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1  |   INTRODUCTION

Optimisation of intraocular lens (IOL) formula con-
stants is still a challenging task in modern cataract 
surgery (Aristodemou et  al.,  2011; Langenbucher 
et al., 2022; Langenbucher, Szentmáry, Cayless, Müller, 
et  al.,  2021; Schröder et  al.,  2016; Zhang et  al.,  2019). 
Such formula constants are used to customise a ‘gener-
ally valid’ IOL power formula to the characteristics of 

a specific lens model, to the measurement devices and 
techniques, to the characteristics of the patient popula-
tion, and to the ‘handwriting’ of the surgeon. In most 
clinical situations, formula constants are optimised 
only for specific IOL models (the optics and haptics de-
sign, material, etc.), and other specific predictors of the 
refractive outcome, such as the biometer model or the 
refractometry technique (e.g. refraction lane distance), 
are not considered.
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Abstract
Purpose: To investigate surrogate optimisation (SO) as a modern, purely data-
driven, nonlinear adaptive iterative strategy for lens formula constant optimi-
sation in intraocular lens power calculation.
Methods: A SO algorithm was implemented for optimising the root mean 
squared formula prediction error (rmsPE, defined as predicted refraction minus 
achieved refraction) for the SRKT, Hoffer Q, Holladay, Haigis and Castrop 
formulae in a dataset of N = 888 cataractous eyes with implantation of the 
Hoya Vivinex hydrophobic acrylic aspheric lens. A Gaussian Process estimator 
was used as the model, and the SO was initialised with equidistant datapoints 
within box constraints, and the number of iterations restricted to either 200 
(SRKT, Hoffer Q, Holladay) or 700 (Haigis, Castrop). The performance of the 
algorithm was compared to the classical gradient-based Levenberg-Marquardt 
algorithm.
Results: The SO algorithm showed stable convergence after fewer than 50/150 it-
erations (SRKT, HofferQ, Holladay, Haigis, Castrop). The rmsPE was reduced 
systematically to 0.4407/0.4288/0.4265/0.3711/0.3449 dioptres. The final con-
stants were A = 119.2709, pACD = 5.7359, SF = 1.9688, −a0 = 0.5914/a1 = 0.3570/
a2 = 0.1970, C = 0.3171/H = 0.2053/R = 0.0947 for the SRKT, Hoffer Q, Holladay, 
Haigis and Castrop formula and matched the respective constants optimised in 
previous studies.
Conclusion: The SO proves to be a powerful adaptive nonlinear iteration algo-
rithm for formula constant optimisation, even in formulae with one or more 
constants. It acts independently of a gradient and is in general able to search 
within a (box) constrained parameter space for the best solution, even where 
there are multiple local minima of the target function.
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In general, formula constant optimisation requires a 
full set of biometric data used by the calculation scheme 
to derive the appropriate lens power, the labelled power 
of the implanted IOL and the postoperative refrac-
tion (manual refraction at least 4 weeks after surgery) 
(Langenbucher et  al.,  2022; Langenbucher, Szentmáry, 
Cayless, Müller, et al.,  2021). As yet, there is no estab-
lished standard for formula constant optimisation. For 
IOL formulae based on a single constant (e.g. the SRKT 
formula), in most cases, the formula is reversed and 
solved for the formula constant, and for each datapoint 
in the dataset considered for constant optimisation, an 
individual formula constant is derived. From the dis-
tribution of all the individual formula constants in the 
dataset, any statistical metric is extracted (e.g. the arith-
metic mean or median) and defined as the optimised 
formula constant (Langenbucher et  al.,  2022, 2023a; 
Langenbucher, Szentmáry, Cayless, Müller, et al., 2021; 
Schröder et al., 2016).

However, such strategies have major drawbacks: 
firstly, they are restricted to IOL formulae with a sin-
gle formula constant, and in formulae with two or more 
constants (e.g. the Haigis formula), other strategies are 
required. Secondly, using a statistical metric for the 
individual constants allows the extraction of the ‘best’ 
constant by statistical definition, but this may not be 
the formula constant that provides the best outcome 
for the patient in terms of postoperative refraction. 
Especially where the distribution of individual constants 
derived from all clinical cases is in some way skewed, 
this means that metrics such as the mean value of the 
individual constants do not provide the best solution 
(Langenbucher, Szentmáry, Cayless, Müller, et al., 2021; 
Schröder et al., 2016).

Today, most studies dealing with the refractive 
outcome after cataract surgery aim to optimise for-
mula constants to achieve zero mean refraction in the 
study population (Aristodemou et  al.,  2011; Hoffer & 
Savini,  2021; Zhang et  al.,  2019). However, even with 
simple first-generation formulae such as the SRKT, 
there is no algebraic method to optimise the formula 
constant, and trial and error methods are used to find 
the value corresponding to zero mean refractive error 
(Langenbucher, Szentmáry, Cayless, Müller, et al., 2021; 
Zhang et al., 2019).

