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Abstract

Deep learning is increasingly relevant in our daily lives, as it simplifies tedious tasks and
enhances quality of life across various domains such as entertainment, learning, automatic
assistance, and autonomous driving. However, the demand for more data to train models
for emerging tasks is increasing dramatically. Deep learning models heavily depend on the
quality and quantity of data, necessitating high-quality labeled datasets. Yet, each task requires
different types of annotations for training and evaluation, posing challenges in obtaining
comprehensive supervision. The acquisition of annotations is not only resource-intensive in
terms of time and cost but also introduces biases, such as granularity in classification, where
distinctions like specific breeds versus generic categories may arise. Furthermore, the dynamic
nature of the world causes the challenge that previously annotated data becomes potentially
irrelevant, and new categories and rare occurrences continually emerge, making it impossible
to label every aspect of the world.

Therefore, this thesis aims to explore various supervision scenarios to mitigate the need for
full supervision and reduce data acquisition costs. Specifically, we investigate learning without
labels, referred to as self-supervised and unsupervised methods, to better understand video
and image representations. To learn from data without labels, we leverage injected priors such
as motion speed, direction, action order in videos, or semantic information granularity to obtain
powerful data representations. Further, we study scenarios involving reduced supervision
levels. To reduce annotation costs, first, we propose to omit precise annotations for one
modality in multimodal learning, namely in text-video and image-video settings, and transfer
available knowledge to large copora of video data. Second, we study semi-supervised learning
scenarios, where only a subset of annotated data alongside unlabeled data is available, and
propose to revisit regularization constraints and improve generalization to unlabeled data.
Additionally, we address scenarios where parts of available data is inherently limited due to
privacy and security reasons or naturally rare events, which not only restrict annotations but
also limit the overall data volume. For these scenarios, we propose methods that carefully
balance between previously obtained knowledge and incoming limited data by introducing a
calibration method or combining a space reservation technique with orthogonality constraints.
Finally, we explore multimodal and unimodal open-world scenarios where the model is asked
to generalize beyond the given set of object or action classes. Specifically, we propose a new
challenging setting on multimodal egocentric videos and propose an adaptation method for
vision-language models to generalize on egocentric domain. Moreover, we study unimodal
image recognition in an open-set setting and propose to disentangle open-set detection and
image classification tasks that effectively improve generalization in different settings.

In summary, this thesis investigates challenges arising when full supervision for training
models is not available. We develop methods to understand learning dynamics and the role of
biases in data, while also proposing novel setups to advance training with less supervision.
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Zusammenfassung

Deep Learning wird zunehmend relevant in unserem täglichen Leben, da es mühsame Auf-
gaben vereinfacht und die Lebensqualität in verschiedenen Bereichen wie Unterhaltung, Lernen,
automatische Unterstützung und autonomes Fahren verbessert. Die Nachfrage nach mehr
Daten zur Schulung von Modellen für aufkommende Aufgaben steigt jedoch dramatisch an.
Deep Learning Modelle sind stark abhängig von der Qualität und Quantität der Daten, was
hochwertige gelabelte Datensätze erfordert. Doch jede Aufgabe erfordert unterschiedliche
Arten von Annotationen für Training und Evaluation, was Herausforderungen bei der Beschaf-
fung darstellt. Die Beschaffung von Annotationen ist nicht nur ressourcenintensiv in Bezug auf
Zeit und Kosten, sondern führt auch zu Verzerrung, wie z.B. Granularität in der Klassifizierung,
wo Unterscheidungen wie spezifische Tierrassen gegenüber generischen Kategorien entstehen
können. Darüber hinaus führt die dynamische Natur der Welt dazu, dass zuvor annotierte
Daten potenziell irrelevant werden und neue Kategorien und seltene Ereignisse kontinuierlich
auftauchen, was es unmöglich macht, jeden Aspekt der Welt zu kennzeichnen.

Daher zielt diese Arbeit darauf ab, verschiedene Supervisionszenarien zu erkunden, um
den Bedarf an vollständiger supervison zu reduzieren und die Kosten für die Datenerfassung
zu senken. Speziell untersuchen wir das Lernen ohne Lables, das als self-supervised und
unsupervised bezeichnet wird, um Video- und Bildrepräsentationen besser zu verstehen. Um
aus Daten ohne Labels zu lernen, nutzen wir injizierte Priors wie Bewegungsgeschwindigkeit,
-richtung, Handlungsreihenfolge in Videos oder semantische Informationsgranularität, um
leistungsstarke Datenrepräsentationen zu erhalten. Weiterhin untersuchen wir Szenarien mit
reduzierter Supervision. Um die Kosten für Annotationen zu reduzieren, schlagen wir zunächst
vor, präzise Annotationen für eine Modalität im multimodalen Lernen zu unterlassen, nämlich
in Text-Video- und Bild-Video-Szenarien, und vorhandenes Wissen auf große Korpora von
Videodaten zu übertragen. Zweitens untersuchen wir Semi-Supervised Lernszenarien, bei
denen nur eine Teilmenge annotierter Daten neben unannotierten Daten verfügbar ist, und
schlagen vor, Regularisierungsbeschränkungen zu überdenken und die Verallgemeinerung auf
unannotierten Daten zu verbessern. Zusätzlich behandeln wir Szenarien, in denen Teile der
verfügbaren Daten aufgrund von Datenschutz- und Sicherheitsgründen oder natürlich seltenen
Ereignissen von Natur aus begrenzt sind, was nicht nur die Annotationen einschränkt, sondern
auch das gesamte Datenvolumen begrenzt. Für diese Szenarien schlagen wir Methoden
vor, die sorgfältig zwischen zuvor erhaltenem Wissen und eintreffenden begrenzten Daten
abwägen, indem wir eine Kalibrierungsmethode einführen oder eine Raumreservierungstechnik
mit Orthogonalitätsbeschränkungen kombinieren. Schließlich untersuchen wir multimodale
und unimodale Szenarien in einer offenen Welt, in denen das Modell gebeten wird, über den
gegebenen Satz von Objekt- oder Aktionsklassen hinaus zu generalisieren. Speziell schlagen wir
eine neues herausforderndes Szenario für multimodale egozentrische Videos vor und schlagen
eine Anpassungsmethode für Vision-Sprach-Modelle vor, um in der egozentrischen Domäne
zu generalisieren. Darüber hinaus untersuchen wir die unimodale Bilderkennung in einem
Open-Set Szenario und schlagen vor, Open-Set-Erkennung und Bildklassifizierungsaufgaben
zu entflechten, die die Generalisierung in verschiedenen Einstellungen effektiv verbessern.

Zusammenfassend untersucht diese Arbeit die Herausforderungen, die entstehen, wenn
eine vollständige Überwachung für das Training von Modellen nicht verfügbar ist. Wir
entwickeln Methoden, um das Lernverhalten und die Rolle von Verzerrungen in Daten zu
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verstehen, während wir gleichzeitig neuartige Setups vorschlagen, um das Training mit weniger
Supervision voranzutreiben.
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Deep learning is increasingly relevant in our daily lives. Recent advances in train-
ing large-scale language models (LLMs) [BMR+

20, TAB+
23, TLI+23] demonstrate

how research-based tools can be integrated continuously in our daily life from ver-
ifying grammar errors in our emails to organizing our daily routine. Development in all
different directions such as entertainment [BBC+

19], education [MRRB+
23], automatic as-

sistance [CGR+
24], autonomous driving [MSWL23] and many others [MRA+

23, DMCD19],
targets to improve our lives and avoid tedious and time-consuming tasks. So far, the advances
in deep learning are based on the availability of data and respective annotations for one
or another task. However, collecting annotations is a time-consuming and labour-intensive
process [KSH12, TKM+

24]. It can depend on the skills, and experience of the annotators
and on the size of the project itself. Annotations can introduce bias, which can lead to un-
fair or discriminatory outcomes [BCZ+

16, BG18]. This is because the annotations are often
created by humans, who are not immune to biases themselves. Whenever we deal with pri-
vate data [HWVDI+19], creating annotations involves revealing personal information about
individuals. This is especially true for sensitive data, such as medical records or financial
information. The world is constantly changing, and the data used in the first place may quickly
become outdated [DLAM+

21]. This can make it difficult for models to keep up with the
real world and provide accurate predictions. It is impossible to label all of the data in the
world, as our perception of the world and different tasks are not discriminatory and depends
on individual experiences [RZ11]. Finally, ensuring the quality of annotations is critical for
performance. However, it is hard to guarantee high quality of the data and annotations due to
human mistakes [NBMS21], and low-quality annotations can lead to models that make poor
predictions. All these challenges indicate that if we want to move to more data and more
different tasks, we need to find ways to reduce the annotation and data collection costs.

Transitioning from accurately curated datasets and controlled environments to real-world
applications introduces unexplored challenges in the field of computer vision. This shift neces-
sitates a deeper exploration of techniques to effectively utilize available data while reducing the
reliance on annotations for the new downstream tasks. The central question in deep learning is
how to learn robust representations [LBH15], which serve as the bridge between raw input
data and the desired outcomes for downstream tasks. Learned representations are pivotal for

1
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Figure 1.1: Levels of supervision tackled in this thesis. First, in Part I, we discuss learning
representations relying on human annotations of the data. Then, in Part II, we explore various
scenarios where only partial annotations are accessible during training, alongside of unlabeled
data. In Part III, we explore scenarios where only a limited number of labeled samples are
available during training. Lastly, in Part IV, we discuss methods that tailored for unconstrained
environments and classification tasks that extend beyond the classes seen during training.

accurately addressing various tasks. However, as the process of collecting data is expensive,
there is an increasing interest in methods that can autonomously learn representations or
adapt them with varying degrees of supervision, e.g. leveraging learning from noisy web data
at scale [MZA+

19], exploring self-supervised learning strategies [ODM+
23], and facilitating

knowledge transfer across different modalities [RKH+
21]. Despite the remarkable progress

achieved with foundation models [RKH+
21, SHG+

22, GENL+
23] — trained on extensive

datasets — specialized tasks still necessitate task-specific data for effective model training and
evaluation. Therefore, there is a substantial need to explore methods to reduce the reliance on
annotated data while ensuring the continued advancement of computer vision applications in
real-world scenarios.

This thesis focuses on exploring various supervision scenarios to mitigate the need for full
supervision and reduce data acquisition costs. In Figure 1.1, we depict a high-level overview of
the problems address in this thesis. In Part I, we focus on self-supervised and unsupervised
learning methods to learn powerful representations without any labels that generalize well
across different downstream tasks. To learn these representations, we explore and inject
different perceptional biases that reflect structure of the data or the downstream task for both
images and videos. In Part II, we gradually increase availability of supervision and explore
different multi- and uni-modal settings with limited supervision. We explore how to reduce
annotation cost to transfer image and video representations to the downstream tasks relying
only on language modality, how to annotate unlabeled videos relying on images from the web,
or how to exploit large language models to improve the quality of the large-scale video dataset
collected from the web. On the other side, we explore uni-modal settings by limiting available
annotations for the available classes while relying additionally on the unlabeled data. To
improve the performance we revisit regularization techniques that allow for better utilization
of the unlabeled data. In Part III, we study challenges when acquiring data incrementally, with
new information arriving in continuous portions and with only few labeled samples, so called
few-shot class incremental learning scenario. Typically, the model first pretrained on the large
dataset to ensure meaningful initial representations. However, to improve the performance
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across all classification tasks with abundant data and with very limited available data, it is
necessary to explore regularization, influence of pretraining and space reservation that restricts
representations for over represented classes and allow to balance between different classes. In
Part IV, we further explore the generalization of pretraining in open world scenarios. When
the model relies only on visual input data, the open world scenario often targets filtering all
unknown classes during evaluation and predicting with high certainty classification of the
known classes. Whereas for jointly trained vision-language models the open world scenario is
reformulated to become the ability to classify classes that have not been seen during training.
These models rely on the knowledge from the large-scale web vision-text pretraining, therefore
posses general knowledge acquired from the open world. However, these models do not
generalize well on specific downstream tasks. Therefore, we explore adaptation methods that
allows to keep the generalization knowledge of these models while transferring them to specific
downstream tasks.

For the rest of this chapter, we discuss each topic and explain our contributions. Then, we
provide an outline of the thesis with relevant publications.

1.1 Learning Without Supervision

The learning without supervision paradigm comprises two interconnected sub-fields: self-
supervised learning and unsupervised learning. Both approaches involve extracting powerful
representations from raw data without relying on labeled information[SSSK21]. However,
they differ in their overarching objectives. Self-supervised learning aims to derive robust
representations from extensive amounts of unlabeled data, often referred to as the pretraining
stage. Models trained in this phase serve as initialization and can be readily adapted to various
downstream tasks. In contrast, unsupervised learning directly targets specific downstream
tasks, such as clustering or semantic segmentation. Consequently, unsupervised learning
frameworks involve learning targeted representations and subsequently grouping input features
to accomplish the desired task [MGL+

18]. In light of the availability of large-scale datasets
sourced from the web, there has been a growing interest in leveraging self-supervised methods
to learn robust representations. These generalized representations can then be applied to
unsupervised tasks, thereby enhancing their performance.

To leverage unlabeled data effectively, it is essential to devise tasks that can be tackled
without direct human supervision. These tasks often draw upon human experiences or
deliberately introduced biases, such as controllable input transformations. Existing self-
supervised methods can be broadly categorized into two groups: discriminative and generative
methods [DGE15, OLB+

23]. Discriminative methods focus on learning feature representations
that facilitate solving pretext tasks. Their objective functions resemble those of supervised
methods, assessing how well the model performs on pretext tasks like jigsaw puzzles [NF16] or
instance discrimination [MM20, HFW+

20]. On the other hand, generative models aim to learn
the distribution over the pixel space, utilizing various input corruption techniques such as
masking [WFX+

22] or noise injection [LMS17, ZXL+
20] with the following reconstruction the

original input. Despite the diverse range of pretext tasks, instance discrimination has emerged
as one of the most effective self-supervised approaches [GSA+

20, CKNH20, ZMKG23]. In
this thesis, we heavily rely on contrastive learning [CXH21, MZA+

19], a type of instance
discrimination method where the model is invariant to different transformations of the input.

Despite the successes of self-supervised methods, these approaches remain primarily em-
pirically driven and necessitate further theoretical analysis and comprehension. For instance,
understanding the influence of implicit uniform priors during training on downstream perfor-



4 chapter 1. introduction

mance [ABD+
22], understanding the semantic differences between various methods [BIS+23],

and exploring why methodologies like BYOL [GSA+
20] and SimSiam [CH21] do not col-

lapse [TCG21] are crucial directions. A more profound grasp of the learning dynamics can not
only help to optimize existing algorithms and enhance their performance but also reveal more
efficacious solutions. Furthermore, formulating effective and optimal self-supervised tasks re-
mains an ongoing challenge [BIS+23]. On one hand, determining the most suitable pretext task
for capturing comprehensive information from vast datasets is a substantial task. By scaling
both models and data and experimenting with diverse augmentations, improvements in gener-
alization performance across various tasks can be achieved [GDG+

17, WDH+
23]. On the other

hand, identifying prior information to inject for specific tasks to facilitate unsupervised learning
is equally crucial [VGVGVG21]. Some tasks may require additional adaptation, particularly
if the domain significantly deviates from the web pretraining domain [MCN+

23, JTC+
22].

Addressing this limitation spurs further exploration in unsupervised learning, aiming to
directly comprehend the underlying data structure for downstream tasks. The exploration
of self-supervised and unsupervised tasks and their impact on diverse downstream tasks is
central for deploying these models effectively in real-world scenarios.

1.1.1 Contributions

In this section, we provide a summary of our contributions in this area.

In Chapter 3, we explore the task of temporal detection and temporal segmentation of
actions in untrimmed instructional videos in an unsupervised way. First, we propose to learn a
continuous temporal embedding of frame-based features to obtain task-specific video feature
representations. The embedding exploits the fact that some actions need to be performed
in a certain order and we use a network to learn an embedding of frame-based features
with respect to their relative time in the video. Further, to solve the downstream task in
an unsupervised way, we propose a decoding of the videos into coherent action segments
based on an ordered clustering of the embedded frame-wise video features. We observe that
our embedding especially benefit from the particular structure of the instructional videos
and brings advantage on the task of unsupervised temporal segmentation compared to more
general representations.

In Chapter 4, we explore unintentional actions and propose a multi-stage framework that
exploits inherent biases such as motion speed, motion direction, and order of activities to
recognize such actions. We formulate the temporal transformations specifically for uninten-
tional actions to bias the model to capture sudden changes in the behaviour of the video and
then pretrain the model in a self-supervised way to predict these transformations. Moreover,
our multi-stage approach models the temporal information on both the level of individual
frames and full clips. We observe that our task-specific representations significantly improve
the performance across different tasks for unintentional actions.

In Chapter 5, we analyse the behaviour of one of the most popular variants of self-supervised
methods, i.e. contrastive methods, on long-tail data. In particular, we investigate the role of the
temperature parameter τ in the contrastive loss and find that a large τ emphasises group-wise
discrimination, whereas a small τ leads to a higher degree of instance discrimination. While τ
has thus far been treated exclusively as a constant hyperparameter, in this work, we propose to
employ a dynamic τ and show that a simple cosine schedule can yield significant improvements
in the learnt representations.
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1.2 Learning with Limited Supervision

To effectively train powerful and robust models that demonstrate generalization across diverse
tasks, reliance on large-scale datasets is necessary [ZKHB22, DDM+

23]. However, the process
of collecting and annotating such datasets is labor-intensive and costly. In response to this
challenge, current practical interests lie in strategies that mitigate the need for extensive labeled
data. This includes leveraging weak annotations across multiple modalities [MKL+

24, ZLH+
21],

or relying on a limited number of labeled samples supplemented by a large volume of unlabeled
data during training [YSKX22]. Traditional large-scale fully labeled datasets often cover a
narrow range of concepts due to limitations in expansion [ima]. Relaxing the requirements for
annotation leads to a broader coverage of concepts within the dataset [SVB+

21], which proves
especially advantageous in domains where data availability is inherently sparse [GWB+

22a] or
resource limitations hinder the acquisition of sufficient data for downstream tasks [KSM+

21,
SKL+

21]. Therefore, it is crucial to explore approaches that demand less supervision and can
effectively learn from limited supervision.

When only a few labeled samples are available, constructing a successful learning system
poses a significant challenge. In the past decade, efforts to enhance the reliability of such
systems have led to the proposal of semi-supervised settings [CSZ09, ZG22]. In this framework,
a small amount of labeled training data is accompanied by vast amounts of unlabeled data, with
the goal of jointly learning from both types of data. The primary challenge of semi-supervised
learning lies in effectively leveraging the limited labeled data and abundant unlabeled data
to enhance generalization performance. One of the most common techniques employed is
pseudo-labeling, where unlabeled data is assigned labels for training [SBL+

20]. However,
pseudo-labeling inherits the trade-off problem between quantity and quality, as it relies on hard
thresholding, which can hinder learning [CTF+

23]. Another prominent technique is consistency
regularization, aimed at ensuring consistent predictions for similar data samples [SJT16, LA17].
Various works have focused on improving pseudo-labeling and consistency regularization
from different angles to effectively leverage limited labeled data and transfer knowledge to
unlabeled data [XSY+

21, ZWH+
21, BRS+22]. Nevertheless, the central question of how to

leverage different types of supervision for a single modality remains challenging. Thus, we
further explore regularization methods to enhance generalization.

Learning from large-scale multimodal data has attracted increasing attention in recent years,
as the collection of noisy web data allows for significant scaling of datasets [ZLH+

21, SVB+
21].

A pioneering work in successful text-image large-scale pretraining is CLIP (Contrastive
Language-Image Pre-training)[RKH+

21], where the authors investigate the behavior of image
classifiers trained with natural language at scale. This and similar works[IWW+

21, WYY+
22,

JYX+
21] demonstrate remarkable zero-shot performance and cross-modality retrieval across

a wide range of tasks. To construct the large-scale dataset, the authors of CLIP curated a
new dataset comprising 400 million image-text pairs to cover a broad set of visual concepts.
The query set encompasses 500,000 instances for searching text-image pairs on the internet,
based on the frequency of words occurring in Wikipedia. Following the success of raw alt-text
image pair pretraining, numerous web datasets have emerged to enable large-scale pretraining.
However, due to the inherent noise in the data, filtering becomes necessary to avoid suboptimal
performance [LLXH22, LLSH23a, ARZV21, SVB+

21, IWW+
21]. This necessity is particularly

pronounced for video web data, as the corresponding text often originates from automatic
speech recognition systems (ASR). Supervision derived from ASR-video pairs [MZA+

19] can
be highly incoherent, incorporating unrelated speech or suffering from temporal misalignment
between spoken words and video content. Consequently, the collection and annotation of video
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data remain significantly more challenging than that of static images.
To bridge the gap between the success of text-image pretraining and text-video pretraining,

efforts have been directed towards aligning automatic speech recognition (ASR) with video
frames [HXZ22] and toward collecting cleaner and larger video datasets [XHZ+

22, WHL+
23,

CLW+
24]. Methods that leverage both image and video datasets [BNVZ21, NSS+22] have

proven to be efficient in making the collection and labeling of video datasets more streamlined.
These methods utilize less noisy alt-text image pairs, readily accessible from the web, as a
labeling-free data source for video datasets or downstream video tasks. The enormous suc-
cesses of Large Language Models (LLMs)[BMR+

20, Ope23, TLI+23] have generated increasing
interest in utilizing LLMs across various downstream tasks. One prominent direction is the
enhancement of existing datasets or the creation of new and improved datasets for multimodal
video training[ZMKG23, WHL+

23]. LLMs facilitate the creation of automatic pipelines that im-
prove alignment between modalities, enhance action descriptions, augment existing language
data, and summarize the content of video frames.

Despite the success of integrating general knowledge from LLMs and utilizing the collection
of video data from various sources, several inherent limitations remain. These limitations
arise from the fundamental differences between textual and visual representations, presenting
significant challenges for multimodal understanding and processing. For instance, the distinc-
tion between discrete and symbolic text representations and the continuous and perceptual
nature of visual representations creates difficulties in accurately aligning textual and visual
cues. Furthermore, textual and visual data sources differ significantly in terms of availability,
noise levels, and reliability. Addressing these and other challenges requires the development of
innovative approaches in multimodal representation learning, fusion techniques, and model
interpretability, thereby laying the groundwork for more robust and reliable multimodal
systems.

1.2.1 Contributions

In this section, we provide a summary of our contributions in this area.
In Chapter 6, we study semi-supervised learning scenario, where only a subset of annotated

data alongside unlabeled data is available, and propose to revisit consistency regularization idea.
We find that enforcing invariance by decreasing distances between features from differently
augmented images leads to improved performance. Moreover, encouraging equivariance
instead, by increasing the feature distance, further improve the performance. Our FeatDistLoss
imposes consistency and equivariance on the classifier and feature level and shows improved
performance over the previous methods by a significant margin.

To address the challenge of transferring large-scale pretraining to the downstream tasks
that requires labeled video-language pairs, in Chapter 7, we propose a new setting, text-video
retrieval with uncurated & unpaired data, that during training utilizes only text queries together
with uncurated web videos without any paired text-video data. To explore the new setting,
we propose an approach, In-Style, that learns the style of the text queries and transfers it to
uncurated web videos. We evaluate our model on retrieval performance over multiple datasets
and demonstrate the advantages of our style transfer framework and close the gap towards
fully supervised setting without the need of full supervision.

In Chapter 8, we exploit labeling-free web images for adapting to unlabeled target videos.
This poses two major challenges: spatial domain shift between web images and video frames;
and the modality gap between image and video data. To address these challenges, we propose
a cycle-consistency based approach for unsupervised image-to-video domain adaptation. We
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leverage the joint spatial information in images and videos on the one hand and, on the
other hand, train an independent spatio-temporal model to bridge the modality gap. By
alternating between spatial and spatio-temporal learning with knowledge transfer between the
two, we show that our approach achieves significant performance improvements over previous
methods.

As large-scale annotation-free web video training data remains sub-optimal for training
text-video models, in Chapter 9, we propose to leverage the capability of large language models
(LLMs) to obtain fine-grained video descriptions aligned with videos. Specifically, we prompt
an LLM to create plausible video descriptions based on ASR narrations of the video for a
large-scale instructional video dataset. To this end, we introduce a prompting method that is
able to take into account a longer text of subtitles and align the captions to the video temporally
by generating timestampes for each produced caption. In this way, we obtain human-style
video captions without human supervision on a large scale and show significant performance
improvements over many different benchmark datasets.

1.3 Learning with Limited Data

The human brain is remarkably proficient at generalizing new information based on learned
knowledge from only a few samples for a given task. However, when only a limited number
of samples are available, and it is difficult to collect additional data—such as in medical
domains or scenarios involving private information—adaptation to new environments on-
the-fly becomes crucial. Few-shot incremental learning [THC+

20] exemplifies this setting,
aiming to teach models to understand the world continuously, with new information arriving
in small batches over time. Naturally, the main challenges in this context include catastrophic
forgetting [GH10, KPR+

17], where previously learned concepts are at risk of being overwritten
by the latest updates, and overfitting [CLK+

19, SSZ17], as the model may memorize scarce
input data at the expense of its generalization ability. In essence, the neural network must
strike a balance: maintaining learned knowledge while also adapting to new tasks. Moreover,
due to the limited number of samples, standard empirical risk minimization algorithms may
prove unreliable and unable to accurately approximate the optimal expected risk, leading to
model overfitting [Bis06]. These challenges, coupled with the increasing relevance to real-world
scenarios, have received significant attention in recent years.

More formally, the few-shot incremental learning for image classification setting involves
two separate sets of classes: base classes and novel classes. Base classes represent the data
used for pretraining, where each class has an abundant number of samples to learn robust
representations. All base classes are available at once. However, novel classes are scarce and
are typically represented by only 1 or 5 training samples per class [TLL+

24]. Moreover, the
classes arrive in a sequential manner. This unbalanced distribution, not available all at once,
leads to the challenges mentioned above. One of the strongest baselines involves first learning
powerful representations based on the base classes. Subsequently, the learned model is utilized
to represent the incoming classes by a simple average of the representations in the embedding
space [SSZ17]. This approach ensures a balanced classifier across all classes and excludes
training on the novel classes, thus preventing overfitting. Notably, the effectiveness of this
method heavily relies on the pretraining method. Research has shown [TWK+

20] that stronger
representations can lead to better separation between the base and novel classes.

Recent methods further explore various types of regularization techniques to calibrate the
degree of learning for base and novel classes [CRF+

21, her, MSR21, THC+
20]. One of the

most prominent recent approaches is the space reservation technique [ZYM+
22, YYL+

23, her],
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which is based on the neural collapse paradigm [Kot22]. Contrary to the intuition that similar
classes should be closer to each other in the embedding space, neural collapse suggests
that for classification problems, the optimal structure of the corresponding classifier is a
simplex equiangular tight frame. This structure places vertices on a hypersphere, making
them linearly separable and positioned at the maximum possible distance from each other.
Based on this insight, recent methods explore different approaches to implicitly reserve space
through augmentations [PZW+

22] or explicitly through fixed prototypes spread uniformly
while preserving maximum distance from each other [YYL+

23]. Despite recent progress,
these methods encounter real-world challenges and demonstrate miscalibration and remain
overconfident either on the base classes or on the novel classes.

1.3.1 Contributions

In this section, we provide a summary of our contributions in this area.
In Chapter 10, we propose a three-stage framework that allows to explicitly and effectively

address catastrophic and calibration challenges that arise due to the incremental few-shot
learning paradigm. While the first phase learns base classes with many samples, the second
phase learns a calibrated classifier for novel classes from few samples based on base-normalized
cross entropy while also preventing catastrophic forgetting. Our base-normalized cross-entropy
amplifies the softmax output of novel classes to overcome the bias towards the base classes. In
the final phase, we address the problem of calibration of the overall model across base and
novel classes. Our framework achieves significant improvement over the previous methods for
generalizaed and incremental few-shot learning.

In Chapter 11, we propose the OrCo framework built on two core principles: features’
orthogonality in the representation space, and contrastive learning. In particular, we improve
the generalization of the embedding space by employing a combination of supervised and self-
supervised contrastive losses during the pretraining phase. Additionally, we introduce OrCo
loss to address challgens arising from data limitations during incremental sessions. Through
feature space perturbations and orthogonality between classes, the OrCo loss maximizes
margins and reserves space for the following incremental data which allows accommodation
of the incoming classes. Our experimental results showcase improved performance over the
previous methods especially on the novel classes.

1.4 Learning Beyond Supervision

In the vast landscape of machine learning, open-world classification presents a unique set of
challenges and opportunities that distinguish it from traditional closed-world classification
tasks [JDC+

20]. While closed-world classification assumes a fixed and exhaustive set of
classes [KTS+14], open-world classification tackles the dynamic nature of data, where new
classes can emerge over time, and existing classes may evolve or become irrelevant.

This dynamic nature of open-world classification poses a fundamental question: how can
machine learning models effectively classify data instances when faced with an ever-expanding
and uncertain set of possibilities? This question underscores the need for novel approaches
that can adapt to new information, identify previously unseen classes to handle instances that
do not fit within known categories [XLSA18, BB15] or classify new classes relying on external
source of general knowledge [ZYLL22a, ZYLL22b].

Single-modality methods often need to determine with high certainty whether the incoming
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input instance belongs to the previously seen distribution [GZJ+20, LWOL20, OP19, MSMD21],
as seen in tasks such as anomaly detection [RVG+

19] and novelty detection [ZGZ+
20]. The

interplay between the classification task for closed-set classes and the detection of outliers
presents an important challenge as a multitask learning objective for image classification.
Simply detecting unseen classes is commonly referred to as open-set learning [JDC+

20], while
learning in an open-world context indicates learning beyond the given set of classes. Previously,
methods often relied on clustering approaches to identify distinct novel classes for further
classification [SXL18, ZZL+

21a, HRE+
20]. However, with the advancements in vision-language

models (VLMs) pretrained on large-scale datasets and accumulating more general knowledge
about the world, recent methods utilize these models for classification beyond the given set
of classes [ELRS22, ZLZ+

23, WLYL23, ZYLL22a]. These methods adapt the pretrained VLMs
to the given domain or downstream task. Similar to few-shot class incremental learning, one
of the main challenges is catastrophic forgetting. Recent methods aim to achieve reliable
performance on the closed-set classes while maintaining the generalization performance of the
pretrained model and preventing overfitting to the closed-set classes. The common approach
is to introduce a small set of new parameters for optimization that do not drastically change
the model but allow for adaptation to the current domain [JHZ+

22, LYF+
23, HSW+

22]. These
methods leverage unseen information from the new domain, such as different input styles like
cartoon style or egocentric videos, by adapting to the given domain based on the closed-set
data while simultaneously transferring adapted general knowledge to the domain. To bridge
the gap between fully supervised training on closed-set datasets and open-world generalization,
integrating open-world learning techniques with traditional classification methods will create
robust and adaptive machine learning systems, capable of handling dynamic and evolving
datasets effectively.

1.4.1 Contributions

In this section, we provide a summary of our contributions in this area.

In Chapter 12, we study the challenging and realistic open-set semi-supervised learning
setting, where the goal is to both correctly classify inliers and to detect outliers. We find that
inlier classification performance can be largely improved by incorporating high-confidence
pseudo-labeled data, regardless of whether they are inliers or outliers. By using non-linear
transformations we propose to separate the features used for inlier classification and outlier
detection in the mutlitask learning, preventing adverse effects between them. In experiments,
we show that our framework greatly improves both inlier classification and outlier detection
performance compared to existing methods.

In Chapter 13, we explore the open world setting by adapting vision-language models to
the unexplored domain of egocentric videos. To address this problem, we propose a simple
yet effective cross-modal adaptation framework. Using a video adapter, our pipeline learns
to align frozen text embeddings to each egocentric video directly in the shared embedding
space. Our novel adapter architecture is specifically tailored to egocentric videos, focusing
attention on the hand region. We evaluate our approach in the open-world scenarios on the
Epic-Kitchens, Ego4D, and EGTEA datasets for fine-grained cross-dataset action generalization,
demonstrating the effectiveness of our method.
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1.5 Outline

In this section, we provide a summary of the thesis by briefly outlining each chapter and
establishing connections between them. We also acknowledge any relevant publications and
collaborations with other researchers.

Chapter 2, Related Work. This chapter surveys related work which tackle the challenges of
learning with less supervision with a particular focus on the four directions of the thesis:
learning without supervision, learning with limited supervision, learning with limited
data, and learning in open world. We discuss how these works relate to the methods
and contributions presented in this thesis. Discussions of related work specific to the
following chapters are provided within each chapter.

Part I, Learning Without Supervision

Chapter 3, Unsupervised Learning of Action Classes. In this chapter, we tackle the problem
of unsupervised temporal action segmentation and classification for instructional videos.
We discuss how to learn task-specific representation space based on the fact that some
actions need to be performed in a certain order with the further decoding into action
segments.

The content of this chapter corresponds to the CVPR 2019 publication with the title
“Unsupervised learning of action classes with continuous temporal embedding” [KKSG19]. Anna
Kukleva and Hilde Kuehne are the co-first authors of this work, under the supervision
of Juergen Gall. Anna Kukleva contributed the main ideas for the temporal embedding,
conducted all experiments and made the figures for the paper. Hilde Kuehne acted as
Anna Kukleva’s supervisor during the project and played a significant role in the paper’s
writing. Fadime Sener contributed to implementation of the baselines.

Chapter 4, Self-Supervised Training for Unintentional Actions. In this chapter, we explore
unintentional actions and inherent biases that they present such as motion speed, motion
direction, and order of activities. To recognize such actions on both level of individual
frames and full clips, we propose mutli-stage framework with a transformer-based
architecture in combination iwth conditional random fields to capture local and global
temporal relations between intentional and unintentional actions.

The content of this chapter corresponds to the ECCV Workshop 2022 publication with
the title “Leveraging Self-Supervised Training for Unintentional Action Recognition” [DKS22].
Anna Kukleva and Enea Duka are the co-first authors of this work, under the supervision
of Bernt Schiele. This paper is based on the master thesis of Enea Duka. Anna Kukleva
acted as Enea Duka’s supervisor during the project and played a significant role in the
paper’s writing.

Chapter 5, Temperature Schedules for Self-Supervised Contrastive Methods. In this chap-
ter, we develop a framework for understanding the underlying dynamics of the self-
supervised contrastive learning loss through the lens of average distance maximisation
with respect to the temperature parameter. While this temperature parameter has thus
far been treated exclusively as a constant hyperparameter, in this work, we propose to
employ a dynamic temperature parameter and show that a simple cosine schedule can
yield significant improvements in the learnt representations on long-tail distributions.
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The content of this chapter corresponds to the ICLR 2023 publication with the title “Tem-
perature Schedules for Self-Supervised Contrastive Methods on Long-Tail Data” [KBS+23]. Anna
Kukleva and Moritz Böhle are the co-first authors of this work, under the supervision of
Bernt Schiele, Hilde Kuehne and Christian Rupprecht. Anna Kukleva and Moritz Böhle
contributed in equal parts to the design of the temperature scheduling approach, the
analytical framework, as well as the writing. The implementation of the experiments and
the publication of the code for this project were fully handled by Anna Kukleva.

Part II, Learning with Limited Supervision

Chapter 6, Consistency Regularization for Semi-Supervised Learning. In this chapter, we
tackle the semi-supervised learning setting, and propose to revisit the consistency reg-
ularization idea. We find that enforcing either invariance or equivariance improves the
performance. Surprisingly, by increasing the feature distance between the samples our
framework improves the performance by a significant margin compared to previous
work.

The content of this chapter corresponds to the GCPR 2021 publication with the title
“Revisiting Consistency Regularization for Semi-Supervised Learning” [FKS21]. The extended
version of this work was invited to the special issue of the International Journal of
Computer Vision (IJCV) and published at IJCV 2023 with the same title [FKDS23a]. Yue
Fan was the lead author of this paper under the supervision of Bernt Schiele. The journal
extension also involved supervision of Dengxin Dai. Anna Kukleva was involved in the
weekly and scientific discussions, contributed to writing of the paper and creating the
figures.

Chapter 7, In-Style: Bridging Text and Uncurated Videos. In this chapter, we propose a new
setting, text-video retrieval with uncurated & unpaired data. This setting allows to avoid
costly video annotations for the downstream tasks while relying only on targeted text
data, uncurated videos and pretrained image-language models. We propose to learn and
transfer the style of the text queries to the uncurated large-scale web video dataset to
leverage our setting and close the gap between zero-shot evaluation and fully supervised
fine-tuning.

The content of this chapter corresponds to the ICCV 2023 publication with the ti-
tle “In-Style: Bridging Text and Uncurated Videos with Style Transfer for Text-Video Re-
trieval” [SKSK23]. Anna Kukleva and Nina Shvetsova are the co-first authors of this
work, under the supervision of Bernt Schiele and Hilde Kuehne. Anna Kukleva and
Nina Shvetsova jointly led the project as co-first authors, sharing responsibilities across
all stages of its development with equal contribution.

Chapter 8, Unsupervised Domain Adaptation to Learn from Image to Video. In this chapter,
we explore how to annotate unlabeled videos by adapting video and image domains
with web images as a source. We propose a cycle-based approach for the unsupervised
image-to-video domain adaptation to tackle spatial domain shift between web images
and video frames and the modality gap between image and video data.

The content of this chapter corresponds to the ECCV 2022 publication with the title
“CycDA: Unsupervised Cycle Domain Adaptation to Learn from Image to Video” [LKS+22]. Wei
Lin was the lead author of this paper under the supervision of Hilde Kuehne and Horst
Bischof. Anna Kukleva was involved in the weekly and scientific discussions, contributed
to writing of the paper and creating the figures.
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Chapter 9, Prompting LLMs to Transform Video Annotations at Scale. In this chapter, we
improve large-scale web video dataset by leveraging capabilities of large language models
(LLMs). We prompt an LLM to create plausible video descriptions with timestamps based
on ASR narrations of the video for a large-scale instructional video dataset. In this way,
we obtain human-style video captions without human supervision on a large scale.

The content of this chapter corresponds to the paper with the title “HowToCaption:
Prompting LLMs to Transform Video Annotations at Scale” [SKH+

24]. This paper is ECCV
2024 publication. Anna Kukleva and Nina Shvetsova are the co-first authors of this work,
under the supervision of Christian Rupprecht, Bernt Schiele and Hilde Kuehne. Nina
Shvetsova proposed the idea and was leading the project. Anna Kukleva was involved
equally with Nina Shvetsova in the project in the first months and then contributed to
writing of the paper. Anna had to change focus due to the started internship. Xudong
Hong participated in discussions related to the NLP aspect and gathered statistics of the
generated captions.

Part III, Learning with Limited Data

Chapter 10, Few-Shot Learning by Explicit Learning and Calibration. In this chapter, we pro-
pose a three-stage framework that allows to explicitly and effectively address catastrophic
and calibration challenges that arise due to the incremental few-shot learning paradigm.
While the first phase learns base classes with many samples, the second phase learns
a calibrated classifier for novel classes from few samples. To calibrate the training, we
propose base-normalized cross-entropy to amplify the softmax output of novel classes
and overcome the bias towards the base classes. In the final phase, we calibrate both
novel and base classes.

The content of this chapter corresponds to the ICCV 2021 publication with the title
“Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without
Forgetting” [KKS21b]. Anna Kukleva is the first author of this work, under the supervision
of Hilde Kuehne and Bernt Schiele.

Chapter 11, Orthogonality and Contrast for Few-Shot Incremental Learning. In this chapter,
we propose the OrCo framework built on two core principles: features’ orthogonality in
the representation space, and contrastive learning. Through feature space perturbations
and orthogonality between classes, our framework maximizes margins and reserves space
for the following incremental data. Our experimental results showcase performance
improvements across benchmark datasets.

The content of this chapter corresponds to the CVPR 2024 publication with the title “OrCo:
Towards Better Generalization via Orthogonality and Contrast foro Few-Shot Class-Incremental
Learning” [AKS24]. This paper is accepted as a highlight at the main conference and as
a spotlight at the 3rd Workshop on Learning with Limited Labelled Data for Image and
Video Understanding. Anna Kukleva and Noor Ahmed are the co-first authors of this
work, under the supervision of Bernt Schiele. This paper is based on the master thesis of
Noor Ahmed. Anna Kukleva acted as Noor Ahmed’s supervisor during the project and
played a significant role in the paper’s writing.

Part IV, Learning Beyond Supervision

Chapter 12, Boosting Performance of Open-Set Semi-Supervised Learning. In this chapter,
we tackle the realistic open-set semi-supervised learning setting. We explore the balance
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between inlier classification and outlier detection tasks and find that the classification
performance can be largely improved by incorporating high-confidence pseudo-labeled
data, regardless of whether they are inliers and outliers. Moreover, we propose to separate
the features used for classification and detection in the multitask learning to prevent
adverse effects between the tasks.

The content of this chapter corresponds to the ECCV 2022 publication with the title
“SSB: Simple but Strong Baseline for Boosting Performance of Open-Set Semi-Supervised Learn-
ing” [FKDS23b]. Yue Fan was the lead author of this paper under the supervision of
Dengxin Dai and Bernt Schiele. Anna Kukleva was involved in the weekly and scientific
discussions, contributed to writing of the paper and creating the figures.

Chapter 13, X-MIC: Egocentric Action Generalization. In this chapter, we tackle the problem
of adaptation of vision-language models to the egocentric video domain. We propose
a simple yet effective cross-modal adaptation framework, which we call X-MIC. Using
a video adapter, our pipeline learns to align frozen text embeddings to each egocentric
video directly in the shared embedding space.

The content of this chapter corresponds to the CVPR 2024 publication with the title
“X-MIC: Cross-Modal Instance Conditioning for Egocentric Action Generalization” [KSR+

24].
This paper is accepted as a spotlight at the 3rd Workshop on Learning with Limited
Labelled Data for Image and Video Understanding. Anna Kukleva is the first author
of this work, under the supervision of Fadime Sener, Bernt Schiele, and Shugao Ma.
Edoardo Remelli, Bugra Tekin and Eric Sauser were involved in the weekly discussions.
Edoardo Remelli and Bugra Tekin were involved in the writing of the paper. The work
was done during the internship at Meta in 2023.

1.6 Publications

The content of this thesis has previously appeared in the following publications, ordered as
outlined above:

• [KKSG19] Anna Kukleva*, Hilde Kuehne*, Fadime Sener, and Jurgen Gall. (*equal contri-
bution) “Unsupervised learning of action classes with continuous temporal embedding”,
CVPR 2019

• [DKS22] Enea Duka*, Anna Kukleva*, and Bernt Schiele. (*equal contribution) “Leverag-
ing Self-Supervised Training for Unintentional Action Recognition”, ECCV Workshop
2022

• [KBS+23] Anna Kukleva*, Moritz Boehle*, Bernt Schiele, Hilde Kuehne, and Christian
Rupprecht. (*equal contribution) “Temperature Schedules for Self-Supervised Contrastive
Methods on Long-Tail Data”, ICLR 2023

• [FKS21] Yue Fan, Anna Kukleva, and Bernt Schiele. “Revisiting Consistency Regulariza-
tion for Semi-Supervised Learning”, GCPR 2021

• [FKDS23a] Yue Fan, Anna Kukleva, Dengxin Dai, and Bernt Schiele. “Revisiting Consis-
tency Regularization for Semi-Supervised Learning”, IJCV 2023

• [SKSK23] Nina Shvetsova*, Anna Kukleva*, Bernt Schiele, and Hilde Kuehne. (*equal
contribution) “In-Style: Bridging Text and Uncurated Videos with Style Transfer for
Text-Video Retrieval”, ICCV 2023
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• [LKS+22] Wei Lin, Anna Kukleva, Kunyang Sun, Horst Possegger, Hilde Kuehne, and
Horst Bischof. “CycDA: Unsupervised Cycle Domain Adaptation to Learn from Image to
Video”, ECCV 2022

• [SKH+
24] Nina Shvetsova*, Anna Kukleva*, Xudong Hong, Christian Rupprecht, Bernt

Schiele, and Hilde Kuehne. (*equal contribution) “HowToCaption: Prompting LLMs to
Transform Video Annotations at Scale”, ECCV 2024

• [KKS21b] Anna Kukleva, Hilde Kuehne, and Bernt Schiele. “Generalized and Incremental
Few-Shot Learning by Explicit Learning and Calibration without Forgetting”, ICCV 2021

• [AKS24] Noor Ahmed*, Anna Kukleva*, and Bernt Schiele. (*equal contribution) “OrCo:
Towards Better Generalization via Orthogonality and Contrast foro Few-Shot Class-
Incremental Learning”, CVPR 2024

• [FKDS23b] Yue Fan, Anna Kukleva, Dengxin Dai, and Bernt Schiele. “SSB: Simple but
Strong Baseline for Boosting Performance of Open-Set Semi-Supervised Learning”, ICCV
2023

• [KSR+
24] Anna Kukleva, Fadime Sener, Edoardo Remelli, Bugra Tekin, Eric Sauser, Bernt

Schiele, and Shugao Ma. “X-MIC: Cross-Modal Instance Conditioning for Egocentric
Action Generalization”, CVPR 2024

Further contributions were made to the following works not discussed in this thesis:

• [SPK+
23] Nina Shvetsova, Felix Petersen, Anna Kukleva, Bernt Schiele, and Hilde

Kuehne. “Learning by Sorting: Self-supervised Learning with Group Ordering Con-
straints”, ICCV 2023

• [LKP+
23] Wei Lin, Anna Kukleva, Horst Possegger, Hilde Kuehne, and Horst Bischof.

“TAEC: Unsupervised Action Segmentation with Temporal-Aware Embedding and Clus-
tering”, CEUR Workship 2023

• [FDKS22] Yue Fan, Dengxin Dai, Anna Kukleva, and Bernt Schiele. “COSSL: Co-learning
of Representation and Classifier for Imbalanced Semi-Supervised Learning”, CVPR 2022

• [VSK+
21] Rosaura G VidalMata, Walter J Scheirer, Anna Kukleva, David Cox, and Hilde

Kuehne. “Joint visual-temporal embedding for unsupervised learning of actions in
untrimmed sequences”, WACV 2021
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In this chapter, we review literature on topics related to learning with less supervision.
First, in Section 2.1, we discuss approaches for learning without any supervision signal,
relying only on perceptional biases to obtain effective image and video representations.

Following that, in Section 2.2, we discuss methods that depend on partial supervision or
weak alignment between vision and language modalities. Moving onto Section 2.3, we discuss
methods that require only a few labeled training samples during training and adapt to the novel
tasks continuously. Finally, in Section 2.4, we cover related work on open-set and open-world
classification. Subsequent chapters will also discuss related work, each tailored to the specific
topic of the respective chapter.

2.1 Learning Without Supervision

The field of self-supervised representation learning (SSL) from visual data is a quickly evolving
field. It involves learning effective representations from unlabeled data, leveraging inherent
properties of images and videos and solving tasks based on these properties without relying
on human annotations. Generally, self-supervised approaches fall into two categories: discrimi-
native and generative methods [OLB+

23]. Initially, we provide an overview of image-based
methods followed by a discussion of video-specific techniques. Note that while we discuss
them separately, image-based methods are also applicable to videos.

2.1.1 Discriminative Self-Supervised Learning

Puzzle Solvers. One of the earliest methods for self-supervised learning involves solving
predefined puzzles, relying on injected transformations of the input to tackle the pretext

15
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task [NF16, GSK18, NALV18, YPB16]. Predicting the type of geometric transformation applied
to the input serves as an example of such tasks. Specifically, the model is required, for instance,
to predict the direction of the rotation that was applied [GSK18]. Another popular task is
solving jigsaw puzzles [NF16, PCJ21], where the objective is to accurately predict the relative
locations of a certain number of patches obtained from the input image.

Contrastive Instance Discrimination. Contrastive learning methods [WXSL18] learn represen-
tations by forming positive pairs of images through augmentations and a loss formulation that
maximizes their similarity while simultaneously minimizing the similarity to other samples.
These methods have demonstrated remarkable representation quality and downstream per-
formance by leveraging the InfoNCE loss [OLV18]. MoCo [HFW+

20, CFGH20] establishes a
dictionary look-up to incorporate a large set of negatives during training. In contrast, SimCLR
[CKNH20, CKS+20] further enhances performance by integrating projection heads and em-
ploying strong augmentations. These frameworks serve as foundational methods upon which
many subsequent approaches are built to enhance efficiency [FP22, ZZL+

21b] or to investigate
the role of components such as negatives [WWW+

21, YHH+
22, ZZP+

22, ITAC18, KSP+
20,

RCSJ20, KAG22] or analyze learning dynamics [BZK+
17, FV18, LFV20, LAV21]. Moreover,

contrastive learning has found applications beyond SSL pre-training, including multi-modal
learning [SCR+

22], domain generalization [YBZ+
22], semantic segmentation [VGVGVG21], 3D

point cloud understanding [ADD+
22], and 3D face generation [DYC+

20].

Clustering. Clustering approaches rely on self-labeling of available data to generate supervision
signals. However, when applying these methods to train deep learning models with large
datasets, several challenges need to be addressed, including clustering large-scale data, issues
of over-clustering and under-clustering, defining the number of clusters, and avoiding trivial
solutions [RPY+

22]. Deep Cluster [CBJD18] stands as one of the pioneering clustering-based
self-supervised deep learning methods that have yielded remarkable results. These challenges
have been tackled through the enforcement of uniform clusters via offline k-Means clustering.
SeLA [ARV20] mitigates the collapse issue by employing the Sinkhorn-Knopp algorithm,
while Online Deep Cluster [ZXL+

20] utilizes online training to address them. The SWAV
method [CMM+

20] combines online clustering with a contrastive learning objective, proving to
be a highly effective and stable approach. Additionally, CVLC [CMWP23] introduces a cross-
view contrastive learning method that learns view-invariant representations and generates
clustering results by contrasting cluster assignments across multiple views.

Non-Contrastive Instance Discrimination. Non-contrastive methods share a similar objective
to contrastive methods, aiming to align two different transformations of the same input
from student and teacher networks. However, they diverge by excluding negatives from the
learning process. Instead, these methods employ various strategies to prevent collapsing,
where the model predicts a constant value for any input. BYOL [GSA+

20] addresses collapsing
by proposing the use of the exponential moving average (EMA) for one of the backbones
and employing different projection heads. Conversely, SimSiam [CH21] demonstrated that
while EMA offered minimal improvement, the asymmetry of the projection head was crucial
for performance. DINO [CTM+

21] applies centering of the student outputs and utilizes
discretization via softmax during training. The subsequent iteration, DINOv2 [ODM+

23],
merges DINO with a generative approach of masked image modeling in the embedding space,
leveraging a larger pretraining dataset. Other methods in this category rely on correlation
analysis, such as VICReg [BPL22], BarlowTwins [ZJM+

21], and TWIST [WKZ+
23].
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2.1.2 Generative Self-Supervised Learning

Many methods in this category rely on information restoration, where a portion of the image
data is deliberately distorted, and the network is tasked with recovering this information. For
instance, in the task of image colorization, the input is grayscale, and the network is tasked
with reconstructing the original RGB values [LMS17, ZIE16].

