¢).

One-function Corona theorem

Let us now take a closer look at the one-function Corona theorem. In their studies of
cyclic vectors in the Drury-Arveson space Hj, Richter and Sunkes obtain the one-function
Corona theorem for the spaces A2 (B,) (see [ , Theorem 5.4]). In particular, the
statement contains the one-function Corona theorem for the Drury-Arveson space H2,
appearing in [ J.In[ , Theorem 5 and Corllary 6], Cao, He and Zhu establish
the following differentiation formula for the radial derivative:

e (D) =S pev (YR,

g gV

where f,g € 0(By), 0 ¢ g(B;) and N > 1. The formula can be used to prove the one-
function Corona theorem for many Banach function spaces (see [ , Lemma 3.1]).
In a recent paper, Aleman, Perfekt, Richter, Sundberg and Sunkes obtain a generalized
version of the one-function Corona theorem for radially weighted Besov spaces BY (see
Theorem 3.2 in | ] and Theorem 6.2.8):

Theorem. If ¢,y € Mult(BY) with l% € H*(By), then %ﬂ € Mult(BY).

We will see that this better version of the one-function Corona theorem also follows
from the differentiation formula by Cao, He and Zhu. Similar to the setting in [ ,
Lemma 3.1], the result is valid for a large variety of Banach function spaces. Examples
are radially weighted Besov spaces, Bloch-type spaces, and holomorphic Sobolev-spaces.
The differentiation formula by Cao, He, and Zhu can be derived from an application of the
binomial theorem (cf. proof of Theorem 6.2.2 and Corollary 6.2.3). The original proof
for the formula is more technical.

Let
% ={f € O(By); sup(1—|z*)|Rf(2)| < oo}

ZEBd
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1. Introduction

be the Bloch space. A particular case of Theorem 5.1 in [ ] shows that f € H§ NA
and ]lc € H”(B,) imply that ch € H2. The differentiation formula by Cao, He and Zhu can
also be used to establish the following more general version of Theorem 5.1 in [ ]
(see Theorem 6.2.10) for the LP-versions of standard weighted Besov spaces:

Theorem. Let 1 < p < oo, t > —% and N > 1.
(a) If f € Bﬁv’pﬂ,%’ and% € H*(By), then ch € Biv’p.

(b) If f.g € B OH"(By) and £ € H=(By) , then I~ € B)"? NH=(By).

Concluding remarks

Chapter 2 gives a brief introduction to the basics of the thesis. It contains a sort of crash
course on reproducing kernel Hilbert spaces of analytic functions and also provides in-
sight into the theory of radially weighted Besov spaces. The last part of the Chapter is an
overview of the theory of K-contractions.

The following sources, which are not listed separately, were also used in preparation

of this work [ LI L1 L1 LI L1 L1 L1 1,
[ LI LI LI LI N land [ I
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2. Preliminaries

This chapter aims to provide a brief overview of the theoretical framework of unitarily
invariant reproducing kernel Hilbert spaces of analytic functions. We also introduce some
terminology and notation, which we will use throughout this thesis. In the last part of this
chapter, we will take a look at the theory of K-contractions, which we will need for the
following results. We start with some notation that we will use throughout the thesis.

2.1. Notation

2.1.1. Multi-indices

Let d € N be a positive integer.

Notation 2.1.1. Let X be an (abelian) monoid with identity element e. For
a=(0y,...,0q) € N¢

we use the following notations:

@ |of =X, o,

() o! =TT, 0!,

©) Yo =% and

o!
(d) x* = Hlex;x’ for x = (x1,...,xg) in X¢ , where x° = e for all x € X.

Here is a short explanation of how we will use the number 7, for o € N:

Remark 2.1.2. Let d € N5 and let X be a ring. Furthermore, let x = (xy,...,x;) and
y= (y1,---,y4) be tuples of commuting elements in X. Define the map

d
Ory: X =X, 0(z) = lezyl.
=1

Then
ol,(x) =) 1%@E%2%) (zeX)

|a|=n
<l

ocNd

and in particular,

M=

xl) = Z Yox™

lot|=n
ocNd

1

for all n € Nyy.

17



2. Preliminaries

Sketch of proof. 1f 1 € N, then for reasons of readability we use the abbreviation [/]
for the set {1,...,/}. Let n,d € N-(. Consider the letter counting map x : [d]" — {a €
N9; |at| = n} defined by

(n((l1,...,0n)))i=card({l <m <n; L, =i}),

where i = 1,...,d. One checks that 7 is well-defined and surjective. In addition, if
o=rmn((ly,...,I,)), then

H x;, = x%.

m=1

Now, if & = (o, ...,0y) € N? with || = n, a combinatorial argument shows that there
exist i
Ya:m: (T n=Yi—y %
o! o (%) 2%
different tuples (/y,...,1,) € [d]" such that w((/y,...,l,)) = c. Thus, we obtain that

(1) 0

ll N 7ln—l

:(11, meld <sz> (Hylm>

= Z aln))zyﬂ Iyl

(Il e[d]
= Y Ya(x®y®
aen
Using the multiplicative identity of the ring, the additional part is not hard to see. [

2.1.2. Balls and functions
Notation 2.1.3. Let E be a normed space, let a € E and r > 0. We denote by
Bg(a,r) ={x€E; |x||g <r}

the open ball with radius  and center a in E. If d € N~ and E = C? with the Euclidean
norm

22 =zl ...+ lzal* (2= (z1,...,24) €T,

we use the notations

(a) By(a,r) = Bga(a,r), when a € C,
(b) By(r) = Bq(0,r),

(¢) By =Bq4(0,1),

18



2.1. Notation

(d) D,(a) =Bj(a,r),whend =1anda € C,

(e) D, = D,(0),

() D= Dy(0),

(g) and T = 9D = {z € C; |z| = 1} for the unit circle in C.

Remark 2.1.4. When not otherwise stated, all functions will be C-valued.

Notation 2.1.5. (a) Let X and Y be sets. We use the notation YX for the set of all functions
fromX toY.

(b) To shorten notation and when the dimension is clear from the context, we write C|z]
instead of C|zj,...,z4| for the polynomials in d complex variables.

(c) Let Q C C? be open and let E be a Banach space. We use the notation &(Q,E)
for the set of holomorphic functions defined on  with codomain E and abbreviate

0Q)=0(Q,C).
d) If @ = (a,...,a;) € N? we use the notation

ol

= o Oy
FLL

aoc

for the partial derivatives.

The following theorem from the theory of multivariable complex analysis, which can
be derived by the one-variable Cauchy integral formula, is well-known. (This is, for
example, a particular case of [ , Satz 2.16].)

Theorem 2.1.6. Every function f € 0 (B,) has a unique homogeneous expansion

flz)= ifz(Z) (z€By),
=0

where each f; is a homogeneous polynomial, and the series converges normally on B,.
We have

(0%1)(0) o _ 1

7 =
o! 27

fiR) =Y,

=1

2 . .
/ fle'z)e "dr (I eN,zeBy).
0

For f € 0(B,) and & € N¢ we will often use the abbreviation f = N0

o!

Definition 2.1.7. For a complex Hilbert space H and fixed w = (wy,...,w;) € C? we will

use the map
d

Z(H)(W) - H¢ —H, (hy,....hg) — Zwl/’ll.
=1

We abbreviate Z = Z(#), when the Hilbert space is clear from the context.
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2. Preliminaries

2.1.3. Estimates and binomial coefficients

Notation 2.1.8. Let f : X — R>¢ and g : X — R>( be two positive functions.

(a) We use the notation f < g, if there exists a constant ¢ > 0 such that f < cg.

(b) We use the notation f 2 g, if there exists a constant ¢ > 0 such that f > cg.

(c) We use the notation f = g, if there exist constants c¢1,c> > 0 such that c;g < f < ¢pg.
Notation 2.1.9. For s € R and n € N with n > 1, we consider the generalized binomial

coefficients
s\ ﬁ s—1+1
n) l

=1

(-

Remark 2.1.10 (The gamma function). The gamma function I": R-y — R will be a useful
tool for our further studies. Recall, the gamma function can be defined for s > 0 by

and set

F(s):/ e tdr,
0

where I'(n+ 1) = n! holds for all n € N+. See for example [ , Chapter VI, Section
9] for more details about the gamma function. The Gauss representation formula for s > 0
states that

n® & l
I'(s)=li
(5) ngrolon—l—sll:lll—ks—l
(cf. [ , Chapter VI, Section 9, Theorem 9.4]). Consequently, it follows for fixed s > 0

that there exist constants ¢ (s),c2(s) > 0 such that

amew <o) = (") camon

for all » € N with n > 1. Further, we have the following general version of Stirling’s
asymptotic formula : There exists a function 6 : R~y — (0, 1) such that

I(s) = \/? <Z>S69(s)/l2s,

for s > 0 (cf. [ , Chapter VI, Section 9, Theorem 9.10]). For fixed s > 0 we obtain
constants ¢3(s),c4(s) > 0 such that

for all n € N withn > 1.
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2.2. Reproducing kernel Hilbert spaces

2.2. Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces play an important role in complex analysis and func-
tional analysis. We give a brief introduction to the theory of reproducing kernel Hilbert
spaces consisting of holomorphic functions on the unit ball B, in C¢. Typical exam-
ples are the Drury-Arveson space, Bergman spaces or certain classes of Nevanlinna-Pick
spaces. We use [ 1, [ 1, [ 1, [ ]and [ ] as guidelines. For fur-
ther reading, we recommend the books [ 1,1 ].

A Hilbert space .77 consisting of functions f : X — C on a set X is called reproduc-
ing kernel Hilbert space (RKHS) or Hilbert function space, if for each x € X, the point
evaluations

O: X —=>C,x— f(x)

are continuous. Thus, using the Riesz representation theorem, we find for every x € X a
function k, € 77, such that

f(x) = <f7 kx>%ﬂ
forall f € J7.

The reproducing kernel of .77 is defined as
K:XxX —=C,(x,y) = K(x,y) = ky(x).

Let & be a Hilbert space. A function L : X x X — B(&) is called positive definite, if for
any finite sequence of points xp,...,x, in X, the n X n matrix

(L1, Xm))} =1 € B(E™)

defines a positive operator. Identifying B(C) = C, a reproducing kernel is positive def-
inite. By a theorem of Moore—Aronszajn the converse is also true. See, for example
[ , Theorem 2.14] for a proof.

Theorem 2.2.1 (Moore—Aronszajn). Let X be a set and let K : X x X — C be a positive
definite function. Then there exists a unique reproducing kernel Hilbert space ¢ on X,
whose reproducing kernel is K.

We will also need the following well-known characterization of elements in reproduc-
ing kernel Hilbert spaces. A proof can be found in [ , Theorem 3.11].

Theorem 2.2.2. Let 7 be a reproducing kernel Hilbert space with reproducing kernel
K:XxX — C. For f: X — C the following are equivalent:

(a) f e,
(b) there exists a constant ¢ > 0 such that

Kf,c XXX — (C, (xay) '_>C2K(xay) _f<x)f(y)

is positive definite.
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2. Preliminaries

In this case,
| fll.z = inf{c > 0;Ky . is positive definite}.

Convention. Let K : X x X — C be a positive definite function and F€ the corresponding
reproducing kernel Hilbert space. Unless otherwise stated, from now on we will always
assume that 7€ has the following property:

The space ¢ will be non-degenerate. That is for every x € X the point evaluation
Oy : H — C is onto.

Remark 2.2.3. (a) A reproducing kernel Hilbert space .7 is non-degenerate if and only
if 7 has no common zeros. That is

{f(x); fes} #{0}
for all x € X.

(b) Usually, the reproducing kernels K : X x X — C under consideration in this thesis,
will be also normalized at a point xg € X, that is K(x,x9) = 1 for all x € X. In this
case the space .77 is clearly non-degenerate.

(c) The space 77 is called irreducible if

(i) K(x,y) #0forall x,y € X,

(ii) the kernel functions ky : X — C, k.(z) = K(z,x) and ky : X — C, ky(z) = K(z,)
are linearly independent, if x # y.

It is clear that irreducibility implies that .72” has no common zeros. See also Lemma

1.16 in [ ]. For the theory of K-contractions (cf. [ 1), which will be used
in the following chapters (see also Section 2.5), we will always suppose that 57 is
irreducible (see [ , 1.38 Lemma)).

2.2.1. Multipliers

The following class of bounded linear operators on reproducing kernel Hilbert spaces is
of special interest.

Definition 2.2.4. Let 74 and .4 be two reproducing kernel Hilbert spaces consisting of
functions f : X — C on a set X. The set of multipliers from 7] to 7 is defined as

Mult(4,76) ={¢ : X - C; ¢ f € s forall f € J4}.
By an application of the closed graph theorem, the multiplication operator
M¢:¢%_>¢%af'_>(p'f7

is bounded.
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2.2. Reproducing kernel Hilbert spaces

One can now consider Mult(.7#, .743) as a subspace of B(./,.74), identifying each
multiplier function ¢ € Mult(s#],.7%) with the corresponding multiplication operator
M.

¢

Using this identification, we equip Mult(.74{, 7% ) with the operator topologies
TJ-|I» SOT, WOT and T,

on B(JA,.76).

For the definition of the weak-x topology T, on B(.%), when J¢ = 4 = 76, see
Remark 2.3.14 below. For the general case the weak-x* topology can be defied in a similar
way.

Using point evaluations, it can be readily seen that Mult(.7#],.7% ) becomes a complete
space with the operator norm

1@l = [[@llmus.06) = 1Mol (@ € Mult(1, 73)).

If 77 = 74 = 76, we use the notation Mult(7#") = Mult(.77,.7). With the preceding
remarks it is not difficult to see that (Mult(.77), || - ||muit) is @ unital commutative Banach
algebra, called the multiplier algebra.

Remark 2.2.5. Let .74 and 773 be two reproducing kernel Hilbert spaces with reproducing
kernels K; : X x X — C and K; : X x X — C respectively. If ¢ € Mult(74,.54), one
checks that

MoK (-,x) = (0K (%)
forall x € X. If K = K; = K; and K(x,x) # 0 for all x € X, it is immediate that

1@l = SU)I?|‘P(X)| < [|Mo]| = [l mu-
xXe

The following characterization of multipliers is well-known (cf. Theorem 5.21 in

[ D.

Theorem 2.2.6. Let 741 and 76 be two reproducing kernel Hilbert spaces with repro-
ducing kernels K1 : X x X — C and Ky : X x X — C respectively. For amap ¢ : X — C
the following are equivalent:

(a) ¢ € Mult(oA,.765),

(b) there exists a ¢ > 0 such that

L(p,c X xX —C, (x7y) = CZKZ(xay) - QD(X)QD(}’)KI(XO’%

is positive definite.

In this case, |My| = inf{c > 0; Ly . is positive definite}.
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2. Preliminaries

2.2.2. Pull-backs, subspaces and weak convergence

Sometimes it is very useful to consider the following kind of pullback for reproducing
kernel Hilbert spaces. Let K : X x X — C be positive definite and let @ : ¥ — X be an
arbitrary map. Then

Ko:Y xY —=C, (y,)) = K(®(y),®())

is also positive definite and the corresponding reproducing kernel Hilbert space .74 can
be described explicitly as stated in the next theorem (cf. Theorem 5.7 in [ D.

Theorem 2.2.7. Let 5 be a reproducing kernel Hilbert space with reproducing kernel
K:XxX —Candlet®:Y — X be a function. Then

Ko:Y xY = C, (3y) = K(@(y),20))
is positive definite and the space
S ={fod; f € )

with the norm
1Al s = inf{[| f||#s h = fo®}.

is the reproducing kernel Hilbert space with kernel Ko. Furthermore, the map
C(®): H — Hp, frr fod
is a co-isometry with
wp (P
C(@) K = ke

forally €Y, where
ke: X = C, ke(z) =K(z,x) (x€X)

and ® ®
kY - C K (@) =Ke(zy) (yeY).

If K : X x X — C is positive definite and Y C X, choosing P as the inclusion mapping,
the following corollary is an immediate consequence of the preceding theorem.

Corollary 2.2.8. Let K : X x X — C be positive definite with corresponding reproducing
kernel Hilbert space 7. If Y C X is any non-empty subset, let K|y : Y x Y — C denote
the restriction of K to Y. Then K|y is positive definite and the space

Hly ={f

y; f €A}

with the norm
12| sz, = inf{|| fllws = fly} (he€A)y)

is the reproducing kernel Hilbert space with kernel K|y.
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We will also need the following well-known theorem about subspaces of reproducing
kernel Hilbert spaces. For a proof, see for example [ , Theorem 2.5].

Theorem 2.2.9. Let 77 be a reproducing kernel Hilbert space on a set X with reproducing
kernel K. Furthermore, let 7y C € be a closed subspace and let Py : 7€ — 4 be the
orthogonal projection onto 6. Then F&) is a reproducing kernel Hilbert space on X with
reproducing kernel Ko(x,y) = (Poky, ky).

We conclude this part with the following statement about pointwise and weak conver-
gence:

Lemma 2.2.10. Suppose that 7€, 74 and .76 are reproducing kernel Hilbert spaces.

(a) Let (fn)nen be a sequence in 7. Then the sequence (f,),en converges pointwise to
a function f : X — C and sup,cy || full # < o if and only if f € S and f, BN f for
n—r oo,

In particular,
/1l < Timinf || fu]] -

Additionally, if 7 C O(By), the statement is still true, if one replaces pointwise
convergence of the sequence (f,),en by uniform convergence on compact subsets of

Bg.

(b) Suppose that (@,)nen is a sequence in Mult(4, 74). The following are equivalent:

(i) The sequence (Qy),cn converges pointwise to a function ¢ : X — C and
Sup,en || @nllvure < oo,
(i) @ € Mult(JA,56) and My, — My for n — oo in the weak operator topology,

(iii) @ € Mult(J4, 56) and My, — Mg for n — o in the weak- topology.

In particular,
H(pHMult < hr{r_l)iol;lfH(PnHMult-

Additionally, if 76 C O(B,) and 1 € J2], the statement is still true, if one replaces
pointwise convergence of the sequence (Q,)nen by uniform convergence on compact
subsets of By.

Proof. (a) Suppose that (f;).cn is a sequence in 7 converging pointwise to a function
f:X — C and that

¢ = sup|| ful| sz < oo
neN

By Theorem 2.2.2, the maps

Kp, o : X xX = C, (x,y) = C2K<x7)’) — Ja(X) fa(y)

are positive definite for all n € N. Let

Kre: X xX = C, (x,9) = K (x,y) — f(x) ().
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Every matrix being the entrywise limit of positive semidefinite matrices is again positive
semidefinite and

Kf,c(x7y) = ’}gI}oKfnc(x7y)

for all x,y € X. So, clearly K . is positive definite. Applying the converse implication of
Theorem 2.2.2, we deduce that f € 7. As usual let

ke : X — C, ke(y) = K(y,x)
for all x € X. By assumption

nlgl;lo<fmkx>% = fn(x) = f(x) = <f,kx>%ﬂ

for all x € X. Because span {k,; x € X} C .7 is dense, we obtain that f, 0y £ forn — oo,
Conversely, if f € ¢ and f, N f for n — oo, then

r}g{}o(fn,kﬁjf = <f7kx>yf’ :f(x)

for all x € X and

£l < Hminf || ful| s < sup || full o < oo
n—reo neN

by the uniform boundedness principle.

For the additional part, let (f;),en be a sequence consisting of functions in &(By)
that is bounded on compact subsets of B, and that converges pointwise to a holomorphic
function f € O(B,). Since (fy),en is bounded on compact subsets, the Cauchy integral
formula implies that (f,),cn is equicontinuous on compact subsets. Pointwise conver-
gence and equicontinuity yield that (f;,),cn converges uniformly on compact subsets to
f- So, the only thing remaining to show, is that (f,),cn is bounded on compact subsets
Q C B, whenever sup,,cy || fnll sz < . If z € By, then

o) = (k) e < (sggufnu;f) el

Let h € 5 and Q C B, be compact. Since h € 0'(B,), it follows that

sup |, k;)| = sup|h(z)| < oo
z€Q z€Q

and the family (k;).c¢ is weakly bounded. By the uniform boundedness principle

sup [|kz ||y < o0
z€Q

and the assertion follows.
(b) Part (b) is a straightforward application of part (a) and the uniform boundedness
principle. To be more precise, if f € .7/, use part (a) for the functions ¢, f and ¢ f in .74.

Furthermore, observe that the weak operator topology and the weak-* topology coincide
on operator-norm bounded sets (cf. A.2.1). 0
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2.3. Unitarily invariant spaces

2.3. Unitarily invariant spaces

In this section, we are interested in some basic results about unitarily invariant reproduc-
ing kernel Hilbert spaces on the unit ball B, in C¢. We will see that such spaces have
some nice properties and provide many interesting examples.

Definition 2.3.1. A reproducing kernel Hilbert space .7 with reproducing kernel K : B, x
B; — C is called unitarily invariant, if K(0,-) = 1, K is analytic in the first component
and

K(Uz,Uw)=K(z,w)

for all z,w € B, and all unitary maps U : C¢ — C¢.

A routine verification shows that the reproducing kernel of unitarily invariant spaces
can be characterized by power series representations. The following result can be found
in [ , Lemma 2.2].

Lemma 2.3.2. Let 77 be a reproducing kernel Hilbert space with reproducing kernel
K :B; x By — C. Then S is unitarily invariant if and only if there exists an analytic
Jfunction

k:D—C, k(z) =) an"
n=0
such that ay =1, a, > 0 for n > 1 and
K(z,w) = k({z,w))
forall z,w € By.

The following proposition about orthonormal basis of unitarily spaces invariant can be
found in [ , Proposition 4.1].

Proposition 2.3.3. Let 7 be unitarily invariant space, with reproducing kernel
K:B;xBy; — C, K(z,w) = Z an(z,w)",
n=0

where ag = 1 and a, > 0 for n > 1. Then 5 C O(By) and the family

(VTaiaz® ) e

a|a‘7é0
is an orthonormal basis for €.

Remark 2.3.4. (a) Due to Lemma 2.3.2 and Proposition 2.3.3, the constant functions are
elements of .77. Furthermore, the set .7 N C|z] is densely contained in 7.

27



2. Preliminaries

(b) Forn € N let

H, = { Y. paz% pac C} C C[]

ot =n

be the space of homogeneous polynomials of degree n. Then .5# can be decomposed
as
A= P H,
{neN; a,#0}

(c) If J7 is a unitarily invariant space, where the reproducing kernel

K:B;xB; —C, K(z,w) = Z an(z,w)",
n=0

is such that ag = 1 and a,, > 0 for n > 1, then C|z] C J# and thus, C[z] = JZ by (a).
Example 2.3.5. (a) For s > 0, the spaces A2(B,) with reproducing kernel
1
(1—=(z,w))*

are unitarily invariant. Due to Newton’s generalized binomial theorem, it is immedi-
ate that K has the power series representation

K;:B; xB; — C, KS(Z,W) =

(o)

KS(Z,W) = Z ast) <Z,W>n (Z,W S Bd),

where ap = 1 and

a,(f):(—l)”(_s>: s+é—1>0
I

=1
for n > 1. Note, that A?(B,) = H3 is the Drury-Arveson space, A2(B,) = H*(By) is
the Hardy space and Afl L1(Bg) = L2(By) is the classical Bergman space.

(b) For s € R, the spaces Zs(B,) with reproducing kernel

[ee]

K:ByxBy—C, K(z,w) =) (n+1)°(z,w)".
n=0

are unitarily invariant. In particular, %y(B,) is the Drury-Arveson space Hj and
P_1(By) is the Dirichlet space on the ball. See Examples 2.3.49 and 2.3.64 below.

Remark 2.3.6. If s > 0, using the asymptotic formula

(—1)"(_5) ~(n+1)°!

n

for n € N with n > 1 (cf. Remark 2.1.10), it follows that A2(B,) = Z,_1(B,), with
equivalence of norms.
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2.3.1. Multipliers on unitarily invariant spaces

Given a unitarily invariant space .7’, we have seen that C[z] N.Z is densely contained in
. In the following we want to study the intersection Mult(.7#") N C|[z]. First, we collect
some useful basics, resulting from the unitarily invariance of the kernel function of .77 .

Notation 2.3.7. (a) If U : C¢ — C? is a unitary map and f : B; — C is a function on B,
we set

fu:Bq —C, fu(z) = f(Uz).

(b) For a Hilbert space H let U(H) be the group of all unitary operators in B(H). If
d € N> and H = C¢ we simply write U(d) for U(C?). Furthermore, let 1« € U(d)
be the unit matrix in Mat(d, C).

Lemma 2.3.8. Let # be a unitarily invariant space and let U : C¢ — C? be a unitary
map. Then
Ty H — I s f — fU

is a well-defined linear bounded unitary operator.
Proof. Let K : By x B; — C be the reproducing kernel of .7#. Furthermore, let f € 7

and set ¢ = || f|| . If U : C¢ — C is unitary, it follows with Theorem 2.2.2 that K7y . :
B; xB; — C,

Kruelz,w) = EK(z,w) — f(U2) f(Uw) = *K(Uz,Uw) — f(Uz) f(Uw)

is a positive definite function. By the same theorem, we deduce that fiy € 5 with || fy|| <
|| f|l». Hence my is a well-defined linear contraction. Now, using the map 7y, it can be
readily seen that 7y is a unitary with 77, = 7. U

Theorem 2.3.9. Let S be a unitarily invariant space. For a unitary map U : C? — C¢
let my : F — F be the unitary operator defined as in Lemma 2.3.8. Then the map

. (U(d),THH> — (U(%),SOT), Uw— ny,
is a continuous group homomorphism.

Proof. By the preceding lemma, the operators 7y are unitary and bounded for every uni-
tary matrix U € U(d). If U,V € U(d), then clearly

n(UV)=nyy =nyny = x(U)n(V)

and 7(1ca) =1id 5. Hence, 7 is a group homomorphism. Next, we show that 7 is continu-
ous. Multiplication with fixed elements is continuous in (U(d), 7)) and in (U (¢’),SOT)
respectively. Since (U(d), 7)) is metrizable and 7 is a group homomorphism, it is
enough to prove that

lim [|7(U,)f — &(1ca)fll2 =0

n—oo
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for all f € ¢ and every sequence (Up,)qen in U(d) with limy, e ||U, — Lga|| = 0. Let
(Up)nen be such a sequence in U(d) and let f € 5. For n € N set f,, = n(U,)f. Since

Jlim [|Upz — 2] ca
for all z € C, it follows by continuity of f € .7 that

712) = £(U2) "3 £(2)

for all z € B,;. Using Lemma 2.2.10 and the fact that ||x(U)f||» = || f|| s for all U €
U(d), we deduce that

fo 5 f

as well as f,, — f in norm for n — oo and hence

tim [[7(Un)f ~ 2 (1co) e = lim |1 fu— e =0,

n—yoo

Due to Lemma 2.3.8 and Theorem 2.3.9, we obtain the following theorem.

Theorem 2.3.10. Let J¢ and 7% be two unitarily invariant spaces, let U = (u)1m €
U (d) be unitary and let

m:(U(d), 7)) — (U(A),S0T), U —my (I=1,2)
be the continuous group homomorphisms defined as in Theorem 2.3.9.
(a) The map
[y : B(JA,75) — B(o4,753), T — m(U)oT om (U")
is an isometric isomorphism with inverse Iy« such that
My (K (4, 74)) = K(H4, 7).

Additionally, if 7€ = 74 = 76, the map Iy is an isometric C*-algebra isomorphism.
(b) If ¢ € Mult(J4,56), then ¢y € Mult(A,56) and Ty (My) = Mg,. In particular

if 4 = 704 = 76, it follows for | = 1,...,d that

d
Iy (MZI) = Z urmMz,, .
m=1

(c) ForT € B(7,.76) the map
7 : (U(d),7.) = (B(#4,76),S0T), U — Ty (T)

is continuous. Additionally, if T is compact, then 1y (U) is compact for allU € U(d)
and Tl is continuous with respect to the norm-topology on B(741,76).
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To prove the additional statement in part (c), we need the following well-known result
(Theorem 2.3.11), which gives us the possibility to construct a norm convergent zero
sequence based on a strongly convergent zero sequence.

Theorem 2.3.11. Let E and F be Banach spaces, let T € K(F,E) be a compact operator
and let (Sy)uen be a sequence of operators in B(E). If

lim ||S,x||z =0
N—$oo

forall x € E, then
lim (1S, 7| 5(r.) = 0-

Proof. Let € > 0. Since lim,_ ||Syx||z = 0 for all x € E, it follows by the uniform
boundedness principle that

¢ = sup||Sull ) < e
neN

_ &
Letr = ESE Because

TBr(0,1) CE
1s compact and

TBr(0,1) ¢ |J Be(Tyr),
yEBF(Ovl)

there are yy,...,y; in Bg(0, 1) such that

TBr(0,1) ¢ |J Be(Tymr).

m=1,...,1

Since lim, e ||S,x[|g = O for all x € E, there exists a ng € N such that ||S,Ty,,||z < §, for
alln>ngandm=1,...,1. Letn > ng and let y € Br(0, 1) be arbitrary. Then there exists
amg € {1,...,1} such that

1Ty =Tymlle <.

We conclude that

1S TyllE < (150 TYmo |l + 1Sull () | Ty — Tymoll2 < €.
See also [ , proof of Theorem II 3.5, page 70]. [

Proof of Theorem 2.3.10. (a) Due to Lemma 2.3.8, the operators
mU): 95— (1=1,2)
are unitary. Thus, part (a) is straightforward.
(b) If @ € Mult(.74, 74), then

(My (Mg) f)(z) = (m(U) e My o m (U")) f)(2) = 9(Uz) f(2)
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for all f € 7 and z € B,. Thus, we conclude that ¢y € Mult(74, 54) and Iy (M) =
Mg, . Forl =1,...,d consider the coordinate functions

ZlZCd%C,(Wl,...,Wd)i—)Wl.

If w= (wg,...,wg) is in C%, then

d
= ( Z “LmWM)?:l
m=1

Hence, it follows for / = 1,...,d, that

d
Z up mZm

Thus, one computes for [ =1,...,d that
d
Z uj, mM.

(c) Since (U(d),7).) is metrizable, it suffices to check that Iy is sequentially con-
tinuous. Since multiplication in the strong operator topology is sequentially continuous,
taking adjoints in (U(d), 7.|) is continuous and 7; respectively 7, are continuous due to
Theorem 2.3.9, it follows that Il is continuous.

For the additional part of (c) suppose that T € K (74, .%) is compact. Since the com-
pact operators K (.71, .74) are an ideal of B(.71,.7%), it is immediate that

HT<U) = 7T2(U)OTO7L'1(U*)
is compact for all U € U(d). If (Uy),en is a sequence in U(d) and U € U(d) such that
lim,, e [|U, — U|| = 0, then

as well as,

for n — oo. Since
HT(UH) — HT(U) = 7752(Un) oTo (77,'1 (U:) — ﬂl(U*)) + (ﬂz(Un) — EQ(U*)) oTom (U*)

and ||m(U,)|| = 1 for all n € N, the additional part follows because of Theorem 2.3.11,

using the triangle inequality and Schauder’s theorem on adjoints of compact operators.
]

Notation 2.3.12. For a function f : B; — C and { € T we use the notation

fe:Ba—C, fe(2) = f(82).
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Using the fact that the unit circle T C C is a compact subgroup of U (d) with respect to
the representation

(T,’q,‘) — (U(d),TH_”), Cl—> Cﬂcd,

the following corollary is a consequence of Theorem 2.3.9 and Theorem 2.3.10.

Corollary 2.3.13. Let 7, 7,.765 be unitarily invariant spaces and let ¢ be a function
in the multiplier space Mult(74,.743).

(a) The map
(T, TH) — (U(2),S0T), § — T,

is a continuous group homomorphism, where 7ty : 7 — J€ is the unitary operator

with Te f = f¢ forall f € .

(b) The map
IT: (T,T‘.‘) — (Mult(s7, 76),S0T), § s

is continuous and

|0 lImute = | @ Mule

for all § € T. Additionally, if My is compact, then M(pg is compact for all § € T and
I1 is continuous with respect to the norm-topology on Mult(J81, 763).

Using the theorem of Fejér, one can show that the set of trigonometric polynomials is
densely contained in the set of continuous functions C(T) on the unit circle T, without
using Stone-Weierstra3. For our goals, we need similar results from harmonic analysis to
gather some useful facts about unitarily invariant spaces and its multiplier algebras. The
results can also be found in | ].

In the following let Q be a compact Hausdorff space, let u be a regular Borel measure
on Q and let E be a locally convex Hausdorff space. We denote by E’ the space of all
continuous linear functionals on E.

Remark 2.3.14. For our studies, we will mainly consider the following locally convex
Hausdorft spaces:

(a) If E is a normed space then we consider E with the weak topology 7, or E’ with the
weak-x topology T,+.

(b) If H is a Hilbert space, then we consider the bounded linear operators B(H) with the
weak operator topology WOT and with the strong operator topology SOT.

(c) Tt is well-known that the dual of ¢'(N) is £°(N). Analogously, if B(H) are the
bounded linear operators on a Hilbert space H with orthonormal basis (eq), then
B(H) can be considered as the dual

Ci(H) = B(C\(H),C)
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of the Banach space of trace class operators
Ci(H) ={T € B(H); Tr(|T|) < oo}
with the norm

IT|h =Te(IT]) = } (T lea,ea)rs (T € C1(H)),

04
where |T| = /T*T for T € B(H). Using this fact, one can define a weak-* topology
T, on B(H ). For more details see for example [ , Chapter 3, 19.2 Theorem and
Section 20].
For additional information regarding locally convex Hausdorff spaces, one may refer to
the book [ ]. A brief overview of operator topologies can be found in [ , Chap-
ter I, §2].

Definition 2.3.15 (Pettis integral). Suppose that f : Q — E is a continuous function. If
there exists an element y € E such that

X (y) = /Q X(f)du forallx' € E' 2.1)

then y is called the weak or the Pettis integral of f over Q. One usually uses the notation

yz/Qfdu-

The Hahn-Banach theorem implies that the integral, if existent, is uniquely determined by
(2.1).

Example 2.3.16. Let E = (B(H),WOT) and let f : Q — E be a continuous function.
Define a sesquilinear form

HxH—C, (h,h) /Q (1), o)y (1)
on H. By the uniform boundedness principle, it follows that

sup |£(6)lp(r1 < -
teQ

Thus, the sesquilinear form is bounded. By the Lax-Milgram theorem (see [ , Chap-
ter II, 2.2 Theorem]), there exists an operator 7 € B(H) such that

(Thy,h) :/Q<f(l)h1,h2>dﬂ(f)

for all iy, hy € H. Since the WOT-continuous linear functionals are of the form

BH)—C, T — Z(Thljll>
=1

for some vectors Ay, ..., hy,, hy yen ,ﬁm € H (cf. [ , Chapter IX, 5.1 Proposition]), we

conclude that
T = / fdu.
o
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Remark 2.3.17. Suppose that ' : Q — E is continuous and

y=/Qfdu-

exists. Suppose that p : E — R>¢ is a continuous seminorm on E. By the Hahn-Banach
theorem there must be a continuous functional X’ € E such that x'(y) = p(y) and |x’(x)| <
p(x) for all x € E. Hence

p(f ran) = ([ ran) = [ <tnau< [ ptrran

The following theorem can be found as a particular case of Theorem 3.27 in [ ].

Theorem 2.3.18. Suppose that for every compact set M C E the closure of the convex
hull co(M) is again compact. Then the integral

yz/Qfdu

exists for every continuous function f : Q — E in the sense of Definition 2.3.15.

Example 2.3.19. Let E = (B(H),WOT) or E = (B(H), T,,+.). The weak operator topology
is coarser than the weak-* topology. By Banach-Alaoglu norm-bounded sets in E are
relatively compact. By the uniform boundedness principle WOT-bounded sets are norm-
bounded. It follows that every compact set M C E is contained in a convex compact set.
But then the closure of the convex hull co(M) is again compact.

A locally convex Hausdorff space E is called quasi-complete if every bounded Cauchy
net is convergent.

Example 2.3.20. (a) Every Banach space is quasi-complete.

(b) Since a Hilbert space H is complete, it is elementary to check that E = (B(H),SOT)
is quasi-complete.

(¢) E = (B(H),WOT) is quasi-complete.
(d) E = (B(H), Tyx) is quasi-complete.
The following proposition can be found in [ , Chapter II, §4.3].

Proposition 2.3.21. Let E be a locally convex quasi-complete Hausdorff space, then for
every compact set M C E the closure of the convex hull co(M) is again compact.

The following corollary is a consequence.

Theorem 2.3.22. Suppose that E is quasi-complete. Then the integral

yz/Qfdu-

exists for every continuous function f : Q — E in the sense of Definition 2.3.15.
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In the following, we denote by dm the normalized Lebesgue measure on T.

Definition 2.3.23. A summability kernel is a sequence of Lebesgue integrable functions
(Kn)n>0 on T with the following properties

(a) K, >0forallneN,

(b) %Kn(C)dm(C) =1,

(c) For all § > 0, we have lim,, . sup{|K,(&)|; £ € T,|[1 - &| > 6} =0.
Remark 2.3.24. Let g : T — C be a continuous function.

(a) Clearly, g € L*(T). So, using the orthonormal basis ({"),cz the function g can be
represented as g(§) =Y,z &(n)C", where g(n) (n € Z) are the Fourier coefficients.

(b) Forn € N let

Q=Y "o e

be the Fejér kernels. Then (F,),>0 is a summability kernel. One computes that

n

[ B(©s@am(@) = ¥ silgln),
T

:”+11:0

where
Salgl(6) =Y &()¢!
I=—n

(see [ , Chapter I, Section 2, 2.5]).

(c) ForO<r<1let
1—r2

R(E)= Y e =

nez |1_rz’2

be the the Poisson kernels. Then for every sequence (r,),cn in (0, 1) with

(€ eT)

limr,=1
n—oo

the family (P, ),>0 is a summability kernel. One computes that

[ PQ)e(@)dm(z) = X gln)r:
T

nez
(see [ , Chapter I, Section 2, 2.13]).
In [ , Chapter I, Section 2, 2.2] one can find the following version of Fejér’s
theorem:

36



2.3. Unitarily invariant spaces

Theorem 2.3.25. Let g: T — C be continuous and let (K,),>0 be a summability kernel,
then

lim [ K,(&)g(L)dm(C) = g(1).

n—soo
T

Remark 2.3.26. Let E be a locally convex quasi-complete Hausdorff space, let f : T — E
and g : T — C be continuous. A locally convex space is by definition a topological vector
space, so scalar multiplication is continuous and thus the function

T—E, §—g()f(¢)

is continuous. Hence, due to Theorem 2.3.22, the weak integral
[ &©1(©am(&)
T

exists in E.