Such tasks are the domain of modern nonlinear iter-
ative optimisation strategies, which enable IOL formula 
constants to be optimised on a dataset for any target pa-
rameter and any target metrics. This means that these 
strategies could easily be applied to formulae with one 
or more formula constants, using the refractive outcome 
as the target parameter with the most relevance for both 
patient and surgeon. Any statistical metrics such as 
the mean, mean absolute, root mean squared error (or 
others) can be used with these methods (Langenbucher 
et  al.,  2022, 2023a; Langenbucher, Szentmáry, Cayless, 
Müller, et al., 2021).

Some of these nonlinear iterative techniques require 
internal information on the IOL formula, for example, the 
gradient and/or Hessian matrix of the formula (solved for 
the target parameter refraction) with respect to the for-
mula constant(s) (Langenbucher et al., 2023a). However, 

in the last two decades, increasingly more purely data-
driven optimisation techniques, such as Particle Swarm 
optimisation (Langenbucher et al., 2023b), have been de-
veloped in the domain of machine learning. In contrast to 
the well-established nonlinear iterative techniques such 
as the Gauss-Newton (Coleman & Li, 1994), Levenberg-
Marquardt, Trust-region reflective (Conn et  al.,  2000) 
or interior point method (Boyd & Vandenberghe, 2004; 
Coleman & Li, 1994; Dikin, 1967; Karmarkar, 1984; Press 
et al., 2007), all of which use the gradient and Hessian 
matrix to identify the step direction and size during it-
erations, the data-driven methods based on statistical 
models are capable of dealing with black box implemen-
tations of the formula (Langenbucher et al., 2023a). This 
means that we require only a module that outputs the 
predicted refraction when entering the biometric mea-
sures and the IOL power.

The purpose of the present study is

•	 to introduce the surrogate optimisation algorithm as 
a purely data-driven method to optimise formula con-
stant(s) for arbitrary formulae (even with black box 
implementations) for any target parameter and any 
metrics,

•	 to implement this algorithm in the interpreted lan-
guage MATLAB, and

•	 to evaluate the optimisation results and the perfor-
mance based on a large clinical dataset of patients 
treated with one IOL model, containing preoperative 
biometric data, the labelled power of the implanted 
lens and the postoperative manual refraction.

2  |   M ATERI A LS A N D M ETHODS

2.1  |  Dataset for formula constant 
optimisation

In this retrospective cross-sectional study, we analysed 
a dataset containing measurements from 888 eyes from 
a cataract population from Augen- und Laserklinik 
Castrop-Rauxel, Castrop-Rauxel, Germany. As trans-
ferred to us, the dataset contained results from 490 right 
eyes and 398 left eyes (495 female and 393 male). The 
mean age was 71.2 ± 9.1 years (median: 71 years, range: 
47–91 years). The local ethics committee (Ärztekammer 
des Saarlandes, registration number 157/21) provided a 
waiver for this study, and informed patient consent was 
not required. The data were transferred to us in an an-
onymised fashion, precluding back-tracing of the patient. 
The anonymised data contained preoperative biometry 
derived with the IOLMaster 700 (Carl-Zeiss-Meditec, 
Jena, Germany), including axial length AL in mm, central 
corneal thickness CCT in mm, phakic anterior chamber 
depth ACD in mm measured from the corneal epithelium 
to the anterior apex of the crystalline lens, central thick-
ness of the crystalline lens LT in mm and corneal front 
surface radii measured in the flat (R1 in mm) and in the 
steep meridian (R2 in mm). In all cases, a Vivinex 1 piece 
hydrophobic aspherical (aberration correcting) monofo-
cal intraocular lens (Hoya Surgical Optics, Singapore) 
was implanted. In addition, the labelled refractive power 
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of the inserted lens (PIOL in dpt) and the postoperative 
refraction (sphere and cylinder both in dpt) 5–12 weeks 
after cataract surgery were measured by an experienced 
optometrist and recorded in the dataset. To ensure reli-
able postoperative refraction, the dataset included only 
data with a postoperative Snellen decimal visual acuity 
of 0.8 (20/25 Snellen lines) or higher. The descriptive data 
on pre-cataract biometry, PIOL and postoperative refrac-
tion are summarised in Table 1.

The anonymised Excel data (.xlsx-format) was im-
ported into MATLAB (Matlab 2021a, MathWorks, 
Natick, USA) for further processing.

2.2  |  Preprocessing of the data

Custom software was written in MATLAB. The pa-
tient's age was derived from the date of cataract surgery 
and the date of birth. The mean corneal front and back 
surface radius of curvature Rmean was calculated as 
Rm = 0.5·(R1 + R2). To derive the mean corneal power, R1 
and R2 were converted to refractive power using the re-
spective keratometer index nK mentioned in the IOL for-
mula (K1 = (nK−1)/R1 and K2 = (nK−1)/R2) and averaged 
(Kmean = 0.5·(K1 + K2)). As some formulae (e.g. SRK/T 
formula) deal with the corneal radius reconverted from 
Kmean, we additionally calculated RmeanK = 0.5·R1·R2/
(R1 + R2). The spherical equivalent refraction SEQ was 
derived as SEQ = sphere + 0.5·cylinder.