Presently, the most efficient methods belong to the family of masked image modeling, where
a portion of the image is either removed or masked out, and the model is tasked with restoring
the missing information [CRC+

20, BDPW21]. This approach finds extensive application in the
NLP community, where the objective is to restore masked words within sentences [DCLT19].
BEiT [BDPW21] stands as one of the pioneering frameworks that successfully employed this
paradigm for training, predicting discrete visual tokens generated from visual patches of images
by leveraging a discrete variational autoencoder. Subsequent versions, BEiT-v2 [PDB+] and
BEiT-v3 [WBD+

23], enhanced results by incorporating the CLIP tokenizer alongside a patch
aggregation strategy. Another successful adaptation of the masked objective was accomplished
by MAE [HCX+

22], utilizing an asymmetric autoencoder framework that directly learns to
reconstruct image patches. Notably, the model efficiently processes only unmasked patches
(approximately 25%) in the encoder, resulting in significant computational savings. Recently,
this strategy has been effectively applied across multiple modalities.

2.1.3 Video Representation Learning

The previous subsections have focused on methods tailored for image-based self-supervision.
However, videos offer an additional temporal dimension that can be leveraged to formu-
late tasks for self-supervision. Early methods [MZH16, LHSY17a, FBGG17] concentrate on
frame-level video augmentations, such as frame shuffling and odd frame insertion within an
existing frame sequence. These methods train models to discriminate between these augmenta-
tions [MZH16]. Xu et al.[XXZ+

19] modify this approach by augmenting videos at the clip level
rather than the frame level, shuffling video clips and predicting their correct order, thereby
leveraging spatial-temporal information. Han et al.[HXZ19] frame the problem as future clip
prediction. Recent works [QMG+

21, DGRS21] employ contrastive learning between different
video augmentations. Other directions in self-supervised learning include utilizing temporal
co-occurrence as a learning signal [IZKA15, WG15]. Wei et al.[WLZF18] exploit the arrow
of time by detecting the direction of video playback. Another popular approach for video
representation learning is learning temporal or spatial-temporal cycle-consistency as a proxy
task[WJE19, JOE20]. The most recent methods adapt the concept of masked image modeling
to videos from image-based self-supervised pretraining.

2.1.4 Connection to our work

In Chapter 3, we explore unsupervised temporal segmentation of instructional videos. We
propose a framework that is based on the learned representations. To learn task-specific
representations, we are the first to propose supervision based on the inherent order of ac-
tions within tasks. For instance, supervision based on the fact that some actions need to be
performed in a certain order, for instance a subaction “take cup” will usually occur in the
beginning of the activity “making coffee”. We show that these learned representations bring
an advantage for the task of unsupervised temporal segmentation compared to more general
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representations [RTMFF15, CZ17, WS13, FGO+
15].

In Chapter 4, we explore unintentional actions and propose to learn an embedding based
on inherent biases as motion speed, motion direction, and temporal order of motion clues. We
formulate the temporal transformations specifically to reflect the structure of unintentional
activities to capture sudden changes in the video and pretrain the model in self-supervised
way by recognizing the formulated transformations. Despite availability of variety of temporal
self-supervised learning methods [IZKA15, WG15, WLZF18], we show that this amplification
improves the unintentional action recognition by large margin with respect to previous work
and the baselines.

In Chapter 5, we study contrastive learning methods and propose the framework to
understand better the dynamic on the long-tail data with respect to temperature hyperpa-
rameter. This parameter controls the impact of the negatives during the training on semantic
information learned by the model. In contrast to explicitly choosing a specific subset of nega-
tives [WWW+

21, YHH+
22, ZZP+

22, ITAC18], we discuss the Info-NCE loss [OLV18] through
the lens of an average distance perspective with respect to all negatives and show that the
temperature parameter can be used to implicitly control the effective number of negatives.
Moreover, we focus on understanding the structure and learning dynamics of the objective
function such as in [SPA+

19, TWSM20, CLL21]. In this work, we rely on the previous findings,
expand them to long-tailed data distributions and complement them with an understanding of
the emergence of semantic structure.

2.2 Learning with Limited Supervision

Introducing weak supervision, such as partially annotated data points or weak alignment
between different modalities, can significantly enhance performance on downstream tasks. In
this section, we discuss topics such as semi-supervised learning and multi-modal learning,
which enable the introduction of weak or partial annotations in the data.

2.2.1 Semi-Supervised Learning

Semi-supervised learning is a broad field aiming to leverage both labeled and unlabeled data,
and self-supervised learning, as discussed in the previous section, has proven beneficial in this
context. In [HFW+

20, CKNH20, CKS+20, REH+
20], self-supervised pre-training is employed

to initialize models for subsequent fine-tuning. However, as these methods typically involve
multiple training phases with numerous hyperparameters, such pretrainining is mainly avoided
by the community. Alternatively, consistency regularization emerges as a powerful method for
semi-supervised learning [RBH+

15, SJT16, BAP14]. The idea is that the model should yield
consistent predictions for perturbed versions of the same input. Various approaches have been
explored to generate such perturbations. For example, [TV17] utilizes an exponential moving
average of the trained model to produce additional input; [SJT16, LA17] employ random max-
pooling and dropout [SHK+

14]; [XDH+
20, BCC+

20, SBL+
20, KMHK20] employ advanced

data augmentation techniques; [BCG+
19, VLK+

19, BCC+
20] utilize MixUp regularization

[ZCDLP18], which encourages convex behavior "between" examples; [GWL21] enforce label
consistency using alpha-divergence.

Another spectrum of popular approaches is pseudo-labeling [Scu65, Nes83, Lee13], where
the model is trained with artificial labels. [AOA+

20] trained the model with “soft” pseudo-
labels from network predictions; [PXDL20] proposed a meta learning method that deploys a
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teacher model to adjust the pseudo-label alongside the training of the student;[SBL+
20, Lee13]

learn from “hard” pseudo-labels and only retain a pseudo-label if the largest class probability
is above a predefined threshold; [ZWH+

21] further refines the thresholding mechanism by
adaptively adjusting thresholds for different classes according to the learning effect of each class.
Furthermore, there are many excellent works around generative models [KMRW14, Ode16,
DGF16] and graph-based methods [LZL+

18, LWHL19, BDLR06, Joa03]. As noise injection
plays a crucial role in consistency regularization [XDH+

20], the advanced data augmentation,
especially combined with weak data augmentation, introduces stronger noise to unlabeled
data and brings substantial improvements [BCC+

20, SBL+
20]. [SBL+

20] proposes to integrate
pseudo-labeling into the pipeline by computing pseudo-labels from weakly augmented images,
and then uses the cross-entropy loss between the pseudo-labels and strongly augmented
images. Besides the classifier level consistency, our model also introduces consistency on
the feature level, which explicitly regularizes representation learning and shows improved
generalization performance. PRG [DZQ+

23] addresses challenges where labeled and unlabeled
data distributions do not align, resulting in biased pseudo-labeling. The authors propose
class-level guidance based on a Markov random walk modeled on a dynamic graph over
class distributions. FreeMatch [WCH+

23] analyzes the relationship between pseudo-labeling
threshold and model learning status, proposing to adjust the confidence threshold adaptively
to enhance performance, particularly in cases with extremely rare labeled data.

2.2.2 Learning from Multimodal Data

Image-Language Pretraining. There is a growing interest in multi-modal representations [RKH+
21,

LDF+
20, SZC+

20, LCC+
20, LJS+20, SCR+

22], which require aligned pairs across multiple
modalities. However, acquiring human-annotated paired data is costly; hence, noisy web
data [RKH+

21, MZA+
19] enables the significant scaling of such datasets. Many methods

effectively utilize web image-text pairs [RKH+
21, JYX+

21, YWV+
22] for large-scale pretraining.

For contrastive-based vision-language representation learning methods, dual-encoder archi-
tectures are a common choice, featuring two parallel branches for each modality, contrasted
against each other to learn a joint embedding space [RKH+

21, SZC+
20, LCC+

20, LJS+20].
Recently, BLIP [LLXH22], BLIP2 [LLSH23a], and CoCa [YWV+

22] have proposed a unified
multi-task contrastive-generative framework, combining contrastive and captioning objectives.
These methods leverage curated image-text and uncurated web image datasets, with BLIP
additionally employing iterative generation and filtering of synthetic captions.
Video-Language Pretraining. Manual annotation of video datasets is even more time-
consuming since it involves video trimming and localization of action boundaries. Currently,
manually annotated video captioning datasets, e.g., MSR-VTT [XMYR16], and YouCook2 [ZXC18],
are limited in size. Therefore, different methods of mining video with weak supervision
from the Internet were considered. Datasets such as YouTube-8M [AEHKL+

16] and IG-
Kinetics-65M [GTM19] provided multiple class labels based on query click signals and meta-
data [AEHKL+

16] or hashtags [GTM19]. However, short class labels are suboptimal supervision
compared to textual descriptions [DJ21]. Therefore, [BNVZ21] considered scrapping videos
with associated alt-text from the web, similarly to the image-based Conceptual Captions
dataset [SDGS18], obtaining the WebVid2M dataset [BNVZ21] that contains 2.5M videos-text
pairs and later WebVid10M with 10M pairs. [SLS+20] proposed to use meta information, such
as titles, video descriptions, and tags from YouTube, as a textual annotation and created the
WTS-70M dataset. And [NSS+22] proposed to transfer image captions from an image-text
dataset to videos by searching videos with similar frames to the image and, therefore, collected
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the VideoCC3M dataset. However, most videos in the WebVid2M and WebVid10M datasets do
not have audio, which is an essential part of video analysis, and captions in the VideoCC3M
dataset are derived from images and, therefore, tend to describe more static scenes rather
than actions. At the same time, the title and tags of WTS-70M provide only high-level video
descriptions.

As an alternative to this, [MZA+
19] proposed the HowTo100M dataset, where instructional

videos are naturally accompanied by dense textual supervision in the form of subtitles obtained
from ASR (Automatic Speech Recognition) systems. The HowTo100M dataset with 137M
clips sourced from 1.2M YouTube videos was proven to be effective for pre-training video-
audio-language representations [RBH+

21, CRD+
21, SCR+

22]. The followed-up YT-Temporal-
180M [ZLH+

21], HD-VILA-100M [XHZ+
22] and InternVid [WHL+

23] datasets are created by
using the same idea, but expand the HowTo100M with more videos, higher diversity, and higher
video resolution. However, the problem of misalignment and noisiness of ASR supervision in
instructional videos, such as in the HowTo100M dataset, were already addressed in multiple
works. MIL-NCE loss [MAS+20] and soft max-margin ranking loss [ABARB21] were proposed
to adapt contrastive loss to misalignment in text-video pairs. [ZLH+

21] proposed to use LLM
to add punctuation and capitalization to ASR subtitles and remove mistranscription errors.
[HXZ22] proposed to train temporal alignment networks to filter out subtitles that are not
alignable to the video and determine alignment for the others. [LPB+

22] goes beyond just
removing mistranscription errors and ASR re-alignment, and proposed to match the sentences
from ASR subtitles to a large base of descriptions of the steps from WikiHow dataset [KW18]
(distant supervision).
Large-Language Models in Vision-Language Tasks. In recent years, there has been a remark-
able success of LLMs in many language-related tasks [DCLT19, RWC+

19, RSR+
20]. Latest

large language models such as GPT-3.5 [NXP+
22], Alpaca [TGZ+

23] or Vicuna [CLL+
23] have

demonstrated excellent zero-shot capabilities on common sense inference [CB23]. This success
has prompted research into integrating common-sense knowledge into vision-language tasks to
enhance their performance. In this regard, some methods [SMV+

19, SZC+
20, LBPL19, TB19]

initialize the language part of vision-language models from pre-trained LLM. Another line
of work [CLTB21, LLSH23b, ZMKG23] uses LLM as a decoder to enable vision-to-language
generation. For example, the MiniGPT-4 [ZCS+23] model enhances a frozen Vicuna model
by aligning visual encoder tokens with Vicuna’s input token space, enabling visual reason-
ing capabilities, e.g., image question answering or image captioning. In this regard, some
works [LRC+

23, ZMKG23] adapted visually conditioned LLM for visual captioning and created
captioning pseudo labels for large-scale video data that later used for vision-language tasks.
However, these methods require human-annotated datasets to train a captioning model, while
our method does not require any label data and aims to transform free available annotation
(ASR subtitles) into textual descriptions.

2.2.3 Connection to our work

In Chapter 6, we follow the trend of [ZOKB19, BCC+
20] to incorporate an auxiliary self-

supervised loss alongside training optimizing a rotation prediction loss [GSK18]. Different
from previous work, our work explores equivariant representations in the sense that differently
augmented versions of the same image are represented by different points in the feature space
despite the same semantic label. As we show that information like object location or orientation
is more predictable from our model when features are pushed apart from each other.

In Chapter 7, in contrast to previous work [GVM+
22, LXX+

22], we propose to exclude
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pre-annotated text-video paired data from the training and, relying on text descriptions only,
generate text-video pairs leveraging uncurated web videos while transferring the style of
original captions. Moreover, we adopt pre-trained image-language models for uncurated &
unpaired text-video retrieval by transferring the caption style directly on uncurated videos
without any aligned data during training.

In Chapter 8, we exploit web images to annotate video data and propose to transfer
knowledge in the form of pseudo labels. Various works have shown how web images and
videos can be used as labeling-free data source to improve the performance of action recogni-
tion [DZX+

20, GSDG16, GYY+
16, MBZ+

17]. In our work, we specifically address the domain
shift on the spatial level and transfer the knowledge to the spatio-temporal level, without
using any annotations on target data. Compared to webly-supervised learning, image-to-
video domain adaptation approaches actively address the domain shift between web im-
ages and target videos either by spatial alignment between web images and video frames
[LWZK17, SSSN15, ZHT+

16], or through class-agnostic domain-invariant feature learning for
images and videos [LOW+

20, YWCD19, YWSD18]. In contrast to these, we propose to transfer
knowledge in the form of pseudo labels, without enforcing spatial information from the DA
stage onto the spatio-temporal model. Moreover, we alternately conduct spatial alignment and
spatio-temporal learning with knowledge transfer to each other. With category knowledge
transferred to the spatial model, we perform class-aware domain alignment that induces
domain-invariance within category-level.

In Chapter 9, we explore large-scale video-language pretraining. While ASR supervision
can provide a scalable way to create a large video dataset with dense annotation [ZLH+

21,
XHZ+

22, MZA+
19], the quality of subtitles is still not on par with human-annotated captions.

In our work, we propose to use LLM to create high-quality video captions given ASR subtitles,
which allows us to create a detailed video description dataset at scale where each description
is specific for every video and has proper sentence structure.

2.3 Learning with Limited Data

In many real-world scenarios, acquiring extensive datasets can be impractical or even impossible.
For example, drug discovery task which tries to predict whether a new molecule has toxic
effect [ATRPP17]. This limitation has led to the emergence of a few-shot learning methods.
These algorithms are designed to tackle the scenarios where only a small number of examples
are available for each class or task. Moreover, few-shot learning assumes that there are certain
classes with sufficient labeled data, referred to as base classes. This data is typically available
prior to tasks with limited data and is utilized for pretraining of the model. Therefore, the task
of few-shot learning is how to learn such a model from these base classes that can generalize
to novel classes with only a few labeled samples (referred to as support set) available [Xia20].

2.3.1 Few-Shot Learning

Few-shot learning relies on the transfer learning paradigm, where the fundamental operation
involves pretraining the model on an extensive dataset and subsequently fine-tuning it on
the limited support set. Many methods [WGHH18, SSZ17, QBL18, FAL17] employ a meta-
learning framework instead of straightforward training on the base classes [Liu23]. Meta-
learning framework entail training the model on multiple few-shot tasks, also known as
episodes, generated from the base classes containing sufficient labeled data. Subsequently, the
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performance of the model is evaluated on test episodes derived from novel classes.
Data-based Methods. To mitigate data scarcity, various methods employ data augmentation
for few-shot learning to enhance model robustness [WGHH18]. Leveraging prior knowledge,
these methods introduce different types of invariance during model training. To prevent
overfitting, [BKVM15] propose simulating noise by erasing random pixels in images. Similarly,
[DT17, YHO+

19] suggest using random filling operations to introduce various types of noise.
On the other hand, approaches like [ZCG+

18, HG17, LZLF20] aim to learn domain-specific
augmentations based on the training base classes and transfer them to novel classes. For
instance, [LCL+

20] transfer modes of variation from base to novel classes, while [WGHH18]
propose hallucinating additional data samples for the novel classes by training an end-to-end
model on the base classes in a meta-learning framework.
Metric-based Methods. Metric-based methods [VBL+

16, SSZ17, QBL18, YHZS20, HCM+
19]

aim to learn a metric space suitable for further comparison between class representations
without additional training. These methods utilize a pretrained model and compute similarity
or distance between samples. For example, by calculating distances in the embedding space be-
tween a test sample and all training samples, the test sample can be assigned to the category of
the nearest training sample. Prototypical Networks [SSZ17] exemplify this approach, learning
a metric space in a meta-learning framework where the distance to class prototypes determines
classification. The imprinting weights method [QBL18] demonstrates improved performance
by utilizing class means as strong initializations for an evolving classifier. However, simple
feature averaging is susceptible to noise; thus, approaches like [YJ06, WSL+

20] explore methods
to increase distances between prototypes to mitigate noise. Additionally, [LCL+

20] propose
leveraging positive and negative margins to reduce overfitting and enhance generalization. Fur-
thermore, relational networks [SYZ+

18] enable direct calculation of similarity between samples
by the network itself, exploring alternative methods of distance and similarity calculation.
Optimization-based Methods. Optimization-based methods aim to adjust the optimization
algorithm so that the model can converge within a small number of optimization steps and
a limited number of input samples without overfitting. MAML [FAL17] is a method based
on the meta-learning framework that effectively initializes the model for further training of
the few-shot support set. TAML [JQ19] is an entropy-based approach that meta-learns an
unbiased initial model with the largest uncertainty over the output labels by preventing it from
over-performing in classification tasks. IMAML [RFKL19] is an implicit MAML algorithm,
which depends only on the solution to the inner-level optimization and can efficiently handle
vanishing gradients and memory constraints problems. Ravi et al.[RL16] propose an LSTM-
based meta-learner to learn the exact optimization to train another network classifier in a few-
shot manner. LEO[RRS+18] decouples training and representation by learning data-dependent
latent model parameters and performing gradient-based optimization in a low-dimensional
space. In [LMRS19], the authors target meta-learning with efficient linear classifiers relying
on implicit differentiation of the optimization and the low-rank nature of the classifier in the
few-shot setting. Note that MAML, one the most popular and effective optimization-based
approaches, has been adopted in various tasks such as continual learning [JW19, GYP20], hate
speech detection [ALT+

23], and detecting security intrusions [LWY+
23].

2.3.2 Few-Shot Class-Incremental Learning

Real-world applications often encounter various challenges when acquiring data incrementally,
with new information arriving in continuous portions. This scenario is commonly referred
to as Class Incremental Learning [RKSL17a, WCW+

19, HVD15, LH17a, CMJG+
18, HPL+

19,
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BP19, ZZW+
21, ZXG+

20, SCL+
18, LMH+

18, CDAT18]. Within CIL, the foremost challenge
lies in preventing catastrophic forgetting [MC89, GMX+

13, KPR+
17], where previously learned

concepts are susceptible to being overwritten by the latest updates. However, in a Few-Shot
Class Incremental Learning (FSCIL) scenario [THC+

20, ZSL+
21, ZLX+

23, KHSM22, ZFK+
21,

CRF+
21, ZWY+

22, YYL+
23, her, MSR21, her], characterized by the introduction of new in-

formation with only a few labeled samples, two additional challenges emerge, reflected in
the few-shot learning scenario: overfitting and intransigence [SSZ17, CLK+

19]. Overfitting
arises as the model may memorize scarce input data and lose its generalization ability. On the
other hand, intransigence involves maintaining a delicate balance, preserving knowledge from
abundant existing classes while remaining adaptive enough to learn new tasks from a highly
limited dataset.

Data-based Methods. Data manipulation is a direct strategy to mitigate the catastrophic
forgetting issue. A common approach is data replay, which involves showing the model
data from previous tasks to prevent forgetting [CRF+

21, DHT+
21, LGC+

22]. For instance,
Cheraghian et al.[CRF+

21] propose semantic-aware knowledge distillation by storing a small
number of samples for previous classes. Liu et al.[LGC+

22] suggest learning a generative
model to produce additional data close to the decision boundary. Shankarampeta et al.[SY21]
propose generating data in a feature space instead of the pixel space, training the generative
model with the MAML method[FAL17]. FACT [ZWY+

22] imposes constraints on real samples
during training to encourage more compact representations in the embedding space while
preserving space for virtual categories. Similarly, ALICE [PZW+

22] generates virtual classes
by merging two distinct classes from the base session and augmenting the data using standard
geometric transformations.

Metric-based Methods. Similarly to few-shot learning, metric-based methods for few-shot
class incremental learning aim to learn effective representations so that models can identify
and utilize underlying patterns helpful for generalization to unseen classes through simple
comparison between samples. Recently, metric learning has also been adopted in few-shot class
incremental learning to improve representation learning. Mazumder et al.[MSR21] propose
incorporating self-supervised learning to enhance the generalization capability of the backbone,
while Peng et al.[PZW+

22] suggest using the angular penalty loss, originally used in face
recognition, to obtain well-clustered features. CLOM [ZZLL22] proposes a framework to
address the issue where large margins can lead to good discrimination between base classes but
hinder performance on novel classes. The authors design different loss functions for shallow
and deep layers of the encoder network and integrate class relationships. Zhao et al.[ZFK+

21]
first train the feature extractor using metric learning loss and regularization loss, then decouple
features based on their frequency as they found that low-frequency information may contribute
more to preserving old knowledge. C-FSCIL[her] utilizes a meta-learning framework to train
a feature extractor and rewritable memory. The C-FSCIL framework aligns class prototypes
quasi-orthogonally to negate interference between classes, while NC-FSCIL [YYL+

23] aligns
class features with classifier prototypes, formed as a simplex equiangular tight frame, using
dot-regression loss.

Optimization-based Methods. Similarly to few-shot learning, optimization-based few-shot
class incremental methods leverage meta-learning frameworks to address overfitting and
catastrophic forgetting. By creating pseudo-incremental tasks sampled from the base classes,
these methods effectively train the backbone and make adjustments for upcoming new classes.
C-FSCIL [her] demonstrates that meta-learning can facilitate the learning of effective repre-
sentations that can be simply averaged to achieve improved performance. Zheng et al.[ZZ21]
regulate the distribution of learned classes within the meta-learning framework by propos-
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ing a class structure regularizer that prevents interference between new and old prototypes.
CEC[ZSL+

21] trains a graph attention mechanism to regularize the relations between class
prototypes using a meta-learning framework.

2.3.3 Connection to our work

In Chapter 10, we introduce a three-stage optimization-based framework designed to address
generalized few-shot learning and few-shot class incremental learning, effectively tackling catas-
trophic forgetting and calibration challenges. While some approaches focus on bias removal
techniques [WCW+

19, BP19, BP20], employing methods such as training additional hyperpa-
rameters [WCW+

19], utilizing dual memory [BP19], or applying post-processing [BP20], our
framework leverages the joint space to overcome data deficiencies and construct a stronger
classifier for novel classes without introducing extra parameters. Furthermore, unlike stan-
dard optimization-based methods that rely on meta-learning frameworks [THC+

20, AW20],
we approach the problem from the perspective of classic parametric classification mod-
els [HZRS16, KSH12], which have proven effective in few-shot learning [TWK+

20] and class
incremental learning [PTD20].

In Chapter 11, we propose the OrCo metric-based framework built on two core principles:
features’ orthogonality in the representation space, and contrastive learning. Our method
is closely related to metric-based methods [her, YYL+

23]. Our approach utilizes contrastive
learning with data-agnostic pseudo-targets and margin maximization through perturbations in
the embedding space, thereby enhancing generalization in incremental sessions. Furthermore,
we enhance the generalization of the embedding space by incorporating a combination of
supervised and self-supervised contrastive losses during the pretraining phase.

2.4 Learning Beyond Supervision

Traditional methods often assume a closed-world scenario, where models are trained and
tested on fixed, predefined classes or tasks. However, in many real-world applications, the
environment is dynamic and constantly changing, presenting new classes, concepts, or data
distributions over time. Learning in an open world addresses this challenge by enabling
models to be robust with respect to the open world by identifying unknown yet aspects or
continually adapt and learn from incoming information, without requiring retraining on all
possible classes.

Traditional methods typically operate in a closed-world scenario, where models are trained
and tested on fixed, predefined classes or tasks. However, in various real-world applications,
the environment is dynamic and ever-changing, introducing new classes, concepts, or data
distributions over time. Open-world learning tackles this challenge by enabling models to be
robust in the open world. This involves identifying unknown aspects or continually adapting
and learning from incoming information without the need for retraining on all possible data.

2.4.1 Open-Set Learning

In an open-set setting, only a limited number of classes is available during the model training
phase, and the system must be capable of detecting unseen classes during evaluation [MC21,
SRSB13]. Methods in this context must not only identify and classify instances belonging to
the seen classes during training but also reject instances from unknown classes during testing.
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By handling unknown classes during evaluation, such systems can operate robustly in an
open-world scenario, where unmodeled situations can be encountered. Open-set classification
is closely related to both standard classification and out-of-distribution detection [YZLL21,
LLLS17, PAD18, YGX22]. Out-of-distribution detection involves identifying rare items and
typically acts as a binary classifier, while open-set settings also entail classifying seen classes
alongside detecting unseen items. In contrast, standard classification involves assigning
input items to a fixed set of classes during evaluation, whereas open-set settings require a
rejection mechanism to prevent misclassification of unseen classes as one of the seen classes.
Several closed-set approaches have been adapted to include rejection mechanisms for open-set
settings [BW08, FHW16, GEY17].

The scope of open-set work can be broadly divided into two categories: discrimina-
tive [PP19, CQS+20] and generative [PMJ+20] approaches. Discriminative methods rely on
input data and corresponding labels for classification. For instance, one pioneering deep
learning-based method for open-set recognition is OpenMax [BB16], which addresses overcon-
fident classification scores for unseen test inputs by using logit scores instead of softmax scores.
Another approach, introduced by Dhamija et al. [DGB18], involves incorporating background
samples crawled from the internet during classifier training. The method enforces small feature
magnitudes for these background samples, while seen samples for classification are enforced
to have larger magnitudes with a defined margin. Vaze et al. [VHVZ22] explore the correlation
between closed-set accuracy and open-set performance with different backbone architectures,
finding a strong correlation across various loss functions and architectures, leading to a surpris-
ingly simple yet effective baseline. Additionally, Wang et al. [WXY+

22] propose a novel metric
called OpenAUC for evaluating open-set and closed-set performance in a coupled manner.
Optimization of OpenAUC risk has been shown to be effective in improving performance.

Generative approaches, on the other hand, leverage additional data generated by Generative
Adversarial Networks (GANs) or Autoencoders (AEs) to identify outliers. G-OpenMax [GDCG17]
extends the OpenMax approach by incorporating GANs to generate unseen items. This is
achieved by training a conditional GAN and interpolating in the latent space. Similarly, OS-
RCI [NOF+

18] follows the concept of G-OpenMax and generates counter-factual examples,
which lie on the classification boundaries between seen and unseen classes. C2AE [OP19] and
CROSR [YSK+

19] argue that abnormal test-time samples should not be reconstructed as well
as normal ones. They propose using AEs as the meta-recognition function, where the AE’s
encoder serves as the classifier. OpenGAN [KR21] suggests generating fake samples that mimic
the open-set distribution by carefully selecting a GAN discriminator on real outlier data.

2.4.2 Open-World Learning

In an open-set setting, machine learning models are trained to recognize known classes while
also being equipped to reject instances from unknown classes. However, in an open-world
setting, models must not only recognize known classes but also adapt to dynamically changing
environments by continuously learning and identifying entirely new classes or concepts that
were not present during training [JDC+

20]. The crucial distinction lies in the adaptability
demanded in the open-world scenario, which extends beyond merely detecting unknown
instances in the open-set setting.

Open-world computer vision focuses on algorithms that can learn and adapt to new and
unseen classes of objects or situations. Some key approaches include novelty discovery [CKSP15,
HLK17, HVZ19, QZCH21, WZW+

19] and zero-shot learning [MNXA21, FWD+
19, LLWJ18,

AC19, XGF16, RKP18]. Novelty discovery aims to identify data points that deviate significantly
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from existing patterns, potentially representing new classes [HVZ19, FSL+
21]. UNO [FSL+

21]
utilizes a multi-view self-labeling strategy to generate pseudo-labels that can be treated
homogeneously with ground-truth labels. Han et al.[HVZ19] propose to extend and improve
Deep Embedded Clustering [XGF16] by introducing a representation bottleneck, temporal
ensembling, consistency, and identifying the number of classes in the unlabeled data. On the
other hand, zero-shot learning enables models to classify new classes without any labeled
training data for those classes, relying on semantic relationships between classes [MNXA21,
CLSZ20]. CompCos [MNXA21] solves compositional zero-shot learning based on cosine
similarity between logits and a projection of learned primitive embeddings with an integrated
feasibility estimation function. Meanwhile, Chen et al. [CLSZ20] propose a boundary-based
out-of-distribution classifier to address generalized zero-shot learning, which classifies the
unseen and seen domains using only seen samples for training. By leveraging the class centers
and boundaries, the unseen classes can be separated from seen samples. These methods offer
different strengths for handling open-world data: novelty detection helps identify potential new
classes, while zero-shot learning can leverage existing knowledge to classify unseen classes,
albeit often requiring strong semantic representations.

Combining vision data with other modalities such as languange can enhance open-world
recognition capabilities. By aligning information from multiple sources, multimodal learn-
ing can create more robust and informative representations, allowing zero-shot recognition
of novel concepts [RKH+

21, LLXH22]. Many recent open world methods effectively align
open-set and closed-set distributions by utilizing the alignment learned with visual-language
models (VLMs) [ZYLL22b, RKM+

23a]. Inspired by the NLP community [ZFC21, SRLI+20,
JXAN20, GFC20, LARC21], prompt learning, where frozen general text models are adapted
to the specific tasks based on the closed-set data and show prominent generalization perfor-
mance in an open world scenarios, attracts more attention in recent years in computer vision.
CoOp [ZYLL22b] learns appendable vectors in the text token space, and CoCoOp [ZYLL22a]
introduces input-conditioned prompt learning, boosting performance but with high computa-
tional costs. MaPLe [KRM+

23] leverages shared deep prompts for text and visual encoders,
while PromptSRC [RKM+

23a] suggests regularizing constraints for frozen encoders. Chen et
al. [CGT+

22] found that prompting boosts model transferability in tasks with fewer number of
visual tokens, like image classification, but has limited impact in tasks with more tokens, such
as video understanding. An alternative research direction explores adapting vision-language
models with feature adapters [HGJ+19]. Clip-adapter [GGZ+

23] learns new features through
an additional bottleneck layer and blends them with original pre-trained features in a residual
style showing better performance than prompt-based methods in few-shot generalization.
These studies demonstrate the potential of combining open world techniques with multimodal
learning for robust and adaptable recognition in open-world scenarios.

2.4.3 Connection to our work

In Chapter 12, we study the challenging and realistic open-set semi-supervised learning setting,
where the goal is to both correctly classify inliers and to detect outliers. We adopt a simple
confidence-based pseudo-labeling [SBL+

20] for classifier training, which is an effective way
of leveraging unlabeled data to improve the model performance. Compared to standard
semi-supervised learning, SSB has an additional outlier detector, which enables the model
to reject samples that do not belong to any of the inlier classes. Moreover, existing methods
seek to alleviate the effect of out-of-distribution data by filtering them out in different ways
so that the classification model is trained with inliers only [CZLG20, SKS21, HYG22]. In
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contrast, we show that if the representations of the inlier classifier and the outlier detector are
well-separated, OOD data turns out to be a powerful source to improve the inlier classification
without degrading the detection performance. So, instead of filtering OOD data, we use a
simple confidence-based pseudo-labeling to incorporate them into the training.

In Chapter 13, we explore open-world setting by adapting vision-language model to unex-
plored domain of egocentric videos. Prompt learning [ZYLL22b, ZYLL22a] and adapters [HSW+

22,
GGZ+

23] are the two prominent directions for adaptation of the frozen models to the unseen
image domains. Our approach falls under the adapter category. Unlike previous visual
adapters, we introduce cross-modal instance-conditioned adapters specifically designed for
open world generalization. Moreover, recent advancements in prompt learning extend to
third-person videos [JHZ+

22, LGZ+
22, was23, CSMY24]. Our method builds on existing work

while introducing an adapter architecture specifically tailored to egocentric domain, resulting
in superior performance.
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L e a r n i n g W i t h o u t S u p e r v i s i o n

In the first part of this thesis, our attention is directed towards
learning without supervision, encompassing both self-supervised
and unsupervised methods. Our primary focus lies in learning
powerful and robust representations for the downstream tasks for
image and video recognition.

In Chapter 3, we explore unsupervised temporal action seg-
mentation of instructional videos. We learn the representation space
based on the fact that some actions need to be performed in a certain
order with the further decoding into action segments.

In Chapter 4, we explore unintentional actions and inherent
biases that they present such as motion speed, motion direction,
and order of activities. We propose a framework to capture local
and global temporal relations between intentional and unintentional
actions.

In Chapter 5, we develop a framework for understanding the
underlying dynamics of a popular self-supervised contrastive
learning loss through the lens of average distance maximisation with
respect to the temperature parameter. We study the effect of this
objective function to the long-tail disitribution of the data.
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The intricate interplay between learning representations and deriving task-specific solu-
tions mirrors the fundamental principles of unsupervised learning, where the system
autonomously identifies underlying patterns and structures from raw data, facilitating

a deeper understanding of the domain without explicit guidance or labeled examples. The
task of temporally detecting and segmenting activities in untrimmed videos is a challenging
task in the area of action recognition. One problem in this context arises from the need to
define and label action boundaries to create annotations for training which is very time and
cost intensive. To address this issue, we propose an unsupervised approach for learning
action classes from untrimmed video sequences. To this end, we use a continuous temporal
embedding of framewise features to benefit from the sequential nature of activities. Based on
the latent space created by the embedding, we identify clusters of temporal segments across all
videos that correspond to semantically meaningful action classes. The approach is evaluated
on three challenging datasets, namely the Breakfast dataset, YouTube Instructions, and the
50Salads dataset. While previous works assumed that the videos contain the same high level
activity, we furthermore show that the proposed approach can also be applied to a more
general setting where the content of the videos is unknown.

This chapter is based on [KKSG19]. As the co-first author Anna Kukleva contributed
main ideas for the temporal embedding, conducted all experiments, made the figures for the
paper and contributed to writing. This work has been cited more than 100 times and used as a
foundation for developing methods [WCL+

22, LT21, VSK+
21].

31
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3.1 Introduction

The task of action recognition has seen tremendous success over the last years. So far, high-
performing approaches require full supervision for training. But acquiring frame-level annota-
tions of actions in untrimmed videos is very expensive and impractical for very large datasets.
Recent works, therefore, explore alternative ways of training action recognition approaches
without having full frame annotations at training time. Most of those concepts, which are
referred to as weakly supervised learning, rely on ordered action sequences which are given
for each video in the training set.

Acquiring ordered action lists, however, can also be very time consuming and it assumes
that it is already known what actions are present in the videos before starting the annotation
process. For some applications like indexing large video datasets or human behavior analysis
in neuroscience or medicine, it is often unclear what action should be annotated. It is therefore
important to discover actions in large video datasets before deciding which actions are relevant
or not. Recent works [SY18, ABA+

16] therefore proposed the task of unsupervised learning
of actions in long, untrimmed video sequences. Here, only the videos themselves are used
and the goal is to identify clusters of temporal segments across all videos that correspond to
semantic meaningful action classes.

In this work we propose a new method for unsupervised learning of actions from long
video sequences, which is based on the following contributions. The first contribution is the
learning of a continuous temporal embedding of frame-based features. The embedding exploits
the fact that some actions need to be performed in a certain order and we use a network to
learn an embedding of frame-based features with respect to their relative time in the video. As
the second contribution, we propose a decoding of the videos into coherent action segments
based on an ordered clustering of the embedded frame-wise video features. To this end, we
first compute the order of the clusters with respect to their timestamp. Then a Viterbi decoding
approach is used such as in [RKIG18, KZN17, RKG17, LLK07] which maintains an estimate of
the most likely activity state given the predefined order.

We evaluate our approach on the Breakfast [KAS14] and YouTube Instructions datasets
[ABA+

16], following the evaluation protocols used in [SY18, ABA+
16]. We also conduct

experiments on the 50Salads dataset [SM13] where the videos are longer and contain more
action classes. Our approach outperforms the state-of-the-art in unsupervised learning of action
classes from untrimmed videos by a large margin. The evaluation protocol used in previous
works, however, divides the datasets into distinct clusters of videos using the ground-truth
activity label of each video, i.e., unsupervised learning and evaluation are performed only on
videos, which contain the same high level activity. This simplifies the problem since in this
case most of the actions occur in all videos.

As a third contribution, we therefore propose an extension of our approach that allows to
go beyond the scenario of processing only videos from known activity classes, i.e., we discover
semantic action classes from all videos of each dataset at once, in a completely unsupervised
way without any knowledge of the related activity. To this end, we learn a continuous temporal
embedding for all videos and use the embedding to build a representation for each untrimmed
video. After clustering the videos, we identify consistent video segments for all videos within
a cluster. In our experiments, we show that the proposed approach not only outperforms
the state-of-the-art using the simplified protocol, but it is also capable to learn actions in a
completely unsupervised way. Code is available on-line.1

1https://github.com/annusha/unsup_temp_embed

https://github.com/annusha/unsup_temp_embed
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The contributions of this work are as follows:

• A framework to learn of a continuous temporal embedding of frame-based features and
the following decoding of the videos into coherent action segments based on an ordered
clustering of the embedded frame-wise video features. The embedding exploits the fact
that some actions need to be performed in a certain order and we use a network to learn
an embedding of frame-based features with respect to their relative time in the video;

• Extended unsupervised setting for action segmentation to go beyond the scenario of
processing only videos from known activity classes by discovering semantic action classes
from all videos at once without any knowledge of the related activity;

• An extensive study to evaluate the performance of the proposed framework on three
datasets, outperforming previous state-of-the-art methods. Furthermore, we perform a
thorough analysis to evaluate the importance of each component.

3.2 Related Work

In this section, we discuss prior work on the temporal action segmentation of instructional
videos. We will not revisit the topic of self-supervised learning on video data as previously
discussed in Chapter 2.

Temporal action segmentation assumes precise boundaries for the start and end of each ac-
tivity within the video. Acquiring such dense annotations is costly, resulting in the exploration
of various methods to relax the necessity for dense annotations. Fully supervised training meth-
ods rely on dense annotations for these videos [FG19, LFV+

17, MFD19]. In semi-supervised
settings, dense annotations are provided for only a small subset of videos, significantly reduc-
ing annotation costs [SRY22, DY22]. To further diminish annotation expenses, only a subset
of frames can be annotated, known as time-stamp annotations [LT21, RSTY22]. Another form
of weak supervision comes from video transcripts [HFFN16, KRG17, RKG17, DX17, RKIG18],
which provide the sequence of actions but are not temporally aligned with the videos, or from
video tags [WXLVG17, RKG18].

Efforts have also been made towards unsupervised learning of action classes [SY18, SMS+21,
DWZW22, LKP+

23, WCL+
22]. One of the pioneering works addressing the challenge of human

motion segmentation without training data was proposed by Guerra-Filho and Aloimonos
[GFA07]. They suggest a basic segmentation followed by clustering based on sensory-motor
data. Utilizing these representations, they propose the application of a parallel synchronous
grammar system to learn atomic action representations akin to words in language. Another
contribution in this domain is by Fox et al. [FHSJ14], where a Bayesian nonparametric
approach aids in jointly modeling multiple related time series without additional supervision,
with application to motion capture data. In more recent work, Sener et al. [SY18] propose
an iterative approach for learning action classes in an unsupervised way. Their method
alternates between discriminative learning of the appearance of sub-activities from visual
features and generative modeling of the temporal structure of sub-activities using a Generalized
Mallows Model. Lin et al. [LKP+

23] propose within-video and cross-video clustering to achieve
better alignment between segments and the videos. Du et al. [DWZW22] propose detecting
boundaries of actions by estimating similarities across smoothed frames, followed by a non-
maximum suppression algorithm to identify candidate boundaries, and subsequent clustering
for refinement.
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Figure 3.1: Overview of the proposed pipeline. We first compute the embedding of features
with respect to their relative time stamp. The resulting embedded features are then clustered
and the mean temporal appearance of each cluster is computed and the ordering of clusters is
computed. Each video is then decoded with respect to this ordering given the overall proximity
of each frame to each cluster.

3.3 Method

We begin with an overview in Section 3.3.1, followed by a step-by-step introduction of our
pipeline, which consists of learning continuous temporal embedding in Section 3.3.2, clustering
and ordering in Section 3.3.3, and frame labeling in Section 3.3.4. In Section 3.3.5, we discuss
an extension of our method to the fully unsupervised case, and in Section 3.3.6, we discuss
how to model the background class.

3.3.1 Overview

As input we are given a set {Xm}M
m=1 of M videos and each video Xm = {xmn}Nm

n=1 is represented
by Nm framewise features. The task is then to estimate the subaction label lmn ∈ {1, . . . , K}
for each video frame xmn. Following the protocol of [ABA+

16, SY18], we define the number
of possible subactions K separately for each activity as the maximum number of possible
subactions as they occur in the ground-truth.

Figure 3.1 provides an overview of our approach for unsupervised learning of actions
from long video sequences. First, we learn an embedding of all features with respect to their
relative time stamp as described in Section 3.3.2. The resulting embedded features are then
clustered and the mean temporal occurrence of each cluster is computed. This step, as well
as the temporal ordering of the clusters is described in Section 3.3.3. Each video is then
decoded with respect to this ordering given the overall proximity of each frame to each cluster
as described in Section 3.3.4.

We also present an extension to a more general protocol, where the videos have a higher
diversity. Instead of assuming as in [ABA+

16, SY18] that the videos contain the same high-level
activity, we discuss the completely unsupervised case in Section 3.3.5. We finally introduce a
background model to address background segments in Section 3.3.6.
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Figure 3.2: Proposed pipeline for unsupervised learning with unknown activity classes.
We first compute an embedding with respect to the whole dataset at once. In a second step,
features are clustered in the embedding space to build a bag-of-words representation for each
video. We then cluster all videowise vectors into K′ clusters and apply the previously described
method for each video set.

3.3.2 Continuous Temporal Embedding

The idea of learning a continuous temporal embedding relies on the assumption that similar
subactions tend to appear at a similar temporal range within a complex activity. For instance a
subaction like “take cup” will usually occur in the beginning of the activity “making coffee”.
After that people probably pour coffee into the mug and finally stir coffee. Thus many
subactions that are executed to conduct a specific activity are softly bound to their temporal
position within the video.

To capture the combination of visual appearance and temporal consistency, we model
a continuous latent space by capturing simultaneously relative time dependencies and the
visual representation of the frames. For the embedding, we train a network architecture which
optimizes the embedding of all framewise features of an activity with respect to their relative
time t(xmn) = n

Nm
. As shown in Figure 3.1, we take an MLP with two hidden layers with

dimensionality 2D and D, respectively, and logistic activation functions. As loss, we use the
mean squared error between the predicted time stamp and the true time stamp t(xmn) of the
feature. The embedding is then given by the second hidden layer.

Note that this embedding does not use any subaction label associations as in [SY18,
ABA+

16], thus the network needs to be trained only once instead of retraining the model at
each iteration. For the rest of the chapter, xmn denotes the embedded D-dimensional features.

3.3.3 Clustering and Ordering

After the embedding, the features of all videos are clustered into K clusters by k-Means. Since
in Section 3.3.4 we need the probability p(xmn|k), i.e., the probability that the embedded
feature xmn belongs to cluster k, we estimate a D-dimensional Gaussian distribution for each
cluster:

p(xmn|k) = N (xmn; µk, Σk). (3.1)

Note that this clustering does not define any specific ordering. To order clusters with respect
to their temporal occurrence, we compute the mean over time stamps of all frames belonging
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to each cluster

X(k) = {xmn|p(xmn|k) ≥ p(xmn|k′), ∀k′ ̸= k},

t(k) =
1

|X(k)| ∑
xmn∈X(k)

t(xmn).
(3.2)

The clusters are then ordered with respect to the time stamp so that {k1, .., kK} is the set of
ordered cluster labels subject to 0 ≤ t(k1) ≤ .. ≤ t(kK) ≤ 1. The resulting ordering is then used
for the decoding of each video.

3.3.4 Frame Labeling

We finally temporally segment each video Xm separately, i.e., we assign each frame xmn to
one of the ordered clusters lmn ∈ {k1, . . . , kK}. We first calculate the probability of each frame
that it belongs to cluster k as defined by (3.1). Based on the cluster probabilities for the given
video, we want to maximize the probability of the sequence following the order of the clusters
k1 → .. → kK to get consistent assignments for each frame of the video:

l̂Nm
1 =l1,..,lNm

p
(
xNm

1 |lNm
1

)
=l1,..,lNm

Nm

∏
n=1

p
(
xmn|ln

)
· p
(
ln|ln−1

)
,

where p(xmn|ln = k) is the probability that xmn belongs to the cluster k, and p(ln|ln−1) are the
transition probabilities of moving from the label ln−1 at frame n − 1 to the next label ln at frame
n,

p(ln|ln−1) = 10≤ln−ln−1≤1. (3.3)

This means that we allow either a transition to the next cluster in the ordered cluster list or
we keep the cluster assignment of the previous frame. Note that (3.3) can be solved efficiently
using a Viterbi algorithm.

3.3.5 Unknown Activity Classes

So far we discussed the case of applying unsupervised learning to a set of videos that all
belong to the same activity. When moving to a larger set of videos without any knowledge of
the activity class, the assumption of sharing the same subactions within the collection cannot
be applied anymore. As it is illustrated in Figure 3.2, we therefore cluster the videos first into
more consistent video subsets.

Similar to the previous setting, we learn a D-dimensional embedding of the features but the
embedding is not restricted to a subset of the training data, but it is computed for the whole
dataset at once. Afterward, the embedded features are clustered in this space to build a video
representation based on bag-of-words using quantization with a soft assignment. In this way,
we obtain a single bag-of-words feature vector per video sequence. Using this representation,
we cluster the videos into K′ video sets. For each video set, we then separately infer clusters
for subactions and assign them to each video frame as in Figure 3.1. However, we do not learn
an embedding for each video set but use the embedding learned on the entire dataset for each
video set. The impact of K and K′ will be evaluated in the experimental section.
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3.3.6 Background Model

As subactions are not always executed continuously and without interruption, we also address
the problem of modeling a background class. In order to decide if a frame should be assigned
to one of the K clusters or the background, we introduce a parameter τ which defines the
percentage of features that should be assigned to the background. To this end, we keep
only 1 − τ percent of the points within each cluster that are closest to the cluster center and
add the other features to the background class. For the labeling described in c Section 3.3.4,
we remove all frames that have been already assigned to the background before estimating
lmn ∈ {k1, . . . , kK} (3.3), i.e., the background frames are first labeled and the remaining frames
are then assigned to the ordered clusters {k1, . . . , kK}.

3.4 Experiments

3.4.1 Dataset

We evaluate the proposed approach on three challenging datasets: Breakfast [KAS14], YouTube
Instructional [ABA+

16], and 50Salads [SM13].
The Breakfast dataset is a large-scale dataset that comprises ten different complex activities

of performing common kitchen activities with approximately eight subactions per activity class.
The duration of the videos varies significantly, e.g. coffee has an average duration of 30 seconds
while cooking pancake takes roughly 5 minutes. Also in regards to the subactivity ordering,
there are considerable variations. For evaluation, we use reduced Fisher Vector features as
proposed by [KGS16] and used in [SY18] and we follow the protocol of [SY18], if not mentioned
otherwise.

The YouTube Instructions dataset contains 150 videos from YouTube with an average length
of about two minutes per video. There are five primary tasks: making coffee, changing car tire,
cpr, jumping car, potting a plant. The main difference with respect to the Breakfast dataset is
the presence of a background class. The fraction of background within different tasks varies
from 46% to 83%. We use the original precomputed features provided by [ABA+

16] and used
by [SY18].

The 50Salads dataset contains 4.5 hours of different people performing a single complex
activity, making mixed salad. Compared to the other datasets, the videos are much longer
with an average video length of 10k frames. We perform evaluation on two different action
granularity levels proposed by the authors: mid-level with 17 subaction classes and eval-level
with 9 subaction classes.

3.4.2 Evaluation Metrics

Since the output of the model consists of temporal subaction bounds without any particular
correspondences to ground-truth labels, we need a one-to-one mapping between {k1, .., kK}
and the K ground-truth labels to evaluate and compare the method. Following [SY18] and
[ABA+

16], we use the Hungarian algorithm to get a one-to-one matching and report accuracy
as the mean over frames (MoF) for the Breakfast and 50Salads datasets. Note that especially
MoF is not always suitable for imbalanced datasets. We therefore also report the Jaccard index
as intersection over union (IoU) as an additional measurement. For the YouTube Instruction
dataset, we also report the F1-score since it is used in previous works. Precision and recall are
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Comp. of temporal embedding strategies

ImageNet [KSH12] + proposed 21.2%
I3D [CZ17] + proposed 25.1%

dense trajectories [WS13] + proposed 31.6%

video vector [RTMFF15] + proposed 30.1%
video darwin [FGO+15] + proposed 36.6%

ours 41.8%

Table 3.1: Evaluation of the influence of the temporal embedding. Results are reported as
MoF accuracy on the Breakfast dataset.

computed by evaluating if the time interval of a segmentation falls inside the corresponding
ground-truth interval. To check if a segmentation matches a time interval, we randomly draw
15 frames of the segments. The detection is considered correct if at least half of the frames
match the respective class, and incorrect otherwise. Precision and recall are computed for all
videos and F1 score is computed as the harmonic mean of precision and recall.