The following corollary is immediate.

Corollary 2.3.27. Let E be a locally convex quasi-complete Hausdorff space, let f : T —
E be continuous and let (K,),>0 be a summability kernel in C(T), then

lim [ K,(8)f(8)dm(E) = f(1)

n—oo
T

Proof. By the preceding remark, the integrals exist in the weak sense. Let p : E — R>
be a continuous seminorm. The function g: T — C, { — p(f({) — f(1)) is continuous
with g(1) = 0. Because of Theorem 2.3.25 and Remark 2.3.17, we deduce that

0<p| [ KO Qam() = £(1) | =p | [ KA Q)= F(1))im()
T T
< [ Ku(©g(E)am(§) — g(1) =0
T

for n — oo, O]

In the following, we want to consider locally convex Hausdorff function spaces .% C
O (By). In our further studies .# will be a unitarily invariant space .7 or a subspace of
the multiplier algebra Mult(7#], .74 ), where .71 and .7/ are unitarily invariant spaces.

Definition 2.3.28. We call a locally convex Hausdorff space .# C 0(B,;) homogeneous
if

(a) .Z is quasi-complete,

(b) the point evaluations 6, : # — C, f — f(z) are continuous,
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(c) for f € .7 and § € T the functions fr : By — C, f¢(z) = f({z) belong to .7 and the
maps
T—Z,0—f¢

are continuous.

Lemma 2.3.29. Let % C 0(B,) be a Banach space such that the point evaluations &, :
F — C, f+ f(z) are continuous for all z € By. If

(a) Clz] C .F is dense and
(b) fr € F with || fell# = ||fllz forall f € F and { €T,
then F is a homogeneous space.

Proof. It suffices to show that for all f € .% the functions

ﬁ7C'_>fC

are continuous. Since || f¢ || # = || f| #, it follows that

lfe = fellz = I feg — fll#
forall f € .Z and {,E € T. Hence, it is enough to prove that

e={feF llm||f«; fllz =0}

is equal to .%. First, we show that & is closed. Let therefore f € & and € > 0. Choose a
g€ & with | f—gll# < §andad >0 with ||gr —g||# < § forall { € T with |{ — 1] < 6.
We deduce for all § € T with | — 1| < 0 that

Ife = fllz <fe—gcllz +lge—gllz+llg—fllz
=2|f—zgllztlgc—glz <e

It follows that f is in & and hence & is closed. Finally, we show that & contains all
monomials. If z% (o € N¢) is a monomial, then

(2%)¢ = (E)*.
Hence, we obtain
[(za)¢ = 2%z = 18% = Ullzall 7 — 0

for { — 1. We conclude that L
F=Clfjc&CZF.

]

Lemma 2.3.30. Let 7 be a unitarily invariant space. The multiplier algebra Mult(7),
equipped with the strong operator topology, the weak operator topology or the weak-*
operator topology, is closed in B(¢) and hence quasi-complete.
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Proof. Due to Example 2.3.20, it suffices to show that the multiplier algebra Mult(s¢)
is closed in B(s#) with the strong operator topology, the weak operator topology or the
weak-* operator topology. Suppose that (Mg, )ac. is a net of multiplication operators
on s, which converges to an operator 7 € B() in one of the mentioned operator
topologies. It follows, in particular, that (Mg, ) ey converges to T € B(Z) in the weak
operator topology. If

K: ]Bd X Bd — (C, K(Z,W) = kw(Z)

is the reproducing kernel of .77, then for all f € JZ and z € B, the identity
(T1)(@) = (T, o = lim(Mg, f,k2) o = lim pu(2)£(2)

is immediate. Since 1 € 77, the net (@q) ey cOnverges pointwise on B to a function ¢.
We obtain for all f € 7 and z € B, that

(T£)(z) =lim@a(2)f(2) = ¢(2)f(2)-

Thus, ¢ € Mult(s¢) and T = M,,. It follows that

Mult(5¢) = Mult(J7) - Mult(%ﬂ)soT = Mult(%ﬂ)WOT.

]
Notation 2.3.31. Let ¢ be a unitarily invariant space. If C[z] C Mult(.s#), we denote by

A(%) — mH'HMuh
the norm-closure of the polynomials in Mult(.7¢).
Lemma 2.3.32. Let ¢ be a unitarily invariant space.

(a) The multiplier algebra Mult(J€), equipped with the strong operator topology, the
weak operator topology or the weak-x operator topology, is homogeneous.

(b) If C[z] C Mult(S7), then A(F) equipped with the norm topology is homogeneous.

Proof. (a) Because of Lemma 2.3.30, the multiplier-algebra Mult(.7¢) is quasi-complete
with the corresponding operator topology.

Let ¢ € Mult(57). For { € T Corollary 2.3.13, part (b) shows that the function
¢¢ :Ba— C, 9¢(2) = ¢(&2)
is in Mult(.72”) with || Q¢ |Imute = || @[[murt- Furthermore, the map
T — Mult(2), § — @¢

1s SOT-continuous. The same map is clearly WOT-continuous. Since every norm-bound-
ed net converges in the weak operator topology if and only if it converges in the weak-x*
topology (cf. A.2.1), the map is also weak-* continuous.
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(b) Let { € T. If p is a polynomial, then p¢ is a polynomial. Using the equality

| 0¢ [IMute = [|@ | Mure

for all ¢ € Mult(7), it is not difficult to see that y; € A(J), if w € A(JZ). Hence, the
assertion follows with Lemma 2.3.29. [l

Notation 2.3.33. Let f € 0(B,) be a holomorphic function with power series representa-
tion f =Y jene faz®.

(a) Forl €N, set f; = ¥ |q|— faz®
(b) Forn € N, we denote by S,[f] = Y] fi the n-th partial sum of f =Y" f1.
(c) For N € N, we denote by oy(f) = NLH YN, Sulf] the Fejér-means of f.
(d) For 0 < r < 1, we denote by
friBy—C, z— f(rz)
the radial dilations of f.

Proposition 2.3.34. Let F# C O(B,) be a homogeneous space of analytic functions and
let f = ZaeNd faZa € Z.

(a) Forn € N we have

fo= X fa= [ 5 am(§) € .

|ot|=n
For n <0, the integral is zero.

(b) If (Fn)n>o0 is the Fejér kernel, then

on(f) = [ Fu(O)fem(§) € 7

T

forall N € N.

(c) If 0 < r < 1and P, is the Poisson-kernel, then

fi= [ PAO frm(C) € 7.
T

Proof. Due to Remark 2.3.26, the integrals in (a), (b) and (c) exist and are elements of
. Fix z € B,. then

2. T—C, {— f(&2)
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2.3. Unitarily invariant spaces

is a continuous function with Fourier coefficients

() = {{;"(Z) b
ifn <O0.

Part (a): Observe that

1@ = &n) = [ 8§ am(©) = [ (GE " dm(E / St dm(¢)
for n > 0, where 6, : % — C the point-evaluation in z. Furthermore, the integral

[ 157 am(@) = [ 8§ dm(S) = g.(n)
T

is zero for n < 0.

Part (b): Using Remark 2.3.24 part (b) for g,, we deduce that

1 N
on(f)(2) = Nrl 7OSn[gZ](1)
- / Fv(€)g:(§)ami(E / Fv(8) fedm(§)

forall N € N.
Part (c): Using Remark 2.3.24 part (c) for g,, we obtain

f(rz) an r —/P )82(8)dm(¢ /P )fedm(C)

forO<r<1. [
The following corollary is a consequence of Proposition 2.3.34 and Corollary 2.3.25.
Corollary 2.3.35. Let % C O(B,;) be a homogeneous space.

(a) If f € F, then the Fejér-means (6,(f))nen and the radial dilations (f;)o<r<1 con-
verge in . to f,

(b) F contains % NClz] as a dense subspace.

Using Lemma 2.3.32 one checks that the next statement is a particular case of Corollary
2.3.35. For ease of reference we state it as a theorem here.

Theorem 2.3.36. Let 77 be a unitarily invariant space.
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(a) If f € Mult(S€), then the Fejér-means (0,(f))nen and the radial dilations (fr)o<r<1
converge in strong operator topology, in the weak operator topology and in the weak-

x topology to f.

In particular, Mult(J€) contains Mult(7¢) N Clz] as a dense subspace with respect
to the strong operator topology, the weak operator topology and the weak-+ topology.

(b) Suppose that C[z]) C Mult(s7). If f € A(S€), then the Fejér-means (6,(f))nen and
the radial dilations (f,)o<r<1 converge in the multiplier-norm to f.

2.3.2. Radially weighted Besov spaces

It is a frequent challenge to understand the multiplier algebra of reproducing kernel
Hilbert spaces. Often, a function and measure theoretic description of Hilbert function
spaces seems to be a useful tool. We consider radially weighted Besov spaces, unitarily
invariant spaces, where the Hilbert space norm is equivalent to an L2-norm of a fractional
radial derivative. This description, is roughly speaking, a measure for the smoothness of
the Hilbert space functions. Radially weighted Besov spaces contain many interesting
examples. Among others the Dirichlet space, Dirichlet-type spaces, Bergman spaces, or
the Drury-Arveson space can be described as radially weighted Besov spaces.

The following definitions and results about radially weighted Besov spaces can be
found in [ 1, [ 1, [ ] and [ ], which we also use as guidelines
here.

For s € R\ {0} we define R*: 0(B,;) — O(B,),

RS(i y faZa) Y Y fur®

n=0 o= =1 Ja=n

The operator R’ is called (fractional) radial derivative and generalizes the radial derivative

K
Remark 2.3.37. (a) The fractional radial derivative is well-defined. To see this let s €
R\ {0} and let f =Y e faz® € O(B,). Further, let 0 < r < 1 and let z € B4(r).

By the Cauchy-estimates applied to the holomorphic function g, : ID)(r*I) —C,{—
f(£z), we obtain that

y 2470 .

o!

1

|fn(Z)| = o

/ (Cz ”“déi‘ (Wesllgp |f(W)|>r”'

Using the Weierstrass M-test, we deduce that R°f € &/(B,) and

sup |R°f(w (Zn r) < sup |f(w)|>
weB,4(r) weBy(r)

|t =n
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2.3. Unitarily invariant spaces

(b) Using the Cauchy product formula, it can be readily seen that there is a similar product
rule for the radial derivative as in the classical case. More generally, inductively, one
obtains for f,g € 0(B,;) and N > 1 the Leibniz (product) rule

R - Y. (jlv ) RfR .

=0

Let dV be the normalized Lebesgue measure on C? restricted to By with dV (B,) = 1.
Furthermore, let do be the surface measure on dB,;, normalized so that do(dB,) = 1.

Remark 2.3.38. (a) For any non-negative measurable function f on B, integration in
polar coordinates yields that

[ rave) =2 ' p-t [, fot1ac(@ap

(see [ , 1.4.3]).

(b) If n € T and f € C(dBy,), rotation invariance of do yields that

Ly 0o = [ re)o(s),

d

A function @: B; — R+ is called radial weight if
(a) we L'(dV),
(b) for each 0 < r < 1 the value @(r) := w(rz) is independent of z € B, and
© Jizj>1-5@dV >0forall0 <é <1.

Condition (c) will assure that radially weighted Besov spaces are Hilbert spaces with
bounded point evaluations for all points in B;. Condition (b) is required to assure unitarily
invariance.

With the previous definitions in mind, we define the LP-version of radially weighted
Besov spaces By .

Definition 2.3.39. Let w: B; — R be a radial weight and let 1 < p < oo.
(a) Define the radially weighted Bergman-space L} (®) by
LP (@)= O0(B,;)NLP (0dV)

with the norm

1
£ 1170 =
pe @1 (avy /B,

[f(@)[Po(2)av (z).
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(b) For s € R\ {0}, define the space
By ={f€O0By,); R°'f € LP(wdV)}

with the norm

1 Ip.0s = IF O + R fllpw (f€BS).
We use the notations BS, = BSy> and By = L2().
For s € R the spaces By are called (holomorphic or analytic) radially weighted Besov
spaces.

Lemma 2.3.40. Let 1 < p < oo. The norm-topology on the radially weighted Bergman-
spaces L} (o) is at most finer than the topology of uniform convergence on compact sub-
sets. The spaces L} (@) are Banach spaces with continuous point evaluations.

Proof. Fix 0 <r < 1, let f € L}(®) and € > 0. Since |f]” is uniformly continuous on
B,4(r), there exists a 0 < & < 1 such that

sup [|f(@)I” = £ (p2)IP] < (1=r) e[| flI} o 2.2)
ZGBd(r)
foralll—-0<p<1.
Now, fix aw € B,;(r). Using the Cauchy integral formula on the ball [ ,3.24]in

the first equality and applying Holder’s inequality to the functions f, and 1 in the second
inequality, it follows for all 1 — & < p < 1 that

o =| [ e aa(¢)

<=0 ([ 1retlo)
<=7 [ IO do(?).

d

p

Hence, inequality (2.2) yields forall 1 — 0 < p < 1 that
[f(w)]P < |f(PW)\”+(1—r)pde\lfllﬁwé(l—r)pd/ (IF PO +ellflp.w)do(E).

JIBy
Using polar coordinates, we obtain that

o< ([ e@wE)irmp
<2 [ pHop)l 0w ap
<= (2a [ pale) [ (081 +elfl0) do(8)ap)
<=0 ([ (@I +elslfo) oQave)
ol

=(1 +€)W||f||§,w-
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2.3. Unitarily invariant spaces

Since (f\z\>1—8 a)(z)dV(z)> > 0, we conclude that

LY(@) = H”(Ba(r)), £ e,

is continuous. It is now immediate that the topology induced by || - ||, is at most finer
than the topology of uniform convergence on compact subsets. In particular, the point
evaluations are continuous for L% (®). If (f,).cn is a sequence in LL(®) converging to
a function g € LP(@dV ), then (f;)qen is a Cauchy sequence in L5 (®). We obtain that
(fu)nen converges uniformly on compact subsets to a function f. Then f € &(B,) and
f = g for u = wdV almost every z € B;. Thus, L5 (®) C LP(wdV) is closed and hence a
Banach space. [

Proposition 2.3.41. For 1 < p <  the radially weighted Bergman spaces L} (®) are
homogeneous Banach spaces in the sense of Definition 2.3.28.

Proof. Due to Lemma 2.3.40, the spaces L} () are complete with continuous point eval-
uations. We use a well-known statement, presumably going back to Lebesgue, similar
to the idea of the proof for the classical dominated convergence theorem with Fatou’s
Lemma. Let f € L () and & € T. Since o is rotation-invariant, using polar coordinates,
it follows that the function fy : By — C, fn(z) = f(nz) belongs to L, (®) and that

0= o (24 [ #7006 [ 1r(p0)" do(&)ap)

@1 (av)

(20 [ ¥ 1600 [ 17npO doC)dp ) = Ifalor

a Hw”Ll(dV)
For n € T, define the non-negative functions hy : By — C,
hn(2) = 2°(|fn @ +1f(2)]P) = fn(2) = F(D)|F.
Then

lim hy (z) =274 f(2) |
n—1

and
i llzsw) =27 I 10— 1fn = f 1170
Applying Fatou’s Lemma to the functions 4, it follows that

0 < limsup||f — £][h.0 = 0.
n—1

Hence, we deduce that the map
T %Lg(w)an = fTI

1S continuous. ]
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Lemma 2.3.42. Let 1 < p <o and let s € R. The norm-topology on the radially weighted
Besov spaces Byl is at most finer than the topology of uniform convergence on compact
subsets. The spaces Byl are Banach spaces with continuous point evaluations.

Proof. The case s = 0 is Lemma 2.3.40. Let s € R\ {0} and let Q C B, be compact.
Using Remark 2.3.37, we deduce that there exists an r > 0 such that

[f @] =1fo+ (R*((Rf)) ()] < |fol + (in_s"") IR fllo-

for all z € Q. Because of Lemma 2.3.40, the topology induced by || - || 5, is at most finer
than the topology of uniform convergence on compact subsets. Hence, we obtain that the
topology induced by || - || 5. w,s is at most finer than the topology of uniform convergence
on compact subsets. In particular, the point evaluations are continuous for By’. Let
(fu)nen be a Cauchy sequence in By”. By the previous argument, the sequence (f;),en
converges uniformly on compact subsets to a function f. Then f € &/(B,) and because of
Remark 2.3.37, the sequence (R’ f,),cn converges uniformly on compact subsets of B, to
R’ f. Furthermore, the sequence (R®f;),en is a Cauchy sequence in LY (®). Since L ()
is complete, the sequence (R*f;),en converges in L) (o) to a function g € Ly (). It is
immediate that R°f = g and f € By. Thus, the spaces By are complete. [

Proposition 2.3.43. For 1 < p < o and s € R the radially weighted Besov spaces By’
are homogeneous Banach spaces in the sense of Definition 2.3.28.

Proof. The case s = 0 is Proposition 2.3.41. Due to Lemma 2.3.42, the spaces By are
complete with continuous point evaluations. If f € 0(B;), { € T and 0 < r < 1, then
(R°f)¢ = (R*fz) and (R*f), = (R*f). It follows that || f¢||p.ws = ||fllp.eos for f € Be
and § € T. Using Proposition 2.3.41 and Corollary 2.3.35, the radial dilations are dense
in L/ (®). Thus, the radial dilations are also dense in Bg. Because of Lemma 2.3.29, the
spaces By are homogeneous. O

Using Proposition 2.3.43 one checks that the next statement is a particular case of
Corollary 2.3.35. For ease of reference we state it as a theorem here.

Theorem 2.3.44. For 1 < p < o and s € R the radially weighted Besov spaces Byl
are Banach spaces with continuous point evaluations. If f € B3y, then the Fejér-means
(00(f))nen and the radial dilations (f)o<r<1 converge to f. In particular, the polynomi-
als are densely contained in By .

For p = 2 we will see that the spaces B, = By are unitarily invariant reproducing
kernel Hilbert spaces.

For n € N we define the moments
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2.3. Unitarily invariant spaces

where v : [0, 1] — R,

0, ifr =0,
1 Cd—1 . p :
V(1) = —||w|\L1(dV)d t o(vt) if0<t<l,
1 ifr=1.
The following lemma can be found in [ , Lemma 2.1] and is useful for the

representations of the reproducing kernel functions of radially weighted Besov spaces.

Lemma 2.3.45. Let v,w : [0, 1] — Rx>q be two non-negative weights in L' (|0, 1]) such that

limﬂ 1
t 1 w(t)
(with the convention 0/0 = 1). Then
I.n
t"v(t)dt
fim Jo VO
n—ee [StMw(t)dt
Remark 2.3.46. For o, 8 € N Proposition 1.4.8 and Proposition 1.4.9 in [ ] show
that
ol ||
CEPao(r) = | Loz | 5
o(C)= ,
JB, Yo o.p
where
1 ifa=p
Oy g = ’
o.p {O else
and
-2 n+d—1 _
||Z’11||H2(3Bd) = ( " ) ~ I’ld 1

for n € N (see also Remark 2.1.10).

Proposition 2.3.47. If f =Y., cna faz® € L2(w), then
1 |fal®
11330y = [ P odv = ,
560 = Tall iy, Ja, 2. Yata (@

aeNd Yod|q|

where

a(©) = (A 72(95,) (@) =1 va(w)

forn e N.
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Proof. For a,8 € N¢, using polar coordinates, we obtain with the previous Remark
2.3.46, that

/B %P wav = (2d/01p2d+|“|+ﬁ"1é>(p)dp> (/ C"@dc(?))

:(d/ 1f'“'+d—1caw?>dz> —HZMH 2|8
0 Yo op

_ ||(9||L1(dV) s
a|a|(w)7a B>
where
5 . 1 ifa=p,
ap = 0 else.

If f =Y gene faz® € L2(®) and 0 < r < 1, this yields

L pPoav=¥ ¥ fufyr? [ “Paav

acNd BeNd

|fa‘2r2|a|
— |l aloVv. |
oz av) (agd )¢/ () Yo

Because of Proposition 2.3.41 and Corollary 2.3.35, the radial dilations are densely con-
tained in L2(®). Thus, we conclude that

. . f ZrZ‘OZ‘ f 2
Hf”%g(w) :lrlﬁlnfr”%g(w) = lim Z L: Z |L|

A~ '}’aa|a|(a)) oeNd Vaa\a\(a)).
[

Corollary 2.3.48. For s € R and a radial weight ®: B; — R~ set ag := ap(s,0) =1
and

n—2s

ap := an(sa (O) = an(w) ~ n_2S+d_lvn(w)_l

forn>1. Then
lim — = |
n—e dyyq

and the spaces B}, are unitarily invariant spaces with reproducing kernel

K:B;xB; —-C, K Zanzw
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Proof. Letn € N. Lemma 2.3.45 yields that
e vt (@) Jo " (r) dr :1
nvee vu(@)  noee [Leny(r)dr
Secondly, observe that

[anlly

lim — 2080 _ iy (”H) (”+d_1) —1
n—soo HZ?H?#(&]B%L,) n—voo n n+d

Hence, one computes that
an

lim =1.

With Proposition 2.3.47 it is not hard to see that (-,-) : B}, x Bf, — C,

(f.e)=Y Juga (fz ) fu¥g= ) fazo‘eBio>

aend 4ol Vo aeNd aeNd

defines a scalar product on BY, such that

1 £113s = (f+f)-

For every w € B, the function k,, : B; — C,

kw(z) = i‘ban (z,w)"

is in By, such that
fw) = (k).

for all f € Bj,. Using these facts, it follows that By, is a reproducing kernel Hilbert space
with reproducing kernel

K :B;xB; —C, K(z,w) = Z an(z,w)".
n=0

Remark 2.3.49. Fort > —1 the radial weight function
0" By — Rsp, 09 (2) = (1-12%)

is called standard weight. For ¢ > —%, to simplify notation, we write

Bl =By = £ € OBy [ IRFDI(1- kPP dv () <o
By
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for the standard weighted Besov spaces and
B == {7 o) [ RI@PVE) <},
d

for the Besov spaces with constant weight function ©® = 1. Let
K : By xBy — C, Ky (z,w) = Zanst z,w)"

be the kernel function of the radially weighted Besov space BY, where
anls,t) = n~2a, (w(zr)) ~ 2L, (w(2t)> -1

For n € N the moments vn(a)(z’ )) of the radial weight ®?) can be computed by the Euler
beta integral

d 1
(21) / nt+d—1(1 2 g4
n w —
' ( ) |21 (avy Jo P (1=p)"dp

d I'(n+d)'(2t+1)

— _|_1 2t—1
H(IJ(ZI)HLI(CIV) I(n+d+2t+1) ~(n+ 1)

(see Remark 9.12 (a) in [ , Chapter VI, Section 9] and Remark 2.1.10). Hence, we
obtain for n € N and s € R that

(ln(S,t) _ anSan (w(Zt)> ~ (n+ 1)72(s7t)+d.

In Example 2.3.5, we considered for s € R the spaces Z;(B,) with reproducing kernel

K:ByxBy—C, K(z,w) =) (n+1)(z,w)".
n=0
It follows that Bf = Z_5(;_)+4(Ba) with equivalence of norms.
(a) B4/? = = P(By) = H§ is the Drury-Arveson space.
(b) B@*+1/2= @ _|(By) is the Dirichlet space on the ball.
() If s€ (4,4H1), then BS = P55 4(By) = A% +1_04(By) are the Dirichlet type spaces.

(d) The space B'/? = 9, |(B,) = A%(B,) = H*>(dB,) is the Hardy space on unit the
ball.

(e) Fors < % we obtain the weighted Bergman spaces

B =9 54(Ba) = L (w(fzs)>
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(f) More general,
B =B}
for all » > 0 with equivalence of norms.

In many proofs, it is useful to do an index shift as in (f). The following theorem, which can
be found in [ , Theorem 2.4], generalizes this idea for arbitrary radial weights
®. For s > 0 and z € B, define a new radial weight function w; : B; — R>,

WZ_ 2\2s—1
o) =g [ P amave)

Theorem 2.3.50. Let ® be a radial weight and let s > 0. The function @, defined in
Remark 2.3.49 is again a radial weight and B, = Btwts with equivalence of norms for all

t € R. In particular, L2(w,) = By’

Remark 2.3.51. Lets € R and N € N such that N > s > 0. One advantage of the previous
consideration is, that every radially weighted Besov space By, can be written in the form
B%Nis. Since the operator R is the higher order of the classical radial derivative R :
ﬁ(IB%d) — ﬁ(Bd>,
d af
Rf=) z1—.
f l_zi "5
it is sometimes easier to work in this setting (cf. also the product rule in Remark 2.3.37).

Let s, € R with s <t and let ®: B; — R~ be a radial weight function. Consider the
radially weighted Besov spaces B, and B’,. Due to Corollary 2.3.48, the families

(« / Youtt| o) (@, s)z“) end and (, /Yot ) (@, t)z“) e

are orthonormal basis for the spaces B, and B, respectively. Since

one obtains the following proposition:

Proposition 2.3.52. Let s,t € R witht <s, then B}, C B', and the inclusion i : B, — B,
is compact. In particular, if f € B}, then

IR fllz2(@) < 118, < 1f 1B,

Finally, we are interested in the multiplier algebras of radially weighted Besov spaces.
Remark 2.3.53. (a) Let o : B; — R>( be aradial weight, let s € R and let r > 1. Clearly,
O(By(r)) C A(By), where A(By) is the ball algebra. If ¢ € &(B,(r)), then one can
check that R'¢ € 0'(B,(r)) for all r € R. Hence, it follows with the Leibniz rule (see
Remark 2.3.37 and Proposition 2.3.52), that ¢ € A(BS,), where A(Bj,) is the norm-
closure of polynomials in Mult(Bg,).
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(b) Because of Theorem 2.3.50, we obtain that Mult(B,) = H*(B,) for all s < 0.

The following statement about the containment of multiplier algebras together with
Theorem 2.3.50 is an important tool and can be used to prove Theorem 2.3.55. For a
proof, see [ , Corollary 3.8].

Theorem 2.3.54. Let w : B; — R>o and @ : B; — R be radial weights and let
s,t,s' ;1" € Rwitht <sandt —s' <t—s. Then for any pair &, & of separable Hilbert
spaces,
Mult(BS,(£1),B%(52)) C Mult(B,,(&1),B%(£))

and the inclusion is contractive.

For the Dirichlet space Z it is well-known that a function ¢ : D — C is in Mult(2) if
and only if ¢ € H*(D) and ¢’ € Mult(Z,L2(D)). Here L2(D) is the classical Bergman
space. See [ , Theorem 5.1.7] for details. As explained in [ ], there

are similar statements for Besov spaces due to Cascante, Fabrega and Ortega. For the
standard weights

o0 By — R, @9 (2) = (1—[zP)* (s> 1),

see | 1,1 ]). For general Bekollé-Bonami weights (not necessarily radial) there
is a result in [ ]. The following result can be found in the paper by Aleman, Hartz,
M¢Carthy and Richter ([ , Theorem 6.3]).

Theorem 2.3.55. Lets € R and N € N, then we have
Mult(B,) = {@ € H*(B,); RV ¢ € Mult(B,, BS,; M)}

and
l@llvarca) ~ IR @llyganzy g + 9]l
In particular
RN : Mult(BS,)) — Mult(BS,,B5, ™), ¢ — RV @

is a continuous linear operator.

Remark 2.3.56. Consider the one dimensional case d = 1, where the radial weight w(z) =
1 is just one. Then the Dirichlet space ¥ coincides with B{ and the classical Bergman
space L2(D) coincides with BY. Let ¢ =¥ [ ¢,2" € O(D) be a holomorphic function
and let M, : L2(D) — L2(D) the Bergman shift. If

¢/ € Mult(7,12(D)),

using that R (z) = z¢'(z) for all z € D, we obtain that Rgp € Mult(2,L2(ID)) with mul-
tiplication operator Mgy = M. 0 M. Conversely, let R € Mult(2,L2(D)). Observe
that

* - n| _ o n+1 n
(MZMZ) (r;()fnz ) —’;)n+2fnz
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for f =Y fad". Using the diagonal operator
n+2
A:L2 —>L2 anz Z ?fnz”

(cf. also Section 2.4.3), one computes that M, is left invertible, that is
(A OMZ*) OMZ = idLg(D) .
Thus, ¢’ € Mult(2,L2(D)) with multiplication operator My = (AoM;)oMpgy. Conse-
quently, Theorem 2.3.55 is equivalent to previously mentioned result that
Mult(2) = {@ € H*(D); ¢’ € Mult(2,L2(D))},

where

1@ llsate2) = 19" w2209 + 191l
for all ¢ € Mult(2).

2.3.3. The vector-valued case

We will also need the following vector valued version of reproducing kernel Hilbert
spaces and multipliers. Let therefore # be a unitarily invariant space with reproduc-
ing kernel

KBdXBd%(C Zanz, 5

where ag = 1 and a,, > 0 for n > 1. Then one may regard 7 (&) = 7 ® & as a functional
Hilbert space of &-valued holomorphic functions on B, by identifying an elementary
tensor f ®x €  ® & with the function z — f(z)x. The operator-valued mapping

Kg: By xBy; — B(&), Ke(z,w) = K(z,w)idg

is positive definite and defines the reproducing kernel for J7(&).

Similar as in Proposition 2.3.3, one can show that

2
%”(6’):{}‘: Y faz® € 0By, E): |IfIP= ) Ifellz <oo}

aeNd aend 4ol Yo

with the scalar product (-,-) s (s) : (&) x (&) — C,

Z faZa, Z gaztx _ Z thgOC>

<OLENd aeNd >%((g) aend Yo Ve

Let &, &1, & be Hilbert spaces and let 77, 7] and .74 be unitarily invariant spaces
with kernels K, K1,K; : B; x B; — C respectively. A function

O Bd —>B(éal,é02)
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is called a multiplier between .7 (&) and J%4(&85), if for every f € J#(&1), the function

¢:B;— &,z 0(2) f(2)

belongs to 7% (&,). The set of all multipliers between 771 (&1) and %3 (&>) is denoted by
Mult(s4 (&1), 74(62)) and we simply write Mult(77(&')) = Mult(s (&), 7 (&)). For
@ € Mult(7 (&), 76(6,)) an application of the closed graph theorem shows as in the
scalar-valued case, that the corresponding multiplication operator,

My : H1(61) = H5(8), [ of

is bounded. Hence, in this vector-valued setting Mult(.74{ (81 ), .#(&>)) can also be con-
sidered as a subspace of B(7#],.74), identifying each multiplier function

@ € Mult(F(&1),75(&£2))

with the corresponding multiplication operator M. Using this identification, we equip
Mult( (1), #5(62)) with the operator topologies 7)., SOT, WOT and 7. With the
help of point evaluations, it is not difficult to see that Mult(.74{ (&} ), 7(&>)) is complete
with respect to the norm-topology

l@llmue = Mol (@ € Mult(H#1(&1), #3(¢3)))).

Fix a map ¢ € Mult(#(&7),.74(&>)). Similar to the scalar-valued case, it is elemen-
tary to check that
M$K2(~,w)x =Ki(-,w)p(w)x

for all w € By, x € &, and that the following are equivalent:
(@) @ € Mult(#i(61), #3(¢2)),
(b) there exists a ¢ > 0 such that
Lo : By xBy — B(&),(z,w) = *Ka(z,w)idg, — 9 (2)Ki1 (2, w) 9 (w)*
is positive definite.
In this case, |[My|| = inf{c > 0; Ly . is positive definite}.

We need the following particular case of standard characterization of multipliers on
reproducing kernel Hilbert spaces (Theorem 2.1 in [ D.

Proposition 2.3.57. Let T € B(J€ (&), (6>)) and suppose that the operators
M, : =, f—zf (I=1,...,d)
are well-defined and bounded. If
T(M;,®idg,) = (M, ®idg,)T
forl=1,...,d, then there exists an operator-valued multiplier function
¢ : By — B(&1,6)
such that T = M.
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2.3. Unitarily invariant spaces

2.3.4. Complete Nevanlinna-Pick spaces

Properties of complete Nevanlinna-Pick spaces are a useful tool to generalize important
results of the Hardy space H?(ID), which is a prototype for such spaces. A good introduc-

tion is given in the book [ ]. We give an overview of some ideas given in [ ].
The following definition can be found in [ , Definitions 5.12, 5.13 and Exercise
5.14] and [ , 1.42 Definition].

Definition 2.3.58. Let /7 be a reproducing kernel Hilbert space with reproducing kernel
K : X x X — C. We call .77 a complete Nevanlinna-Pick space if, whenever xy,...,x, € X
and Wy, ..., W, € B(¢2(N)) such that

((id g2 gy =W W) K (x1,5m)) . —y € B(C(N)")

is positive, then there exists a multiplier ¢ in the closed unit ball of Mult(.%# ® ¢*(N))
such that

¢(x) =W,
foralll=1,...,n.

The next characterization of complete Nevanlinna-Pick spaces due to McCullough-
Quiggin and Agler-M¢Carthy (cf. Section 7.1 in [ ] and Theorem 2.1 in [ ] is
often very useful.

Theorem 2.3.59 (McCullough-Quiggin, Agler-M¢Carthy). Let 77 be an irreducible re-
producing kernel Hilbert space on a set X with reproducing kernel K which is normalized
at a point in X. Then F is a complete Nevanlinna-Pick space if and only if the Hermitian
kernel F = 1 — 1 /K is positive definite.

Let d € NU {eo} and denote by B., the unit ball in £2(N). If d € N, then modulo
identification B; C B... The positive definite map

1
Kt By xBy; — C, KHc%(z,w) =—,
1— <Z7W>
is the kernel of the Drury-Arveson space H(%, the canonical example for unitarily invariant
complete Nevanlinna-Pick spaces. Due to Agler and M¢Carthy ([ , Theorem 8.2],
see also [ , Theorem 2.4]) the function space H§ 18 universal.

Theorem 2.3.60 (Agler-M°Carthy). If ¢ is an irreducible complete Nevanlinna-Pick
space with normalized kernel K : X x X — C, then there exists d € NU {0} and an em-
bedding b : X — B, such that
2
K(x,y) = K" (b(x),b(y)) (x,y €X).

The composition f — f ob defines a unitary operator from H5|b(x) onto 7. In this
setting, we say that b is an embedding for F€.
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Suppose that we are in the setting of Theorem 2.3.60. That is, 7 is a complete
Nevanlinna-Pick space and

1
1= (b(x),b(y))

for some function b : X — B... Consider the corresponding row operator

K:XxX—C, K(x,y) =

b(x) = (b1(x),ba(x),...) € B(A(N),C)

Since
K(x,y)(1=b(x)b(y)") =1 (x,y€X),

we obtain that b € Mult(# ® (>(N),.#) with ||b||yue < 1. Let y € X. Modulo the
identification C = B(C), it follows that the function

by(y) : X — B(C), z— b(x)b(y)",
is an element of Mult(.7#’) with
1Dy [[vare < [1BG)]]-
The following theorem is a consequence.
Theorem 2.3.61. Fory € X the function
ky:Bg — C, ky(x) = K(x,y)
is an element of Mult(J7).

Proof. For all x,y € X and b : X — B., as in the remarks before, we obtain

K(xy) = Y (b ()"

n=0

For all y € X we have by,(,) € Mult(#°) with [|by(y)|[mure < [|b(y)]]- Since Mult(52) is a
Banach algebra with pointwise composition as multiplication, we get

1553y Ittt < {153 3) gt < 1D 11"

Hence, the sum
n
2 By
n=0

converges absolutely in Mult(.7#). The map

XxX—=C, (xy) = K(x,y)—1=K(xy) <1_ : )
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2.3. Unitarily invariant spaces

is positive definite by the Schur Product theorem [ , Theorem 4.8]. Because 1 € 77,
the inclusion mapping Mult(.7#) < ¢ is well-defined, continuous and linear. Thus,
convergence in Mult(.7¢) yields pointwise convergence. It is immediate that

ky=Y by,
n=0

is an element of Mult(5¢). O

The following lemma (Lemma 2.3 in [ ]) characterizes unitarily invariant com-
plete Nevanlinna-Pick spaces

Lemma 2.3.62. Let d € NU{eo} and let 5 be a unitarily invariant space on By with
reproducing kernel
KBdXBd%C Zanz, s
where ag = 1 and a, > 0 for n > 1. Suppose that a; > 0. Then the following are equiva-
lent:
(a) F is an irreducible complete Nevanlinna-Pick space.
(b) The sequence (b,);_, defined by
1

byt" =1— ———
Z " Zn ()ant

for t in a neighborhood of 0 is a sequence of non-negative real numbers.
In particular, if (b) holds, then F is automatically irreducible.

In many cases, one can use the following lemma of Kaluza to show that (unitarily
invariant) spaces have the complete Nevanlinna-Pick property (cf. [ , Lemma 7.23]).

Lemma 2.3.63 (Kaluza). Suppose that ag = 1 and that a,, > 0 for n > 1 such that

dap < Ap+1
ap—1 ap

foralln > 1. Then for all n > 1 there exist b, > 0 such that

sz _1_%

0anZ"

Example 2.3.64. (a) If s <0, it follows from Kaluza’s Lemma that the Dirichlet type
spaces Z;(B,) with reproducing kernel

oo

K:B;xB; —C, K(z,w) = Z(n+ 1)%(z,w)"
n=0

are unitarily invariant complete Nevanlinna-Pick spaces.
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(b) Lets € (0,1]. If z € D, by Newton’s generalized binomial theorem

Thus, the spaces A2(B;) with reproducing kernel

v
(1= ()’

are unitarily invariant complete Nevanlinna-Pick spaces. In Remark 2.3.6, we have
seen that A;(By) and Z,_1(By) coincide as vector spaces with equivalence of norms.

K;:B;xB; — C, K(z,w) =

(c) Suppose that t > —1, 0 < rp < 1 and let o : B; — R~ be a radial weight such

that % is non-decreasing in |z| for all ry < |z| < 1. If s > 54, Theorem 1.4

in [ ] shows that the radially weighted Besov spaces By,, equipped with an
equivalent norm, are complete Nevanlinna-Pick spaces.

2.4. Regular unitarily invariant spaces

In this section, we want to assume an additional regularity condition for our space unitarily
invariant space .7Z”. One big advantage is that for spaces fulfilling this regularity condition,
the weighted shift operator tuple is bounded, has closed range and is essentially normal.
As before let .77 be a unitarily invariant space with reproducing kernel

K:B;xB; — C, K(z,w) = Z an(z,w)",
n=0

where ap =1 and a,, > 0 forn > 1.