2.3  |  IOL formulae under test

The following lens power calculation formulae were con-
sidered in our study:

•	 SRKT formula published by Sanders, Retzlaff and 
Kraff (Retzlaff et al., 1990; Sanders et al., 1990),

•	 Hoffer Q formula published by Hoffer  (1981, 1993, 
2007),

•	 Holladay 1 formula published by Holladay and Prager 
(Holladay et al., 1988),

•	 Haigis formula (Haigis et al., 2000), and the
•	 Castrop formula (Langenbucher, Szentmáry, Cayless, 

Weisensee, et al., 2021; Wendelstein et al., 2022).

The SRKT formula considers the AL and RmeanK 
(keratometer index nK = 1.3375) together with the formula 

constant A; the Hoffer Q formula uses the AL and Kmean 
(keratometer index nK = 1.3375) together with the formula 
constant pACD and the Holladay 1 formula considers the 
AL and the RmeanK (keratometer index nK = 4/3) together 
with the formula constant SF. The Haigis formula con-
siders the AL, ACD and Rmean together with a formula 
constant triplet a0/a1/a2. The three formula constants are 
used in terms of a multilinear regression to calculate the 
ELP as ELP = a0 + a1·ACD + a2·AL. The keratometer index 
used in the Haigis formula is nK = 1.3315. The Castrop 
formula considers the AL, CCT, ACD, LT, Rmean and 
the corneal back surface radius together with a formula 
constant triplet C/H/R. For simplicity (as outlined in 
Langenbucher et al., 2022, 2023a), the measurement of the 
corneal back surface radius was replaced by 0.834·Rmean 
and CCT was preset to 0.55 mm. The formula constants 
C and H are used in terms of a multilinear regression to 
calculate the ELP, and R is used as an offset in the formula 
predicted refraction to account, for example for the refrac-
tion lane distance. The axial length is linearly transformed 
using a sum-of-segments concept according to Cooke & 
Cooke (2019a, 2019b). The corneal refractive index used in 
the Castrop formula is nC = 1.376.

All formulae included in this analysis were reorgan-
ised and solved for the SEQ as a function of preoperative 
biometrical data and PIOL. The formula prediction error 
PE was defined as the difference between the formula 
predicted refraction and the SEQ from the postoperative 
follow-up examination. For the surrogate formula con-
stant optimisation method (Cruz et  al.,  2022; Forrester 
et al., 2008; Forrester & Keane, 2009; Gorissen et al., 2010; 
Johnson et al., 2019; Moeini et al., 2023; Wang et al., 2014; 
Zhang et  al.,  2022), the root mean squared PE (rmsPE) 
was used as an objective function to be minimised glob-
ally within the boundaries (Boyd & Vandenberghe, 2004; 
Mezura-Montes & Coello Coello, 2011; Zhang et al., 2022). 
An internal function code was programmed to calculate 
the rmsPE for the input parameters (AL, CCT, ACD, LT 
and Rmean/Kmean/RmeanK) a function of the formula 
constants A/pACD/SF/a0, a1, a2/C, H, R.

2.4  |  Surrogate optimisation for 
formula constants

Surrogate model based optimisation is a very modern 
technique of active learning used in engineering and ad-
vanced statistics (Cruz et al., 2022; Forrester et al., 2008; 

TA B L E  1   Descriptive statistics of the dataset with arithmetic mean, standard deviation (SD), median and the lower (quantile 2.5%) and 
upper (quantile 97.5%) boundary of the 95% confidence interval.

N = 888 AL in mm ACD in mm LT in mm Rmean in mm Kmean in dpt PIOL in diopters SEQ in diopters

Mean 24.0980 3.1864 4.6176 7.7666 43.5180 20.6222 −0.5612

SD 1.40721 0.4081 0.4568 0.2682 1.5006 3.7318 0.9236

Median 23.9026 3.1848 4.5929 7.7654 43.4763 21.0000 −0.2500

Quantile 2.5% 21.6757 2.3720 3.7333 7.2702 40.6567 12.0000 −2.2500

Quantile 97.5% 27.3514 3.9435 5.5192 8.3029 46.4324 27.5000 0.5000

Note: AL refers to the axial length, ACD to the external phakic anterior chamber depth measured from the corneal epithelium to the front apex of the crystalline 
lens, LT to the central thickness of the crystalline lens, Rmean (mean of the flat and steep meridians) to the mean radius of curvature and Kmean (mean of the 
flat and steep meridians each converted to dioptric power using a keratometer index nK = 1.3375) for the corneal front surface, PIOL to the refractive power of the 
intraocular lens implant and SEQ to the spherical equivalent power achieved 5–12 weeks after cataract surgery.
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Forrester & Keane, 2009; Gorissen et al., 2010; Johnson 
et al., 2019; Moeini et al., 2023; Wang et al., 2014; Zhang 
et al.,  2022), and machine learning to find optimal de-
sign parameter combinations in terms of minimising 
(or maximising) an objective function globally over a 
restricted parameter space (Mezura-Montes & Coello 
Coello, 2011). The parameter space has to be restricted 
using boundaries, and in most cases box constraints 
are used. Instead of raster-based scanning through the 
entire parameter space with a dense grid which con-
sumes lots of computation capacity and time especially 
in higher dimensional tasks, surrogate optimisation is 
initialised with a set of starting points and successively 
adds locations in the parameter space to find the best 
parameter solution (Gorissen et al., 2010). In addition to 
the boundaries of the parameter space, surrogate opti-
misation shows the unique feature of dealing with quan-
tised parameters in the parameter space (Forrester & 
Keane, 2009). This means that if the formula constants 
are restricted to a specific precision (e.g. to 2 decimal 
places) we do not have to round the results accordingly 
(which is not necessarily the best solution). Instead, the 
solutions can be restricted to those in a specific raster 
(Forrester et al., 2008; Forrester & Keane, 2009). A sur-
rogate model is a statistical model that can accurately 
approximate the output of a function from the input 
data. In general such a model could ‘replace’ a complex 
objective function and is much faster in computation 
as compared to the evaluation of the objective function 
itself.