3.4.3 Continuous Temporal Embedding

In the following, we first evaluate our approach for the case of know activity classes to compare
with [SY18] and [ABA+

16] and consider the case of completely unsupervised learning in
Section 3.4.7. First, we analyze the impact of the proposed temporal embedding by comparing
the proposed method to other embedding strategies as well as to different feature types without
embedding on the Breakfast dataset. As features we consider AlexNet fc6 features, pre-trained
on ImageNet as used in [RTMFF15], I3D features [CZ17] based on the RGB and flow pipeline,
and pre-computed dense trajectories [WS13]. We further compare with previous works with
a focus on learning the temporal embedding [RTMFF15, FGO+

15]. We trained these models
following the settings of each paper and construct the latent space, which is used to substitute
ours.

As can be seen in Table 3.1, the results with the continuous temporal embedding are clearly
outperforming all the above-mentioned approaches with and without temporal embedding.
We also used OPN [LHSY17b] to learn an embedding, which is then used in our approach.
However, we observed that for long videos nearly all frames where assigned to a single cluster.
When we exclude the long videos with degenerated results, the MoF was lower compared to
our approach.

3.4.4 Mallow vs. Viterbi

We compare our approach, which uses Viterbi decoding, with the Mallow model decoding
that has been proposed in [SY18]. The authors propose a rankloss embedding over all video
frames from the same activity with respect to a pseudo ground-truth subaction annotation.
The embedded frames of the whole activity set are then clustered and the likelihood for each
frame and for each cluster is computed. For the decoding, the authors build a histogram of
features with respect to their clusters with a hard assignment and set the length of each action
with respect to the overall amount of features per bin. After that, they apply a Mallow model
to sample different orderings for each video with respect to the sampled distribution. The
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Mallow vs. Viterbi

Acc. (MoF)

Mallow+multi only 29.5%
Mallow-Viterbi 34.8%

Viterbi only 41.8%

Table 3.2: Comparison of the Mallow model and Viterbi decoding. Results are reported as
MoF accuracy on the Breakfast dataset.

Comparison with rankloss and Mallow model

Rankloss emb. Temp. emb.

Mallow model (MoF) 34.6% 29.5%
Viterbi dec. (MoF) 27.1% 41.8%

Table 3.3: Influence of temporal embedding and Viterbi decoding together. Comparison of
proposed embedding and Viterbi decoding with respect to the previously proposed Mallow
model [SY18]. Results are reported as MoF accuracy on the Breakfast dataset.

resulting model is a combination of Mallow model sampling and action length estimation
based on the frame distribution.

For the first experiment, we evaluated the impact of the different decoding strategies with
respect to the proposed embedding. In Table 3.2 we compare the results of decoding with
the Mallow model only, Viterbi only, and a combination of Mallow-Viterbi decoding. For
the combination, we first sample the Mallow ordering as described by [SY18] leading to an
alternative ordering. We then apply a Viterbi decoding to the new as well as to the original
ordering and choose the sequence with the higher probability. It shows that the original
combination of Mallow model and multinomial distribution sampling performs worst on the
temporal embedding. Also, the combination of Viterbi and Mallow model can not outperform
the Viterbi decoding alone. To have a closer look, we visualize the observation probabilities
as well as the resulting decoding path over time for two videos in Figure 3.3. It shows that
the decoding, which is always given the full sequence of subactions, is able to marginalize
subactions that do not occur in the video by just assigning only very few frames to those
ones and the majority of frames to the clusters that occur in the video. This means that the
effect of marginalization allows to discard subactions that do not occur. Overall, it turns out
that this strategy of marginalization usually performs better than re-ordering the resulting
subaction sequence as done by the Mallow model. To further compare the proposed setup to
[SY18], we additionally compare the impact of different decoding strategies, Mallow model
and Viterbi, with respect to the two embeddings, rankloss [SY18] and continuous temporal
embedding, in Section 3.4.4. It shows that the rankloss embedding works well in combination
with the multinomial Mallow model, but fails when combined with Viterbi decoding because
of the missing temporal prior in this case, whereas the Mallow model is not able to decode
sequences in the continuous temporal embedding space. This shows the necessity of a suitable
combination of both, the embedding and the decoding strategy.
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Figure 3.3: Visualization of Viterbi decoding. Comparison of Viterbi decoded paths with
respective predicted and ground-truth segmentation for two videos. The observation probabili-
ties with red indicating high and blue indicating low probabilities of belonging to subactions.
It shows that the decoding assigns most frames to occurring subactions while marginalizing
actions that do not occur in the sequence by assigning only a few frames.

3.4.5 Background Model
Finally, we assess the impact of the proposed background model for the given setting. For this
evaluation, we choose the YouTube Instructions dataset. Note that for this dataset, two different
evaluation protocols have been proposed so far. [ABA+

16] evaluates results on the YTI dataset
usually without any background frames, which means that during evaluation, only frames with
a class label are considered and all background frames are ignored. Note that in this case it is
not penalized if estimated subactions become very long and cover the background. Including
background for a dataset with a high background portion, however, leads to the problem
that a high MoF accuracy is achieved by labeling most frames as background. We therefore
introduce for this evaluation the Jaccard index as intersection over union (IoU) as additional
measurement, which is also common in comparable weak learning scenarios [RKG17]. For
the following evaluation, we vary the ratio of desired background frames as described in
Section 3.3.6 from 75% to 99% and show the results in Figure 3.4. As can be seen, a smaller
background ratio leads to better results when computing MoF without background, whereas
a higher background ratio leads to better results when the background is considered in the
evaluation. When we compare it to the IoU with and without background, it shows that the IoU
without background suffers from the same problems as the MoF in this case, but that the IoU
with background gives a good measure considering the trade-off between background and class
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Figure 3.4: Visualization of background influence on the performance. Evaluation of different
accuracy measurements with respect to the amount of sampled background on the YouTube
Instructions dataset.

labels. For τ of 75%, our approach achieves 9.6% and 9.8% IoU with and without background,
respectively, and 14.5% and 39.0% MoF with and without background, respectively.

3.4.6 Comparison to State-of-the-art

We further compare the proposed approach to current state-of-the-art approaches, considering
unsupervised learning setups as well as weakly and fully supervised approaches for both
datasets. However, even though evaluation metrics are directly comparable to weakly and fully
supervised approaches, one needs to consider that the results of the unsupervised learning
are reported with respect to an optimal assignment of clusters to ground-truth classes and
therefore report the best possible scenario for this task.

We compare our approach to recent works on the Breakfast dataset in Section 3.4.6. As
already discussed in Section 3.4.4, our approach outperforms the current state-of-the-art for
unsupervised learning on this dataset by 7.2%. But it also shows that the resulting segmentation
is comparable to the results gained by the best weakly supervised system so far [RKIG18]
and outperforms all other recent works in this field. In the case of YouTube Instructions, we
compare to the approaches of [ABA+

16] and [SY18] for the case of unsupervised learning only.
Note that we follow their protocol and report the accuracy of our system without considering
background frames. Here, our approach again outperforms both recent methods with respect
to Mof as well as F1-score. A qualitative example of the segmentation on both datasets is given
in Figure 3.5. Although we cannot compare with other unsupervised methods on the 50Salads
dataset, we compare our approach with the state-of-the-art for weakly and fully supervised
learning in Section 3.4.7. Each video in this dataset has a different order of subactions and
includes many repetitions of the subactions. This makes unsupervised learning very difficult
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ground truth

prediction
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Figure 3.5: Qualitative results. Segmentation results on the Breakfast and the YouTube
Instructions dataset.

Breakfast dataset

Fully supervised

MoF

HOGHOF+HTK 28.8%
TCFPN 52.0%
HTK+DTF w. CA 56.3%
RNN+HMM 60.6%

Weakly supervised

MoF

ECTC 27.7%
GMM+CNN 28.2%
RNN-FC 33.3%
TCFPN 38.4%
NN-Vit. 43.0%

Unsupervised

F1-score MoF

Mallow − 34.6%
Ours 26.4% 41.8%

Table 3.4: Sota on Breakfast dataset. Comparison of proposed method to other state-of-the-art
approaches for fully, weakly and unsupervised learning on the Breakfast dataset.
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YouTube Instructions

Unsupervised

F1-score MoF

Frank-Wolfe 24.4% −
Mallow 27.0% 27.8%
Ours 28.3% 39.0%

Table 3.5: Sota on YouTube Instructions dataset. Comparison of the proposed method to other
state-of-the-art approaches for unsupervised learning on the YouTube Instructions dataset.
We report results for a background ratio τ of 75%. Results of F1-score and MoF are reported
without background frames as in [ABA+

16, SY18].

50Salads

Supervision Granularity level MoF

Fully supervised eval 88.5%
Unsupervised (Ours) eval 35.5%

Fully supervised mid 67.5%
Weakly supervised mid 49.4%
Unsupervised (Ours) mid 30.2%

Table 3.6: Sota on 50Salads dataset. Comparison of proposed method to other state-of-the-art
approaches for fully, weakly and unsupervised learning on the 50Salads dataset.

compared to weakly or fully supervised learning. Nevertheless, 30.2% and 35.5% MoF accuracy
are still competitive results for an unsupervised method.

3.4.7 Unknown Activity Classes

Finally, we assess the performance of our approach with respect to a complete unsupervised
setting as described in Section 3.3.5. Thus, no activity classes are given and all videos are
processed together. For the evaluation, we again perform matching by the Hungarian method
and match all subactions independent of their video cluster to all possible action labels. In the
following, we conduct all experiments on the Breakfast dataset and report MoF accuracy unless
stated otherwise. We assume in case of Breakfast K′ = 10 activity clusters with K = 5 subactions
per cluster, we then match 50 different subaction clusters to 48 ground-truth subaction classes,
whereas the frames of the leftover clusters are set to background. For the evaluation of the
activity clusters, we perform the Hungarian matching on activity level as described earlier.
Activity-level clustering. We first evaluate the correctness of the resulting activity clusters
with respect to the proposed bag-of-words clustering. We therefore evaluate the accuracy of
the completely unsupervised pipeline with and without bag-of-words clustering, as well as the
case of hard and soft assignment. As can be seen in Section 3.4.7, omitting the quantization
step significantly reduces the overall accuracy of the video-based clustering.
Influence of additional embedding. We also evaluate the impact of learning only one embed-
ding for the entire dataset as in Figure 3.2 or learning additional embeddings for each video
set. The results in Section 3.4.7 show that a single embedding learned on the entire dataset
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Accuracy of activity clustering

mean over videos

no BoW 19.3%
BoW hard ass. 29.8%
BoW soft ass. 31.8%

Table 3.7: Influence of clustering. Evaluation of activity based clustering on Breakfast with
K′ = 10 activity clusters.

Multiple embeddings

MoF

full w add. cluster emb. 16.4%
full w/o add. cluster emb. 18.3%

Table 3.8: Influence of embedding. Evaluation of the impact of learning additional embeddings
for each video cluster on the Breakfast dataset.

achieves 18.3% MoF accuracy. If we learn additional embeddings for each of the K′ video
clusters, the accuracy even slightly drops. For completeness, we also compare our approach to
a very simple baseline, which uses k-Means clustering with 50 clusters using the video features
without any embedding. This baseline achieves only 6.1% MoF accuracy. This shows that a
single embedding learned on the entire dataset performs best. Influence of cluster size. For all
previous evaluations, we approximated the cluster sizes based on the ground-truth number of
classes. We therefore evaluate how the overall ratio of activity and subaction clusters influences
the overall performance. To this end, we fix the overall number of final subaction clusters to 50

to allow mapping to the 48 ground-truth subaction classes and vary the ratio of activity (K′) to
subaction (K) clusters. Section 5.4.3 shows the influence of the various cluster sizes. It shows
that omitting the activity clustering (K′ = 1), leads to significantly worse results. Depending
on the measure, good results are achieved for K′ = 5 and K′ = 10. Unsupervised learning
on YouTube Instructions. Finally, we evaluate the accuracy for the completely unsupervised
learning setting on the YouTube Instructions dataset in Section 3.4.7. We use K = 9 and K′ = 5
and follow the protocol described in Section 3.4.5, i.e., we report the accuracy with respect

Influence of cluster size

K′ / K mean over videos MoF IoU

1 / 50 10.9% 10.7% 4.0%
2 / 25 19.9% 15.3% 5.6%
3 / 16 25.6% 16.2% 6.1%
5 / 10 30.6% 18.8% 7.1%
10 / 5 31.8% 18.3% 13.2%

Table 3.9: Influence of number of clusters. Evaluation of the number of activity clusters (K′)
with respect to the number of subaction clusters (K) on the Breakfast dataset. The second
column (mean over videos) reports the accuracy of the activity clusters (K′) as in Section 3.4.7.
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Influence of background ratio τ

MoF IoU

τ wo bg. w bg. wo bg. w bg.

60 19.8% 8.0% 4.9% 4.9%
70 19.6% 9.0% 4.9% 4.8%
75 19.4% 10.1% 4.8% 4.8%
80 18.9% 12.0% 4.8% 4.9%
90 15.6% 22.7% 4.3% 4.7%
99 2.5% 58.6% 1.5% 2.7%

Table 3.10: Influence of the background. Evaluation of τ reported as MoF and IoU without
and with background on the YouTube Instructions dataset.

to the parameter τ as MoF and IoU with and without background frames. As we already
observed in Figure 3.4, IoU with background frames is the only reliable measure in this case
since the other measures are optimized by declaring all or none of the frames as background.
Overall we observe a good trade-off between background and class labels for τ = 75%.

3.5 Conclusion

In this chapter, we propose a new method for unsupervised learning of actions in sequential
video data. Given the idea that actions are not performed in an arbitrary order and thus
bound to their temporal location in a sequence, we propose to learn a continuous temporal
embedding to enforce clusters at similar temporal stages. These representations are tailored
to the procedural videos where activities follow a specific order. We combine the temporal
embedding with a frame-to-cluster assignment based on Viterbi decoding which outperforms
all other approaches in the field. Additionally, we introduce the task of unsupervised learning
without any given activity classes, which is not addressed by any other method in the field so
far. We show that the proposed approach also works on this less restricted, but more realistic
task. In the following Chapter 4 and Chapter 5, we will elaborate on the methods utilized to
acquire different representations, each tailored to optimize distinct downstream tasks.
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This chapter addresses the challenge of learning effective representations for unintentional
actions—instances where the intended activity is interrupted by accidents, like spilling
a cup of coffee while carrying it to the table. Such rare occurrences are difficult

to define precisely and highly dependent on the temporal context of the action. In this
work, we explore such actions and seek to identify the points in videos where the actions
transition from intentional to unintentional. We propose a multi-stage framework that exploits
inherent biases such as motion speed, motion direction, and order to recognize unintentional
actions. To enhance representations via self-supervised training for the task of unintentional
action recognition we propose temporal transformations, called Temporal Transformations
of Inherent Biases of Unintentional Actions (T2IBUA). The multi-stage approach models the
temporal information on both the level of individual frames and full clips. These enhanced
representations show strong performance for unintentional action recognition tasks. We provide
an extensive ablation study of our framework and report results that significantly improve over
the state-of-the-art.

This chapter is based on [DKS22]. Anna Kukleva, as the co-first author, contributed to
the conceptual development of this project and the writing of the paper. This paper is based on
the master thesis of Enea Duka. Anna Kukleva acted as Enea Duka’s supervisor during the
project and played a significant role in the paper’s writing.

4.1 Introduction

Video action understanding has witnessed great progress over the past several years in the
fields of action detection, recognition, segmentation, caption generation, tracking and many
others [DDM+

21], [YXS+20], [KKSG19], [GZPB20], [WZWL21]. However, these methods im-
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Falling down Being on the floor

Skating Tripping and falling Rolling on the street

Snowboarding

Figure 4.1: Transition from intentional to unintentional action. We can notice an abrupt
change of motion in the first example, when the snowboarder starts to fall down the stairs, and
a sudden change in speed in the second example when the skater starts rolling on the ground.
In both cases, there is a strict order from intentional to unintentional action.

plicitly rely on the continuity of the underlying intentional action, such as one starts and then
continues the same or related activity for some time. In this chapter, we study unintentional
actions, for example, when one falls down by accident during jogging. This is a challenging task
due to the difficulty in defining precisely the intentionality of an action while largely depending
on the temporal context of the action. Moreover, annotating such videos is both costly and
difficult with human accuracy being 88% in localising the transition between intentional and
unintentional actions [ECV20]. The potential of this research covers assistance robotics, health
care devices, or public video surveillance, where detecting such actions can be critical. In this
work, we propose to look at unintentional actions from the perspective of the discontinuity of
the intentionality and exploit inherent biases in this type of videos.

We design our framework to explore videos where a transition from intentional to uninten-
tional action occurs. We are the first to explicitly leverage the inherent biases of unintentional
videos in the form of motion cues and high-level action ordering within the same video,
specifically the transition from unintentional to intentional and vice-versa.

To this end, we propose a three-stage framework where, starting from a pre-trained rep-
resentation, the first two stages leverage self-supervised training to address unintentional
biases on frame and video clip levels and further enhance these representations. We regu-
larly observe abrupt motion changes in videos of unintentional actions when an unwitting
event happens. Therefore, we formulate Temporal Transformations to exploit Inherent Biases
in videos that resemble Unintentional Action motion changes (T2IBUA). Using T2IBUA we
learn intra and inter-clip information in a multi-stage manner. In the first stage, we cap-
ture local information from the neighbouring frames by predicting the discrete label of the
applied T2IBUA on the frame level. Then, in the second stage, we train the model to inte-
grate information from the entire video by predicting T2IBUA on the clip level. See Fig. 4.4
for different T2IBUA levels. Inspired by the growing popularity of transformer models in



4.2 related work 49

vision [FXM+
21], [SMV+

19], [GCDZ19], [NBZA21], we utilize a multi-level transformer archi-
tecture that serves as a temporal encoder in our framework to model long-term relations. In
the last stage of supervised downstream learning, we particularly benefit from the high-level
ordering by deploying conditional random fields (CRF) to explicitly enforce smooth transi-
tions within the same video from intentional to unintentional actions. By modelling these
explicit global temporal relations, we enhance our results on various downstream tasks such as
unintentional action classification, localisation and anticipation.

The contributions of this work are as follows:

• A framework that includes three learning stages for unintentional action recognition:
by leveraging inherent biases in the first and in the second stages with self-supervised
feature enhancement, the third stage employs supervised learning for unintentional
action recognition on the top of these amplified representations;

• A multi-stage temporal encoder as a transformer-based architecture in combination
with conditional random fields to capture local and global temporal relations between
intentional and unintentional actions;

• We show state-of-the-art results for classification, detection, and anticipation tasks and
perform various ablation studies that evaluate the effectiveness of each of the components
of the proposed framework.

4.2 Related Work

In this section, we discuss prior work on the unintentional action recognition. We will not
revisit the topic of self-supervised learning on video data as previously discussed in Chapter 2.

The topic of unintentional action recognition is recently introduced by Epstein et al. [ECV20].
The authors collect the dataset Oops! and propose a framework to study unintentional action
recognition based on three directions such as classification, localization, and anticipation. The
framework consists of two consecutive parts to learn the representations in a self-supervised
way and then adapt the model to unintentional actions. Han et al. [HXZ20] propose to predict
the future steps of the video based on the feature space on the given history frames. Epstein et
al. [EV20] utilize a 3D CNN in combination with Transformer blocks to enhance representation
learning and recognize discontinuities in the videos. Zatsarynna et al. [ZFG22] rely on the
global context to learn good representations by training the model with a contrastive loss and
order prediction loss. In contrast to [ECV20], we leverage self-supervised training to tailor
pre-trained representations to unintentional actions and model temporal information in a
multi-stage fashion through the multiple learning stages.

4.3 Method

In this and the next sections, we present our framework to study unintentional actions (UA)
in videos. First, we provide an overview of our approach in Sec. 4.3.1. In Sec. 4.3.2 we detail
T2IBUA for self-supervised training, and then in Sec. 4.4 we describe the learning stages for
our framework.
Notation: Let X ∈ RT×W×H×3 be an RGB video, where T, W and H are the number of frames,
width and height respectively. We denote a clip sampled from this video as x ∈ Rt×W×H×3
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where t is the number of frames in the clip and t ≤ T. As f we further denote individual
frames from the video or clip. We denote T2IBUA as a function T (·), the spatial encoder as
S(·) and the temporal encoder as T(·), and a linear classification layer as MLPi(·), where i is a
learning stage indicator.

4.3.1 Framework Overview

Unintentional actions (UAs) are highly diverse and additionally happen rarely in daily life,
making it difficult to collect representative and large-scale datasets. To overcome this issue,
we propose a three-stage learning framework for unintentional action recognition. Starting
from the observation that unintentional actions are often related to changes in motion such
as speed or direction, we aim to leverage such inherent biases of unintentional actions in our
framework. In particular, simulating these inherent biases with a set of temporal video trans-
formations, the first two stages of our framework greatly enhance pre-trained representation in
a self-supervised fashion. More specifically, the first stage uses these transformations to learn
intra-clip information (frame2clip) whereas the second stage uses the same transformations to
address inter-clip information (frame2clip2video). The third stage then refines this represen-
tation via fine-tuning on the downstream unintentional action tasks using labelled data. We
additionally enforce smooth transitions from intentional to unintentional action during the
third stage by employing a conditional random field. While simulating the above-mentioned
inherent motion biases cannot possibly cover the entire diversity of unintentional actions, it
results in a powerful representation leveraged by the third stage of our approach and achieves
a new state of the art for unintentional action recognition tasks.

For the first and the second stages, we generate labels based on the selected transforma-
tions. We extract frame features with a fixed pretrained spatial encoder, in particular using
a pretrained ViT [DBK+

20] model. Furthermore, for fair comparison to previous work we
also explore random initialization without any additional pre-training employing a Resnet3D
architecture. Then we pass the frame features to the temporal encoder. The architecture of the
temporal encoder changes from stage to stage that we discuss in detail in Sec. 4.4. For the first
and the second stages, we use cross entropy loss with self-generated labels. The overview of
the framework is shown in Fig. 4.2.

4.3.2 Temporal Transformations of Inherent Biases of Unintentional Actions

The potential diversity of unintentional actions encompasses all possible types of activities, since
it is human nature to have failures during executing intentional actions. We aim to grasp the
motion inherent biases of unintentional actions and propose several temporal transformations
grouped in two categories: motion speed and motion direction transformations. Changes in the
motion speed can correspond to unintentional actions when, for example, the person stumbles
and tries to keep balance by moving faster. Whereas, changes in the motion direction can occur
by falling down or unexpectedly sliding backwards. While these are just two examples, in
practice similar observations hold for a wide variety of unintentional actions. We ground the
set of transformations on the above intuition that connect temporal motion and inherent biases
of unintentionality. In this work, we consider each video as an ordered set of units, which
can be either frames or clips. We formulate the framework in a multi-stage manner and, thus,
apply these transformations in the first stage to frames and in the second stage to clips. In
Fig. 4.4 we show the difference between frame-level and clip-level T2IBUA using the shuffle
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Figure 4.2: Framework overview. In the first and the second stages, we use self-supervised
feature enhancement by predicting T2IBUA . In the first stage, we enhance the representations
so that they encode short-term dependencies based on neighbouring frames by training the
frame encoder T f rame and MLP1. During the second stage, we further fine-tune representations
so that they encode long-term dependencies using inter clip information by fine-tuning the
frame encoder T f rame and training the clip encoder Tclip together with MLP2. During the stage
three, we train in a fully-supervised way for downstream tasks by fine-tuning the frame T f rame
and clip Tclip encoders, while we train MLP3 and the CRF parameters.

transformation.
We define T2IBUA as follows:

• Speed-up: We synthetically vary the number of units of the video by uniformly subsam-
pling them with the ratios {1/2, 1/4, 1/8}

• Random point speed-up: We sample a random index ri ∈ {1 · · · t} to indicate the unit from
which we are synthetically speeding up the video. Specifically, we start subsampling of
the video units after ri unit with ratio 1/ρ:

[1, 2, · · · , t − 1, t] → [1, 2, · · · , ri, ri + ρ, · · · , t − ρ, t].

where t is the length of the video.

• Double flip: We mirror the sequence of the video units and concatenate them to the
original counterpart:

[1, 2, · · · , t − 1, t] → [1, 2, · · · , t − 1, t, t − 1, · · · , 2, 1].

• Shuffle: The video units are sampled in a random, non-repeating and non-sorted manner.

• Warp: The video units are sampled randomly and sorted increasingly by their original
index.
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Figure 4.3: T2IBUA. We group T2IBUA in the speed group, where the speed of the video
changes uniformly, and the direction group, where the speed changes non-uniformly, or we
permute the units of the video.

All transformations are depicted in Fig. 4.3. We group T2IBUA in the motion speed group
where we include the Speed-up variations and the motion direction group where we include the
rest of the proposed T2IBUA.

T2IBUA prediction: For the feature enhancement, we associate a discrete label to each T2IBUA
and train our framework in a self-supervised way to predict the label of the T2IBUA that
we apply either on frame or clip level. Each input sequence is transformed into a set of 6

sequences. The correspondences between the self-generated labels and the 6 transformed
sequences are as follows: 1 - Initial sequence without T2IBUA; {2, 3, 4} - Speed-up with sampled
ratio ∈ {1/2, 1/4, 1/8}; 5 - Random point speed-up; 6 - Double flip; 7 - Shuffle; 8 - Warp. Specifically,
we predict the transformation applied to each of the 6 resulting sequences correspondingly.
Therefore, the model learns to distinguish various simulated inherent biases of unintentional
actions on the same sequence.

4.4 Multi-Stage Learning for Unintentional Action Recogni-
tion

In this section, we first introduce the Transformer block, a building element for the different
modules of our temporal encoder in Sec. 4.4.1. Then we discuss in details each learning stage
of our framework in Sec. 4.4.2, 4.4.3 and 4.4.4.

4.4.1 Transformer block

In this work, to process long sequences, we utilize a transformer architecture. We integrate
intra and inter clip information and capture information for unintentional action recognition
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Frame
shuffle

Clip
shuffle 

Figure 4.4: Shuffle transformation. Top:
Frame level. Each frame moves randomly
to any position. Bottom: Clip level. We group
frames into clips. Frames cannot change the
position within a clip, while clips are shuffled
randomly.

Input sequence

Full attention Sliding window attention

Figure 4.5: Attention computation. Left: Full
attention. Required memory and processing
time scale quadratically. Right: Sliding win-
dow attention mechanism. Required memory
and processing time scale linearly with the
input sequence length.

from different granularity levels, frame and clip levels. To aggregate information over the
whole video, we need to process a long sequence of consecutive frames or clips from the
video. Further, we refer to the elements of frame or clip sequences as units. In the datasets,
all videos are usually of different lengths, and the vanilla transformer model [DBK+

20] scales
quadratically with the sequence length in the required memory and processing time. The
Longformer [BPC20] addresses this problem by attending only to a fixed-sized window for
each unit. The difference in the attention computation is shown in Fig. 4.5. We apply a window
of size w so that each unit attends to 1

2 w units from the past and 1
2 w from the future. All

building blocks for the temporal encoder in our work follow the structure of Longformer
attention blocks. The transformer blocks can update the input sequence based on the temporal
context or aggregate the temporal information from the entire sequence into one representation
vector. For the former, for a given input sequence of units U = {u1, · · · , uK} we update the
sequence and output U′ = {u′

1, · · · , u′
K}. For the latter, we expand the given input sequence

with an additional classification unit cls that serves as aggregation unit across the whole
sequence [DBK+

20], [NBZA21]. Therefore, we map the expanded input sequence U ∪ {cls}
to cls′ that aggregates the sequence into one representation. For more details we refer to the
original paper [BPC20].

4.4.2 [Stage 1] Frame2Clip (F2C) learning

In the first stage of our framework, we enhance the pre-trained features such they encode intra
clip information based on neighboring frames. We operate within short clips and, thus, capture
local motion information. First, we sample a short clip x of the length n from a long input video
X, where n < |X| and |X| is the length of the input video. The clip x consists of sequential
frames x = { f1, · · · , fn} from the same video X. We apply T2IBUA T to this sequence of
frames of the clip x as we show schematically in the shuffle transformation on the top of Fig. 4.4.
As a label for the transformed clip T (x) we use the index that corresponds to the respective
T2IBUA, e.g. the shuffle transformation has index 7. Then, from the spatial encoder S we
obtain the spatial frame features for the sequence. Thereafter, to impose the intra connections
between the frames of the same sequence, we use the temporal frame encoder T f rame that is
composed of the transformer blocks. The output of this encoder is one representation vector
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for the clip, hence we expand the sequence of frame features with an additional unit cls1 to
aggregate the temporal information from the clip x into one representation x̃. Finally, we
predict the T2IBUA index with a classification layer MLP1. We compute cross-entropy loss
and optimize parameters of the temporal frame encoder T f rame and a classification layer MLP1.
Formally, we apply the following pipeline in the first stage:

ŷclip = MLP1(T f rame(S(T ( f1, · · · , fn)), cls1)), (4.1)

where ŷclip is the predicted label of the transformation applied to the clip x. Note that at
this stage of the training, we process all sampled clips independently of each other. Our
F2C learning implies intra-clip encoding, therefore, it can be also substituted with the more
common spatio-temporal networks such as ResNet3D that learn representations of short clips.

4.4.3 [Stage 2] Frame2Clip2Video (F2C2V) learning

In the second stage of our framework, we further enhance the representations based on the
clip level transformations. At this stage, we integrate inter clip information into the video
representation to model long-term dependencies. The input video X of length |X| we split
into overlapping clips z = {x1, x2, · · · , xN} that we sample with stride k from the video, where
N = |X|−n

k + 1. Each clip consists of n frames xi = { f i
1, · · · , f i

n}. During F2C2V learning stage
we apply T2IBUA T to the sequence of clips of the whole video X as we show schematically
on the bottom of Fig. 4.4. Specifically, the order of consecutive frames within each clip remains
fixed, whereas the sequence of the clips is transformed T (z). As in the first stage, we first
pass frames of the clips through the spatial encoder S to obtain frame-level features, then the
sequence of frames for each clip xi = { f i

1, · · · , f i
n} is aggregated into one clip representation x̃i

by the frame encoder T f rame. Note that the frame sequence during this stage follows the original
order. Then we aggregate the transformed sequence of clip representations T (x̃1, x̃2, · · · , x̃N)
into video representation vector X̃ with the temporal clip encoder Tclip. We predict T2IBUA
that was applied to the sequence of clips with the classification layer MLP2. Formally, the
second stage is as follows:

x̃i = T f rame(S( f i
1, · · · , f i

n), cls1), ∀i ∈ {1, . . . , N}; (4.2)

ŷvideo = MLP2(Tclip(T (x̃1, · · · , x̃N), cls2)), (4.3)

where ŷvideo is the predicted T2IBUA label applied to a sequence of clips from video X. To
aggregate all the clips into one video vector we similarly use an additional classification token
cls2 as in the previous stage. At this stage, we optimize the parameters of the temporal clip
encoder Tclip and the classification layer MLP2, the parameters of the temporal frame encoder
T f rame we transfer from the previous stage and fine-tune. Note that at each stage we utilize a
new classification layer and discard the one from the previous stage.

4.4.4 [Stage 3] Downstream Transfer to Unintentional Action Tasks

In the last stage, we extend our framework to supervised unintentional action recognition
tasks. For these tasks, we predict the unintentionality for each short clip rather than for
the entire video. This stage is completely supervised with clip level labels, therefore we
do not apply T2IBUA. The input video X is divided into temporally ordered overlapping
clips z = {x1, x2, · · · , xN}. We follow the pipeline of the second stage and extract clip level
representation vectors {x̃1, x̃2, · · · , x̃N} with the temporal frame encoder T f rame. Then we use
the temporal clip encoder Tclip without the classification aggregation unit cls2 given that for the
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Figure 4.6: Multi-stage temporal encoder. The T f rame encoder aggregates the frames of
each input clip x1 into single-vector clip representation x̃i. Tclip updates x̃i with inter-clip
information resulting into c̃i. MLP turns c̃1 into emission scores ei for the CRF layer, which
predicts clip-level labels.

supervised tasks we use clip-level classification labels. The output of Tclip then is the sequence
of clip representations instead of one video representation vector. By using the temporal clip
encoder Tclip each clip representation vector is updated with the inter clip information from
the whole video X. Finally, we pass the clip vectors through the classification layer MLP3 to
obtain the emission scores that we use in the CRF layer TCRF. The overall downstream transfer
stage is as follows:

x̃i = T f rame(S( fi,1, · · · , fi,n), cls1), ∀i ∈ {1, . . . , N}; (4.4)

{ŷ1, · · · , ŷN} = TCRF(MLP3(Tclip(x̃1, · · · , x̃N)), T), (4.5)

where {ŷ1, · · · , ŷN} predicted clip level labels and T is the transition matrix of the CRF layer.
The CRF layer aims to explicitly model the high-level temporal structure of the unintentional

videos between the clips as shown in Fig. 4.1. For videos containing unintentional actions the
high-level order imposes a smooth transition from normal to transition to unintentional clips,
therefore we can incorporate this prior information on the order of the clip labels. The CRF
layer facilitates dependencies between the current clip and the previously predicted labels and
enforces neighbouring clips to have the same label. This layer is parametrized by the transition
matrix T ∈ RC×C, where Ti,j is the score of transitioning from label i to label j and C stands for
the number of classes. We denote by θ the parameters of the temporal encoder T and MLP3
together that we optimize during training, by L ∈ RN the vector of clip labels for the input
sequence of clips z and by E ∈ RN×C an emission matrix that consists of logits for each unit
of the input sequence generated by MLP3 layer. Then, we can calculate the scores for a label
sequence L̂ given the input sequence z = {x1, · · · , xN}, trainable weights θ and the transition
matrix T as

s(L̂, z, θ, T) =
n

∑
t=1

(
TLt−1,Lt + Et,Lt

)
. (4.6)

Let Lall be the set of all possible vectors of labels for the input clip sequence. Then the loss
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function is the negative log-likelihood:

L(θ, T) = −log
exp(s(Lgt, z, θ, T))

∑L∈Lall
exp(s(L, z, θ, T))

, (4.7)

where Lgt the ground truth labels for each clip of the input sequence z. The total loss is the
average over all training sequences.

During the inference, we compute the optimal labels Lopt for the input sequence of clips
ztest as

Lopt =L∈Lall s(L, ztest, θ⋆, T⋆), (4.8)

where θ⋆ and T⋆ are the optimized model parameters. Note that Eq. 4.8 can be solved efficiently
with the Viterbi algorithm.

4.5 Experiments

In this section, we present experimental findings that validate our framework. First, we
introduce the Oops! dataset, present different backbone models used in the framework and
discuss the implementation details of our method. We further compare our framework to
the state-of-the-art on the three subtasks in Sec. 4.5.1 and then we present extensive ablation
experiments to validate the impact of each of the components in Sec. 12.4.2.

Dataset: Oops! [ECV20] is a collection of 20,338 amateur fail videos from YouTube. The dataset
is split into three sets: 7,368 labelled videos for supervised training, 6,739 labelled videos for
validation, and 6,231 unlabelled videos for pretraining. Each label in the first two sets consists
of the timestamp where the action transitions from intentional to unintentional. Following the
clip sampling procedure described in Sec. 4.4 we get 18, 069 intentional clips, 4, 137 transitional
clips and 19, 679 unintentional clips.

Spatial Encoder: To disentangle the influence of different components of the framework, to pro-
vide a fair comparison to previous methods and to follow the trend of performant architectures,
we use two backbones for the main experiments. Similarly to prior work [ECV20], [HXZ20], we
employ ResNet3D (R3D) [HKS18]. This backbone is spatio-temporal and, therefore, substitutes
both spatial S and frame level T f rame encoder as we discuss in Sec. 4.4.2, we refer to it as
F2C level for R3D backbone. In this setup, we learn the representations from scratch instead
of enhancing pre-trained representations to fairly compare to previous works. To decou-
ple spatial and temporal dimensions we use ViT model [DBK+

20] pretrained on ImageNet-
21K[RBBNZM21] (IN-21K). In this setup, we leverage the pre-trained image representations
and further enhance them for unintentional actions. We note that we freeze ViT model, while
R3D model we train from scratch with a random initialization. Each encoder consists of three
stacked transformer blocks, each block constitutes of 16 parallel heads.

Implementation details: We sample clips of 16 frames from the input video with stride k = 4.
We train for 100 epochs for the first and second stage and for 50 epochs for the third stage with
the AdamW [LH17b] optimizer with weight decay of 1e − 4. The starting learning rate for all
stages is 1e − 4 and is decreased to 1e − 6 using a cosine decay policy. During the third stage,
the loss function is weighted as ωi = max(η1,η2,··· ,ηc)/ηi, where η1 is the number of labels in class i
and c is the number of classes. We recalculate the weights during the anticipation task as class
sample distribution changes over time.
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Method Backbone Init. Pretrain Cls. Loc. Ant.
Dataset Acc. τL : 0.25 τL : 1 τA : 1

K700 Supervision [ECV20] R(18)3D K700 - 64.0 46.7 75.9 59.7

Epstein et al. [ECV20] R(18)3D - Oops! 61.6 36.6 65.3 56.7
Han et al. [HXZ20] (2+3D)R18 - (K400+Oops!) 64.4 - - -

Ours (F2C) R(18)3D - Oops! 65.3 37.7 67.8 66.7
Ours (F2C2V) R(18)3D - Oops! 74.0 39.4 69.5 76.1

Ours (F2C) ViT∗ IN-21K Oops! 65.5 41.4 72.2 69.2
Ours (F2C2V) ViT∗ IN-21K Oops! 76.9 42.8 72.8 78.1

Table 4.1: Comparison of our approach to state-of-the-art for UA classification, localisation
and anticipation. F2C denotes the first (frame2clip) learning stage, F2C2V denotes the second
(frame2clip2video) learning stage. τL indicates a time window in seconds for ground truth
assignment for the localization task. τA indicates the time step in the future that we predict.
Init. indicates fully supervised initialization of the backbone if applies. ∗ indicates that the
backbone is frozen during all stages.

4.5.1 Comparison to state-of-the-art

In this section we compare the performance of our framework on the three downstream tasks
as classification, localization and anticipation. In Tab. 4.1 we provide a comparison to the
previous state-of-the-art method across all three tasks. The first row in the table corresponds to
supervised pretraining on the Kinetics 700 [SCN+

20]. The benchmark that we follow for the
fair comparison across all the tasks is defined in Oops! dataset [ECV20].

Unintentional Action Classification. We first compare our framework to the recent state-of-the-
art work on unintentional action classification. We divide Tab. 4.1 into blocks with comparable
backbones and pre-training methods. We can observe a significant improvement over the
previous state-of-the-art method by approximately 10 points with R3D backbone and training
from scratch. In contrast to Han et al. [HXZ20] we pretrain our model only on the Oops!
dataset without additional external data. With our temporal encoder on the frame level, we
gain minor improvement by 0.9 points indicating that T2IBUA helps to improve even on the
F2C level, while our two stage temporal encoder allows us to achieve substantial increase in the
performance by 9.6 points. We notice further increase in performance when we use pre-trained
frozen ViT as our backbone. For this setup, we enhance the pre-trained features and gain an
improvement of 1.1 points with our frame level encoder and 12.5 points with our two stage
temporal encoder. These results indicate the importance of connections between intra and inter
clip information in the video

Unintentional Action Localisation. For this downstream task, we localize the transition point
from intentional to unintentional action in the video. We directly validate the network trained
on unintentional action classification task and detect the transition point from intentional action
to unintentional. The transitional clip for this task we define as the clip with the maximum
output score of being transitional. In Tab. 4.1 the localisation column shows the performance
of our framework for two temporal localisation thresholds. By using R3D as our backbone, we
improve by 2.8 and 4.2 points for the τL = 0.25 and τL = 1 respectively compared to Epstein
et al. [ECV20].We imporove by 6.2 and 7.5 points for each threshold respectively when using
ViT as our backbone. Additionally, we can observe the same trend as for the classification task,
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T2IBUA CRF
ViT R3D

F2C F2C2V F2C F2C2V

− − 60.9 69.6 59.3 65.6
✓ − 65.5 74.3 63.8 70.4
✓ ✓ 65.0 76.9 65.3 74.0

Table 4.2: Influence of T2IBUA and CRF layer. We evaluate classification performance for two
representations, pretrained ViT representation and R3D.

specifically, the clip level model outperforms the frame level model. Note that for this task
we reuse the model that is trained for the classification task where the number of normal and
unintentional clips is notably higher than the number of transitional clips. The localisation
task requires the model to be very specific on the boundaries when the unintentionality starts.
We suppose that this influences the smaller improvement for the localization task than for the
other tasks.

Unintentional Action Anticipation. Further, we validate our framework on anticipation of
unintentional actions. During the supervised training, we train our model to predict the
label of the future clip. To directly compare to the previous work, we anticipate an action 1.5
seconds into the future as in previous work. Our model achieves new state-of-the-art results
with a considerable improvement by 19.4 and 21.4 points for the R3D and ViT backbones
respectively. Note that the performance of our framework is better for the anticipation task
than for classification. As mentioned, the dataset includes more unintentional clips than normal
clips, and in combination that we are able to predict unintentional clips more accurately, it
leads to the difference in the performance between the downstream tasks.

4.5.2 Ablation study

We perform ablation studies on different components and backbones of our framework to
assess their influence on the overall performance. We use the unintentional action classification
task for all the evaluations in this section.

Feature enhancement stages. In this section we analyse the influence of the self-supervised
training to enhance the representations with T2IBUA on the UA classification task. In Table 4.2
the first and the second rows show the performance with and without T2IBUA respectively.
Specifically, for the first row, we skip the self-supervised procedure for the pretraining of
the parameters and directly optimize from scratch the respective temporal encoders with the
supervised task. For the second row, we include the self-supervised feature enhancement
corresponding to the respective learning stages. We can observe that for each temporal
encoder (F2C and F2C2V) we have a significant increase with T2IBUA representation enhancing
(learning). Considering only intra clip information (F2C) we improve by 4.6 and 4.5 points for
the ViT and R3D backbones respectively while using additionally inter clip information we
improve by 4.7 and 4.8 points. These results confirm the importance of the self-supervised
feature enhancement for UA recognition performance.

Learning Stages for Temporal Encoder. In this section, we evaluate the impact of multi-stage
learning of our temporal encoder. In Table 4.2 we show in the F2C column the performance
across different settings for the corresponding encoder, see the detailed structure in Figure 4.6
for ViT backbone, whereas R3D backbone comprises this stage. In the second column with
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T2IBUA F2C F2C2V

− 60.9 73.2
Speed 62.5 73.8

Direction 63.3 75.1
All 65.5 76.9

Table 4.3: Influence of T2IBUA groups. We evaluate UA classification task for different stages
of learning of the temporal encoder.

the F2C2V encoder, we observe a significant improvement by about 5 − 10 points consistently
across all the settings. Furthermore, we evaluate the performance of the spatial features from
the fixed pretrained ViT model [DBK+

20] that we use as input features to our temporal encoder.
We obtain 58.4 points without T2IBUA and without CRF. It supports the importance of the
temporal encoder that is able to capture successfully inter and intra clip information.
T2IBUA groups. We assess the influence of the T2IBUA groups on the overall performance.
Table 4.3 shows that both groups improve the performance for both encoder levels. We notice
that the direction T2IBUA have a more significant impact than the speed T2IBUA. Whereas, in
contrast to the separate groups, the combination of the speed and the direction transformations
leads to greatly enhanced representations that effectively capture the inherent biases of UA.
We additionally study an influence of each transformation separately that shows random point
speed-up to be the most important, while the combination of all T2IBUA is still predominant.

4.5.3 Qualitative results

In this section, we show qualitative results for our framework. Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12

display these results. In each case, the first plot in the figure shows the confidence of our
framework before using CRF. The x axis represents the time in seconds, while the y axis
represents the confidence for that prediction. We mark the ground truth transition point
tgt of the video with the vertical line at x = tgt. The second plot in each figure shows the
predictions of the framework when we include CRF. The x axis shows the time in seconds,
while the y axis shows the discrete clip label. The third plot in each figure, shows the shows
the confidence of model in [ECV20] and has the same layout as the first plot. At the top of the
figure, we show frames for clips close to the transition point in the video. The color of the
frame border indicates the ground truth label for it. We take the frame in the middle of the clip
each prediction is related to.

In Figures 4.7, 4.8, we show samples for which our network performs the best. First, we
notice in the continuous plot that the prediction is correct for each clip. In addition, we can
see that the confidence is high for all clips and there is a clean transition point and ordering
between the different types of clips. These results translate to the discrete scatter plot, where
we notice that all the predictions are correct. In contrast to our results, the results from [ECV20]
are clearly more noisy and less correct.

In Figures 4.9, 4.10 we show samples for which the predictions are less accurate. We observe
that the order of the clip types is preserved. However, the exact transition from one clip type to
the next is less certain, specifically, the confidence of the predictions on the boarders between
the different types is lower than the maximal possible score as in the previous case. The same
is not true for results from [ECV20] where not only the prediction confidence is suboptimal
but also the clip order is not preserved. In the scatter plots of both figures, we notice the
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improvement on the performance due to the CRF layer.
Finally, in Figures 4.11, 4.12 we show samples on which our framework performs the worst.

In this case, we observe that there are noisy predictions which violate the order of the clip
types as well as the clean transitions between the clip types. We notice similar results for
these samples when using the model from [ECV20]. CRF layer improves the quality of the
predictions in these cases the most. It makes the prediction smoother and reduces the noise,
but the transition point localisation remains poor.
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Figure 4.7: A cat falling while trying to hold on to an object on the wall. We notice that when
we do not use CRF, all the predictions are correct and with high confidence. After adding CRF,
the predictions remain all correct.



4.5 experiments 61

1

I

T

U

P
re

d
ic

ti
o

n
 c

o
n

fi
d

en
ce

G
ro

u
n

d
 t

ru
th

 la
b

e
l

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Intentional Transitional Unintentional Ground TruthGround Truth Transition Point CRF Prediction

1

0 1 2 3 4 5 6 7 8 9 10 11

Time (sec)

P
re

d
ic

ti
o

n
 c

o
n

fi
d

en
ce

Time (sec)

Time (sec)

Ours

Ours

Epstein et al.

Figure 4.8: A person abruptly ending the zipline ride and turning upside-down at the end
of it. We notice that when we do not use CRF, all the predictions are correct and with high
confidence. After adding CRF, the predictions remain all correct.
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Figure 4.9: A person trying to perform tricks on a pull-up bar and falling down in the sand.
We notice that when we do not use CRF, most of the predictions are correct and not all of them
have a high confidence. Adding CRF in this case leads to more predictions being correct.
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Figure 4.10: A person trying to perform a backflip from the top of a bench and falling on the
floor. We notice that when we do not use CRF, most of the predictions are correct and not all of
them have a high confidence. Adding CRF in this case leads to marginally better performance.
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Figure 4.11: An ATV has hit the back of a car and the camera films the aftermath. We notice that
when we do not use CRF, there are few predictions that are correct, and they are noisy overall.
In addition, it is hard to correctly locate the transition point from intentional to unintentional
action. Adding CRF makes the predictions overall smoother and less noisy. However, it is still
hard to locate the transition point.
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Figure 4.12: The person on the left falling in the lake while trying to throw a bucket of water
on the person in the middle. We notice that when we do not use CRF, there are few predictions
that are correct, and they are noisy overall. In addition, it is hard to correctly locate the
transition point from intentional to unintentional action. Adding CRF makes the predictions
overall smoother and less noisy. However, it is still hard to locate the transition point.



66 chapter 4. self-supervised training for unintentional actions

4.6 Conclusion

In Chapter 3, we similarly utilize the inherent biases found in videos, where the sequence of
actions is predefined by the tasks. In this chapter, we explore the characteristics of unintentional
actions. We propose a multi-stage framework to exploit inherent biases that exist in videos
of unintentional actions for learning targeted representations. First, we simulate these biases
with the temporal transformations that we employ for self-supervised training to enhance
pre-trained representations. We formulate the representation enhancement task in a multi-stage
way to integrate inter and intra clip video information. This leads to powerful representations
that significantly enhance the performance on the downstream UA tasks. Finally, we employ a
CRF to explicitly model global dependencies. We evaluate our model on the three unintentional
action recognition tasks, classification, localisation, and anticipation, and achieve state-of-the-art
performance across all of them. Transitioning to the next chapter, Chapter 5, we introduce a
framework designed to clarify the underlying learning dynamics of self-supervised learning
methods, with broad applicability to image and video recognition frameworks.
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In this chapter, we transition from examining representations designed for specific types
of videos to analyzing the behavior of one of the most popular variants of SSL: contrastive
methods. We focus particularly on their performance on long-tail data, given that nat-

ural data often follows long-tail distributions. In particular, we investigate the role of the
temperature parameter τ in the contrastive loss, by analysing the loss through the lens of
average distance maximisation, and find that a large τ emphasises group-wise discrimination,
whereas a small τ leads to a higher degree of instance discrimination. While τ has thus far
been treated exclusively as a constant hyperparameter, in this work, we propose to employ
a dynamic τ and show that a simple cosine schedule can yield significant improvements in
the learnt representations. Such a schedule results in a constant ‘task switching’ between an
emphasis on instance discrimination and group-wise discrimination and thereby ensures that
the model learns both group-wise features, as well as instance-specific details. Since frequent
classes benefit from the former, while infrequent classes require the latter, we find this method
to consistently improve separation between the classes in long-tail data without any additional
computational cost.

This chapter is based on [KBS+23]. Anna Kukleva, as the co-first author, contributed
equally to the design of the temperature scheduling, the analytical framework, as well as
the writing. the conceptual development of this project and the writing of the paper. The
implementation of the framework was fully handled by Anna Kukleva.

5.1 Introduction

Deep Neural Networks have shown remarkable capabilities at learning representations of their
inputs that are useful for a variety of tasks. Especially since the advent of recent self-supervised
learning (SSL) techniques, rapid progress towards learning universally useful representations
has been made.

Currently, however, SSL on images is mainly carried out on benchmark datasets that have
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been constructed and curated for supervised learning (e.g. ImageNet [DDS+09], CIFAR [KH09],
etc.). Although the labels of curated datasets are not explicitly used in SSL, the structure of
the data still follows the predefined set of classes. In particular, the class-balanced nature of
curated datasets could result in a learning signal for unsupervised methods. As such, these
methods are often not evaluated in the settings they were designed for, i.e. learning from truly
unlabelled data. Moreover, some methods (e.g. [ARV20, CMM+

20]) even explicitly enforce
a uniform prior over the embedding or label space, which cannot be expected to hold for
uncurated datasets.

In particular, uncurated, real-world data tends to follow long-tail distributions [Ree01], in
this chapter, we analyse SSL methods on long-tailed data. Specifically, we analyse the behaviour
of contrastive learning (CL) methods, which are among the most popular learning paradigms
for SSL.

In CL, the models are trained such that embeddings of different samples are repelled,
while embeddings of different ‘views’ (i.e. augmentations) of the same sample are attracted.
The strength of those attractive and repelling forces between samples is controlled by a
temperature parameter τ, which has been shown to play a crucial role in learning good
representations [CFGH20, CKNH20]. To the best of our knowledge, τ has thus far almost
exclusively been treated as a constant hyper-parameter.