The unilateral shift operator S on ¢?(N) is well understood. In many cases, it makes
sense to identify S with the operator M, : H>(ID) — H?(ID) that takes a function in H?(ID)
and multiplies it by z. Similar to the Hardy space case H>(ID) the multiplication operators

M, =M, f=2f (I=1,...d)

are of special interest. One can give a boundedness-criterion using the Taylor coefficients
(an)nen- For a proof, see [ , Corollary 4.4].

Lemma 2.4.1. The operators

M, :H = (I=1,..,d)
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2.4. Regular unitarily invariant spaces

are bounded if and only if sup,, . aj'rl < oo, In this case,

Qn

o\ 172
n
M, | = (sup ) .

neN An+1

Recall,
A =P H,,
n=0
where
H, = { Y. paz*: pa € C} C C[]
la|=n

are the spaces consisting of all homogeneous polynomials of degree n. Denote by P, :
JC — F¢ the orthogonal projections onto Hi,.

For the next lemma set a, = O for all negative integers n and ¥, = 0 for all o € Z¢
with a; < 0 for some [ € {1,...,d}. Using elementary calculations (see Proposition 4.3
in [ ] and 1.29 Lemma in [ ]) one can show that

Lemma 2.4.2. (a) (Mzﬁ)*za = (Ya—_ﬁw> 2% P fora,p e N9,

Yo o 4q

(b) (M,M:)z% = (%"a“f“;l)z“for acN andl=1,....d

(c) (M:M,)z* = (“l“ L) P foracNandl=1,....d,

la[+1 g 11

(d) Y4 M M; =SOT—Y% | (“;;1) P,

d oo d _ay
(e) Y\ M;M, =SOT—Y; (%fﬁ) P

Together with Theorem A.1.4 (cf. also Theorem 2.5 in [ 1) one obtains the fol-
lowing lemma:

Lemma 2.4.3. Let M, : 7% — ¢ be bounded. Then the following are equivalent:
(a) M, : 7% — S has closed range,

(b) ImM. ={f € A; f(0) =0},

(c) inf,cpy =2 > 0.

a
An+1
Definition 2.4.4. We call a unitarily invariant space ¢ regular if

an

lim =1.
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Remark 2.4.5. If 77 is a unitarily invariant regular space and hence

. a
lim — =1,
n—e dyy 1

then clearly

ap ap

sup < o and inf > 0.

neN dn+1 neN dp 1

Thus, the row operator M, : 5#¢ — . is bounded and has closed range.

Example 2.4.6. (a) In Example 2.3.5 we considered for s > 0, the unitarily invariant
spaces A2(B,) with reproducing kernel Ky : By x By — C,

=1
for n € N5 . With the Gauss representation formula

ns—l

I'(s)=1lm ——— (s>0
©) = Jin —p=y (6>0)
(see Remark 2.1.10), it follows that
—1)r(~*
lim (=1 (") =1.

Thus, the spaces A2(B,) are regular. Additionally, the function

k:D—C, k(z) =

(1—2)
has no zeros in D.

(b) For s € R, let Z5(B,) be the unitarily invariant spaces with reproducing kernel

(o]

K:B;xB; —C, K(z,w) = Z(n—i— 1)%(z,w)".
n=0

It is clear that
(n+1)°

Thus, the spaces Z;(B,) are regular.

(c) Lets € Randlet w: B; — R+ be a radial weight. In Corollary 2.3.48 we have seen
that the radially weighted Besov spaces By, are unitarily invariant and regular.
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2.4. Regular unitarily invariant spaces

2.4.1. Multivariable spectrum

The multivariable spectrum of a tuple of commuting bounded linear operators on a regular
unitarily invariant space extends the spectrum of a single bounded linear operator. It can
be a useful tool, since there is a generalization of the Riesz-Dunford or analytic functional
calculus for tuples of commuting operators. We only give a brief introduction. For further
background we recommend [ 1, [ 1, [ ] which we also use as guidelines
here.

We start with the Taylor spectrum. Let Alx] be the free complex algebra generated by
d indeterminates xi,...,xg, where the multiplication relation A satisfies the
anti-commutative relations

X NXm = —xuAx; (Ibm=1,....d).

Then x; Ax; = 0 and the set

Als] = { Z Cll,...,l,,(xll /\.../\xlp); p=0,....d,c, 1, € (C}

1<l <..<l,<d

:{ Z CMXM; CMG(C},

Mc{l,..d}

where
xM:xll/\.../\xlp for M:{ll,...,lp},

can be considered as a Hilbert space with orthonormal basis
(X, Ao Axps  p=0,.,d, 1 < <. <1, <d).
For [ =1,...,d define the linear operators S; : A[x] — A[x] by
S, ( Z chM> = Z ep (X AN xpp)
Mc{1,.d} Mc{l,.d}
Then S;S; = —SuS; and S7 =0 for ,m=1,...d.
For a Hilbert space H let Alx,H] = A[x] ® H. Then A[x, H] decomposes for p =0,...d

into the spaces

AP[X,H] = { hlh...,l,, (xll A... /\xlp); hlh...,l,, S H} C A[S]

1<l <..<l,<d

of degree p, that is A[x,H| = EBZ:O AP[x,H].

61



2. Preliminaries

For a tuple of commuting operators T = (Ty,...T;) € B(H)?, denote by 87 : Alx,H] —
Alx, H] the operator defined by

d
or = ZS[@TZ.
=1

Observe that 87 (AP[x,H]) C AP*![x,H]. We define for p = 0,...,d — 1 the operators
87 ¢ AP[x,H] — AP*![x,H] as the restrictions 8] = &7 |xp[s1. Since the operators T;

(I=1,...,d) commute we have 57’3“57’3 = 0. So, the operators 67 form a complex
59 St 541
K*(T,H):0 —— A°x,H] —— A'[x,H] —— -+ ——— A%[x,H] —— 0.

The complex K*(T,H) is called the Koszul complex of 7.

With these notions, we define the Taylor spectrum.

Definition 2.4.7. Let T = (T1,...,T;) € B(H)“ be a tuple of commuting operators, then
o(T) = {z € C?% K*(z—T,H) is not exact}
is called the Taylor spectrum of 7'.

As in the one-dimensional case, there is a spectral mapping theorem for a tuple of
commuting operators. This is for example, a particular case of Theorem 2.5.10 in [ ].

Theorem 2.4.8. Let T = (T1,...,T;) € B(H)“ be a tuple of commuting operators and
p: C? — C a polynomial then

Next, let us consider the case of commutative unital Banach algebras.

Definition 2.4.9. Let &/ be a commutative unital Banach algebra. A linear functional
x : &/ — Cis called a character or multiplicative if ¥ (1) = 1 and x(xy) = x(x)x(y) for
all x,y € o/. We denote by

M () ={x: o/ — Cis acharacter}

the maximal ideal space of .o/
The following definition can be found in [ , Chapter I, Section 2, Definition 14].

Definition 2.4.10. Let <7 be a commutative unital Banach algebra and let x = (x1,...,x4)
be a tuple with elements in 7. The joint spectrum is the set

0 (X) = {(x (1), x(xa)): X € M ()} C T

Notation 2.4.11. Let </ be a unital Banach algebra and let x = (xy,...,x4) be a tuple of
commuting elements in 7.
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(a) We denote by (x) the unital norm closed (commutative) algebra generated by the
elements xq,...,x,.

(b) For reasons of readability, we use the notation
Gjoint(X) = G oy ().
Remark 2.4.12. If T € B(H), it might happen that

o(T) < o'l (T) = Gjoint(T).

Jjoint
In fact, we will see that G, (T') is the polynomially convex hull of o(T').

Let &/ and # be a commutative unital Banach algebras. If 7 : % — <7 is a unital
algebra homomorphism, it is not difficult to see that

{xom, y e M ()} C MB).
Hence, one obtains the following proposition.

Proposition 2.4.13. Let o and % be a commutative unital Banach algebras and let
x = (x1,...,%x,) be a tuple with elements in B. If & : B — < is a unital algebra homo-
morphism, then

i (X)) C Gy ().
In particular, if © : B — < is invertible, then

o B
Gjoint(n (x) ) = Gjoim‘ (X) :

Remark 2.4.14. (a) Let &/ be a commutative unital Banach algebra, let % be a unital
subalgebra and let x = (x,...,x;) be a tuple with elements in . Since the inclusion

mapping
Tinclusion - B — '52{7 X=X
is obviously a unital algebra homomorphism, it follows that
o o B
Oigint(X) = Ojoint(Tinclusion (X)) C Ojoine (X)-

(b) Let <7 be a unital Banach algebra and let x = (x1,...,x;) be a tuple with commuting
elements in .27, then
Cjoint (X) C 0 (x1) X ... x 0 (xg).
In addition, if .« is commutative, it follows from part (a) that
Gt (X) C Gjoint (%)

(c) If 7 is a reproducing kernel Hilbert space consisting of C-valued functions on a set

X and @, ..., @, are elements in the multiplier algebra Mult(.7#’) with corresponding
multiplication operators My, , . ..,Mg, in B(¢), one obtains
Mult(#
oo (@1, 04)) € Cjoint (Mg ..... My,)).
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Proposition 2.4.15. Let x = (x1,...,x4) be a tuple with commuting elements in a Banach
algebra <7 . Then the mapping

72 A ((x)) = Cjoint (%), X = (X (x1), .. X (xa))
is a homeomorphism.

Proof. The maximal ideal space .# ((x)) is compact and 7 is continuous and onto. It
suffices to prove that 7 is one to one. This is immediate, since 7();) = m(x2) implies
that x (x;) = xa2(x;) for x1,02 € M((x)) and I = 1,...,d. See also [ , Theorem 16,
Chapter I]. 0

As in the one-dimensional case, the following spectral mapping theorem is immediate.

Theorem 2.4.16. Let o/ be a commutative unital Banach algebra, let x = (x1,...,x4)
be a tuple with elements in </ and let p = (py,...,pm) be a tuple of polynomials in
Clz1y---,24), then

G (P(x)) = PG5 (%))

Notation 2.4.17. Let Q C C? be compact, we denote by

0= {z eC% [pz)| < Zug\p(é)\ forall p € C[Z]}
S

the polynomially convex hull of Q. The set Q is called polynomially convex if and only
ifQ=20.
Remark 2.4.18. (a) If 01,0, C C4 are compact with Q; C Q», then 0, C 0.

(b) Compact convex sets in C? are polynomially convex. In particular, if a € C¢ and
r > 0, the closed Euclidean ball By(a, r) is polynomially convex.

Proposition 2.4.19. Let x = (x1,...,x4) be a tuple with commuting elements in a Banach
algebra /. Then O jyin:(x) is polynomially convex.

Proof. Fix a point w in the polynomially convex hull &;y;n; (x). Then
[p(w)| < sup{[p(2)]; z € Gjoim (x)}
= sup{|z[; z € Gjoin (P(x))} < [ p(¥)|
for each polynomial p € C[z]. It follows that
Swlcp : {p(x); p € Cle]} — C, p(x) = p(w)

is well-defined and continuous. Since

{p(x); p € Clz]} C (x)

is dense, the point evaluation
Oy : (x) = C,
is an element of .# ({x)). Hence,

and G jyin; (x) is polynomially convex (cf. [ , Theorem 18, Chapter IJ). ]
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Notation 2.4.20. For a bounded linear operator 7 € B(H) denote by p(T) the spectral
radius of T'.

Remark 2.4.21. Let H and H be Hilbert spaces and let T = (Ti,...,T;) € B(H)? and
S=(S1,...,S4) € B(H)“ be tuples of commuting operators.

(a) By the preceding spectral mapping theorems, we obtain that
6(T) = {2 €T |p(2)| < p(p(T)) forall p € Cl]} = Som(T) = Gjoin(T),
In particular, if o(T) is (polynomially) convex, it follows that
o (T) = Cjoin (T).

(b) Suppose that
Ip(T) e < 1lp(S)lla

for all p € Clz]. By the spectral radius formula

p(p(T)) < p(p(S))

for all p € C[z]. Thus, we conclude that

&(T) C 6(5).

Due to Remark 2.4.21, part (b), we obtain the following lemma:

Lemma 2.4.22. Let H and H be Hilbert spaces and let T = (Ty,...,T;) € B(H)¢ and
S=(Sy,...,8;) € B(H )d be tuples of commuting operators. Suppose that there exists an
isometry V : H — H such that T" = V*S}'V foralln e Nand all | € {1,...,d}. Then

&(T) C 6(S).

Proof. Since V : H — H is linear, using the intertwining relation T"=V*S}V foralln e N
and all/ € {1,...,d}, it follows that

p(T) =Vp(S)V
for all polynomials p € C|[z]. Since V is an isometry, we obtain
(D)l = IV PVl < [lp(S)]l

for all p € C|z]. Hence, the assertion follows with Remark 2.4.21, part (b). U

Remark 2.4.23. Let T = (Ty,...,T;) € B(H)“ be a tuple of commuting operators such
that 6(T) C B,. By the spectral mapping theorem for the multivariable spectrum and the
properties of the Riesz-Dunford functional calculus, we obtain the following statements
forS=(Th,...,Ty) or S = (T},...,Ty):
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(a) Let f € 0(D) with power series representation f =Y~ f,z". Then for all w € B,
the power series

Y fieYaw®S*™* € B(H)

ocNd

converges in norm and the function

fs:By—BH), wr— Y. fioVaS*w*

ocNd

is holomorphic. In particular, since taking adjoints is continuous with respect to the
norm-topology in B(H), it follows that fs(w)* = fg«(W).

(b) If f,g € O(D), then (fg)s = fsgs.

2.4.2. Multivariable spectrum of the weighted shift

In the last part of this section we consider the multivariable spectrum of the weighted shift
operator tuple M; = (M,,,...,M,,) € B(#) on a unitarily invariant regular space /7.
As a particular case of Theorem 4.6 in [ ], one obtains the following theorem:

Theorem 2.4.24. The Taylor spectrum of M, € B(¢)¢ is given by

o(M;) =B,.
For the case d = 1 see also | ], in particular Proposition 15 and [ , 27.7
Proposition]. For convenience we give a slightly more elementary proof as in [ 1,

to show that
G(M ) G]()ml( ) IB3d

If one feels more comfortable with it, one can only use the joint spectrum for the results
in the following chapters.

Lemma 2.4.25. c(M,,)) =D forl=1,...,d.

Proof. First, let us prove that o(M;,) = D. We show that 1 is an upper bound for the
spectral radius p(M;,) of the multiplication operator M, : 7 — . By the spectral
radius formula
T N ||1/N
p(ML,) = lim [M]'/N.

For N € N and B € N¢ we have
Mé\ljzﬁ :zjlvzﬁ.

Hence, if a = (N,0,...,0) € N? and B € N¢ with |B| = n, it follows that

Y a
MY P2 = ﬁ(—ﬁw%<w( )MW
Yo+p \9n+ neN \ @n+N
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By orthogonality

o\ 172

N n

MY < sup( ) .
neN \ dn+N

Now, let b, = -2 for n € N. Then we have that

Ap+1
IMY || < sup ( . ) = sup (an+z>

neN \ n+N neN \ 120

for N > 1 and
lim (supan) = limsupb; = lim .

[—=e0 \ eN [—yo0 [=ee )y

1N
lim — =1
i (o)

Thus, it follows that

By the arithmetic-mean-geometric-mean inequality, we conclude that

N % 1 N
b <—Y5b
II;II n+l = NZ n+l
forall N.ne Nwith N > 1, so
N b | N 1/2
1 = sup (TTower | < (3 2 (subi)
neN \ =1 N

for all N > 1. We obtain
p(M:,) = lim MYV < 1.
N—oo <l

For every w € D the point evaluation
8(w0,...0) : Mult(2’) — C
is a well-defined character. But then
w=900,..0) (M) € 0(M,).

and thus, 6(M;,) = D. Analogously, one proves that 6(M,,) =D forl =2,...,d. O

Proof of Theorem 2.4.24. Let U = (ujm)1m=1....a € U(d) be a unitary operator on ce.
The norm-closure of polynomials A(.7#) in Mult(7) is the unital norm-closed algebra
(M;) generated by M, ,...,M,. LetIly : B(5¢) — B(.¢) be the unital invertible algebra
homomorphism defined in Theorem 2.3.10. By the previous computation we deduce that
Iy ((M;)) = (M,). It follows by Theorem 2.3.10 that
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As a particular case of Theorem 2.4.16, we obtain that
Cjoint (M) = 0 (Ily (M;)) = U(0join:(M)).

Now if w € Gjpimr (M) C C? and ||wl|3 = X%, |w;|?, choose a unitary operator U : C¢ —

C4 such that
w
U* =e,
(uwuz) :

where e; = (1,0,...,0) € C? is the first basis vector. Since

lwll2e1 = Uw € Gjoint(M;)

and
Gjoinz(Mz) C G<le) X ... X G(MZd),

it is immediate that
|lw|l2e1 € o(M;,) x {0} x...x {0}.

Because of Lemma 2.4.25, we have that 6(M,, ) = D and thus, ||w]||> < 1. We deduce, that
Ojoint (Mz) C E
For w = (wy,...,wy) € B, the operator

(MZl — Wi idjf,...,MZd—Wdidff):%d—)%

is clearly not surjective. This means that the Koszul complex in the last position is not
exact. Hence, we conclude that

By C 6(M;) C Gjoii(M;) C B,
Since o (M;) is closed, it is immediate that
By = 0(M;) = Gjoins(M).
[
Let H be a Hilbert space with orthonormal basis (ey,),en. Let S : H — H be the unilat-

eral shift operator with Se,, = e, 1. From the theory of C*-Algebras it is well-known that
the Toeplitz sequence

0 —— K(H) —— C*(S) —— C(dD) —— 0

is exact (see for example [ , 7.23 Theorem]). We consider a more general result for
the weighted shift operator tuple M, on regular unitarily invariant spaces 7.
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2.4. Regular unitarily invariant spaces

Proposition 2.4.26. Let 57 be a unitarily invariant space, not necessarily regular, such
that the multiplication operators of the coordinate functions

M, : =, f=zf (I=1,....d)

are well-defined and bounded. Then the C*- algebra C*(M,), generated by the operators
{idyp,M;,,...,M,,}, is irreducible. That is, if P: 7 — J€ is a non-zero orthogonal
projection such that

PT=TP forall T € C*(M,),

then P =1id j». Consequently, if
0#K(Z)NC* (M),
then K(7¢) C C*(M,).
Proof. Let P: 5¢ — ¢ be a non-zero orthogonal projection such that
PT=TP forall T € C*"(M,)

Because of Proposition 2.3.57, there exist functions ¢, y € Mult(.7°) such that P = M,
and P* = My,. But, then

Mok, = Mk, = y(w)k,,

for all w € B,. Therefore, ¢ and y are constant and P must be the identity. It is well-
known from the theory of C*-algebras (see [ , Chapter 3, 16.8 Corollary]), that if
P C B(S) is an irreducible C*-algebra and

0#K(H)NA,
then K () C A. O

Remark 2.4.277. The C*- algebra C*(M,) is sometimes also called Toeplitz algebra.
Remark 2.4.28. Let 77 be regular.

(a) Due to Lemma 2.4.2, the d-tuple M, ,...,M,, acting on 7 is essentially normal and
the operator

d
idyy—Y M M
=1
1s compact.

(b) Due to Proposition 2.4.26, it follows that K(.72°) C C*(M,).

(c) The C*-subalgebra C*(M;)/K (7€) of the Calkin-algebra C(s¢) = B(H)/K(H) is
commutative by the Fuglede—Putnam theorem [ , Theorem 6.7, Chapter IX].

The following statement can be found as a particular case of Theorem 4.6 in [ ].
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Theorem 2.4.29 (Guo, Hu, Xu). If JZ is regular, 1 is the inclusion mapping and T is
a unital x-homomorphism uniquely determined by w(M,,) = Zzlaxaad forl=1,...,d, the
sequence of C*-algebras

0 —— K(H#) —— Cc*(M,) —=— C(dB;) —— 0
is exact. Since modulo identification
A(%) :mH'HMult C C*(MZ),
it follows for all ¢ € A(JC), that
1Mol st 1My +Sipe) = ll @

Proof. Let o =C*(M,)/K () be the commutative C*-subalgebra of the Calkin-algebra
C(s¢) = B(H)/K(H). By Gelfand representation theory

o = C(A(A)),

where .# (A) is the maximal ideal space. Let ) : &7 — C be a character. Since the operator
iy — ZM M € K()

is compact, it is immediate that

LD+ -+ (M P - ([d% i MD _

It suffices to prove that the mapping

VM) = OBy, x = (X([M,]), ... x([M,]))

is a homeomorphism. Since . (/) is compact, it is enough to show that y is bijective
and continuous. It is not difficult to see that y is injective and continuous, so it remains
to prove that y is onto. Due to Theorem 2.3.10, a unitary matrix U = (u;,,)1,» € U(d) on
C¢ induces a C*-algebra isomorphism

Iy : o — o
with

d
Me]) = Y M)

Hence, it follows for every y € .# (<) that y oIly € M(<7), with

(x oTy)( Z urmX (M.
m=1
Thus, since .# (.</') is not empty, we deduce that y is onto. O
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2.4. Regular unitarily invariant spaces

2.4.3. Diagonal operators and the Cauchy dual

In this section, we introduce two diagonal operators, which will be used in Chapter 3. Fur-
thermore, we will see how they are related to the so-called Cauchy dual of the weighted
shift operator tuple on unitarily invariant spaces on the ball. We also give a short explana-
tion of how the Cauchy dual of a single weighted shift operator is related to the Cauchy
dual of the corresponding unitarily invariant space on the disk. Now, let 7Z be a unitarily
invariant space with reproducing kernel

K:By;xB; —C, K(z,w) = Zanzw

such that ap =1, a,, > 0 forn > 1 and

sup < oo, inf > 0.

neN An+1 " neN dpy |

Suppose that the analytic function k(z) = Y~ a,z" has no zeros in D and denote by ¢,
(n € N) the coefficients of % Additionally, suppose that almost all the coefficients ¢, have
the same sign.

Example 2.4.30. (a) For s > 0 the spaces A2(B,) provide examples for such spaces.

(b) The unitarily invariant complete Nevanlinna-Pick spaces as they occur, for example
in 2.3.5 are also spaces of this type. See also Example 2.4.6.

In the following we consider the operators

5:%—>%ﬁ<i ) faz“> fo—i—i n Y faz®

n=0]al=n =1 |g]=n

and

A:%”—n%”,A(i y faz“> Y Y el

n=0|a|=n n—0 9n |a|=n

By definition, A and & are diagonal operators with respect to the orthogonal decompo-
sition 7 = @;_,H, of 77 into the spaces H,, of all homogeneous polynomials of degree

n. Our hypotheses on the sequence (%) imply that 6 and A are invertible positive
operators on .7Z’. An elementary calculation shows that

oM, =M A
for/l=1,...,d.

Consider the completely-positive map

d
Om,: B(H) = B(AH), X — Y M, XM .
=0
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In[ , Theorem 2.2.2], Langendorfer proves a result, that is similar to a result due to
Chen (cf. [ , Proposition 2.1 and Lemma 2.2]): If almost all the coefficients ¢, have
the same sign, then the limit

SOT — lim Z —cn 1100y, (id )

N—eo =0
exists. In this case, one can show (cf. Theorem 2.2.6 in [ ]) the following identity
N
A =SOT— li - v (id ).
Nl_fgo};)( Cn+1 )GMZ (idx)

We want to use the matrix operator defined by
MZ*MZ = (MZMzm)lgl,de €B (%d) .

Since the row operator M,: s#¢ — 2 has closed range, the operator
MIM,: ImM; — ImM;

is invertible (see A.1.4). We denote its inverse by (M M) ™!

Remark 2.4.31 (Cauchy dual). Suppose for a moment that we are in the one dimensional
case d = 1 and that 77 is regular. Then ImM} = 97 and M} : 7 — J is right invertible

with inverse M, (M} M) -

WI

Since ).~ P oo for all w e D, it follows that .7# contains the Cauchy or Szegd

kernel functlons |

1—zw

Sw:D =D, s,(z) =
Let

= {Z fnzn S ﬁ(]D))a Z an|fn|2 < 00}
n=0 n=0

be the corresponding reproducing kernel Hilbert space with reproducing kernel K : D x
D—C,

_ i (zw)
n=0

The operator U : 5 — ', which is uniquely determined by

n Zn
n

is unitary. Forw € D and f =) f,2" in 5 one computes that

(Uf)(w (ZUfnZ )( )= - =<ifn2",iWZ"> = (f'sw)-
n=0 n=0

H

n=0
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2.4. Regular unitarily invariant spaces

With respect to the pairing

(f.8)exn = fUg)w (f€H geH).
the space 57 is called the Cauchy dual of .7#. For all w € D we have
U K, = sy,
where
ki, :By— C, kl,(z) =K'(z,w) (weD).
Hence, we obtain
(fo k) sesner = (frsw) -

In addition, if p = Z{;’ZO pnZtand g = Zﬁlv:o qnZ" are polynomials, then the pairing between
H and H' is given by

N

N n
(P @) s = (P U Q) 0 = <Z pnd", Y, anqnz”> =Y pulln
H

n=0 n=0
= (P: @) 2 (m)-

Hence, 7" is a dual space via "H 2(]D)—duality", which is thus often called Cauchy dual
of .

The Bergman space L2(ID) with reproducing kernel KD D xD— C,

L Y ey

(1-zw)*> =

can be considered as the Cauchy dual of the Dirichlet space & with reproducing kernel
K7 :DxD—C,

KLC%(D) (Zv W) =

K@(Z,W)Zi_lc)g< : ):i L (amy

w I —zw =ntl

and vice versa. For a motivation and a definition on Banach function spaces see [ ,
Section 5].

Now consider the operators

T:H = A, fsMf, T :H— A, frs M, (MM,) ' f

and
S: H — A, frs M,f.
Since .
n
T =U <—“"“ Zﬂ“) = —(su)”

ap ap
for all n € N, it follows that
UT' =SU.

Hence, the following diagram commutes
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2. Preliminaries

and
(T'f.8)xoe = T'f,U"g) o = (fU"S"8) o = (. S"8) s
for all f € 2 and g € 2. That is why in the one dimensional setting the operator

M, =M, (M;k MZ) ~! is sometimes called the Cauchy dual of M,. The name Cauchy dual
for operators of this type presumably goes back to Shimorin (see [ ]). On the other
hand, operators of this type have been considered much earlier by other authors. If L :

H — A with Lf(z) = L2 is the backward shift then
MLf =M (M:M;)"' f=L'f.

for all f € 5. Using this fact, the previous explanation can already be found for a larger

class of spaces in [ , Proposition 5.2].

The following lemma gives a possibility to construct the Cauchy dual of the operator
M, : ¢ — # in the multivariable setting using the diagonal operator §.

Lemma 2.4.32. For f € 7, we have
(MIM) ™ (M2 f) = MIS f = (BA)M: |-

In particular, the row operator

SM,: =

extends |
M. (MM;)  : ImM; — A

by 0 on (Im(M}))L.

Proof. The column operator M} annihilates the constant functions. Thus, we may sup-
pose that f(0) = 0. Due to Lemma 2.4.2 the operator M, M acts as

]‘411\4;|< (Z fn) - Z (az—l) fm
n=0 n

n=1

with respect to the orthogonal decomposition .77 = @;,_, H,,. Hence, M.M}S f = f and
* -1 * * -1 * * *
(MIM,)  M:f= (MM,  (MIM)M:Sf=M;6f.

Using that
oM, = M A,
we get that M6 = (@A) M. Since any two diagonal operators and in particular M M}

and 8 commute, it follows that M, (M;MZ)AM; = (M :M})6 = (6M;)M;. Hence, the
second assertion follows. U
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2.5. K-contractions

As in the one dimensional case, we call the operator defined by
M. =5M. B (%’dﬁ)

the Cauchy dual of M.

Remark 2.4.33. The preceding proof shows in particular that the orthogonal projection of
¢ onto ImM, acts as

Pima, = Me(MIM:) "M = 3(M:M;) = Pe.,

where C C J7 is regarded as the closed subspace consisting of all constant functions.

Remark 2.4.34. Suppose that & is an arbitrary Hilbert space. It is clear that the previous
results for the operators M, & and A on .7 also apply to the operators M, = Mf , 0=
0 ®idg and A = A®ide on H(&) modulo the identification (&) = H# R &.

2.5. K-contractions

The purpose of this section is to gather definitions and results from the theory of K-
contractions. A K-contraction is a generalization of a contraction 7 € B(H) on a Hilbert
space H. The idea presumably goes back to Agler and has been developed over the years.
We mainly follow results from Schillo’s PhD thesis (cf. [ 1) here.

We use the relationship between the Hardy space H*(ID) and contractions as a motiva-

tion. Let |

1—zw’

K:DxD—C, K(z,w) =

be the reproducing kernel of the Hardy space H*(ID). An operator T € B(H) is a contrac-

tion if and only if

1
D3 = o (T) =idy =TT" >0.

The closure
% =1Im (Dr~)

is called the defect space of a contraction.

Sz.-Nagy dilation theory, a contraction T € B(H) is unitarily equivalent to a compres-
sion of the direct sum
MZ @ U,

where
M, : Hz(@) —>H2(9), f—zf.

We now want to analyze which operators can be modeled analogously for more general
reproducing kernels.

75



2. Preliminaries

First ideas of this kind can be found in a work by Agler (see [ :

Suppose that .7 C ¢'(D) is a Hilbert function space with reproducing kernel K : D x
D — C such that
K:DxD—C,(z,w) — K(z,W)

is analytic, has no zeros and
M, — 7, f—zf
is bounded. Let T € B(H) be an operator on a separable Hilbert space H with spectrum
o(T) cD.
Since o(T) is compact, there exists an 0 < r < 1 such that
o(T) C D(r).

For r < s < 1 define

1

Lo 1 o )
(1) = (1T )—/W|:s/|z|:SE(z,w)(w—T) lz—T) ' dzdw.

Under suitable assumptions on the space .7, Agler proves that T' co-extends to a direct
sum of copies of M, if and only if %(T) >0 (see [ , 2.3 Theorem]).

In a higher-dimensional setting, Agler MCarthy (cf. [ 1), Ambrozie, Engli§
and Miiller (cf. [ ]) and Arazy and Engli§ (cf. [ ]) extend these ideas. For
Nevanlinna-Pick spaces, there are characterizations by Clouatre and Hartz (see [ .
One of the difficulties is making sense of the expression (1/K)(7T). There is a unified ap-
proach for unitarily invariant spaces by Schillo (see [ ]), which we use as a guideline
here.

For the definition, let .7# be a unitarily invariant space with reproducing kernel
K:ByxBy—C, K(z,w) =Y an(z,w)"
n=0

such that ag =1, a,, > 0 forn > 1 and
ap

sup
neN An+1

< oo,

Suppose that the analytic function
k:D—C,k(z) =) an"
n=0
has no zeros in D. Denote by ¢, (n € N) the coefficients of the holomorphic function

1
-:D—-C
Z —

Additionally, suppose that almost all the coefficients ¢, have the same sign.
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2.5. K-contractions

Example 2.5.1. We have already seen the following examples in 2.4.30:
(a) For s > 0 the spaces A2(B,),
(b) the complete Nevanlinna-Pick spaces as they occur in Example 2.3.5.

Let T = (Ti,...T;) € B(H)“ be a commuting operator tuple on a Hilbert space H. For
N € N let

1 N
(E) (W)=Y calzw)'= Y Clg¥®w® (z,w € By)
N n=0 |a|<N
be the N-th partial sum of 1/K. We define
1 N
(%) (=X ociian = ¥ canrerey
N n=0 la| <N
for all N € N, where
d
or: B(H)— B(H), X — Y TXT}".
1=0

Definition 2.5.2. The commuting tuple 7 € B(H)¢ is called K-contraction if

N—roo

%(T) — SOT- lim (%)N(T)

exists and defines a positive operator.

Notation 2.5.3. Motivated by the definition of the defect operator and the defect space of
a contraction, we call

the defect operator and

9 = @T* =ImC
the defect space of a K-contraction.
Remark 2.5.4. Due to [ , Lemma 2] a commuting tuple 7 = (Ti,...,Ty) € B(H)% is
an m-hypercontraction if and only if 7 is a K(') and a K(")-contraction, where

L
(1= (zw))!

There are sufficient conditions for the weighted shift operator tuple

K9 By xBy — C, KV (z,w) = (1> 0).
M, = (M,,,...,M,,) € B(#)"

to be a K-contraction. The following proposition, which originates from [ , Propo-
sition 13] and can also be found in [ , Proposition 2.9], reduces the problem to the
bare existence of %(MZ).
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Proposition 2.5.5. Suppose that

1 1
—(M;)=SOT—lim (- | (M)
K N—= \K /)y
exists. Then M, € B(¢)" is a K-contraction and

E<M2> =Fc

coincides with projection

Pc: H — I, f— f(0)
onto the constant functions.
Using the previous proposition, one obtains the following result due to Chen:

Theorem 2.5.6 (Chen). Suppose that there exists a natural number p € N such that c¢,, > 0
foralln > p orc, <0 forall n > p holds. Then M, is a K-contraction with

1
E (Mz> = Fc
and Y,’_oc, converges absolutely.
See [ , Proposition 2.1 and Lemma 2.2] and [ , Proposition 2.10].

Remark 2.5.7. We required at the beginning of the chapter that the ¢, have almost the same
sign. According to the previous theorem, in our context M, is always a K-contraction with

1
? <M2> =Fc
and ) °_,c, converges absolutely.
The following theorem about the Taylor spectrum of K-contractions can be found in
[ , Lemma 5.3].

Theorem 2.5.8. Let K : B; x B; — C be a unitarily invariant complete Nevanlinna-Pick
kernel with radius of convergence 1. If T = (T, ..., Ty) is a K-contraction, then

G(T) C Gjoim(T) C E,
where 6 (T) C C% is the Taylor spectrum.

A contraction T € B(H) is called a pure or of class C.q if and only if (T*)N — 0 for
N — oo in the strong operator topology. If

1
1—zw

K:DxD—C, K(z,w) =

is the Szegd kernel, the pureness condition SOT — limy . (7*)¥ — 0 is equivalent to

N
. . n 1 _ . N (s \N __
SOT - lim (ldH— Y anof (§(T)>> = SOT — lim TV(T*)Y =0.

n=0 N—oo
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2.5. K-contractions

Definition 2.5.9. We call a K-contraction T € B(H)? pure if
al 1
SOT_AIIIEL idy —ngoancﬁ (E(T)) =0.

Remark 2.5.10. Suppose that the operator tuple 7 € B(H)? is an m-hypercontraction.
Using the Taylor functional calculus, one can show that the previous definition of pureness
for T € B(H)? asa K (m)_contraction, coincides with the classical definition of pureness

SOT — lim o¥ (idy) =0
N—soo
for row contractions (see [ , Theorem 3.51)).

Example 2.5.11. Suppose that M, = (M, ..., M;,) € B(5#)? is a K-contraction. Similar
to Proposition 2.12 in [ ] one checks, that M, is pure.

Proof. Since M, is a K-contraction, it follows with Proposition 2.5.5 that

Let 7 = @,cn H, the orthogonal decomposition of .7#” into the space of homogeneous
polynomials of degree n. Since Pc = Py, is the orthogonal projection onto the constant
functions, a straightforward computation shows that

(idjf — ]ZV: anGﬁZ(P@)) ky = (id% — i Pm) ky
n=0 n=0
for all N € N and w € B,. Since linear combinations of the kernel functions
ky:Bg— C, kyw(z) = K(z,w) (w€By)
are dense in .77, one obtains that M, is pure. [

Lemma 2.5.12. Let T € B(H)? be a commuting tuple of operators on a Hilbert space H
and suppose that there exists a Hilbert space & an isometryV : H — (&) such that

VT =MV

<]

foralll=1,...,d. If Pg : (&) — H (&) is the orthogonal projection onto the constant
functions, we use the notation
Cy = PgV.

Then, we have
(a) Vh= Y gend 4o YaCv (T%) hz® for all h € H,

() V*(f) =Loend T*Cy fa forall f =Y yena faz® € I (E),
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(c) T is a pure K-contraction with C};,Cy = %(T) > 0.
Proof. Let a € N and x € &. Using the intertwining property

VI =MV

z
we deduce that
V¥ (x®z%) =V*MIPex = T*Cyx.
Since the adjoint V*: J# (&) — H is continuous, it follows that
Vi)=Y TG fa
aeNd
forall f =Y ,cne faz® € H(&). If h € H, then the previous computation shows that
(Vh, faz®) yp(6) = (0, T*Cy fo) y
=(Cv(T*)"h, fa) g
= <a|(X|YOCCV(Ta)*zah7faza>%(éa) .
Thus, we obtain

Vh= Z a‘a‘}/aCV(Ta)*hza.

oceNd

Since % (M;) = Ps (see Proposition 2.5.5), we conclude that

1 1
vCy =V PV =V*—(M,)V=—=(T)>0
CyCy =V PeV =V (M)V = (T) >

and T is a K-contraction. Furthermore, pureness of M, yields that
ul 1
SOT — lim <idH —n;)ana; (E(T))>
al 1
=SOT - lim V" <id%(éa) —’annoﬂ’yz (E(MZ)>) V=0

and thus, T is pure. O]

Lemma 2.5.13. Let T € B(H)“ and S € B(H)“ be commuting tuples on Hilbert spaces H
and H, respectively, and suppose that there exists an isometry V : H — H such that

VT =8V
foralll=1,...,d. If S is a (pure) K-contraction, then T is a (pure) K-contraction.

Proof. The assertion follows similarly to the proof of the previous theorem using the
relations
V*V =idy and VI;" = SV

forall/ =1,...,d. (For more details, see also Lemma 2.13 in [ 1) O
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It is possible to define a minimal dilation map j for pure K-contractions, which inter-
twines the tuples M and T* componentwise. The following construction already appears
in [ , Theorem 1.3] and has its roots in [ ].

Theorem 2.5.14. Let T € B(H)“ be a pure K-contraction. Then

JjiH—= (), j(h) =Y a4YaC(T*)*z*

aeNd
is a well-defined isometry such that
iT* :Mz*,j (I=1,....,d).

In fact, this follows because

N
1
Jj=S0T 1\11520 (n;oanGT (K(T))> idy .

For a detailed proof, see [ , Proposition 2.6].

Remark 2.5.15. Suppose that
K :B;xB; —C, K(z,w) = Z an(z,w)"
n=0

is a complete unitarily invariant Nevanlinna-Pick kernel such that M, is bounded and let
T € B(H)? be a K-contraction. In this case, one computes that

N
1
0< Lol = <i
S Z’a GT (K(T)) <S ldH
n=0
for all N € N. Hence,

JjiH—= (), j(h) =Y a4YaC(T*)*z*

oeNd

is a well-defined contraction such that

JTF=M:j (1=1,....d).