For a detailed explanation of the working princi-
ple of surrogate optimisation, we refer to the literature 
(Cruz et  al.,  2022; Forrester et  al.,  2008; Forrester & 
Keane, 2009; Gorissen et al., 2010; Johnson et al., 2019; 
Moeini et al., 2023; Wang et al., 2014; Zhang et al., 2022). 
In general, surrogate optimisation is always based on a 
surrogate model (Figure 1). First, we need a set of train-
ing data. This means that for initialisation, the objective 
function should be evaluated in a small set of (intel-
ligently selected) locations in the parameter space (the 
space of formula constants). In the next step, a statistical 
model is designed to predict the objective function values 
within the parameter space based on the training data. 
Such statistical models include more or less all types of 
machine learning predictors, such as polynomial regres-
sions, support vector machines, Gaussian Process (GP) 
estimators or neural networks.

Once the initial surrogate model is trained, the op-
timisation process starts. As the reliability of the op-
timisation depends on the accuracy of the underlying 
surrogate model, the design of the model should be se-
lected carefully to accurately predict the behaviour of 
the object function in the parameter space in the vicin-
ity of the minimum of the objective function. In the next 
step, the active learning process starts. By evaluating the 
prediction uncertainty of the model, the dataset is adap-
tively enriched by adding data points in the parameter 
space to improve prediction accuracy in the region of the 
expected minimum of the objective function. This pre-
supposes that the model design is able to predict its own 
prediction uncertainty in terms of variance or standard 
deviation. Only those regions in the parameter space 

where the model is not confident with its prediction (high 
variance) require further exploration by adding data 
points. In other regions of the parameter space where 
the model feels confident or where the minimum of the 
objective function is not expected, no further exploration 
is required.

For this purpose we used a GP estimator design for 
the surrogate model as this family of statistical models 
is known to perform pretty well even on a small set of 
training samples. Furthermore, this model assigns a nor-
mal distribution enabling direct extraction of the model 
prediction value and the variance indicating the uncer-
tainty at each data point.

The next step defines the potential for improvement. 
From the model we extract the predicted minimum 
value and define the potential for improvement by 
evaluating the variances of the model over the entire 
parameter space. In regions of the parameter space 
where a sufficient portion of the normal distribution 
(model uncertainty) is located below the model pre-
dicted minimum we expect strong potential for im-
provement, and additional data points are required 
to refine and enrich the model. In these cases we loop 
back to the training of the enriched surrogate model. 
The GP statistical model believes that at location (.) 
in the parameter space there is some potential for im-
provement if there is potential of finding a probability 
y(.) value smaller than the predicted minimum ymin of 
the current model. Expressed in an improvement func-
tion, we use the expectance value E(I(.)), where I(.) re-
fers to the y(.) – ymin for y(.) < ymin, and 0 elsewhere, and 
E(I(.)) = ∫ I (. ) ⋅ p(y)dy with p(y) as the probability den-
sity function of the normal distribution defined by the 
model predicted value and variance. If we do not find 
a sufficient portion of the normal distribution located 
below the model predicted minimum ymin (i.e. E(I(.)) 
below a threshold and we accept the performance of 
our model) we take this as the ‘best model’ and the op-
timised formula constants.

2.5  |  Initialization in the present study

For the parameter space we used the following box con-
straints: SRKT A: 117 to 122, Hoffer Q pACD: 4.5 to 6.0, 
Holladay SF: 1.0 to 3.0, Haigis a0: −1.5 to 1.5, a1: 0.05 to 
0.5, a2: 0.05 to 0.35, Castrop C: 0.2 to 0.5, H: −0.3 to 0.3, 
R: −0.3 to 0.3 as lower boundaries and upper bounda-
ries, respectively and without loss of generality. Without 
assuming any prior knowledge about the optimised for-
mula constants, we decided to use equally spaced train-
ing samples in the parameter space. Equidistant sample 
points were used with the SRKT, Hoffer Q and Holladay 
formulae (each having a single formula constant) within 
the box constraints in a raster of 0.5. For the Haigis for-
mula equidistant points with steps of 1.0/0.15/0.1 for a0/
a1/a2 were used in the 3-dimensional parameter space, 
giving in total 64 datapoints. For the Castrop formula 
equidistant points with steps of 0.1/0.2/0.2 for C/H/R 
were used in the 3-dimensional parameter space, again 
giving in total 64 datapoints. The number of iterations 
in the optimisation process was restricted to 200 for the 
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formulae with a single constant and to 700 for those with 
a constant triplet. The acceptance threshold for E(I(.)) 
was defined as 1e-4 for all optimisations. To show the 
benefits of surrogate optimisation in dealing with quan-
tised parameters the optimisation results are shown both 
without and with quantisation of the formula constants 
(to 2 decimal places).