In contrast, we employ a dynamic τ during training and show that this has a strong effect
on the learned embedding space for long-tail distributions. In particular, by introducing a
simple schedule for τ we consistently improve the representation quality across a wide range
of settings. Crucially, these gains are obtained without additional costs and only require
oscillating τ with a cosine schedule.

This mechanism is grounded in our novel understanding of the effect of temperature on
the contrastive loss. In particular, we analyse the contrastive loss from an average distance
maximisation perspective, which gives intuitive insights as to why a large temperature empha-
sises group-wise discrimination, whereas a small temperature leads to a higher degree of instance
discrimination and more uniform distributions over the embedding space. Varying τ during
training ensures that the model learns both group-wise and instance-specific features, resulting
in better separation between head and tail classes.

The contributions of this work are as follows:

• We carry out an extensive analysis of the effect of τ on imbalanced data;

• We analyse the contrastive loss from an average distance perspective to understand the
emergence of semantic structure;

• We propose a simple yet effective temperature schedule that improves the performance
across different settings;

• We show that the proposed τ scheduling is robust and consistently improves the perfor-
mance for different contrastive learning methods and hyperparameter choices.

5.2 Related Work

In this section, we discuss more in details prior work on the role of negatives in contrastive
learning, the imbalanced self-supervised learning and the analysis of contrastive learning. We
will not revisit the topic of contrastive self-supervised learning as previously discussed in
Chapter 2.
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Negatives. The importance of negatives for contrastive learning is remarkable and noticed in
many prior works [WWW+

21, YHH+
22, ZZP+

22, ITAC18, KSP+
20, RCSJ20, KAG22, BIS+23,

LYZ+
23]. [YHH+

22] proposes decoupled learning by removing the positive term from the de-
nominator, [RCSJ20] develops an unsupervised hard-negative sampling technique, [WWW+

21]
proposes to employ a triplet loss, [LYZ+

23] proposes deep graph clustering methods with a
comprehensive similarity measure criterion and a general dymanic sample weighing strat-
egy, and [ZZP+

22, KAG22] propose to improve negative mining with the help of different
temperatures for positive and negative samples that can be defined as input-independent or
input-dependent functions, respectively. In contrast to explicitly choosing a specific subset
of negatives, we discuss the Info-NCE loss [OLV18] through the lens of an average distance
perspective with respect to all negatives and show that the temperature parameter can be used
to implicitly control the effective number of negatives.

Imbalanced Self-Supervised Learning. Learning on imbalanced data instead of curated
balanced datasets is an important application since natural data commonly follows long-
tailed distributions [Ree01, LMZ+

19, WRH17]. In recent work, [KLX+
20], [YX20], [LHGM21],

[ZTC+
22], [GS22] discover that self-supervised learning generally allows to learn a more

robust embedding space than a supervised counterpart. [THvdO21] explores the down-stream
performance of contrastive learning on standard benchmarks based on large-scale uncurated
pre-training and propose a multi-stage distillation framework to overcome the shift in the
distribution of image classes. [JCMW21, ZYW+

22] propose to address the data imbalance by
identifying and then emphasising tail samples during training in an unsupervised manner. For
this, [JCMW21] compares the outputs of the trained model before and after pruning, assuming
that tail samples are more easily ‘forgotten’ by the pruned model and can thus be identified.
[ZYW+

22] uses the loss value for each input to identify tail samples and then use stronger
augmentations for those. Instead of modifying the architecture or the training data of the
underlying frameworks, we show that a simple approach—i.e. oscillating the temperature
of the Info-NCE loss [OLV18] to alternate between instance and group discrimination—can
achieve similar performance improvements at a low cost.

Analysis of Contrastive Learning (CL). Given the success of CL in representation learning,
it is essential to understand its properties. While some work analyses the interpretability of
embedding spaces [BZK+

17, FV18, LFV20, LAV21], here the focus lies on understanding the
structure and learning dynamics of the objective function such as in [SPA+

19, TWSM20, CLL21].
E.g., [CLL21] study the role of the projection head, the impact of multi-object images, and a
feature suppression phenomenon. [WL21b] analyses the feature learning process to understand
the role of augmentations in CL. [RSY+

21] finds that an emphasis on instance discrimination
can improve representation of some features at the cost of suppressing otherwise well-learned
features. [WI20, WL21a] analyse the uniformity of the representations learned with CL. In
particular, [WL21a] focuses on the impact of individual negatives and describe a uniformity-
tolerance dilemma when choosing the temperature parameter. In this chapter, we rely on the
previous findings, expand them to long-tailed data distributions and complement them with
an understanding of the emergence of semantic structure.

5.3 Method

In the following, we describe our approach and analysis of contrastive learning on long-tailed
data. For this, we will first review the core principles of contrastive learning for the case
of uniform data (Section 5.3.1). In Section 5.3.2, we then place a particular focus on the
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Epoch

Figure 5.1: Coverage of the embedding space during training. To measure coverage we
uniformly sample 500 bins on the unit sphere. Each training sample is assigned to the closest
bin and we plot a histogram of the assignments. X-axis: bins. Y-axis: number of training
samples in a bin. Colors denotes epochs: light is the 1st epoch of training, dark is the last. For
small τ (a) the representations are more uniformly distributed (cf. Section 13.3).

temperature parameter τ in the contrastive loss and its impact on the learnt representations.
Based on our analysis, in Section 5.3.3 we discuss how the choice of τ might negatively affect
the learnt representation of rare classes in the case of long-tailed distributions. Following
this, we describe a simple proof-of-concept based on additional coarse supervision to test our
hypothesis. We then further develop temperature schedules (TS) that yield significant gains
with respect to the separability of the learnt representations in Section 13.4.

5.3.1 Contrastive Learning

The Info-NCE loss is a popular objective for contrastive learning (CL) and has lead to im-
pressive results for learning useful representations from unlabelled data [OLV18, WXSL18,
HFW+

20, CKNH20]. Given a set of inputs {x1, . . . , xN}, and the cosine similarities sij between
learnt representations ui= f (A(xi)) and vj=g(A(xj)) of the inputs, the loss is defined by:

Lc =
N

∑
i=1

− log
exp (sii/τ)

exp (sii/τ) + ∑j ̸=i exp
(
sij/τ

) . (5.1)

Here, A(·) applies a random augmentation to its input and f and g are deep neural networks.
For a given xi, we will refer to ui as the anchor and to vj as a positive sample if i= j and as a
negative if i ̸= j. Last, τ denotes the temperature of the Info-NCE loss and has been found to
crucially impact the learnt representations of the model [WI20, WL21a, RSY+

21].
Uniformity. Specifically, a small τ has been tied to more uniformly distributed representations,
see Figure 5.1. For example, [WL21a] show that the loss is ‘hardness-aware’, i.e. negative
samples closest to the anchor receive the highest gradient. In particular, for a given anchor,
the gradient with respect to the negative sample vj is scaled by its relative contribution to the
denominator in Equation (5.1):

∂Lc

∂vj
=

∂Lc

∂sij
×

∂sij

∂vj
=

1
τ
× [softmaxk(sik/τ)]j ×

∂sij

∂vj
. (5.2)

As a result, for sufficiently small τ, the model minimises the cosine similarity to the nearest
negatives in the embedding space, as softmax approaches an indicator function that selects
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the largest gradient. The optimum of this objective, in turn, is to distribute the embeddings as
uniformly as possible over the sphere, as this reduces the average similarity between nearest
neighbours, see also Figures 5.1 and 5.3.
Semantic structure. In contrast, a large τ has been observed to induce more semantic structure
in the representation space. However, while the effect of small τ has an intuitive explanation,
the phenomenon that larger τ induce semantic structure is much more poorly understood and
has mostly been described empirically [WL21a, RSY+

21]. Specifically, note that for any given
positive sample, all negatives are repelled from the anchor, with close-by samples receiving
exponentially higher gradients. Nonetheless, for large τ, tightly packed semantic clusters
emerge. However, if close-by negatives are heavily repelled, how can this be? Should the loss
not be dominated by the hard-negative samples and thus break the semantic structure?

To better understand both phenomena, we propose to view the contrastive loss through the
lens of average distance maximisation, which we describe in the following section.

5.3.2 Contrastive learning as average distance maximisation

As discussed in the previous section, the parameter τ plays a crucial role in shaping the
learning dynamics of contrastive learning. To understand this role better, in this section, we
present a novel viewpoint on the mechanics of the contrastive loss that explain the observed
model behaviour. In particular, and in contrast to [WL21a] who focused on the impact of
individual negatives, for this we discuss the cumulative impact that all negative samples have on
the loss.

To do so, we express the summands Li
c of the loss in terms of distances dij instead of

similarities sij:

0 ≤ dij =
1 − sij

τ
≤ 2

τ
and cii = exp(dii). (5.3)

This allows us to rewrite the loss Li
c as

Li
c = − log

(
exp (−dii)

exp (−dii) + ∑j ̸=i exp
(
−dij

)) = log

(
1 + cii∑

j ̸=i
exp

(
−dij

))
. (5.4)

As the effect cii of the positive sample for a given anchor is the same for all negatives, in the
following we place a particular focus on the negatives and their relative influence on the loss
in Equation (5.4); for a discussion of the influence of positive samples, please see Section 5.4.4.

To understand the impact of the temperature τ, first note that the loss monotonically
increases with the sum Si = ∑j ̸=i exp(−dij) of exponential distances in Equation (5.4). As log
is a continuous, monotonic function, we base the following discussion on the impact of τ on
the sum Si.
For small τ, the nearest neighbours of the anchor point dominate Si, as differences in similarity
are amplified. As a result, the contrastive objective maximises the average distance to nearest
neighbours, leading to a uniform distribution over the hypersphere, see Figure 5.3. Since
individual negatives dominate the loss, this argument is consistent with existing interpretations,
e.g. [WL21a], as described in the previous section.
For large τ, (e.g. τ ≥ 1), on the other hand, the contributions to the loss from a given negative
are on the same order of magnitude for a wide range of cosine similarities. Hence, the
constrastive objective can be thought of as maximising the average distance over a wider
range of neighbours. Interestingly, since distant negatives will typically outnumber close
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Figure 5.2: Loss contribution by similarity. X-axis: cosine similarity between anchor and
negative. All curves are normalised such that their max y-value is 1. a): influence of an
individual negative sample to the loss depending on its similarity to anchor for different τ;
b): average histogram of distribution of negatives over the hypersphere with respect to their
similarity to the anchor; c): cumulative impact that negative samples have on the loss. The
cumulative contribution of negatives shifts left, towards less similar samples, in contrast to
individual contributions of negatives. As τ → ∞, the cumulative distribution coincides with
the histogram b).

negatives, the strongest cumulative contribution to the contrastive loss will come from more
distant samples, despite the fact that individually the strongest contributions will come from the
closest samples. To visualise this, in Figure 5.2a, we plot the contributions of individual samples
depending on their distance, as well as the distribution of similarities sij to negatives over the
entire dataset in Figure 5.2b. Since the number of negatives at larger distances (e.g. sij ≈ 0.1)
significantly outnumber close negatives (sij > 0.9), the peak of the cumulative contributions1

shifts towards lower similarities for larger τ, as can be seen in Figure 5.2c; in fact, for τ→∞,
the distribution of cumulative contributions approaches the distribution of negatives.

Hence, the model can significantly decrease the loss by increasing the distance to relatively
‘easy negatives’ for much longer during training, i.e. to samples that are easily distinguishable
from the anchor by simple patterns. Instead of learning ‘hard’ features that allow for better
instance discrimination between hard negatives, the model will be biased to learn easy patterns
that allow for group-wise discrimination and thereby increase the margin between clusters of
samples. Note that since the clusters as a whole mutually repel each other, the model is
optimised to find a trade-off between the expanding forces between hard negatives (i.e. within
a cluster) and the compressing forces that arise due to the margin maximisation between easy
negatives (i.e. between clusters).

Importantly, such a bias towards easy features can prevent the models from learning hard
features—i.e. by focusing on group-wise discrimination, the model becomes agnostic to instance-
specific features that would allow for a better instance discrimination (cf. [RSY+

21]). In the
following, we discuss how this might negatively impact rare classes in long-tailed distributions.

5.3.3 Temperature schedules for contrastive learning on long-tail data

As discussed in Section 5.1, naturally occurring data typically exhibit long-tail distributions,
with some classes occurring much more frequently than others; across the dataset, head classes
appear frequently, whereas tail classes contain fewest number of samples. Since self-supervised

1To obtain the cumulative contributions, we group the negatives into 100 non-overlapping bins of size 0.02

depending on their distance to the anchor and report the sum of contributions of a given bin.
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Figure 5.3: Representations of a head and a tail class. Visualisation of the influence of τ on
representations of two semantically close classes (trained with all 10 classes). Red: single head
class and blue: single tail class from CIFAR10-LT. Small τ=0.1 promotes uniformity, while
large τ=1.0 creates dense clusters. With τ{head/tail} we refer to coarse supervision described
in Section 5.3.3 which separates tail from head classes. In black / red / blue, we respectively
show the average kNN accuracy over all classes / the head class / the tail class.

learning methods are designed to learn representations from unlabelled data, it is important to
investigate their performance on imbalanced datasets.
Claim: Tail classes benefit from instance discrimination. As discussed in Section 5.3.2,
sufficiently large τ are required for semantic groups to emerge during contrastive learning as
this emphasises group-wise discrimination. However, as shown by [RSY+

21], this can come at
the cost of encoding instance-specific features and thus hurt the models’ instance discrimination
capabilities.

We hypothesise that this disproportionately affects tail classes, as tail classes consist of only
relatively few instances to begin with. Their representations should thus remain distinguishable
from most of their neighbours and not be grouped with other instances, which are likely of
a different class. In contrast, since head classes are represented by many samples, grouping
those will be advantageous.

To test this hypothesis, we propose to explicitly train head and tail classes with different τ,
to emphasise group discrimination for the former while ensuring instance discrimination for
the latter.
Experiment: Controlling τ with coarse supervision. We experiment on CIFAR10-LT (a long-
tail variant of CIFAR10 - see Section 5.4.1) in which we select a different τ depending on
whether the anchor ui is from a head or a tail class, i.e. of the 5 most or least common classes.
We chose a relatively large τ (τhead=1.0) for the 5 head classes to emphasise group-wise
discrimination and a relatively small τ (τtail=0.1) for the 5 tail classes to encourage the model
to learn instance-discriminating features.

As can be seen in Figure 5.3, this simple manipulation of the contrastive loss indeed provides
a significant benefit with respect to the semantic structure of the embedding space, despite only
weakly supervising the learning by adjusting τ according to a coarse (frequent/infrequent)
measure of class frequency.

In particular, in Figure 5.3, we show the projections of a single head class and a single
tail class onto the three leading PCA dimensions and the corresponding kNN accuracies. We
would like to highlight the following results. First, without any supervision, we indeed find
that the head class consistently performs better for larger values of τ (e.g. 1.0), whereas the tail
class consistently benefits from smaller values for τ (e.g. 0.1). Second, when training the model
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according to the coarse τ supervision as described above, we are not only able to maintain the
benefits of large τ values for the head class, but significantly outperform all constant τ versions
for the tail class, which improves the overall model performance on all classes; detailed results
for all classes are provided in the appendix.
Temperature Schedules (TS) without supervision. Such supervision with respect to the class
frequency is, of course, generally not available when training on unlabelled data and these
experiments are only designed to test the above claim and provide an intuition about the
learning dynamics on long-tail data. However, we would like to point out that the supervision
in these experiments is very coarse and only separates the unlabelled data into frequent and
infrequent classes. Nonetheless, while the results are encouraging, they are, of course, based
on additional, albeit coarse, labels. Therefore, in what follows, we present an unsupervised
method that yields similar benefits.

In detail, we propose to modify τ according to a cosine schedule, such that it alternates
between an upper (τ+) and a lower (τ−) bound at a fixed period length T:

τcos(t) = (τ+ − τ−)× (1 + cos(2π t/T))/2 + τ− ; (5.5)

here, t denotes training epochs. This method is motivated by the observation that τ controls
the trade-off between learning easily separable features and learning instance-specific features.

Arguably, however, the models should learn both types of features: i.e. the representation
space should be structured according to easily separable features that (optimally) represent
semantically meaningful group-wise patterns, whilst still allowing for instance discrimination
within those groups.

Therefore, we propose to alternate between both objectives as in Equation (5.5), to ensure
that throughout training the model learns to encode instance-specific patterns, whilst also
structuring the representation space along semantically meaningful features. Note that while
we find a cosine schedule to work best and to be robust with respect to the choice for T
(Section 13.4.4), we also evaluate alternatives. Even randomly sampling τ from the interval
[τ−, τ+] improves the model performance. This indicates that the task switching between group-
wise discrimination (large τ) and instance discrimination (small τ) is indeed the driving factor
behind the performance improvements we observe.

5.4 Experiments

In this section, we validate our hypothesis that simple manipulations of the temperature
parameter in Equation (5.1) lead to better performance for long-tailed data. First, we introduce
our experimental setup in Section 5.4.1, then in Section 5.4.2 we discuss the results across three
imbalanced datasets and, finally, we analyse different design choices of the framework through
extensive ablation studies in Section 13.4.4.

5.4.1 Implementation Details

Datasets. We consider long-tailed (LT) versions of the following three popular datasets for the
experiments: CIFAR10-LT, CIFAR100-LT, and ImageNet100-LT. For most of the experiments, we
follow the setting from SDCLR [JCMW21]. In case of CIFAR10-LT/CIFAR100-LT, the original
datasets [KH09] consist of 60000 32x32 images sampled uniformly from 10 and 100 semantic
classes, respectively, where 50000 images correspond to the training set and 10000 to a test
set. Long-tail versions of the datasets are introduced by [CJL+

19] and consist of a subset
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of the original datasets with an exponential decay in the number of images per class. The
imbalance ratio controls the uniformity of the dataset and is calculated as the ratio of the sizes
of the biggest and the smallest classes. By default, we use an imbalance ratio 100 if not stated
otherwise. Experiments in Table 5.1, Table 5.3 are the average over three runs with different
permutations of classes. ImageNet100-LT is a subset of the original ImageNet-100 [TKI20]
consisting of 100 classes for a total of 12.21k 256x256 images. The number of images per class
varies from 1280 to 25.

Training. We use an SGD optimizer for all experiments with a weight decay of 1e-4. As
for the learning rate, we utilize linear warm-up for 10 epochs that is followed by a co-
sine annealing schedule starting from 0.5. We train for 2000 epochs for CIFAR10-LT and
CIFAR100-LT and 800 epochs for ImageNet100-LT. For CIFAR10-LT and CIFAR100-LT we use a
ResNet18 [HZRS16] backbone. For ImageNet100-LT we use a ResNet50 [HZRS16] backbone.
For both the MoCo [HFW+

20] and the SimCLR [CKNH20] experiments, we follow [JCMW21]
and use the following augmentations: resized crop, color jitters, grey scale and horizontal
flip. MoCo details: we use a dictionary of size 10000, a projection dimensionality of 128 and a
projection head with one linear layer. SimCLR details: we train with a batch size of 512 and a
projection head that has two layers with an output size of 128. For evaluation, we discard the
projection head and apply l2-normalisation. Regarding the proposed temperature schedules
(TS), we use a period length of T=400 with τ+=1.0 and τ−=0.1 if not stated otherwise.

Evaluation We use k nearest neighbours (kNN) and linear classifiers to assess the learned
features. For kNN, we compute l2-normalised distances between LT samples from the train
set and the class-balanced test set. For each test image, we assign it to the majority class
among the top-k closest train images. We report accuracy for kNN with k=1 (kNN@1) and
with k=10 (kNN@10). Compared to fine-tuning or linear probing, kNN directly evaluates the
learned embedding since it relies on the learned metric and local structure of the space. We
also evaluate the linear separability and generalisation of the space with a linear classifier that
we train on the top of frozen backbone. For this, we consider two setups: balanced few-shot
linear probing (FS LP) and long-tailed linear probing (LT LP). For FS LP, the few-shot train
set is a direct subset of the original long-tailed train set with the shot number equal to the
minimum class size in the original LT train set. For LT LP, we use the original LT training set.

5.4.2 Effectiveness of Temperature Schedules

Contrastive learning with TS. In Table 5.1 we present the efficacy of temperature schedules (TS)
for two well-known contrastive learning frameworks MoCo [HFW+

20] and SimCLR [CKNH20].
We find that both frameworks benefit from varying the temperature and we observe consistent
improvements over all evaluation metrics for CIFAR10-LT and CIFAR100-LT, i.e. the local
structure of the embedding space (kNN) and the global structure (linear probe) are both
improved. Moreover, we show in Table 5.3 that our finding also transfers to ImageNet100-
LT. Furthermore, in Table 5.2 we evaluate the performance of the proposed method on the
CIFAR10 and CIFAR100 datasets with different imbalance ratios. An imbalance ratio of 50

(imb50) reflects less pronounced imbalance, and imb150 corresponds to the datasets with only
30 (CIFAR10) and 3 (CIFAR100) samples for the smallest class. Varying τ during training
improves the performance for different long-tailed data; for a discussion on the dependence of
the improvement on the imbalance ratio, please see the appendix.

TS vs SDCLR. Further, we compare our method with SDCLR [JCMW21]. In SDCLR, SimCLR
is modified s.t. the embeddings of the online model are contrasted with those of a pruned
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CIFAR10-LT CIFAR100-LT
method kNN@1 kNN@10 FS LP LT LP kNN@1 kNN@10 FS LP LT LP

MoCo 63.54 64.56 69.31 65.11 28.69 28.75 26.86 30.41

MoCo + TS 64.99 65.01 72.87 66.86 30.31 29.75 28.97 32.05

SimCLR 59.84 60.19 68.29 61.86 28.81 28.12 25.70 31.20

SimCLR + TS 63.09 62.91 71.86 65.03 31.06 30.06 28.89 33.28

Table 5.1: Effect of temperature scheduling. Comparison of MoCo vs MoCo+TS and SimCLR
vs SimCLR+TS on CIFAR10-LT and CIFAR100-LT with kNN, few-shot and long-tail linear
probe (FS LP and LT LP).

CIFAR-10-LT CIFAR-100-LT
imb 50 imb 150 imb 50 imb 150

method kNN@10 FS LP kNN@10 FS LP kNN@10 FS LP kNN@10 FS LP

MoCo 69.12 74.16 59.13 65.76 32.22 33.53 25.36 22.73

MoCo + TS 71.49 76.37 60.83 68.59 33.24 35.03 26.75 22.78

Table 5.2: Effect of imbalance ratio. MoCo vs MoCo+TS on CIFAR10-LT and CIFAR100-LT for
imbalance ratio 50 (imb50) and 150 (imb150). Evaluation metrics: kNN classifier and few-shot
linear probe (FS LP).

CIFAR-10-LT CIFAR-100-LT ImageNet-100-LT
method kNN@10 FS LP LS LP kNN@10 FS LP LT LP kNN@10 FS LP LT LP

SimCLR 60.19 68.29 61.68 28.12 25.70 31.20 38.00 42.64 44.82

SDCLR 60.74 71.03 64.99 29.22 27.28 34.23 37.36 42.74 46.40

SimCLR + TS 62.91 71.86 65.03 30.06 28.89 33.28 38.86 45.18 47.26

Table 5.3: Comparison with SDCLR. SimCLR vs SDCLR vs SimCLR+TS on CIFAR10-LT,
CIFAR100-LT, and ImageNet100-LT. Evaluation: kNN classifier, few-shot (FS LP) and long-tail
linear probe (LT LP).

version of the same model, which is updated after every epoch. Since the pruning is done by
simply masking the pruned weights of the original model, SDCLR requires twice as much
memory compared to the original SimCLR and extra computational time to prune the model
every epoch. In contrast, our method does not require any changes in the architecture or
training. In Table 5.3 we show that this simple approach improves not only over the original
SimCLR, but also over SDCLR in most metrics.

5.4.3 Ablations

In this section, we evaluate how the hyperparameters in Equation (5.5) can influence the model
behaviour.
Cosine Boundaries. First, we vary the lower τ− and upper τ+ bounds of τ for the cosine
schedule. In Table 5.4 we assess the performance of MoCo+TS with different τ− and τ+
on CIFAR10 with FS LP. We observe a clear trend that with a wider range of τ values the
performance increases. We attribute this to the ability of the model to learn better ‘hard’
features with low τ and improve semantic structure for high τ. Note that 0.07 is the value for
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τ− \ τ+ 0.2 0.3 0.4 0.5 1.0

0.07 69.46 68.86 71.29 71.83 73.26
0.1 68.17 70.34 71.25 72.31 72.87

0.2 68.89 69.37 70.12 69.65 71.42

Table 5.4: Influence of cosine boundaries. Best performance with the largest difference
between τ− and τ+. CIFAR10 with MoCo+TS, evaluating few-shot linear probes (FS LP).

τ in many current contrastive learning methods.

TS FS LP

■ fixed 68.89

■ step 70.18

■ rand 70.26

■ oscil 71.50

■ cos 72.31

Table 5.5: Alternative Schedules. Constant, step function, and random sampling. All
functions are bounded by 0.1 and 0.5.

Cosine Period. Further, we investigate if the length of the period T in Equation (5.5) impacts the
performance of the model. In Table 5.6, we show that modifying the temperature τ based on the
cosine schedule is beneficial during training independently of the period T. The performance
varies insignificantly depending on T and consistently improves over standard fixed τ=0.2,
whereas the best performance we achieve with T=400. Even though the performance is stable
with respect to the length of the period, it changes within one period as we show in Figure 5.4.
Here, we average the accuracy of one last full period over different models trained with
different T and find that the models reach the best performance around 0.7 T. Based on this
observation, we recommend to stop training after (n − 0.3) T epochs, where n is the number of
full periods.
Alternatives to Cosine Schedule. Additionally, we test different methods of varying the
temperature parameter τ and report the results in Table 5.5: we examine a linearly oscillating
(oscil) function, a step function, and random sampling. For the linear oscillations, we follow
the same schedule as for the cosine version, as shown on the right of Table 5.5. For the
step function, we change τ from a low (0.1) to a high (0.5) value and back every 200 epochs.
For random, we uniformly sample values for τ from the range [0.1, 0.5]. In Table 5.5 we
observe that both those methods for varying the τ value also improve the performance over
the fixed temperature, while with the cosine schedule the model achieves the best performance.
These results indicate that it is indeed the task switching between group-wise and instance-wise
discrimination during training which is the driving factor for the observed improvements for
unsupervised long-tail representation learning. We assume the reason why slow oscillation of
the temperature performs better than fast (i.e. random) temperature changes is grounded in
learning dynamics and the slow evolution of the embedding space during training.

5.4.4 Influence of the positive samples on contrastive learning

In Section 5.3.2, we particularly focused on the impact of the negative samples on the learning
dynamics under the contrastive objective, as they likely are the driving factor with respect
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T T / #epochs FS LP

no fixed τ 68.89

200 0.1 71.86

400 0.2 72.87

1000 0.5 72.47

2000 1.0 72.22

4000 2.0 72.10

Table 5.6: Influence of the period length T. Few-shot linear probe accuracy (FS LP) of
MoCo+TS on CIFAR10-LT.
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Figure 5.4: Dependence on relative time of one period. Blue: Average FS LP of last period of
the models trained with T = 200, 400, 1000, 2000. Light blue: variance. Yellow: Relative cosine
value over relative time. CIFAR10-LT trained with MoCo+TS.

to the semantic structure. In fact, we find that the positive samples should have an inverse
relation with the temperature τ and thus cannot explain the observed learning dynamics, as
we discuss in the following.

To understand the impact of the positive samples, first note their role in the loss (same as
Equation (5.4)):

Li
c = log (1 + ciiSi) . (5.6)

In particular, cii scales the entire sum Si= ∑j ̸=i exp(−dij). As such, encoding two augmentations
of the same instance at a large distance is much more ‘costly’ for the model than encoding
two different samples close to each other, as each and every summand Si is amplified by the
corresponding cii. As a result, the model will be biased to ‘err on the safe side’ and become
invariant to the augmentations, which has been one of the main motivations for introducing
augmentations in contrastive learning in the first place, cf. [TSP+

20, CKNH20, CMM+
20].

Consequently, the positive samples, of course, also influence the forming of clusters in the
embedding space as they induce invariance with respect to augmentations. Note, however,
that this does not contradict our analysis regarding the impact of negative samples, but rather
corroborates it.

In particular, cii biases the model to become invariant to the applied augmentations for all
values of τ; in fact, for small τ, this invariance is even emphasised as cii increases for small τ
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and the influence of the negatives is diminished. Hence, if the augmentations were the main
factor in inducing semantic structure in the embedding space, τ should have the opposite effect
of the one we and many others [WL21a, ZZP+

22, ZWBG21] observe.
Thus, instead of inducing semantic structure on their own, we believe the positive samples

to rather play a critical role in influencing which features the model can rely on for grouping
samples in the embedding space; for a detailed discussion of this phenomenon, see also
[CLL21].

5.5 Conclusion

In this chapter, we discover the surprising effectiveness of temperature schedules for self-
supervised contrastive representation learning on imbalanced datasets. In particular, we find
that a simple cosine schedule for τ consistently improves two state-of-the-art contrastive meth-
ods over several datasets and different imbalance ratios, without introducing any additional
cost. Importantly, our approach is based on a novel perspective on the contrastive loss, in
which the average distance maximisation aspect is emphasised. This perspective sheds light on
which samples dominate the contrastive loss and explains why large values for τ can lead to
the emergence of tight clusters in the embedding space, despite the fact that individual instance
always repel each other. Specifically, we find that while a large τ is thus necessary to induce
semantic structure, the concomitant focus on group-wise discrimination biases the model to
encode easily separable features rather than instance-specific details. However, in long-tailed
distributions, this can be particularly harmful to the most infrequent classes, as those require a
higher degree of instance discrimination to remain distinguishable from the prevalent semantic
categories. The proposed cosine schedule for τ overcomes this tension, by alternating between
an emphasis on instance discrimination (small τ) and group-wise discrimination (large τ). As
a result of this constant ‘task switching’, the model is trained to both structure the embedding
space according to semantically meaningful features, whilst also encoding instance-specific
details such that rare classes remain distinguishable from dominant ones.

In this part, Part I, of the thesis, we explore targeted representations tailored for specific
downstream tasks. In particular, in Chapter 3, we delve into temporal segmentation of procedu-
ral videos, while in Chapter 4, we focus on recognizing unintentional actions. We demonstrate
how to utilize on task-specific inherent biases and also examine how specific hyperparameters
within the general self-supervised framework can influence learning dynamics. Up to this
point, our focus has been on leveraging data without explicit supervision, relying instead on
prior task-related information. In the next part, Part II, we will discuss methods that leverage
some form of supervision.





II
L e a r n i n g w i t h L i m i t e d S u p e r v i s i o n

While the previous part of the thesis focuses on learning efficient
representations without labels, this part considers the learning
scenario with limited supervision. This scenario includes weak
annotations across multiple modalities or relying on limited number
of samples along with unlabeled data.

In Chapter 6, we investigate a semi-supervised learning sce-
nario in which only a subset of annotated data is available alongside
unlabeled data. Upon revisiting the popular consistency regu-
larization concept, we observe that not only invariance but also
equivariance can enhance performance.

In Chapter 7, we introduce a challenging setup utilizing un-
curated & unpaired data to mitigate annotation costs for text-video
retrieval. Additionally, we present the In-Style method, enabling the
transfer of text query styles to large-scale uncurated web video data
to allow low-cost efficient pretraining.

In Chapter 8, we further exploit web data by utilizing label-
free web images as a source for adapting to unlabeled target videos.
To efficiently transfer knowledge from images to videos, we decouple
the spatial and temporal modalities in a cycle-based approach,
alternating training between them.

In Chapter 9, we present a pipeline for automatically annotat-
ing large-scale web videos, leveraging the capabilities of large
language models, thereby enabling zero-cost annotations at scale.
To achieve this, we introduce a prompting method capable of
accommodating long subtitles and explicitly aligning captions with
the videos.
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To mitigate the requirement for annotating each sample in the training set, we begin
this part by delving into the semi-supervised setting. This scenario entails having
only a limited number of labels available alongside a vast collection of unlabeled

samples. Consistency regularization is one of the most widely-used techniques for semi-
supervised learning (SSL). Generally, the aim is to train a model that is invariant to various
data augmentations. In this chapter, we revisit this idea and find that enforcing invariance by
decreasing distances between features from differently augmented images leads to improved
performance. However, encouraging equivariance instead, by increasing the feature distance,
further improves performance. To this end, we propose an improved consistency regularization
framework by a simple yet effective technique, FeatDistLoss, that imposes consistency and
equivariance on the classifier and the feature level, respectively. Experimental results show that
our model defines a new state of the art across a variety of standard semi-supervised learning
benchmarks as well as imbalanced semi-supervised learning benchmarks. Particularly, we
outperform previous work by a significant margin in low data regimes and at large imbalance
ratios. Extensive experiments are conducted to analyze the method, and the code will be
published.

This chapter is based on [FKS21, FKDS23a]. As a second author, Anna Kukleva con-
tributed to the project through detailed discussions, writing of the paper and creating the
figures.

6.1 Introduction

Deep learning requires large-scale and annotated datasets to reach state-of-the-art performance
[RDS+15, LMB+

14]. As labels are not always available or expensive to acquire a wide range of
semi-supervised learning (SSL) methods have been proposed to leverage unlabeled data [TV17,
LA17, MMKI18, VLK+

19, BCG+
19, SBL+

20, XDH+
20, BCC+

20, AOA+
20, Lee13, PXDL20,

83
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FOS20, BHB19, CKS+20].

original

weak 
 augmentation

strong 
 augmentation

Figure 6.1: Examples of strongly and weakly augmented images from CIFAR-100 (please refer
to Section 6.3.3 for details of strong and weak augmentation). The visually large difference
between them indicates that it can be more beneficial if they are treated differently.

Consistency regularization [BAP14, LA17, SJT16] is one of the most widely-used SSL
methods. Recent work [SBL+

20, XDH+
20, KMHK20] achieves strong performance by utilizing

unlabeled data in a way that model predictions should be invariant to input perturbations.
However, when using advanced and strong data augmentation schemes, we question if the
model should be invariant to such strong perturbations. In Figure 6.1 we illustrate that strong
data augmentation leads to perceptually highly diverse images. Thus, we argue that improving
equivariance on such strongly augmented images can provide even better performance rather
than making the model invariant to all kinds of augmentations. Moreover, existing works
apply consistency regularization either at the feature level or at the classifier level. We find
empirically that it is more beneficial to introduce consistency on both levels. To this end, we
propose a simple yet effective technique, Feature Distance Loss (FeatDistLoss), to improve
data-augmentation-based consistency regularization.

We formulate our FeatDistLoss as to explicitly encourage invariance or equivariance between
features from different augmentations while enforcing the same semantic class label. Figure 6.2
shows the intuition behind the idea. Specifically, encouragement of equivariance for the same
image but different augmentations (increase distance between stars and circles of the same
color) pushes representations apart from each other, thus, covering more space for the class.
Imposing invariance, on the contrary, makes the representations of the same semantic class
more compact. In this work, we empirically find that increasing equivariance to differently
augmented versions of the same image can lead to better performance especially when rather
few labels are available per class (see section 6.4.3).

This chapter introduces the method CR-Match which combines FeatDistLoss with other
strong techniques defining a new state-of-the-art across a wide range of settings of standard
SSL benchmarks, including CIFAR-10, CIFAR-100, SVHN, STL-10, and Mini-Imagenet. More
specifically, our contribution is fourfold. (1) We improve data-augmentation-based consistency
regularization by a simple yet effective technique for SSL called FeatDistLoss which regularizes
the distance between feature representations from differently augmented images of the same
class as well as the classifier simultaneously. (2) We show that while encouraging invariance
results in good performance, encouraging equivariance to differently augmented versions of
the same image consistently results in even better generalization performance. (3) We provide
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Invariance Equivariance

Figure 6.2: Binary classification task. Stars are features of strongly augmented images and
circles are of weakly augmented images (please refer to Section 6.3.3 for details of strong and
weak augmentation). While encouraging invariance by decreasing distance between features
from differently augmented images gives good performance (left), encouraging equivariant
representations by increasing the distance regularizes the feature space more, leading to even
better generalization performance.

comprehensive ablation studies on different distance functions and different augmentations
with respect to the proposed FeatDistLoss. (4) In combination with other strong techniques,
we achieve new state-of-the-art results on most standard semi-supervised learning benchmarks
as well as imbalanced semi-supervised learning benchmarks. In particular, our method
outperforms previous methods by a significant margin in low data regimes and at large
imbalance ratios.

A preliminary version of this work has been published in [FKS21]. In this work, we
extend [FKS21] in three aspects: (1) We extend the existing standard SSL settings by providing
evaluations on wider range of the datasets and showing the benefit of the proposed technique
on top of various SSL methods. In particular, combining with the recently published method
FlexMatch [ZWH+

21], we can push the state-of-the-art even further under the standard settings.
Moreover, we evaluate our method on ImageNet to verify that the method scales to larger
datasets as well. (2) We evaluate our methods under a more realistic and challenging setting:
imbalanced SSL, where the training data is not only partially annotated but also exhibits
long-tailed class distribution. We achieve new state-of-the-art results on multiple imbalanced
SSL benchmarks across a wide range of settings. (3) To give more in-depth insight into our
method, we provide pseudo-code and more analysis of the method, especially the robustness
against important hyper-parameters.

6.2 Related Work

In this section, we discuss prior work on the equivariant representations. We will not revisit
the topic of semi-supervised learning as previously discussed in Chapter 2.

Equivariant representations are recently explored by capsule networks [SFH17, HSF18].
They replaced max-pooling layers with convolutional strides and dynamic routing to preserve
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Figure 6.3: The proposed FeatDistLoss utilizes unlabeled images in two ways: On the classifier
level, different versions of the same image should generate the same class label, whereas on
the feature level, representations are encouraged to become either more equivariant (pushing
away) or invariant (pulling together). f and f̂ denote strong and weak features; p and p̂
are predicted class distributions from strong and weak features; a) and b) denote features
before and after the global average pooling layer. Our final model takes features from a) and
encourages equivariance to differently augmented versions of the same image.

more information about the input, allowing for preservation of part-whole relationships in
the data. It has been shown, that the input can be reconstructed from the output capsule
vectors. Another stream of work on group equivariant networks [CW16a, WC19, CW16b]
explores various equivariant architectures that produce transform in a predictable linear
manner under transformations of the input. Different from previous work, our work explores
equivariant representations in the sense that differently augmented versions of the same image
are represented by different points in the feature space despite the same semantic label.

6.3 Method

Consistency regularization is highly-successful and widely-adopted technique in SSL [BAP14,
LA17, SJT16, SBL+

20, XDH+
20, KMHK20]. In this work, we aim to leverage and improve it

by even further regularizing the feature space. To this end, we present a simple yet effective
technique FeatDistLoss to explicitly regularize representation learning and classifier learning
at the same time. We describe our SSL method, called CR-Match, which shows improved
performance across many different settings, especially in scenarios with few labels. In this
section, we first describe our technique FeatDistLoss and then present CR-Match that combines
FeatDistLoss with other regularization techniques inspired from the literature.

6.3.1 Feature Distance Loss

Background: The idea of consistency regularization [BAP14, LA17, SJT16] is to encourage the
model predictions to be invariant to input perturbations. Given a batch of n unlabeled images
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ui, i ∈ (1, ..., n), consistency regularization can be formulated as the following loss function:

1
n

n

∑
i=1

∥ f (A(ui))− f (α(ui))∥2
2 (6.1)

where f is an encoder network that maps an input image to a d-dimensional feature space;
A and α are two stochastic functions which are, in our case, strong and weak augmentations,
respectively (details in Section 6.3.3). By minimizing the L2 distance between perturbed images,
the representation is therefore encouraged to become more invariant with respect to different
augmentations, which helps generalization. The intuition behind this is that a good model
should be robust to data augmentations of the images.
FeatDistLoss: As shown in Figure 6.3, we extend the above consistency regularization idea by
introducing consistency on the classifier level and invariance or equivariance on the feature
level. FeatDistLoss thus allows to apply different types of control for these levels. In particular,
when encouraging to reduce the feature distance, it becomes similar to classic consistency
regularization, and encourages invariance between differently augmented images. As argued
above, making the model predictions invariant to input perturbations gives good generalization
performance. Instead, in this work we find it is more beneficial to treat images from different
augmentations differently because some distorted images are largely different from their
original images as demonstrated visually in Figure 6.1. Therefore, the final model (CR-Match)
uses FeatDistLoss to increase the distance between image features from augmentations of
different intensities while at the same time enforcing the same semantic label for them. Note
that in Section 6.4.3, we conduct an ablation study on the choice of distance function, where
we denote CR-Match as CR-Equiv, and the model that encourages invariance as CR-Inv.

The final objective for the FeatDistLoss consists of two terms: LDist (on the feature level),
that explicitly regularizes feature distances between embeddings, and a standard cross-entropy
loss LPseudoLabel (on the classifier level) based on pseudo-labeling.

With LDist we either decrease or increase the feature distance between weakly and strongly
augmented versions of the same image in a low-dimensional space projected from the original
feature space to overcome the curse of dimensionality [Bel66]. Let d(·, ·) be a distance metric
and z be a linear layer that maps the high-dimensional feature into a low-dimensional space.
Given an unlabeled image ui, we first extract features with strong and weak augmentations by
f (A(ui)) and f (α(ui)) as shown in Figure 6.3 (a), and then FeatDistLoss is computed as:

LDist(ui) = d(z( f (A(ui))), z( f (α(ui)))) (6.2)

Different choices of performing LDist are studied in Section 6.4.3, where we find empirically
that applying LDist at (a) using cosine distance in Figure 6.3 gives the best performance. The
use of the projection head z does not only reduce the computation burden as the original
feature space is high-dimensional, but also brings additional performance improvements as
shown in [CKNH20, CKS+20].

At the same time, images from strong and weak augmentations should have the same
class label because they are essentially generated from the same original image. Inspired by
[SBL+

20], given an unlabeled image ui, a pseudo-label distribution is first generated from
the weakly augmented image by p̂i = g( f (α(ui))), and then a cross-entropy loss is computed
between the pseudo-label and the prediction for the corresponding strongly augmented version
as:

LPseudoLabel(ui) = ℓCE(p̂i, g( f (A(ui)))) (6.3)

where ℓCE is the cross-entropy, g is a linear classifier that maps a feature representation to a
class distribution, and A(ui) denotes the operator for strong augmentations.
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Putting it all together, FeatDistLoss processes a batch of unlabeled data ui, i ∈ (1, ..., Bu)
with the following loss:

LU =
1

Bu

Bu

∑
i=1
1{ci > τ}(LDist(ui) + LPseudoLabel(ui)) (6.4)

where ci = max p̂i is the confidence score, and 1{·} is the indicator function which outputs
1 when the confidence score is above a threshold. This confidence thresholding mechanism
ensures that the loss is only computed for unlabeled images for which the model generates
a high-confidence prediction. Therefore, it controls the trade-off between the quality and the
quantity of contributing unlabeled samples. As is shown in Section 6.4.2, a higher threshold τ
is normally preferred because it alleviates the instability early in the training by eliminating
less confident unlabeled samples. As training progresses, the model produces more confident
predictions and more samples will contribute to the final loss, which also provides a natural
curriculum to balance labeled and unlabeled losses [SBL+

20]. Moreover, the thresholding
mechanism is applied for both the feature level consistency and the classifier level consistency
so that the two losses are well-synchronized.

As mentioned before, depending on the function d, FeatDistLoss can decrease the distance
between features from different data augmentation schemes (when d is a distance function,
thus pulling the representations together), or increase it (when d is a similarity function, thus
pushing the representations apart). As shown in Table 6.6, we find that both cases results in
an improved performance. However, increasing the distance between weakly and strongly
augmented examples consistently results in better generalization performance. We conjecture
that the reason lies in the fact that FeatDistLoss by increasing the feature distance explores
equivariance properties (differently augmented versions of the same image having distinct
features but the same label) of the representations. It encourages the model to have more
distinct weakly and strongly augmented images while still imposing the same label, which
leads to both more expressive representation and more powerful classifier. As we will show in
Section 6.4.3, information like object location or orientation is more predictable from models
trained with FeatDistLoss that pushes the representations apart. Additional ablation studies of
other design choices such as the distance function and the linear projection z are also provided
in Section 6.4.3.

6.3.2 Overall CR-Match

Now we describe our SSL method called CR-Match leveraging the above FeatDistLoss. Pseudo-
code for processing a batch of labeled and unlabeled examples is shown in algorithm 1.

Given a batch of labeled images with their labels as X = {(xi, pi) : i ∈ (1, ..., Bs)} and a
batch of unlabeled images as U = {ui : i ∈ (1, ..., Bu)}. 1 CR-Match minimizes the following
learning objective:

LS(X ) + λuLU(U ) + λrLRot(U ) (6.5)

where LS is the supervised cross-entropy loss for labeled images with weak data augmentation
regularization; LU is our novel feature distance loss for unlabeled images which explicitly
regularizes the distance between weakly and strongly augmented images in the feature space;
and LRot is a self-supervised loss for unlabeled images and stands for rotation prediction from
[GSK18] to provide an additional supervisory and regularizing signal.

1In practice, unlabeled data includes all labeled data without labels.



6.3 method 89

Algorithm 1

Require: Labeled batch X =
{
(xi, pi) : i ∈ (1, . . . , Bs)

}
, unlabeled batch U =

{
ui : i ∈

(1, . . . , Bu)
}

, confidence threshold τ, FeatDistLoss weight λu, rotation prediction loss
weight λr, classifier g, distance metric d, FeatDistLoss head z, rotation prediction head h.

1: ▷ Cross-entropy loss for labeled data
2: LS = 1

Bs
∑Bs

i=1 ℓCE(pi, g(α(xi)))
3: for i = 1 Bu do
4: ▷ Extract representation from weak data augmentation
5: uw

i = f (α(ui))
6: ▷ Extract representation from strong data augmentation
7: us

i = f (A(ui))
8: ▷ Compute confidence score from the weakly augmented image
9: ci = max g(uw

i )
10: end for
11: ▷ Cross-entropy loss with pseudo-label for unlabeled data
12: LPseudo =

1
Bu

∑Bu
i=1 1{ci > τ} ℓCE(g(uw

i ), us
i )

13: ▷ Increase the feature distance for unlabeled data
14: LDist =

1
Bu

∑Bu
i=1 1{ci > τ} − d(z(uw

i ), z(us
i ))

15: ▷ rotation prediction loss
16: LRot =

1
4Bu

∑Bu
i=1 ∑r∈R ℓCE(r, h(R(uw

i , r))) return LS + λu(LPseudo + LDist) + λrLRot

Fully supervised loss for labeled data: We use cross-entropy loss with weak data augmentation
regularization for labeled data:

LS =
1
Bs

Bs

∑
i=1

ℓCE(pi, g( f (α(xi)))) (6.6)

where ℓCE is the cross-entropy loss, α(xi) is the extracted feature from a weakly augmented
image xi, g is the same linear classifier as in equation 6.2, and pi is the corresponding label for
xi.

Self-supervised loss for unlabeled data: Rotation prediction [GSK18] (RotNet) is one of the
most successful self-supervised learning methods, and has been shown to be complementary
to SSL methods [ZOKB19, BCG+

19, REH+
20]. Here, we create four rotated images by 0◦, 90◦,

180◦, and 270◦ for each unlabeled image ui for i ∈ (1, ..., µB). Then, classification loss is applied
to train the model predicting the rotation as a four-class classification task:

LRot =
1

4Bu

Bu

∑
i=1

∑
r∈R

ℓCE(r, h(α(R(ui, r)))) (6.7)

where R is {0◦, 90◦, 180◦, 270◦} and r refers to one of the four rotations, h denotes a three-layer
MLP with its hidden dimension the same as the input dimension. Using a predictor head
is shown to be beneficial for such an auxiliary loss [CKNH20, CKS+20]. Note that rotation
prediction, though commonly used, might also have adverse effects. For example, numbers six
and nine in most print fonts are centrosymmetric, rotating one upside down gives the other.



90 chapter 6. consistency regularization for semi-supervised learning

6.3.3 Implementation Details

Data augmentation: As mentioned above, CR-Match adopts two types of data augmenta-
tions: weak augmentation and strong augmentation from [SBL+

20]. Specifically, the weak
augmentation α corresponds to a standard random cropping and random mirroring with
probability 0.5, and the strong augmentation A is a combination of RandAugment [CZSL20]
and CutOut [DT17]. At each training step, we uniformly sample two operations for the strong
augmentation from a collection of transformations and apply them with a randomly sampled
magnitude from a predefined range. The complete table of transformation operations for the
strong augmentation is provided in the supplementary material.
Other implementation details: For our results in Section 6.4 and Section 6.5, we minimize
the cosine similarity in FeatDistLoss, and use a fully-connected layer for the projection layer
z, which maps the feature from the original un-flattened 8192-dimension space into a 128-
dimension space, the same dimension as the feature dimension for classification. The dimension
of the original feature space and the patch size are fixed and depend on the architecture, which
is chosen following the previous conventions [OOR+

18, BCG+
19, BCC+

20, SBL+
20]. In our

case, 8192 = 8 × 8 × 128, where the patch size is 8 × 8, and there are 128 feature maps. The
predictor head h in rotation prediction loss consists of two fully-connected layers and a ReLU
as non-linearity. We use the same λu = λr = 1 in all experiments since CR-Match shows good
robustness within a range of loss weights in our preliminary experiments. We train our model
for 512 epochs on CIFAR-10, CIFAR-100, and SVHN. On STL-10 and Mini-ImageNet, we train
the model for 300 epochs. Other hyper-parameters are from [SBL+

20] for the compatibility.
Specifically, the confidence thresholds τ for pseudo-label selection is 0.95. We use SGD with
momentum 0.9 and cosine learning rate schedule from [SBL+

20] starting from 0.03, batch
size Bs is 64 for labeled data, and Bu is 7 × Bs. The final performance is reported using an
exponential moving average of model parameters as recommended by [TV17]. As a common
practice, we repeat each experiment with five different data splits and report the mean and the
standard deviation of the error rate.

6.4 Experiments

Following protocols from previous work [BCG+
19, SBL+

20], we conduct experiments on
several commonly used SSL image classification benchmarks to test the efficacy of CR-Match.
We show our main results in Section 6.4.1, where we achieve state-of-the-art error rates across
all settings on SVHN [NWC+

11], CIFAR-10 [KH09], CIFAR-100 [KH09], STL-10 [CNL11],
and mini-ImageNet [RL16]. In our ablation study in Section 6.4.2 we analyze the effect of
FeatDistLoss and RotNet across different settings. Finally, in Section 6.4.3 we extensively
analyse various design choices for our FeatDistLoss.