<l

(see [ , Corollary 2.4 and Proposition 2.6] and [ , Lemma 4.1 and Corollary
4.21.)

Lemma 2.5.12 and Theorem 2.5.14 yield the following characterization, which can also
be found in [ , Theorem 2.15]:

Theorem 2.5.16. Let T € B(H)¢ be a commuting tuple. The following statements are
equivalent:

(a) T is a pure K-contraction,
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(b) T is a K-contraction and

JiH—= (D), j(h) =Y aq¥aC(T*)""

oeNd

is a well-defined isometry such that

JTF =M (I=1,....d),

2
(c) there exists a Hilbert space & and an isometryV : H — (&) such that

VI =MV

foralll=1,....d.

Using Theorem 2.4.24 and Lemma 2.4.22, we obtain the following lemma for the mul-
tivariable spectrum of pure K-contractions:

Lemma 2.5.17. Let ¢ be regular and let
T=(T,...,T)) € BH)!
be a pure K-contraction. Then
o(T) C Gjoint(T) C By.

Remark 2.5.18. Let T = (Ty,...,Ty) € B(H)? be a K-contraction. Suppose that we are in
one of the following cases:

(a) 7 is a complete unitarily invariant Nevanlinna-Pick space, where M, is bounded,
and the kernel function has radius of convergence 1.

(b) € is regular and T is pure.

Due to Lemma 2.5.17, Theorem 2.5.8 and Remark 2.4.23, we obtain that the function

kr:Bq— B(H), 2 ) Yad)q(T%)"z"

ocNd

is well defined and analytic and the intertwining contraction

JjiH—= (D), j(h) =Y a4 YaC(T*)*z*

ocNd

defined in Theorem 2.5.14 can be written as
j(h)(z) = Ckr(2)h (z€By,h € H)

(cf. transfer realization of the characteristic function for pure contractions in the introduc-
tory part of Chapter 3 ).
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3. K-inner functions and Wandering
subspaces

The contents of this chapter are a joint work with Jorg Eschmeier and appear in [ ].

We establish a realization formula for K- inner functions. The transfer realization is
similar to the one of characteristic functions introduced by Sz.-Nagy and Foias.

To be more specific, let us recall some facts about the characteristic function of a pure
contraction T € B(H) with defect operators Dy = (1 —T*T)'/? and Dy = (1 —TT*)'/?
and defect spaces % =ImDy7 and 2 = ImDy~. The characteristic function 67 : D —
B(2,9) is defined by

0r(z) = —T +Dr-(1—zT*)"'2Dr  (z€D).

On the other hand if
M, : H*(D) — H*(D)

is the unilateral shift, the map j: H — (%) defined by
Jj(h)(z) = Dr+(1—2T*)"'h
for h € H and z € D is a well-defined isometry with intertwining property
T =M;j
(see Theorem 2.5.14 and Remark 2.5.18).

Therefore one computes that 67 : D — B(Z, 2) is a contractive multiplier from H(%)
to H*(2) with

and
Orx = —TX—I—MZj(DTX)

for all x € 2. Since j intertwines M and T, it also follows that
M = Mg, (Ker (M,)*) = (Im ).

is invariant for M and that 7 is unitarily equivalent to the compression of M, to the space
H?*(2)© M. Besides, we have that

HOXH%{Z(@) = Hx“z@
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3. K-inner functions and Wandering subspaces

forall x € ¥ and 3
W(M) =M oMM = 6r(2 NKer(67)1).

The closed subspace W (M) satisfies
W (M) L M"W (M)
foralln > 1.

Let us take a closer look at spaces with this property. If S € B(H) is a bounded linear
operator, we call closed subspaces % C H with the property

WLSW (n>1)

wandering subspaces for S. If S is an isometry, this definition coincides with the more
common definition of wandering subspaces

S"w LS"W (n,me N withm # n),

as it occurs in the Wold decomposition theorem (see [ , Theorem 1.1, Section
1, Chapter 1]). Wandering subspaces usually arise in the following way: Given any S-
invariant subspace M, the space

Ws(M) =M o SM
is a wandering subspace for S. Now the idea is if

M=\/ (S"h; h € Ws(M))

n>0

all the information about the invariant subspace M is contained in the wandering subspace
Ws(M). Conversely, observe that, if # is a wandering subspace for S and

M=\ (S"h;hew),

n>0

then obviously
W =Ws(M).

Recall, in the particular case, when S is an isometry with S-invariant subspace M, it fol-
lows by the Wold decomposition theorem that
M=\/(S"h; he Ws(M)) & [ S"M
n>0 n=0

and if S = M, : H*(D) — H?(DD) is the unilateral shift, then

M=\/ (S"h; h e Ws(M)).

n>0
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By a well-known theorem of Beurling every non-zero M,-invariant subspace M has
the form MgH?(ID), for function a & € H?(ID) with unit norm in the wandering subspace
Ws(M). This is equivalent to the fact that 0 is inner. We have seen that the characteristic
function 07 : D — B(Zr, Z) of a pure contraction T € B(H) has the properties of an inner
function.

Furthermore, to study invariant subspaces M for the Bergman shift
M;: Lg(D) — Lg(D), f = zf

on the Bergman space L2(ID), Hedenmalm uses elements in the wandering subspaces
W(M) =M © MM with norm (|6 2y = 1. If A is a Bergman space zero set with
corresponding invariant subspace

My ={f € L;(D); fla=0},

the Bergman-inner functions G4 in the wandering subspaces W (My) = My © M, My are
canonical zero-divisors in Bergman factorization theory. Due to a theorem of Aleman,
Richter, and Sundberg (cf. [ ]) every M,-invariant space M in the Bergman space
with corresponding wandering subspace W (M) = M © MM is characterized by

M=\/ (M!h; he W(M)).

n>0

See also the introduction of [ ] for a motivation for wandering subspaces.

Let us come back to the characteristic function 67. Using that 7Dy = Dr+T one com-
putes that the corresponding transfer matrix

T | Dr
D7« | =T

0r(z) = —T+Dr-(1-2T")"'2Dr  (z€D).

is unitary. One can show that each function 6 in the unit ball of H*(ID) and hence any
inner function has a transfer realization

of

0(z) =D+C(1—zA)"'zB (z€D)

similar to the characteristic function, where

A|B

a unitary on a Hilbert space H & C.

More general adapted transfer realizations for functions in the unit ball of the multi-
plier algebra of complete Nevanlinna-Pick spaces play an important role. They can be
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3. K-inner functions and Wandering subspaces

used to describe the Pick interpolation problem in terms of a positive semidefinite matrix
(see [ , Theorem 8.33]). They are also useful for the proof of Leech’s Theorem
( see [ , Theorem 8.57]) for Pick spaces, which we will use in Chapter 4. Trans-
fer functions first appeared in system or control theory and are widely used in electronic
engineering.

For this chapter we always suppose that we are in the following setting, which covers
also the Hardy space H?(ID) and the Bergman space L2(ID) on the disk:

The function N
k:D—C, k(z) =) an"
n=0

is analytic without zeros, such that ag = 1, a,, > 0 for all n € N5 and

ap ap

> 0.

sup < oo, inf
neN dn+1 neN dp 1

We denote by ¢, (n € N) the coefficients of % Additionally, suppose that almost all the
coefficients ¢, have the same sign. The reproducing kernel

K:B;xB; — C, K(z,w) =k({z,w))

defines an unitarily invariant reproducing kernel Hilbert space .7 such that the row oper-
ator M,: ¢ — 7 is bounded and has closed range (see Chapter 2).

Motivated by the observations of Hedenmalm for wandering and invariant subspaces
of the Bergman shift and by a survey paper of Ball and Cohen (cf. [ 1), Olofsson
introduces the concept of Bergman-inner functions for the spaces A2, (ID) with reproducing

kernels
1

(1 - <Z7 W>)m
(see [ LI ]). (Recall, K3 is the kernel of the Bergman space Lﬁ(]D))). He stud-
ies corresponding transfer realizations similar to the one for characteristic functions. We
generalize a former paper of Eschmeier (cf. [ 1), which is the multivariable gen-

eralization of the papers [ ] and [ ] by Olofsson for the spaces A2,(B,) with
reproducing kernels of the form

Ky :DxD— C, Ky(z,w) = (meN,m>0)

-
(1= (z,w))™

Observe therefore that the idea of Bergman-inner functions can be reformulated for all
unitarily invariant kernels K as above by the notion of so called K-inner functions (cf.
[ 1). A K-inner function is an operator-valued analytic function

W: B, — B(2,2) with Wx € (D), IWx| () = llxll for all x € 2 and

Ky By xBy — C, Ky(z,w) = (meN,m>0).

W(Z) LM% (W(2)) forall & € N\ {0}.

86



In the case that M, € B(.2#)¢ is arow contraction, one can show that each K-inner function
W: By — B(Z,2) defines a contractive multiplier

My : H3 (D) — H#(D), f - Wf

(see [ , Theorem 6.2]). We also want to highlight that in recent papers (cf.
[ 11 1), Bhattacharyy and Jindal work on characteristic functions for
K-contractions, where K has a complete Nevanlinna-Pick factor. Restrictions of such
characteristic functions are K-inner.

For our transfer realization, we us the concept of K-contractions that have already seen
in Section 2.5. For convenience, we recall the important things that will be used in this
chapter. If T = (Ty,...,Ty) € B(H)“ is a tuple of commuting operators let

d
or: B(H)— B(H), X — Y TXT}".
=0

As in Definition 2.5.2 we call T a K-contraction if
1 > .
— | (T)= Z cpor(idy)
K n=0

converges in the strong operator topology and defines a positive operator. We use the

notations .

e~ (z)

9 = .@T* =ImC.

Further, we use the following characterization of pure K-contractions
(see also Theorem 2.5.16):

and

Theorem. Let T € B(H)“ be a commuting tuple. The following statements are equivalent:
(a) T is a pure K-contraction,
(b) there exists a Hilbert space & and an isometryV : H — (&) such that
VI =M,V
foralll=1,...,d.
(c¢) T is a K-contraction and

JiH—= (D), j(h) =Y a4 YaC(T*)*z"

ocNd

is a well-defined isometry such that

JIr=Mj (I=1,....d).
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3. K-inner functions and Wandering subspaces

If T is a pure K-contraction the adjoint j*: (%) — H has the representation

J ( Y faz“> = ) T%Cfa

aeNd aeNd
(see Lemma 2.5.12).
First, we will characterize wandering subspaces associated with the restriction of M, to

the invariant subspace M = (Im j)* by K-inner functions. For this purpose we will use
the diagonal operators

5:%(@)—>%(@),5<i ) faza> o+2

n=0|ot|=n

Z faz®

an— 1|(X|

and

A: H(D) = H(9 (Z )3 faz> I Y

n=0]a|=n n=0 4 jaj=n

that we have introduced in Subsection 2.4.3. An elementary calculation shows that

SM,, = M, A

for/ =1,...,d. Our hypotheses on the sequence < ) imply that 6 and A are invertible

positive operators on 7 (2).

Besides, in [ , Theorem 2.2.2], it is shown that the limit

SOT — lim Z —car100, (id ()

N—roo n—0

exists, if almost all of the coefficients ¢, have the same sign. Thus, by [ , Theorem
2.2.6], we also have

A = SOT — lim Z —cnt1)04 (id () -

N—>oo -

We define the operator Ay by
Ar = j*Aj.

Because A is invertible, we will see later in this chapter that the operator
N
Ar = SOT — lim —cpr107(idg).
T N%‘”ngb n+10T ( H )

is also invertible and that
(x,y) = (Arx,y) (x,y€H)
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3.1. Wandering subspaces

defines a scalar product on H. We write H for H equipped with the norm || - || and define
Ir: H— H, x> x.

One checks that T = (Ti,...,T;): HY — H is a row contraction. If C € B(H,&) is any
operator with C*C = %( ) then

jc: H—h}f Z a‘a"}/a ) «

oceNd

is a well-defined isometry such that jc intertwines the tuples 7% = (T},...,T;) € B(H )4
and M} = (M;,,...,M;)) € B(s#(&))4 componentwise. Suppose now that 7 is regular

Zl’

that 1s l1m,,_>oo = 1 We shall consider bounded linear operators C € B(H,&), D
B(&.,&) and B € B(&,,H?) such that

(K1) C*C = —(T),

(
(K2) D* C+B*( )T* =0,
(K3) D*D+ B*(dAr)B =id,
(K4) Im((@jc)B) C M (&).

For our transfer realization we use the operator-valued function

Fr:By — B(H), Fr(z) = i A1 ( Y Ya(Ta)*Za>
n=0

|af=n

as well as the row operators

d
Z(W) 2Hd —)H,(hl,...hd) — Zwlhl (WGBd).
=1

Finally, we show that each K-inner function W : B; — B(&%, &) admits a realization as
a transfer function of the form

W(z) = D+CFr(2)Z(z)B.

Conversely, each function that admits such a realization defines a K-inner function.

3.1. Wandering subspaces

Let T = (Ty,...,T;) € B(H)? be a pure K-contraction. Since the isometry

jiH—= (D), j()= Y aa¥ul(T%)

ocNd
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3. K-inner functions and Wandering subspaces

intertwines 7% = (7}",...,T}) and M} = (M}

e ,MZ* d) componentwise, the space
M= #(2)cImj = (Imj)* = Ker j*

is invariant for M, = (M,,,...,M,,) € B(5#(2))". In the following, we show that the
wandering subspace of M, restricted to M can be described in terms of a suitable K-inner
function.

We call a closed subspace % C H a wandering subspace for a commuting tuple S =
(S1,...,Sq4) € BH)Y, if
W LS*W (aeN\{0}).

The space 7 is called a generating wandering subspace for S, if in addition
H=\/<S°‘7/; OCENd>.

For each closed S-invariant subspace L C H, the space

d

Ws(L) = LS (i S1L> = (LoSL)
=1

=1

is a wandering subspace for S. The space Wg(L) is usually called the wandering subspace
associated with S on L. If # is a generating wandering subspace for S, an elementary
argument shows that necessarily %7 = Ws(H).

In the following, we write
d
WM)=Mo | Y MM
=1

for the wandering subspace associated with the restriction of M, to the invariant subspace
M = (Imj)*.

The Cauchy dual
M. =8M, € B(H(2)*, (D))

extends the operator
M, (M:M) ™" M — #(2)
(see Lemma 2.4.32).

The proof of Lemma 2.4.32 shows that the orthogonal projection
P, : (D) — H(D)
onto Im M., acts as

Pimp, = Mo(MIM) ™' M} = §(MM) =Py, 3.1)
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3.1. Wandering subspaces

where 9 C 7 (2) is regarded as the closed subspace consisting of all constant functions.

As in the case of m-hypercontractions (cf. [ ]), we give a characterization of the
wandering subspace W (M) of M = (Im j)*. Analogously to [ ], one can show the
following properties of the wandering subspace:

Theorem 3.1.1. A function f =Y ,cna faz® € FC(D) is an element of the wandering
subspace W (M) if and only if

f=fo+M(jx)i-y
forvectors fo € D, x1,...,x5 € Hwith (jxl)fl:l € ImM; and
Cfo+T(Arx), =0.
In this case, (jx;)4_; = M f.

Proof. We follow the proof for m- hypercontractions, given in [ ]. Since j is an
isometry, the operator

idp(g)—Ji" (D) = H (D)

is the orthogonal projection onto
M = (Im j)* = Ker j*
A function f =Y, e faz® € F€(2) belongs to the wandering subspace

d
W(M)=(\(MeM,M)
=1

if and only if j*f =0 and
(idyp(a) —JJ" )M f =0
forl =1,...,d. Using Equation (3.1), we obtain for (xl);’:1 €H%and f = Y oend faz® €
H(2) with (jx;)9_, = M f, that
Jf =7 (fo+6MMf)
= Cfo+j"M:(Ajx)i
=Cfo+T(j" AL,
= CfO + T(AT)C[)?:I .
Thus, if f € W(M), then (x;)¢_, = (j*M;‘If)fl:l defines a tuple in H¢ with (jx;)4_, = M} f

such that
Cho+T(Arx){_, = j f=0

and

F=fo+(f—fo) = fot Mo(MIM,) "' MZ f = fo+M.(jx)i;.
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3. K-inner functions and Wandering subspaces

Conversely, suppose that
f=fot+ M)y
with fo € 2, x1,...,x4 as in the assumption. Using Lemma 2.4.32, we find that
M f = M;MZ(M;MZ)_l (J'xlﬁ:l = (J'Xl)?:l-
Since j is an isometry, it follows that
JITMLf = jx =M. f

for/=1,...,d. Because
J*f =Cfo+T(Aru)i, =0,

we conclude that f € W(M). O

Lemma 3.1.2. Let T € B(H)“ be a pure K-contraction and let

f=fo+M,(jx),

be a representation of a function f =Y, cna faz® € W(M) as in Theorem 3.1.1. Then we
have

d
1£17 = 1foll” + Y. (Arxy, xi).

=1
Proof. Because ImM, is closed, it follows that
ImM, = Im(M_M)
(see Theorem A.1.4). Using Equation (3.1), we obtain
ImM, = Im (M) = Im (M.M;) = ImM, = 2.
Since (jx;)%_, = M} f and M,(M;M,) ™ = M |tmpms = SM|impm;:, we conclude that
1712 = 1ol = 1) |
= HMZ(M;MZ)_I(J'XZ)?:IW
= ((M;M) ' M;f, ()i
= (@ IMIS [, (x)iy)
= (" Ay, ().

Because Ay = j*Aj, the assertion follows. [

Asin [ 1, we modify the Hilbert space H using the operator A7. Let T € B(H )¢
be a pure K-contraction. Then A7 = j*Aj is a positive operator. We obtain

L. 2 —Lh=2p 2 —1=1).[12
(Arx,x) = [|A2 jx[|7 = [JA72 ]| 7] jx |7 = [[A77] 7 1]
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3.1. Wandering subspaces

for all x € H. For the last equation, we have used the C*-identity and the fact that j is an
isometry. Hence, A7 € B(H) is invertible and

(xay) = <ATx7y>

defines a scalar product on H. Since j is an isometry, one computes that the induced norm
|| - |7 is equivalent to the original norm with

A2kl = Jlellr = 4721 ] (e ).

We write H for H equipped with the norm || - ||7. Then
Ir:H—H, x—x,
is an invertible bounded operator such that
(IpIrx,y) = (Arx,y) (x,y € H).
Hence, I;Irx = Arx for x € H. Let T =(Ty,...,T;): HY — H be the row operator with
components 7; = T; ol € B(H,H). Then
d
IT" = Zl i(I7In)T;" = or(Ar) = or(j*A)) = j" M(@A)M?
J(OMM})j= j Py.j.

Thus, 7 is a contraction. As in [ ], we use the defect operators

The identity (j*Py ])1/ 2 — C follows from the definition of j in Theorem 2.5.14 and the

representation of j* explained in Lemma 2.5.12. We write Y7 = DTHd C H? and 9. =
Dj.H = 9 for the defect spaces of T. As in the one-dimensional case (cf. [ ,
Chapter I, 3.1]) it is elementary to check that TDT = DT*T and that

U= ( Ii Or. ) e D s He P,
is a well-defined unitary operator.
We will now define a holomorphically parametrized family
Wr(z) € B(2,2) (z€By)
of operators on the subspace

9 ={y€ Zz; (@jl;)Dsy € ImM;} C D5
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3. K-inner functions and Wandering subspaces

such that 5
W (M) = {Wrx; x€ 9,

where Wrx: By — 2 (x € 9) acts as (Wrx)(z) = Wr(z)x. We equip & with the norm
ly|| = |ly]| 74 that it inherits as a subspace 2 C H“. In Lemma 3.1.4 we will show that

2 < HY is closed.

In the following, suppose that .7 is regular. That is

. a
lim —— =1
n—ee dp 4

(see Section 2.4; in particular, Definition 2.4.4 and Example 2.4.6). If T = (T1,...,Ty) €
B(H)? is a pure K-contraction, then we have seen in Lemma 2.5.17 that

o(T) C Gjoint(T) C By
For our transfer realization, we use the maps
Fr(z) =) an1 ( Y Ya(T“)*Z“) (z€By)
n=0 |ot|=n
as well as the row operators
d
Z(w) - HY — H,(hy,...hg) — Zwlhl (weBy).
=1
As in Remark 2.4.23, it follows that Fr : B; — B(H) is a well-defined operator-valued

function.

Lemma 3.1.3. For (x;)"_, € HY, the identity

CFr(2)Z(z) (xl)?:l = (aMz(jxl)?zl)(Z)
holds for all z € B,.

Proof. For (x;)%_, € HY,

d o0
5Mz(jxl)7:1 = Z oM, Z an ( Z YOtC(Ta)*lea>
n=0

=1 |a|=n
d o
=Y ) a6 ( yaC(TO‘)*xlza+el)
I=1n=0 |ot|=n
d o
=Y Y ann YaC(T*) 2%,
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3.1. Wandering subspaces

where the series converge in J(2).
H(2), we obtain

Since the point evaluations are continuous on

d
Y 1.C(T%)* (Z zm) z*
|a|=n =1

= CFr(2)Z(z)(x)i,
forall z € B,.

(80011 ) (0 = L e

O
To improve our criterion for a function f € (%) belonging to the wandering sub-

space W (M) of M = (Im j)* we give the following lemma, which is similar to the case of
an m-hypercontraction with C.( property (see [

, Theorem 7))
Lemma 3.1.4. Let T € B(H)? be a pure K-contraction. Then a function

f=Y fa* € H(P)

acNd
belongs to the wandering subspace W (M) if and only if there is a vector y € 9 with

f=-Ty+M.,(jl;"\Dsy.

In this case, || f||* = H)’H,z:ld and in particular, 9 C H is closed.

Proof. Due to Theorem 3.1.1, a function f =Y, na faz® € J(Z) belongs to W(M) if
and only if it is of the form

f = fo+M(jx)i,
with fy € Z and x1,...,x; € H such that (jxl);l:1 € ImM; and

T([Txl);lzl +Ds.fo = 0.
Since fo € 9 = Py = Dy.H and D3 T*

T*Djs., it follows that T* fy € Z5. If

y=Ds(Irx){_, = T*fo € 75,
then _
U( (ITXZ);Z:I > _ ( T Dz* > ( ([Txl);lzl ) _ ( 0 ) )
fo Dy —T* fo y
We obtain
() ()= (6 %) () (%)
Jo y Dy =T y =Ty
But then

il ' Dyy = (jx;)¢_, € ImM.
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3. K-inner functions and Wandering subspaces

It follows that y € & and

f=fo+M(jx)iey = ~Ty+M(®jl; ' )Dyy.
Conversely, let

f=-Ty+M[(®jl; " )Dry
with
yE€ D ={z€ Py; (®jl;")Dsz € ImM}.

Then

fo=-Tye 2 and (x))¢_, = (®I;")Dsy € H?

yield a representation
f=fo+M(ju)i,
as in Theorem 3.1.1, since then

Using Lemma 3.1.2, we find that

d d
A1 = 1foll>+ Y (Arxx) = |1 TyIP+ Y lrx 1%
I=1 I=1

7 112 2 2
= 1TY17 + D7yl = Iylla-
[l

In the following & will always be equipped with the norm ||y[| = ||y|| g« that it inherits
as a closed subspace ¥ C H9. Due to Lemma 3.1.3, the map Wr: B; — B(2,9),

Wr(2)(x) = =T (@Arl; ' )x+CFr(2)Z(@l; ' )Dyx
= —Tx+CFr(2)Z(®l; ") Dsx
defines an analytic operator-valued function.
Theorem 3.1.5. Let T € B(H)? be a pure K-contraction. Then
W(M) = {Wrx; x€ 9}
and |Wrx|| = ||x|| forx € 2.
Proof. Forx € 9, Lemma 3.1.3 implies that
Wrx = —Tx+ M (©jl; " \Dyx = —Tx+ML(@jI; ") Dx.
Thus, the assertion follows using Lemma 3.1.4. [
We have seen that W : By — B(Z,2) is an operator-valued analytic function with
Wrx € () and ||Wrx|| = ||x]]
for all x € Z as well as
Wr(2) L M* (Wr(2)) forall a € N*\ {0}.
Thus Wy : B; — B(2, 2) is a K-inner functions with Wy (2) = W (M).
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3.2. K-inner functions

3.2. K-inner functions

In the previous section we saw that the K-inner function Wy : B, — B(Z, 2) associated
with a pure K-contraction T € B(H)“ has the form

Wr(z) = D+ CFr(z)Z(2)B,
where C = (%(T))% €B(H,2),D=~T € B(7,2) and B= (®l;')D; € B(2,H?). An

elementary calculation using the definitions and the intertwining relation 7Dz = Dz.T
shows that the operators 7', B, C, D satisfy the conditions

(K1) C*C = —(T),

(
(K2) D*C+B (BAQ)T* =
(K3) D*D+B*(€BAT)B id 7L
(K4) Im((®))B) C M:5#(9).

Let & be a Hilbert space and C € B(H,&) any operator with C*C = %(T). Then it
follows exactly as in the proof of Theorem 2.5.14 that the map

jei H— (& = Y a0 Ya(C(T*)*x)*

ocNd

is a well-defined isometry, such that jc intertwines the tuples T* = (T}, ..., T;) € B(H)“
and M} = (M} ,...,M.,) € B(#(&))? componentwise.

Our next aim is to show that any matrix operator

7| B\ d
<C D).H@éi—>H bE,

W{lere T is a pure K-contraction and 7', B, C, D satisfy the conditions (K1)-(K4) with
(2,9) replaced by (8, &) and (K4) replaced by

Im((®)c)B) C M:H(&)
gives rise to a K-inner function W : B; — B(&, &) with transfer realization
W(z) = D+ CFr(z)Z(z)B.

Conversely, we prove that under a natural condition under the kernel K, each K-inner
function is of this form.

In the one dimensional case d = 1, condition (K4) can be omitted, since then M is
surjective. Using the equation 1= Z =¥ 17, one computes that

1 1 1-(1-2)" ¢
z(u——zy«‘l)— FrEETE MUt
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3. K-inner functions and Wandering subspaces

Using the representation

N
T—lim Y —c,. 00 (id,
SO nggo;::O cn+10y, (id sz (2))

of the diagonal operator A and Lemma 4 in [ ], one can check that the next theorem
is a generalization of Theorem 2.1 in [ ] and Theorem 11 in [ ].

Theorem 3.2.1. Let
W: By —)B((g)*,(g))

be an operator-valued function between Hilbert spaces &, and & such that
W(z) = D+CFr(z)Z(z)B,

where T € B(H)? is a pure K-contraction and the matrix operator

7| B\ d
(C D)'HG%@*_)H eE&

satisfies the condition (K1)-(K4). Then W is a K-inner function.

Proof. Because the isometry jc intertwines the tuples 7* and M componentwise, the
space
M=(8)oIm jc C H(8)

is a closed M_-invariant subspace. Let x € &} be a fixed vector. By condition (K4) there is
a function f € 7(&) with
(@jc)Bx=M; f.

It follows exactly as in the proof of Lemma 3.1.3, that
CFr(2)Z(z)Bx = (8M(&,jc)Bx)(z) = (8MM; f)(z)

for all z € B;. Using that SM M} = Pumpm,, OM, = M (®A), (®jc)Bx = M; f and (K3),
we find that
W12 ) = 1DX]* = || Prnar, W] |?
= (OMM_ . f) (&)

(BAM £, M f) (6
= (®(jcAjc)Bx,Bx) ya

(

(

(DA7)Bx, Bx) yya

(idg, —D*D)x,x)
2 2

= [lx[l" = 1]~

Hence, the map
8 — H (&), x — Wx,

98



3.2. K-inner functions

is a well-defined isometry. By the second part of Lemma 2.4.32, we obtain
M;(Wx) = MMM f =M f = (®jc)Bx.
Hence, we derive that
(ld%(é«}) —jcjzv)MZ*l (Wx) =0
for/=1,---,d. For x and f condition (K2) implies that
Je(Wx) = C*Dx + jE(SMM f)
= C*"Dx+ je(M(®A)M; f)
=C"Dx+T(®jcAjc)Bx
= C"Dx+T(®Ar)Bx
=0.
Since
d &) =i H(E) = H(E)

is the orthogonal projection onto M = Ker j, it follows that

d
W(&.) C = (N MeM,M).
=1
This yields that
W(&) L M (W(&))

for all o € N\ {0}. O
The next theorem is a generalization of Theorem 4.2 in [ ] and Theorem 12 in
[ ]. We show that each K-inner function W: B; — B(&%, &) has the form described

in Theorem 3.2.1. In the proof we shall use a uniqueness result for minimal K-dilations
whose proof we postpone to Section 3.3.

Theorem 3.2.2. If W: B; — B(&.,&) is a K-inner function, then there exists a pure K-
contraction T € B(H)? and a matrix operator

T | B "

satisfying the conditions (K1)-(K4) such that
W(z) =D+CFr(z)Z(z)B (z€ By).
Proof. Since W is K-inner, the space

W =W(&E) C H(E)
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3. K-inner functions and Wandering subspaces

is a wandering subspace for M, = (M, ,...,M,,) € B(s(&))¢. We denote by
S =\ MW C A (E)
aeNd

the smallest closed M,-invariant subspace of J# (&) containing #'. The compression
T = PyM_|n to the M}-invariant subspace H = J¢ (&) © . is easily seen to be a pure
K-contraction (cf. Definition 2.5.9 and Example 2.5.11). Let Z C (&) be the smallest
reducing subspace for M, € B(#(&))? that contains H. Because of Lemma 3.3.7, it
follows that
%=\ 2(BNE)=H(ZNE).
aeNd

Thus, the inclusion map i: H — (% N &) is a minimal K-dilation for 7. Let j: H —
(9) be the K-dilation of the pure K-contraction T € B(H )¢, defined in Theorem 2.5.14.
Since also j is a minimal K-dilation for T (Corollary 3.3.8), it follows from Corollary
3.3.6 that there is a unitary operator U: ¥ — Z N & such that

i = (idy QU)j.
Define & = & © (ZN&). By construction
H(E)=H(E)H(ANE)=H(E)ORC.S

is the largest reducing subspace for M, € B(#(&))? contained in .. In particular, the
space . admits the orthogonal decomposition

S =H(E)B (S NAHEV)=H(8)®(H(ZNE)S.SL).

We complete the proof by comparing the given K-inner function W: By — B(&,&) with
the K-inner function Wr: B; — B(%,2) associated with the pure K-contraction T €
B(H)“. For this purpose, let us define the M,-invariant subspace

M=¢(2)cImj

and its wandering subspace

d
WM)=M6&S (Z 21M>
I=1
as in Section 3.1. Using the identity i = (id s ®U ) j, one obtains that
idy@U: M— A (RNE) .St =H(RNE)NS

defines a unitary operator that intertwines the restrictions of M, to both sides component-
wise. Consequently, we obtain the orthogonal decomposition

W =Wy (L) =W (H(8)) ©W (A (ZNE)N.S)
=& (idp QU)W (M).
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3.2. K-inner functions

Let Wr: By — B(Z, 2) be the K-inner function, associated with the pure K-contraction
T € B(H)?. Then Wr admits a transfer realization of the form

Wr(z) =D+CFr(z)Z(z)B (z € By)

T | B .

C= (%(T)) e B(H,2),D= T € B(2,2) and B= (®l;")D; € B(2,H?)

with matrix representation

such that the operators

satisfy the conditions (K1)-(K4). Furthermore, the wandering subspace associated with
M on M is characterized by

W(M) = {Wrx; x€ 9}
(see the beginning of Section 3.2 and Theorem 3.1.5). Let us denote by
Pi: W —&and Po: W — (id 5 QU)W (M)

the orthogonal projections onto & and onto id s @U)W (M) respectively. The K-inner
functions W: B; — B(&%,&) and Wr: B; — B(Z, Z) induce unitary operators

E—>W, x—Wx

and )
2 —W (M) x — Wrx.

We define surjective bounded linear operators by
Up: & — &, Ux=PWx

and
Uy: & — 9, Uyx =x1f (idjf ®U)WT)E =P Wx.

By construction the column operator
(U,Uy): & —E®D
defines an isometry such that
W(z)x =Ux+UWr(2)Usx = (U, + UDU,)x + (UC)Fr(2)Z(BU, )x
for z € B, and x € &. To complete the proof we show that the operators

T € B(HY,H), B=BU, € B(&,,H?), C=UC € B(H, &)
and D = (U; +UDU,) € B(&,,8)
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3. K-inner functions and Wandering subspaces

satisfy the conditions (K1)-(K4). Using that C*C = %(T) and D*C + B*(®Ar)T* = 0, it

is readily seen that

o 1
C'C=CUVC=CC=(T)

and

D*C =U;D*U*UC = U;D*C
= —U;B* (®Ar)T* = —B* (®Ar)T*.

To verify condition (K3) note that, using the identification & = & & (ZN &), D acts as
the column operator
D= (U,UDUy): & — ED(ZNE).

With D*D + B*(®Ar)B = id ; we obtain that

D*D = U{U, +UsD*U*UDU,
= Ul*Ul + U2*U2 — UZ*B* (EBAT)BUZ
=idg, —B* (EBAT)B.

Since jz =i = (id» ®U)j and Im(U,) = D, it follows from
Im((®))B) C M; 7 (2)

that
(®Jje) Bx = (Didyy QU)(®j)B(Usx) € M A (&)

for all x € &. Thus, the K-inner function W: B; — B(&,&’) admits a matrix representa-
tion of the claimed form. ]

Finally, we want to indicate how the theory of characteristic functions is related to the
theory of K-inner functions.

Remark 3.2.3. Let 7 be a unitarily invariant space with kernel K, such that
M, =M,,,...,M,,) € B(#)"

is bounded and a pure K-contraction. Let .7 be a unitarily invariant Nevanlinna-Pick
space with kernel K such that

M, = (M,,,...,M,,) € B(#)*

is bounded and let & be an arbitrary Hilbert space. Furthermore, let T = (Ty,...,T;) €
B(H)? be a pure K-contraction with corresponding intertwining isometry j : H — J#(2)

and let 67 : B; — B(&,2) be a function in Mult(s# (&), 7 (%)) with multiplication
operator

Mg, : 72(8) — H(D),

T

such that
Mo Mg, + jj* =id () -
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3.2. K-inner functions

It is immediate that

Mo %((9@)%%(.@),

T

is partially isometric multiplier and
My, (Ker(67)1) =M = (Imj)* € Lat(M,, #(2)).
Let
F =&N(KerOr)t C &.

Then, clearly

167l (2) = Moy X[l s (2) = Xl sz i) = lIxlle = llxll.2

for all x € .% . Furthermore, we obtain that
(Mo, f,My; Mo, 8) () = (Mo, f, Mo, M:,8) () = <f=Mz,g>js?(g)

forall I = 1,...,d, f € Ker(87)" and g € J#(&). Using that & = J7(&) ©ImM,, it
follows that
d
WM)=Mo | Y M M | =6r(&nN (Kerbr)") = 67(F).
=1

Hence,
IEBd _>B<97@>7 g OT(Z)|ﬂ

is a K-inner function (see Theorem 5.2 in [ D). LetWr: B; — B(@, ),

Wr(2)(x) = —Tx+CFr(2)Z(&l; ') Dyx

be the K-inner functions as before such that Wr(2) = W(M).

For each vector x € &, there is a unique element y, € .% with Wrx = 07y,. The induced
map

@—)f,x—)ym

is unitary and modulo the isometry
i1 D — E,x =y,

the function 67 extends the K-inner function Wy. The characteristic functions in [ 1,
[ ] and [ ] are functions of this type.

103



3. K-inner functions and Wandering subspaces

3.3. Minimal K-dilations

In this section, we generalize a result from [ ] about uniqueness of minimal dila-
tions for pure row contractions, which we have used for Theorem 3.2.2. For the proof we
use the uniqueness of minimal Stinespring dilations. Similar approaches can also be found
in [ ] and [ ]. We also give an alternative proof for the uniqueness of minimal
K-dilations using a lurking isometry argument due to Abadias, Bello and Yakubovich (see
[ , Theorem 1.12 and Section 3]).

Let IT: % — B(H) be a completely positive map from a unital C*-Algebra % to the
bounded linear operators B(H ) on a Hilbert space H. By the Stinespring dilation theorem,
IT: % — B(H) has a (minimal) Stinespring representation (V, ), where 7 is a represen-
tation of 4 on a Hilbert space H; and V € B(H,Hy) (see [ , Theorem 4.1]). The
pair (V, ), is called Stinespring representation for IT if

O(x) =V*r(x)V
for every x € A. If in addition
Hy =\/{n(x)Vh:x€ B,hc H}

the pair (V, ) is called minimal.

Let <7 be a unital subalgebra of a unital C*-algebra % and I1: % — B(H) a completely
positive unital map. The map IT is called an .o7-morphism if II(14) = idy and I1(ax) =
I1(a)I1(x) for a € </ and x € 4. Suppose in addition that

% = spanl | { o7 a7}
Arveson shows that every unitary operator, intertwining two .7 -morphisms

I1;: @—)B(Hl) (12172)

pointwise on .7, extends to a unitary operator, intertwining the minimal Stinespring rep-
resentations of I'l; and IT, (cf. [ , Lemma 8.6]).

Let 2 be a von Neumann algebra and .7 a unital C*-subalgebra such that
P = span” { o "}
Suppose that the .<7-morphisms
I,: —B(H) (I=1,2)

are weak-x continuous. Straightforward modifications of the arguments given in [ 1,
show that Arveson’s result remains true in this modified setting.
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3.3. Minimal K-dilations

Theorem 3.3.1. Let & be a von Neumann algebra and let o/ C 9 be a unital subalgebra
such that
P = span” {od ¥}

Forl=1,2, letTl;: 8 — B(H)) be a weak-* continuous </ -morphism and let (7t;,V;,Hy, )
be the minimal Stinespring representations for I1;. For every unitary operator U : H —
H> with

UH](a):Hz(a)U (616537),

there is a unique unitary operator W : Hy, — Hy, with WV =VoU and Wty (x) = mp (x)W
forall x € A.

Since this version of Arveson’s result follows in the same way as the original one (cf.
[ , Lemma 8.6]), we omit the details.

Definition 3.3.2. Let T € B(H)? be a pure K-contraction. A K-dilation of T is an isometry
V :H — (&) together with the operator tuple M, such that

VT =MV

<]

forl =1,...,d. We call a K-dilation of 7T minimal if the only reducing subspace for M,
that contains ImV is .77(&).