2.6  |  Explorative data evaluation and statistics

The input data were analysed descriptively in terms of 
the arithmetic mean, standard deviation, median and 
the lower and upper boundaries of the 95% confidence 
interval. The performance of the formula constant 
optimisation was explored descriptively in terms of 
the arithmetic mean, standard deviation, median and 
the lower and upper boundaries of the 95% confidence 
interval of the formula prediction error PE, together 
with the mean absolute PE and the rmsPE.

3  |   RESU LTS

3.1  |  Working example for our surrogate 
optimisation

The principle of surrogate model optimisation is 
shown in a working example based on our dataset of 
N = 888 data for the example of the SRKT formula. 
We assume the optimised A constant to be located 
within boundaries from 117 to 122. To show the capa-
bilities of this optimisation technique, four datapoints, 

irregularly distributed over the parameter space are 
used for the initialization of our working example (A: 
118.00, 118.50, 118.75 and 121.5) as shown in Figure 2a 
(upper left graph, red circles). The objective function 
(root mean squared PE) is evaluated at each of these 
four datapoints and displayed on the Y axis. The blue 
line in the graph shows the prediction of the GP model 
based on the four datapoints, and the dotted magenta 
lines refer to the model uncertainty derived from the 
GP model. We see that at the four datapoints, the 
model feels confident and the uncertainty equals zero, 
whereas in the intervals between the datapoints, the 
uncertainty increases with the distance to the closest 
datapoint. The green interrupted lines refer to the lo-
cation of the A constant having the best performance, 
as predicted by the surrogate model. Figure 2b shows 
the situation of the GP model at the initialisation in 
more detail: again, the four irregularly distributed da-
tapoints in the parameter space are marked (magenta 
X together with the model prediction characteristics 
(green dotted line)). As a result of the uncertainty of 
the GP model outside the four datapoints, there is some 
probability for the model to over- or underestimate 
the performance (colour-coded according to the scale 
shown on the colour bar on the right side of the graph). 
For visualisation, the probability y(A) is clipped to a 
maximum of 5, giving some insight into the distribution 
(clipped values marked with red dots). The uncertainty 
of the GP model at all A values is expressed as a nor-
mal distribution (dashed red lines), as in the example 
shown for two datapoints (A = 117.25 and 119.15). The 
expectance value E(A) refers to the probability y(A) of 
obtaining a model performance value better than the 

F I G U R E  1   Basic strategy behind the surrogate optimisation technique: the surrogate statistical model is trained with some datapoints 
(training samples). The model is then evaluated and the model prediction, the predicted minimum and the model uncertainty in terms of variance 
are extracted. In the next step, the improvement function is derived from the model prediction and the uncertainty. If the model shows sufficient 
performance, we read out the optimised constants otherwise, the model is enriched with additional datapoints and trained again in the loop.

 17553768, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aos.16670 by U

niversitaet D
es Saarlandes, W

iley O
nline L

ibrary on [28/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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current predicted best performance, as marked with 
the cyan dashed line. The portion of the probability 
y(A) relevant for calculating the expectancy value E(A) 
is shaded in red. On the upper right graph of Figure 2a, 
the expectancy value E(A) is shown for the entire range 
of the A constant within the boundaries (maximum at 
A = 119.1477 (magenta X), as indicated in the legend). 
Starting the optimisation loop, the dataset is enriched 
by an additional datapoint (now five datapoints) at the 
maximum of the expectancy function E(A), as shown on 
the left graph of the second row. We then again search 

for the minimum of the model predicted performance 
(dashed green lines) of the updated model and derive 
the expectancy function over A (right graph in the sec-
ond row, maximum value marked with a magenta X). 
Enriching the dataset again with an additional data-
point at the maximum of E(A) (now six datapoints), we 
step over to the second iteration, as shown in the 3rd 
row of graphs. As an example, the situation with five 
iterations is displayed in the 4th row of Figure 2a. The 
maximum of the E(A) has already dropped to 4.6e-3. 
The iteration is stopped when the maximum of E(A) 

F I G U R E  2 A   Example of the evaluation of the first iterations of the surrogate optimisation process with a Gaussian Process (GP) estimator 
for the SRKT formula based on our dataset of N = 888 measurements. 1st row left graph: initialisation with four datapoints (red circles at A = 118.0, 
118.5, 118.75 and 120.5) with the respective evaluation of the object function (Y axis). The surrogate GP model interpolates between the datapoints 
and feels confident at the datapoints but shows some uncertainty outside (magenta dotted lines). The best performance predicted by the GP model 
is marked with dashed green lines (the best performance value mentioned in the graph). 1st row right graph: The potential improvement curve E 
(cf. Figure 2b) decides whether the model is accepted (E already below the predefined threshold, here 1 e-4) or has to be improved by adding an 
additional datapoint at the maximum of E. 2nd row: situation at first iteration starting with five datapoints; 3rd row: situation at second iteration 
starting with six datapoints; and 4th row: situation at 5th iteration starting with nine datapoints. E already dropped to 4.6·e-4.
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reaches the threshold of 1e-4 and the optimised for-
mula constant can then be read out.