6.4.1 Main Results

In the following, each dataset subsection includes two paragraphs. The first provides technical
details and the second discusses experimental results.
CIFAR-10, CIFAR-100, and SVHN. We follow prior work [SBL+

20] and use 4, 25, and 100

labels per class on CIFAR-100 and SVHN without extra data. For CIFAR-10, we experiment
with settings of 4, 25, and 400 labels per class. We create labeled data by random sampling, and
the remaining images are regarded as unlabeled by discarding their labels. Following [BCG+

19,
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CIFAR-10 CIFAR-100

Per class labels 4 labels 25 labels 400 labels 4 labels 25 labels 100 labels

Mean Teacher [TV17] - 32.32±2.30
∗

9.19±0.19
∗ - 53.91±0.57

∗
35.83±0.24

∗

MixMatch [BCG+
19] 47.54±11.50

∗
11.08±0.87 6.24±0.06 67.61±1.32

∗
39.94±0.37

∗
25.88±0.30

UDA [XDH+
20] 29.05±5.93

∗
5.43±0.96 4.32±0.08

∗
59.28±0.88

∗
33.13±0.22

∗
24.50±0.25

∗

ReMixMatch [BCC+
20] 19.10±9.64

∗
6.27±0.34 5.14±0.04 44.28±2.06

∗
27.43±0.31

∗
23.03±0.56

∗

FixMatch (RA) [SBL+
20] 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12

FixMatch (CTA) [SBL+
20] 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11

FeatMatch [KMHK20] - 6.00±0.41 4.64±0.11 - - -
FlexMatch [ZWH+

21] 5.19±0.05 5.33±0.12 4.47±0.09 45.91±1.76 28.11±0.20 23.04±0.28

CR-Match 10.70±2.91 5.05±0.12 3.96±0.16 39.45±1.69 25.43±0.14 20.40±0.08

CR-Match§ 5.52±0.32 5.21±0.06 4.26±0.19 35.72±0.50 24.61±0.37 20.91±0.24

Table 6.1: Error rates on CIFAR-10, and CIFAR-100. A Wide ResNet-28-2 [ZK16] is used for
CIFAR-10 and a Wide ResNet-28-8 with 135 filters per layer [BCG+

19] is used for CIFAR-100.
We use the same code base as [SBL+

20] (i.e., same network architecture and training protocol)
to make the results directly comparable. The best number is in bold and the second best
number is in italic. ∗Numbers are generated by [SBL+

20]. CR-Match§ refers to CR-Match
combined with CPL [ZWH+

21] from FlexMatch.

STL-10 SVHN

Per class labels 100 labels 4 labels 25 labels 100 labels

Mean Teacher [TV17] 21.34±2.39
∗ - 3.57±0.11

∗
3.42±0.07

∗

MixMatch [BCG+
19] 10.18±1.46 42.55±14.53

∗
3.78±0.26 3.27±0.31

UDA [XDH+
20] 7.66±0.56

∗
52.63±20.51

∗
2.72±0.40 2.23±0.07

ReMixMatch [BCC+
20] 6.18±1.24 3.34±0.20

∗
3.10±0.50 2.83±0.30

FixMatch (RA) [SBL+
20] 7.98±1.50 3.96±2.17 2.48±0.38 2.28±0.11

FixMatch (CTA) [SBL+
20] 5.17±0.63 7.65±7.65 2.64±0.64 2.36±0.19

FeatMatch [KMHK20] - - 3.34±0.19
†

3.10±0.06
†

FlexMatch [ZWH+
21] 6.15±0.25 20.81±5.26 17.32±2.07 12.90±2.68

CR-Match 4.89±0.17 2.79±0.93 2.35±0.29 2.08±0.07

Table 6.2: Error rates on STL-10 and SVHN. A Wide ResNet-28-2 and a Wide ResNet-37-2
[ZK16] is used for SVHN and STL-10, repectively. The same code base is adopted as [SBL+

20]
to make the results directly comparable. Notations follow Table 6.1.

Mini-ImageNet

Per class labels 40 labels 100 labels

Mean Teacher [TV17] 72.51±0.22 57.55±1.11

Label Propagation [ITAC19] 70.29±0.81 57.58±1.47

PLCB [AOA+
20] 56.49±0.51 46.08±0.11

FeatMatch [KMHK20] 39.05±0.06 34.79±0.22

CR-Match 34.87±0.99 32.58±1.60

Table 6.3: Error rates on Mini-ImageNet with 40 labels and 100 labels per class. All methods
are evaluated on the same ResNet-18 architecture. ∗Numbers are generated by [SBL+

20].
†Numbers are produced without CutOut. The best number is in bold and the second best
number is in italic. Notations follow Table 6.1.
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SBL+
20, BCC+

20], we use a Wide ResNet-28-2 [ZK16] with 1.5M parameters on CIFAR-10 and
SVHN, and a Wide ResNet-28-8 with 135 filters per layer (26M parameters) on CIFAR-100.

As shown in Table 6.1, Table 6.2, and Table 6.3 our method improves over previous methods
across all settings, and defines a new state-of-the-art. Most importantly, we improve error rates
in low data regimes by a large margin (e.g., with 4 labeled examples per class on CIFAR-100,
we outperform FlexMatch and the second best method by 10.19% and 8.56% in absolute
value respectively). Prior works [SBL+

20, BCG+
19, BCC+

20] have reported results using a
larger network architecture on CIFAR-100 to obtain better performance. On the contrary, we
additionally evaluate our method on the small network used in CIFAR-10 and find that our
method is more than 17 times (17 ≈ 26/1.5) parameter-efficient than FixMatch. We reach
46.05% error rate on CIFAR-100 with 4 labels per class using the small model, which is still
slightly better than the result of FixMatch using a larger model.
STL-10. STL-10 contains 5,000 labeled images of size 96-by-96 from 10 classes and 100,000

unlabeled images. The dataset pre-defines ten folds of 1,000 labeled examples from the
training data, and we evaluate our method on five of these ten folds as in [SBL+

20, BCC+
20].

Following [BCG+
19], we use the same Wide ResNet-37-2 model (comprising 5.9M parameters),

and report error rates in Table 6.2.
Our method achieves state-of-the-art performance with 4.89% error rate. Note that Fix-

Match with error rate 5.17% used the more advanced CTAugment [BCC+
20], which learns

augmentation policies alongside model training. When evaluated with the same data aug-
mentation (RandAugment) as we use in CR-Match, our result surpasses FixMatch by 3.09%
(3.09%=7.98%-4.89%), which indicates that CR-Match itself induces a strong regularization
effect.
Mini-ImageNet. We follow [ITAC19, AOA+

20, KMHK20] to construct the mini-ImageNet
training set. Specifically, 50,000 training examples and 10,000 test examples are randomly se-
lected for a predefined list of 100 classes [RL16] from ILSVRC [DDS+09]. Following [KMHK20],
we use a ResNet-18 network [HZRS16] as our model and experiment with settings of 40 labels
per class and 100 labels per class.

As shown in Table 6.3, our method consistently improves over previous methods and
achieves a new state-of-the-art in both the 40-label and 100-label settings. Especially in the
40-label case, CR-Match achieves an error rate of 34.87% which is 4.18% higher than the second
best result. Note that our method is 2 times more data efficient than the second best method
FeatMatch [KMHK20] (FeatMatch, using 100 labels per class, reaches a similar error rate as our
method with 40 labeled examples per class).
ImageNet. To verify the effectiveness of our method on large scale datasets, we conduct
experiments on ImageNet-1k. Following [ZWH+

21], we take ∼10% (100,000) training images
as the labeled set and construct unlabeled set using the rest of the images. The validation
setting remains the same. We train a ResNet-50 [HZRS16] with the same hyper-parameters
from [ZWH+

21]. Note that FixMatch and FlexMatch use different protocols on ImageNet, and
we follow the setup from FlexMatch therefore the numbers are directly comparable.

Table 6.4 shows the error rate comparison after running 220 iterations. Our method outper-
forms the previous state-of-the-art by 1.04% absolute top-5 error rate, which demonstrates the
efficacy of the proposed method at large scale dataset.

6.4.2 Ablation Study

In this section, we analyze how FeatDistLoss and RotNet influence the performance across
different settings, particularly when there are few labeled samples. We conduct experiments
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Method Top-1 Top-5

FixMatch [SBL+
20] 43.66

∗
21.80

∗

FlexMatch [ZWH+
21] 41.85

∗
19.48

∗

CR-Match§ 40.69 18.44

Table 6.4: Error rates on ImageNet after 220 iterations. CR-Match§ refers to CR-Match combined
with CPL [ZWH+

21] from FlexMatch. ∗Numbers are from [ZWH+
21].

RotNet FeatDistLoss MiniImageNet@40 CIFAR10@4 CIFAR100@4 SVHN@4

35.13 11.86 46.22 2.42

✓ 34.14 10.33 43.48 2.34

✓ 34.64 11.27 41.48 2.21

✓ ✓ 33.82 10.92 39.22 2.09

Table 6.5: Ablation studies across different settings. Error rates are reported for a single split.

on a single split on CIFAR-10, CIFAR-100, and SVHN with 4 labeled examples per class, and
on MiniImageNet with 40 labels per class. Specifically, we remove the LDist from equation 6.4
and train the model again using the same training scheme for each setting. We do not ablate
LPseudo and LS due to the fact that removing one of them leads to a divergence of training.

We report final test error rates in Table 6.5. We see that both RotNet and FeatDistLoss
contribute to the final performance while their proportions can be different depending on
the setting and dataset. For MiniImageNet, CIFAR-100 and SVHN, the combination of both
outperforms the individual losses. For CIFAR-10, FeatDistLoss even outperforms the combina-
tion of both. This suggests that RotNet and FeatDistLoss are both important components for
CR-Match to achieve the state-of-the-art performance. Note that RotNet can be replaced by
other types of self-supervision as well. We opt RotNet due to its superior performance in our
initial experiments. On CIFAR-100 with 4 labels per class, CRMatch with SimCLR achieves an
error rate of 42.50% compared to that of 39.22% from CRMatch with RotNet.

Figure 6.4 shows a more detailed analysis of the training process on CIFAR-100 with 4

labels per class for CR-Match and CR-Match without FeatDistLoss. The confidence threshold
in CR-Match filters out unconfident predictions during training. Therefore, at each training
step only images with confidence scores above the threshold contribute to the loss. We observe
that CR-Match improves pseudo-labels for the unlabeled data, as it achieves a lower error rate
of all unlabeled images as well as contributing unlabeled images during the training while
maintaining the percentage of contributing images. The increasing of the pseudo-label error
rate in Figure 6.4 middle is due to the increasing of the percentage of contributing pseudo-labels
and the prediction confidence. At the beginning of the training, the contributing pseudo-labels
are mostly correct as only a small number of samples are highly confident and, thus, selected.
However, during the course of the training, the overall prediction confidence increases, resulting
in more unlabeled data being used, which introduces more errors in pseudo-labels.

Effect of different confidence thresholds. For the main results in Section 6.4.1, we use a
confidence threshold of 0.95 following [SBL+

20]. We now study the model robustness against
different confidence thresholds. Experiments are conducted on a single split with 4 labeled
examples from CIFAR-100 on a Wide ResNet-28-2. Figure 6.5 shows the error rate of CR-Match
when using a confidence threshold from 0.90 to 0.99. In general, the thresholding mechanism



94 chapter 6. consistency regularization for semi-supervised learning

Figure 6.4: Ablation study of our best model on CIFAR-100 with 4 labels per class. Left:
CR-Match has a lower pseudo-label error rate. Middle: If only the confident predictions are
taken into account, CR-Match outperforms the other with a even larger margin in terms of
pseudo-label error rate. Right: In spite of a better pseudo-label error rate on contributing
unlabeled images, the percentage of contributing unlabeled images is maintained the same for
CR-Match.
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Figure 6.5: Left: Effect of different confidence thresholds on error rate. We run experiments
on a single split of CIFAR-100 with 4 labels per class. The model is a Wide-ResNet-28-2. Our
model shows good robustness against small changes in the confidence threshold. Middle:
Effect of different confidence thresholds on pseudo-label error rate during the training. Right:
Effect of different confidence thresholds on the number of unlabeled training samples.

provides the model a relatively smooth transition between learning from labeled data and
learning from unlabeled data. A low percentage of the contributing unlabeled data at the
beginning of the training can alleviate the potential error introduced by the low-quality pseudo-
labels. This suggests that the quality of pseudo-labels is more important than the quantity
for reaching a high accuracy at the early stage. As the model learns from the labeled data,
the error rate of the pseudo-label decreases, and the model becomes more confident about its
predictions. Then, the number of unlabeled data that contribute to the final loss gradually
increases, which allows the model to continue learning from unlabeled data. Figure 6.5 left
also implies that our model is quite robust against small changes in the confidence threshold.

6.4.3 Influence of Feature Distance Loss

In this section, we analyze different design choices for FeatDistLoss to provide additional
insights of how it helps generalization. We focus on a single split with 4 labeled examples from
CIFAR-100 and report results for a Wide ResNet-28-2 [ZK16]. For fair comparison, the same 4

random labeled examples for each class are used across all experiments in this section.
Different distance metrics for FeatDistLoss. Here we discuss the effect of different metric
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functions d for FeatDistLoss. Specifically, we compare two groups of functions in Table 6.6:
metrics that increase the distance between features, including cosine similarity, negative JS
divergence, and L2 similarity (i.e. normalized negative L2 distance); metrics that decrease the
distance between features, including cosine distance, JS divergence, and L2 distance. We find
that both increasing and decreasing distance between features of different augmentations give
reasonable performance. However, increasing the distance always performs better than the
counterpart (e.g., cosine similarity is better than cosine distance). We conjecture that decreasing
the feature distance corresponds to an increase of the invariance to data augmentation and leads
to ignorance of information like rotation or translation of the object. In contrast, increasing the
feature distance while still imposing the same label makes the representation equivariant to
these augmentations, resulting in more descriptive and expressive representation with respect
to augmentation. Moreover, a classifier has to cover a broader space in the feature space to
recognize rather dissimilar images from the same class, which leads to improved generalization.
In summary, we found that both increasing and decreasing feature distance improve over the
model which only applies consistency on the classifier level, whereas increasing distances
shows better performance by making representations more equivariant.

Metric Error rate

Impose
equivariance

cosine similarity 45.52
L2 similarity 46.22

negative JS div. 46.46

Impose
invariance

cosine distance 46.98

L2 distance 48.74

JS divergence 47.48

CR-Match w/o FeatDistLoss 48.89

Table 6.6: Effect of different distance functions for FeatDistLoss. The same split on CIFAR-100

with 4 labels per class and a Wide ResNet-28-2 is used for all experiments. Metrics that
pull features together performs worse than those that push features apart. The error rate of
CR-Match without FeatDistLoss is shown at the bottom.

Transformations
Feature extractor

CR-Equiv CR-Inv

Translation 33.22±0.28 36.80±0.30

Scaling 11.09±0.66 14.87±0.40

Rotation 15.05±0.33 21.92±0.32

ColorJittering 31.04±0.50 35.99±0.27

Table 6.7: Error rates of binary classification (whether a specific augmentation is applied)
on the features from CR-Equiv (increasing the cosine distance) and CR-Inv (decreasing the
cosine distance). We evaluate translation, scaling, rotation, and color jittering. Lower error rate
indicates more equivariant features. Results are averaged over 10 runs.

Invariance and equivariance. Here we provide an additional analysis to demonstrate that
increasing the feature distance provides equivariant features while the other provides invariant
features. Based on the intuition that specific transformations of the input image should be
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more predictable from equivariant representations, we quantify the equivariance by how
accurate a linear classifier can distinguish between features from augmented and original
images. Specifically, we compare two models from Table 6.6: the model trained with cosine
similarity denoted as CR-Equiv and the model trained with cosine distance denoted as CR-Inv.
We train a linear SVM to predict whether a certain transformation is applied for the input
image. 1000 test images from CIFAR-100 are used for training and the rest (9000) for validation.
The binary classifier is trained by an SGD optimizer with an initial learning rate of 0.001 for
50 epochs, and the feature extractor is fixed during training. We evaluate translation, scaling,
rotation, and color jittering in Table 6.7. All augmentations are from the standard PyTorch
library. The SVM has a better error rate across all augmentations when trained on CR-Equiv
features, which means information like object location or orientation is more predictable from
CR-Equiv features, suggesting that CR-Equiv produces more equivariant features than CR-Inv.
Furthermore, if the SVM is trained to classify strongly and weakly augmented image features,
CR-Equiv achieves a 0.27% test error while CR-Inv is 46.18%.
Regularization on the classifier level. As we described in Section 6.3, FeatDistLoss contains
two levels of regularization: On the feature level, representations are encouraged to become
more equivariant. On the classifier level, the same class label is imposed on different versions
of the same image via pseudo-labeling. Here we provide more insights into the regularization
on the classifier level in Table 6.8. Specifically, we conduct experiments on replacing or
complementing the CE loss with Jensen-Shannon divergence. First, we can see that removing
the classifier loss and using only the equivariant loss on the feature level leads to a significant
drop on performance (from 45.52% to 91.53%). This is because LDist alone will just make
the model aware of the difference between augmentations but does not help the classifier to
distinguish between classes of unlabeled data, making the classifier unable to benefit from the
usage of unlabeled data. Thus, the performance is on par with the model trained on labeled
data only (91.28% error rate) Second, complementing the cross-entropy loss on the classifier
level with Jensen-Shannon divergence, improves the performance (45.01%) while replacing it
leads to inferior performance (76.83%).

Classifier level Feature level Error rate

None None 91.28

None Equiv. 91.53

CE Equiv. 45.52

JSD Equiv. 76.83

CE + JSD Equiv. 45.01

Table 6.8: Effect of different regularization techniques on the classifier level. CE denotes cross-
entropy loss. JSD denotes Jensen-Shannon divergence. Equiv. denotes the equivariance version
of LDist. Note that the chance level is 99%. None + None represents the model trained with
labeled data only. The same split on CIFAR-100 with 4 labels per class and a Wide ResNet-28-2
is used for all experiments.

Different data augmentations for FeatDistLoss. In our main results in Section 6.4.1, FeatDist-
Loss is computed between features generated by weak augmentation and strong augmentation.
Here we investigate the impact of FeatDistLoss with respect to different types of data aug-
mentations. Specifically, we evaluate the error rate of CR-Inv and CR-Equiv under three
augmentation strategies: weak-weak pair indicates that FeatDistLoss uses two weakly aug-
mented images, weak-strong pair indicates that FeatDistLoss uses a weak augmentation and
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Error rate CR-Inv CR-Equiv

Weak-Weak 48.88 48.51

Weak-Strong 46.98 45.52
Strong-Strong 48.57 48.05

Table 6.9: Effect of combinations of weak and strong augmentation in FeatDistLoss on a Wide
ResNet-28-2 for CR-Inv and CR-Equiv.

a strong augmentation, and strong-strong pair indicates that FeatDistLoss uses two strongly
augmented images.

As shown in Table 6.9, using either CR-Inv or CR-Equiv using weak-strong pairs conistently
outperforms the other augmentation settings (weak-weak and strong-strong). Additionally,
CR-Equiv consistently achieves better generalization performance across all three settings. In
particular, in the case advocated in this chapter, namely using weak-strong pairs, CR-Equiv
outperforms CR-Inv by 1.46%. Even in the other two settings, CR-Equiv leads to improved
performance even though only by a small margin. This suggests that, on the one hand, that it
is important to use different types of augmentations for our FeatDistLoss. And on the other
hand, maximizing distances between images that are inherently different while still imposing
the same class label makes the model more robust against changes in the feature space and
thus gives better generalization performance.
Linear projection and confidence threshold in FeatDistLoss. As mentioned in Section 13.3,
we apply LDist at (a) in Figure 6.3 with a linear layer mapping the feature from the encoder to
a low-dimensional space before computing the loss, to alleviate the curse of dimensionality.
Also, the loss only takes effect when the model’s prediction has a confidence score above a
predefined threshold τ. Here we study the effect of other design choices in Table 6.10. While
features after the global average pooling (i.e. (b)) gives a better result than the ones directly
from the feature extractor, (b) performs worse than (a) when additional projection heads are
added. Thus, we use features from the feature extractor in CR-Match. The error rate increases

Features taken
from Fig. 6.3 at

feature
feature

+ linear
feature
+ MLP

(a) 48.37 45.52 47.52

(b) 47.37 46.10 47.15

Table 6.10: Effect of the projection head z, and the place to apply LDist. (a) denotes un-flattened
features taken from the feature extractor directly. (b) denotes features after the global average
pooling. MLP has 2 FC layers and a ReLU. Removing the linear projection head harms the test
error, and a non-linear projection head does not improve the performance further.

from 45.52% to 48.37% and 47.52% when removing the linear layer and replacing the linear
layer by a MLP (two fully-connected layers and a ReLU activation function), respectively. This
suggests that a lower dimensional space serves better for comparing distances, but a non-linear
mapping does not give further improvement. Moreover, when we apply FeatDistLoss for all
pairs of input images by removing the confidence threshold, the test error increases from
45.52% to 46.94%, which suggests that regularization should be only performed on features
that are actually used to update the model parameters, and ignoring those that are also ignored
by the model.
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Figure 6.6: We plot t-SNE of input image features extracted by a CR-Match model trained
without FeatDistLoss (left) and a CR-Match model with it (right). The better separation from
CR-Match suggests that FeatDistLoss improves decision boundaries.

FeatDistLoss improves decision boundaries. As suggested by Figure 6.2, models trained with
FeatDistLoss tend to have improved decision boundaries. Here we take two models from section
6.4.2, CR-Match (39.22% error rate) and CR-Match without FeatDistLoss (41.48% error rate),
and plot t-SNE plots of features extracted from unlabeled images. As shown in Figure 6.6, CR-
Match with FeatDistLoss produces better separation between classes. For example, CR-Match
forms two clearer clusters for caterpillar and butterfly, while CR-Match without FeatDistLoss
mostly mixes them up. Another example is that the overlap between crab, bowl, and pear is
much less for CR-Match compared to CR-Match without FeatDistLoss. Moreover, the improved
decision boundaries also lead to better per-class error rate. The standard deviation of per-class
error rates for CR-Match is 4.34% lower than that from CR-Match without FeatDistLoss (30.83%
v.s. 26.49%).
Additional analysis on FeatDistLoss. To further verify the importance of FeatDistLoss, we
show in Figure 6.7 the contribution of FeatDistLoss compared to other losses. The model is
CR-Equiv. trained on CIFAR-100 with 4 labels per class. We can see that during the training,
the two components of FeatDistLoss, LDist and LPseudoLabel , account for a large portion of the
overall loss, thus, the gradient. Note that LDist is the negative cosine distance, thus, ranging
from 1 to -1.

6.5 Experiments on Imbalanced SSL

In this section, we go beyond the standard setting and evaluate the efficacy of our method
under imbalanced SSL settings where both labeled and unlabeled data follow class imbalanced
distributions. We first present the problem setup of imbalanced SSL. Then, we introduce the
construction of the datasets before showing the final evaluation results.
Problem setup and notations. For a K-class classification problem, there is a labeled set
X = {(xn, yn) : n ∈ (1, ..., N)} and an unlabeled set U = {um : m ∈ (1, ..., M)}, where
xn, um ∈ Rd are training examples and yn ∈ {1, ..., K} are class labels for labeled examples. Nk
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and Mk denote the numbers of labeled and unlabeled examples in class k, respectively, i.e.,
∑K

k=1 Nk = N and ∑K
k=1 Mk = M. Without loss of generality, we assume the classes are sorted

by the number of training samples in descending order, i.e., N1 ≥ N2 ≥ ... ≥ Nk. The goal is to
train a classifier f : Rd → {1, ..., K} on X ∪ U that generalizes well on a class-balanced test set.
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Figure 6.7: The amount of the contribution of the regularization term in the loss. The model is
CR-Equiv. trained on CIFAR-100 with 4 labels per class.

Datasets. We consider three common datasets in the field to evaluate the efficacy of CRMatch
for imbalanced SSL: CIFAR10-LT [KH09], CIFAR100-LT [KH09], and Semi-Aves [SM21].

For CIFAR-10-LT and CIFAR100-LT, we follow the convention [KHP+
20, WSM+

21] and
randomly select some training images for each class determined by a pre-defined imbalance
ratio γ as the labeled and the unlabeled set. Specifically, we set Nk = N1 · γ− k−1

K−1 for labeled
data and Mk = M1 · γ− k−1

K−1 for unlabeled data. We use N1 = 1500; M1 = 3000 for CIFAR-10

and N1 = 150; M1 = 300 for CIFAR-100, respectively. Following [KHP+
20, WSM+

21], we
report results with imbalance ratio γ = 50, 100 and 150 for CIFAR10-LT and γ = 20, 50 and
100 for CIFAR100-LT. Therefore, the number of labeled samples for the least class is 10 and 1

for CIFAR-10 with γ = 150 and CIFAR-100 with γ = 100, respectively.
Semi-Aves is a subset of bird species from the Aves kingdom of the iNaturalist 2018 dataset.

There are 200 in-class and 800 out-of-class categories. The dataset consists of a labeled set Lin
with 3,959 labeled images, an in-class unlabeled set Uin with 26,640 images, an out-of-class
unlabeled set Uout with 122,208 images, a validation set Lval of 2,000 images, and 8,000 test
images. The training data in Lin, Uin, and Uout has imbalanced distributions, specifically Lin
has 5 to 43 images and Uin has 16 to 229 images per class. The validation data and test data
have a uniform distribution with 40 and 10 images per class, repectively. In our experiments,
we use Lin or Lin ∪ Lval as the labeled set and Uin as the unlabeled set. We do not use unlabeled
images from Uout since out-of-class unlabeled images are found empirically harmful to the
final performance [OOR+

18] and making good use of out-of-class unlabeled images is out of
the scope of this chapter. More details on the class distribution can be found in [SM21].
Implementation details. Due to the performance superiority of LU−equiv over LU−inv, we
use CR-Equiv throughout this section. For all experiments in this section, we use the same
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Class index 1 2 3 4 5 6 7 8 9 10 Avg.

Recall
FixMatch + CReST+ 98.6 99.3 85.8 77.4 84.4 63.4 77.2 55.5 37.4 34.6 71.3
CR-Match + CReST+ 98.6 99.6 88.8 82.5 86.7 67.8 78.7 57.0 42.7 40.6 74.3

Precision
FixMatch + CReST+ 53.3 61.4 71.4 57.9 77.0 82.4 93.0 97.1 97.6 98.0 78.9
CR-Match + CReST+ 56.1 62.9 75.1 63.7 78.6 83.3 94.5 97.1 98.1 97.1 80.7

Table 6.11: Class-wise precision and recall (%) on the balanced test set of CIFAR-10-LT. Models
are trained with imbalance ratio γ = 150.

hyper-parameters and design choices from the CIFAR experiments in Section 6.4.1. We deploy
FixMatch [SBL+

20] as the base SSL method due to its superiority under the standard SSL
settings. A Wide ResNet-28-2 [ZK16] is used as the backbone as recommended by [OOR+

18].
We base our implementation on the public codebases of each methods. Therefore, method-
specific hyper-parameters follow the same as in their original papers [KHP+

20, WSM+
21]. For

example, all experiments on CIFAR-LT are trained with batch size 64 using Adam optimizer
[KB15] with a constant learning rate of 0.002 without any decay. We train the models for 500

epochs, each of which has 500 steps, resulting in a total number of 2.5 × 105 training iterations.
On Semi-Aves, we follow the hyper-parameters from [OKK22]. For example, the models are
trained for 90 epochs with a batch size of 256, and the optimizer is SGD with a learning rate of
0.04. For all experiments, we report the average test accuracy of the last 20 epochs following
[OOR+

18].
Results on CIFAR-10 and CIFAR-100. Table 6.12 and Table 6.13 compare our method with
various SSL algorithms and long-tailed recognition algorithms on CIFAR-10-LT and CIFAR-100-
LT with various imbalance ratios γ. Adding our method shows improved performance in most
of settings. Our method combining with CoSSL [FDKS22] achieves the best or comparable
performance across all settings. In particular, CRMatch + CoSSL outperforms others at large
imbalance ratios (82.29% v.s. the second best 81.28% on CIFAR-10 at imbalance ratio γ = 150),
which indicates the superiority of our method in handling severe dataset imbalance.

To analyze how the improvement is obtained, we compare the class-wise precision and
recall of CReST+ and CReST+ with our method in Table 6.11. Both models are trained with
imbalance ratio γ = 150 on CIFAR-10-LT using the same data split. The class indices are sorted
according to the number of samples in descending order, i.e., class 1 has the largest number of
data. For CReST+, the head classes tend to have higher precision but lower recall while the
tail classes have lower precision but higher recall. By adding our method, the recall on the tail
classes can be significantly improved without sacrificing much precision, which leads to the
overall better performance. Similarly, the precision of the head classes is improved while the
recall remains at the same level.
Results on Semi-Aves. As Semi-Aves is naturally imbalanced (γ ≈ 9 and 4 for Ltrain and
Lin ∪ Lval , respectively), we compare CRMatch with other methods using different numbers of
labeled data. We report the raw performance of backbone algorithms as well as the performance
with CoSSL [FDKS22] considering its superior performance on CIFAR-10-LT and CIFAR-100-LT.
From Table 6.14, we can see that CRMatch outperforms other backbone algorithms by a large
margin in both settings. While CoSSL leads to improvement in all methods, CRMatch still
achieves the best performance, which demonstrates the effectiveness of our method in realistic
settings.
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CIFAR-10-LT

γ=50 γ=100 γ=150

vanilla 65.2±0.05∗ 58.8±0.13∗ 55.6±0.43∗

Long-tailed recognition methods

Re-sampling [Jap00] 64.3±0.48∗ 55.8±0.47∗ 52.2±0.05∗

LDAM-DRW [CWG+
19] 68.9±0.07∗ 62.8±0.17∗ 57.9±0.20∗

cRT [KXR+
20] 67.8±0.13∗ 63.2±0.45∗ 59.3±0.10∗

SSL methods

FixMatch [SBL+
20] 81.58±0.34 74.74±1.35 70.04±0.77

ReMixMatch [BCC+
20] 82.79±0.17 76.81±0.23 72.53±1.16

FlexMatch [ZWH+
21] 81.89±0.25 74.94±0.96 70.09±0.42

CR-Match 82.87±0.04 76.54±0.87 72.14±0.76

FixMatch + DARP [KHP+
20] 82.46±0.30 76.51±0.50 71.88±1.02

ReMixMatch + DARP [KHP+
20] 82.88±0.23 76.77±0.29 72.90±0.95

FlexMatch + DARP [KHP+
20] 81.93±0.22 74.84±0.66 70.46±0.58

CR-Match + DARP 83.22±0.27 77.32±0.29 73.44±0.06

FixMatch + CReST+ [WSM+
21] 82.25±0.08 76.31±0.23 71.70±0.83

ReMixMatch + CReST+ [WSM+
21] 83.71±0.17 79.13±0.19 75.17±0.31

FlexMatch + CReST+ [WSM+
21] 82.75±0.25 77.23±0.35 72.21±0.11

CR-Match + CReST+ 84.11±0.32 78.55±0.55 74.21±0.11

FixMatch + CoSSL [FDKS22] 86.63±0.24 83.10±0.48 80.15±0.59

ReMixMatch + CoSSL [FDKS22] 87.55±0.06 84.15±0.65 81.28±0.95
FlexMatch + CoSSL [FDKS22] 86.30±0.30 81.61±0.74 78.80±0.73

CR-Match + CoSSL [FDKS22] 88.11±0.17 84.80±0.54 82.29±0.33

Table 6.12: Classification accuracy (%) on CIFAR-10-LT using a Wide ResNet-28-2 under the
uniform test distribution of three different class-imbalance ratios γ. The numbers are averaged
over 5 different folds. We use the same code base as [KHP+

20] for fair comparison following
[OOR+

18]. Numbers with ∗ are taken from the original papers. The best number is in bold
and the second best number is in italic.
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CIFAR-100-LT

γ=20 γ=50 γ=100

FixMatch [SBL+
20] 49.58±0.90 42.10±0.38 37.46±0.48

ReMixMatch [BCC+
20] 51.46±0.51 44.37±0.62 39.29±0.59

FlexMatch [ZWH+
21] 51.00±0.75 42.86±0.42 37.20±0.51

CR-Match 52.03±0.42 44.37±0.57 39.32±0.31

FixMatch + DARP [KHP+
20] 50.89±0.86 43.12±0.61 38.19±0.47

ReMixMatch + DARP [KHP+
20] 51.95±0.40 45.24±0.46 39.50±0.58

FlexMatch + DARP [KHP+
20] 50.78±0.71 42.81±0.36 36.99±0.66

CR-Match + DARP 49.33±0.32 44.13±0.38 39.18±0.80

FixMatch + CReST+ [WSM+
21] 51.87±0.11 45.25±0.06 40.41±0.35

ReMixMatch + CReST+ [WSM+
21] 51.22±0.38 45.91±0.33 41.24±0.79

FlexMatch + CReST+ [WSM+
21] 51.16±0.63 43.12±0.57 38.09±0.58

CR-Match + CReST+ 53.77±0.36 46.44±0.58 40.94±0.43

FixMatch + CoSSL [FDKS22] 53.99±0.87 47.78±0.53 42.87±0.61

ReMixMatch + CoSSL [FDKS22] 55.92±0.69 49.10±0.59 44.10±0.68

FlexMatch + CoSSL [FDKS22] 53.46±0.79 46.83±0.80 41.42±0.58

CR-Match + CoSSL [FDKS22] 55.34±0.43 48.83±0.87 44.21±0.61

Table 6.13: Classification accuracy (%) on CIFAR-100-LT under the uniform test distribution of
three different class-imbalance ratios γ. The numbers are averaged over 5 different folds. We
reproduce all numbers using the same codebase from [KHP+

20] for a fair comparison. The
best number is in bold and the second best number is in italic.

Semi-Aves

X = Lin ∪ Lval X = Lin

FixMatch [SBL+
20] 53.15 42.46

ReMixMatch [BCC+
20] 51.28 40.10

FlexMatch [ZWH+
21] 52.78 43.50

CRMatch 54.53 44.42

FixMatch + CoSSL [FDKS22] 54.15 44.58
ReMixMatch + CoSSL [FDKS22] 54.13 43.97

FlexMatch + CoSSL [FDKS22] 53.98 44.09

CRMatch + CoSSL [FDKS22] 54.90 45.81

Table 6.14: Classification accuracy (%) on Semi-Aves under the uniform test distribution. Ltrain
and Lin ∪ Lval have imbalance ratio γ ≈ 9 and γ ≈ 4, respectively. The best number is in bold
and the second best number is in italic.
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6.6 Conclusion

The idea of consistency regularization gives rise to many successful works for SSL [BAP14,
LA17, SJT16, SBL+

20, XDH+
20, KMHK20]. While making the model invariant against input

perturbations induced by data augmentation results in improved performance, the scheme
tends to be suboptimal when augmentations of different intensities are used. In this chapter,
we propose a simple yet effective improvement, called FeatDistLoss. It introduces consistency
regularization on both the classifier level, where the same class label is imposed for versions of
the same image, and the feature level, where distances between features from augmentations
of different intensities is increased. By encouraging the representation to distinguish between
weakly and strongly augmented images, FeatDistLoss encourages more equivariant represen-
tations, leading to improved classification boundaries, and a more robust model. Through
extensive experiments we show the superiority of our training framework, and define a new
state-of-the-art on both standard and imbalanced semi-supervised learning benchmarks.
Particularly, our method outperforms previous methods in low data regimes by significant
margins, e.g., on CIFAR-100 with 4 annotated examples per class, our error rate (39.45%) is
4.83% better than the second best (44.28%). In future work, we are interested in integrating
more prior knowledge and stronger regularization into SSL to further push the performance in
low data regimes. In the following Chapter 7, Chapter 8, and Chapter 9, we will explore how
to reduce annotation cost for by leveraging mutiple modalities of the input data.





7
In-Style: Bridging Text and Uncurated Videos

with Style Transfer for Text-Video Retrieval

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 In-Style Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.1 Pseudo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4.2 Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.3 Training and Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5.3 Text Query Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.5.4 Uncurated & Unpaired Text-Video Retrieval . . . . . . . . . . . . . . . 115

7.5.5 Comparison with SOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5.6 Efficiency of Style Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5.7 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

In this chapter, we investigate multimodal video-language learning, leveraging large pre-
trained foundational models for multimodal alignment to lower video annotation costs for
text-video retrieval tasks. Large-scale noisy web image-text datasets have shown effective-

ness in learning robust vision-language models, thus motivating our approach. However, to
transfer them to the task of video retrieval, models still need to be fine-tuned on hand-curated
paired text-video data to adapt to the diverse styles of video descriptions. To address this
problem without the need for hand-annotated pairs, we propose a new setting, text-video
retrieval with uncurated & unpaired data, that uses only text queries together with uncurated
web videos during training without any paired text-video data. To this end, we propose our
approach, In-Style, that learns the style of the text queries and transfers it to uncurated web
videos. Moreover, to improve generalization, we show that one model can be trained with
multiple text styles. To this end, we introduce a multi-style contrastive training procedure, that
improves the generalizability over several datasets simultaneously. We evaluate our model
on retrieval performance over multiple datasets to demonstrate the advantages of our style
transfer framework on the new task of uncurated & unpaired text-video retrieval and improve
state-of-the-art performance on zero-shot text-video retrieval.

This chapter is based on [SKSK23]. As the co-first author Anna Kukleva led the project
jointly with Nina Shvetsova, sharing responsibilities across all stages of its development with
equal contribution.
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Figure 7.1: Training data for supervised and uncurated & unpaired settings for text-video retrieval.
Left: standard supervised text-video retrieval, aligned and paired data is given for each target setting of
the same distribution as target test set; Right: our uncurated & unpaired text-video retrieval setting.
No paired data is available during training, only text queries, whereas to support training, we use
uncurated web videos.

7.1 Introduction

Vision-language retrieval refers to the task of retrieving an image or a video from a large data
pool given a textual description of the content. Especially the field of text-image retrieval has
seen remarkable progress, mainly spurred by the combination of image and text models trained
on large-scale web collections [RKH+

21, LLXH22] of image-text pairs. While advances in video
retrieval also rely on pre-trained image-language models, which serve for better task transfer,
most systems still require a fine-tuning on downstream data. This requires hand-annotated
text-video pairs, namely a trimmed segment of a larger video that is precisely described by
the corresponding text pair, for the training and testing of each target downstream dataset.
Collecting such aligned pairs of text and videos can be time and cost intensive, and particularly
gathering videos that comply with national regulations and copyright can be a challenge. Also,
in case of relying on free web content, some videos can become unavailable over time while the
respective curated annotations stay available for download but do not have matching videos.

To address this problem, we propose a new setup, text-video retrieval with uncurated &
unpaired data, assuming the availability of text queries only and without related videos during
training (Figure 7.1). The setting is motivated by the fact that it can be considered easier to
collect or generate text data, e.g. by producing topic-specific text queries, rather than providing
a video to match a specific context. To allow the training of a text-video retrieval system based
on the given text, we assume to have access to an uncurated video collection as the only source
of available videos.

As different domains and datasets contain diverse styles of textual descriptions of videos, we
propose a novel method, In-Style, to transfer the caption style of given text queries to uncurated
web videos, which can be from a deviating distribution compared to the given text queries.
To transfer the style of the text queries, we leverage large image-language models [LLXH22,
RKH+

21] by creating pseudo pairs that correspond to the given text queries and videos from
the uncurated collection by matching them in the shared embedding space [RKH+

21]. Thus,



7.2 related work 107

we identify a subset of videos that have more similarity to the text queries than the rest of the
videos. We then adopt an image-to-text captioning model (captioner) to mimic the style of
our text queries by training with these pseudo pairs. The stylized captioner is now capable
of producing relevant video descriptions in the desired style; therefore, we re-annotate the
web videos with the captioner to obtain aligned paired data; we call them generated pairs.
Finally, we show that generated pairs help to adapt models pre-trained on large-scale web
data [LLXH22, SCR+

22] to the desired single or multiple styles of given text queries.
We evaluate our model on text-video retrieval over 5 benchmark datasets. Specifically, we

demonstrate the advantages of the In-Style method on the new task of uncurated & unpaired
text-video retrieval with image-language [LLXH22] and video-language [SCR+

22] pre-trained
backbones. We show the generalization of the proposed approach by training a single model for
multiple datasets at once leading to an improved state-of-the-art zero-shot text-video retrieval
performance.

We summarize our contributions in the following: (i) we introduce a new task of text-video
retrieval with uncurated & unpaired data where during training, only text queries are available,
whereas for standard text-video retrieval task, paired text-video data is used; (ii) we propose a
novel method, In-Style, to transfer the style of text queries in an unsupervised way, showing
that style is an important component for language-based retrieval tasks; therefore, we repurpose
large pre-trained image-language models to generate pseudo-captions of the same style for
uncurated web videos; (iii) we demonstrate the advantages of our In-Style method for the new
task over 5 different datasets with individual models for each dataset as well as one generalized
model and we achieve state-of-the-art performance on zero-shot text-video retrieval.

7.2 Related Work

In this section, we discuss prior work on the text-video retrieval topic. We will not revisit the
topic of vision-language large-scale pretraining as previously discussed in Chapter 2.

Text-video retrieval methods usually focus on learning modules that are able to capture
relations between features from text and video modalities [YKK18, LANZ19, GSAS20, CZJW20,
CBL+

21, DKKP21, WZY21]. Currently, many approaches leverage pre-training on large-scale
video-text [BNVZ21, MZA+

19, MAS+20] or image-text [LLZ+
21, LLXH22] datasets with a

further adaptation of the backbone to individually downstream datasets. In this context, Clip-
BERT [LLZ+

21] proposed sparse sampling instead of using dense full-length videos that allow
lightweight training. However, foundation models [BHA+

21] such as CLIP [RKH+
21], combin-

ing the success of transformer architectures [DBK+
20] using a contrastive objective [OLV18]

and being trained on large collections of text-image pairs from the web, providing a strong
zero-shot [LJZ+

22, PQOBTM21] baseline on downstream tasks that outperforms many pre-
vious methods. Therefore, more recent approaches focus on adapting text-image CLIP pre-
trained models for text-video retrieval [GVM+

22, BCJ+22, FXXC21, GLC+
21, LXX+

22]. X-
pool [GVM+

22] introduces cross-modal attention to reason between text and frames of a video,
TS2-Net [LXX+

22] proposes dynamic adjustments over temporal and spatial token dimen-
sions, which allows fine-tuning spatial model on video data without architecture changes.
Another way to leverage foundation models is to enhance training data [WLF+

23, ZMKG23].
Cap4Video [WLF+

23] generates auxiliary captions for available curated training videos by
using ZeroCap [TSSW22] that optimizes GPT-2 [RWC+

19] text generation using a CLIP-based
loss [RKH+

21]. LaViLa [ZMKG23] proposes to generate additional narrations for a dense
coverage of long videos from the Ego4D dataset [C+, GWB+

22a] by fine-tuning a pre-trained
large language model [RWC+

19] on existing annotated text-video paired data. In contrast, we
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propose to exclude pre-annotated text-video paired data from the training and, relying on text
descriptions only, generate text-video pairs leveraging uncurated web videos while transferring
the style of original captions.

7.3 Method

In this section, we introduce the proposed uncurated & unpaired text-video retrieval training
setup. Typically, models for text-video retrieval are trained on paired text-video data. Given
a set of pairs of captions ti and corresponding videos vi: {(ti, vi)} ∈ D, where D is a data
distribution, the goal is to learn a similarity function s(ti, vj) that calculates the similarity
between the caption ti and the video vj. The training can be done from scratch, but typically
pre-trained image-language [RKH+

21, LLXH22] or video-language models [LJS+20, MZA+
19]

are fine-tuned on the target paired text-video data and then evaluated on the test set from the
same distribution D [LXX+

22, FXXC21]. If the evaluation is performed on multiple datasets,
the model is usually fine-tuned for each dataset individually.

In contrast, we propose a text-video retrieval with uncurated & unpaired data, where only target
text queries are available during training without any videos. More precisely, given a set of
text descriptions {ti} from data distribution D, we aim to learn useful information about the
similarity s(ti, vj) in D relying only on the clean textual descriptions. We further assume that a
large set of freely accessible web videos V ′ = {v′j} ∈ D′ without any paired text is available to
support the training (such as videos of the HowTo100M dataset [MZA+

19]). We note that the
data distribution D′ in the support video dataset can deviate from the distribution D.

Finally, to avoid to train different models individually for each target dataset, we further
consider learning a generalized model that maintains the performance of individual models
over a set of K datasets of different caption styles and coming from different data distributions
D1, ..., DK.

7.4 In-Style Method

To address the task of uncurated & unpaired text-video retrieval, we aim to transfer the style
of the text queries (the only available curated information) to an uncurated web video dataset.
To this end, we rely on web-scale pre-trained image-language models as a supervisory signal
and leverage them as a matching module and pre-trained captioning model that we adapt
throughout the training process. The steps of the proposed In-Style method are shown in
Figure 7.2. The first step is Pseudo Matching, described in Section 7.4.1, which matches the given
text queries to the most relevant videos from the set of all uncurated web videos. The following
Style Transfer step (Section 7.4.2) adapts the pre-trained captioning model (captioner) to the
target text style by training it on the previously obtained pseudo pairs. The captioner is then
used to generate new style-adapted captions for all available web videos, which are then filtered
to avoid too noisy pairs; we refer to the resulting filtered web videos with style-adapted video
descriptions as generated pairs. Finally, we adapt a pre-trained vision-language model for the
task of text-video retrieval on the generated pairs (Section 7.4.3). Moreover, in Section 7.4.3, we
propose the training of a generalized model on multiple styles of text queries at the same time
and introduce a new contrastive objective, In-Style, that improves training on more than one
text style at once.
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Figure 7.2: The proposed In-Style method. First, in the pseudo matching step, pseudo pairs
Pps, which consist of text queries and the most related web videos from the support set, are
created. Style Transfer: captioner is tuned with the obtained pseudo pairs Pps to adapt it to
the style of the given text queries. Next, stylized new captions are generated for all videos in
the support set and then filtered to avoid noisy captions; the resulting set of generated pairs
Pgen contains web videos and aligned captions of the desired style. To complete the retrieval
task, we adapt the dual video-text encoder model with the generated pairs Pgen and evaluate
on curated paired text-video test sets.

7.4.1 Pseudo Matching

First, we obtain pseudo video-text pairs, with each pair containing one of the available text
queries and the most relevant uncurated video from the web collection. For pseudo matching,
we leverage image-language models such as CLIP [RKH+

21] or BLIP [LLXH22] that excel
in zero-shot retrieval performance [LJZ+

22]. Such models usually follow a dual-encoder
architecture: encoders ft and fv projects text t and image x into a common multimodal
embedding space. The similarity of text and image is computed as a cosine similarity in this

common space: sim(t, x) = ft(t)⊤ fv(x)
∥ ft(t)∥∥. fv(x)∥ . We use this metric to match the available text queries

to the closest video.

Since available videos can vary in overall duration (for example, five or more minutes) and
cover a lot of different actions, we divide all videos into non-overlapping clips of s-seconds. We
denote V ′ = {v′j} as a set of all such video clips. Then we calculate a multimodal representation
for each video clip v′j as an average representation of m uniformly sampled frames of a video.
Using precomputed embeddings, we connect every caption ti with a video v′ with maximum
similarity from available set of videos V ′, such as:

vp
i = arg max

v′j∈V′
sim(ti, v′j). (7.1)

To increase the diversity of matched videos, we don’t allow multiple captions to match the
same video clip; therefore, when video clip vp

i is matched, we exclude it from V ′. Thus, we
obtain a set of pseudo text-video pairs Pps = {(ti, vp

i )}. In Section 7.5, we show that this step
allows us to introduce a weak supervision that may not find the exact match but provides a
basis for further style transfer.
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7.4.2 Style Transfer

We aim to transfer style of the given text queries to other, unrelated web videos by generating
new captions with the desired style. Inspired by the ability of language models conditioned on
visual input [LLXH22] to generate plausible descriptions for diverse visual inputs, we propose
to adapt the pre-trained image captioner g using the obtained set of noisy pseudo text-video
pairs Pps. By doing this, we adapt the captioner to both, the style of the captions as well as
the style of the web videos. This allows us to generate new stylized captions Pgen for the full
support set of videos V ′ using this captioner.

Captioner. More specifically, we follow the BLIP [LLXH22] captioner architecture, which we
extend for video captioning by conditioning the model not only on a single image, but on a
number of video frames. To this end, we apply the image encoder on each frame individually
and inject a joint set of visual tokens into the text decoder model, which produces text in
an autoregressive manner. To train the captioner g on the pseudo text-video pairs Pps, we
utilize the common language model loss that optimizes cross-entropy loss between ground
truth and predicted probabilities of the next token given a correct set of previous tokens in the
sentence. Following BLIP, we also use label smoothing with parameter 0.1 while calculating
cross-entropy.

Stylization of Captions. For each video v′i ∈ V ′, we generate a caption tg
i = g(v′i) with a

captioner g trained on pseudo pairs by using a nucleus sampling [HBD+
20]. Nucleus sampling

was shown to generate more diverse and detailed captions than a beam search [VCS+15,
LLXH22].

Filtering. As the captioner g is adapted on pseudo pairs and shifts the model closer to a
vocabulary of given text queries D, some of the generated captions tg

i might be noisy and not
descriptive for the web videos. Therefore, we further filter the generated pairs based on a
similarity score s(tg

i , v′i) utilizing the large pre-trained image-language dual encoders the same
way as it was used for creating pseudo text-video pairs (Section 7.4.1). Leaving only pairs with
similarity higher a threshold s(tg

j , v′j) > th, we obtain a paired set of web videos and stylized
related captions Pgen = {(tg

j , v′j)}. In Section 7.5.7, we show that even a noisy set of pseudo
pairs is enough to adapt a captioner for generating captions in a desired text style and that
stylized captions combined with the following filtering provide a strong learning signal to
boost the performance of retrieval in target distribution D.