We will see that an application of Theorem 3.3.1 yields that minimal K-dilations are
uniquely determined. We will use the following theorem:

Theorem 3.3.3. Suppose that %(MZ) exists. Then B(J€) coincides with the von Neumann
algebra W* (M) generated by M, ..., M.,.

Proof. Since the von Neumann algebra generated by the compact operators K(.77) is all
of B(J¢), it suffices to prove that K(.7¢) C W*(M,). Because of Proposition 2.4.26, the
C*-algebra C*(M,) is irreducible. Thus, clearly W*(M,) is irreducible. So, by a well-
known result on C*- algebras it is enough to show that

W*(M.) K () # 0.

Using Proposition 2.5.5, it is immediate that

1 oo
P = E(MZ) =SOT — CnG]@Z(id%) eEW*(M,)NK(H)
n=0
and the assertion follows. L]

Suppose now that (M;) exists and set & = {M,, : # — H; p € C[z]}. Because of
Theorem 3.3.3, it follows that

span” {o/ /") = W' (M,) = B(#).
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3. K-inner functions and Wandering subspaces

Remark 3.3.4. Let T € B(H) be a pure K-contraction and let V: H — (&) be a K-
dilation of 7. The unital C*-homomorphism

2 B(A#) = B(H(8)), X — X ®idg

together with the isometry V: H — J# (&) is a Stinespring representation for the com-
pletely positive map

IT: B(s¢) — B(H), II(X) = V*(X ®idg)V.
By definition the K-dilation V: H — /(&) is minimal if and only if

\/ #X)(VH)= \/ #(X)(VH)=2(&).

XeW*(M;) XeB()

Hence, the K-dilation V: H — J# (&) is minimal if and only if (7,V) as a Stinespring
representation of IT is minimal.

Lemma 3.3.5. The completely positive map
Il: B(2) — B(H), II(X) =V (X ®ide)V
is weak-* continuous and an </ -morphism, that is,
II(MpX) = I1(M,)TI(X)
forall X € B() and p € C[z].
Proof. The intertwining property of V' yields that
p(T)V* =V (M,®idg)

and

for all p € Clz]. Thus, it follows that
II(M,X)=V*(M,®idg)(X ®idg)V = p(T)II(X) = II(M,)TI(X)

for all p € C[z] and X € B(). Hence, Il is an ./-morphism. Standard duality for
Banach space operators shows that IT is weak-* continuous. Indeed, as an application of
Krein-Smulian’s theorem (Lemma A.2.2) one only has to check that w* — limg V* (X4 ®
idg)V =V*(X®idg)V for each norm-bounded net (X ) in B(7¢) with w* —limg Xo = X.
To complete the argument, it suffices to recall that on norm-bounded sets the weak-x
topology and the weak operator topology coincide. Thus, we have shown that II is a
weak-* continuous .o/ -morphism. O

Corollary 3.3.6. IfV;: H — 57 (&) (I = 1,2) are two minimal K-dilations of a pure K-
contraction T € B(H)?, then there is a unitary operator U € B(&,&) such that Vo =
(id »» QU )V
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3.3. Minimal K-dilations

Proof. Remark 3.3.4 and Lemma 3.3.5, preceding the corollary, show that the maps
I;: B(s¢) — B(H), I|(X) =V (X®idg)V; (I=1,2)
are weak-* continuous .27 -morphisms with minimal Stinespring representations
m: B(JC) — B( (7)), m(X)=X®idg (I=1,2).

Because of Theorem 3.3.1, there is a unitary operator W : S (&) — (&) with WV| =
Vo and W(X ®idg ) = (X ®idg, )W for all X € B(Z). In particular, the unitary operator
W satisfies the intertwining relations

W (M, ®id(g>1) = (M, ®idg2>W (I=1,....,d).
Due to Proposition 2.3.57, there exist operator-valued functions
A:B; — B(gl,(gaz) and B: B; — B(é(’z,é&l)

such that Wf = Af and W*g = Bg for f € 57 (&) and g € (&) (see also [ ,
Proposition 4.5]). It follows that A(z)B(z) = ids, and B(z)A(z) = ids, for z € By. Since

K(z,w)x = (WW*K(-,w)x)(z) =A(z)A(w)"K(z,w)x

for z,w € B and x € &, we find that A(z)A(w)* = id, for z,w € B,. But then the constant
value A(z) = U € B(&1,63) is a unitary operator with W = id j» ®U.. O

We proceed by characterizing minimal K-dilations of pure K-contractions. To prepare
this result we first identify the M,-reducing subspaces of 7 (&).

Lemma 3.3.7. Let M C (&) be a closed linear subspace. If M is reducing for M, €
B((&))?, then PeM C M and

M=\ *MN&)=A(MNE).
aeNd

Proof. The hypothesis implies that M is reducing for the von Neumann algebra W*(M,)
generated by M, ,...M.,. Due to Theorem 3.3.3, it follows that B(.7¢) = W*(M;) and
thus, B(#)M C M. In particular, it follows that

(PsMPYM c PoM = &M

for all B € N?. Let f =Y., cne faz® € M be arbitrary. For every § € N it follows from
Lemma 2.4.2 that

5 = (ypap))(PeMP) f e EnM.

The observation that

f=Y faz%e \/ 2MNE)=#MNE)

ocNd oeNd

completes the proof. 0
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3. K-inner functions and Wandering subspaces

Corollary 3.3.8. Let T € B(H)? be a pure K-contraction and let
V:H— 7(8)
be a K-dilation. Consider the operator
Cyv:H— &, h— PsVh.

and denote by 9 = ImCy C & the closure of its range. Then ImV C 7€ (2) and V is
minimal if and only if ¥ = &. In particular, the operator

Viin : H— (D), h— Vh
is a minimal K-dilation for T.

Proof. Clearly, 77 (2) is reducing for M,. For h € H Lemma 2.5.12 yields that

Vh= Z ’)/aa‘a‘CV(Ta)*hZa S %(9)

oeNd

Hence, ImV C #(2). If V is minimal we obtain that

and thus,

éD:ngf(@@) :Pg%(@) :.@:Iva.

For the converse direction, suppose that ¥ = ImCy = & and that ImV C M is a reducing
subspace for M, € B((&))?. We know from Lemma 3.3.7 that

M=(MNE&).

and that
ImCy =Im(PsV) CPs(M) CMN&.

Thus, if 2 = &, it follows that

The additional part is immediate. 0

We conclude this section with a more straightforward proof for Corollary 3.3.6, using
a lurking isometry argument due to Abadias, Bello and Yakubovich (see [ 1.

Proof. LetV;: H— (&) (I =1,2) be two minimal K-dilations of a pure K-contraction
T € B(H)". Set C; = PgV,. Due to Lemma 2.5.12, we obtain for 4 € H that

Vih="Y" aq)YuCi(T*)"hz*

ocNd
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3.3. Minimal K-dilations

and

1
C/C=—=(T).
1Gr=2(T)
Hence, ||C1h|| = ||Coh|| for all h € H. Since the K-dilations V;: H — J¢(&)) are min-
imal, it follows from Corollary 3.3.8 that ImC; = &; for [ = 1,2. Thus, the isometry
W :ImCy — &, C1h— Cyhis well-defined and extends to a unitary operator U : &1 — &5.
Furthermore, we deduce that

(idyy @U)Vih =Y ajq)YaUCI(T*)*hz*

oceNd

= Z a‘a‘ }’aCZ(Ta)*hZa
oeNd

=Voh

forallh € H. O]
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4. Uniqueness of multiplier calculus
for pure K-contractions

The contents of this chapter are joint work with Michael Hartz.

Let T € B(H) be a completely non-unitary contraction, that is an operator of norm at
most 1 without unitary direct summand. A fundamental result of Sz.-Nagy and Foias
shows that the obvious polynomial functional calculus

1:C[z] — B(H), pw~ p(T),

extends to a weak-*x continuous, (completely) contractive algebra homomorphism on
H> (D).

Furthermore, it is a well-known fact that the polynomials form a weak-* dense subalge-
bra of H* (D) (see for example Theorem 2.3.36). Thus, if the extension of the polynomial
functional calculus IT to H*(ID) is weak-* continuous, it is clearly unique. Miller, Olin,
and Thomson give an example (cf. [ , Example 13.4]) of a completely non-unitary
contraction 7 for which the polynomial functional calculus IT admits multiple extensions
to a norm continuous algebra homomorphism on H*(D).

On the other hand, assume that T € B(H) is not only completely non-unitary but also
pure, that is (7*)¥ — 0 for N — oo in the strong operator topology. In [ , Theorem
13.3], Miller, Olin, and Thomson establish the following uniqueness result:

Theorem (Miller, Olin, and Thomson). Let T € B(H) be a pure contraction and let T :
H*(D) — B(H) be a bounded unital homomorphism with w(z) = T. Then 7 is weak-x
continuous and hence agrees with the Sz.-Nagy—Foias functional calculus of T.

The goal of this chapter is to establish an analog of Miller, Olin and Thomson’s theorem
for multiplier functional calculi of pure K-contractions.

For the rest of this chapter let therefore .7# be a regular unitarily invariant complete
Nevanlinna-Pick space with kernel K : B; x B; — C,

nd 1
K(z,w) = ap{z,w)" = — ,
(Z ) n;) "<Z > 1— Zn:l bn<Z7W>n

where ag =1, a, > 0 for all n € N, lim,_se0 % =1 and (by),>1 is a sequence of non-
negative real numbers satisfying }.° b, < 1.
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4. Uniqueness of multiplier calculus for pure K-contractions

Examples are the spaces A2(B,), where s € (0, 1), with reproducing kernel
1
(1= (zw))*

and the spaces Z(B,), where s < 0, with reproducing kernel

K;: ]Bd XBd — C, KS(Z,W) =

oo

K:ByxBy—C, K(z,w) =) (n+1)(z,w)".
n=0

If s € (0,1), then A2(B,) and Z,_1(B,) coincide as vector spaces with equivalence of
norms. See Examples 2.3.64 and 2.4.6.

For a tuple of commuting operators T = (Ty,...,T;) € B(H)? let

d
or: B(H)— B(H), X — Y TXT}".
=0

We have seen in Definition 2.5.2 that a tuple of commuting operators 7 is called K-
contraction if

1 ) - .
(E) (T) =idg — ) byof(idp)
n=1
converges in the strong operator topology and defines a positive operator. Motivated by
the definition of the defect operator and the defect space of a contraction, we called

the defect operator and
9 = YD« =ImC

the defect space of a K-contraction. Further, we considered in Theorem 2.5.16 the fol-
lowing characterization of pure K-contractions.

Theorem. Let T € B(H )d be a commuting tuple. The following statements are equivalent:

(a) T is a pure K-contraction,
(b) there exists a Hilbert space & and an isometryV : H — € (&) such that
VI =M.V
foralll=1,....d.

(c¢) T is a K-contraction and

ji H— A(D), jh) = Y i aC(T%)

ocNd

is a well-defined isometry such that

JIF=Mj (I=1,....d).
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In [ ], Eschmeier extends the Sz.-Nagy-Foias H*(D)-functional calculus for com-
pletely non-unitary contractions to the multivariable setting. He establishes H*(B,)-
functional calculi for completely non-unitary tuples of commuting operators satisfying
von Neumann’s inequality over the unit ball B;. Clouatre and Davidson show that com-
pletely non-unitary commuting row contractions admit functional calculi for the multi-
plier algebra of the Drury-Arveson space Hf (cf. [ ]). Bickel, M°Carthy and Hartz
generalize these ideas for a larger class of commuting operator tuples and multiplier alge-
bras of reproducing kernel Hilbert spaces on unit ball B, (see [ D.

The next theorem is a particular case of Proposition 3.5 in [ ].

Theorem (Bickel, M®Carthy and Hartz). If T is a pure K-contraction, then there exists a
completely contractive algebra homomorphism

m: Mult(2) — B(H)

with ©(1) = idg and ©(z)) = T; for | = 1,...,d such that © is weak- continuous. In
particular, if
7: Mult(#) — B(H)

is any weak-x continuous map extending the polynomial calculus
Clz] = B(H), p— p(T)
forT, then T = T.

Proof. Let T be a pure K-contraction and let j : H — 57 (%) be the intertwining isometry
defined in Theorem 2.5.14. Using Lemma 3.3.5, it follows that

n:B(A#) = BH), X — j(X®idgy)j

is weak-* continuous, completely positive, I1(id ) = idg, II(M;,) =T; for I = 1,...,d
and

I(MpX) = TI(Mp)II(X)
for all p € C[z] and X € B(s¢). Since C[z] is weak-* dense in Mult(.7) (see Theo-
rem 2.3.36) and multiplication on B(.7’) and B(H) is separately weak- continuous, we
deduce that

MI(MeX) =T1(Mp)II(X)
for all @ € Mult(7) and X € B(.%). Since || j|| < 1, using the definition of 7, it can be

readily seen that 7 is completely contractive. The additional part is immediate, using that
W*

Mult(#) = C[z] . O

The previous theorem about pure K-contractions generalizes the H*(ID)-calculus for
pure contractions. For generalizations of the completely non-unitary case we recommend
the mentioned paper [ ] by Bickel, M“Carthy and Hartz.

The main result in this chapter will be as follows:
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4. Uniqueness of multiplier calculus for pure K-contractions

Theorem 4.1 (Analog to Miller, Olin, and Thomson’s theorem). Let ¢ be a regular
unitarily invariant complete Nevanlinna-Pick space on B; with unbounded kernel K, let
T = (Th,...,Ty) be a pure K-contraction and let w : Mult(¢’) — B(H) be a completely
bounded unital homomorphism with nt(z;) = T; for 1 <1 < d. Then & is weak-* continu-
ous.

As in the H*(ID)-case, we have

CH" = Mult(#)

(see Theorem 2.3.36). Hence, similarly to Miller, Olin, and Thomson’s Theorem, the
result (Theorem 4.1) can be understood as a uniqueness statement for the multiplier func-
tional calculus of pure K-contractions without an a priori weak-* continuity assumption.

Our goal in the following two sections is to characterize pure K-contractions for com-
plete Nevanlinna—Pick kernels K with the help of a "Schur-type" product for infinite tu-
ples. This characterization is similar to the original definition SOT — limy_,o. T*N — 0 of
pure contractions T € B(H).

4.1. A product for infinite tuples

In this section, we will introduce a "Schur-type" product for row operators. The most
basic case occurs when

T=[h I, - T,)]€BH®C"H)
and
S=[S1 S -+ Su] €BH®C"H).
In this case, we define
ToOS=[NTS1 1Sy - TiSw TSi - TuSu),

which can be regarded as an operator from H ® C" into H.

We also have to deal with infinite rows and iterated ©-products, which makes it more
convenient to define ® in an basis independent fashion.

Definition 4.1.1. Let H, &7, & be Hilbert spaces and let T € B(H ® &1,H) and
S€B(H® &,H). We define

T@S:T(S(X)idgl) EBH®&E RE,H).

Weset T" =T ©---®T (n-times), which is an operator in B(H @ &*" H).
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4.1. A product for infinite tuples

If H and & are Hilbert spaces and T € B(H ® &, H), it is sometimes useful to consider
the map
or:BH)—BH), X —T(X®idg)T".

The following properties of the ®-product are immediate from the definition and will
be used without further reference. In particular, associativity shows that the power T®"
above is well-defined.

Lemma 4.1.2. Let H, &), &5,&3 be Hilbert spaces. Furthermore, let

T.,11,T, e BBH® &,H), S,51,52 € BBH® & ,H) and R € B(H® &3,H).
Then, we have
(a) (Associativity) T © (SOR) = (T ©S)®OR.

(b) (Distributivity / Bilinearity) (T\ + Th) ©S=T1 S+ TS and T ® (S1+S) =T ®
Sy 4+T ®83. Moreover, (AT)S=A(T®S)=T (AS) for A € C.

(¢c) (Continuity) | T @S|| < [|T||[|S]-
(d) (T OS1)(Th8)" =T1(518; ®idg )Ty In particular, T"(T“")* = o} (idn).
(e) If z,w € B(&,C), then z"(W™")* = (zw*)" forn > 1.

(f) (Compatibility with multiplication operators) Let 7€ be a reproducing kernel Hilbert
space and let ¢ € Mult( 7 @ 8,5 ) and y € Mult(S ® &, .7) be row multipliers.
Define (¢ © y)(z) = ¢(2) © Y(z). Then ¢ © y € Mult(H @ & ® &) and Mooy =
My ©My,.

Proof. (a) Using the canonical identification of (8] ® &) ® &3 with 8] ® (& ® &3), we
find that
TO(SOR)= T((S(R@idgz)) ®idgl) = T(S@idg] )(R@idgz ®idgl)
=(T®S)OR.
(b) and (c) are obvious.
(d) follows from a straightforward computation.
(e) The proof is by induction on n, with a trivial base step n = 1. If n > 2 and the asser-

tion has been shown for n — 1, then using associativity in the first step and the inductive
hypothesis in the second, we obtain

Z@n(w®n>* — Z(Z(anl ®id®@)(w®n71 ®id(g>)*w* — Z((Zw*)nil ®id£)w* — (Zw*)n7

as zw* € C, establishing the claim for n.
() By (¢), My OMy € B(X @& @ E,). If f € I, x € 61,y € &3, then

(Mp ©My)(f @y®x)(z) = Mo(My(f ®y) ®x)(z) = ¢(2)(¥(z)(f(2)y)x)
= (¢(2) O ¥(2))(f(2)y®x),

so My © My, is given by multiplication with ¢ © y. U

115



4. Uniqueness of multiplier calculus for pure K-contractions

Since the ®-product reduces to the ordinary product of operators when the coefficient
Hilbert spaces &1 = &, = C, it is in general not commutative.

Lemma 4.1.3. Let H|, H> and & be Hilbert spaces.
(a) Let S€ B(H|®&,Hy), T € B(H,® &, Hy) and R € B(Hy, Hy). If
RS =T(R®idg),

then
RS®" = T (R®idgen).

(b) Letd € NU{oo}. Using the notation C* = (*(N), let T = [Ty,...,Ty] : HRC? - H

be a bounded row operator, with

d
T (h® (z;)?’:1> =Y Ti(zh)
=1

for h€ H and ()¢, € CL. Ifh € H and (2" is a family in C4 with 7™ =

4 m=1
(Zl(m)>l,1f0rm =1,...,n, then

TG”@@(@Z:M("I))): Yy (Tln""'Th)<<Zl(:)""'21(11)>h)

In particular
Im(7°") c \/{T},-...-T,hs he H,(Iy,...,I,) € [d]"},

where
d] = {1,...,d} ford > 1 and
" | Nog for d = o.

Proof. (a) Proof by induction on n, with trivial base step n = 1. Suppose that n > 2 and
the assertion has been shown for n — 1. Then using associativity in the first and fourth
step and the inductive hypothesis in the third, we obtain

RS = RS(S" ' @idg) = T((RS" 1 @ide) = T((T" N (R®id gen-1)) @ids))
=T (R®idgen).

(b) We proceed by induction on n. The base step n = 1 is trivial. If n > 2 and the

d
assertion has been shown for n— 1, let h € H and 7" = ( l(m)> - eClform=1,...,n.
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4.1. A product for infinite tuples

Then using associativity in the first and fourth step and the inductive hypothesis in the
third, we deduce that

7 (he (@p2™) ) = T<T®” e (epdm)) @)
- Z 1,17 (ne (@i 2™)) 2

l,,fl

_ Z T, ( i (T, - Tp) ((Zl(n 11) ...-zl(ll)> h)) Zz(,:l)
n,]

=1
= Y B () ).

The additional part follows, since

d
Y @ D) (57 d ) ) € VAT - T e B (1) € [d)7),
Lysody=1

using that 7" is linear and bounded and the fact that linear combinations of elementary
tensors are dense in H ® (C4)®", O

4.1.1. Pureness of K-contractions with Nevanlinna-Pick kernel

We now want to characterize pure K-contractions for complete Nevanlinna—Pick kernels
K with the help of the product for infinite tuples from the previous section.

Definition 4.1.4. A tuple U = (Uy,...,U;) € B(H)“ is called a spherical unitary if each
U, is normal and Zle U,U;" = idg or equivalently Zle UU; = Zle UU; =idg.

We need the following theorem by Clouatre and Hartz (see Theorem 5.6 in [ 1):

Theorem 4.1.5 (Clouatre, Hartz). Let 7€ be a regular unitarily invariant complete
Nevanlinna-Pick space. Let T = (Ti,...,T;) € B(H)? be a commuting tuple of operators
on a Hilbert space. Denote by M; = (M,,...,M;,) € B()? the tuple of operators of
multiplication by the coordinate functions. Then the following assertions are equivalent:

(a) T is a K-contraction

(b) There exist Hilbert spaces &, H, a spherical unitary U € B(H )d, and an isometry
VW) . H = (&)@ H such that

v =, eu) v
foralll=1,...,d

For a proof see also Remark 2.5.15 and [ , Theorem 2.25].
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4. Uniqueness of multiplier calculus for pure K-contractions

Notation 4.1.6. For a Hilbert space & denote by

[0

F(&) =&

n=0
the corresponding (full) Fock-space.

Remark 4.1.7. (a) Forn > 1, let S, be the symmetric group on n letters. For a permutation
0 €Sy, let Ug : &9 — & be the unique unitary operator satisfying

Us(x1 ®...Qx,) =Xg-1(1) @ -+ - ®Xg-1(y) (X1...,x, € ).
The symmetric n-fold tensor power of & is defined by
ETNM) =[x € &9, Ugx = x}.
The Hilbert space

Fam(&) =@ &7 C F (&)
n=0

is called the symmetric Fock-space over &. Denote by Py, the orthogonal projection
from F (&) onto Fyym(&).

(b) Letey,...,e; be the canonical orthogonal basis for C. In| , Proposition 2.13],
Arveson shows that there exists a unique unitary operator W : H(% — Fsym((Cd ) such
that W(1) =1 and

W(Zl,...,zin):(@?inll’m’ €, (1’12 1).
Furthermore, if S1,...,S; on Fym(C?) are defined by
Six = Psym(el ®x)7 X € Feym((cd)a

then
WM, =MW (I=1,...,d).

(c) Let T =(Tq,...,T;) € B(H)“ be a commuting row contraction, let

d 1/2
C= (1 -y TlTl*>
=1

be the corresponding defect operator and denote by & = ImC the defect space. Fur-
thermore, let j : H — H*(9),

jh) =Y} %C(T*)"h*

ocNd

be the contraction with
jTl* :Mz*lj (I=1,...,d),
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4.1. A product for infinite tuples

defined in Theorem 2.5.14 and Remark 2.5.15. Fix w € B,. With the notation intro-
duced in Definition 2.1.7, one computes that

) (w) =Y. CZ(w)" (T")"h.
n=0
Since the operators 7; commute, it follows modulo identification that

®H.

(T°")"he () e

Hence,
(W @idy) j(h) = &g (id g omn ©C) (T)

and one can check that j is an isometry if and only if

SOT — lim (T“")* = 0.

n—oo

Remark 4.1.8. (a) Let z,w € B, and let Z be as in Definition 2.1.7. Let N > 1 and

pM () = (\/EZ(Z), VhZ ()2, ... bNZ(z)GN,o,...) .

Using Lemma 4.1.2 and
Z(z)Z(w)" = (z,w)idc,

one computes that

M) ()b (w)* = i b (z,w)N.
n=1

By a well-known argument form the theory of infinite operator matrices (Corollary
A.3.3), it follows that b : B; — B (F(C?),C),

b(2) = (V0r1Z(), Vba2(2) 2, ..

is well-defined and that |

1 —b(z)b(w)*
for all z,w € By. In particular, since L, : B; x B; — C,

K(z,w) =

Ly(z,w) = K(z,w)(1 = b(z)b(w)") = 1
is positive definite, we conclude that b € Mult(# ® F(C?),.5#) is contractive.

(b) Let T € B(H)? be a K-contraction. Let N > 1 and

BOT) = (VBT AT, T N0, ).
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4. Uniqueness of multiplier calculus for pure K-contractions

Using Lemma 4.1.2, one computes that

N 1
bM(T)pM(T)* = Y byop(idy) =1 (f> (T).
n=0 N

A well-known argument form the theory of infinite operator matrices (cf. Corollary
A.3.3) yields that

b(T) = (\/blT, VbaT2, \/b3T®3,...)
is an operator in B(H ® F (C?) ,H) with ||b(T)|| < 1. Conversely, let
T=(Ti,...,T;) € BH)?

be a tuple of commuting operators such that

b(T) = (\/b_lT, Vb T2, \/ET“,...)

is a well-defined operator in B(H @ F (C?) ,H) with ||b(T)|| < 1. One checks that

<%) (T) = 1 — b(T)b(T)* > 0.

Hence, T € B(H)“ is a K-contraction.

Remark 4.1.9. (a) Since the point evaluations of .7# are continuous, it is not difficult to
check that
My =b™N(M,) (N € Nwg) and My, = b(M,).

(b) Suppose that U € B(H)? is a spherical unitary. Since (b,),en is a sequence of non-
negative real numbers satisfying )" ; b, < 1, it is also readily seen that

b(U) = <\/EU, VU2, \/b_3U®3,...>

is a well-defined operator in B(H @ F (C%) ,H) with ||b(U)| < 1.

(c) Let T be a K-contraction. Due to Theorem 4.1.5, there exist Hilbert spaces &, H,a
spherical unitary U € B(H)¢ and an isometry V\Y) : H — #(&) @ H such that

vt = (M, e U) VY

forall/ =1,...,d. If M; = (M,)¢_,, then part (a) of Lemma 4.1.3 yields that

<V(U) ®id((cd)®n> (TO")* = ((MZ@U)CD”)*V(U)‘
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4.1. A product for infinite tuples

This implies for N € N that
(V(U> ®idF(Cd)) bM(TY* = (bW (M,) @ by (U)) V).
soT SOT

Since b™(T) 2% b(T), 5™ (M) % b(M.) and 6™ (U) 225 b(U) for N — oo (cf.
Corollary A.3.3), it follows that

(v<U> @idF(@,)) b(T)* = (b(M.) ®b(U))* V).
Part (a) of Lemma 4.1.3 implies that
(V) @idpcayen ) (B(T)")* = (B(ML))*" @ b(U))*") V)
for n > 1. In particular, if T is a pure K-contraction, that is if H =0, then
(V(U) ®idF((Cd)®n> (b(T)O")* = (b(MZ)Q")*V(U)~
forn > 1.
Lemma 4.1.10. Let M, € B(#)“ be the weighted shift, then
SOT — 1i_r>n (b(M,)“™)* = 0.
Proof. Letn € N, then

(b(M:)™")" = (M")" = (Mpen)"
and
[(B(M2)")* | < [IMp" < 1.
Fix z € By. It follows that
(b(Mz)Qn)*kz = (Myon) "k, = b(Z)anz
where b(z) : ' QF (C) — A,

b(2) = (VBr12(). V/ba2(2) 2, ..

with Hb(z)“%ﬂ@F((Cd)ﬁ% < 1. Since
< 1 ©n < 1i n__
0 < Tim [|b(z)"[| < lim [|b(z)[|" =0,

we deduce that
lim (b(M,)*")*h =0

n—oo
for all
h € span{k;; z € B;}.

Using that || (b(M;)®")*|| <1 for all n > 1 and the fact that span{k;; z € By} C S is
dense, we conclude that
lim [|((M)“")" f|| =0

n—oo

forall f € J7. O
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4. Uniqueness of multiplier calculus for pure K-contractions

Lemma 4.1.11. Let T € B(H)? be a pure K-contraction. Then

SOT — lim (b(T)“™")* = 0.

n—oo

Proof. Let T be a pure K-contraction. Let j : H — J# () be the intertwining isometry,
defined in Theorem 2.5.14 with j7;* = M jfor/ =1,...,d. With Remark 4.1.9, it follows
that

(B(T)*")* = (J* @idpcuen ) (b))
for all n € N with n > 1. Since

SOT — lim (b(M,)“")* =0,

n—soo
the assertion follows from Lemma 4.1.10. ]

Next we want to show that the converse of Lemma 4.1.11 is also true. Namely, if

SOT — lim (b(T)“™")* =0,

n—soo

for a K-contraction 7', then T is pure.

Lemma 4.1.12. Let 57 be a regular unitarily invariant complete Nevanlinna-Pick space
with reproducing kernel K : By x B; — C,

> 1
KZaW - a Zﬂwn: oo Y
@w) = Ll = T ge 3

where Y°_a, = oo. If T € B(H)? is a K-contraction with

SOT — lim (b(T)“")* =0,

n—soo
then T is pure.

Proof. Suppose that T is a K-contraction with

SOT — Iim (b(T)®™)* = 0.

n—yoo

Due to Theorem 4.1.5, there exist Hilbert spaces &, H,a spherical unitary U € B(FI )d and
an isometry V) : H — (&) @ H such that

vT = (M, o U) VY

foralll=1,...,d. If Y}~ ;a, = o, using that a, > 0 and b, > 0 for all n € N, the theorem
on convergence of a monotone series yields that
= 1

Y bp=1——=1

n=0 Zn:O an
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4.1. A product for infinite tuples

Hence, if U € B(H )d is a spherical unitary, then

I
™
S
yaEY

=
<
S
N——
S

It follows inductively that

Because of Lemma 4.1.10,

SOT — lim (b(M,)“")* = 0.

n—yoo
Hence, by assumption
HPF’V(U)hH — 1i_1>n H((b (b(U)®")*)V(U)hH
Nn—yoo
. H On\*
_J%H VO @idpcaren ) (B(T)™")
_ ©n
= lim [|(6(T)"")"|
=0

for all h € H. Thus, Im(V(U)) 1 A and the pureness condition follows from Theorem
2.5.16 with the isometry V = V(U). O

Remark 4.1.13. Inthe case } " a, < o every spherical unitary U is a pure K-contraction.
Since M, is also pure K-contraction, every K-contraction is pure (cf. Proposition 2.19,
Lemma 2.20, Lemma 2.21, Theorem 2.25 and Theorem 3.22 in [ D.

By the preceding lemmas (Lemma 4.1.11 and Lemma 4.1.12) and Remark 4.1.9 we
obtain the following theorem, which characterizes pure K-contractions.

Theorem 4.1.14. Let 77 be a regular unitarily invariant complete Pick space with repro-
ducing kernel K : B; x B; — C,

1
Z%ZW =X balzw)"
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4. Uniqueness of multiplier calculus for pure K-contractions

Then T € B(H)? is a pure K-contraction if and only if

b(T) = (x/blT, Vb T2, \/b3T®3,...)
is a well-defined operator in BLH®F (C4) ,H) with ||b(T)|| < 1 and

SOT — Iim (b(T)®")* = 0.

n—yoo

In particular, it follows immediately that T € B(H)“ is a pure K-contraction if

E(T) > 0.

4.2. Row multipliers with vanishing tails

If
|

1 =b(2)b(w)*

is a unitarily invariant complete Pick kernel, then the row multiplier » has in general
infinitely many non-zero entries. This complicates the proof of the main result. We
overcome this obstacle by showing that under the assumptions of Theorem 4.1, the tails

of the multiplier b tend to zero in multiplier norm, so that b can be approximated by finite
row multipliers.

K:B;xB; — C, K(z,w) =

It turns out to be convenient to mostly work in a coordinate-free fashion, which leads
to the following definition: If & is a Hilbert space, let

By(H® & H)=\/{T ®@u:T € B(H),uc B(&,C)} CBH®&,H),

where \/ denotes the norm closed linear span. We think of operators of the form 7" ® u as
analogues of rank one operators, and By(H ® &, H) as analogues of compact operators.

The following lemma explains the notion that operators in By (H ®F(CY),H ) have
vanishing tails.

Lemma 4.2.1. Let
T=[1 T -]eB(HOF(CY).H),

with
T,eB(H®(<cd)®l,H) (leN).
Then
TeBO(H®F(Cd),H),
if and only if
lim [ [0 -+ O Ty41 Tvs2 ][ =0.
N—o0

124



4.2. Row multipliers with vanishing tails

Proof. Let [ € N. Since (C?)®! is finite dimensional, the operator
T,€B <H® (<Cd)®’,H>

can be written in the form
d-l

Ti=Y 7" @up

m=1

where Tl(m) € B(H) and u,, € B((C*)®!,C) form = 1,...,1-d. Thus, it is immediate that
[T+ Ty 0 ] eBy(HOF(C),H).

If the tails of T converge to 0, then T is the norm limit of the operators above, and hence
belongs to By (H ® F(C?),H).

Conversely, suppose that 7' € By (H ®F(CY),H ) and let € > 0. Then there exists S =
Y/ S ®@u with [T —S|| < &, where S; € B(H),||S|| <1 and u; € B(F(CY),C). By
definition of F(C?) = B (F(C¥),C), there is an Ny € N and

(m)\ Mo R ud
v = <vl )mzl eB| cH*",C
m=1

so that ||u; —v|| < g/nforl=1,....n. Form=1,...,Ny let
n
Ru=Y Si@v" eB <H® ((Cd)®’",H>
=1

and define
RZ[Rl R, -+ Ry, O }

Then ||R—T|| < 2€e and Ry = 0 for N > Ny. Hence, we obtain

limsup[[[0 -+ O Tyi1 Twviz] || <2e+limsup|[[0 --- O Ryi1 Rwyo] ||
N—roo N—roo
=2€e.
Since € > 0 was arbitrary, it follows that the tails of T tend to zero. L]

We also require the following general operator theoretic result, which is undoubtedly
known. If T € B(H) is an bounded linear operator on a Hilbert space H, we denote by
||| the essential norm of T .

Lemma 4.2.2. Let (T,) be an increasing sequence of self-adjoint operators on a Hilbert
space that converges to T in the strong operator topology. Then lim,_,. ||T — T,|| = 0 if
and only iflim,_e ||T — T||. = 0.
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4. Uniqueness of multiplier calculus for pure K-contractions

Proof. To establish the non-trivial direction, it suffices to prove the following variant: If
(T,) is a decreasing sequence of positive contractions tending to 0 in SOT and satisfying
limy, e | || = 0, then lim, e ||7,|| = 0. Indeed, the lemma follows by applying this
variant to a suitably rescaled version of the sequence (T — Tp,).

To prove the variant, let € > 0 and let N € N so that ||Ty||c < €. Then there exists a
compact operator K so that |7y — K|| < €. Since K is compact, we may choose a finite
rank projection P so that ||K(1 — P)|| < €; whence

ITn (1 =P)|| < [[(Ty = K)(1 = P)| + [|K(1 - P)|| < 2e.

Since (7;,) is a decreasing sequence of positive contractions, T, < T, < Ty for n > N.
Along with the C*-identity, this applies for n > N the estimate

IT(1=P)|? = (1 =P)T}(1 = P)| < [I(1 = P)Tn(1 = P)|| < 2. (4.1)

Finally, since (7;,) converges to 0 in SOT and since P has finite rank, one easily checks
that lim,,_,c || 7,,P|| = 0. In combination with (4.1), this yields

limsup ||7,|| < limsup||T,(1 — P)|| + limsup || T,P|| < V2.
n—oo

n—so0 n—oo
Thus, (7,,) converges to 0 in operator norm. O

Simple examples of sequences of finite rank projections show that in the preceding
lemma, both monotonicity of the sequence (7},) and the assumption that the SOT-limit
agrees with the limit in the Calkin algebra cannot be dropped.

We are now in the position to prove the result alluded to at the beginning of this section.

Proposition 4.2.3. Let ¢ be a regular unitarily invariant complete Pick space on with
kernel

1
1=b(2)b(w)*
as above. Then My, € Bo(H @ F (CY4), 7) if and only if K is unbounded.

K:B;xB; —C, K(z,w) =

Proof. Let
bN(Z) = (b - b(N))(Z) = (07 <o 70 bNZ(Z)®N7 bN+lz(Z>®N+17 . )
Due to Lemma 4.2.1, it suffices to show that
lim [[by |[mun = [[bn (M) || =0
N—roo
if and only if K is unbounded.

The C*-identity shows that

155 (M) || = ([ My My, || =

n=N
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4.3. Factoring out zeros

If Pc denotes the orthogonal projection onto the constant functions, then it is well-known
and easy to see that
1 —Pc=MM;; =Y b,M"(MS")".
n=1

Here, the preceding two sums converge in the strong operator topology (see Theorem
2.5.6). It follows that

lim [|by (M)]| =0,

N—roo

if and only if
N—1
1—Pc— Y buM"(M")*

n=1

lim =0.

N—voo

In turn, Lemma 4.2.2 shows that this happens if and only if the essential norms satisfy

lim
N—oo

=0. 4.2)

e

N—1
1= byM" (M)

n=1

Since 7 is regular, the quotient of C*(A(.7))/K () is *-isomorphic to C(dB), via
the map sending M, to z; (see Theorem 2.4.29). Thus,

MMM = Y YaMEME) = Y 2 =2l =1 mod K(#)

|ot|=n |ot|=n

so that the left-hand side of equation (4.2) is equals 1 — ):iv ’11 by. It follows that

lim [|by(M;)[| =0,
N—oo

if and only if } " | b, = 1, which in turn is equivalent to unboundedness of K. [

4.3. Factoring out zeros

The proof of the theorem of Miller, Olin, and Thomson crucially uses the fact that in
H* (D), one can divide out zeros. More precisely, if ¢ € H*(DD) has a zero of order N
at the origin, then ¢ = 7"y for some function y € H*(D) with ||y||e < ||@|/w. In the
Drury-Arveson space, a version of Leech’s theorem yields the following replacement,
which can be regarded as a solution of Gleason’s problem in Mult(H7): If ¢ € Mult(H?)
with ¢(0) = 0, then

01

Q= [Zl Zd} e
®aq

where each ¢; € Mult(H?3) and the column has multiplier norm at most quHMu]t(Hg) (see

[ , Corollary 4.2]) and its proof. This procedure can be iterated to factor out zeros
of higher order.
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4. Uniqueness of multiplier calculus for pure K-contractions

For more general spaces, the characterization of pure K-contractions in Theorem 4.1.14
suggests that one should aim to factor out the row b, rather than the row of coordinate
functions. This is accomplished in the following result:

Proposition 4.3.1. Let ¢ be a regular unitarily invariant complete Nevanlinna-Pick
space, whose kernel
1

K:BdX]Bd—)(C, K(Z,W):W

is unbounded. Let N € N and € > 0. Then there exists M > N such that whenever ¢ €
Mult(.72) has a zero of order M at O, there exists y € Mult <<%”, A QF (C?) ®N> with

o=b"y
and

”WHMult < (1 +6)||(PHMult-

Before we start with some lemmas that are helpful for the proof of Proposition 4.3.1,
we first want to state a corollary, which is an immediate consequence of Proposition 4.3.1.