For all formulae, the iterative surrogate optimi-
sation process showed convergence on our dataset 
within the maximum of predefined 200/700 iteration 
cycles (single constant/triple constant formulae). In 
Table 2, the optimised formula constants derived from 
surrogate optimisation are listed for the optimisa-
tion without quantisation and also with quantisation 
to two decimal places. We see that for the formulae 
with a single formula constant (SRKT, Hoffer Q, and 
Holladay), rounding the optimised constant to two 
decimal places gives the same result as independently 
optimising the formula constants using surrogate opti-
misation restricted to two decimal places. Conversely, 
for the formulae with three constants, we find that the 
optimisation with restriction to two decimal places 
yields a different formula constant triplet as compared 
to the rounded constants. With the Haigis formula, a1 
is slightly lower and a2 is slightly higher, resulting in 

a difference of about 0.2 in a0. With the Castrop for-
mula, H is slightly higher and R is slightly lower, and 
these differences effectively compensate each other in 
such a way that C matches the rounded C in the opti-
misation without quantisation.

Table 3 displays the results of the performance of all 
formulae under test with the optimisations without and 
with quantisation. We see that since the optimisation 
aims for a minimum rmsPE in the objective function, 
the mean PE does not exactly reach zero for any formula 
or any optimisation. Based on our dataset, the perfor-
mances of the SRKT, Hoffer Q and Holladay formulae 
are quite similar, with a rmsPE of around 0.43 to 0.44 
dpt. However, with the Haigis formula (0.37 dpt) and the 
Castrop formula (0.34), the respective rmsPE values are 
lower. The same effect is also observed with the mean 
absolute PE, where the formulae with a single formula 
constant range around 0.33 to 0.34, whereas the Haigis 
formula and the Castrop formula show better perfor-
mance with values around 0.27 to 0.28.

F I G U R E  2 B   Situation of the surrogate Gaussian Process (GP) model after initialisation shown in Figure 2a in more detail: after 
initialisation with four datapoints (marked with magenta X), the model prediction is shown by the green dotted line and the uncertainty of the 
model is colour coded according to the colour bar on the right side (clipped to a maximum of five marked with red dots for better visualisation). 
The model feels confident at the datapoints (uncertainty equals zero), whereas model uncertainty increases with the distance to the closest 
datapoint. The projected normal distribution of the model's predicted uncertainty is shown for the examples of A = 117.25 and 119.15 (red 
dashed lines, prediction values and standard deviations (SD) mentioned in the graph). Potential improvement is derived from the best predicted 
performance (dashed cyan line), the model predicted performance (green dotted line) and the model uncertainty. The highest potential 
for improvement is detected where the largest portion of the normal distribution (dashed red lines) is below the minimum of the predicted 
performance curve (dashed cyan line), as indicated by the red-shaded areas.
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4  |   DISCUSSION

Formula constant optimisation using the biometric data 
and the patient outcome of previous cataract surgeries to 
improve the outcome of upcoming surgeries still presents 
a significant challenge. There are currently no univer-
sally agreed guidelines or standards as to how formula 
constants should be optimised. Therefore, in most cases, 
researchers and clinicians choose the ‘simplest’ way of 
reversing the IOL power formula to solve for the con-
stant, and then using any established statistical metrics 
such as mean or median of the distribution on the indi-
vidual formula constants as an optimised constant in the 
future (Hoffer & Savini, 2021; Langenbucher et al., 2022; 
Wang et al., 2017).

We follow a different approach in formula constant 
optimisation: firstly, we define the formula prediction 
error as the difference between formula predicted re-
fraction and achieved refraction as the target parameter, 
since we feel that this measure has the highest relevance 
for patients and surgeons. Secondly, we define the root 
mean squared value as the quality metric for this tar-
get parameter. To our understanding, this root mean 
squared value is commonly used in other disciplines (e.g. 
engineering) as it generally describes the performance 
much better than the mean or mean absolute value, es-
pecially in cases of skewed distributions of the target 
parameter.

Where the IOL formula is fully disclosed (Savini 
et  al.,  2020) and the first and second derivatives with 
respect to the formula constant(s) can be easily calcu-
lated (Rios & Sahinidis,  2013), optimisations based on 
the gradient (and Hessian matrix) may show the fast-
est convergence (e.g. the Gauss-Newton or Levenberg–
Marquardt method) (Boyd & Vandenberghe,  2004). 
However, if the objective function rmsPE is complex with 
more than one minimum, these optimisation techniques 
could easily become stuck in local minima depending 
on the initialisation values (Johnson et al., 2019; Zhang 
et al., 2022). Recently, more and more purely data driven 