7.4.3 Training and Retrieval

Single-Style Training. To allow for text-video retrieval based on the stylized captions and the
paired video data, we train a dual-encoder architecture [LLXH22] on the set of generated pairs
Pgen with the contrastive loss [OLV18]. We show that Pgen provides better supervision than
Pps or even a combination Pgen + Pps. Practically, we consider several pre-trained models: the
image-text model BLIP [LLXH22], which we adapted for video as described in Section 7.4.1,
as well as video-text model EAO [SCR+

22], which is pre-trained on the HowTo100M dataset
with ASR-video pairs, which serve as noisy supervision. Following previous works, we use
symmetric contrastive loss, which brings together text tg

i and video vi from a text-video pair
(tg

i , vi) ∈ Pgen (a positive pair) in shared video-text embedding space, and contrasting them on
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Figure 7.3: Multi-dataset training. Left: Standard contrastive training with multiple datasets.
Right: Ours In-Style training procedure. Each batch consists of text queries that belong only to
the same style. Note that we use only web videos from the support set; therefore, all videos
are from the same distribution.

video and text from different pairs (negatives), that are pushed apart:

L = − 1
2B

B

∑
i=1

(log
exp( s(tg

i ,vi)
τ )

B
∑

j=1
exp(

s(tg
i ,vj)
τ )

+ log
exp( s(vi ,t

g
i )

τ )
B
∑

i=1
exp(

s(vi ,t
g
j )

τ )

), (7.2)

where τ denotes a temperature parameter, and B is a number of pairs.
For the fine-tuning of the the BLIP model, we follow the original setup and utilize the

extension of contrastive training with a momentum encoder and a queue that keeps more
negatives, as well as soft labels. For the fine-tuning of the EAO model, we follow the respective
setup without a momentum encoder or soft labels.

Multi-Style Training. Finally, we consider training a generalized model on multiple sources
of text queries coming from different data distributions D1, ..., DK. Let’s denote P1

gen, ..., PN
gen set

of generated pairs for the captions from D1, ..., DN respectively. Here, different sources can
have various styles that might highlight different aspects of videos in their captions (Table 7.3).
As an example, captions in the YouCook2 dataset [ZXC18] are more “action”-oriented, e.g.
“combine macaroni sauce and cheese” or “stir in crushed tomatos”, while captions of the
LSMDC dataset [RRS] are third-person descriptions, e.g. “Someone gazes at the beautiful
animal” or “Someone chews the sweet’. In standard training [LLXH22], all different styles
with their matching videos would be present in contrastive loss together, which can lead to a
mixture of different visual topics and text styles, which are easy to separate and which might
include only few hard negatives per sample. To avoid this possibly noisy setting, we propose
to modify the training procedure and to select video-caption pairs with captions from the same
data source for contrastive loss. Formally, during training, we iterate over generated sets of
pair P1

gen, ..., PN
gen sampling a minibatch {(tg

i , vi)}B
i=1 from a single set Pgen ∈ {P1

gen, ..., PN
gen} and

calculating loss L({(tg
i , vi)}B

i=1) performing one optimization step with a minibatch (Figure 7.3).
We note that for BLIP training we keep separate queues for each set Pgen.

We show in Section 7.5.4 that this setting can be beneficial for learning a generalized model.
Our intuition is that text queries with the same style provide stronger negatives for the model,
allowing the model to concentrate on the content of the captions rather than a style.
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Pre-trained
Method Supervision

MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean
Model R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

BLIP [LLXH22]
Zero-shot none 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32.5 24.3 44.5 53.4 22.5
In-Style (ours) only text 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14
GT fine-tuning T-V pairs 42.9 69.7 78.9 2 12.6 32.0 43.6 15 40.2 70.6 79.3 2 48.1 76.6 85.0 2 23.8 41.1 50.9 10 33.5 58.0 67.5 6.2

EAO [SCR+
22]

Zero-shot none 9.9 24.0 32.6 28 19.8 42.9 55.1 8 6.6 19.0 26.8 42 18.0 40.4 52.3 9 3.6 8.5 13.0 177 11.6 27.0 36.0 52.8
In-Style (ours) only text 16.4 35.8 48.9 10 20.3 46.4 58.8 7 13.2 31.6 44 15 23.4 50 62.4 5 4.9 12.3 16.7 94 15.64 35.22 46.16 26.2
GT fine-tuning T-V pairs 22.8 47.8 60.3 6 26.7 55.9 68.6 4 19.2 43.1 54.4 8 25.1 53.6 65.7 5 8.9 21.2 29.4 40 20.5 44.3 55.7 12.6

Table 7.1: Text-video retrieval with style transfer. Comparison between upper bound, where the
retrieval model trained with ground truth aligned text-video pairs (T-V pairs), zero-shot respective
models (no style transfer or tuning) and our In-Style method, where we follow our new setting of
uncurated & unpaired text-video retrieval for style transfer based only on input text queries.

Training Dataset MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

MSR-VTT 36.2 61.8 71.9 3 7.6 18.8 25.9 62 29.0 54.5 65.4 4 43.3 70.7 79.9 2 15.2 28.5 35.3 31 26.3 46.9 55.7 20.4
YouCook2 31.5 55.5 64.4 4 8.6 21.6 30.0 37 25.1 53.9 65.2 4 41.1 67.3 76.8 2 14.2 28.8 36.9 30 24.1 45.4 54.7 15.4
Didemo 34.0 58.5 68.9 3 6.8 17.2 24.5 69 32.1 61.9 71.2 3 43.7 71.6 80.5 2 16.6 30.5 38.4 28 26.6 47.9 56.7 21

MSVD 36.0 59.4 69.5 3 6.4 16.4 23.6 70 27.0 54.9 65.0 4 44.8 72.5 81.2 2 14.5 27.4 34.8 32 25.7 46.1 54.8 22.2
LSMDC 33.9 60.3 69.9 3 7.1 18.1 25.6 68 31.7 59.9 69.1 3 44.6 71.7 80.0 2 16.1 33.6 39.7 25 26.6 48.7 56.8 20.2
Target dataset (mean over diagonal) - - - - - - - - - - - - - - - - - - - - 27.5 50.3 58.8 14

All five datasets – standard training 36.4 62.1 71.8 3 8.7 21.4 29.4 44 31.4 62.5 71.2 3 44.7 72.9 81.5 2 16.3 31.9 39.5 25 27.5 50.2 58.7 15.4
All five datasets – In-Style (ours) 36.7 61.9 72.3 3 8.5 21.8 30.4 38.5 32.6 61.8 71.2 3 44.7 73.1 82.0 2 16.6 32.2 39.8 26 27.8 50.2 59.1 14.5

Table 7.2: Generalization performance of different models over all datasets. Mean denotes
an average of R1, R5, R10, MR over 5 datasets, correspondingly. Top: the proposed In-Style
method with the input text queries only from one respective training dataset. Bottom: training
with 5 different text query styles. Comparison between standard multi-dataset training and
proposed In-Style procedure.

7.5 Experiments

We evaluate the proposed uncurated & unpaired text-video retrieval approach on five popular
benchmark datasets: MSR-VTT [XMYR16], YouCook2 [ZXC18], MSVD [CD11], LSMDC [RRS],
and DiDeMo [AHWS+17]. All datasets cover different styles of captions and videos, which
includes YouTube and Flickr videos on various topics and video clips from movies. As a
source of support videos, we use the large-scale web dataset HowTo100M [MZA+

19]. We
additionally test our model with text queries from the VATEX dataset [WWC+

19] as well
as with third-party text queries (not video captions), specifically with the recipe steps from
Food.com dataset [MLNM19] and task descriptions from WikiHow dataset [KW18] datasets.

7.5.1 Dataset Details

MSR-VTT [XMYR16] contains in total 10k videos on various topics and 200K captions.
More precisely, every 20 captions describe the same video in different words. We use split
9K+1K [GSAS20] in evaluation, resulting in 180K captions for training and 1K text-video for
testing.
YouCook2 [ZXC18] is a dataset of 14K cooking instructional video clips, where each clip is
annotated with a short cooking recipe step. Following[MZA+

19, SCR+
22], we use a 10K+3.5K

training-testing split, leveraging 10K captions for training.
MSVD [CD11] contains 2K video snippets, where each is associated with approximately 40

sentences. The standard split consists of 1200 videos for training, 100 for validation, and 670

for testing. The training set contains 48K captions.
LSMDC [RRS] is a collection of 202 movies sliced into 118K movie-clips with one description
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Dataset Examples

1) The peoples are sharing their view on this car of
MSR-VTT different models

(∼43 symbols 2) Someone is showing the ingredients for a dish
in a text) they are going to make

3) A man is playing an instrument

YouCook2 1) Combine macaroni sauce and cheese
(∼39 symbols 2) Grate and cube potatoes

in a text) 3) Stir in crushed tomatos

1) A dog runs down a hill and stop behind a shrub. Dog sniffs and chews
DiDeMo at patch of grass on rock. the dog approaches, then begins to sniff the cluster of

(∼147 symbols plants first time hand is seen petting dog.
in a text) 2) Only big screen is visible the camera first pans to the large screen.

The view shifts from the basketball court to the fans in the seats across the stadium.
3) A bus stops. The bus stops at the end of the driveway. A kid is coming out of a school bus.

MSVD 1) The cats are fighting
(∼31 symbols 2) The lady sliced a vegetable

in a text) 3) A man is eating a pizza

1) SOMEONE goes to the kitchen, wets a towel,
LSMDC comes back to the bed, kneels it, places the towel

(∼46 symbols on SOMEONE’s brow.
in a text) 2) He slaps SOMEONE again.

3) SOMEONE moves off through the crowd.

Table 7.3: Three random examples of text descriptions in different datasets. With the dataset
name, we also report the median length of a text in the dataset.

Method Image-Text Datasets Video-Text Datasets
MSR-VTT YouCook2 DiDeMo MSVD LSMDC

R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

HowTo100M [MZA+
19] - HowTo100M 7.5 21.2 29.6 38 6.1 17.3 24.8 46 - - - - - - - - - - - -

SupportSet [PHA+
21] - HowTo100M 8.7 23.0 31.1 31 - - - - - - - - 8.9 26.0 37.9 18 - - - -

VATT [AYQ+
21] HowTo100M+AS - - 29.7 49 - - 45.5 13 - - - - - - - - - - - -

EAO§ [SCR+
22] - HowTo100M 9.9 24.0 32.6 28 19.8 42.9 55.1 8 6.6 19.0 26.8 42 18.0 40.4 52.3 9 3.6 8.5 13.0 177

Nagrani et al. [NSS+22] - VideoCC3M 19.4 39.5 50.3 - - - - - - - - - - - - - - - - -
Frozen in Time [BNVZ21] CC+COCO WebVid-2M 24.7 46.9 57.2 7 - - - - 21.1 46.0 56.2 7 - - - - - - - -
CLIP-straight [PQOBTM21] WIT - 31.2 53.7 64.2 4 - - - - - - - - 37.0 64.1 73.8 2 11.3 22.7 29.2 56.5
CLIP4CLIP [LJZ+

22] WIT HowTo100M 32.0 57.0 66.9 4 - - - - - - - - 38.5 66.9 76.8 2 15.1 28.5 36.4 28

Nagrani et al. [NSS+22] WIT VideoCC3M 33.7 57.9 67.9 - - - - - - - - - - - - - - - - -
BLIP|| [LLXH22] CC+COCO+3more∗ - 33.3 57.3 67.5 3.5 5.8 15.0 21.9 76 24.6 50.4 59.7 5.3 37.0 63.3 72.6 3 15.2 28.2 35.9 35

In-Style (ours) (CLIP) WIT HowTo100M†+VATEX‡
35.0 59.6 70.4 3 5.1 14.0 20.3 103 26.6 50.5 62.6 5 38.6 66.3 77.9 3 16.0 31.6 38.5 26.5

In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+VATEX‡ 36.0 61.9 71.5 3 6.8 16.7 24.5 63 29.4 59.2 68.6 3.5 44.9 72.7 81.1 2 16.4 30.1 38.7 28

In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+WikiHow 34.2 59.6 69.0 3 7.3 19.2 27.1 46 29.7 56.2 67.4 4 42.8 70.2 79.1 2 17.0 30.8 39.6 27

In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+Food.com 32.8 54.9 65.8 4 7.2 19.8 27.9 47 25.7 52.8 63.1 5 39.5 64.9 74.9 2 14.5 28.9 37.2 30.5

In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+Target‡
36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25

In-Style (ours) (EAO) - HowTo100M+Target‡
16.4 35.8 48.9 10 20.3 46.4 58.8 7 13.2 31.6 44.0 15 23.4 50.0 62.4 5 4.9 12.3 16.7 94

Table 7.4: Zero-shot comparison with other methods. Top: zero-shot retrieval with methods pre-
trained on video-language or/and images-language web or/and curated datasets which exclude target
datasets during training. For our In-Style method, the VATEX dataset is used as a source of text queries.
Bottom: uncurated & unpaired text-video retrieval with text queries from the respective target datasets
for comparison purposes. Note that this setting is not zero-shot. † denotes that only videos were used
(without paired text) and ‡ – only text (without videos). §For EAO, performance with S3D backbone is
reported. ||For BLIP, the performance of dual encoder architecture is reported (not image-grounded
text encoder). ∗CC [CSDS21]+COCO [LMB+

14]+VG [KZG+
17]+SBU [OKB11] +LAION [SVB+

21]. AS
denotes AudioSet [GEF+

17].
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Training Data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

— (zero-shot) 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32.5 24.3 44.5 53.3 22.5
Pseudo pairs Pps 35.0 61.4 70.9 3 7.5 19.6 28.9 43 33.1 59.8 71.2 3 44.3 72.4 81.0 2 16.8 32.7 40.4 25 27.3 49.2 58.4 15.2
Generated pairs Pgen 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14.0
Combined Pps + Pgen 36.0 61.3 71.5 3 8.9 21.8 29.8 37 32.6 61.8 70.2 3 44.4 72.2 80.8 2 17.1 32.4 40.4 26 27.8 49.9 58.5 14.2

Table 7.5: Different types of training pairs for text-video retrieval step. We evaluate text-video
retrieval with pseudo pairs Pps only, with generated pairs Pgen only, and the combination of both Pps +
Pgen.

Training data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

— (zero-shot) 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32 24.3 44.5 53.3 22.5
Pgen with zero-shot captioner 36.3 61.6 71.8 3 7.1 18.4 25.6 65 28.7 56.3 65.0 4 43.8 71.2 80.1 2 16.0 29.2 37.7 30 26.3 47.3 56.1 20.8
In-Style Pgen (non-target) 36.0 61.9 71.5 3 6.8 16.7 24.5 63 29.4 59.2 68.6 3.5 44.9 72.7 81.1 2 16.4 30.1 38.7 28 26.7 48.1 56.9 19.9
In-Style Pgen (target) 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14

Table 7.6: Source of generated pairs PgenPgenPgen for text-video retrieval. Comparison between zero-shot BLIP
(no adaption of retrieval model), zero-shot BLIP captioner, and adapted BLIP captioner with our In-Style
method with either text queries from VATEX (non-target) or text queries from the target datasets.

per clip with about 100K for training, while 7408 and 1000 text-video paired samples are used
for validation and testing, respectively.
DiDeMo [AHWS+17] is a fine-grained text-video dataset. 10K Flickr videos are paired with
multiple detailed sentences (40K sentences in total). During training, we use the single sentences
(33K captions), whereas for evaluation on the test set, we follow [BNVZ21] and concatenate all
the descriptions for video into one paragraph, acting as a video-paragraph retrieval task (we
do not use ground truth time-stamp annotations).
VATEX [WWC+

19] dataset contains 35K video clips with multiple annotated captions for a
video, covering 600 different human activities. The training set contains 260K captions.
Food.com [MLNM19] is a text dataset that contains more than 230K recipe texts with over
2.2M recipe steps crawled from websites. We use recipe steps as text queries in our training.
WikiHow [KW18] is a large-scale text dataset using the online WikiHow knowledge base. The
dataset contains more than 230K articles covering a variety of topics/tasks and descriptions
of steps to solve these tasks. We use only headline steps as text quires, which gives us 1.7M
captions.
HowTo100M [MZA+

19] is a dataset of instructional videos that cover a large variety of topics.
The dataset consists of more than 1M videos that were collected by querying on YouTube
23,000 different “how to” tasks. In our default setup, we use 8-second non-overlapping clips
from a 100K random subset of the dataset (no more than 15 clips per video) as a support video
dataset, resulting in ∼1.4M video clips.

7.5.2 Implementation Details

Model. We leverage the pre-trained dual-encoder CLIP (ViT-B/32) model [RKH+
21] in the

matching module and the filtering module. Captioner weights are initialized with BLIP (ViT-
B/16) captioner [LLXH22] which is pre-trained on five different image-text datasets, including
LAION [SVB+

21] with 129M images. For retrieval, we consider two architectures: dual
encoder image-text initialized with BLIP (ViT-B/16), and dual encoder video-text architecture
initialized from EAO [SCR+

22] pre-trained on HowTo100M with noisy ASR narrations. We
follow [SCR+

22] and use a model with a S3D [XSH+
18] feature extractor and weights that

were pre-trained with a video-text-audio triplet, but only utilize the video-text encoder and
report all results without audio.
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Training. For training, we uniformly sample m = 8 frames per video with a resolution of
224 × 224, augmented with RandAugment [CZSL20]. For the captioner training and BLIP-
architecture retrieval model, we use AdamW optimizer [LH19] with a weight decay of 0.05

and a batch size of 128, and a learning rate 1.0e − 05 for captioner and 1.0e − 06 for retrieval.
Following [SCR+

22], for the EAO model, we used Adam optimizer [KB15] without weight
decay.

Evaluation. For testing, we use m = 64 frames for the fine-grained DiDeMo dataset, and
m = 12 for all others, following [LJZ+

22]. For text-video retrieval, we report standard recall
metrics for R1, R5, R10, and the median rank (MR).

7.5.3 Text Query Style

We consider text style as a set of attributes and properties of the text shared across a text corpus.
Such properties might be the usage of stop words, sentence construction, sentiment, text length,
etc. To highlight those differences, we show three text examples from the different datasets in
Table 7.3. For example, the YouCook2 test queries always start with an action verb, while in
other datasets, the subject+verb+object structure is mostly used. While in the MSR-VTT dataset,
frequent words are third person nouns like “man”, “woman”, “person”, “people”, the DiDeMo
uses more words about camera position like “camera”, “left”, “right”, “screen”, “view”, and
the LSMDC mostly describes a subject as “someone”. While the MSR-VTT and the MSVD
datasets might look similar, Table 7.3 shows that sentences in the MSR-VTT are 1.5 times longer
than in the MSVD on average. We consider such properties as style properties of the text.

7.5.4 Uncurated & Unpaired Text-Video Retrieval

Single Dataset Training. First, we demonstrate the efficiency of the proposed style transfer
method in uncurated & unpaired text-video retrieval on five different downstream datasets in
Table 7.1. We present results for the image-text pre-trained BLIP [LLXH22] model as well as
for the video-text pre-trained EAO [SCR+

22] model. We consider three evaluation scenarios:
1) zero-shot performance; 2) the performance of our style transfer method in the text-video
retrieval task with uncurated & unpaired data where only text queries are available during
training; 3) training with the ground truth aligned text-video pairs, which can be considered
as an upper bound for our task. It shows that the proposed In-Style method significantly
outperforms zero-shot performance even without using any aligned training samples from the
target distribution. This supports the hypothesis that the style of the text queries is an important
component of text-video retrieval. Moreover, we observe that the gap between training with
ground truth aligned pairs and the style transfer can be remarkably small, especially on the
MSVD dataset, indicating the benefits with respect to a potential annotation cost reduction in
the proposed setup.

Multi-Dataset Training. Second, we evaluate the proposed multi-dataset training procedure
with the In-Style method in Table 7.2. Here, a minibatch is compiled from a single text source
as shown in Figure 7.3. This is favorable compared to the standard training, where data points
in a minibatch are randomly sampled from all data sources together. It shows that the proposed
procedure leads to improved retrieval performance compared to individually trained models
and better generalization across all datasets compared to the standard multi-dataset training.
We attribute the performance increase compared to standard multi-dataset training to the fact
that considering the captions of only the same style in contrastive loss provides a model with a
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cleaner learning signal with stronger text negative counterparts. As an example, “add sliced
cucumber” in YouCook2 style would be a stronger negative in comparison to a correct “add
sliced tomato” query than a “a person in a video puts sliced cucumber in a salad” in MSR-VTT
style.

7.5.5 Comparison with SOTA

We further compare the proposed method with zero-shot retrieval baselines in Table 13.1. We
report the performance of BLIP and CLIP backbones trained with text queries from the VATEX
dataset, thus text queries do not follow distribution of any of the test datasets. The closest
counterpart to our model is Nagrani et al. method [NSS+22], which utilizes the pre-trained
image-text CLIP backbone, which is further trained with the VideoCC3M dataset [NSS+22]
– a video-text dataset collected by automatic transferring image captions from text-image
CC3M dataset [SDGS18]. The conceptual difference between [NSS+22] and our method is
that [NSS+22] proposes to transfer image captions from the image-caption dataset by pairing
images to videos, while the proposed In-Style method adapts the model to the video captions.
While noting that a direct comparison to different state-of-the-art methods is limited due to
different pre-training datasets, it can be observed that the proposed In-Style method achieves
the best results on four out of five datasets, underperforming only in YouCook2, which might
benefit from HowTo100M pretraining. We additionally validate the statement that text queries
can be used without any corresponding videos by using texts from WikiHow [KW18] and
Food.com [MLNM19] datasets that contain descriptions of different actions/steps to solve tasks
or cook meals. In Table 13.1, we show that style transfer from both datasets especially benefits
YouCook2 retrieval performance that we attribute to the similarity in text styles. However, style
transfer from the WikiHow, which is more diverse and covers a larger variety of topics, also
improves the performance over the baselines on the DiDemo, MSVD, and LSMDC datasets.

7.5.6 Efficiency of Style Transfer

Training Pairs. In Table 7.5, we compare the performance of the models trained either with
pseudo pairs Pps or with generated pairs Pgen, or with a combination of them Pps + Pgen. All
setups boost the performance of text-video retrieval by a large margin compared to zero-shot
text-video retrieval. The generated pairs Pgen achieve a better performance than pseudo pairs
Pps on all datasets except LSMDC, whereas a combination of Pps + Pgen does not improve
performance on average. We note that the number of pairs in Pgen is significantly larger than
in Pps (Table 7.8) for all datasets except LSMDC (a dataset of movies, which might contain a
larger domain shift to YouTube videos compared to other datasets). We assume that in this
case Pgen contains better-aligned pairs since each generated text description is conditioned on
the corresponding video, while in Pps a fixed set of descriptions is matched (see examples in
Figure 7.4) explaining the performance drop with Pps + Pgen.

Style Transfer. In Table 7.6, we consider how much the text style transfer in the generated
pairs Pgen influences the retrieval performance. For this, we considered three sets of Pgen for
the training retrieval model: 1) Pgen generated with zero-shot BLIP captioner; 2) In-Style Pgen
generated with captioner trained on Pps with text queries from a different non-target dataset
(we used the VATEX dataset); 3) In-Style Pgen with a captioner trained on Pps with text queries
from the target dataset. We observe that training the model with generated text-video pairs
(from uncurated web videos from the HowTo100M dataset) by a zero-shot image-pretrained



7.5 experiments 117

a man makes juice with a toy

or
ig

in
al

 
te

xt
-v

id
eo

 p
ai

r
ps

eu
do

 p
ai

r
P p

s
a man makes juice with a toy

guy adds water to food in a blender

ge
ne

ra
te

d 
pa

ir
P g

en

the man turns the cloth over

or
ig

in
al

 
te

xt
-v

id
eo

 p
ai

r
ps

eu
do

 p
ai

r
P p

s

the man turns the cloth over

the man holds out his giant black blanket

ge
ne

ra
te

d 
pa

ir
P g

en

Figure 7.4: Qualitative evaluation of Pps and Pgen on the MSR-VTT (left) and DiDeMo (right)
datasets. First, a text query is matched with one of the videos (a pseudo pair Pps), and then,
after the style preservation step, for each video new caption is generated in the same style but
with updated content (a generated pair Pgen).
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Filt. Thr. R1 R5 R10 MR

0.26 43.9 71.8 80.8 2
0.27 44.2 72.2 80.9 2
0.28 44.8 72.5 81.2 2
0.29 45.0 72.3 80.9 2
0.30 45.1 72 80.8 2

Table 7.7: Filtering threshold

Dataset #Pseudo #Generated
Pairs Pairs

MSR-VTT 180k 495k
YouCook 10k 168k
Didemo 33k 280k
MSVD 48k 379k
LSMDC 101k 144k

Table 7.8: Number of Pps and Pgen

Matching R1 R5 R10 MR

Random 39.1 66.3 75.8 2
BLIP 44.1 71.4 80.0 2
CLIP 44.8 72.5 81.2 2

Table 7.9: Matching method

captioner already improves the performance in all video retrieval datasets. We attribute this to
the content and style adaptation of the image-language model to the specific appearances in the
videos. However, such models tend to generate “static” descriptions that do not involve actions.
Thus, text queries from non-target video datasets, namely the VATEX dataset, improve the
retrieval performance further. Yet, we notice that YouCook2 does not benefit from the VATEX
text queries as from the zero-shot generated captions. Finally, using training text queries from
the target dataset excels on the considered benchmarks.

7.5.7 Ablation Study

Matching Method. To obtain generated pairs, we train the captioner with pseudo pairs that
were created by a matching module. In Table 7.9, we consider two options for the matching
module: image-text pre-trained dual encoders from BLIP [LLXH22] and CLIP [RKH+

21], as
well as the “Random” option where text queries are simply matched with the random videos.
We report the text-video retrieval performance of our final model using the given option
of the matching module. We observe that matching module based on CLIP leads to better
performance. We attribute that to the robustness of CLIP to the noisy web data as it was trained
on large-scale web image-text pairs, whereas BLIP utilizes additional filtering to reduce the
noise in the training.
Filtering Threshold. In Table 7.7, we consider the effect of filtering on the quality of the
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Training pairs B@4 ROUGE CIDEr

– (zero-shot) 0.305 0.519 0.610

Pseudo pairs 0.559 0.628 1.059

GT pairs 0.659 0.680 1.296

Table 7.10: Captioning performance

generated pairs Pgen. We find threshold th = 0.28 works the best, indicating that filtering is an
important step for our style transfer framework.
Captioning Perforformance Finally, we evaluate the captioning performance of the captioner
trained with pseudo pairs Pps with the standard NLP metrics BLEU@4, ROUGE and CIDEr.
Table 7.10 demonstrates that the captioner trained with pseudo pairs almost doubles the
zero-shot captioner performance, significantly reducing the gap to the training with ground
truth supervision.

7.6 Conclusion

In this chapter, we address a new task of text-video retrieval with uncurated & unpaired data,
where during training only text queries are available. Motivated by the fact that different
domains imply diverse styles of video descriptions, we introduce the In-Style method that
preserves the style of the given input queries and transfers it to the support set of unrelated
web videos, creating aligned text-video pairs with the style of the input. Utilization of obtained
text-video pairs as supervision leads to a significant performance boost in text-video retrieval.
Moreover, we show the performance generalization of a single model that we train with
multiple styles simultaneously, proposing a training procedure for multi-dataset training. We
evaluate the proposed model over multiple datasets and show the advantages of the In-Style
method on the task of uncurated & unpaired text-video retrieval and achieve new state-of-
the-art results for zero-shot text-video retrieval. In Chapter 8, we will discuss a method for
aligning image and video modalities and utilizing webly annotated image data to enhance
action recognition. Meanwhile, in Chapter 9, we will further explore contributions related to
large-scale video-language pretraining, particularly focusing on enhancing web video datasets
for pretraining.
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To further investigate different modalities, we examine image-to-video adaptation, aiming
to exploit label-free web images as a source for adapting to unlabeled target videos.
This poses two major challenges: (1) spatial domain shift between web images and

video frames; (2) modality gap between image and video data. To address these challenges, we
propose Cycle Domain Adaptation (CycDA), a cycle-based approach for unsupervised image-
to-video domain adaptation. We leverage the joint spatial information in images and videos on
the one hand and, on the other hand, train an independent spatio-temporal model to bridge the
modality gap. We alternate between the spatial and spatio-temporal learning with knowledge
transfer between the two in each cycle. We evaluate our approach on benchmark datasets for
image-to-video as well as for mixed-source domain adaptation achieving state-of-the-art results
and demonstrating the benefits of our cyclic adaptation.

This chapter is based on [LKS+22]. As a second author, Anna Kukleva contributed to the
project in the scientific discussions, writing of the paper and creating the figures.

8.1 Introduction

The task of action recognition has seen tremendous success in recent years with top-performing
approaches typically requiring large-scale labeled video datasets [Fei20, WSS21, YXS+20],
which can be impractical in terms of both data collection and annotation effort. In the
meanwhile, webly-supervised learning has been explored to leverage the large amount of easily
accessible web data as a labeling-free data source for video recognition [GSN17, GHZ+

18,
LWZK17, WXLVG17, YSL+

18, ZLL+
17].

In this work, we address the problem of image-to-video adaptation with webly-labeled
images as the source domain and unlabeled videos as the target domain to allow for action
classification without video annotation. This setting provides two major challenges: (1) the
spatial domain shift between web images and video frames, based on difference in image
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Figure 8.1: Cycle Domain Adaptation (CycDA) pipeline. We address image-to-video adaption
by training a spatial model and a spatio-temporal model alternately, passing pseudo labels
to supervise each other in a cycle. The two alternating steps are: (1) domain alignment on
the spatial model with pseudo labels from the spatio-temporal model, and (2) training the
spatio-temporal model with updated pseudo labels from the spatial model.

styles, camera perspectives and semantic drifts; (2) the modality gap between spatial images
and spatio-temporal videos. Specifically, this modality gap restrains that merely spatial
knowledge can be transferred from source to target domain. Previous works on action
recognition with web supervision either learn from web data directly [GSDG16, GYY+

16]
or perform joint training by combining the web source with annotated target data [DZX+

20,
MBZ+

17]. To specifically address the domain shift between web images and target videos, some
approaches perform class-agnostic domain-invariant feature learning either within [KS20] or
across modalities [YWSD18, YWCD19, LOW+

20], in the absence of ensuring domain-invariance
on the category-level.

In this context, we propose Cycle Domain Adaptation (CycDA), i.e. alternating knowledge
transfer between a spatial model and a spatio-temporal model. Compared to other works, we
address the two challenges at hand, domain-alignment and closing the modality gap in separate
stages, cycling between both of them. An overview of the CycDA is given in Fig. 8.1. With
the category knowledge from the spatio-temporal model, we achieve enhanced category-level
domain invariance on the spatial model. With updated knowledge transferred from the spatial
model, we attain better spatio-temporal learning. In this manner, we can better tackle each
challenge for the corresponding model, with the updated knowledge transferred from the
other.

More specifically, we propose a four stage framework to address the domain shift between
images and videos on different levels. In stage 1, we enforce class-agnostic domain alignment
on the spatial model between images and video frames. In stage 2, we use supervision from
the spatial model to learn a spatio-temporal video model, bridging the gap between the two
modalities. Stage 3 then focuses on class-aware domain alignment on the spatial model, given
pseudo labels computed by the video model trained on stage 2. In stage 4, we update the video
model with the improved pseudo labels from the spatial model of stage 3.

We first evaluate our approach on several challenging settings for web image based action
recognition, where a single cycle already outperforms baselines and state-of-the-arts. Second,
we show how CycDA can be flexibly applied for mixed-source image&video-to-video DA
settings, leading to a performance competitive to the state-of-the-art requiring only 5% of the
provided source videos.

We summarize our contributions as follows: (1) We propose to address web image-to-
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video domain adaptation by decoupling the domain-alignment and spatio-temporal learning
to bridge the modality gap. (2) We propose cyclic alternation between spatial and spatio-
temporal learning to improve spatial and spatio-temporal models respectively. (3) We provide
an extensive evaluation with different benchmark tasks that shows state-of-the-art results
on unsupervised image-to-video domain adaptation and a competitive performance for the
mixed-source image&video-to-video setting.

8.2 Related Work

In this section, we discuss prior work on the image-to-video domain adaptation and video-
tovideo domain adaptation. We will not revisit the topic of multimodal pretraining as previ-
ously discussed in Chapter 2.

Image-to-video Domain Adaptation. Compared to webly-supervised learning, image-to-video
DA approaches actively address the domain shift between web images and target videos either
by spatial alignment between web images and video frames [LWZK17, SSSN15, ZHT+

16], or
through class-agnostic domain-invariant feature learning for images and videos [LOW+

20,
YWCD19, YWSD18]. Li et al. [LWZK17] use a spatial attention map for cross-domain knowl-
edge transfer from web images to videos. In this case, the DA is addressed on the spatial
level without transfer to the temporal level. Liu et al. [LOW+

20] perform domain-invariant
representation learning for images, video keyframes and videos, and fuse features of differ-
ent modalities. Furthermore, hierarchical GAN [YWSD18], symmetric GAN [YWCD19] and
spatio-temporal causal graph [CWHL21] are proposed to learn the mapping between image
features and video features. Closest to our work is probably the work of Kae et al. [KS20] which
also employs a spatial and a spatio-temporal model for two stages of class-agnostic domain
alignment, proposing to copy the weights from the spatial to the spatio-temporal model. In
contrast to these, we propose to transfer knowledge in the form of pseudo labels, without
enforcing spatial information from the DA stage onto the spatio-temporal model.

Video-to-video DA. Compared to image-to-video adaption, video-to-video adaptation methods
adapt annotated source videos to unlabeled target videos [CKA+

19, SSP+
21, KTZ+

21, CSSH20,
CSCH20, MD20, LHW+

20, PCAN20, JNDV18], focusing mainly on the problem of domain
alignment. Chen et al. [CKA+

19] align the features spatially on the frame-level and temporally
on the scale-level. Others propose feature alignment via self-attention [CSSH20], cross-domain
co-attention [PCAN20], or across two-stream modalities of RGB and optical flow [KTZ+

21,
MD20]. Sahoo et al. [SSP+

21] propose temporal contrastive learning and background mixing
for domain-invariance. In this work, we focus on image-to-video adaptation and use only
single stream of RGB. We further show that we are able to extend the pipeline to the mixed-
source case, where we achieve competitive performance compared to video-to-video adaptation
methods while requiring only a small amount of source videos.

8.3 Method

We propose four stages to tackle image-to-video adaptation, which we summarize in Sec. 8.3.1.
Afterwards, we detail each stage and motivate the cycling of stages in Sec. 8.3.2. Our CycDA
can be flexibly extended (Sec. 8.3.3) for mixed-source video adaptation, where a limited amount
of annotated source videos are available.
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Figure 8.2: Our CycDA framework. Our method alternates between spatial alignment (stage 1

and 3) and spatio-temporal learning (stage 2 and 4). See text for details.

8.3.1 System Overview

The task of unsupervised image-to-video DA is to learn a video classifier given labeled source
images and unlabeled target videos. In order to close the domain gap across these two different
modalities, we employ (1) a spatial (image) model to train on source web images and frames
sampled from target videos, and (2) a spatio-temporal (video) model to train on target video
clips. We propose a training pipeline that alternately adapts the two models by passing pseudo
labels to supervise each other in a cycle. This facilitates the knowledge transfer between both
models, where pseudo labels efficiently guide the model through the corresponding task, i.e.
semantic alignment (image model) or spatio-temporal learning (video model).

As shown in Fig. 8.2, our CycDA pipeline consists of four training stages. The initial
pseudo labels from class-agnostic domain alignment (Stage 1) are improved via video spatio-
temporal learning (Stage 2). In Stage 3, these pseudo labels on target data, together with
ground truth labels on source, enable semantic alignment through the class-aware domain
alignment. This again refines the pseudo labels, which further provide enhanced supervision
for spatio-temporal learning in stage 4. In this manner, one iteration of CycDA facilitates the
alternating knowledge transfer between the image and video models, whereby pseudo labels
are improved on each stage and further provide strengthened supervision for better learning
on the next stage.

Notations: First, we denote the feature extractor as E(·; θE), the classifier as C(·; θC), and
the domain discriminator as D(·; θD). Then, we have the image model ϕI = {EI(·; θ I

E),
CI(·; θ I

C), DI(·; θ I
D)} and the video model ϕV = {EV(·; θV

E ), CV(·; θV
C )}. We use the super-

scripts I, V and F to denote modalities of image, video and video frame, correspondingly.
S and T stand for source and target domains respectively. The labeled source image domain

is denoted as IS = {(ij, l(ij))|
N I

S
j=1}, where l(·) is the ground truth label of the corresponding

image. The unlabeled target video domain is VT = {vj|
NV

T
j=1} and each video vj has Mj frames,

the set of frames of unlabeled target videos VF
T = {{vF

j,m|
Mj
m=1}|

NV
T

j=1}.

8.3.2 Stages

Stage 1 - Class-agnostic Spatial Alignment. In the first stage, we learn the class-agnostic
domain alignment between source web images and frames sampled from unlabeled target
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videos. Thus, we reduce the domain gap between the appearance of the web images and
target videos even if the classes could be incorrectly aligned during this stage. We train the
image model ϕI with a supervised cross entropy loss LCE(IS) and an adversarial domain
discrimination loss LADD(IS, VF

T ) on source images and target frames. With the classification
loss on source images given as

LCE(IS) = ∑
(ij,l(ij))∈IS

−l(ij) · log(CI(E(ij; θ I
E); θ I

C)) (8.1)

and the binary cross entropy loss for domain discrimination given as

LADD(IS, VF
T ) = ∑

ij,vF
j′ ,m

log DI(EI(ij; θ I
E); θ I

D) + log(1 − DI(EI(vF
j′,m; θ I

E); θ I
D)), (8.2)

the overall objective is minθ I
E,θ I

C
LCE(IS) + β maxθ I

E
minθ I

D
LADD(IS, VF

T ), where β is the trade-off
weight between the two losses. We train the domain discriminator DI to distinguish between
extracted features from different domains, while the feature extractor is trained adversely based
on the domain discrimination task. In this case, the feature extractor learns to yield domain
invariant features that the domain discriminator is unable to differentiate. The adversarial
training is performed with a gradient reversal layer (GRL) [GL15, GUA+

16] which reverses
the sign of gradients of the domain discrimination loss on the feature extractor during back-
propagation. The domain alignment on this stage is class-agnostic as there is not yet any
pseudo label for category knowledge in the target domain. The alignment is performed globally
at the domain level.
Stage 2 & Stage 4 - Spatio-Temporal Learning. In this stage, we use the trained image model
ϕI from the previous stage to generate pseudo labels for the target videos. Then we perform
supervised spatio-temporal learning with the pseudo labeled target data.

Specifically, we first use ϕI to predict the pseudo label l̂(·) for each frame of the target
videos. We employ a spatio-temporal model that trains on target videos capturing both spatial
and temporal information in the target domain only. To select new pseudo label candidates,
we temporally aggregate frame-level predictions into a video-level prediction. We discard
predictions with confidence lower than a threshold δp and perform a majority voting among
the remaining predictions to define the video label. From all videos, we only keep those that
have at least one frame with a minimum confidence. We set the confidence threshold δp such
that p × 100% of videos remain after the thresholding.

We denote the target video set after thresholding as ṼT. For stage 2, the supervised task on
pseudo labeled target videos is to minθV

E ,θV
C
L̂CE(ṼT), with

L̂CE(ṼT) = ∑
vj∈ṼT

−l̂(vj) · log(CV(EV(Vj; θV
E ); θV)). (8.3)

In stage 4, we repeat the process as described above and re-train the video model on the target
data with the updated pseudo labels from the third stage.
Stage 3 - Class-aware Spatial Alignment. The adversarial learning for domain discrimination
in the first stage aligns features from different domains globally, but not within each category
(c.f. Fig. 8.3 (b) and (c)). In this case, target samples in a category A can be incorrectly
aligned with source samples in a different category B. This would lead to inferior classification
performance of the target classifier. To evade this misalignment, we perform class-aware
domain alignment in the third stage between the source web images and the target video
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frames. Since the source data consists exclusively of images, we apply alignment on the spatial
model between images and frames. Furthermore, as the target data is unlabeled, in order
to align features across both domains within each category, we generate pseudo labels by
the model ϕV from the second stage to provide category knowledge. Specifically, we use the
video model to generate video-level labels that we disseminate into frame-level labels. To
align images and video frames we use cross-domain contrastive learning by maximizing the
similarity between samples across domains of the same class and minimizing the similarity
between samples from different classes. We use z = EI(i; θ I

E) to denote the feature computed by
the feature extractor on image i. The set of source image features is ZI

S = {EI(i; θ I
E)|i ∈ IS} and

the set of target frame features is ZF
T = {EI(vF; θ I

E)|vF ∈ VF
T }. During training, for each pseudo

labeled target sample zF
j ∈ ZF

T, we randomly choose two samples from the source domain: a
positive sample of the same label and a negative sample of a different label, i.e. zI

j +, zI
j − ∈ IS.

The contrastive loss is formulated as

LCONTR(IS, VF
T ) = − ∑

zF
j ∈ZF

T

log
h(zF

j , zI
j +)

h(zF
j , zI

j +) + h(zF
j , zI

j −)
. (8.4)

Following [CKNH20], we set h(u, v) = exp(sim(u, v)/τ), where we use the cosine similarity
sim(u, v) = uTv/(∥u∥∥v∥) and τ is the temperature parameter. Thus, the objective of stage 3

on the image model is minθ I
E,θ I

C
LCE(IS) + LCONTR(IS, VF

T ).
In the third stage, an alternative of exploiting pseudo labels from the video model from the

second stage is to self-train the video model on the target data, as self-training is a common
practice in DA [LWL21, ZDJZ20, ZYKW18, ZYL+

19]. However, the category-level domain
alignment with supervision from the source domain further regularizes the learning of class
distribution in the target domain. This results in a significantly improved target classifier, as
we show in Sec. 8.4.5.
Cycling of the Stages. The pseudo labels from the video model are exploited for class-aware
domain alignment on the image model (stage 3) and the updated pseudo labels from the image
model can supervise the training of the video model (stage 4). In this manner, stage 3 and
stage 4 can be performed iteratively. We show in the evaluation (Table 8.1 and Fig. 8.5) the
impact of this cyclic learning setup and how several iterations of CycDA can further improve
the performance of the target classifier.

8.3.3 Mixed-source Video Adaptation

Image-to-video DA applies to the case in which the source domain consists only of web images.
However, other possible settings presume limited amount of annotated videos with the domain
shift to the unlabeled target videos. We refer to this case as mixed-source video adaptation.
CycDA can be adjusted for this setting as follows. We denote the labeled source video domain

as VS = {(vj, l(vj))|
NV

S
j=1}. For the class-agnostic (stage 1) and class-aware domain alignment

(stage 3) stages we replace the source image domain {IS} by the mixed-source domain data
{IS, FS} which consists of web images and frames sampled from source videos. The supervised
classification, adversarial domain discrimination and cross-domain contrastive learning are
adapted accordingly. For the spatio-temporal learning of the video model ϕV (stage 2 and 4) we
include additional supervised classification w.r.t. the ground truth labels for the source videos,
therefore the overall loss is LCE(VS) + L̂CE(ṼT). In this case, the annotated source videos are
utilized to regularize domain alignment on the image model, and provide further supervision
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for learning the classification task on the video model. In Sec. 8.4.4, we demonstrate that in the
context of mixed-source video adaptation, even a limited amount of source videos is sufficient
to achieve results competitive to video-to-video adaptation approaches that employ the entire
source video dataset.

8.4 Experiments

8.4.1 Datasets

To evaluate our CycDA framework for image-to-video adaptation, we conduct experiments
on 3 real-world image-video action recognition benchmark settings. Videos are from two
large-scale action recognition datasets, UCF101 [SZS12] and HMDB51 [KJG+

11]. Web images
are from the EADs (Extensive Action Dataset) [CWHL21], Stanford40 [YJK+

11] and the BU101

dataset [MBZ+
17].

The three image-to-video adaptation tasks are: (1) Stanford40 → UCF101: the UCF101 action
dataset contains 13320 videos collected from YouTube with 101 action classes. The Stanford40

dataset contains 9532 images collected from Google, Bing and Flickr, comprised of 40 action
classes. Following [CWHL21, YWCD19, YWSD18], we select the 12 common action classes
between the two datasets for image-to-video action recognition. (2) EADs→HMDB51: HMDB51

has 6766 videos with 51 action classes collected from online videos and movie clips. The EADs
dataset consists of Stanford40 and the HII dataset [TZIC16]. It has 11504 images from 50 action
classes. There are 13 shared action classes between the two datasets. (3) BU101→UCF101:
BU101 consists of 23.8K web action images from 101 classes that completely correspond to
classes on UCF101. We use data of all classes for evaluation on large-scale image-to-video
adaptation.

UCF101 and HMDB51 both have three splits of training and test sets. Following [LWZK17,
YWSD18, YWCD19], we report the average performance over all three splits.

The UCF-HMDB dataset [CKA+
19] is a benchmark for video-to-video DA. It consists of

the 12 common classes between UCF101 and HMDB51. On this dataset, we perform two types
of evaluations: (1) frame-to-video adaptation: we use only a single frame from each source video
to adapt to target videos; and (2) mixed-source video adaptation: we use source and target
videos of UCF-HMDB, and extend the source domain with web images from BU101.

8.4.2 Implementation Details

For the image model, we use a ResNet-18 [HZRS16] pretrained on ImageNet [DDS+09]. We
freeze the first 6 sequential blocks and train with a learning rate of 0.001 to perform the domain
alignment between web images and frames sampled from target videos. To avoid redundancy
in the video frames, we uniformly divide a video into 5 segments. In each training epoch, we
randomly sample one frame from each segment. As trade-off weight for domain discrimination,
we follow the common practices in [GL15, GUA+

16, CLB+
20] to gradually increase β from 0

to 1. The temperature parameter τ is set to 0.05.
For the video model, we employ I3D Inception v1 [CZ17] pretrained on the Kinetics

dataset [KCS+17], which is common practice, e.g. [CWHL21, CSSH20, KTZ+
21, MD20, SSP+

21].
We train the RGB stream only. To validate the efficacy of our CycDA pipeline, we use the I3D
backbone with a shallow classifier of 2 FC layers, without any temporal aggregation module
(e.g. GCN in [SSP+

21] or self-attention module in [CSSH20]). We extract a clip of 64 frames
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Method Backbone E→H S→U B→U

source only ResNet18 37.2 76.8 54.8

DANN [GUA+
16]* ResNet18 39.6 80.3 55.3

UnAtt [LWZK17] ResNet101 - - 66.4
HiGAN [YWSD18] ResNet50, C3D 44.6 95.4 -

SymGAN [YWCD19] ResNet50, C3D 55.0 97.7 -
CycDA (1 iteration) ResNet50, C3D 56.6 98.0 -

DANN [GUA+
16]+I3D* ResNet18, I3D 53.8 97.9 68.3

HPDA [CWHL21]* ResNet50, I3D 38.2 40.0 -
CycDA (1 iteration) ResNet18, I3D 60.5 99.2 69.8
CycDA (2 iterations) ResNet18, I3D 60.3 99.3 72.1
CycDA (3 iterations) ResNet18, I3D 62.0 99.1 72.6

supervised target ResNet18, I3D 83.2 99.3 93.1

Table 8.1: Results on E→H (13 classes), S→U (12 classes) and B→U (101 classes), averaged over
3 splits. ResNet, C3D and I3D are pretrained on ImageNet[HZRS16], Sports-1M[KTS+14] and
Kinetics400[KCS+17]. * denotes our evaluation.

from each video. Following [SSP+
21], we use a learning rate of 0.001 for the backbone and 0.01

on other components. We keep p = 70% and 80% of videos in stage 2 and stage 4.

8.4.3 Image-to-video DA

We compare the proposed approach to other image-to-video adaptation methods on the three
described benchmark settings as shown in Table 8.1. As CycDA enables the iterative knowledge
transfer between the image model and the video model, we can repeat stage 3 and stage 4

multiple times. We therefore report the performance for the first three iterations. We add the
lower bound (source only) and the upper bound (ground truth supervised target) for reference.

We compare against several approaches: DANN [GUA+
16] is classical adversarial domain

discrimination on the image-level. UnAtt [LWZK17] applies a spatial attention map on video
frames. HiGAN [YWSD18] and SymGAN [YWCD19] employ GANs for feature alignment (on
backbone of ResNet50 and C3D) and define the current state-of-the-art on E→H and S→U. We
also evaluate CycDA with the same backbones for fair comparison. DANN [GUA+

16]+I3D
is a strong baseline that trains the I3D model with pseudo labels from an adapted image
model. HPDA [CWHL21] is a recent partial DA approach and for a fair comparison, we
re-run its official implementation in a closed-set DA setting. Our CycDA outperforms all other
approaches already after the first iteration. Except for the saturation on S→U, running CycDA
for more iterations leads to a further performance boost on all evaluation settings.

We further explore the potential of CycDA on UCF-HMDB, which is a benchmark for
video-to-video adaptation. For a strict comparison, we select data from the same source video
dataset used in the video-to-video adaptation methods, without using any auxiliary web data
for training. However, instead of directly using the source videos, we perform frame-to-video
adaptation where we use only one frame from each source video to adapt to target videos.
Here we sample the middle frame from each video and report the results in Table 8.2 (case B).
We see that even when using only one frame per source video, on U→H, CycDA (83.3%) can
already outperform TA3N [CKA+

19] (81.4%) and SAVA [CSSH20] (82.2%) which use all source
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DA setting Method Video
backbone

Source data
U→H H→U

web image videos (U or H) in %

A: video-to-video

AdaBN [LWS+18] ResNet101 - 100% 75.5 77.4
MCD [SWUH18] ResNet101 - 100% 74.4 79.3
TA3N [CKA+

19] ResNet101 - 100% 78.3 81.8
ABG [LHW+

20] ResNet101 - 100% 79.1 85.1
TCoN [PCAN20] ResNet101 - 100% 87.2 89.1

DANN [GUA+
16] I3D - 100% 80.7 88.0

TA3N [CKA+
19] I3D - 100% 81.4 90.5

SAVA [CSSH20] I3D - 100% 82.2 91.2
MM-SADA [MD20] I3D - 100% 84.2 91.1

CrossModal [KTZ+
21] I3D - 100% 84.7 92.8

CoMix [SSP+
21] I3D - 100% 86.7 93.9

B: frame-to-video CycDA I3D - one frame 83.3 80.4

C: mixed-source
to video CycDA I3D

BU* 0% 77.8 88.6
BU* 5% 82.2 93.1
BU* 10% 82.5 93.5
BU* 50% 84.2 95.2
BU* 100% 88.1 98.0

supervised target I3D - - 94.4 97.0

Table 8.2: Results of Cycle Adaption on UCF-HMDB in comparison to video-to-video adaptation
(case A) approaches. For frame-to-video adaptation (case B), we use only one frame from
each source video to adapt to target videos. For mixed-source video adaptation (case C), we
combine BU101 web images and source videos as the source data. *We sample 50 web images
per class from 12 classes in BU101.

videos for video-to-video adaptation. This demonstrates the strength of CycDA to exploit the
large informativity in single images such that they could potentially replace videos as the
source data. On H→U, our source domain contains only 840 frames from the 840 videos in the
HMDB training set on UCF-HMDB, which leads to an inferior performance. We show that this
can be easily addressed by adding auxiliary web data in Sec. 8.4.4.