For f =Y ycnd faz® € O(Bg) and N € N let

SN[f] = Z faZa

o[ <N
be the N-th partial sum of f.

Corollary 4.3.2. Let ¢ be a regular unitarily invariant complete Nevanlinna-Pick space,

whose kernel )

1 —b(z)b(w)*
is unbounded. Let N € N and € > 0. Then there exists M > N such that whenever ¢ €
Mult(.72), there exists y € Mult <<%”, A QF (C?) ®N> with

K:B;xB; — C, K(z,w) =

@ =Sy_1[@] +bNy
and

Wl < (1+&)[[@ = Sar—1[@] [ vune-

The proof of Proposition 4.3.1 will occupy the remainder of this section. Thus, through-
out this section, we assume the setting of Proposition 4.3.1. We will require two trunca-
tions of the kernel K.

First, for N € N with N > 1, let

N-1
Ky : Bd X Bd — C, KN(Z7W) = Z (b(Z)b(W)*)n
n=0
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4.3. Factoring out zeros

Let 7%y be the reproducing kernel Hilbert space with kernel Ky.

Second, we set
Ky :By xBy; — C, Ky (z,w) = Y (b(z)b(w)")".
n=N

This truncation will be relevant for factoring out powers of the row b. This can be
seen from the next lemma, which is a consequence of Leech’s theorem for complete
Nevanlinna-Pick spaces.

Lemma 4.3.3. Let N € N and ¢ > 0. A function ¢ € Mult(J¢) admits a factorization of
the form
¢=b"y

for some y € Mult (%”,F%”@F (C?) ®N> with || W]y < ¢ if and only if

L(p,c . IB3d X IB3d — Ca (Za W) = C2K]€1_<Z7W) - K(Z,W)(P(Z>(P<W)
is positive definite .

Proof. Due to part (e) of Lemma 4.1.2 and by the definition of the kernel functions K.,
we deduce that

Ky (z:w) = K(z,w)(b(2)b(w)")" = K (z,w)b(2) " (b(w) "), (4.3)
for all z,w € B,. Thus, we obtain that
Lo c(z,w) = K(z,w) (*b(2) N (b(w) )" — p(2)p(w)).

for all z,w € B,. By Leech’s theorem for complete Nevanlinna-Pick spaces (cf. [ ,
Theorem 8.57]), the function Ly . is positive definite if and only if there exists ¥ €

Mult (7,2 @ F (C4) ") with

|l W|muic < ¢ and @ = bV .

For N € N with N > 1 define the closed subspaces
}f;:{ Y faz® € A fa=0for0<|al gN—l} cH
aeNd

Denote by Py : 5 — # the orthogonal projection onto S and by 131& : A — F the
orthogonal projection onto %?Vi. If f =Y ,ene faz® is an element in .77, the orthogonal
projections Py and Pﬁ act as

ﬁN(f) = Z faZa

|a|>N
ocNd
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4. Uniqueness of multiplier calculus for pure K-contractions

and

Iﬁ%(f) = Z faz®
Ja|<N-1
ocNd

Due to Theorem 2.2.9, the function EN By xB; — C,
EN(Z,W) = <ﬁN(kZ)7kW> = Z an<z,w>"
=N
is the reproducing kernel of 4%/’7\/ and IA(:[# By xB,; — C,
_ . N—1
Ky (Z7W) = <PN (kZ)7kW> = Z an<z7w>n
n=0

is the reproducing kernel of C}L’?VL. If
(NS j/ﬁvvﬂMult(z%”) and f € 2,
then obviously @ - f € e%/\[ and
lofll .z = lloflle < l[lmae)llf 1l
Thus, ¢ € Mult(#, ;) with
10l < 19 lataior)

The key to prove Proposition 4.3.1, is to compare the kernels K ﬁ and Ky. We need the
following lemma:

Lemma 4.3.4. Let S,T € By(H ® &,H) and let R € K(H). Then T(R®ids)S* € K(H).

Proof. Suppose first that T = A®u and S = B®v with A,B € B(H) and u,v € B(&,C).
Then
T(R®idg)S" = (A®u)(R®ide)(B* ®@v*) = (u*)(ARB"),

which is compact since R is compact. (Note that uv* € C.) Since By(H ® &,H) is the
closed linear span of operators of the above form, the claim follows. O

In the case of the Drury-Arveson space, 77y = (%f’jv\,i is finite dimensional. In general,
¢y need not be finite dimensional. However, we still have the following lemma:

Lemma 4.3.5. The inclusion i : 7y — F€ is contractive and compact.

Proof. Since Kﬁ :B; xB,; — C,

K (ew) = ¥ (b(2),b(w))"

n=N
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4.3. Factoring out zeros

is a positive definite function and Kﬁ = K — Ky, it follows that the inclusion i is contrac-
tive.

To see compactness of i, it suffices to establish compactness of ii* by basic functional
analysis. To this end, we will show that ii* = (I — MyevM;.y). Because i"K(-,w) =
Ky (-,w), it follows that

<ll*K<aW)7K(7Z)>%” = <KN(',W>,KN(',Z)>%\, = KN(Z,W)
On the other hand,

(I = Myen MoK (- w),K(-,2)) r = K

Combining the preceding two equations, we see that
= (I — Mb@NM;@N), 4.4)
as claimed.

Next, we will show by induction on N that the operator ii* is compact. If N = 1, then
Ky =1, so 77 is the space of all constant functions. In particular, ii* has finite rank and
is hence compact. (Indeed, ii* is the orthogonal projection onto the constant functions.)
If the assertion has been shown for N — 1, then from (4.4) and part (d) of Lemma 4.1.2,
we infer that

ll* = (I_MbCNMZQN) = I—MbM[;k +Mb <<I—Mb®N—1MZ®N71) ®1dF((Cd)> Ml;k

The operator I — MM, is compact by the base case N = 1. To see compactness of the
last summand above, note that I — Myen-1M; .y is compact by the inductive hypothesis

and M), € By (%@F(Cd),%) by Lemma 4.2.1. So, the last summand is compact by
Lemma 4.3 4. ]

Lemma 4.3.6. Let N € N with N > 2 and € > 0. Then there exists M > N such that
(14-€)Ky —Ky) : By x By — C
is positive definite.

Proof. Let N € N with N > 2 and € > 0. The kernel Ky : B; x B; — C of the space
is unitarily invariant. Thus, by Lemma 2.3.2 it has a power series representation

KN(va) = Z dﬂ<sz>n (Z>W € Bd)a
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4. Uniqueness of multiplier calculus for pure K-contractions

with d, > 0 for n € N. Due to Proposition 2.3.3, the family
1/2
o
is a orthonormal basis of .#% and

(a())

is a the orthonormal basis of .7Z. The inclusion i : ¢y — ¢ is a diagonal operator with

(va(e) ) (V) (=) )

By Lemma 4.3.5, the map i : 54y — ¢ is contractive and compact. A well-known argu-
ment on diagonal operators yields that

ocNd

a,—d, >0
for all n € N and 4

lim = =0.

n—eo (,

In particular, there exists an M > N such that

Ogd_n<i
a, ¢€+1

for all n > M. Hence, we deduce that
€a,—(e+1)d, >0
for all n > M. Using that Kﬁ = K — Ky, one computes that
M—1 oo
(1+&) Ky —Kn)(zw) = (e+1) ¥ (an—dn)(z,w)"+ Y (€an— (€+1)dy)(z,w)"
n=0 n=M
for all z,w € By. Thus, it follows by Lemma 2.3.2 that
(14 &)Ky — Ky
is positive definite. 0

Proof of Proposition 4.3.1. Let N € N and € > 0. By Lemma 4.3.6 there exists M > N
such that N
((1 —1-6)2[(]& —KM) B, xB,; — C,
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4.4. Analog to Miller, Olin, and Thomson’s theorem

is positive definite. Suppose that ¢ € Mult(#) has a zero of order M at 0. Without loss

of generality let us assume that |||y = 1 otherwise replace ¢ by —*— if ¢ # 0. Then

- ¢l muie
@ € Mult(.27, .73) with multiplier norm less then 1. Due to Theorem2.2.6, the map

Loy : By x By — C, (z,w) — Ku(z,w) — K(2,w)9(2) @ (w)

is positive definite. It follows that

Loite : By x By — C, Lp,i1e(z,w) = (1+€)*Ky (z,w) — K(z,w)(2)p(w)

is positive definite. By Lemma 4.3.3 the multiplier ¢ € Mult(.7) admits a factorization
of the form
o ="y

for some W € Mult (%ﬂ, H RF (C) ®N) with

[ WImute < (14 €)@ Mul;

which completes the proof. 0

4.4. Analog to Miller, Olin, and Thomson’s theorem

In this section we want to prove the main result. We use a well-known consequence of
the Krein-Smulian theorem.

Lemma 4.4.1. Let H\,H, be Hilbert spaces. Furthermore, let H be separable, </ C
B(H\) weak-x closed and ©t: o/ — B(H,) linear and bounded. The map T is weak-x
continuous if and only if WOT — lim,,_, T(T;,) = O for every sequence (T,),c in the unit
ball B\ (<) of & with WOT —lim,, . T, = 0.

Proof. The map 7 is linear. Hence, 7 is weak-* continuous if and only if 7 is weak-* con-
tinuous at zero. By an application of the Krein-Smulian-Theorem 7 is weak-* continuous
if and only if

n: Bi(</) — B(H>)

is weak-x continuous [confer Lemma A.2.3]. Let C(H|) be the trace class operators on
H; and let +.o7 the annihilator of 7. Because ./ C B(H)) is weak-* closed, it follows
that

o = (Cl(Hl)/{Qf)"

Since H is separable C|(H,) is separable. By [ , §5 Theorem 5.1] the topolog-
ical space (Bj(«/),t,) is metrizable. Hence, 7: B|(</) — B(H,) is weak-* continu-
ous if and only if w* — lim,_,. 7(7;,) = O for every sequence (7,)ncn in By(«/) with
w* —lim,_,. T, = 0. Since every bounded net converges to zero in the weak operator
topology if and only if it converges to zero in the weak-* topology the assertion fol-
lows. U
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4. Uniqueness of multiplier calculus for pure K-contractions

We use the following two lemmas, that will simplify the proof of our main result:

Lemma 4.4.2. Let 77 be a regular unitarily invariant space such that
Clz] € Mult(7).

Let (¢n)nen be a sequence in Mult(.77) with
WOT — r}grolo 0, =0

and fix N € N. Then (Sn[@n])nen is a sequence in Mult(2) with

i [[S[ga] i = 0.

Proof. Forne Nlet @, =Y e (p((xn)zo‘ be in Mult(.7) such that

WOT — lim @, = 0.

n—oo

Fix N € N. Since C[z] C Mult(.7¢), we have

Svigal = Y 042% € Mult(#)

0<|at|<N

for all n € N. Because
WOT — lim ¢, =0,
n—soo

it follows that lim,, (@, z%) ,» = 0 and thus

lim @) =0

n—soo

for every a € N¢. We conclude that

lim ( Z (p&") ) =0.
7 \o<|al<N

Hence, if ¢ = supy<|q <y [|M]], then

0< HSN[q)n]HMult <c < Z (n) ) -0
0<|a|<N

Qo

for n — oo, ]

The pureness condition of a K-contraction plays a central role in our proof of the main
result. In contrast to the classical result, to deal with problems of convergence, we will
use the assumption that the algebra homomorphism is completely contractive.
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4.4. Analog to Miller, Olin, and Thomson’s theorem

Lemma 4.4.3. Let 7 be a regular unitarily invariant complete Nevanlinna-Pick space,
whose kernel

1
- 1=b(x)b(w)*
is unbounded. Let T € B(H)“ be a K-contraction and let

KIBd X]Bd —>(C, K(Z,W)

m: Mult(.22) — B(H)

be a completely bounded algebra homomorphism with ©t(z;) = T; for | = 1,....d. Fur-
thermore, let N € N and
Vi
Y= v’

in Mult (Jf, T RF (Cd)®N>. If we denote by
(1)
(W)= | o

Y

()

then
x(b"Ny) = b(T) V()

and in particular if hy,hy € H with ||hy|| = 1, then

[0 y)hnh) | < (7ol Wil (B(T) ) o]

Proof. For N € N embed bV in an infinite matrix where the first row coincides with 5V
and the other entries are zero. Then embed ¥ in an infinite matrix where the first column
coincides with y and the rest is zero. Since M} has a vanishing tail due to Proposition
4.2.3, using the properties of ® and Lemma 4.2.1, the infinite matrices induced by »®V
can be approximated in norm the topology by finite matrices. Because 7 is completely
bounded and 7(z;) = T; for I = 1,...,d, we conclude modulo identification that

n(bNy) =b(T)Na(y).

We obtain
L e T T v

Using the Cauchy Schwarz inequality, it is immediate that

(R0 y)hn, ha) | = [(m(w)x, (b(T)*N) ha)|
< N lle W Il (B(T) V) R
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4. Uniqueness of multiplier calculus for pure K-contractions

We can now prove Theorem 4.1. For convenience we restate it here.

Theorem 4.4.4. Let 5 be a regular unitarily invariant complete Nevanlinna-Pick space,

whose kernel |

1 —b(z)b(w)*
is unbounded. If T € B(H)? is a pure K-contraction and

KZBdXBd%C, K(Z,W) =

m: Mult(2) — B(H)

is a completely contractive algebra homomorphism with (1) = idyg and ©n(z;) = T; for
l=1,...,d, then T is weak-x continuous.

Before we start with the proof, we want to consider the case, when H = C.
Remark 4.4.5. Let ¢ be a regular unitarily invariant complete Nevanlinna-Pick space

with reproducing kernel K : B; x B; — C,

1
Zanzw 1= X0 baz,w)"

whereap=1,a, >0forn>1 hm,,_m —4 — | and (b,),>1 is a sequence of non-negative
real numbers satisfying } > b, < 1.

(a) In[ , Proposition 8.5], Hartz shows that the regularity condition
lim - — 1,
n—edpyyq

implies that Gleason’s problem can be solved in Mult(.7#). That is, given w € B, and
@ € Mult(s7), there are @y, ..., ¢, € Mult(J#) such that

d
=Y @—w)o. (4.5)
i=1

(b) Let .# (Mult(.7)) be the maximal ideal space of the unital commutative Banach
algebra Mult(s#). Because lim, . a,/a,+1 = 1, one computes that

Gjoint (Mc) = {(X(21),- -, X(zn)); X € Mult(H))} =By
(confer Theorem 2.4.24).
(c) Let x € . (Mult(7)). If

w= (X<Z1)7 e 7%(Zd))) S de
Equation (4.5) yields that

d
x( Z 2(@) =

l

Il
—_
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4.4. Analog to Miller, Olin, and Thomson’s theorem

for all ¢ € Mult(.7). Thus, x : Mult(.7#) — C coincides with the point evaluation
Oy : Mult(.77) — C,
8 (@) = @(w).

It is not difficult to see that point evaluations are weak-* -continuous.

(d) It is well-known (see [ , 2.22 Proposition] and [ , Proposition 3.8]) that
the completely contractive unital algebra homomorphisms

m: Mult(#) — B(C)=C
are precisely the elements of .Z (Mult(.77)).

(e) Let y € .4 (Mult(s¢)). Since b, >0 foralln € Nand }>_ | b, < 1, it follows that

x(z) = (x(z1),....x(zq)) € C* 2 B(CY)
is a K-contraction. If
w=(x(z1),---,Xx(za))) € By,
it follows from Theorem 4.1.14 that
x(2) = (x(z1),-..,2(z4)) € C* = B(C?)
is a pure K-contraction. If Y’ >, a, =« and x(z) is a pure, then x(z) € B,.

Due to the previous remarks, the proof of Theorem 4.1 is immediate in case, when
H=C.

Proof of Theorem 4.1. Let (¢,),en be a sequence in the unit ball

Bi(Mult(s2)) = {¢@ € Mult(57);

(P”Mult < 1}

such that
WOT — lim ¢, = 0.
n—soo

Since JZ is separable and Mult(.7¢") C B(¢) is weak-* closed, Lemma 4.4.1 shows that
it is sufficient to prove that WOT — lim,_, (¢, ) = 0.

Let hy,hy € H. We want to show that lim,_,.(7(@,)h1,hy) = 0. With out loss of
generality we may assume that ||/ || = 1.

Fix N > 2.

Using Corollary 4.3.2 we find a M > N such that for every n € N there exists y,, €
Mult (7,2 @ F (C4) ) with

On = Sm-1 [q)n] +b®Nan
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4. Uniqueness of multiplier calculus for pure K-contractions

and
| W Mute < 2| @0 — Shr—1[@n || Mult-

Because of Lemma 4.4.3, it follows that
lim 1S3 1[@n] |l Mute = 0.
Because ||@,||mur < 1 for n € N, we have that

limsup || Wy, ||mure < 2limsup || @ ||y < 2-
n—oo n—so0

Lemma 4.4.2 yields that

limsup | (7(@a)h1,2) | = limsup | (5™ yi)n )| < 201 (B(T) ) ho |

n—oo n—oo

Since T is a pure K-contraction, it follows with Theorem 4.1.14 that

SOT — lim (b(T)*M)* = 0.
N—roo

Hence, we obtain

0 <limsup [{m(@,)hy,h)| = 0.

n—oo

4.5. The bounded case

Suppose that .77 is a complete Nevanlinna-Pick space with reproducing kernel of the form

K:B;xB; — C,K(z,w) = Zanzw

where ap =1, a,, >0forn>1, llmn_m——landZn 0Gn < oo.

Remark 4.5.1. (a) Because )" a, < oo, the kernel K extends to the positive definite
function

K:By;xB; —C, K(z,w) = Zanzw

where the corresponding reproducing kernel Hilbert space .7 is a subset of A(By).
Using Corollary 2.2.8, it can be readily seen that every function f € . has a unique
extension in 7.
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4.5. The bounded case

(b) It follows that for every w € By the point evaluation §,, : Mult(2#) — C is a well-
defined character.

(c) Since Y ;" ja, < o, by Remark 4.1.13, every K-contraction is pure.

We want to distinguish between two cases:
First case: Suppose that Mult(#) = 7.
Let T € B(H)? be a pure K-contraction and let
m: Mult(.2) — B(H)

be a continuous algebra homomorphism with 7(1) =idy and 7(z;)) =T; forl = 1,....d.
By the open mapping theorem the norms of .7# and Mult(.7#) are equivalent. Thus, since
the polynomials C|z] are dense in .77, they are dense in Mult(.#’). Hence, the map &
is uniquely determined by 7(1) = idy and 7(z;) = T; for I = 1,...,d. In particular, 7 is
weak-* continuous.

Example 4.5.2. If d = 1, Shields establishes in [ , Chapter 9 on page 92] sufficient
and necessary conditions on the coefficients a, such that M, € B(J¢) is strictly cyclic.
This is equivalent to the fact that Mult(.7) = . For example:

If s > 1 and Z_; is the unitarily invariant space with reproducing kernel

[eS) —

Iw
K:DxD—C, K(z,w) = )
(ZW) nz()(n_’_l)s

Shields proves that M, € B(¢) is strictly cyclic and thus Mult(Z_;) = Z_.

Second case: Suppose that Mult(77") C 7.

We have already seen in Remark 4.4.5 that:

(a) The completely contractive unital algebra homomorphisms
m: Mult(s#) - B(C)=C
are precisely the elements of the maximal ideal space .Z (Mult(5¢)).

(b) If x : Mult(.2) — C is an element of the maximal ideal space .# (Mult(¢)), then

x(2) = (x(z1),...,x(za)) € C* = B(CY)

is a pure K-contraction.
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4. Uniqueness of multiplier calculus for pure K-contractions

(c) If x € A (Mult(2)) with

w=(x(z1),---,%(zq)) € By,

the Gleason problem implies that )y coincides with the point evaluation 6, : 77 — C.
Let f € 2\ Mult(57).

Due to Theorem 3.1 in [ ], there are @, y € Mult(s#’) with w(B,) C C\ {0}
such that f = %.

The assumption f € 5\ Mult(#) implies that Vl/ ¢ Mult(#). Hence, there exists a
character y : Mult(#) — C with x(y) =0.

Let
w=(x(z1)..-,%x(za)) € By,

Because y(B;) C C\ {0}, we conclude that §,, : Mult(.s#) — C and j : Mult(#) — C
are two different completely contractive algebra homomorphisms with 7(1) = idyg and
n(z;) =w;forl =1,...,d. In particular, this yields that w € dB,.

Since the polynomials form a weak-* dense subalgebra of Mult(.7) (confer Theorem
2.3.36) and §,, : Mult(#") — C is weak-* continuous, it follows that y cannot be weak-x
continuous.

Example 4.5.3. Proposition 5.4 and Theorem 5.5 in [ ], show that there exist
regular unitarily invariant complete Nevanlinna-Pick spaces .7 with reproducing kernel
of the form

K:By;xB; —C, K(z,w) = Z an(z,w)",
n=0
where ap =1, a, > 0 forn > 1, lim, e a,/ay+1 =1 and ¥,y a, < e such that
Mult(52) C .

Spaces of this type are called Salas spaces. According to the previous explanations, the
statement in Theorem 4.1 is false for the Salas spaces.
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5. Norm-closure of polynomials

The contents of this chapter are a joint work with Michael Hartz.

For s € R and a radial weight function @ : B; — R> let
B, ={f € Oy,); Rf cL*(wdV)}
be a radially weighted Besov space, as in Subsection 2.3.2.

The algebra A(ID) of continuous functions on the closed unit disk that are analytic on
the interior part, the so-called disk algebra, is often a useful tool in function theory and
functional analysis. The algebra can be considered as the norm-closure of polynomials
in H (D), which is the multiplier algebra of the Hardy space H?(DD). It can be checked
that, for example, infinite Blaschke products are contained in H*(ID) but not in A(ID) and
hence A(D) C H*(D). Given any radially weighted Besov space Bj,, one can consider
a generalized concept, namely the norm-closure of polynomials A(B¢)) in the multiplier
algebra Mult(Bg,).

In Subsection 2.3.2, we consider the following characterization for the multiplier alge-
bra Mult(B,) (see Theorem 2.3.55):

Theorem. A function ¢ € O(B,) is an element of the multiplier algebra Mult(Bs,) if and
only if ¢ € H*(By) and RN ¢ € Mult(BS,, BS; ™) for N > 1. In this case,

0l = IR Ollyga g )+ 10l

The idea is due to Cascante, Fabrega and Ortega, which has been adapted by Ale-
man, Hartz, M“Carthy and Richter (see [ , Theorem 6.3]) to the case of radially
weighted Besov spaces By,.

Motivated by the characterization of the multiplier algebra, we establish a similar char-
acterization for the norm-closure of polynomials A(BY,).

Theorem 5.1. Let N > 1. A function ¢ : B; — C is an element of the norm-closure
A(BS,) =T ™" ¢ Mul(BS,),
if and only if @ is an element of the ball algebra A(B,) and the operator
B, =By, f = (RYo)f

is compact.
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5. Norm-closure of polynomials

Besides, one can also reformulate the previous result in terms of (vanishing) Carleson
measures (for a definition see Section 5.2). Now, to simplify notation, we abbreviate

pr—{reom [ Rrarave) <o)

for the radially Besov spaces with the constant weight @ = 1 and B® = B%2. We use the
reformulation of Theorem 5.1 in terms of vanishing Carleson measures and obtain the
following version of Theorem 5.9 (2) in [ ] (see Theorem 5.2.17):

Theorem. Let 1 <2s<d+1and p> <L If
¢ € B""NA(By),
then ¢ € A(B°).

We conclude the chapter by considering the case of the Dirichlet space . For f € &
the Sarason function is defined as

Vi :D—C, Vy(2) = 2(f. k) o — [ £l

As a particular case of [ , Theorem 4.5], it follows that if ReV is bounded, then
f € Mult(s7). Using vanishing Carleson measures and Theorem 5.1, we show that (see
Theorem 5.3.5):

Theorem. Let ¢ € 9. If

sup |Re Vo (w) — Re Vy, (rw)| 25 0
weD

forr 11, then ¢ € A(2).

5.1. A characterization for radially weighted Besov
spaces

The goal of this section is to prove Theorem 5.1. We use the characterization of the
multiplier algebra Mult(B¢)) in Theorem 2.3.55 and the theory of homogeneous spaces,
that we introduced in Section 2.3.

For a function f:B; — C, { € T and 0 < r < 1 we use the notations

fe:Ba—C, fr(z) = f(82)
and .

fr:By (;) —C, z— f(rz).
(see Notations 2.3.12 and 2.3.33).

In Definition 2.3.28, we call a locally convex Hausdorff space .# C ¢(B;) homoge-
neous if
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5.1. A characterization for radially weighted Besov spaces

(a) 7 is quasi-complete,
(b) the point evaluations 6, : # — C, f — f(z) are continuous,

(c) for f € % and € € T the functions fr : By — C, f¢(z) = f({z) belong to .F and the
maps
T— 7,0 f¢

are continuous.

Remark 5.1.1. Let f € A(By). Since
A(Bq) = C(Ba) N O(Ba),

it follows that
liIanr f“°° 0
r—1

and hence by Taylor expansion
=il lle oo
A(Bd> = C[Z] CH (Bd>

Because
Mult(H?(9By)) = H*(By),

we deduce that A(B,) = A(H?(9dB,)). With Lemma 2.3.32, part (c), it is immediate that
the ball algebra A(B,) is homogeneous in the sense of Definition 2.3.28. So if you want
to be more precise with polynomial approximation, you can also approximate f by the
Fejér-means o, (f) in the supremum norm (see Theorem 2.3.36 and Notation 2.3.33).

For an arbitrary N € N with N > 1, consider the set
F ={p cABy); BS, = BN, f— (RN @) f is compact} C Mult(BS,)
(see Theorem 2.3.55). We will see that
A(By,) = 7.

It is enough to show that A(B},) C .% and that .% equipped with the norm-topology is a
homogeneous space in the sense of Definition 2.3.28. This yields that the polynomials are
dense in .7 .

Proposition 5.1.2. The space .7 is norm-closed in Mult(B})) and A(B{,) C 7.
Proof. We show that . is closed. Because of Theorem 2.3.55, the maps
RN : Mult(B},) — B(B},, B}, ™), ¢ — Mg,

and
i : Mult(By,)) - H*(B;), ¢ — @
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5. Norm-closure of polynomials

are bounded linear operators. Let K(B%,, B, ™) be the Banach space of the compact oper-
ators from BS, to BS, V. Clearly,

7 = (RY) " (K (B}, By, ™)) N (i)~ (A(Ba)).

Since K(BS,,BS; ™)  B(BS,,BS,™N) and A(B,) C H*(By) are closed, it follows that .# C
Mult(Bg,) is closed.

It remains to show that A(BS,) C .%. For all p € C[z], we have that R¥p € C[z]. By
Corollary 2.3.52 the inclusion i : B, — BS, ™ is compact. Hence, it follows that B, —
BN f— (RVp)f is compact as the composition of a bounded and a compact operator.
This finishes the proof, since then

A(Bgc'o) :mH'HMuh C y
[

Proposition 5.1.3. The norm-closed space % C Mult(B¢,) is a homogeneous space in the
sense of Definition 2.3.28.

Proof. (a) For all z € B, the point evaluations 0, : Mult(B,) — C, ¢ — ¢(z) are charac-
ters. In particular, the restrictions &;| # are continuous.

(b) Let ¢ € .%. Then Mgng : Bgy — BS; NV is compact. By Corollary 2.3.13, the multipli-
cation operator Mg ), (¢ € T) is compact and

T > Mult(By, B3 ™), ¢ (RVg),
is continuous with respect to the norm-topology. Since A(B;) C C(By), the map

is continuous. Observe that (RY @) = RY(¢;) for all { € T. Due to Theorem 2.3.55,
there exists a ¢ > 0 such that

1o — @nllmue < (| (RY @) — (RY @) s, 525y + 19 — Pnlle-)
for all ,{ € T. Hence, the map
T— 7,0~ ¢

is continuous with respect to the norm-topology.
O]

Using the previous Propositions 5.1.2 and 5.1.3, Theorem 5.1 is immediate. For con-
venience we restate it here.
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5.1. A characterization for radially weighted Besov spaces

Theorem 5.1.4. Let N > 1. A function ¢ : B; — C is an element of the norm-closure

A(BS) =Tl ™™ ¢ Mult(BS,),
if and only if @ is an element of the ball algebra A(B) and the operator
By, =By f = (RYo)f
is compact.

In special cases there are sometimes criteria, which can be easily checked, proving that
a function is in the polynomial norm-closure A(B%)). In Section 2.3, Example 2.3.5 we
introduced for s € R the unitarily invariant spaces Z;(B,) with reproducing kernel

[}

K:ByxBy—C, K(z,w) =) (n+1)°(z,w)".
n=0

The space Z(By) is the Drury-Arveson space H; and Z_;(D) is the Dirichlet space 2.
The spaces Z5(B,) can be described as radially weighted Besov spaces B, (see Example
2.3.49).

Using the unitarily invariant space @91 (By) with reproducing kernel

- 1
K:BdX]Bd—)C, K(Z7W):Z

= (n+1)log(n+2) (zw)",

Aleman, Hartz, M“Carthy and Richter established in [ , Lemma 14.7] sufficient
conditions for being an element of A(Z;(B,)).

Lemma 5.1.5. (a) There is a constant ¢ > O such that
17RO 2,5, < cll@ll g 112 a0
forall f € 2_1(Bq), @ € 7°,(By).
(b) If s < 1, then there is a ¢ > 0 such that
IfR®ll 2 .., < clllla ®yllfll2

forall f € -@—S(Bd), O c gfl(Bd).

The proof of the Lemma is an clever application of the characterization elements in
reproducing kernel Hilbert spaces (see Theorem 2.2.2) and the characterization of mul-

tipliers (see Theorem 2.2.6) plus the Schur product theorem (see [ , Theorem 4.8]).
For a detailed proof see [ , Lemma 14.7].

We obtain the A(.7#")-analogue of Theorem 14.8 in [ ]. For the Dirichlet space,
the result has its origin in a work by Brown and Shields (cf. [ , Proposition 18]). For
the other cases, a statement of this type already appeared in [ , Corollary 5.11].
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5. Norm-closure of polynomials

Theorem 5.1.6 (Brown-Shields, Beatrous-Burbea). (a) If ¢ € @gl(Ed), then
(i) @ € Mult(2_,(B,)) if and only if ¢ € H*(B,),
(ii) ¢ € A(Z-1(Bq))) if and only if ¢ € A(By).
(b) If s<1and ¢ € Z_1(By), then
(i) @ € Mult(Z_4(B,)) if and only if ¢ € H*(B),
(ii) @ € A(Z_5x(By)) if and only if ¢ € A(By).

Proof. The proof is a consequence of Lemma 5.1.5 and is similar to the arguments in
Theorem 14.8 in [ ]. Hence, we omit the details here. O

5.2. Vanishing Carleson measures

In this section, we consider Carleson measure conditions. First, we start with a motiva-
tion:

Remark 5.2.1. Let N > s > 0 and let o : B; — R>( be a radial weight function. Due
to Theorem 2.3.50, the space B}, coincides B%Nﬂ with equivalence of norms. Hence, a
function f € By, induces a finite measure

e (2) = IRV f(2)Pon—s(2)aV (2)
on B,. Let ¢ € Bj,. One checks that
RV € Mult(BS),B5, ™),
if and only if the linear operator
Jugn + By = L(W), f = f

is bounded, that is there exits a constant ¢(tt) > 0 such that

[, VP < e(u) |1, forall £ € B,
d

In particular
N
IR @l yturesy, 55y & [ l-

This is to say L n is a Carleson measure for By,. The induced multiplication operator
Mgy, : By, — By, N

is compact, if and only if Jy, , is compact. The measure Uy v is then called vanishing
Carleson measure for Bf,. Because of Theorem 2.3.55, it is immediate that ¢ € Mult(BY,)
if and only if ¢ € H*(B,) and e v is a Carleson measure for B,. Using Theorem 5.1,
we conclude that ¢ € A(Bj,), if and only if ¢ € A(B,;) and e v is a vanishing Carleson
measure for BY,.
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5.2. Vanishing Carleson measures

Carleson measures characterize all interpolating sequences for H*(ID) (see for example
[ , Chapter 9]). Carleson uses Carleson measures in his solution of the Corona
problem. The measures appear in several contexts in harmonic analysis and for different
function spaces. For convenience, we restate the definition of a Carleson measure here
again:

Definition 5.2.2. Let 57 C 0(B,) be a reproducing kernel Hilbert space. A finite positive
Borel measure y on the unit ball B, is called Carleson measure for 7 if and only if
¢ C L*(u). In this case, by the closed graph theorem, the linear operator

Ju: = L(1), frs f

is continuous. The norm ||J,|| is called Carleson constant. The measure u is called
compact or vanishing Carleson measure if and only if the linear operator

Jﬂ:’%ﬂ—)l;(.u)vf'_)f

1s compact.

In the following, let 77 C 0'(B,) be a reproducing kernel Hilbert space of holomorphic
functions with reproducing kernel K : B; x B; — C. Furthermore, let u be a finite positive
Borel measure on B,.

There is a a well-known characterization for Carleson measures ¢ on reproducing ker-
nel Hilbert spaces .7 by positive bounded integral operators associated to the real part
of the kernel function K on LZ(/,L) due to Arcozzi, Rochberg and Sawyer (cf. [ ,
Lemma 24]). We adapt the argument and obtain a sufficient condition, which assures that
W is a a vanishing Carleson measure for .77 .

Remark 5.2.3. For a Borel measurable set M C B, denote by 1, : B; — R>o,

1, ifzeM,
ILM(Z):{O else

the corresponding characteristic function. One checks that, the induced linear operator
Py L*(u) — L*(u), h— 1yh

is an orthogonal projection.

The following definition characterizes compact operators between Hilbert spaces, as
will be seen in Proposition 5.2.5. See for example [ , 3.2 Definition, 3.3 Proposition,
Chapter VI, § 3 Compact Operators, page 173] for a proof of Proposition 5.2.5.

Definition 5.2.4. An operator T : H] — H, between two Hilbert spaces H; and H; is
completely continuous, if it follows for every sequence (x,),cn in H with x, % 0, that
| T, — 0.
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5. Norm-closure of polynomials

Proposition 5.2.5. An operator T : Hy — H, between two Hilbert spaces H\ and H is
compact, if and only if it is completely continuous.

Lemma 5.2.6. Let Q C B, be compact, then the operator

Ju(Q): # — L*(w), f— Lof

is well-defined and compact.

Proof. 1If f € 7, then f is holomorphic and f1 is bounded. Thus, it follows in particular
that f1o € L*(u) and

Ju(Q): H — L (1), f — Lof

is well-defined. If f, BN f for n — oo in JZ, then we obtain by Lemma 2.2.10 that
0 < tlimsup | To(fo = f)ll2(u) < H(Q)"? lim | fu = flloo = 0.
n—yoo e

Due to Proposition 5.2.5, the operator Ty is compact. O

Remark 5.2.77. (a) Because of Lemma 5.2.6, the operators

Ju(r): 0 = LX), f = 155 (0<r<l)

are well-defined and compact.

(b) For 0 < r < 1 consider the orthogonal projections

72 2 —
P L7 (u) = L*(u), h— g, -

Fix w € B, and let 4 € L?>(u). Then there exists an 0 < ry < 1 such that w € By(rp).
Hence, we have

for all 0 < r < rg. Since

forall z€ B; and 0 < r < 1, dominated convergence yields that

for r 1 1.

Proposition 5.2.8. (a) The measure U is a Carleson measure for 7 if and only if

c(u) = sup [[Ju(r)|| <ee.
O<r<1

In particular, Jy,(r) SOt Ju forr 1 1and ||Jy|| = c(p).
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5.2. Vanishing Carleson measures

(b) The measure U is a vanishing Carleson measure for 7€ if and only if
(i) = supg < [V (r)l| < oo and limyy |[J (r) = Jul| = 0.

Proof. Suppose that u is a Carleson measure. By the previous Remark 5.2.7, the orthog-
onal projections

P L2 (u) = L (), [ Ig o/
converge in the strong operator topology for r 1 1 to the identity operator on L(u). Thus,

Ju(r) =Pt 2 0,

for r 1 1. Since ||J, (r)|| < ||Ju||, we deduce that

and we have |[Jy|| = c¢(u). If p is a vanishing Carleson measure and J,, is compact, it
follows from Theorem 2.3.11 that

[ (r) = Jull = [1Gd g2y =) Jull = 0

for r 1 1. Conversely, suppose that c(it) = supg_,. |[Ju(r)|| < e. By monotone conver-
gence

1Al 20y = sup [Ju(r)hll 20y <oo
O<r«l

for all h € 7. Hence, J,; is well-defined. Using Lemma 2.2.10, the closed graph theorem
implies that J;, is bounded. Due to Remark 5.2.7, the linear operators

Ju(r): 0 = LX), f = g5/
are compact. So if lim; ||/ (r) —Ju|| = 0, we deduce that J,, is compact. O
Lemma 5.2.9. Let T : L*>(u) — L*(u) be a positive bounded linear operator. If
1T |ge := sup{{Th,h)>(,y; h € L*(u) with h(By) C R and 1Al 20uy < 1}

then
T[] <4{T|Re-

Proof. Let T : L>(u) — L*(u) be a positive linear operator such that
1T [Re := sup{(Th, )12 (,y; h € L*(u) with h(B;) C R and 17l f2(u) < 1} < oo

and let € L*(u) with [|h[| 2,y < 1. Set iy =Re(h) and hy = Im(h). Then h; € L*(u) with
h(By) C R (I=1,2) and max;—y 2 ||y ||;2(,) < 1. Using the Cauchy-Schwarz inequality,
we obtain

(Tha,h) ) — (Thy ,hz)Lz(u)’ <2 (}E?);(Thl,hl)y(m) .
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5. Norm-closure of polynomials

Thus, since T is positive, we conclude that

0< <Th,h>L2(“) =(T(hy +ihy),h; +ih2>L2(“)
= (Th ’h1>L2(u) + <Th27h2>L2(u) +i(<Th2,h1>L2(”) —(Thy ,hz)Lz(“))

<4 (lrrlélléghz,hz)u(u))
< 4||T[[Re-

Using again that 7T is positive, this yields

ITI = sup  ((ThR)au)) < 4T llre:
Hh”LZ(ﬂ)Sl

O

Lemma 5.2.10. Let ¢ be a Hilbert function space with reproducing kernel K : By x
By; — C and let u be a finite measure. Let M C B; be Borel measurable, and suppose
that the induced operator

Ju(M) : A — L*(n), £ Iyf

is well-defined and bounded, then

Mu(M)[> <16 sup | |Re(K(z,w))|dp(z) € [0,e0].
weM JM

Proof. Without loss of generality, we may assume that

sup [ [Re(K(z,w))|dp(z) < oo
weM JM

is finite. For 1 € L?(u) we have

(Ju(M)*h)(z) = (Ju (M), k2) 5
= <h7‘]u (M)kZ>L2(u)

_ /M K(z, w)h(w)dp (w).
Let h € L*(u) with h(Bg) C R and ||4]|;2(,) < 1 and define

fr:Bax By — C, fu(z,w) = Tysem(z,w)| Re K (z,w)| /2 |h(w)).