optimisation strategies have been developed (Rios & 
Sahinidis, 2013), and most of these techniques have their 
origins in the artificial intelligence/machine learning do-
main. Since these data driven techniques do not require 
any information on the internal workings of the IOL 
calculation formula itself, we require only a black box 
implementation (Cruz et al., 2022), effectively giving the 
refraction prediction as a function of the biometric data 
and the power of the IOL. This is especially the case for 
the latest generation formulae which are quite often un-
disclosed (e.g. the Holladay2, Barrett, or Kane formula) 
(Savini et al., 2020). Furthermore, these new techniques 
offer even more advantages over classical nonlinear it-
eration strategies: firstly, they consider constraints in 
the parameter space (Forrester et al., 2008; Forrester & 
Keane,  2009; Mezura-Montes & Coello Coello,  2011), 
which means that we could choose, for example box 
constraints to restrict the parameter space to lower 
and upper limits, or we could use equality or inequal-
ity constraints to consider interactions between formula 
constants (in formulae with more than one constant). 
Secondly, most of these techniques search over the entire 
parameter space, which means that they do not become 
stuck in local minima of the objective function (Gorissen 
et al., 2010). And third, we could directly consider quanti-
sation in the parameter space, for example if the formula 
constants are provided with a limited number of decimal 
places. However, we have to be aware that convergence 
is typically somehow slower compared to optimisa-
tions using the gradient (Boyd & Vandenberghe,  2004; 
Coleman & Li, 1994; Conn et al., 2000).

In a previous paper, we have already shown the con-
vincing performance of a modern, purely data-driven op-
timisation strategy called ‘Particle Swarm Optimisation’, 
(PSO) (Langenbucher et  al.,  2023b). PSO is initialised 
with multiple starting points spread over the parameter 
space of formula constants, together with initial veloc-
ities. The positions and velocity vectors are updated in 
each step depending on metrics such as ‘inertia’, ‘social 
component’ and ‘cognitive component’.

In the present paper, we present an optimisation 
strategy that is rather different. Based on a surrogate 
statistical model, we initially describe the performance 
of the formula in the parameter space with a model 
(here a Gaussian Process estimator) based on a cou-
ple of points (at which the objective function has to be 
evaluated, Figure 1). Then we analyse the performance 
of this model in terms of prediction and uncertainty. In 
this context, we benefit from the design of a Gaussian 
Process estimator, as this GP model defines normally 
distributed uncertainties over the entire parameter space 
(Forrester et al., 2008). From the prediction and uncer-
tainty behaviour, we define a potential improvement 
function (in our case, the expectancy value E of receiving 
a model-predicted objective function lower than the cur-
rent minimum). At this location, we enrich the (initial) 
dataset by an additional datapoint and train the model 
again (Gorissen et  al.,  2010). We subsequently loop 
through these steps until we are satisfied with the model 
performance (e.g. if E falls below a predefined thresh-
old). Once we feel that the model represents the perfor-
mance sufficiently, we exit the loop, and the minimum 

TA B L E  2   Listing of the formula constants for the five formulae 
under test (SRKT formula with constant A, Hoffer Q formula with 
constant pACD, Holladay formula with constant SF, Haigis formula 
with constant triplet a0/a1/a2 and Castrop formula with constant 
triplet C/H/R) derived with the surrogate optimisation technique.

N = 888

Optimised formula 
constants without 
quantisation

Optimised formula 
constants with 
quantisation

SRKT 119.2709 119.27

Hoffer Q 5.7359 5.74

Holladay 1.9688 1.97

Haigis a0 −0.5914 −0.88

a1 0.3570 0.35

a2 0.1970 0.21

Castrop C 0.3171 0.32

H 0.2053 0.17

R 0.0947 0.13

Note: Formula constants were optimised independently without quantisation 
and with quantisation to two decimal places for a dataset of N = 888 eyes 
treated with the Hoya Vivinex intraocular lens.
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of the model prediction defines the ‘best solution’ in 
terms of the optimised formula constants. This strategy 
is shown for the example of the SRKT formula with a sin-
gle formula constant (A constant) in Figure 2. Figure 2a 
shows the situation at the initialisation stage (1st row 
of graphs), after the first (2nd row) and third iterations 
(3rd row), and after five iterations (4th row). To show 
the principle more generally, we restricted the initialisa-
tion to four randomly selected datapoints (meaning that 
we have to evaluate the objective function at 4 of these 
datapoints) and fitted a GP model to these datapoints. 
Figure 2b shows the characteristics of the initial model 
based on these data points in more detail. In addition to 
the model prediction shown by the dotted green line, the 
uncertainty in the entire parameter space (range of the A 
constant) is colour coded, and we see that the model feels 
most confident at the datapoints where the uncertainty 
is zero, whereas between the datapoints and to the lower 
and upper boundaries of the parameter space, the model 
shows some uncertainty. We then evaluate the probabil-
ity (normal distribution) that, with the model prediction 
and uncertainty, we could get a lower model predicted 
objective function than the actual minimum (extracted 
from the areas shaded in red). From this analysis, we 
see the highest potential for improvement at A = 119.1477 
(rounded to 119.15), and therefore we add a datapoint to 
the dataset of four datapoints and continue with the first 
iteration. If we consider the expectancy value at the fifth 
iteration (4.6·e-4), we see that we have almost reached the 
exit criterion for the loop (1·e-4), and the minimum of the 
model predicted object function (A = 119.2707) is already 
very close to the final result (A = 119.2709).