8.4.4 Mixed-source image&video-to-video DA

For mixed-source adaptation, we assume to have both web images and some amount of source
videos in the source domain. To evaluate this case, we use the source and target videos on
UCF-HMDB, and extend the source domain with web images of the 12 corresponding action
classes in BU101. We notice that using all web data from BU101 leads to performance saturation
on the target video set of UCF-HMDB. Therefore, to validate the efficacy of CycDA, we only
sample 50 web images per class as auxiliary training data. We vary the amount of source videos
in the mixed-source domain and report the results in Table 8.2 (case C). First, by training with
only sampled web images (without any source videos), we achieve baseline results of 77.8%
(BU→H) and 88.6% (BU→U). By adding only 5% of videos to the mixed-source domain, we
already achieve performance comparable to the video-to-video adaptation methods, i.e. 82.0%
(BU+U→H) and 93.1% (BU+H→U). Furthermore, increasing the amount of source videos
from 5% to 50% leads to another improvement of 2%. As web images are more informative
than sampled video frames, using web images as auxiliary training data can thus significantly
reduce the amount of videos required. Finally, with sampled web images and all source videos,
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Experiment stage 1 stage 2 stage 3 stage 4 Acc

A: source only LCE(IS) - - - 39.0

B: source only + video model LCE(IS) L̂CE(VT) - - 50.5

C: class-agnostic DA + video model LCE(IS), LADD(IS, VF
T ) L̂CE(VT) - - 52.3

D: case C + vid. self-train×1 LCE(IS), LADD(IS, VF
T ) L̂CE(VT) L̂CE(VT) - 55.4

E: case C + vid. self-train×2 LCE(IS), LADD(IS, VF
T ) L̂CE(VT) L̂CE(VT) L̂CE(VT) 56.4

F: CycDA LCE(IS), LADD(IS, VF
T ) L̂CE(VT) LCE(IS), LCONTR(IS, VF

T ) L̂CE(VT) 60.8

Table 8.3: Stage-wise ablation study of the CycDA training pipeline on EADs → HMDB51

split 1. A: source only on image model. B: source only training on image model and video
model training. C: class-agnostic DA (stage 1) and video model training (stage 2). D: case C +
one stage of self-training the videos model. E: case C + two stages of self-training the video
model. F: CycDA with stage 1∼4. Category-level pseudo labels of case C and F are compared
in Fig. 8.4.

we outperform all video-to-video adaptation methods, even exceeding the supervised target
model for BU+H→U by 1%. Considering that we only use 50 web images per class, this further
demonstrates that CycDA can exploit both, the information in web images and knowledge
from the source data with domain shift, for a potentially improved learning.

8.4.5 Ablation study

We perform several ablation studies to validate the proposed CycDA pipeline. We conduct
these experiments on the setting of EADs → HMDB51 (split 1).

Stage-wise ablation study. We first validate the efficacy of the CycDA pipeline by switching
the stages with alternate counterparts. We report the quantitative results of six ablation settings
in Table 8.3. Case A (source only), training the image model on web images only and predicting
on target test set, demonstrates the lower bound of 39%. Case B (source only + video model),
training with pseudo labeled target videos, is a vanilla baseline. It shows that training the video
model with supervision from the image model already significantly improves performance by
11.5%. In case C, with class-agnostic domain alignment on the image model, the performance of
B is improved by 1.8%. In case F, after completing the cycle with class-aware domain alignment
in stage 3 and training the video model in stage 4 with the updated pseudo labels, we achieve
the best performance with 60.8%.

Additionally, we conduct ablation experiments using pseudo labels from case C to self-train
the video model. Although self-training the video model for 1 (case D) or 2 (case E) stages
exhibits performance improvement compared to case C, it is still clearly outperformed by
CycDA. This indicates that the elaborate step of knowledge transfer from the video model to
the image model and class-aware domain alignment are critical for a good performance.

We further illustrate the t-SNE [VdMH08] feature visualizations of ablation cases in Fig. 8.3.
By observing image features of the source only case (Fig. 8.3(a)), we see that web images (blue)
gather in category clusters after supervised training, while target video frames (red) are far less
discriminative and highly misaligned with source due to large domain shift. The class-agnostic
domain alignment (Fig. 8.3(b)) in stage 1 results in a slightly better global alignment of source
and target features. With category knowledge from the video model, the class-aware domain
alignment (Fig. 8.3(c)) demonstrates distinctly better category-level association between source
and target. By passing pseudo labels from the image model of Fig. 8.3(a)(b)(c) to supervise the
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target
video frames

source
web images

(a) source only (b) CycDA stage 1
class-agnostic alignment 

(c) CycDA stage 3
class-aware alignment

(e) CycDA stage 2
video model training

(f) CycDA stage 4
video model training

(d) source only 
+ video model 

image features

target video features

Figure 8.3: t-SNE visualizations of image features (for both source and target) and target video
features (colored w.r.t. ground truth). We plot the results of source only, source only and video
model training, and results of each stage in CycDA.

C:  stage 1 + stage 2

F:  CycDA (stage 1~4)

EADs HMDB51

(a) category-level pseudo labels (b) samples on EADs and HMDB51

Figure 8.4: (a) Category-level pseudo label analysis on target. We compare the accuracy of
category-level pseudo labels on target videos for the ablation case C and F from Table 8.3. Here
we plot the accuracy of pseudo labels of the 13 common classes on EADs → HMDB51. (b)
Samples of four categories on EADs and HMDB51.

spatio-temporal training, we get the corresponding video models whose features are plotted in
Fig. 8.3(d)(e)(f). The vanilla baseline of source only + video model (Fig. 8.3(d)) leads to highly
undiscriminative features on the difficult classes, which is slightly improved by class-agnostic
alignment (Fig. 8.3(e)). Class-aware domain alignment (Fig. 8.3(f)) results in more pronounced
category clusters with larger inter-class distances.

Category-level pseudo label analysis on target. In Fig. 8.4(a), we plot the accuracy of
category-wise pseudo labels on target videos for the ablation cases C and F from Table 8.3. On
case C (blue) which consists of stage 1 (class-agnostic spatial domain alignment) and stage
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Experiment stage 3 stage 4 Acc

stage 1∼2 - - 52.3

stage 1∼4

A: LCE(VF
T )

L̂CE(VT)

55.6
B: LCE(IS, VF

T ) 56.4
C: LCE(IS, VF

T ), LADD(IS, VF
T ) 58.0

D: LCE(IS), LCONTR(IS, VF
T ) 60.8

Table 8.4: Comparison of DA strategies in stage 3 on EADs → HMDB51 split 1. A: supervised
classification on pseudo labeled target frames. B: supervised classification on source and
pseudo labeled target. C: B + adversarial domain discrimination. D: supervised classification
on source + cross-domain contrastive learning.

2 (spatio-temporal learning), image-to-video action recognition has varying performance on
different action classes. More specifically, it yields better results on appearance-based actions
with distinct background (e.g. climb), or on actions with discriminative pose or gesture (e.g.
smoke, pour). On the contrary, there is inferior performance on fine-grained actions with subtle
movements (e.g. talk) or actions that are semantically highly generalized with large inter-class
variation (e.g. run, wave), c.f. in Fig. 8.4(b).

By comparing the pseudo label accuracy of cases C and F, we see that the complete CycDA
with stage 3 and stage 4 contributes to a significant performance boost on the difficult classes
(e.g. run, hug, kiss) while keeping the performance on the easy classes. This can be attributed
to the class-aware domain alignment that improves cross-domain association on the difficult
classes while keeping the alignment on easy ones. Note that better class-aware domain
alignment also leads to more support samples for difficult classes, which could result in slight
performance drop on the easier classes.

Domain adaptation strategies in stage 3. In stage 3, we transfer knowledge from the video
model to the image model by passing pseudo labels from the video model to provide category
information in domain alignment. We compare different DA strategies that use pseudo labels
from the video model in Table 8.4. Intuitively, performing the supervised task on both source
and target (case B) outperforms the case of pseudo labeled target only (case A). Adding
the adversarial domain discrimination (case C) leads to a further boost. The cross-domain
contrastive learning (case D) has the best performance among the 4 cases. In comparison to the
case of only stage 1 and 2, a complete cycle with 4 stages leads to performance improvement
of at least 3.3% for all cases. This indicates the benefits of transferring the knowledge from
the video model onto the image model. The proposed CycDA generalizes well on different
strategies using pseudo labels from the previous stage.

Temporal aggregation of frame-level pseudo labels. Before video model training, we
temporally aggregate frame-level pseudo labels. Here we compare three strategies of temporal
aggregation in Table 8.5. Frame-level thresholding followed by temporal averaging (case C)
outperforms the other two cases which perform temporal averaging before video-level thresh-
olding. Frame-level thresholding filters out frames of low confidence scores and effectively
increases the accuracy of video pseudo labels.

Number of iterations. Finally, we illustrate the performance after several iterations on
EADs→HMDB51 in Fig. 8.5. It shows that within the first five iterations, performing CycDA
iteratively results in a slight increase of performance. Further, within all the 9 iterations, CycDA
delivers relatively stable performance, with the result fluctuating between 60.0% and 62.2%
without dropping below the ablated alternatives shown in Table 8.3.
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Aggregation Acc

A: avg. + class-balanced thresh. 50.3
B: avg. + thresh. 55.9
C: thresh. + avg. 60.8

Table 8.5: Temporal aggregation of frame-level pseudo labels into video-level pseudo labels on
EADs → HMDB51 split 1.

E->H

Figure 8.5: Performance of multiple iterations of CycDA (stage 3 and 4) on EADs → HMDB51.
Average on 3 splits.

8.5 Conclusion

In this chapter, we address the image-to-video adaptation problem. In our CycDA framework,
we propose to alternately perform spatial domain alignment to address the domain shift
between images and target frames, and spatio-temporal learning to bridge the modality gap.
Our evaluations across several benchmarks and datasets demonstrate that CycDA exploits
the large informativity in the source images for enhanced performance on the target video
classifier. In the next chapter, Chapter 9, we further extend the possibilities of transferring
knowledge between modalities for low-cost video annotations. We will show how to leverage
large language models for large-scale automated generation of video descriptions.
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In this chapter, we explore how to further decrease annotation costs for large-scale video
datasets and investigate the capabilities of large language models applied to instructional
videos and their subtitles. Instructional videos are a common source for learning text-

video or even multimodal representations by leveraging subtitles extracted with automatic
speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to
human-annotated captions, both speech and subtitles naturally differ from the visual content
of the videos and thus provide only noisy supervision. As a result, large-scale annotation-free
web video training data remains sub-optimal for training text-video models. In this work, we
propose to leverage the capabilities of large language models (LLMs) to obtain high-quality
video descriptions aligned with videos at scale. Specifically, we prompt an LLM to create
plausible video captions based on ASR subtitles of the instructional video. To this end, we
introduce a prompting method that is able to take into account a longer text of subtitles,
allowing us to capture the contextual information beyond one single sentence. We further
prompt the LLM to generate timestamps for each produced caption based on the timestamps
of the subtitles and finally align the generated captions to the video temporally. In this way, we
obtain human-style video captions at scale without human supervision. We apply our method
to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption.
Our evaluation shows that the resulting captions not only significantly improve the performance
over many different benchmark datasets for zero-shot text-video retrieval but also lead to a
disentangling of textual narration from the audio, boosting the performance in text-video-audio
tasks.

This chapter is based on [SKH+24]. As the co-first author Anna Kukleva led the project
jointly with Nina Shvetsova, sharing responsibilities in the first months of the project with
equal contribution. Anna had to change focus due to the started internship and then she
contributed to writing of the paper.
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Figure 9.1: ASR subtitles deviate from human-written captions. The subtitles contain a lot of
filler phrases, e.g., “we’re going to”, and extra information, e.g., “they make dog toothbrushes”.
We propose to generate human-style video captions based on the ASR subtitles and their
timestamps that we further temporally realign with the video.

9.1 Introduction

Textual descriptions of visual information allow for navigating large amounts of visual
data. Recently, image-text cross-modal learning has achieved remarkable performance in
many downstream tasks by pre-training on large-scale web datasets consisting of text-image
pairs [RKH+

21, SVB+
21, JYX+

21]. To collect video data on a similar scale, media platforms
such as YouTube can be used as a great source of freely available videos [AEHKL+

16, ZXC18,
SLS+20, MZA+

19, ZLH+
21, XHZ+

22]. Most of these videos include some narrations, e.g., in
instructional videos [MZA+

19], people explain and show how to accomplish one or another
task. To transform spoken language from the videos into subtitles, current automatic speech
recognition (ASR) systems [RKX+

23] can be used, providing aligned text-video annotated pairs
for free. This automatic supervisory signal can easily scale to large video datasets. However,
such video web data poses additional challenges [HXZ22, MZA+

19]: (1) spoken and visual
information in the video can deviate from each other, e.g., when speakers provide information
beyond what is visible or when spoken instructions do not temporally align with the actions
shown, (2) speech contains filler words and phrases, such as “I’m going to”, and can be
incomplete and sometimes contains grammatical errors, and (3) ASR transcripts usually do not
have punctuation and may contain errors. Therefore, ASR subtitles provide only weak, noisy
supervision for videos.

To address this problem, we propose a new framework, HowToCaption, that leverages
large language models (LLMs) [CLL+

23] to generate human-style captions on a large scale
for web-video instructional datasets based on corresponding ASR subtitles (Figure 9.1). By
carefully designing prompts, we show that the LLM can effectively map long, noisy subtitles
into concise and descriptive human-style video captions. Moreover, we obtain an initial
temporal alignment of the generated captions to the video based on ASR timestamps by tasking
the LLM to predict timestamps for each caption. For additional quality improvement, we
apply alignment and filtering within short temporal windows with respect to the generated
timestamp. This approach can generate aligned text-video pairs on a large scale without any
human intervention.

Beyond providing better annotation, the new captions provide the advantage that they
are no longer a direct output of the speech signal, thus effectively decoupling audio and text.
Current methods usually avoid using audio [MAS+20, HXZ22], as the ASR subtitle is directly
derived from speech, thus leading to the problem that any text-to-audio+video retrieval would
mainly retrieve the closest speech signal while disregarding the video. Being able to generate
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captions that deviate from the speech thus allows to extend retrieval to audio+video without
the need for fine-tuned regularization.

To verify the effectiveness of the proposed HowToCaption method, we generate new
captions for the large-scale HowTo100M dataset [MZA+

19], obtaining a new HowToCap-
tion dataset. We evaluate the quality of the improved narrations on various challenging
zero-shot downstream tasks over four different datasets, namely YouCook2 [ZXC18], MSR-
VTT [XMYR16], MSVD [CD11], and LSMDC [RRS]. It shows that the generated captions not
only provide a better training signal but also allow for a decoupling of speech and caption
annotation, allowing a retrieval based on audio, vision, and subtitles at scale. We release
a new HowToCaption dataset with high-quality textual descriptions to show the potential
of generated captions for web text-video pairs. We also make code publicly available. We
summarize the contributions of the chapter as follows:

• We propose a HowToCaption method to efficiently convert noisy ASR subtitles of instruc-
tional videos into accurate video captions, which leverages recent advances in LLMs and
generates high-quality video captions at scale without any human supervision.

• We create a new HowToCaption dataset with high-quality human-style textual descrip-
tions with our proposed HowToCaption method.

• Utilizing the HowToCaption dataset for training text-video models allows us to signifi-
cantly improve the performance over many benchmark datasets for text-to-video retrieval.
Moreover, since new textual annotation allows us to disentangle audio and language
modalities in instructional videos, where ASR subtitles were highly correlated to audio,
we show a boost in text-video+audio retrieval performance.

9.2 Method

9.2.1 Problem Statement

Given a dataset of N untrimmed long-term instructional videos Vn with corresponding noisy
ASR (automatic speech recognition) subtitles Sn, our goal is to create “human-like” video
captions Cn (with 1 ≤ n ≤ N). Note that our task does not assume access to any paired
training data ((Vn, Sn), Cn). The goal is to create the video captions Cn in a zero-shot setting
given only videos and subtitles (Vn, Sn). More formally, for each given video Vn, we also have
a set of subtitles of spoken text in the video, Sn = {sn,j, ts

n,j, te
n,j}j≤|Sn| with their start ts and end

timestamps te recognized by ASR-systems. For each video Vn, our goal is to generate dense
captions Cn = {cn,i, τs

n,i, τe
n,i}i≤|Cn| and their timestamps, where each caption cn,i describes a

segment of the video, that starts at τs
n,i and ends at τe

n,i.

The generated captions aim to serve for vision-language or vision-language-{other modali-
ties (e.g., audio)} tasks, providing language supervision in the form of “human-written-like”
captions rather than scrambled noisy ASR subtitles. That enables the potential of collecting
large-scale datasets with long-term videos and their dense textual descriptions for free, without
human supervision.
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Figure 9.2: Schematic visualization the proposed HowToCaption method. Obtained from
the automatic speech recognition system (ASR), subtitles are divided into blocks that contain
longer contextual information. A large pre-trained language model is then used to generate
plausible video captions based on ASR subtitles, along with timestamps for each caption. These
generated captions and timestamps are further post-processed to enhance their alignment to
the video and filter out captions with low similarity to the corresponding video by leveraging
a pre-trained text-video model.

9.2.2 Video-Language Retrieval Model

Before we will describe our method for generating the HowToCaption dataset, we will briefly
recap the video-language retrieval models (V-L model), as it is one of the main use cases for
this dataset. Moreover, we also use a V-L model to improve the temporal alignment in the
dataset.

We base our video-language retrieval model (V-L model) on the pre-trained BLIP image-
language dual encoder model [LLXH22]. We maintain the architecture of the text encoder
f (c) ∈ Rd but, following CLIP4CLIP [LJZ+

22], adapt the image encoder g(I) to a video
encoder by averaging image embeddings obtained from uniformly sampled frames of the
video: g(Vn) = ∑I∈Vn

g(I) ∈ Rd. Dual encoder models typically learn a cross-modal em-
bedding space [RKH+

21, LJZ+
22] via training with the symmetric InfoNCE loss [OLV18].

The training is based on a similarity metric (often cosine distance) between embeddings
ρn,i,m = sim ( f (cn,i), g(Vm)) scaled by a temperature parameter ν, resulting in the following
loss function:

L = − 1
2|B| ∑

(n,i)∈B

(
log

exp(ρn,i,n/ν)

∑
(m,j)∈B

exp(ρn,i,m/ν)
+

+ log
exp(ρn,i,n/ν)

∑
(m,j)∈B

exp(ρm,j,n/ν)

) (9.1)

where B is a batch of training sample indices (n, i).

9.2.3 HowToCaption Method

To generate captions for the instructional videos, we propose to leverage recent large language
models that demonstrate great zero-shot performance in many different tasks formulated with
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ASR: move them around to
help direct the path
Caption: Matt Swanson
gives a tip to use buckets
to direct the path of the ball

ASR: she might need it for
later so this is stage one of
hiding the bone ...
Caption: Dog wants to
hang out near dirt or other
dogs with bones to acquire
more bones

ASR: so it’s not going to re-
ally show
Caption: Making a bow
with two colors

ASR: but this yeah and it
just stays or it won’t get off
it’s busy here
Caption: Make sure the
bottle stays together

Figure 9.3: Examples video-captions pairs from our HowToCaption dataset. ASR subtitles
with only noisy supervision for the video are converted from spoken to written-language-style
captions.

natural language. Namely, we prompt the LLM to read the ASR subtitles of the video and
create a plausible video description based on this. Since one subtitle only covers a small part of
the video and lacks a global context, we propose to aggregate multiple subtitles together with
their timestamp information. Then, we task the LLM to create detailed descriptions based on
the entire input and estimate timestamps for each generated sentence.

The overview of our approach is shown in Figure 9.2. For each video, we first slice a given FIX
sequence of subtitles into blocks that contain long context information about the video. Then,
the ASR subtitles of each block are summarised into a video caption using the LLM that we
prompt with our task description. The LLM also predicts timestamps for each sentence in the
video caption, which we further refine in our post-processing step based on similarities of a
caption sentence to video clips in the neighboring area of predicted timestamps.

9.2.3.1 LLM Prompting

For our language prompt (shown in Figure 13.2), we leverage the same “main” prompt for the
LLM, as in the Vicuna-13B model [CLL+

23]: “A chat between a curious human and. . . ” that
defines the requirement for LLM to give a helpful answer to our questions. Then, we describe
our request, what data we need to process, and how it should be processed: “I will give you
an automatically recognized speech. . . ”. We found structuring the prompt in the way that
the task description given at the beginning of the prompt and the long ASR input Sn at the
end is beneficial. Then, we give detailed instructions about how to process ASR subtitles. We
found that instructions such as “Write only short sentences” or “Describe only one action per
sentence” are beneficial, as they encourage the creation of concise captions that better match
the video content. The instruction “Keep only actions that happen in the present time” is
intended to filter out unrelated chats, advice, or comments from the captions; we observed
that it also resulted in performance enhancements. Lastly, we request the model to predict
a timestamp for each generated caption and, finally, input timestamps + ASR subtitles that
need to be processed. The LLM response follows the start timestamp + caption format given
in the prompt and, therefore, can be automatically parsed with a simple script into a set of
captions and timestamps Cn = {cn,i, τs

n,i, τe
n,i}i≤|Cn|, where we assign τe

n,i = τs
n,i + ∆sec, where

∆sec is a constant video clip length parameter (number of seconds). Please see Section 9.3.3
and the supplement for a detailed evaluation of these choices.
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9.2.3.2 Post-processing: Alignment & Filtering

ASR subtitles suffer from bad temporal alignment [HXZ22, MZA+
19]. Although the LLM

prompted to produce video captions can filter some noise in the ASR subtitles, some generated
captions are still misaligned with the video. Therefore, inspired by the TAN method [HXZ22]
that automatically predicts the alignability of subtitles and matching timestamps, we further
improve our obtained captions with an alignment & filtering post-processing step (Figure 9.2).

To this end, we utilize the video-language encoder model ( f , g). Given a generated
caption cn,i and its start and end timestamps (τs

n,i, τe
n,i) that corresponds to a part of the

video clip V
[τs

n,i ,τ
e
n,i ]

n , we use the V-L model to compute alignment similarity scores ρn,i(δ) =

sim
(

f (cn,i), g(V
[τs

n,i+δ,τe
n,i+δ]

n )
)

between the caption and video clips with time offsets δ ∈ Z, |δ| ≤
T around predicted timestamps. Then we align the caption to the video clip by finding the best
offset around the timestamp δ∗n,i = arg max

δ∈{−T,...,T}
ρn,i(δ) and filter out pairs if ρn,i(δ

∗
n,i) < κ, where κ

is a similarity score threshold.
To further improve the alignment of captions, we perform multiple rounds of alignment &

filtering. In practice, we found that the improvement after two rounds is marginal. For
subsequent rounds, we finetune (c.f. Section 9.2.2) the V-L model on the aligned & fil-
tered video-captions pairs {(vi, ci)}, resulting in new alignment scores ρ′n,i(δ). Since fine-
tuning V-L models often leads to forgetting, we employ two modifications in the fine-
tuning and second alignment processes. First, during fine-tuning, we add regularization
Lalign = α 1

2|B| ∑(n,i)∈B(sim( f (cn,i), f ∗(cn,i)) + sim(g(Vn), g∗(Vn)) where f ∗ and g∗ denote frozen
text and video encoders, α is a regularization weight, and (n, i) ∈ B represents the samples
batch B. This regularization prevents the model from forgetting [HPL+

19]. Then, during
alignment & filtering, we use the average of the similarities of the finetuned and original model.
We show an impact of these modifications in the supplement.FIX

9.2.4 HowToCaption Dataset

We apply the proposed HowToCaption approach to 1.2M long-term instructional videos and
ASR subtitles of the HowTo100M dataset and obtain the HowToCaption dataset. By prompting
the Vicuna-13B model, we obtain ∼ 70M initial captions. After alignment & filtering (details
in Section 9.3.2) we obtain 25M high-quality video-caption pairs. We show examples from our
HowToCaption dataset in Figure 9.3. We note that generated captions follow different text
styles, e.g., the first and the second examples contain a long description of an object and its
actions, the third describes the process, and the last one is instruction. The average length of
the generated captions is 9 words. We provide additional examples, statistics, and analysis ofFIX
the HowToCaption dataset in the supplement.

9.3 Experiments

To evaluate the proposed HowToCaption dataset for large-scale pre-training of vision-language
models, we train a T-V model as described in Section 9.2.2 on the HowToCaption datasetFIX
and assess its zero-shot video-text retrieval performance on four widely recognized and
diverse video-text benchmarks: YouCook2 [ZXC18], MSR-VTT [XMYR16], MSVD [CD11], and
LSMDC [RRS]. While the YouCook2 dataset consists of instructional cooking videos and might
be considered as an in-domain benchmark for the HowToCaption dataset, the other datasetsFIX
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Prompt
YouCook2 MSR-VTT MSVD LSMDC Average
R10↑ MR↓ R10↑ MR↓ R10↑ MR↓ R10↑ MR↓ R10↑ MR↓

x1: Here is an automatically recognized speech from a video: <ASR with
37.5 22.5 71.0 3 80.5 2 37.3 30 56.6 14.4timestamps>. x2: Write a synopsis for this video. x3: Begin each sentence with

an estimated timestamp.

<x1> <x2> x4: Write only short sentences. <x3> 39.3 20.5 71.4 3 81.0 2 36.5 32.5 57.1 14.5

<x1> <x2> <x4> x5: Describe only one action per sentence. <x3> 39.8 20 71.0 3 80.9 2 37.2 30.5 57.2 13.9

<x1> <x2> <x4> <x5> x6: Keep only actions that happen in the present
39.5 19.5 71.6 3 81.2 2 37.9 29 57.6 13.4

time. <x3>

<x1> x2’: Write a summary for this video. <x4> <x5> <x6> <x3> 40.4 19 71.4 3 81.4 2 37.1 30 57.6 13.5

x1’: Here is an automatically recognized speech from a video segment that is
40.0 20 72.0 3 81.1 2 37.8 29 57.7 13.5cut from a long video: <ASR with timestamps> x2”: Write a summary for this

video segment. <x4> <x5> <x6> <x3>

I will give you an automatically recognized speech with timestamps from
40.6 19 72.0 3 81.6 2 37.7 30 58.0 13.5a video segment that is cut from a long video. <x2”> <x4> <x5> <x6> <x3>

Hereis this automatically recognized speech: <ASR with timestamps>

Table 9.1: Ablation of LLM prompts. We step by step construct a prompt for an LLM that
concisely and in detail describes the caption generation task. To emphasize our incremental
adjustments, we label the sentences as xn (where n is an index). Each prompt consists of
sentences that were already used in previous prompt versions (e.g., <x1>, <x2>) and new
sentences introduced in the current prompt (e.g., x4: Write only ...). With each prompt, we
obtain 2M video-text pairs from 100k HowTo100M videos that we later use for T-V model
training (lower-resource setup). Downstream zero-shot text-video retrieval performance is
reported.

Method YouCook2 MSR-VTT MSVD LSMDC Average
R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓

No context: single ASR subtitle 11.1 27.9 38.4 21 37.7 62.4 72.6 3 43.3 71.7 80.2 2 16.5 30.4 38.4 30 27.1 48.1 57.4 14

almond Long context: multiple ASR+timestamps 12.1 30.0 40.6 19 37.9 61.6 72 3 43.9 72.7 81.6 2 16.8 31.4 37.7 30 27.7 48.9 58.0 13.5

Table 9.2: Effect of a longer context. For the “no context” option, we predict captions from
individual ASR subtitles. With our “long context” option, we input multiple ASR subtitles
with timestamps and the model generated captions based on longer context. This ablation is
done in lower-resource setup.

encompass a broader range of topics and video types, including non-instructional YouTube
videos and movies. To evaluate the properties of HowToCaption dataset in comparison with
other large-scale pre-training datasets, we also train our T-V model on HowTo100M [MZA+

19],
on HowTo100M with step labels [LPB+

22], HTM-AA [HXZ22], VideoCC3M [NSS+22], and
WebVid2M [BNVZ21] datasets and compare zero-shot text-video retrieval performance.

9.3.1 Datasets and Metrics

Pre-training Datasets. HowTo100M is a dataset of 1.2M instructional videos with ASR subtitles
collected by querying YouTube with 23k different “how to” tasks from WikiHow articles.
We consider three versions of annotations of this dataset: Sentencified HowTo100M, with pre-
processed ASR subtitles by structuring them into full sentences by [HXZ22]; HowTo100M with
Distant Supervision, where ASR subtitles were linked to WikiHow [KW18] step descriptions
via distant supervision by [LPB+

22]; and HTM-AA [HXZ22], an auto-aligned (AA) version
of HowTo100M, where subtitle timestamps were adjusted to improve alignment to videos,
discarding non-alignable subtitles. WebVid2M [BNVZ21] is a large open-domain dataset of
2.5M of short videos scrapped from the internet with their alt-text. VideoCC3M [NSS+22] is
a dataset of 10M video-text pairs collected by transferring captions from image-text CC3M
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Caption Post-processing YouCook2 MSR-VTT MSVD LSMDC Average
R10↑ MR↓ R10↑ MR↓ R10↑ MR↓ R10↑ MR↓ R10↑ MR↓

Lower bound: original ASR as supervision 39.3 20 61.7 5 77.1 2 31.5 56 52.4 20.8

No post-processing 40.2 18 65.9 4 79.8 2 34.4 40 55.1 16.0
Filtering (using BLIP) 42.5 16 71.2 3 81.7 2 37.4 30 58.2 12.8
Alignment & filtering (using BLIP) 42.4 17 71.7 3 82.2 2 38.5 29.5 58.7 12.9
Alignment & filtering (with ours) 44.1 15 73.3 3 82.1 2 38.6 29 59.5 12.3

Table 9.3: Effect of alignment & filtering. With each post-processing variant, we obtain 25M
video-text pairs that we later use for T-V model training. Downstream zero-shot text-video
retrieval performance is reported.

dataset [CSDS21] to videos with similar visual content.
Downstream Datasets. YouCook2 [ZXC18] is a dataset of instructional cooking videos, where
each video clip is annotated with a recipe step. We used 3.5k test set for evaluation. MSR-
VTT [XMYR16] contains 10k YouTube videos on various topics and human descriptions.
Following prior work [BNVZ21, NSS+22], we use the 1k test set for evaluation. MSVD [CD11]
is a dataset of video snippets with their textual summary. The evaluation set consists of 670

videos with 40 captions corresponding to each video. We follow standard practice [BNVZ21,FIX
LJZ+

22] and count each caption-video pair towards the metrics. LSMDC [RRS] is a collection
of movies sliced into video clips with human-written descriptions. The test set consists of 1k
video-caption pairs.

Metrics. To evaluate zero-shot text-video retrieval, we used standard Recall@K metrics
where K ∈ 1, 5, 10 (R1, R5, R10) and Median Rank (MedR).

9.3.2 Implementation Details

As an LLM, we utilize Vicuna-13B [CLL+
23], which is LLAMA [TLI+23] model fine-tuned

to follow natural language instructions. We additionally experiment with the MiniGPT-4
model [ZCS+23] to generate captions from subtitles grounded on visual content. To create the
HowToCaption dataset, we leverage subtitles with timestamps released by [HXZ22] (Sentenci-
fied HowTo100M), where officially released subtitles [MZA+

19] for HowTo100M videos were
post-processed by structuring them into full sentences. For our T-V model (described in Sec-
tion 9.2.2), we use ViT-B/16 visual encoder and BERTbase textual encoder that are initialized
with BLIPCapFilt-L pre-trained weights. We uniformly sample 4 frames from a video clip during
training and 12 frames during evaluation. For HowToCaption method, we use T = 10 seconds
offset for alignment and adaptive threshold κ to leave 25M most similar pairs after filtering.
Following [CRD+

21] that found that 8-sec clips are optimal for training on HowTo100M, we
set ∆sec = 8.

9.3.3 Ablation Studies

Prompt Engineering. Since prompting LLM with subtitles from 1.2M videos is resource-
intensive, we perform the prompt engineering ablations in a lower-resource setup, where we
use a 100k subset of HowTo100M (∼ 10% of all videos) to create dense captions with the LLM
and use the threshold κ to obtain the 2M most confident video-caption pairs. Here, we train the
T-V model for 150k iterations and then evaluate zero-shot on downstream tasks. In Table 13.8,
we begin with a basic prompt for an LLM, gradually refining it to generate captions more
suitable for vision-language tasks. It is essential to recognize that the impact of various prompts
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Video-Text Training Data YouCook2 MSR-VTT MSVD LSMDC Average
R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓

- (zero-shot, with BLIP initialization) 6.1 16.2 23.6 69 34.3 59.8 70.6 3 38.5 65.0 74.0 2 14.7 29.5 36.5 31 23.4 42.6 51.2 26.3
HowTo100M with ASRs 12.2 29.1 39.3 20 30.8 52.6 61.7 5 39.2 68.3 77.1 2 12.9 24.7 31.5 56 23.8 43.7 52.4 20.8
HowTo100M with distant supervision 8.3 21.5 30.3 34 28.6 54.0 66.3 5 38.5 68.6 79.4 2 12.1 24.7 32.4 42.5 21.9 42.2 52.1 20.9
HTM-AA 13.4 32.2 43.5 15 29.8 54.1 64.3 4 38.7 68.6 78.7 2 11.9 23.9 30.5 46 23.5 44.7 54.3 16.8
HowToCaption (ours) 13.4 33.1 44.1 15 37.6 62.0 73.3 3 44.5 73.3 82.1 2 17.3 31.7 38.6 29 28.2 50.0 59.5 12.3

VideoCC3M 5.3 15.1 21.7 84 33.9 57.9 67.1 4 39.6 66.7 76.8 2 14.8 29.4 35.8 33 23.4 42.3 50.4 30.8
WebVid2M 7.3 20.7 29.0 46 38.5 61.7 71.9 3 44.5 73.4 82.1 2 17.8 31.2 39.8 25 27.0 46.8 55.7 19.0

Table 9.4: Zero-shot text-to-video retrieval performance of model trained on different video-
text datasets. For each dataset, we train our T-V model and report downstream zero-shot
text-video retrieval performance.

Method Vision Encoder Image-Text Data Video-Text Data YouCook2 MSR-VTT MSVD LSMDC
R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓

Nagrani et al.[NSS+22] ViT-B + fusion. b. - VideoCC3M - - - - 18.9 37.5 47.1 - - - - - - - -
Frozen-in-Time [BNVZ21] ViT-B/16 + temp. CC+COCO WebVid-2M - - - - 24.7 46.9 57.2 7

CLIP-straight [PQOBTM21] ViT-B/32 WIT - - - - - 31.2 53.7 64.2 4 37.0 64.1 73.8 2 11.3 22.7 29.2 56.5
CLIP4CLIP [LJZ+

22] ViT-B/32 WIT HTM100M - - - - 32.0 57.0 66.9 4 38.5 66.9 76.8 2 15.1 28.5 36.4 28

VideoCoCa [YZW+
22] ∼ViT-B/18 + temp. JFT-3B VideoCC3M 16.5 - - - 31.2 - - - - - - - - - - -

BLIP§ [LLXH22] ViT-B/16 5 datasets‡ - 6.1 16.2 23.6 69 34.3 59.8 70.6 3 38.5 65.0 74.0 2 14.7 29.5 36.5 30.5
almond Ours ViT-B/16 5 datasets‡ HTM-Captions 13.4 33.1 44.1 15 37.6 62 73.3 3 44.5 73.3 82.1 2 17.3 31.7 38.6 29

Table 9.5: Comparison in zero-shot text-to-video retrieval with dual-encoder baseline
methods. “+ fusion b.” denotes a usage of a fusion bottleneck., “+ temp” denotes of us-
age of temporal attention. ‡CC [CSDS21]+COCO [LMB+

14]+VG [KZG+
17]+SBU [OKB11]

+LAION [SVB+
21]. §For BLIP, the performance of dual encoder architecture is reported.

on performance can vary across datasets, as certain prompts may yield captions better aligned
with specific downstream tasks. Notably, incorporating key phrases such as “Write only short
sentences” or “Describe only one action per sentence” leads to performance improvements
on 3 out of 4 datasets. Additionally, the use of the phrase “Keep only actions that happen in
the present time” also resulted in performance enhancements. Furthermore, structuring the
task description at the beginning and presenting the data to be processed at the end (the final
modification), also boosts performance. We also examine the impact of leveraging a longer
context for caption prediction. In Table 9.2, we compare caption generation with “no context”,
where captions are predicted from individual ASR subtitles. In this option, timestamps of the
input ASR are used as timestamps of the prediction caption. With our “long context” option,
we input multiple ASR subtitles with their timestamps, and the model predicts both captions
and timestamps based on longer context. We found that using a longer context is beneficial,
resulting in an average improvement 0.6 p.p. in R10, and particularly advantageous for the
YouCook2 and MSVD datasets.

Alignment & Filtering. Further, we assess the impact of the proposed alignment & filtering
procedure on the quality of captions of the acquired dataset in Table 9.3. We examine the
performance of the T-V model when trained on differently post-processed versions of the
dataset. Remarkably, we discover that the obtained video-caption pairs, even without any
post-processing, significantly outperform the original ASR-based supervision. Subsequently,
by employing the alignment and filtering procedure to leave only 25M pairs based on video-
caption similarities derived from BLIP pre-trained weights, we achieve a notable performance
enhancement of 3.6 p.p. in R10. Furthermore, alignment & filtering with our proposed
fine-tuning without forgetting yields an additional 0.8 p.p. boost in R10 performance.
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Method Vision Enc
YouCook2 MSR-VTT

R1↑ R5↑ R10↑ MR↓ R1↑ R5↑ R10↑ MR↓
MIL-NCE‡ S3D 15.1 38.0 51.2 10 9.9 24.0 32.4 29.5
TAN‡ S3D 20.1 45.5 59.5 7.0 - - - -
MMT Transformer - - - - - 14.4 - 66

AVLNet R152+RX101 19.9 36.1 44.3 16 8.3 19.2 27.4 47

MCN R152+RX101 18.1 35.5 45.2 - 10.5 25.2 33.8 -
EAO S3D 24.6 48.3 60.4 6 9.3 22.9 31.2 35

Ours S3D 25.5 51.1 63.6 5 13.2 30.3 41.5 17

Table 9.6: Zero-shot text-video+audio retrieval. MIL-NCE [MAS+20], TAN [HXZ22],
MMT [GSAS20], AVLNet [RBH+

21], MCN [CRD+
21], EAO [SCR+

22]. ‡ denote text-video
only retrieval models. R152+RX101 denotes ResNet-152+ResNeXt101.

9.3.4 Comparison with State-of-the-art

Comparision With Other Web Datasets. In Table 9.4, we assess the pre-training effec-
tiveness of our proposed HowToCaption dataset compared to other web video-language
datasets. Specifically, we evaluate different textual annotations of HowTo100M videos: senten-
cified ASR subtitles [HXZ22], task steps from distant supervision [LPB+

22], and auto-aligned
ASR subtitles [HXZ22]. Additionally, we conduct evaluations on WebVid2M [BNVZ21] and
VideoCC3M [NSS+22] datasets. Our findings indicate that the model pre-trained on our HowTo-
Caption dataset significantly outperforms models pre-trained on other versions of HowTo100M
annotations, with an average improvement of 5.2 p.p. in R10. This improvement is most pro-
nounced for the MSR-VTT, MSVD, and LSMDC datasets, which feature full-sentence captions.
Interestingly, for the YouCook2 dataset with captions in the form of step descriptions like
“cut tomato”, HTM-AA already exhibits a high baseline performance, but our HowToCaption
dataset still provides a performance boost. We also observe that the VideoCC3M dataset doesFIX
not improve the initial BLIP performance on any datasets except for the MSVD. We attribute
it to the fact that the VideoCC3M dataset adopts captions from the CC3M dataset [CSDS21]
and transfers them to videos, potentially not introducing significantly new knowledge for the
BLIP-initialised model since BLIP was pre-trained on multiple datasets including CC3M. On
the other hand, WebVid2M demonstrated performance improvements across all datasets, but
our HowToCaption dataset notably outperforms WebVid2M on YouCook2 and MSR-VTT, only
underperforming on LSMDC.

Comparison with SOTA in Zero-shot Text-Video Retrieval. In Table 9.5, we also conduct
a comparison with zero-shot dual-encoder retrieval baselines. It is important to acknowledge
that comparing state-of-the-art methods can be challenging due to variations in backbone
capacity, training objectives, and other factors. Therefore, we focus on a comparison with
dual-encoder models in the zero-shot settings. Nevertheless, it is worth highlighting that our
approach consistently outperforms the baseline methods in zero-shot text-video retrieval across
all datasets.

Text-Video+Audio Retrieval. It is known that instructional video datasets, e.g., HowTo100M
or HD-VILA, suffer from a high correlation of audio modality to a textual description, therefore
hindering building a text-video+audio retrieval system where the video is extended with
audio. The usage of ASR narrations as supervisory textual description leads retrieval models to
primarily perform speech recognition on the audio, hindering true language-audio connections.
Therefore, training text-video+audio systems on these datasets usually requires additional
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regularization, such as shifting audio timestamps or assigning lower weights to the audio
loss [SCR+

22]. Our HowToCaption dataset resolves this issue by providing richer textual
descriptions, allowing us to train a text-video+audio retrieval system without regularization.
To evaluate this, we train a multimodal Everything-At-Once (EAO) [SCR+

22] model that learns
to fuse any combinations of text, video, and audio modalities on our proposed HowToCaption
dataset without any additional tricks and evaluate zero-shot text-video+audio retrieval perfor-
mance. Table 9.6 shows the proposed model significantly outperforms all baselines and the
directly comparable EAO model.

9.3.5 Qualitative Examples

HowToCaption Dataset. We present an extension of Fig. 3 from the main paper with video-text
examples of our HowToCaption dataset and corresponding ASR subtitles in Figure 9.4. We see
that our HowToCaption method effectively transforms noisy ASR subtitles into proper captions,
leveraging the complete ASR context for caption generation. We demonstrate additional
video-text examples of our HowToCaption dataset in Figure 9.5 and Figure 9.6. In Figure 9.6,
we also showcase instances of failure cases. One such case involves a failure where the LLM
was unable to generate a caption and instead copied the input ASR subtitles: “DP Move Safe
lets operators get out of the classroom...” However, in this example, the ASR subtitles contain a
third-person video description with a subjet+verb+object sentence structure that justifies the
coping input description without modification. Other failure cases include video-caption pairs,
where the caption corresponds to the video only partially, e.g., “Cover it with lid” action is not
visible on the video while “until the seviayan is cooked” is visible.
LLM Caption Generation. In Table 9.7, we showcase captions generated by the Vicuna-13B
model, presenting both the input ASR subtitles and their corresponding generated captions
for comparison. We observe the LLM is able to transform scrambled ASR subtitles into
“human-written-like” descriptions. However, we also note that sometimes LLM fails to pro-
duce descriptions. We present some failure cases in Table 9.8, which include 1) direct input
repetition: instances where the LLM duplicates ASR input without modification; 2) ineffective
reformulation: the LLM attempts to convert ASR content into descriptions using ineffective
structures like "A person says..."; 3) failure to follow the requested structure: instances where
the LLM output doesn’t follow “a timestamp: a sentence” structure for output, e.g., using
“Summary: ” to write a video description without timestamps.

9.3.6 Limitations

Our method relies on pre-trained large foundational models, including the large language
model Vicuna [CLL+

23] and the vision-language model BLIP [LLXH22]. Consequently, our
HowToCaption method and the proposed HowToCaption dataset may inherit limitations
present in these models. Notably, large language models have several shortcomings, such as
biases from their training data, which can lead to the generation of potentially misleading
content and the propagation of societal biases [? ]. Additionally, since our text-video model is
initialized from the BLIP model that was pre-trained on curated and filtered datasets, it might
be less robust to noisy low-quality videos in our alignment & filtering step. In our robustness
analysis, we found that the model is capable of filtering noisy input, but 1-2% of noisy data is
still passing the filter. Finally, since our dataset is sourced from the HowTo100M [MZA+

19]
dataset, it follows the same data distribution, focusing solely on “how-to” topics.
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Caption (118s-126s): Matt Swanson gives a tip to use buckets
to direct the path of the ball
ASR: 7s: hi i’m matt swanson
9s: with matt swanson’s we’ll go is gonna help me change the
direction of your ball play
16s: if you’re struggling with a slice or a hook and it’s moving
too much in that direction
21s: i’m gonna give you a little tip that we use
25s: that’s very easy that you can do when you’re out to help
84s: change that
91s: you’re slicing now
109s: too much
116s: so use these buckets when you’re out at the range
120s: move them around to help direct the path
123s: make sure the clubface is closing if you’re trying to get
rid of the slice opening
128s: if you’re trying to hit a fade use these tips and you’ll get
better

Caption (87s-95s): Dog wants to hang out near dirt or other
dogs with bones to acquire more bones
ASR: 87s: so this is stage one of hiding the bone
90s: burying the bone
90s: there’s so much more involved
92s: let’s watch how she behaves
94s: when she comes back from burying the bone she becomes
a bit annoying
97s: she wants to hang out next to dirt or somebody else who
has a bone so that she might acquire yet another bone
103s: now what i have found in my experience with her and
remember every dog is different
107s: nobody does things the same way but she lets those
bones ferment for about two days before she goes back and
finally retrieves the bone
115s: and then she sits down and enjoys it
116s: and then something makes it really special
...

Caption (187s-195s): Making a bow with two colors
ASR: 185s: so if you don’t get your your ribbon twisted there’s
no up or down side to it
191s: so it’s not going to really show
193s: now once i get my three loops on my lighter color i’m
going to make a little loop and this is basically just to hide my
wire
202s: that i’m going to use
205s: the wire i use either a teen or a 20 gauge wire and what
i’m going to do
210s: this little loop is going to be my hide for the wire
215s: so i just slide that through like that and pull real tight
and twist
227s: that will keep your loops good and snug once you get
done
237s: just kind of work your your loops around
243s: and now you have a bow that’s made with two colors
246s: these are great for easter baskets you can use those for
mother’s day
251s: we have an assortment of colors so we even have some
for the holidays for fall
257s: it’s the type that you can use any time of the year and it
makes great bows

Caption (68s-76s): Make sure the bottle stays together
ASR: 0s: hi there the amateur scientist here
4s: and today in this video i’m going to show you how to
make a very cheap and from recycled materials
12s: a mosquitoes trap
14s: now because we all know that mosquitoes can bite and
make you itch and they are very uncomfortable
20s: so today in this video i’m going to show you how to make
a mosquito trap from a plastic bottle and on their amulet or
zoom
28s: so let’s get into the video
30s: first of all we’re going to need a plastic bottle and i and
some very cheap one
45s: you could also use these for sugar
61s: so first grab the bottle and and put the upper part into
the lower part
69s: but this yeah and it just stays or it won’t get off
73s: it’s busy here
74s: good deeper cheap wine
79s: hello this with it like this or just a little bit more like that
...

Figure 9.4: Extended example of video-captions pairs from our HowToCaption dataset (an extension
of Fig. 3 of the main paper). The ASR subtitles within the corresponding video clip are bolded. We
note that some details in the generated captions are derived from a long ASR context.
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Caption: Video segment starts with a shot of David’s face,
which is described as funny
ASR: and the bottom is actually has holes in it because it gets
so incredibly hot so you cannot submerge it in water so we
ask you to just rinse it out real quick look at david’s face he is
so funny

Caption: Brutus is encouraged to swallow his medication
ASR: if i put it in a piece of food he’ll chew it up and spit it
out he knows oh baby i’ve never seen him do this though

Caption: Adds two cans of red kidney beans to the chili
ASR: you could also use a vegetable broth all right so we’re
mixing this well

Caption: She explains the charm tool’s little piece of metal
acts as a spacer to hold the charms open
ASR: has this little piece of patootie metal right here that acts
as a spacer to hold the charms open so that gap is visible in
the back so it’s easier to slip the charms on and off

Caption: Adding chopped onions and green chillies to the pan
ASR:once the oil is hot enough we will add our onions and
green chillies we need to cook the onions for some time maybe
like 2 to 3 minutes until you start noticing that the colors of
the onion have changed

Caption: Paints the top part
ASR: i also notice how the blue continues onto the front of
him just like right there so be careful with that next you take
the white color and you would paint the webbing that he’s
hanging from here and also his eyes

Caption: Shows where wire runs along inside of vehicle
ASR: then ran alongside the gasket right here and runs down
here and then this we took off and then ran the wiring in
through here put this back down

Caption: You are making a rose petal exfoliating face scrub
ASR: you guys one of our favorite diys ever had to do with
rose petals so we thought let’s make another one

Figure 9.5: Examples video-captions pairs from our HowToCaption dataset. Since ASR subtitles’
timestamps do not always correspond to the timestamps of video clips from the HowToCaption dataset,
we show ASR subtitles that intersect with video clip boundaries.
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Caption: Soft bed in the car
ASR: but honestly when people see a lone prius in the parking
lot no one thinks hey i wonder if someone’s sleeping in there
because come on it’s a prius what fits in my car i have a soft
bed i have a closet blackout curtains a desk kitchen table and
chair a pantry a bike a laundry basket travel kit for emergencies

Caption: Walk upstairs to show light in the ceiling
ASR: i placed them over here because it’s a little bit lighter on
this side of the stair case then the other side there’s only one
light in the ceiling here so i’m gonna walk upstairs and i’m
gonna let you see it from the top of the stairs one more time

Caption: Asks viewers to choose favorite pet
ASR: i think i like them all for different reasons so that’s hard
so they can all three be my favorite can’t they and look at her
little friend

Caption: The speaker adds white paint to the brush to keep
the color bright
ASR: so i lay it on with the flat of the brush which deposits
it a little heavier it holds up a little better and notice i keep
adding white as ...

Caption: DP Move Safe lets operators get out of the classroom
and out of their truck faster where they learn how to perform
every task and do it safely (failure)
ASR: dp move safe lets operators get out of the classroom and
out of their truck faster where they learn how to perform every
task and do it safely

Caption: Outdoor Edge has instructional gated processing
DVDs available on their website (failure)
ASR: this is one of the big issues with large diameter sausage
products remember processing your own wild game animal
can be fun easy and very rewarding if you have the tools and
the knowledge to do the job you’re watching outdoor edges

Caption: Cover it with a lid for 15 minutes until the seviayan
is cooked (failure)
ASR: today, we will prepare a sweet recipe.. ..called ’sevaiyan’
(vermicelli) so come on, let’s see how to make sweet sevaiyan.

Caption: The group harvests fresh berries from the farm
(failure)

ASR: the kids and i are here at a local blue red patches to
manage to harvest some fresh berries at pcc are fresh and
frozen organic ...