Then fj, € L?(u®?). Using that Re K (z,w) = Re K (z,w) = Re K(w,z) and hence

fow,2) = Ly (z,w) | Re K (2, w) [ V2| (2)]
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5.2. Vanishing Carleson measures

for all z,w € B, we obtain by Cauchy-Schwarz that

U (M) (M), )2y = Re ( L [t K R p(e)du >)
- d / Lygsent (2 )Re(K (2, w) Y (w)h ()t (w)d i (2)
/ Fi(zw) fu(w,2)d 2 (w, 2)
By xBy

< HthiZ(MM)

Since

ey = 100 ( [ Re(K(zmlae) ) uow),

using Lemma 5.2.9, it is immediate that

I (M) < 16 sup | IRe(K(z,w))|du(z).

weM
[
We obtain the following theorem, where part (a) is a Corollary of the earlier mentioned
characterization of Carleson measures (see [ , Lemma 24]) by Arcozzi, Rochberg
and Sawyer.

Theorem 5.2.11. Let ¢ be a Hilbert function space with reproducing kernel K : B, x
B, — C and let | be a finite positive Borel measure.

(a) If
lulk = sup | [Re(K(z,w))|dp(z) <

weBy

then W is a Carleson measure for 7 and

[ l] < 4| pe|x-

(b) If
|Re(K(z,w))|du(z) =0

sup /
weB, Y Ba\Bq(r)
for r1 1, then W is a vanishing Carleson measure for F€.

Proof. (a) Because of Lemma 5.2.6, the linear operators
Ju(r) : A — LA (w), frs flgm (0<r<i)

are bounded. Using Lemma 5.2.10, it follows for 0 < r < 1 that

Mu(r)[I> < 16]| [k = 16 sup |, IRe(K(z,w))ldu(z).
d

weB,
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5. Norm-closure of polynomials

Thus, Proposition 5.2.8 yields that u is a Carleson measure, where
[ulI* < 16| %

(b) If
|Re(K(z,w))|dp(z) — 0

sup /
weB, Y Ba\Ba(r)

for r 11, it is straightforward to check that

Irlk = sup | |Re(K(z,w))|du(z) <ee.

weB, /By

By part (a) Jy, is a Carleson measure. Due to Proposition 5.2.8, it remains to show that

lim [/, (r) = Ju || = 0.
1

For 0 < r < 1and f € JZ it is immediate that
= Ju())f = 1p 5,00
The operator
1—r
J;(L ) = LP(W), fe (Ju—Ju(r)f

is well-defined and bounded. Applying Lemma 5.2.10 to the operators J, ,S] _r), we obtain

that

[Ty —Ju(r)|* <16 sup [ |Re(K(z,w))|du(z) — 0
weB, / Bg\Bqy(r)

forr 1 1. [

Remark 5.2.12. Let H be a separable Hilbert space with orthonormal basis (e,),cn and
let (d,)nen be a sequence in C. The previous theorem is reminiscent of the condition that
a diagonal operator D : H — H defined by

D(e,) =dye, (neN)

is bounded if and only if sup, . |d,| < o= and compact if and only if lim,, .. d, = 0.

Using Theorems 5.2.11, 2.3.55, 5.1 and 2.3.50, the following theorem is immediate.

Theorem 5.2.13. Let w : B; — R>¢ be a radial weight, let N € N~ and let 7€ a be
Hilbert function space with reproducing kernel

KIBdXBd%C

such that 7€ = B](Y, with equivalence of norms.
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5.2. Vanishing Carleson measures

(a) If o € 7 NH*(B,) such that

g Nl = sup [Re(K (z,w))|[R" ¢ (2)*@(2)dV (z) < oo,
weldy d

then ¢ € Mult(J¢) with
Il S (lrg.nz + [l @112)" 2.
(b) If o € ' NA(By) such that

|Re(K(z,w))||RY ¢ (2)|*@(z)dV (z) = 0

su
welgd /le\Bd(V)
forr?1 1, then ¢ € A(J7).

Remark 5.2.14. For z € D we have

Re(L):ie(ZBo.

1—z 1—z> —

Suppose that K : B; x B; — C is a (unitarily invariant) complete Nevanlinna-Pick kernel.
Due to Theorem 2.3.60, there exists an n € NU {e} and an embedding b : B; — B, such

that
1 —Re((b(z),b(w
|ReK(z,w)| =ReK(z,w) = i —?éizgfza(vf))?z) >0 (z,weBy).

Thus, one may replace the absolute value of the real part in the previous theorem by the
real part itself.

Let

1 1
Koy : By x By — C, Ko(z,w) = log< )
<Z7W> (1 - <Z7W>)
be the kernel of the Dirichlet space on the ball and for 0 < s < d set

1

K;: Bd XBd — (C, KS(Z,W) = m

Lemma 5.2.15. Let 1 <2s<d+1. If p> %, then
_P_
sup | |K_ogray1(z,w)|P2dV(z) <ee.
weB, 7/ Bag

Proof. We first consider the case 2s = d + 1. Since

1 1 2
—log (—) <2log <—> +4n
b4 11—z |1 —z]
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for all z € D (see Lemma A.4.2), one computes for all » € N and z,w € B, that

2 n
PR G S
’1 - <Z7W>’
Using that
log(x)" <nlx
for all x > 1, one checks for all n € Ny and z,w € B, that

1

0<[Ko(zW)|" S 77—
|1 - <Z7 W>|
By [ , 1.4.10. Proposition, 1 Preliminaries] the function J; : B; — C,

1
wis | av(2)
By |1 —(z,w)]

is bounded. We deduce that

sup [ |Ko(z,w)|"dV(z) < oo
weB, Y By

for all n € N. It follows for all p > 2 that

_P_
sup | |Ko(z,w)|P~2dV(z) < oo.
weBy, By

Now, lett = —2s+d + 1 and consider

K, By xB; — C, K/(z,w) = m
By [ , 1.4.10. Proposition, 1 Preliminaries], the function J, 2y :B; — C,
Wi /Bd K, (2, w)| P2 aV (2)
s pounded ! L= P (Cos4d+l)<d+1.
p—2 p-—2

.. . . d+1
This is the case if and only if p > <.

For1§p<00,t>—1%ands€]Rlet

57 = {re o [ IRQP0- R <
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5.2. Vanishing Carleson measures

be the L”-version of the standard weighted Besov spaces with the norm
1710 = LSO + RS Iy oy (£ B,
where ) : B, — R>o,
0" (2) = (1-[P)".
(see Definition 2.3.39). To simplify notation, we use the abbreviations:

(a) B =B,

(0) B =By = { f € O(Ba); fg, IR/ ()| dV(2) < o= and

@)BS:Bgz{fezﬂB@;h%uﬂﬂaﬁdv@y<w}

In the Hilbert space case, when p = 2, we saw in Remark 2.3.49 (confer also Theorem
2.3.50) that one can do the following index shift

B =Bl (r>0).

For this standard weighted Besov spaces, there is also a L”-version of this result. It is
clear that it suffices to prove the statement for standard weighted Bergman spaces. For a
proof, see [ , Theorem 5.12] and [ , Exercise 2.6].

Theorem 5.2.16 (Beatrous and Burbea). For s € R and r > 0 we have

S,p __ pStrp
Bt _Bt+r

with equivalence of norms.
We obtain the following version of Theorem 5.9 (2) in [ ].

Theorem 5.2.17. Let 1 <2s < d -+ 1 and p > %. If

¢ € B NH"(Bag),
then
(a) @ € Muli(B") with |9 gy < 01300 + 1|2 and
(b) @ € A(B%) if and only if ¢ € A(By).
Proof. SetA§(B;) = 2-1(By) and let N > s. Due to Remark 2.3.49, we obtain that

B =B\ ;=P 21aBa) = A25 411 (Ba) (5.1)

with equivalence of norms. Because of Theorem 5.2.13, it suffices to prove that

K- agrar1(zw)[[RY@(2) (1= |2V )av (z) — 0

sup /
weBy /By \Ba(r)
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5. Norm-closure of polynomials

for r 1 1. Since p > dsil, it follows from Lemma 5.2.15 that

P
= sup [ K agpasi(zw)|72dV(2) < oo.
WEBd Bd

Fix w € B; and 0 < r < 1. We use the notation B,;(0) = @ and apply Holder’s inequality

with Holder conjugates p’ = ]9%2 and ¢’ = £ to the functions f,s : B4, — R>o,

Sy (2) = |K_254a+1(z,w)]
and 8q - Bd, — RZO,
80(2) = Ly 5 IRV (@) (1 — [PV,

It follows that

/ K agari@w)[[RY9(2)P(1 = [V av (2)
Bq\Bq(r)

> 1/
<o ([ me@pa-Rr )

a\Ba(r)

Due to Theorem 5.2.16, we have that
B,

with equivalence of norms. Since ¢ € B*”, dominated convergence yields

/ RY 9 (2)]P (1= [2)PV*)(2)aV (z) = 0.
Bq\Bq(r)

for r 1 1. Hence,

Re(K 251a+1(zw))[[RYQ(2)]* (1 = 2V *)av (z) — 0

sup /
weB, JBa\By(r)
for r 1 1. Similarly, one obtains that

19 Rnae < 19130+ llll2

Remark 5.2.18. Let 1 <25 <d+1,let p > % and let
@ € B*PNH”(B,).

In the proof of Theorem 5.2.17, we saw that

K 25a1(zw)IRV@ ()] (1 = [2)* M Yav () — 0

sup /
weB, / Ba\By(r)

for r 1 1. In particular, there are non-trivial examples for condition (b) in Theorem 5.2.11.

156



5.2. Vanishing Carleson measures

Let—d<s' <lands= s/%i. Because of Remark 2.3.49, we have that B* = 2_y(By).
Thus, we obtain the following reformulation of Theorem 5.2.17:

Corollary 5.2.19. Let —d <s' <1,s= s/%d and p > 2 (d+1 ). If @ € B¥P, then

d+s
(i) @ € Mult(Z_y(By)) with ||| 3 S 19|50 + || @] and

(ii) @ € A(Z_¢(By)) if and only if ¢ € A(By).

The following proposition can be used to compare the sufficient condition in Corollary
5.2.19 with the sufficient condition in Theorem 5.1.6.

Proposition 5.2.20. Let —d < s' <1, s = Slerd, p>2 (‘Hl) and p' = ijz. Then

d+s'

and we have that
-@fs’f(a%l)p’ (Bd) C B - -@—s’—p’-l-e(Bd)

for all € > 0, where the inclusions are continuous.

Proof. Let
d+1)p —
NECE D) Sl N SR N
2 2 p p
then s’ +2t +1=s"+(d+1)p’. Using Remark 2.3.49, we deduce that
s’ +d 42041 s'+d
‘@—s’—(d+1)p’(Bd) =B 2 =R? +[H2(8]B§d)
with equivalence of norms. Due to Theorem 4.48 in [ ], it follows that

+t,
D—y_(a+1)p (Ba) CB;P,
where the inclusion is continuous. Because of Theorem 5.2.16, it is immediate that
@,szf(dﬂ)p/(Bd) C B*P.
Let € > 0. Due to Theorem 70 in [ ] with o = 0 and g = 2, we obtain for ¢’ = —r+e

2
that
B*P - B,S/ = 9—s’+2ﬂ (Bd> = gfs’fp’Jrs(Bd),

where the inclusion is continuous. [
Remark 5.2.21. (a) Let —d < s’ < 1.Ift > 1 and
0P +(By) CABy),
Corollary 5.2.19 and Proposition 5.2.20 yield that ¢ € A(Z_y(By)).

(b) For the Dirichlet space Z_1(B;) = BT on the ball let p>2,p = P=2 and £ =
Using Proposition 5.2.20, we conclude that

BT C D1y 2(Ba) C 2°1(Ba) NA(By).

Thus, in this case, Theorem 5.2.17 follows from Theorem 5.1.6, part (a).

[S1pS

(¢) Theorem 5.2.17 and Theorem 5.1.6 seem to give conditions that cannot be derived
from another.
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5. Norm-closure of polynomials

5.3. A special case: The Dirichlet space on the unit
disk

Let dA be the normalized area measure on the unit disk D, let

9 = {f € 0(D); /le'(z)lsz(z) < oo}

be the Dirichlet space with reproducing kernel

1 1
K:DxD—>(C,K(z,w):—_log( _)
w 1—zw

and for 1 < p < oo let

12(D) = {f c o) [ IrPanc) < oo}

be the Bergman spaces on the unit disk .

The book [ ] by El-Fallah, Kellay, Mashregi and Ransford gives a good intro-
duction to the theory of the Dirichlet space. We use in particular Chapter 5 as guidelines
here.

The multiplier algebra Mult(Z) of the Dirichlet space can be characterized in the fol-
lowing way (see, for example Theorem 5.1.7 in [ D:

Theorem 5.3.1. A function ¢ : D — C is in Mult(2) if and only if
@ € H*(D) and ¢’ € Mult(2,L%(D)).
This is also a special case of Theorem 2.3.55. Now, let ¢ € Z. One checks that
@' € Mult(2,L3(D)),
if and only if the finite measure
He (2) = |9'(2) PdA(2)
is a Carleson measure for . The multiplication operator
My : 2 — L;(D)
is compact if and only if fly is vanishing (see Remark 5.2.1).

Using Remark 2.3.56 one obtains the following reformulation of Theorem 5.2.13 in the
Dirichlet space case.
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5.3. A special case: The Dirichlet space on the unit disk

Theorem 5.3.2. (a) If ¢ € 2 NH*(D) such that
Ingllx = sup | [Re(K(z.w))|@'(z)PdA(z) < o,
weD /D
then @ € Mult(2) with
I lvae S (lkgr Iz + [ @112)" 2.
(b) If p € ZNA(D) such that

sup
weD JD\D(r)

forr1 1, then ¢ € A(2).

(K(z.w))l|¢'(2)]dA(z) = O

By Remark 5.2.21 we can reformulate Corollary 5.2.19 as:
Theorem 5.3.3 (Brown and Shields). Let p > 2. If ¢’ € LE(D), then ¢ € A(2).

The second statement presumably appeared the first time in Proposition 19 in [ 1.
Recall, the Dirichlet space ¥ is a regular unitarily invariant complete Nevanlinna-Pick
space (see Lemma 2.3.62 and Kaluza’s Lemma 2.3.63).

For unitarily invariant complete Nevanlinna-Pick spaces .7 with reproducing kernel
K : B; x B; — C the functions

k,:B; — C, kw(Z) = K(Z,W) (Z S Bd)

are elements of Mult(.¢) (see Theorem 2.3.61). For f € J¢ the Sarason function V :
X — Cis defined as

V(@) =2(f kef e = 112
A straightforward computation shows that if £ : D — C is in the Hardy space H?(ID) and

1
1—zw

K:DxD—C, K(z,w) =

is the Szegd kernel, then
2
< *
ReV( /‘ LB () Pam(e) = PRI (zeD),
1-@‘

is just the Poisson integral of | f*|?, where
f* e H(T) = {he L*(T); h(n) =0foralln <0}
is the radial limit of f, that exists for almost every z € T. Thus, it follows that

0<|f@)] <P[f*])z) =ReVy(z) (z€D).
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5. Norm-closure of polynomials

This inequality continues to hold for arbitrary (unitarily invariant) complete Nevanlinna-
Pick spaces .7, that is

0<|f(2)* < el <ReVj(z) (f€H#,z€By)
[kl

(see [ , Section 2] and [ , Section 3.2]). Suppose now that the unitarily
invariant complete Nevanlinna-Pick space .7 is a standard weighted Besov space BY
t> —% (N € N). Aleman, Hartz, M°Carthy and Richter give the following sufficient
condition for a function f € 7 to be in the multiplier algebra Mult(5#) (particular case
of [ , Theorem 4.5]):

Theorem 5.3.4. Let ¢ € S such that ReVy : By — R is bounded. Then ¢ € Mult()
and M
10| Imute < | Re Vg ||X.

Let f€ Z. Asin | , Proposition 3 and Corollary 4]), one can show that

ReVi(w) = Hin,z(D)+P[\f*\2](Z)+Z/DRe(K(Z,W))!f'(Z)IZdA(Z) ~Ifl%  (weD).

Hence, it follows that ReV/ is bounded if and only if f € H*(ID) and

sup [ RelK(zm)|f'()PdA() <
A computation, using the transformation formula, yields that
ReV((z) —ReV (rz)
= 110y~ i)+ QL = 1)+ P PIGe) =PI PIGr2)
w2( [ RelkOna)lr 0 PaA(e)).
If f € A(D), we conclude that
supl|P(7P1(2)~ PILE )
< sup (PP = PUPL) @) +s9pl P72 = PSP 02)

zeD
< sup |(P[|f*] = P/ 1)) (2)] +sg§\|f\2 —1£:?

zeD

o,

Thus, it follows that
sup [ReV(z) —ReVy, (rz)] LN 0,

zeD
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5.3. A special case: The Dirichlet space on the unit disk

if and only if f € A(D) and

sup ( /D , RelKOw2) f’(w)|2dA(w)> o,

z€D

We obtain the following equivalent formulation of Theorem 5.3.2:
Theorem 5.3.5. Let ¢ € 9.

(a) If
sup Re Vi (w) < oo,
wel

then @ € Mult(2) with
H(pHMult ,S ” ReV(pHoo-

(b) If
sup |Re Vi (w) — Re Vy, (rw)| 5 0
weD

forr?1 1, then ¢ € A(2).

5.3.1. Vanishing Carleson measures and Carleson-boxes

For Hardy spaces H” (D) and the Dirichlet space, it is possible to give a geometric char-
acterization for Carleson measures by so-called Carleson-boxes. For an given arc I C T,
the corresponding Carleson-box is defined by

S()={re’®; e® c1,1 - |I|<r<1},

where || denotes the arclength of /. Carleson showed that

LI1ran <Clif g, (7 D)),

for p > 1 if and only if

u(S(1)) = o(|1))-
There is a similar but more complicated characterization of Carleson measures for the
Dirichlet space using the logarithmic capacity.

The logarithmic capacity ¢ : Z(T) — Rx¢ is a non-negative monotonic function, de-
fined on Borel-subsets of the unit circle (see [ , Chapter 2]). One can use the
term as a black box here, if one does not want to go into details.

For a finite positive Borel measure ¢ on the open unit disk, define

H(J,—1S(n))
llpll] :==sup | —"F—=; I, € L and ] € N5g | €[0,00].
c(Ul_\1,)

Let .# be the set of all arcs in the unit circle T C C.

In[ , Theorem 2.3] (see also [ , Theorem 5.2.6]), Stegenga shows that:
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5. Norm-closure of polynomials

Theorem 5.3.6 (Stegenga). A finite positive Borel measure [L on the open unit disk is a
Carleson measure if and only if |||lL||| < eo. In this case, the Carleson operator

Ju: = LX), ff

is bounded with
[l = ([l

The characterization of vanishing Carleson measures in Proposition 5.2.8 yields the
following version of Theorem 5.3.6 for vanishing Carleson measures:

Theorem 5.3.7. A measure W on the open unit disk is a compact Carleson measure for
the Dirichlet space if and only if

Ul S(1
sup (w, I, € Zwith |I,| <tandl € N>0) — 0 fort — 0.

c(Un_iln)
Proof. 1f
Ul s,
sup [ FWu=1SUn)) i 1 <t and 1€ Nog | — 0 fors — 0,
l
C(Un:lln>

then u is a Carleson measure for 2 by Theorem 5.3.6. For 0 < r < 1let Ju(r): 2 —
L2 (),
e Iy

be the compact operators defined as in Remark 5.2.7. It is immediate that
Vr= ot
is a Carleson measure for & with Carleson operator
Jvr :J‘u _J‘u(r)

For an interval I € ., it follows from the definition of a Carleson-box S(I), that there is a
finite set of intervals (,,)" _, in .# with |I,,| < 1 — r such that

m=1

n

S(HNMD\D,) C | SIn).

m=1

Applying Theorem 5.3.6 to the measure Vv,, we obtain that

1((Uy=1SUn)) ND\ D)

|/ = Ju(r)]| = sup ( s I, € F andl € N>0>

C(Uizzlln)
ul 81,
p[ i) b i <1~ rand 1€ No ||
[
C(UnZIIn)
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5.3. A special case: The Dirichlet space on the unit disk

Thus, Proposition 5.2.8 yields that the measure u is a compact Carleson measure if and
only if

S
N C ("));]nejwithmgtandl€N>0 — 0 fort — 0.
e(Uy_yfn)

O

The previous statement seems to be a little complicated to check. We want to consider
a sufficient geometric condition for vanishing Carleson measures in terms of a one-box
condition.

Ifu is a positive Borel measure on the open unit disk and ¢ : (0, 1) — R+ is increasing
with f dt < oo define

o =sop (4300 1€ 7).

A theorem by Wynn (see Theorem 5.2.5 (ii) in [ ]) shows that:

Theorem 5.3.8 (Wynn). A finite positive Borel measure [l on the open unit disk is a
Carleson measure, if |||1L|||¢ < oo. In this case, the Carleson operator

Ju: = L), [ f

is bounded by
[EmipSaiiirs

We obtain the modified version of Wynn’s result for vanishing Carleson measures.

Theorem 5.3.9. A sufficient condition for a measure | on the open unit disk to be a
compact Carleson measure for the Dirichlet space is that

sup (“4)(5%) 1€ .7 with |I] < z) S 0fort =0,

where ¢ : (0,1) — R is increasing with f dt < oo,

Proof. Suppose that

sup (ud)(a(;’;), I € 7 with |I| < t) — 0 forr — 0.

Because of Theorem 5.3.8, it follows that u is a Carleson measure for Z. For 0 < r < 1
let J, (r): 2 — L*(u),
=gy f
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5. Norm-closure of polynomials

be the compact operators defined as in Remark 5.2.7. It is immediate that
Vr = Ip\piH
is a Carleson measure for & with Carleson operator
Jvr :J‘u —J“(r)
Let € > 0. Then there exists a ¢ > 0 such that

vi(S() _ u(S(1)
o) = (i)

forall I € .# with |I| < ¢. Since ¢ is increasing, we deduce that ¢ (¢) < ¢(|I|) forall I € .¥
with |I| > t. Hence,

<€

V(S() _ p(D\D)
o) =  o(1)
for all I € .# with |I| > . This yields

D\D
limsup ||| v,|| |¢ < limsup (max (8, M)) =
1 il

¢(t)
and thus,
0 <limsup||Jy —Ju(r)|| < limsup|||v,||| = 0.
1 rT1
Due to Proposition 5.2.8, the measure 1 is a compact Carleson measure. 0
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6. Norm-closure of polynomials and
one-function Corona theorem

In the following, let 77 be a regular unitarily invariant space with reproducing kernel

K :B;xB; —C, K(z,w) = Z an(z,w)"
n=0

such that ag = 1, a, > 0 for n > 1 and lim,,_,.. -2~ = 1. In this case,

An1
Clz) € Mult(s#) C H*(B,) N A2,
where the second inclusion is continuous. It follows that
A(A) =T ™ - AB,) N Mult(72).
For the Hardy space H?(dB,) and the Bergman space L2(B,) we have that
Mult(72) = H*(B,) C A7,

and thus,
A(H) =A(By),

but this is not true in general. It is well-known that, if .7 is the Drury-Arveson space H[%
or the Dirichlet space &, then

Mult(5#) C H(B,) N .

In Chapter 5 we have seen sufficient and necessary conditions for a function to be in
the norm-closure A(.7”). We now want to analyze in which cases

A(H) C A(By) N Mult(.H#).

In [ ], Fang and Xia show that there exist multiplication operators in the Drury-
Arveson space Hj that are not essentially hyponormal. For their result, they prove that

A(H?) € A(By) "Mult(H3).

In [ ], Lou establishes the same result for the Dirichlet space &. Similarly, he uses
the fact that
A(2) CA(B;) "Mult(2).

Extracting arguments from Fang and Xia’s paper, we obtain the following theorem:
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6. Norm-closure of polynomials and one-function Corona theorem

Theorem 6.1. Let 77 be a regular unitarily invariant space, then the following are equiv-
alent:

(i) Mult(#) = H*(B,) N,
(ii) A(By) NMult(£) = A(By) N,
(iii) A(A) = A(B,) NMult(H),

(iv) || Myplle = ||@]|es for all f € Mult(5) NA(By), where || - || is the essential norm of
an operator.

Now, suppose that Mult(7#") C H*(B;) N and suppose that the one-function Corona
theorem can be applied in 7. That is:

Theorem (One-function Corona theorem). If ¢ € Mult(.%) and 1/¢ € H*(B,), then
1/¢ € Mult(.52).

Using Theorem 6.1, one can show in the same way as in [ , Proposition 3.3] that
there exists a ¢ € Mult(#) such that My, is not essentially hyponormal.

In Theorem 6.2.8, we will see that the one-function Corona theorem can be applied in
many function spaces (not necessarily unitarily invariant Hilbert spaces).

In a recent paper [ ] about cylicity in weighted Besov spaces, Aleman, Perfekt,
Richter, Sundberg, and Sunkes obtain a generalized version of the one-function Corona
theorem for radially weighted Besov (Hilbert) spaces:

Theorem (Aleman, Perfekt, Richter, Sundberg, and Sunkes). If ¢,y € Mult(BY) with
1
¢ € H™(By), then ¥~ € Mult(BY)

Similarly to a paper by Lindstrom, Miihkinen, and Norrbo (cf. [ ,Lemma 3.1]),
it is not difficult to check that this general version is also valid for many other Banach
function spaces of this type (see Theorem 6.2.8). Examples are L”-versions of radially
weighted Besov spaces, Hardy Sobolev spaces, and Bloch-type spaces. The proof of the
generalized one-function Corona Theorem is straightforward, using the differentiation

formula .

—1 1

RY (g) = <gN+)1 Z(—1)1<N7 )glRN(é’N_lf)a
1=0

where f,g € 0(B;), 0 ¢ g(B;) and N > 1. The formula is due to Cao, He, and Zhu (see
[ , Theorem 5, Corollary 6 and Proposition 7]). The original proof of the formula is
technical, but it turns out that it also follows from an application of the binomial theorem.

Let
B = {fE O(Bq): sup (1 —|z*)|Rf(2)| < °°}

ZEBd

166



6.1. Norm-closure of polynomials, ball algebra and essential hyponormality

be the Bloch space. A particular case of Theorem 5.1 in [ ] shows that f € Hg NA
and % € H*(B,) imply that % € H3. We conclude the chapter with another application
of the differentiation formula by Cao, He, and Zhu. We establish a generalized version
of Theorem 5.1 in [ ] (see Theorem 6.2.10) for the LP-versions of standard weighted
Besov spaces.

6.1. Norm-closure of polynomials, ball algebra and
essential hyponormality

The goal of this section is to prove Theorem 6.1.

Throughout the section, we use the notation
|Tle = inf{[|T + X[|; X € K(H)}

for the essential norm of a bounded operator T € B(H) on a Hilbert space H. We start
with the following corollary, which is a consequence of Theorem 2.3.11.

Corollary 6.1.1. Let T € B(H) and let (S,),cn be a sequence of self-adjoint operators in
B(H) such that S, SOt 0 for n — oo. Then

limsup ||S,T|| < (limsup||Sn||) T ||e
n—soo

n—soo

and

n—soo

limsup [|TS,|| < (limsupHSnH) T |le-
n—yeo

Proof. Using Theorem 2.3.11 and the fact that S, 9T 0 for n — oo, we deduce that

n—oo n—oo

limsup||S, T || = limsup ||S,(T + X)|| < (limsupHSnH) 1T +X]|
n—yoo
for all compact operators X € K(H). This yields

limsup ||S,T|| < (limsupHSnH> T |le-
n—oo

n—oo

The second inequality follows by applying the first one to 7* and by using that
1T Sull = [ISxT* || and [|T[e = [Tl

Since 7 is regular, due to Theorem 2.4.29, it follows that,

1Molle = 1@l

for all ¢ € A(J#). Together with the next result, this is a crucial step in the proof of
Theorem 6.1. The following statement is a gliding hump argument that gives a possibility
to construct a SOT-convergent series by thinning out a suitable zero sequence.
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6. Norm-closure of polynomials and one-function Corona theorem

Theorem 6.1.2. Let H be a Hilbert space and let (Q))jen be a sequence of pairwise
orthogonal projections with finite range such that

m

SOT .
Pm = Z Ql — ldH
=0

for m — oo. Suppose that (T,) e is a sequence in B(H) such that
(1) T, S—OT>Of0rn—>0<>,

(2) |Tulle — O for n — oo and

(3) T,(idg —P,,) = (idg —P,) T,,(idg —Pyy,) for all m,n € N.

Then, for every € > 0 the sequence (T,,),cn has a subsequence (S, )ncn, such that

is a SOT-convergent series with

S]] < sup |75 +&.
neN
Additionally, if inf,en || T,|| > O, then one can choose (Sy),cn, such that
ISe > Y, l1Sulle-
n=0

Proof. Let € > 0 and let (7,),cn be a sequence in B(H ) such that the conditions (1), (2)
and (3) hold.

By (1) and the fact that the projections P, have finite range, it follows that
lim || T,,Py,|| =0
n—oo

for all m € N. Hence, by passing to a subsequence of (7},),cn, We may assume without
loss of generality that

lim || T, = 0.
n—oo

Using Corollary 6.1.1 for 7,, and the sequence (idg —P,,) e, We can find a map r: N —
N, such that

0 (| T2(de =Py | 4[| (ider =By ) ) Tl < 3[| T and

(ii)) r(n+1)>r(n)
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6.1. Norm-closure of polynomials, ball algebra and essential hyponormality

for all n € N. Now define for each n € N the operators
An =T,P,+ (ldH _Pr(n)>Tn (idH —Pn) + (Pr(n) - Pn)Tn (idH _Pr(n)>

and

Using (3), one computes that
T,=A,+B,

for all n € N. Hence, it is enough to show that (4,),cn and (B,,),cn admit subsequences
(Ay)nen and (By)pen, such that ' jA, converges in norm, Y~ ,B, converges in the
strong operator topology and

[}

SOT— ) (A, +By)
n=0

<sup||T,|| +¢.
neN

Obviously, by (2), using the definition of the operators A,, it follows that

0 < |Aull < (TPl + | (ider —Po)) Tl + (| T (idps — Py
<\ TP\l +3||Tnlle — O

for n — oo, So, it is not difficult to see that (A,),cx has a subsequence (A,),cn, such that

Z |A,] < €.
n=0

Thus, it is enough to find a subsequence (B,),en Of (By)nen such that SOT —Y% (B,
exists and

[}

) By

< sup || T,|-

To find a desired subsequence, define a map s : N — N such that s(n+ 1) > r(s(n)) for all

n € N. Since
(s(n))
Ps) P = Y @

I=s(n)+1

and because the projections Q; are pairwise orthogonal, observe that

(Pristny) = Pimy) L+ (Pr(s(m)) = Prim))

for all n,m € N with n £ m. Fix x € H. We deduce that

N 2 N 2
Y Biwx|| = || X Pristm) = Potn)) L) (Pr(sy) — Py X
n=M n=M
2 N 5
< (supHTnH) 3 (1 Brstny — P3|
neN n=M
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6. Norm-closure of polynomials and one-function Corona theorem

for N,M € N. Since ¥V, H(Pr(s(n)) —Ps(n))tz < |Ix||* for all N € N, it follows that
Yoo Bs(n) is a SOT-convergent series with

[

Y By

n=0

< sup | Ty|l.
neN

Thus, the sequence (B,)nen with B, = By, has the desired properties.

Suppose in addition that inf,c ||7;|| > ¢ > 0. Then using the previous arguments one
can find a subsequence (S, = A, + By,)nen of (T;, = A, + By,)en, such that Yo yAn con-
verges in norm with Y [|Ax|| < ¢/4, Yo Bn converges in the strong operator topology
and such that

Y lISall, < /4.
n=0

Let M,, = Im(B,,). By a similar definition of the operators B,, as before, one can achieve
that:

(i) M, L M, for all n,m € N with n # m.
(i1) If Py, is the orthogonal projection onto M, then SOT —lim,,_,o, Py, = 0.

Since limy,_« [|An|| = 0, it follows that

limsup ||B,|| = limsup (||A,|| + [|Bx||) > limsup ||S,|| > c.
n—soo

n—oo n—oo
Py, | Y. B
=0

(o)

Y A

n=0

But then, Corollary 6.1.1 yields that
) B
=0

Thus, if § = SOT —Y" S, then

> limsup
n—soo

‘ = limsup||B,|| > c.
n—oo

e

[

Y 5

n=0

1S]le >

>c/2> ) ISl
n=0

e e

O

Proposition 6.1.3. Let (@) en be a sequence in Mult(7) with sup,,c || @n || Mule < oo and
limy,—ye | @ || 52 = O, then

SOT
Mgy, — 0 for n — .

Proof. Set ¢ =sup,cy || @n||Mur < oo. Let € >0 and f € 5 be arbitrary. Choose a p € C[z]
with || f — p||» < . Since

| ®u|| 2 — O for n — oo,
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there exists an ng € N, such that

€
lnll o < S
! 2([IMp || +1)

for all n > ng. It follows that

1Mo, fl.~
< Non(f = P)lloe + [[Mp@ull

< cllf = plloe + [|Mpll|@all
<e

for all n > ny. [
The following theorem is a first part of Theorem 6.1.

Theorem 6.1.4. If
Mult(2) NA(By) S 4 NA(By),

then there exists a ¢ € Mult(.7) NA(By) with
[Molle > [|@]
In particular, ¢ & A(H).

Proof. Recall that
1Mylle =Wl

forall y € A(JF) = mu'HM““. Thus, for the construction of the function ¢, it is enough
to find a sequence of polynomials (g, ),cn such that the limit

q):SOT—Zq,,
n=0

exists and such that
ol < Y Mg, llo = Y 1My, ]le < M|
n=0 n=0
To do so, we want to use Theorem 6.1.2. By assumption there exists an
f € (A NABg)) \ (Mult(A#7) NA(Bqg)).
For N € Ny let on(f) = ﬁ Z%:O YL, /1 be the Fejér-means of f. Then

lon (f) = flloe +llon(f) = fllee = O for N — oo.

Using Lemma 2.2.10, we conclude that

sup [[Mgy(f)ll = oo
NeN
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6. Norm-closure of polynomials and one-function Corona theorem

For n € N set

pul2) = on(f)(2)

= e Clz].
Mol € <H

Since

sup [0, (f) ||z < o0, sup [[64(f) || < oo and sup ||[Me, (sl = oo,
neN neN neN

it follows that
| Pnllz + || palles — O for n — oo,

By construction, || pn||mui(.) = 1 for all n € N and
M, |le = ||Pnlles — O for n — oo.
Since || py|| # — 0 for n — oo, it follows by Proposition 6.1.3 that
M,, 5980 for n — oo
Forn € Nlet B, : 7 — ¢ be the orthogonal projection onto the finite-dimensional spaces

E, = span{z%; o € N¥ with 0 < |a| < n} C #°

Since

for all y € Mult(¢), we can apply Theorem 6.1.2 to the sequence of operators 7, = M),
(n € N). Hence, we get a subsequence (¢,)ueN Of (pn)nen such that S=Y (M, isa
SOT-convergent series and

ISl > ¥ Mg, lle =} llgnllee-
n=0 n=0
Since Mult(.77) is SOT-closed and
Y llgnll <1IS]le,
n=0
we conclude that ¢ =} g, is an element of Mult(.#") NA(B,) with S = M. Then

IMolle = 1ISlle > Y, lgnlleo > [|@]]oo-
n=0

We can now prove Theorem 6.1. For convenience, we restate it here.

Theorem 6.1.5. The following are equivalent:

(i) Mult(#) = H*(By) N A,
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6.1. Norm-closure of polynomials, ball algebra and essential hyponormality

(ii) A(Bg) "Mult(¢) = A(Bg) N2,
(iii) A(A) = A(Bg) NMult(H),
(iv) IMolle = 9]l for all € Mult(#) NA(B,).
Proof. (1)=(ii): Let Mult(.2¢") = H*(B,) N 7. It follows that

Mult(#) NA(By) = # NA(By).

(ii)=-(iii): Let Mult(2Z) NA(B,) = 5 NA(B,). By the open mapping theorem

-l leo 2 - lvture ()

For n € N let 0,,(¢) be the Fejér-means of ¢ € Mult(.7#) NA(B,). We obtain that

@ — 6u(®) IMute(2) = 1@ — 0u(@) | 22 + ||@ — 0u (@) lo — O for n — oo
and thus, @ € A(JZ). On the other hand, since

-l 1 llew S AT llvmuits

we have A(J7) C A(By) NMult(57)

(iii)=-(iv): Let @ € Mult(.2Z) NA(B,) = A(o7). Since .7 is regular, it follows that
|Mop|le = ||@]|o for all ¢ € Mult(s2) NA(By).

(iv)=-(1): Suppose that (iv) holds. Using Theorem 6.1.4, we deduce that Mult(.7#") N
A(By) = 2 NA(By;). Using the open mapping theorem, we obtain that

1@l + | @lleo ~ [l @lvru
for all ¢ € 72 NA(B,). Due to Lemma 2.2.10, it follows that

sup {| 6, (@) [Imure = sup (|02 (@) + [ 00 (@)]]e0) < oo.
neN neN

Using Lemma 2.2.10 again, we conclude that H*(B,) N7 = Mult(s¢). O

An operator T € B(H) is called essentially hyponormal, if there is a compact self-
adjoint operator X such that
T°T—-TT*+X > 0.

Remark 6.1.6. If T € B(H) is essentially hyponormal, one can check that the spectral
radius p(T) is an upper bound for the essential norm of 7', that is

1Tl < p(T),

(see proof of Proposition 3.3 in [ 1). Suppose now that H = JZ is a (regular) unitar-
ily invariant space such that % € Mult(s#), whenever ¢ € Mult(7) and é € H*(By).
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6. Norm-closure of polynomials and one-function Corona theorem

This is often called one-function Corona theorem. In this case, it follows for every
¢ € Mult(.22) that

P(My) < [|@]|os-
Hence, if ¢ € Mult(7¢’) such that M, : 7 — S is essentially hyponormal, then

1Mo lle < [|@]]e-

We obtain a generalization of the result of Fang and Xia, establishing the existence
of multiplication operators on the Drury-Arveson space ¢ = Hj that are not essentially
hyponormal (cf. [ .