Overall, the iterative optimisation concept based on 
a GP surrogate model showed very good performance 
and strict convergence after a couple of iterations for all 
formulae under test. The resulting optimised formula 
constants match the results of previous optimisations 
using the Levenberg-Marquardt nonlinear iterative 

optimisation (Langenbucher et al., 2022, 2023a). Given 
the option of implementing a quantisation strategy in the 
optimisation process, we tested the effect of quantisation 
by restricting the formula constants to a precision of two 
decimal places. For all formulae under test with a single 
constant (SRKT, Hoffer Q and Holladay) the optimised 
constants with quantisation are identical to the directly 
rounded formula constants optimised without any quan-
tisation, which is not surprising. However, if we optimise 
the formula constants with quantisation for the Haigis 
and the Castrop formulae (both based on constant trip-
lets), we obtain slightly different results, and a direct 
rounding of the formula constants to two decimal places 
shows some differences in the 2nd digit. This sounds 
clinically negligible, but directly rounding the result of 
the constant optimisation without quantisation and cal-
culating the rmsPE results in an rmsPE of 0.3882/0.3455 
dpt compared to a rmsPE of 0.3713/0.3449 dpt for the 
Haigis/Castrop formula, which is slightly higher. This 
means that if we require formula constants with restric-
tions to a specific precision (1 or 2 decimal places), we 
should prefer an optimisation strategy that can deal with 
quantisation in order to obtain the best solution for the 
formula constants, especially with the Haigis formula.

However, our study has some limitations: firstly, we 
restricted the study to four classical and one modern 
IOL power calculation formulae, and none of the non-
disclosed IOL formulae were considered as we do not 
have any (black box) implementation available. However, 
we expect that the surrogate optimisation technique 
could have some benefits, especially in optimising for-
mula constants of non-disclosed formulae, as we do not 
require insight into the internal workings of the formula 
and a black box implementation is fully sufficient (Cruz 
et al., 2022). Secondly, we restricted our surrogate optimi-
sation to a Gaussian Process estimator, as this model di-
rectly provides the prediction together with the variance/
standard deviation of the model in the entire parameter 

TA B L E  3   Performance characteristics (mean, standard deviation, median, 95% confidence interval, mean absolute and root mean squared 
prediction error [PE]) of the five formulae under test with the constants optimised independently without quantisation and with quantisation to 
two decimal places (compare Table 2).

N = 888 SRKT Hoffer Q Holladay Haigis Castrop

PE in dpt Optimisation 
without formula constant 
quantisation

Mean 0.0061 −0.0366 −0.0201 −0.0043 −0.0050

Standard deviation 0.4410 0.4275 0.4263 0.3713 0.3450

Median −0.0066 −0.0287 −0.0047 0.0078 −0.0058

2.5% quantile −0.8816 −0.9285 −0.9323 −0.7839 −0.7109

97.5% quantile 0.9268 0.8356 0.8106 0.7199 0.6525

Mean absolute 0.3404 0.3327 0.3265 0.2833 0.2682

Root mean squared 0.4407 0.4288 0.4265 0.3711 0.3449

PE in dpt Optimisation 
with formula constant 
quantisation

Mean 0.0053 −0.0312 −0.0185 −0.0056 0.0008

Standard deviation 0.4410 0.4280 0.4263 0.3715 0.3451

Median −0.0075 −0.0226 0.0028 0.0088 0.0014

2.5% quantile 0.8823 −0.9252 −0.9310 −0.7954 −0.7041

97.5% quantile 0.9261 0.8424 0.8120 0.7147 0.6558

Mean absolute 0.3405 0.3328 0.3265 0.2828 0.2681

Root mean squared 0.4407 0.4289 0.4265 0.3713 0.3449

Note: Optimisation was performed in terms of minimising the root mean squared PE. The formulae with three constants (Haigis, Castrop) perform better 
compared to the formulae with a single constant (SRKT, Hoffer Q, Holladay). The optimised formula constants without and with quantisation show similar 
performance for all metrics.
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space (Rios & Sahinidis, 2013; Wang et al., 2014). Other 
model designs might also yield proper results in this con-
text (Gorissen et al., 2010). Finally, we performed our cal-
culations on one single dataset from one clinical centre 
and one lens model. The applicability will be investigated 
in the future with other large clinical datasets.

In conclusion, we implemented and applied a surro-
gate statistical Gaussian Process estimator as a modern, 
purely data-driven adaptive iterative nonlinear opti-
misation strategy to the problem of formula constant 
optimisation in cataract surgery. This algorithm starts 
with some datapoints in the formula constant parameter 
space defining the initial Gaussian Process model and 
adaptively improves the performance by stepwise enrich-
ing the set of datapoints to increase confidence in the rel-
evant regions of the parameter space where the location 
of the optimised constants is expected. The algorithm 
showed proper performance in terms of stable conver-
gence, and the final result was identical to the result of 
a classical gradient-based algorithm and the Particle 
Swarm Optimisation as a reference. Further experiments 
with other datasets and other formulae are required to 
underline the potential of this algorithm.
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