Theorem 6.1.7. Suppose that 77 is a unitarily invariant space such that the one-function
Corona theorem 6.2.8 holds true and such that Mult(.7) C 7 NH*(B;). Then there
exists a ¢ € Mult(J¢) such that My, is not essentially hyponormal.

Proof. This is a straightforward application of Remark 6.1.6, Theorem 6.1.4 and Theorem
6.1. O

6.1.1. Examples

In this section, we want to consider regular unitarily invariant spaces .7 with reproducing
kernel
K :B;xB; — C, K(z,w) = ky(2),

where
Mult(2) C H*(B,) N A .

For all the given examples, one can show in addition that the one-function Corona theorem
6.2.8 can be applied. Hence, due to Theorem 6.1.7, there exist multiplication operators
My : A — S, that are not essentially hyponormal.

In the following, we denote by

the normalized kernel functions and assume that k, € Mult(s¢) for all z € B,;.
Remark 6.1.8. (i) If k, € Mult(.77) for all z € B,, we have

Mult(s#) C {f c A sup || fk;||» < oo} C A NH™(By).
z€By
For the second inclusion, observe that

flz)= <fi‘z’i‘z><%” (z€By)

forall f € J7.
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6.1. Norm-closure of polynomials, ball algebra and essential hyponormality

(i1) Letd e Nwithd > 2. In [ ], Fang and Xia show that

Mult(H7) S {f € H3; sup HflAcZHH(% < oo}.

ZEBd
(iii) In the case of the Dirichlet space &, Stegenga proves in [ , Section 4] that there
exists a function f € H*(D) N Z such that
1 .
sup (log mu(S(I)); ICT 1nterval> < oo, (6.1)

for du = | f'|>dA, but du is not a Carleson measure. In particular, f is not in the
multiplier algebra of the Dirichlet space. Since testing on kernel functions is equiv-
alent to the geometric statement in terms of the one-box condition 6.1 (see Theorem
A.4.1), it follows that

Mult(2) & {f € 2; sup || fk:|| o < 00}.
z€D
In Theorem 5.1.6 in [ ], there is an explicit example, proving that
Mult(2) ; 2NH”(D).
Notation 6.1.9. For s > 0and w € B, let IAch :B; — C,
P o 1 il
(1 - <Zaw>)s

w(@) =
be the normalized kernel functions of the spaces A2(B;). We denote by || - ||s the norm of
A3 (Ba).
In the following, we will prove for 0 < s < d that

{f € A;(By); sup || fEs < °°} C AZ(B,) NH™(By).

z€By

Remark 6.1.10. Let log : C\ (—o0,0] — C be the principle branch of the logarithm. For
z,w € D, using polar coordinates, one checks that (1 —z)(1 —w) € C\ (—oo,0]. Thus,
log(1 —z)+log(1 —w) =1log((1—2z)(1 —w)). Since

(1—2z)* =exp(slog(l1—z)) forall z€ D and s € R.

we have
(1= (1= = (1=
and
(I-2)'(1=w)’=((1-2)(1-w))’

for all z,w € D and 5,7 € R.
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6. Norm-closure of polynomials and one-function Corona theorem

Notation 6.1.11. For a € B, \ {0} let ¢, : By — B, be the Mobius transform in the unit
ball (for a definition see [ , Section 2.2.1]). The function ¢, : B, — By, has similar
properties as in the one dimensional case. One computes that, (¢, 0 ¢,)(z) =z, ¢,(0) =a,
¢@y(a) =0 and

1= (@a(2), @alw)) =
for all z,w € B, (see Theorem 2.2.2 in [ D.
Lemma 6.1.12. Fora € B;\ {0} and s > 0 the weighted composition operator
Ua:A;(Ba) = A;(Ba), £ = (fo@u)k,

is a well-defined unitary. Moreover, one computes for all y € Mult(A2(By)) that

and hence,
| o @allmute = [V Mute, (6.3)

as well as
lwo@ulls = |Ua(wo@a)|ls = | Wkyl|s- (6.4)

Proof. Leta € B;\ {0} and s > 0. Then

(L o) 220~ fa ),
(a2~ iy

]zfpa(w)(q)a(z))]%it(z) =
for all z,w € B; and hence,
(kg a) © Palkas (K ) © @) = (Ko K, )
for all x,y € B;. Thus, @, 0 ¢, = idp, yields that
(k50 @a)kiy, (ke 0 @a)kiy) = (ky, k)
for all x,y € B,. Since the set of kernel functions is total in .77, the assertion follows. [

Following the ideas of [ ] and using the proof of Proposition 9.7 in [ ] we
obtain:

Proposition 6.1.13. For 0 < s < d there exist sequences (wWy)nen in By and (W )nen in
Mult(AZ(By)) NA(By) such that || Wks, ||s — o for n — oo and

sup([|Walls + | Wnll-s) < 1.
neN
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6.1. Norm-closure of polynomials, ball algebra and essential hyponormality

Proof. As in proof of Proposition 9.7 in [ ] one can find sequence (p;)qen in
C|z] such that ||p,||s = 1 for all n € N and additionally ||py || — O for n — co. Equation
(6.4) shows that

|Pno@ls = ||Pni<zg||s

for all z € B, \ {0} and n € N. Now choose a sequence (z;);en in By \ {0} with ||z|| T 1.
Then lAcgl 5 0 for [ — oo and hence

limsup||pn © ¢ | = limsup || puk?, || = limsup || (M, + S)&2 I,

[—oo [—oo [—oo0

for every compact operator S € K(A2(B,)). Since A2(By) is regular, this implies that

limsup || pno @, |ls < [|Mp,|le = || Pa]ee-

[0

Thus, we can choose a sequence (wy,),cn in By such that

| pno (Pwan < 2| pa|oo-

Consider the functions

Pn o @y,

= € Mult(A2(B,)) NA(By).
3(|pnlleo '

A

Because ||y, © @y, [|o = || Pl for all n € N, we compute that
sup([| Wlls + [[¥nll) <1
neN

and that Worle  loals 1
2 Pnlls Pulls
i, [ = Woanlls _ Ul
e T R P T P

for n — oo. O]

—> 0

Theorem 6.1.14. Let 0 < s < d, then

{f € A7 (By); sup || £R]l; < °°} G A (Bg) NH™(By).

ZGBJ

Proof. The operator
My, - (A2(Ba) NAR), [ e+ [ le) = (A2Ba). |- Is). £+ £E

is well-defined and bounded. Suppose that

{f € A;(By); sup || fEs < °°} = A;(By) NH™(By).

z€By
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6. Norm-closure of polynomials and one-function Corona theorem

By the uniform boundedness principle,

sup < o

Ze]Bd

M;,

Due to the previous Proposition 6.1.13, there exist sequences (wy,),en in By and (W) en
in Mult(42(B,)) 1A (By) such that sup,o([lls + [ya ) < 1 and

supHMAs ‘ > ||l//nlA<fvn||s — oo for n — oo,
Wn

neN

a contradiction. U]
Corollary 6.1.15. Let 0 < s < d and 7 = A2(By), then
Mult() & A NH™(By)

and

A(H) C Mult(5£) NA(By).

6.2. One-function Corona theorem

Let .2 (H” (D)) be the maximal ideal space of the unital commutative Banach algebra
H*”(D) (cf. Definition 2.4.9). It is well-known that the point evaluations 8, : H (D) — C
are elements of .# (H*(ID)) and that

{x(2); x € #(H*(D))} =D

(see also Theorem 2.4.24). Basic function theory shows that for every ¢ € H*(D) and
every a € I, there exists a function y, € H* (D) such that

¢ —¢(a) = (z—a) V.

Using these two facts, one computes for every open disk D,(a) C D, that the correspond-
ing set

{x € #(H*(D)); x(z) € D/(a)} = {8;; z € Dr(a)} C A (H™(D))

is an open neighborhood of the point evaluation &, : H*(D) — C in the weak-* topology.
Whence the unit disk D can be considered as an open subset of .Z (H*(DD)). Because
A (H*(D)) is compact by Banach-Alaoglu, the open subset D is properly contained in
A (H*(D)). The complement .2 (H* (D)) \ D is called Corona in [ ]. The Corona
theorem, conjectured by Kakutani in 1941 (see [ ]), states that the open unit disc D
is dense in . (H*(DD)), or equivalently that the Corona is empty. A first proof is given
by Carleson in 1962 (cf. [ ]). For his proof, Carleson uses the following function
theoretic reformulation of the Corona theorem:

Foralln € Nwithn > 1 and ¢y, ..., ¢, € H*(D) the following are equivalent:
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6.2. One-function Corona theorem

(a) There exists a 0 > 0 such that |@;(z)|+---+ |@,(z)| > 0 for all z € D,

(b) there exist y1,..., ¥, € H*(D) such that y1(z)@1(z) + -+ Wu(2)@u(z) = 1 for all
zeD.

See [ ] for additional information and a proof of the Corona theorem, using the
previous statement and ideas of Hormander and Wolff.

It is a frequent challenge to prove the Corona theorem for the multiplier algebra of
reproducing kernel Hilbert spaces .7¢ with unitarily invariant kernel functions on the unit
ball in C?. That is, to prove that the unit ball B, is dense in the spectrum . (Mult(.#))
of the commutative unital Banach algebra Mult(.7#’). This seems to be a deep question. In
[ ], Costea, Sawyer, and Wick establish the Corona theorem for the Drury-Arveson
space and other holomorphic Besov-Sobolev spaces on the unit ball in C¥.

Let .# C 0(B,) be a Banach function space such that
(a) the point evaluations are continuous,
(b) the constant functions are contained in .%.
Let ¢ : B; — C be a function in
Mult(#)={y:B;,—»C; y-fe7}.

We now want to analyze whether % € H”(B,) already implies that
1
° € Mult(.7).

This can be considered the function theoretic reformulation of the Corona theorem for
one function.

Let Q C C? be openand let R : 0(Q) — O(Q),
d af

Rf=Y 72

f l_ziZlgzl

be the radial derivative defined as in Section 2.3.2. Since the partial derivatives &% are

linear, the operator R : 0'(Q) — 0 (Q) is linear and the product rule for a% yields that

R(fg) = fR(g) +R(f)g forall f,g € O(Q).

Using the binomial theorem, we give a short proof for a differentiation formula for
the radial derivative, which has been established in [ , Theorem 5 and Corllary 6].
The formula is a useful tool to prove a generalized version of the Corona theorem for
one function, as it appears in [ , Theorem 3.2] (cf. [ , Proposition 7] and
[ , Lemma 3.1]).
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6. Norm-closure of polynomials and one-function Corona theorem

Lemma 6.2.1. Let Q C C¢ be open, g € 0(Q) and N € N. For every function f € 0(Q)
there exists a function h € O (Q) such that

RN (gN+1f) — gh

Proof. Proof by induction on N for all g € (). The case N = 0 is trivial with 7 = f.
Suppose that the assertion holds for N € N and define

f=N+2)R(g)f +8R(f).
By assumption there exists a function i1 = h(f,N) € €'(Q) such that
RN+1 (gN+2f) — RN (R (gN+2)f+gN+2R(f)) — RN (gNHf) — gh.
Thus, the assertion follows. ]

The next statement is the differentiation formula due to Cao, He, and Zhu (see [
Theorem 5]). We give a new proof here.

Theorem 6.2.2 (Cao, He, and Zhu). Let Q C C¢ be open, f,g € 0(Q) and N € N, then

Nt N+1
y ("]

=0

)glRN(gN-H—lf) —0.

Proof. Fix w € Q. Using the linearity of RY, the binomial theorem yields for all z € Q
that

=0

N+1
=2 (Y] )R )

On the other hand, due to Lemma 6.2.1, there exists a function 7 € 0'(Q) such that

RY ((g—gw)V*1f) = (g—g(w))h.

N+1
RY (=801 f) () = RY (i (M l)g(W)’gN“"f) @

In particular,
RY ((g—gw)M"'f) (w)=0

and hence
N+1 (N+1

Y 0T

=0

)g<w>’RN<gN+1—lf> (w) =0.
]

The following quotient rule is a useful reformulation of the previous Theorem 6.2.2
(see [ , Corllary 6]).
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6.2. One-function Corona theorem

Corollary 6.2.3 (Cao, He, and Zhu). Let Q C C¢ be open. Let f,g € 0(Q) and suppose
that g is non- vanishing on €, then

R (D) =Sy (VT e

Proof. Because of Theorem 6.2.2, it is immediate that

o DA N+1 _
R == e ()R )

Replacing f by f/g one obtains the desired result. [

Using the identity theorem we also obtain the following reformulation, where the pre-
vious Corollary is the case, when £ is the constant function 1:

Corollary 6.2.4. Let Q C C? be open and connected. Let f,g,h € O(Q) and suppose
that g is non- vanishing on €, then

RV (hN:f) NZ (N+1) (g)NH_lRN(gN—i-l—lhlf).

Proof. Define

Q= {z€Q; h(z) £0}.
Using Corollary 6.2.3 for the functions f: Q — C, f(z) = (hVf)(z)and §: Q — C, g(z) =
8(z), we conclude that

RV (hN“f) g: <N+1) (@)NHZRN(gNthlf)(Z)

8 8
for all z € Q. Since Q;, C Q is open, the identity theorem for holomorphic functions (see
for example [ , Satz 2.3]) yields equality for all z € Q. [

Now, denote by H(B,) the space of the bounded holomorphic functions on B,.

Remark 6.2.5. Let % C O (B,) be a Banach space such that the constant functions are
contained in .#. Suppose that the topology induced by || - ||.# is at most finer than the
topology of uniform convergence on compact subsets.

(a) For all z € B, the point evaluations o, : % — C, f — f(z) are well-defined and
bounded.

(b) The multiplier algebra is defined as
Mult(.Z#) ={¢ :B; - C; ¢ -f € F}.
By an application of the closed graph theorem, the multiplication operator
My:F = F, f=0-f,

is bounded and Mult(.%#) is a unital commutative Banach algebra with the induced
norm

[@llmue = Mol (@ € Mult(F)).

181



6. Norm-closure of polynomials and one-function Corona theorem

(c) The point evaluations &, : Mult(.# ) — C, ¢ — ¢(z) are characters on the unital com-
mutative Banach algebra Mult(.%). Thus,

[9(2)] = 18:(@)] < l[lmure

for all z € B; and ¢ € Mult(.%). It follows that Mult(.%# ) C H*(B,) and the inclusion
is continuous.

Suppose that we are in the following setting (similar to the one in [ 1):
(a) Let & C 0(By,) be a Banach space with the following properties:
(i) The constant functions are contained in &.
(i) H*(By) C Mult(&).

(iii) The topology induced by || - || is at most finer than the topology of uniform
convergence on compact subsets.

(b) Let N € N. Suppose that
F={f € 0By R"(f) € 6}
is a Banach space with the norm

Ifllz = £ )|+ IR flle  (f € F).

Remark 6.2.6. (a) Due to the previous definition, the constant functions are contained in
F.

(b) Using the definitions of .# and &, it follows similarly to the proof of Lemma 2.3.42
that the topology induced by || - ||.# is at most finer than the topology of uniform
convergence on compact subsets.

For1 <p<oo, t > —Il) and s € R, we use here again the notation

d
for the LP-versions of the standard weighted Besov spaces with the norm
1710 = 1O+ IRy oy (€ B,

where @7 : B, — R>o,
0P (z) = (1—[z]*)”

(see Definition 2.3.39).
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6.2. One-function Corona theorem

Example 6.2.7. (a) For 1 < p < and N € N, the radially weighted Besov spaces
={f€0(Ba); R f € L()}

we introduced in Section 2.3.2 provide an example for the space .%, where & = L, ()
is the radially weighted Bergman space.

(1) Using Theorem 2.3.50, any radially weighted Besov space By, can be described
as the space B%Nfs, where N > s with equivalence of norms.

(1) Lett > —%. Due to Theorem 5.2.16, the spaces B;”” coincide with the spaces

B?Evf ;» Where N > s with equivalence of norms.
(b) All other examples in [ ], like the Bloch-type spaces and the Hardy Sobolev

spaces, are covered by the previous setting.

We obtain the following version of Theorem 3.2 in [ ] by Aleman, Perfekt,
Richter, Sundberg and Sunkes:

Theorem 6.2.8. If ¢,y € Mult(.F) and & € H*(By) with ¢ = H %‘ , then

1
% € Mult(.%) with

N+-1

N+1
v < cllelle+ (clly v+ lva)™ "

Mult

Proof. Let f € .%. Using Corollary 6.2.4, we conclude that

N+1 N+1-1
RN <§D l; f) NZ <N+1) <%) RN(WN+1_I(Plf)~ (65)

Since ¢,y € Mult(.%), it follows that the functions yN*!~/¢!f belong to .#, which
means that RV (yNT1=lo! f) € & By assumption % € H*(B,). Because Mult(&) =

N+1

N+1 N+1
H>(B,), we obtain RV ((pr> € & and thus, (pr € .Z. Hence, it is clear that (pT €

Mult(.#). Using the binomial theorem, Equation 6.5 yields that

N f + 1 N+1—1
| < ||¢|1N+Z (el 10l ) 17117
F
< (c||<p||ﬁ+<c||wr|Mun+ Il ) 11717
for all f € .# and we obtain the desired estimation for the multiplier norm. [

Define a norm on the space .« = BY"* NH* (By) by

Il = 7 = R, (| fllr = 1Al g 4 11 flleo-
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6. Norm-closure of polynomials and one-function Corona theorem

Furthermore, let
B = {f € O(By); sup (1—z*)|Rf(2)] < °°}
z€By
be the Bloch space (see [ , Chapter 3]). We have the following lemma:

Lemma 6.2.9. Let 1 < p < oo, t > —% and N > 1.

(a) If f,g € Bﬁv"pﬂ%’and %,é € H*(By), then
RN(fg) g 2\pt
L F2@) a-kPrave <

(b) The space of = Biv’p NH>*(By,) is an algebra and there exists a ¢ > 0 such that </
becomes a Banach algebra with the norm

Iz e 2 @ = Rxo, [[fllorc = €l fll-

We follow the ideas for the proof of Proposition 4 in [ ].

Proof. For part (a) suppose that f,g € BY'’ N % and %,é € H*(B,). By the Leibniz
product rule, it follows that

o= ()RR o).

=0
Hence, it suffices to prove that

/ (R'fRY!g)
By /8

for 0 </ < N. The two terms corresponding to [ = 0 and [ = N are disposed of easily,
as both f and g are bounded from below. For 0 < m < N define p’(m) = N/m. For

h e Bﬁv "?'N % consider the integral

p

(2)] (1=[zl)"av(z) <o

() = [ IR (1 Py ),
d
Observe that p’(m)(N —m) = N(p'(m) — 1). Due to Theorem 5.2.16, it follows that
)~ [ IRV (1 RNy o).
By

Since h € Bﬁv’p N %A, we deduce that

sup ((1 - |Z|2)PN(17/("1)—1)|RNh(Z)|P(P/(m)—1)> < ||k I%P’(m)—l)

z€By
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6.2. One-function Corona theorem

is bounded.

(See proofs of Theorems 3.4 and 3.5 in [ ] and note that there are coefficients c
0 < |o| < N such that

R'f(z)= Y, caz®(9%f)(z) (f€O(Ba),z€By).)

0<a<N

Thus, we obtain that

() S WIS [ RGP (1 = 2Py av (@) = Al Dl
By B,
Fix 0 <! <N. For p =4 = p/(I) and § = &5 = p/(N — 1), we use Holder’s inequality

and obtain
5

Using that f and g are bounded from below, we deduce that
Rl RN*I p
[ EEZD 0 (- epyavee)
By fg

l
< (gl )

N-I

(RYRY o) @) (1= 2Py av () < 1) i 1(e)'™

)4

(N=1)
(I hslgllger) " <o

<]

For part (b) let f,g € « = BYP NH" (By). It is well-known that H*(B,;) C % and that
|\h|lz < ||h]|e for all h € H*(B,). It follows for all 0 < I < N precisely in the same way
as in the proof of part (a) that

p

LR
< (lellell )™ (Mflelelor) ™Y <o

Thus, by the binomial theorem

L, IR GG (- Pave)

: i() (7) <||g||<>o||f||B§V.p>111G <||f||°°||8||BtN,p>(N_l)ﬁ

= (lgllollFllyso + £ el )
< (171" (lglr)”-

Hence, there exists a ¢ > 0 such that

(1=[z]*)"av (z)

’ p

2P

I fgller <cllfllrllgllers

which is equivalent to the fact that

178l e < Fllercllgllerc-
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6. Norm-closure of polynomials and one-function Corona theorem

In [ ], Richter and Sunkes show that every function f € Hg N & in the Drury
Arveson space with % € H”(By) is cyclic. Indeed, they use the fact that, in this case,

]lc € Hj. In|[ ], this result has been improved, showing that every function f € H 2
being bounded below, is cyclic.

Using a similar argument as in the proof of Theorem 6.2.8, one obtains the following
version of Theorem 5.1 in [ ]:

Theorem 6.2.10. Let 1 < p < oo, t > —% and N > 1.

(a) IffEB?]’pﬂ%’and%EH“(Bd), thenjlcEBiv’p.

(b) Ifg.h € B NH=(By) and * € H*(By) with ¢ = Hg’
and

1fller = Fll g + £ lleo  (f € BYP NHT(Ba)).

E then h]\;;] € BNP NH™(By)

PN N N+1
S cllhlle + (ellalla +llglle)™

o

where

Proof. (a)Let f € BY” 1% and % € H*(B,). Using Corollary 6.2.3, it follows that

RV (%) _ _g}) (N—;— 1> (=) N1 N pN+1-1y

By applying Lemma 6.2.9 inductively, we conclude that ]lt € va’p .
(b) Let g,h € BY? NH"(By,) and g € H*(B,). Using Lemma 6.2.9 part (b) and the fact

that
RN( > —(—1 N —1 l( ) (_) RN gN-‘rl—lhl
) e Een (U (G (V1)
by Corollary 6.2.4, the result follows exactly in the same way as in the proof of Theorem
6.2.8. ]
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A.1. Operators with closed range and Moore-Penrose
pseudoinverse

For convenience, we want to recall a well-known statement about bounded linear opera-
tors on Hilbert spaces with closed range and generalized inverses (Moore-Penrose), which
fits nicely within the theory used in Chapter 3. There is a whole theory on Moore-Penrose
pseudoinverse (also unbounded) operators that has its origin in n X m-matrices, but we
will only need the following special case:

Definition A.1.1. Let H,H be Hilbert spaces and let 7 : H — H be a bounded linear
operator. We call a bounded linear operator 7" : H — H Moore-Penrose pseudoinverse
of T if and only if

() TT T=T

(i) THTTT =T+
(i) (TTH)* =TT+
(v) (TTT)* =TT

Example A.1.2. For a partial isometry V : H — H, the adjoint V* : H — H is a Moore-
Penrose pseudoinverse of V.

The following result is easily verified:

Theorem A.1.3. Let H,H be Hilbert spaces and let T : H — H be a bounded linear
operator. Then
Im(7*)* = Ker(T) = Ker(T*T) = Im(T*T)*

and
Im(7) = Ker(T*)* = Ker(TT*)* =Im(TT*).

For a proof see, for example [ , Chapter II, 2.19 Theorem].

Theorem A.1.4. Let H,H be Hilbert spaces and let T : H — H be a bounded linear
operator. Then the following are equivalent:

(a) Im(T) is closed,

(b) Im(T™) is closed,
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(c) Im(T*T) is closed,
(d) T*T : Im(T*) — Im(T*) is invertible,
(e) T has a Moore-Penrose pseudoinverse T™.
Furthermore,

1. the Moore-Penrose pseudoinverse is uniquely determined by T+ = (T*T)~'T*,

2. the operator TT™ : H — H is the orthogonal projection onto Im(T),

3. the operator T™T : H — H is the orthogonal projection onto Im(T™*).
Proof. (a) implies (b): By the open mapping theorem, the bounded linear operator

St : Ker(T)* — Im(T), h — Th
has a bounded inverse S, ' Let
ho € Im(T*) = Ker(T)* c H
(see Theorem A.1.3). The induced mapping
@ Im(T) — C, Ths (S;'Th,ho)u
is well-defined, linear, and bounded. Hence, there exists an iL() €Im(T) C H such that
@, (Th) = (Th,ho) .
for all h € H. We obtain that
(h.T* ho)ker(r) - = Pny(Th) = (S7' Thho)ger(r)r = (s h0)ker(r)

for all € Ker(T)*. Thus,

ho = T*hy € Im(T™).

(a ) and (b) imply (c): Since Im(7) is closed, it follows from Theorem A.1.3 that
Im(T) = Ker(T*)*. Hence, if hy € Im(T*), there exists an & € H such that hg = T*Th
and thus,

Im(7T*T) =Im(T™)

1s closed.

(c) implies (d): Due to Theorem A.1.3,

Im(7*) = Im(T*T).
Since Im(7*T) is closed, we conclude that

Ker(T*T)* = Im(T*T) = Im(T*) = Ker(T)".
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Then 7*T : Im(T*) — Im(T*) is injective, has a closed range, and is therefore invertible.

(d) implies (e): Set T+ : H — H, h— (T*T)~'T*h. Then it is straightforward to check
that the properties of a Moore-Penrose pseudoinverse hold.
(e) implies (a): Suppose that T has a Moore-Penrose pseudoinverse 7. Since
TT T =T,

we have that Im(77T+) = Im(7T). Using the properties (i) and (iii) of a Moore-Penrose
pseudoinverse, it follows immediately that Im(7") is closed and that TT " : H — H is the
orthogonal projection onto Im(7').

Furthermore, using the properties (i),(ii),(iv) of a Moore-Penrose pseudoinverse it is
not difficult to see that 77T : H — H is the orthogonal projection onto Im(7*).

For the uniqueness statement, let T1+, Tz+ : H — H be two Moore-Penrose pseudoin-
verses of 7. Then by the previous discussion T7;" = TTZJr and T1+T = T2+T. Thus, we
obtain that

+ _ ptprt _ ettt _ ptrrtrrt et ot
T =TTT =T'TT, TT) =T, TT, TT, = T,'TT, = T,

A.2. Weak-star continuity and Krein-Smulian

To study the weak-* continuity of homomorphisms between operator spaces, it is some-
times helpful to use a theorem due to Krein-Smulian.

Let E, F be Banach spaces. We denote by E’ = B(E,C) the dual space of E and by
F' = B(F,C) the dual space of F.

It is well-known that the space of all bounded linear operators B(H) is the dual of the
trace class operators Cy(H)' (see Remark 2.3.14, part (c)).

The following ideas are well-known and can be found, for example, in [ ]. For
convenience, we recall the most important results here again.

Proposition A.2.1. Let H be a Hilbert space and let (Ty)gqea be a WOT-bounded net in
B(H). For T € B(H) the following are equivalent

(a) (Ty)oaea converges in the weak operator topology to T.

(b) (Ta)aca converges in the weak-x-topology to T.

Proof. WOT-bounded sets in B(H) are norm-bounded by the uniform boundedness prin-
ciple. Consequently, we obtain the desired result, using the well-known fact that the weak
operator topology and the weak-*-topology coincide on norm-bounded sets (c.f. [ ,
Chapter 3, Proposition 20.1]). 0
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Denote by
ball(F') = {y' € F';

the closed unit ball. We have the following lemma:

Lemma A.2.2. Let E,F be Banach spaces and let T : (F',| - ||r) — (E',|| - ||g") be
bounded and linear. Then the following are equivalent:

(a) T is weak-* continuous,
(b) T : (ball(F"),T,) — (E',T,+) is continuous.

If H and H are Hilbert spaces and B(H) = C\(H)',B(H) = C1(H)' are the dual spaces of
the trace class operators, then (a) and (b) are equivalent to

(c) T : (ball(B(H)),WOT) — (B(H),WOT) is continuous.
Proof. (a) implies (b) is trivial, since the continuity of T : (ball(F’), 1)) — (E’, T+ ) fol-

lows immediately from the weak-x*-continuity of 7.

For (b) implies (a) suppose that T : (ball(F'),7,+) — (E’,T") is continuous. Let

rw

(Vly)aea be converging in the weak-* topology of F’ toy’ € F’, that is

Va(y) ==Y ()
for all y € F. For the continuity of T : (ball(F’), 7,+) — (E’, 7,+) we have to show that
(Ty,,) qea converges in the weak-* topology of E' to Ty' € E’, that is

(TYo) (x) === (1Y) (x)
for all x € E. So, continuity of T : (ball(F’), 7,+) — (E’, 7,,+) follows if and only if the
linear functionals

(. T()): (F, 1) = C, Y = (TY) (x)

induced by the points x € E are continuous. A well-known statement [ , Chapter
IV; 3.1 Theorem], yields that the linear form

(xT(): (F, 1) > C
is continuous if and only if Ker((x,7(-))) is weak-* closed. By assumption, the map

T : (ball(F'),7,) — —(E', 1))

is continuous and hence

Ker((x,T(-))) Nball(F’)

is weak-* closed. By the Banach-Dieudonné theorem (cf. [ , Chapter V; 12.6
Corollary]), which follows as a corollary of the Krein-Smulian theorem, we obtain that
Ker({x,T(-))) is weak-* closed. Thus, T : (F’,7,+) — (E’, 7)) is continuous.

If H and A are two separable Hilbert spaces and E = C;(H) and F = C,(H), the equiv-
alence follows by Proposition A.2.1 together with the fact that the weak-* topology is
finer than the weak operator topology and the fact that T : (F',|| - ||z/) — (E', || - ||&/) is
bounded. 0
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Using Lemma A.2.2, the following corollary is immediate:

Corollary A.2.3. Let H and H be two Hilbert spaces, and let T : B(H) — B(H) be linear
and bounded. If T : (B(H),WOT) — (B(H),WOT) is continuous, then T : (B(H), T,+) —
(B(H), ) is continuous.

A.3. Infinite operator matrices

This section contains some basic facts about infinite operator matrices, as they appear in
Chapter 4.

Let (H;);ey and (H,,)men be families of Hilbert spaces and let
H=@PH and H=H,
leN meN
be the corresponding direct sums. Consider for a family of operators

Tym € B(H,Hy) ((I,m) € NxN)

the infinite matrix
T = (Tim) (1,m)
and for N € N the finite matrices

TW) = (T} n)o<i<N 0<m<n-

The finite matrices 7W) induce bounded linear operators T™) : H — H with

(T(N)h) _ Z]n\;:o Tyihm if0<I<N,
: 07 else

for

h= (hm)men € EDH;.
leN

Theorem A.3.1. Suppose that

c:;u%HT(N)H < oo,
€

Then the linear operator T : H — H, defined by
Th= lim T™h

N—seo

is well-defined and bounded with ||T|| = ¢ and
T'h= lim (T™) A
N—oo

forallheH.
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Proof. For N € N let Py : H — H be the orthogonal projection onto the closed sub-
space 6911\/:0 H; and let Py : H — H be the orthogonal projection onto the closed subspace
@?’:0 H;. Then

Py X idy, By 2 id,

for N — oo and TW) = PNT(N)PN forall N € N. Let N > M > 0, then
PyT™N Py =TM) (A.1)
and thus
TN 1M = BTV Py — By TN Py = (By — By) TN Py + By T™) (Py — Pyy)
Using Cauchy Schwarz, we obtain that
(T =Tk, Ry | = clalla | (B — BBl g+l | By — Por )l

for all h € H and h € H. Thus, it is immediate that (T"))ycy is a bounded WOT-
Cauchy sequence. Since (B(H),WOT) is quasi-complete (see Example 2.3.20), it follows
that (T(N )) NeN converges in the weak operator topology to a bounded linear operator
T : H — H. Using (A.1), it can be easily verified that

TWN) = pyTPy
for all N € N. Then
T —TW) = (idg —Py)TPy + PyT (idy —Py)
and hence

Th= lim T™p

N—roo
forall » € H. Since (T*)(N ) = PyT*By for all N € N we obtain in the same way that

T*h = lim (TW))*B

N—yoo

for all # € H. Furthermore, we conclude that

c = sup HT(N)H = sup ||ByT Py|| < ||T|| < sup HT(N)H =c.
NeN NeN NeN

]

Remark A.3.2. In general, it is not possible to approximate 7" by T™) in norm. Consider
the Hilbert space of the square summable sequences ¢>(N) and the infinite matrix 7 =
(t1m)(1,my With t;; = 1 and #; ,, = 0, when [ # m. Then one can check that 7' = idp ) and
that

TW) = py : (2(N) — (*(N)
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are the orthogonal projections on the finite dimensional subspaces Ey = {e,; 0 <n < N},
where (e, ),cn is the canonical orthonormal basis of ¢2(N). In this case,

T™ = py B idp ) =T,

but
HT—T(N)H = [lidpgy) — vl = 1.

For a sequence of operators S; : H; — Hy consider the infinite row
S= (Sl, . ,SN,SN+1 .. )

Let
Ts = (Tim) (1,m)eNxN
be the infinite matrix where (7s)o n = Sy for m € N and (Ts); ,, = 0 else. For N € N define

SN = (Sy,...,85,0,0,...),

then T(N) Usmg the orthogonal projection Py : @, H; — Hy onto the space Hy
and the 1nclu51on map i : Hy — @,y H; the following corollary is a direct consequence
of Theorem A.3.1.

Corollary A.3.3. Suppose that ¢ = supycn HS(N ) H < oo, Then the row operator

S:EPH, — Hy, (Sh))jen = ZSlhz
leN =0

is well-defined and bounded with ||S|| = ¢, S™) SOt 5 and (S( )> SOL g for N — oo,

A.4. One-box conditions for the Dirichlet space

Let

1 1
K:}D)x]D)—MC,K(z,w):—_log( _)
w 1 —zw
be the reproducing kernel of the Dirichlet space . Let w € D. As always, we use the
notations
ky:D— C, ky(z) = K(z,w)

and
ky

ey = :
" lkwlle

Givenanarc I C T, let

SI)y={re"; % c,1-|I| <r<1},
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be the corresponding Carleson-box, where || denotes the arclength of /.

In Remark 6.1.8 we consider a statement due to Stegenga, which is equivalent to the
fact that:

Mult(2) & {f € 9, suﬂg”ffcz”@ < 00}.
z€

To see the equivalence, we use the next theorem. I would like to thank Dr. Nikolaos
Chalmoukis, who communicated the ideas for the proof.

Theorem A.4.1. Let U be a finite Borel measure on D then

1
sup (log mu(S(I)); ICT interval) < oo

if and only if there exists a C > 0 such that

| s Pante) < i 2.

This result is undoubtedly well-known to experts, but for convenience, we sketch im-
portant ideas for the proof here. We start with some useful lemmas first.

Lemma A4.2. Ifz €D, then

1 1 2 1
—log (—> <2log (—) +4rm < 2log (—) + 18.
z -z [1—2 [1—2

Proof. Letlog: C\ (—o0,0] — {z € C; Im(z) € (—7,7)},

z+— loglz| +iarg_,(z).

be the principle branch of the complex logarithm. If z € D, then l%z € C\ (—e0,0]. Thus,

1 2
log| — )| <log| —— ) +2m.
11—z 11—2z]

Using the inequality 3|z < |log (%—z) | <2z for |z] < 1, we obtain that

1 1 2 1

—log (—) <2log (—) +4r <2log (—) +18.
z -z 11—z 11—z

Lemma A.4.3. Let 6 € (—7, 7], then |0] < Z[1—¢™|.

Proof. The length of the semicircle with diameter |1 — ¢/®| is larger then the length of the
arc of the segment with angle 6. U
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Lemma A.4.4. Let w € D with 3 < |w| < 1 and 0 <t < 5. Then the set
A={zeD; |l —zw| <t}

is contained in a Carleson-box S(I), where I = I(| E 2t) C T is the arc with midpoint ﬁ
and length |I| = 2t.

Proof. Fix w € D with § < |w| < 1 and observe that

1
-z < ——z| < |z—

W]

for all z € A. Thus, 1 — 2z < |z| for all z € A. Now fix z € A. A computation shows that

<2t

1 ‘_ |1 —zw|
[wl

< w

z W ‘1 w

zw]
=|1—zw|+ |1 — |zw|| < 2|1 —zw| < 2.

<|1—zw|+
o] [w]

zw——‘

Due to the previous lemma, we obtain for 0 = arg(z) and 6y = arg(w) in (—, 7] that
16— 6| < g|ei(9_9°) 1)< §|ei9 | < gz,

It follows that 6 € I = (6y — 2xt, 60 + 27t ), where |I| = 2t. O

We use the Kolmogorov equality to show that the one-box condition implies the Car-
leson measure condition for the kernel functions. The converse implication can be found
in [ , Theorem 5.2.5 (1)].

Proof of Theorem A.4.1. Let u be a finite Borel measure on ID. First, suppose that the
one-box condition

1
sup (log |I| u(S)), 1cT interval) <

k@) 19)
su < < oo,
p( AT

we can assume without loss of generality that % < |w| < 1. If f € LP(u), then using

Tonelli, we obtain
1@ Pduc)
D
-/, o Kl OP A ()
-7 / / Kie<i5()) (AR dA (1)
=p [ B <I@DTarG),

holds true. Since
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Thus,
| Ie@Pdu =2 [ e < k(@)1 0)
=20l [ Ul < o2 e )

Observe that
kollZ < [lhwlloo < Slkn]|Z-

As mentioned above, one can compute that

1
18421 > |k .
+2log 2> [k (2)]
Since 18 +2log “ 1 >t if and only if |1 —zw| < e ~519 we obtain
llkw|loo
kW(Z) wl|eo ; w <e 2 t+9}.
Because 5 < |w| < 1, one computes that ||k ||. > 80 andif 5 <7 < 1, then — ||k”“°°t—|—9<

—11. Hence
HkWHwt
2

{zeD; |1 —zw|<e”

cS(),

where S(I) is a Carleson-box of an interval [ of length |1| < 2e~ 52149 and center ‘—VV:| e T.

" u(s(n) < (1og (|}|))_1,

it is immediate that there exists a ¢ > 0 such that

Bkl < (D) < B({z € D5 [1 =] < e H500)) <l
Hence,
[ (@) Pan()
=2k % o }u({llkawt < Jkw(2)[})edA(2)
< Ilhwlloo < 51kin[7-
For the proof of the converse implication, see [ , Theorem 5.2.5 (1)]. O]
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