Figure 9.6: Examples video-captions pairs from our HowToCaption dataset. Failure cases are marked
as (failure) . Since ASR subtitles’ timestamps do not always correspond to the timestamps of video
clips from the HowToCaption dataset, we show ASR subtitles that intersect with video clip boundaries.
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Table 9.7: Examples of caption generation with the Vicuna-13B. Input ASR subtitles and output
generated captions by the Vicuna-13B (without any post-processing). For brevity, lengthy examples are
shortened with the symbol “...”.

Input ASR subtitles Generated captions

0s: hi guys it is bill with septic flow
4s: i am here at a brand new construction that i’m actually
working on
8s: here
9s: on the back is the septic field
10s: we’ve already had bulldozing contractor actually
cover up the the septic system
15s: but i’m going to show you why
17s: you want to use septic flow to pre perk the system
22s: septic flow is a product that actually helps get rid of
sodium and phosphate buildup and we’re actually going
to just dump it right here in this two - inch
29s: it goes right out there
29s: we’re going to run some water behind it for new
construction
33s: the reason you want to do that is because we are
actually pre perking the system getting it ready to take
those phosphates and sodium buildup
41s: that happens through all different kinds of things
43s: you know whether you’re using
44s: i’ve had people ask me can you use organic detergent
47s: will that prevent sodium buildup
50s: absolutely not
50s: soap by nature of the saponification process that it
goes through it’s just part of it

0s: Bill is at a new construction site.
4s: He is showing the septic field.
8s: The bulldozing contractor has covered up the septic
system.
10s: Bill explains why they use septic flow.
17s: Septic flow helps get rid of sodium and phosphate
buildup.
22s: Bill demonstrates how they will dump septic flow in
a two-inch area.
29s: They will run water behind it for new construction.
33s: Bill explains that they are pre-perking the system.
41s: The system needs to be prepared to take away phos-
phates and sodium buildup.
44s: People ask if using organic detergents can prevent
sodium buildup.
50s: The answer is no, soap is part of the saponification
process and will cause buildup.

104s: the great thing about the smart chicken
107s: with it being air chilled
108s: it’s going to pick up a lot of these flavors when we
put the the ginger the garlic
111s: and the sage in here
112s: it’s just going to combine well with the meat espe-
cially while it’s cooking on the grill
116s: all those flavors are just going to pop once the
sandwich is complete and once it’s all done
121s: now that we have it all mixed i’m just going to
separate that out into two patties
129s: um you don’t have to pat it up too much
131s: it takes a lot to get it on the grill so just kind of
separate it out into two balls
136s: even
136s: and that’s our chicken
138s: it’s ready for the grill
...

104s: The speaker prepares the chicken by air-chilling it
and adding ginger, garlic, and sage.
108s: The chicken will pick up the flavors while cooking
on the grill.
111s: The speaker mixes the chicken and its seasoning.
116s: The flavors will pop once the sandwich is complete.
121s: The speaker separates the chicken mixture into two
patties.
129s: The patties are not patted too much, as they will be
grilled soon.
131s: The chicken is ready for the grill.
138s: The grill should be hot, around 400 degrees, for
grilling the chicken.
141s: The chicken will flatten itself out and get a nice sear
on the bottom when grilled.
149s: The speaker recommends not touching the chicken
for about four minutes so the bottom can set up.
157s: The chicken will fall apart if touched too soon.

9s: hello home bruce and welcome to my channel
15s: so i am down to my last bottle of strawberry wine
17s: i’ve got some in a glass so i thought it would be a
fantastic idea to make some more
23s: so it is a bit early in the season to be getting straw-
berries
27s: it has been rather cold so i am actually using frozen
strawberries so i hope you enjoyed the video and i’m
gonna have a drink
42s: so for this recipe i am actually going to be using a
beauty bucket
46s: in my case it is an up cycled ten liter mayonnaise
dough which you would have seen in the sakae video
52s: now if you don’t have a brewing bucket of some
description which has got a wide mouth so it’s less likely
to puke
...

9s: Hello and welcome to the channel.
15s: The host is down to their last bottle of strawberry
wine.
17s: They have some wine in a glass and decide to make
more.
23s: The host mentions that it’s early in the season for
strawberries.
27s: The host is using frozen strawberries in the recipe.
42s: The host is using a beauty bucket for the recipe.
46s: The bucket is an upcycled mayo container.
52s: The host mentions that a wide-mouthed bucket is
important to avoid puking.
59s: The host mentions that puking is a common issue in
fruit brewing.
62s: The host mentions a strawberry brewing bucket that
they have.
...

black
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Table 9.8: Illustrative failures in caption generation with the Vicuna-13B. Input ASR subtitles and
output generated captions where the Vicuna-13B failed to generate video descriptions based on the
subtitles. Failures include 1) direct input repetition; 2) ineffective reformulation of the ASR subtitles
into descriptions using structures like “A person says .. ”; 3) failure to follow the requested structure “a
timestamp: a sentence”. For brevity, lengthy examples are shortened with the symbol “...”.

Input ASR subtitles LLM output: generated captions

2s: i got my barbecue shoes on
9s: go down to the house the sausage
14s: i got my barbecue shoes
16s: welcome to the barbecue pit boys
18s: hi
18s: and today we’re gonna do some country meatballs
and gravy on the grill
22s: all right
23s: it’s real easy to get started here
25s: we got some large granulated salt we got some black
peppercorn there we have some granulated onion here
31s: we got some red pepper flakes and here we got some
granulated garlic
36s: now instead of using those spices you could just say
use your favorite blend of seasonings here
...

2s: i got my barbecue shoes on
9s: go down to the house the sausage
14s: i got my barbecue shoes
16s: welcome to the barbecue pit boys
18s: hi
18s: and today we’re gonna do some country meatballs
and gravy on the grill
22s: all right
23s: it’s real easy to get started here
25s: we got some large granulated salt we got some black
peppercorn there we have some granulated onion here
31s: we got some red pepper flakes and here we got some
granulated garlic
36s: now instead of using those spices you could just say
use your favorite blend of seasonings here
...

426s: you need three out of five
432s: so first jack jack
435s: ready
436s: oh good man
437s: oh no
438s: come on
448s: everything
449s: here we go
449s: okay actually okay
450s: and then for -
451s: since you’re a little older you guys stand behind the
line here
456s: so let’s have you stand behind jack jack’s face
462s: so stand up
463s: okay here we go back there
...

426s: A person announces that three out of five is needed.
432s: Jack Jack is mentioned.
435s: Someone says "ready."
436s: A person says "oh good man."
437s: A person says "oh no."
438s: Someone says "come on."
448s: Everything is mentioned.
449s: The current video segment starts.
450s: The game is continued.
451s: A person tells the players to stand behind the line.
456s: Jack Jack stands behind his face.
462s: The game continues.
463s: Someone tells Jack Jack to stand up.
465s: The game continues behind Jack Jack’s face.
471s: Three is mentioned.
...

3s: so we got to the campground
7s: we want to use the oven
10s: we need to light the manual pilot
11s: we only have to light it once for the whole weekend
if we’re not moving around
15s: so all we need to do is make sure the propane works
the oven works or the stovetop works
22s: now we just need to use the oven
24s: so now we’re down at the ovens level
26s: we’re going to light the pilot light so all we need to
do is have a stick lighter
35s: turn the knob to pilot push and hold light
41s: the pilot the pilots burning one two three i let go
didn’t turn the knob the pilots staying lit
49s: the pilot is good for all weekend
51s: when you go to cook your pizza set it to the temper-
ature you want pizzas done turn it back to pilot and the
pilot will stay lit all weekend
63s: when you’re ready to leave then we turn it to off that
turns off the pilot
69s: we don’t want that pilot on while we’re driving all
the time and constantly using propane
75s: that’s why they give us the option
80s: pilot or off is off

3s: Campground
7s: Oven
10s: Manual pilot light
11s: Light pilot once for the weekend
15s: Check if propane and oven work
22s: Use the oven
24s: At oven’s level
26s: Light pilot
35s: Turn knob to pilot, push and hold
41s: Pilot lit
49s: Good for all weekend
51s: Set temperature, turn to pilot, and leave
63s: Turn off when ready to leave
69s: Off while driving
75s: Option to choose pilot or off
80s: Off is off.
Summary: A group checks if the campground’s oven
works and lights the manual pilot. They only need to
light it once for the weekend as long as they’re not moving
around. They use the oven and make sure the propane
works before they leave. The option to choose pilot or off
is given. The pilot should be off while driving.

black
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9.4 Conclusion

Freely available web videos serve as a rich source of multimodal text-video data. Nevertheless,
training on such data presents challenges, primarily due to weak supervision offered by video
subtitles for text-visual learning. In this chapter, we address this problem by leveraging the
capabilities of large-language models (LLMs). We propose a novel approach, HowToCaption,
that involves prompting an LLM to create detailed video captions based on ASR subtitles.
Simultaneously, we temporally align the generated captions to the videos by predicting
timestamps with the LLM, further followed by the alignment & filtering step, which additionally
ensures synchronization with the video content. To validate the efficacy of the proposed
HowToCaption method, we curate a new large-scale HowToCaption dataset, featuring high-
quality human-style textual video descriptions derived from the videos and ASR subtitles of
the HowTo100M dataset. Our HowToCaption dataset helps to improve performance across
multiple text-video retrieval benchmarks and also separates textual subtitles from the audio
modality, enhancing text-to-video-audio tasks. This work demonstrates the ability of LLMs for
creating annotation-free, large-scale text-video datasets.

In Part II, various strategies are discussed to minimize annotation costs for visual tasks.
This includes semi-supervised learning in Chapter 6, as well as multimodal learning explored
in Chapter 7, Chapter 8, and Chapter 9. We investigate image-to-video alignment and language-
to-video alignment, leveraging readily available supervision, and demonstrate performance
comparable to fully supervised models.





III
L e a r n i n g w i t h L i m i t e d Data

While the previous parts focused learning representations with
abundant amounts of data, either without any labels or with some
restrictions on label availability, this part considers scenarios where
only a limited number of training samples are available.

In Chapter 10, we investigate generalized and incremental
few-shot learning settings, focusing on addressing challenges such
as catastrophic forgetting and calibration. Our base-normalized
cross-entropy approach amplifies the softmax output of novel classes,
thereby enhancing learning while preserving previous knowledge
based on limited samples. Finally, we employ data replay to
tackle the calibration challenge that is widely used in a standard
incremental learning methods.

In Chapter 11, we address bias resulting from the dispropor-
tionate availability of data for pretraining and subsequent tasks.
With an abundance of data samples from base classes, models often
exhibit overconfidence in these classes, leading to confusion with
novel classes. To mitigate overconfident predictions, we employ space
reservation techniques, enhance pretraining method, and utilize
margin enhancement techniques.
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In this chapter, we explore scenarios where only a limited number of samples are available
for training, and obtaining additional data in the form of in-domain unlabeled data is
challenging. These scenarios, such as generalized and incremental few-shot learning, face

three major challenges: learning novel classes from only few samples per class, preventing
catastrophic forgetting of base classes, and classifier calibration across novel and base classes. In
this work we propose a three-stage framework that allows to explicitly and effectively address
these challenges. While the first phase learns base classes with many samples, the second
phase learns a calibrated classifier for novel classes from few samples while also preventing
catastrophic forgetting. In the final phase, calibration is achieved across all classes. We evaluate
the proposed framework on four challenging benchmark datasets for image and video few-shot
classification and obtain state-of-the-art results for both generalized and incremental few shot
learning.

This chapter is based on [KKS21b]. As the first author, Anna Kukleva conducted all
experiments and was the main writer.

10.1 Introduction

In this chapter we are interested in two practically important learning scenarios, namely
generalized few-shot learning (GFSL) [GK18, RLFZ19, QBL18, SSS+20] and incremental few-
shot learning (IFSL) [THC+

20, CL21]. In both scenarios it is possible to learn a performant
classifier for a set of base classes for which many training samples exist. However, for the novel
classes, only few training samples are available such that a novel class learning is challenging.
Additionally, in generalized few-shot learning and in incremental learning it is important
to prevent catastrophic forgetting of the base classes during novel class learning. Last, but
not least, classifier calibration across classes has to be addressed, due to the imbalance in the
amount of training samples. While previous work focuses on addressing a subset of these
challenges [GK18, RLFZ19, KDGM+

19, THC+
20, CL21], in this chapter we aim to address all

three.
To this end, we propose a three phase framework to explicitly address these challenges. The
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Figure 10.1: Overview of the performance of our framework during different phases. J indicates
performance in the joint space, B and N denote performance in the base and novel spaces
respectively. During the 1st phase we train the model on the base classes. During the 2nd

phase we try to achieve a high performance on novel classes in the joint space and prevent
forgetting of base classes. In the 3rd phase we calibrate the two classifiers and achieve balanced
performance between base and novel classes. T-SNE plots show the performance of the test
samples at each phase. The symbol size shows the confidence of the model for the sample.

first phase is devoted to general representation learning as in previous work [GK18, RLFZ19,
WGHH18]. Here, we utilize a large base dataset for pretraining and obtain high performance
for base classification. In the second phase we concentrate on learning novel classes. In contrast
to the prior work, we pay special attention to training a calibrated classifier for the novel classes
while simultaneously preventing catastrophic forgetting for the base classes. More specifically
we propose base-normalized cross entropy that amplifies the softmax output of novel classes to
overcome the bias towards the base classes, and simultaneously enforce the model to preserve
previous knowledge via explicit weight constraints. In the third phase we address the problem
of calibrating the overall model across base and novel classes. In Fig. 10.1 we show how the
model develops during all three phases by plotting the test accuracy of base and novel classes
in the separate and joint spaces. The contributions of this work are as follows:

1. A framework to explicitly address the problems of generalized few-shot-learning by
balancing between learning novel classes, forgetting base classes and calibration across
them in three phases;

2. Base-normalized cross-entropy to overcome the bias learned by the model on the base
classes in combination with weight constraints to mitigate the forgetting problem in the
second phase;

3. An extensive study to evaluate the proposed framework on images and videos showing
state-of-the-art results for generalized and incremental few shot learning.
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10.2 Method

In the following we introduce the general setting and the motivation of our method based
on four separate performance measures introduced below. We then discuss the second phase
training as the most crucial part to achieve strong performance for both novel and base classes,
followed by our third phase training. Finally, we discuss how to generalize our method to
incremental few shot learning.
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learning & calibration 
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Figure 10.2: Overview of our framework. To achieve balanced performance on base and novel
classes we deal with three problems learning novel classes, catastrophic forgetting, and calibration
that we address in different phases of our framework. In the 1st phase we pretrain model on
base classes with abundant data. During the 2nd phase we employ LWC

2 weight constraints to
preserve knowledge and base-normalized cross entropy (CEBN) to calibrate learning of novel
classes in the joint space with base classes. In the 3rd phase we calibrate the performance with
the balanced replay of novel and base samples.

Setting: In both generalized and incremental few-shot learning we have a set of base classes
CB with many training samples. Additionally, we have one or several sets of novel classes
CN with only few training samples. In generalized few-shot learning we have just one set of
novel classes, while in incremental few-shot learning we have a sequence of such sets. In the
following, to keep the notation simple, we discuss our approach based on a single set of novel
classes, whereas in incremental learning the approach is applied to the sequence of such sets of
novel classes. Note that incremental few-shot learning in our work is the same as the few-shot
class incremental learning in [CL21, THC+

20].
Performance measures and approach: In few-shot learning we are interested to achieve best
performance for both base and novel classes simultaneously. Therefore, in order to monitor
performance for both sets of classes, we are considering four different measures (see Fig. 10.3)
First, we denote B/B the classification performance of base samples in the space of only base
classes CB, and N/N the classification performance of novel samples in the space of only novel
classes CN . More importantly, we are interested in the performance in the joint (J) space where
both base and novel classes are accounted for simultaneously CB ∪ CN . For this we consider
the performance of base and novel samples separately in the joint space, that is N/J and B/J .
We prefer these two measures rather than using only the joint performance in joint space due
to the imbalance of the number of classes [HPL+

19, BP19, WCW+
19] with |CB| ≫ |CN | (e.g.

64 base vs. 5 novel).
These measures are directly related to the three challenges mentioned above: novel class
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Figure 10.3: Classification layers for different evaluation protocols.

learning is measured by N/N and N/J , catastrophic forgetting by B/B and B/J , while calibration
is related to B/J and N/J . While ideally we would like to address all the measures simultane-
ously, we found this to be difficult in practice. Instead, during the first phase of our framework,
we optimize for B/B. In the second phase, during novel class learning, we are aiming for a
calibrated classifier for the novel classes and thus optimize for both N/N and N/J , instead of
only N/N as in standard few-shot learning. Simultaneously, we aim to prevent catastrophic
forgetting by an additional weight regularization that keeps B/B high (see Fig. 10.1). In the
third and last phase we aim to calibrate across novel and base classes and thus optimize for
both B/J and N/J .
Model parameters: We denote the backbone parameters as θ1, θ2, and θ3 for the first, the
second, and the third phase respectively. As classifier we use a linear classification layer
without bias that we train on the top of the backbone. Practically, during the second phase we
introduce a classification layer for novel classes. To evaluate performance in the joint space we
concatenate the output of the two classifiers before the normalization. oi denotes the output
logit of the model for the classification into class i. We train θ1 on a large dataset of base classes
to obtain a good representation. For the second and the third phase we initialize θphase with the
parameters θphase−1 and fine-tune on the corresponding to phase set.

10.2.1 Second Phase - Novel Class Training

Base-Normalized Cross Entropy (CEBNCEBNCEBN) Recently, Tian et al. [TWK+
20] showed that in few-shot

learning competitive classification on novel classes can be achieved given good representations
using standard cross entropy without meta-learning and prototypes. We follow this idea
and train θ2 using a pretrained model θ1 from the first phase and fine-tune it with a new
classification layer for novel classes. The standard way to fine-tune the model on the training
set that includes CN classes is

CE(x) = ∑
CN

yiln
( exp(oi)

∑
CN

exp(oj)

)
, (10.1)

where oi is the logit of the corresponding class i ∈ CN , and yi equals to one if x belongs to class
i, otherwise to zero.

One problem here is that even if the model is capable of learning information about the new
classes CN well, there is no guarantee that this performance is replicated in the joint space N/J .
By training two disjoint classifiers we learn classification weights that satisfy the classification
problem either on novel classes N/N or on base classes B/B, but so far the model does not learn
any correlation between base classification weights and novel classification weights.

To this end, we propose to provide the model with information about the base class
distribution in the joint space using readily available information. Specifically, for each novel
training sample we compute logits not only for the novel CN classes, but also for the base CB
classes (note, in the second phase the base classes classifier is kept fixed). We use these logits to
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compute classification scores with the softmax function, thus the normalization of each score
includes the base class logits that initially prevail in the sum, as follows:

CEBN(x) = ∑
CN

yiln
( exp(oi)

∑
CN

exp(oj) + ∑
CB

exp(ok)

)
. (10.2)

With this normalization, the novel model learns output probabilities for the novel classes
directly in the joint space, and specifically increasing magnitude of novel class logits with
respect to base class logits. This allows to have a good classification accuracy for novel classes
N/N in the second phase and at the same time helps to match this accuracy in the joint space
N/J . Note that we do not use any base class training samples during this learning phase and
we keep the weights of the base classifier fix.
Knowledge Preservation After the first phase the model performs well for the base classes
and we aim to keep this capability. In FSL [DCRS20, RRBV19] and IL [LH17a, RKSL17b]
multiple works show that adaptive representations can be beneficial for learning novel classes,
specifically to fine-tune the parameters of the representation. In IL, the typical way to preserve
knowledge from base classes [CMJG+

18, LLSL19, WCW+
19, DCO+

20, LH17a, RKSL17b] is
knowledge distillation (KD) [HVD15] that is applied in the form of KL-divergence between
logits of base classes from adapted and old models.

As an alternative to keep the network to remember about the previous knowledge, we
propose to utilise explicit weight constraints (WC) of the model with respect to the old model
from the first phase. We formulate it in form of a L2 penalization over adaptive parameters of
the representation [LH17a, KPR+

17, EP04]:

LWC
2 = ∑ ∥θ1 − θ2∥2 , (10.3)

where θ2 denotes adaptive parameters of the backbone excluding classification parameters
during the second phase and θ1 are the parameters of the model after base pretraining. The
above constraint forces the model to keep the representation learned on base samples, but still
allows the model to adjust the weights of the representation to better fit novel classes while not
diverging a lot from the old model. The overall loss for the second phase is thus:

L = CEBN + λLWC
2 , (10.4)

where λ controls the strength of knowledge preservation.

10.2.2 Third Phase - Joint Calibration

Balanced Replay The first and the second phase account for the performance on the base
classes (B/B) and for the novel class learning in both spaces (N/N and N/J). For the third
phase, due to the difference of number in training samples for base and novel classes and
preservation of B/B during the second phase, the model is able to obtain good performance in
the joint space as well. Empirically we found that during the second phase B/J performance
can drop drastically, but due to keeping the base class performance B/B we can achieve good
B/J performance in the third phase.

To achieve a balanced performance in the joint space of base and novel classes we apply the
replay technique that is common in incremental learning [RKSL17b, LSL+

20, RKH+
20, LLSL19].

Specifically, we randomly draw only once base training samples, one per class, and join these
samples with the novel training data. Moreover, in our case we require the least possible
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memory [RKSL17b] to store exemplars of base classes, an essential component for incremental
learning.

We continue training the model on the balanced dataset in the joint space. Due to the
initial strong bias towards base classes from the first phase (B/B), the model can improve its
performance for base classes in the joint space (B/J) quickly while at the same time overwriting
the novel class performance at least partially (N/J).

10.2.3 From Generalized to Incremental Learning

The main difference between GFSL [RLFZ19, SSS+20] and IFSL [THC+
20, CL21] is the number

of few-shot tasks. So far we considered the case of GFSL and it can be regarded as the first
two tasks in terms of incremental setting: the training of the base classes refers to task one,
the training of novel classes to task two in the incremental setup. As the current framework
addresses the joint generalized problem in three phases, base classes, novel classes, and joint
classes, we can easily extend the architecture to more tasks by repeating the novel class training.
Specifically, for each new few-shot task we apply the second phase to learn a good joint
classification for the current classes.

To evaluate the performance of the current joint space we finalize the training with the
last phase of recuperation. To this end, we keep exemplars from base and novel classes from
different tasks and perform training with the base-normalized cross-entropy loss and LWC

2
weights constraints as before. So, each time when we need to evaluate the joint performance
on all classes, we apply the third phase.

For example, to report accuracy after five tasks, we learn representation parameters from
base classes in the first task, as next stage we then apply the second phase sequentially for
the second, third, fourth, and fifth tasks respectively, each time enlarging the classifier by the
number of new classes in the task. After the fifth task we apply the third phase, balanced
replay, where for each few-shot task we use all available data, and one sample per class for the
data from the first task. During test the performance of the model is evaluated on a set that
contains all previously seen classes.

10.3 Experiments

This section validates our proposed LCwoF-framework. First, we compare our method to the
previous state-of-the-art work on both GFSL and IFSL in Section 10.3.1. Then we analyze each
phase and the components separately to show the importance and connections of each to the
improved performance in Section 10.3.2.
Datasets: mini-ImageNet [VBL+

16] is a 100-class subset of ImageNet [DDS+09]. For FSL we
follow [RLFZ19] and use a subsets 64-12-24 classes that corresponds to base-val-novel classes,
and for IFSL we follow [CL21, THC+

20] with a subset of 60 and 40 classes for base training
and incremental few-shot testing with 5 classes per each novel set. tiered-ImageNet [RTR+

18] is
a larger subset of Imagenet [DDS+09] with categorical splits for for base, validation, and novel
classes. Here, each high-level category (e.g. dog that includes different breeds) belongs only to
one of the splits. mini-Kinetics [XKD+

20] is a 100-class subset of the Kinetics video classification
dataset [KCS+17]. We use the splits from [XKD+

20]. UCF101 [SZS12] is a video dataset with
101 classes in total. We follow [KDGM+

19] with a splitting of 50-51 for base and novel classes
for FSL on videos. We additionally introduce and evaluate more challenging division of the
dataset.
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mini-ImageNet 5w1s mini-ImageNet 5w5s

method N/N B/B N/J B/J hm/J am/J
N/N B/B N/J B/J hm/J am/J(5/5) (64/64) (5/69) (64/69) (5/5) (64/64) (5/69) (64/69)

CONV4

PN [SSZ17]◦ 53.88 54.02 0.02 54.02 0.04 27.02 70.84 60.42 2.99 60.41 5.70 31.70

DFSL [GK18]◦ 55.80 69.93 40.30 58.54 47.74 49.42 72.24 70.24 58.26 59.89 59.06 59.07

RGFSL [SSS+20] 55.08 65.14 39.86 54.65 46.10 47.25 72.32 67.79 56.32 59.30 57.71 57.81

LCwoF (ours) lim 58.32 72.75 47.16 55.07 50.81 51.12 73.63 71.82 62.23 59.94 61.06 61.09
ResNet

PN [SSZ17]⋆ - - - - - 42.73 - - - - - 57.05

IW [QBL18](i) 47.17 61.78 31.25 47.72 37.77 39.49 67.56 69.07 46.96 58.92 52.26 52.94

DFSL [GK18] (c) 56.83 70.15 41.32 58.04 48.27 49.68 72.82 70.03 59.27 58.68 58.97 58.98

AAN [RLFZ19](c) 56.14 77.58 45.61 63.92 53.24 54.76 69.72 77.58 60.82 64.14 62.43 62.48

AAN [RLFZ19](orig) - - - - - 54.95 - - - - - 63.04

LCwoF (ours) lim 60.78 79.89 53.78 62.89 57.39 57.84 77.65 79.96 68.58 64.53 66.49 66.55
LCwoF (ours) unlim 61.15 80.10 53.33 62.99 57.75 58.16 77.88 80.09 67.17 66.59 66.88 66.88

Table 10.1: Comparison to state-of-the-art on mini-ImageNet 5w1s (left) and 5w5s (right) with
backbones CONV4 and ResNet. lim denotes limited access to base train samples during the
third phase, for unlim we do not apply such restrictions. ◦ indicates results copied from
RGFSL [SSS+20], ⋆ indicates results from AAN [RLFZ19], (c) denotes that we run available
code on the corresponding data, (i) states for our re-implementation of the respective method,
(orig) indicates original numbers from the respective paper.

tiered-ImageNet 5w1s tiered-ImageNet 5w5s
method N/J B/J hm/J N/J B/J hm/J

IW [QBL18](i) 44.95 62.53 52.30 71.85 56.11 63.01

DFSL [GK18](c) 47.32 36.10 40.96 67.94 39.08 49.61

AAN [RLFZ19](c) 54.39 55.85 55.11 57.76 64.13 64.93

LCwoF lim 57.13 60.39 58.71 69.05 63.44 66.12
LCwoF unlim 59.79 60.86 58.75 70.20 63.01 66.41

Table 10.2: Comparison to state-of-the-art on tiered-ImageNet 5w1s (left) and 5w5s (right) with
ResNet backbone. N/J equal to 5/205, B/J to 200/205. lim, unlim, (i) and (c) see in Table 10.1.

Implementation details For the FSL experiments on mini-ImageNet and tiered-ImageNet we
employ the same ResNet12 with DropBlock [GLL18] as backbone and pretrain it on base classes
for 500 epochs with SGD optimizer with momentum with the learning rate (lr) of 1e-3 that
is decayed by 0.1 at 75, 150, and 300 epochs. For the second and the third phase we use lr of
1e-2 and 1e-3 respectively for the classification layers and decayed by 0.1 lr for the backbone
parameters. For IFSL experiments we use ResNet18 and follow the same pretraining steps
as above. We use different architecture choices for GFSL and IFSL to remain comparable to
previous works after the base pretraining. For the second phase we always train the model for
150 epochs, while for the third phase we use validation set to choose the number of epochs
for each dataset. For videos we preextract features with C3D model [TBF+

15] pretrained on
large-scale Sports-1M [KTS+14] dataset. We apply average pooling over temporal domain to
obtain one feature vector per video. As a backbone we use 2-layer MLP. We also clip gradients
at value 100 for the experiments.

Evaluation We evaluate the proposed framework primarily with respect to the harmonic mean
(hm/J) [SES+19, SSS+20, KDGM+

19] that is computed between base and novel performance
in the joint space. Additionally, we report performance of base and novel classes in their
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mini-Kinetics 5w1s mini-Kinetics 5w5s
method N/J B/J hm/J N/J B/J hm/J

IW [QBL18](i) 45.56 48.56 47.01 56.92 49.17 52.76

DFSL [GK18](c) 50.81 44.51 47.45 70.29 46.31 55.83

GFSV [XKD+
20] 13.70 88.70 23.73 22.30 88.70 35.64

ANN [RLFZ19](c) 46.13 35.96 40.41 56.99 43.21 49.15

LCwoF lim 47.51 50.84 49.12 63.65 54.55 58.75
LCwoF unlim 46.26 51.94 48.93 65.40 52.70 58.37

Table 10.3: Comparison to state-of-the-art on mini-Kinetics 5w1s (left) and 5w5s (right) with
MLP backbone on pre-extracted features. N/J equal to 5/69, B/J to 64/69. lim, unlim, (i) and (c)
see in Table 10.1.

respective subspaces (B/B and N/N), in the joint space (B/J and N/J), and the arithmetic mean
over the joint space (am/J) as in [RLFZ19]. 5w1s and 5w5s denote 5 novel classes with 1 and 5

training samples per classes respectively. For the state-of-the-art comparison, we average over
600 episodes [SSS+20, LLX+

19, DCRS20], for all other experiments over 100 episodes. unlim
denotes access to the entire base training set, whereas for lim setup we use small subset.

10.3.1 Comparison to state-of-the-art

Generalized Few-Shot Learning We compare our performance on image and video bench-
marks: mini-ImageNet, tiered-ImageNet, Kinetics and UCF101 in Tables 10.1, 10.2, 10.3,
and 10.4 respectively. For mini-ImageNet and tiered-ImageNet, we train the respective back-
bones from scratch on the base classes. For Kinetics and UCF101, we preextract video features
as in [KDGM+

19, XKD+
20] and then train a shallow MLP model on the base classes.

On mini-ImageNet in Table 10.1 we provide an evaluation in separate and joint space on
5w1s and 5w5s setups. For both backbones, conv4 [SSS+20] and ResNet, we achieve significant
improvements over state-of-the-art results in terms of hm/J . Here, we can observe that previous
methods drop in performance on both novel (N/N) and base (B/B) classes, whereas we address
the problem by explicitly balancing between forgetting, learning, and calibration and achieve
better performance.

On tiered-ImageNet, Table 10.2, we can observe a similar pattern and achieve strong
improvements. Here, even with more base classes, we are able to calibrate the performance
between novel and base classes.

We further evaluate the performance of the proposed idea on two video datasets. Our
results on Kinetics, shown in Table 10.3, and UCF101, shown in Table 10.4, show that the
proposed framework is able to perform well on the pre-extracted features. Results on UCF101

we present on two different splits for training and testing. In Table 10.4 the first two lines
correspond to splits provided by [KDGM+

19] thus can be directly compared. The second part
of the table shows the evaluation for the setup with the original UCF train/test split as defined
in [SZS12].

Note that on both image datasets we obtain significant gains in performance while applying
unlim sampling strategy, while on the Kinetics and UCF101 there is a slight decrease in
comparison to lim. We speculate that it happens due to the fixed feature preextraction whereas
on images we train models on raw images. Across all the datasets, setting and architectures we
consistently achieve significantly better performance than previous work.

Incremental Few-Shot Learning We compare our method with the current few-shot class
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UCF101 50w1s
method N/J B/J hm/J

ProtoG [KDGM+
19] 52.30 75.30 61.72

LCwoF (ours) lim 54.41 91.41 68.22
IW [QBL18](i) 45.22 76.15 56.74

LCwoF (ours) lim 50.78 70.72 59.11
LCwoF (ours) unlim 49.12 69.98 57.72

Table 10.4: Comparison to state-of-the-art on UCF101 50w1s with MLP backbone on pre-
extracted features. N/J equal to 50/101, B/J to 51/101. lim, unlim and (i) see in Table 10.1.

mini-ImageNet 5w5s
method 2 3 4 5 6 7 8 9

hm/J +5 +10 +15 +20 +25 +30 +35 +40
FT⋄

7.23 7.39 4.87 2.40 2.06 1.84 1.57 1.40

Joint⋄ 8.92 17.02 21.86 20.54 22.92 22.85 24.41 24.95

iCaRL [RKSL17b]⋄ 8.45 13.86 14.92 13.00 14.06 12.74 12.16 11.71

UCIR [HPL+
19]⋄ 9.62 14.14 15.58 13.19 13.63 13.11 12.76 11.96

PN [SSZ17]⋄ 9.76 14.72 16.78 19.09 20.06 19.37 18.98 18.90

ILVQ [XSZ12]⋄ 9.66 16.08 17.78 20.05 20.35 19.64 19.06 18.89

SDC [YTL+
20]⋄ 20.51 18.79 17.36 20.47 19.21 18.27 20.79 21.77

IW [QBL18]⋄ 25.32 20.45 22.62 25.48 22.54 20.66 21.27 22.27

IDLVQ [CL21] 21.69 20.44 21.98 25.19 22.99 20.82 21.56 22.65

LCwoF lim 41.24 38.96 39.08 38.67 36.75 35.47 34.71 35.02

Table 10.5: IFSL. Comparison to state-of-the-art on mini-ImageNet. Number of base classes
for the first task is 60. Each next task increases joint space by 5 novel classes with 5 training
samples per class. ⋄ indicates results copied from IDLVQ [CL21]. hm/J between base and novel
classes in the joint space for each task.

incremental methods in Tables 10.5and 10.6. As in the previous experiments we use the hm
accuracy that we compute between base (first set) and novel classes. We provide more detail on
the performance of each task in Tables 10.7, 10.8, and 10.9, specifically showing performance
of base and novel classes separately, as well as the standard accuracy of all classes in the joint
space. Our method notably outperforms other methods in the field due to the fact that we
address directly the balance between the performance on base and novel classes. We show that
we obtain higher novel accuracy in the joint space for every task.

10.3.2 Ablation Studies

Here we investigate the influence of several components of our framework and the impact of
various hyperparameters.

Calibration and forgetting during the second phase In this subsection we analyse the influence
of the base-normalized cross entropy as a technique to address the calibration problem as well
as the influence of knowledge preservation to address the forgetting issue. In Fig. 10.4 we show
the behaviour of the training process during the second and the third phase with and without
base-normalized cross entropy and knowledge preservation as explicit weight constraints LWC

2 .
Removing both elements, as shown in the top left sub-figure, results in a drastic drop in B/B
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mini-ImageNet 5w5s
B/J (60) 2 5 7 9

Joint⋄ 63.30 62.18 61.86 61.89

SDC [YTL+
20]⋄ 63.58 60.29 59.05 59.87

IW [QBL18]⋄ 63.52 61.17 60.63 59.64

IDLVQ [CL21] 63.77 61.22 60.97 60.44

LCwoF lim 57.33 51.38 47.60 47.73

N/J 2 5 7 9

#cl 5 20 30 40
Joint⋄ 4.80 12.30 14.01 15.62

SDC [YTL+
20]⋄ 12.23 12.33 10.81 13.30

IW [QBL18]⋄ 15.81 16.09 12.45 13.69

IDLVQ [CL21] 13.07 15.86 12.55 13.94

LCwoF lim 32.20 31.12 28.27 27.65

Table 10.6: IFSL. Comparison to state-of-the-art on mini-ImageNet. Number of base classes
for the first task is 60. Each next task increases joint space by 5 novel classes with 5 training
samples per class. ⋄ indicates results copied from IDLVQ [CL21]. Top: base classification
accuracy in the joint space; Bottom: novel classification accuracy in the joint space.

mini-ImageNet
method 1 2 3 4 5 6 7 8 9

hm/J 60 +5 +10 +15 +20 +25 +30 +35 +40
FT⋄ - 7.23 7.39 4.87 2.40 2.06 1.84 1.57 1.40

Joint⋄ - 8.92 17.02 21.86 20.54 22.92 22.85 24.41 24.95

iCaRL [RKSL17b]⋄ - 8.45 13.86 14.92 13.00 14.06 12.74 12.16 11.71

UCIR [HPL+
19]⋄ - 9.62 14.14 15.58 13.19 13.63 13.11 12.76 11.96

PN [SSZ17]⋄ - 9.76 14.72 16.78 19.09 20.06 19.37 18.98 18.90

ILVQ [XSZ12]⋄ - 9.66 16.08 17.78 20.05 20.35 19.64 19.06 18.89

SDC [YTL+
20]⋄ - 20.51 18.79 17.36 20.47 19.21 18.27 20.79 21.77

IW [QBL18]⋄ - 25.32 20.45 22.62 25.48 22.54 20.66 21.27 22.27

IDLVQ [CL21] - 21.69 20.44 21.98 25.19 22.99 20.82 21.56 22.65

LCwoF (base biased) - 25.56 30.59 27.29 28.08 29.91 27.97 30.30 32.73

LCwoF (balanced hm) - 41.24 38.96 39.08 38.67 36.75 35.47 34.71 35.02

Table 10.7: IFSL. Comparison to state-of-the-art on mini-ImageNet based on harmonic mean
metric between base and novel classes. ⋄ indicates results copied from IDLVQ [CL21].

and B/J that prohibits the model to quickly recover during the replay (third) phase since all
previous knowledge is lost. The left bottom sub-figure shows the impact of CEBN . With CEBN
the model easily achieves good performance on N/J in the joint space that matches N/N , but
here both B/B and B/J drop during the second phase training that again prevents recuperation.
Compared to that, the right top sub-figure includes base knowledge preservation that keeps
both B/B and B/J relatively high, and further facilitates complete recovery for the base classes.
But without CEBN novel learning in the joint space suffers during both the second and the
third phase. The right bottom sub-figure shows performance if both, CEBN and knowledge
preservation, are used. The model is able to keep a certain performance of B/B during the
second phase while achieving high accuracy on the novel classes (N/N and N/J). During the
third phase we calibrate the model by the replay technique and achieve good balance between
the two disjoint sets of classes.
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mini-ImageNet
B/J (60) 1 2 3 4 5 6 7 8 9

FT⋄
64.25 32.28 20.87 6.95 3.17 3.16 1.92 1.53 1.46

Joint⋄ 64.25 63.30 62.83 62.16 62.18 62.68 61.86 61.87 61.89
iCaRL [RKSL17b]⋄ 64.25 51.66 48.97 45.62 37.39 30.86 28.68 26.83 24.47

UCIR [HPL+
19]⋄ 64.25 52.87 50.16 44.78 37.48 28.75 25.58 22.97 21.57

PN [SSZ17]⋄ 64.25 59.27 58.88 58.69 58.22 57.63 57.03 56.80 56.47

ILVQ [XSZ12]⋄ 64.25 60.24 59.62 59.02 58.61 57.71 57.16 56.83 56.49

SDC [YTL+
20]⋄ 64.62 63.58 62.78 61.12 60.29 59.37 59.05 59.97 59.87

IW [QBL18]⋄ 64.71 63.52 62.96 62.13 61.17 61.27 60.63 59.86 59.64

IDLVQ [CL21] 64.77 63.77 63.22 62.44 61.22 61.47 60.97 60.66 60.44

LCwoF (base biased) 64.45 63.53 62.07 61.55 60.85 59.26 58.25 57.23 55.98

LCwoF (balanced hm) 64.45 57.33 53.31 52.87 51.38 48.25 47.60 47.51 47.73

N/J 1 2 3 4 5 6 7 8 9

#cl - 5 10 15 20 25 30 35 40
FT⋄ - 4.07 4.49 3.75 1.93 1.53 1.77 1.61 1.36

Joint⋄ - 4.80 9.84 13.26 12.30 14.03 14.01 15.21 15.62

iCaRL [RKSL17b]⋄ - 4.60 8.09 8.92 7.87 9.10 8.19 7.86 7.70

UCIR [HPL+
19]⋄ - 5.29 8.23 9.43 8.00 8.93 8.81 8.83 8.27

PN [SSZ17]⋄ - 5.32 8.41 9.79 11.42 12.14 11.67 11.39 11.35

ILVQ [XSZ12]⋄ - 5.25 9.29 10.47 12.09 12.35 11.86 11.45 11.34

SDC [YTL+
20]⋄ - 12.23 11.05 10.12 12.33 11.46 10.81 12.58 13.30

IW [QBL18]⋄ - 15.81 12.21 13.83 16.09 13.81 12.45 12.93 13.69

IDLVQ [CL21] - 13.07 12.19 13.34 15.86 14.14 12.55 13.11 13.94

LCwoF (base biased) - 16.00 20.30 17.53 18.25 20.00 18.40 20.60 23.12

LCwoF (balanced hm) - 32.20 30.70 31.00 31.12 29.68 28.27 27.34 27.65

Table 10.8: IFSL. Comparison to state-of-the-art on mini-ImageNet. Top: performance of the
base samples in the joint space after each task. Bottom: performance of the novel samples in
the joint space after each novel task. ⋄ indicates results copied from IDLVQ [CL21].

mini-ImageNet both⊎

1 2 3 4 5 6 7 8 9

J/J 60 +5 +10 +15 +20 +25 +30 +35 +40
FT⋄

64.25 30.11 18.53 6.31 2.86 2.86 1.87 1.56 1.42

Joint⋄ 64.25 58.80 55.26 52.38 49.71 48.37 45.91 44.68 43.38

iCaRL [RKSL17b]⋄ 64.25 48.04 43.13 38.28 30.01 24.46 21.85 19.84 17.76

UCIR [HPL+
19]⋄ 64.25 49.21 44.17 37.71 30.11 22.92 19.99 17.96 16.25

PN [SSZ17]⋄ 64.25 55.12 51.67 48.91 46.52 44.25 41.91 40.07 38.42

ILVQ [XSZ12]⋄ 64.25 56.01 52.43 49.31 46.98 44.37 42.06 40.11 38.43

SDC [YTL+
20]⋄ 64.62 59.63 55.39 50.92 48.30 45.28 42.97 42.51 41.24

IW [QBL18]⋄ 64.71 59.85 55.71 52.47 49.90 47.31 44.57 42.57 41.26

IDLVQ [CL21] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84

TOPIC [THC+
20] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42

LCwoF (base biased) 64.45 59.88 56.10 52.75 50.20 47.71 44.97 43.74 42.84
LCwoF (balanced hm) 64.45 55.40 50.08 48.49 46.28 42.78 41.16 40.08 39.70

Table 10.9: IFSL. Comparison to state-of-the-art on mini-ImageNet based on joint performance
of base and novel samples in the joint space. ⋄ indicates results copied from IDLVQ [CL21].

Knowledge Preservation One important factor of the method is that we aim to retain the
knowledge that the model obtained in the first phase, specifically the B/B performance, during
the second phase. In this section we evaluate two different methods to achieve this objective,
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Figure 10.4: Influence of the proposed CEBN and LWC
2 on the training during the 2nd and the

3rd phase. Red lines correspond to novel classes, blue to base classes. Solid lines represent
performance in the joint space, dashed lines in separate corresponding subspaces. Top left: base
performance drops as B/B and B/J and is not able to recover during the 3rd phase; bottom left:
both N/N and N/J achieve high performance, base performance still is not able to recover; top
right: LWC

2 helps to recuperate base performance in the joint space while novel performance
drops; bottom right: by addressing both N/J with CEBN and B/B with LWC

2 we allow the model
recover during the 3rd phase on B/J while not losing drastically on novel classes.

5w1s 5w5s

method
N/J B/J hm/J

N/J B/J hm/J(5/69) (64/69) (5/69) (64/69)

LWC
2 53.28 63.24 57.83 68.61 64.73 66.61

KD 50.28 57.72 53.74 70.29 64.67 67.36
KD+

45.87 67.20 54.52 68.01 65.88 66.93

LWC
2 + KD 53.43 60.51 56.75 68.45 63.47 65.86

Table 10.10: Comparison of knowledge preservation techniques, such as LWC
2 as explicit weights

constraints, knowledge distillation (KD) for old classes during the 2nd phase, KD+ includes KD
on the additional 1000 unlabeled images during the second phase, and combination LWC

2 + KD.
Results are computers on mini-ImageNet.

comparing the proposed explicit weight constraints LWC
2 with knowledge distillation that is

formulated via KL-divergence. Knowledge distillation is a common technique to preserve
knowledge in incremental learning [CMJG+

18, DCO+
20, LLSL19, LH17a, RKSL17b, WCW+

19],
where abundant training data is available for new classes.

In Table 10.10 we evaluate the performance on 100 episodes on mini-ImageNet for the 5w1s
and 5w5s settings. Comparing LWC

2 and KD knowledge preservation techniques, we find that
the latter marginally outperforms the other if more data is available, as in the 5w5s setting,
whereas plain weight constraints are more efficient in the lowest data regime with 1 training
sample per class (5w1s). Additionally, we evaluate KD by including additional unlabeled 1000

images from the validation set during the second phase for KD loss computations, denoted as
KD+ in Table 10.10. We find that it helps to improve in the 5w1s setting, but still stays lower
than LWC

2 . Applying both techniques at the same time does not give an improvement.
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Figure 10.5: Evaluation of the performance after the 2nd phase of the framework on the base and
novel classes that depends on importance weight λ of the LWC

2 term. Filled areas correspond
appropriate λ that allows us to achieve the desirable performance (before N/J drops). Results
on mini-ImageNet.

5w1s
λ N/J B/J hm/J

1e+4 50.89 50.68 50.78

5e+4 53.06 58.56 55.67

1e+5 52.65 58.70 55.51

LCwoF 53.28 63.24 57.83

Table 10.11: Best possible performance of the model that can be achieved during the second
phase (without the third phase). λ stands for the importance weight of the LWC

2 term. Higher
λ, higher knowledge preservation, higher accuracy B/J . We apply GCE and LWC

2 during the
second phase with various λ. Results on mini-ImageNet.

Impact of λ In this section we study the influence of λ for the LWC
2 loss and how to preserve

more knowledge and drop less on the base classes B/J , but also how the model behaviour
changes if we enforce it to preserve even more. In Fig. 10.5 we plot the accuracy after training
in the second phase, before the replay phase for different λ. In Fig. 10.5 we fill these areas with
gray color, that allow to reach our two objectives for the second phase, i.e., achieving good
performance in the joint space on novel classes N/J and keeping good accuracy in the base
space B/B. Specifically higher λ helps to further keep B/B performance while novel learning
N/N and N/J starts decreasing with higher values. It shows the start of the decrease depends
on the number of available training samples: the more training data, the more we can keep
from base classes by choosing a higher λ.
Early Stopping: Second Phase We observe that during the second phase, usually B/J starts
dropping even when N/J has already achieved some reasonable accuracy, as can e.g. be seen in
the bottom right subplot of Figure 10.4. We, therefore, also report the best performance that
can be achieved with different λ during the second phase in Table 10.11. Note that λ influences
the contribution of the knowledge preservation part LWC

2 . Thus, B/J will drop faster if a lower
λ is chosen. By adjusting λ, we find that the proposed technique can also be helpful during
the second phase. It shows that in this case, balanced model performance can be reached with
higher λ and that we can achieve high performance even without the third replay phase.
Impact of batch normalization We use batch norm layers in the model that capture statistic
from the base classes during the first phase. At the second phase our data is highly limited
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N/J B/J hm/J

no 54.39 59.13 56.66

yes 53.28 63.24 57.83

Table 10.12: Influence of freezing batch norm during the 2nd and the 3rd phases, results on
mini-ImageNet 5w1s.

N/J B/J hm/J

1 cos.norm. 47.91 59.69 53.15

2 bias 52.96 62.05 57.14

3 no bias 53.28 63.24 57.83

Table 10.13: Comparison between different linear layers: cos is cosine normalization of the
weights and the embedding space, bias stands for linear layer with the bias term, no bias stands
for linear layer without the bias term. Results on mini-ImageNet 5w1s.

thus we fix batch norm during further training. Table 10.12 shows that the performance drops
more than 1 point when the model tries to accumulate new statistic from 1 training sample per
class and to adapt parameters respectively.
Impact of normalization One of the common strategies to unify magnitudes of base and novel
classifiers is to use cosine normalization of the embedding and weights [HPL+

19, RLFZ19,
SSS+20, MGB21, GK19, RKSL17b]. We experiment with such a setup (Table 10.13, lines 1 &
3) for our framework and find a decline in performance for both, N/J and B/J . Note that
the performance of the model after the first phase on B/B is the same as without cosine
normalization. But if we attempt to match N/J and N/N during the second phase, we find that
constrained magnitudes of logits due to normalization restrict the performance and do not
allow to achieve our second phase objectives.
Analysis of classification layer As default, we conduct all our experiments with a linear
classification layer without bias term (Table 10.13, lines 2 & 3). We therefore assess the
performance of the model with and without bias. We find that during the first phase, it is the
same, but that during the second and the third phase it is beneficial to use the latter giving a
boost of about 0.7 in the performance hm/J .

10.4 Conclusion

This chapter addresses major challenges in generalized few-shot and incremental few-shot
learning with our three-phase framework. First, we learn a powerful representation by training
a model on base classes. In the second phase, concerned with novel class learning, we employ
base-normalized cross entropy that calibrates novel class classifiers to overcome the bias
towards base classes. Additionally, during that phase we preserve knowledge about base
classes via weight constraints. In the third phase, to achieve calibrated classifiers across both
base and novel classes, we employ balanced replay. We show that each phase of the framework
allows to study and address the essential problems of the task explicitly. We evaluate our
proposed framework on four benchmark image and video datasets and achieve state-of-the-art
performance across all settings. This work can be seen as a first step towards more explicitly
addressing calibration, learning and knowledge preservation jointly to further improve deep
learning for imbalanced settings beyond the ones addressed in this chapter. In the next
Chapter 11, we tackle the domain of incremental few-shot learning from the perspective of
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metric learning. We demonstrate the effective utilization of abundant pretraining data and
limited data for novel tasks by introducing techniques such as space reservation and margin
enhancement.
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To tackle the challenges of a continuously expanding learning space with limited data, this
chapter explores the effects of pretraining, space reservation, and margin enhancement
techniques for Few-Shot Class Incremental Learning (FSCIL). FSCIL methods inherently

face the challenge of catastrophic forgetting as data arrives incrementally, making models
susceptible to overwriting previously acquired knowledge. Moreover, given the scarcity of
labeled samples available at any given time, models may be prone to overfitting and find it
challenging to strike a balance between extensive pretraining and the limited incremental data.
To address these challenges, we propose the OrCo framework built on two core principles:
features’ orthogonality in the representation space, and contrastive learning. In particular, we
improve the generalization of the embedding space by employing a combination of supervised
and self-supervised contrastive losses during the pretraining phase. Additionally, we introduce
the OrCo loss to address challenges arising from data limitations during incremental sessions.
Through feature space perturbations and orthogonality between classes, the OrCo loss maxi-
mizes margins and reserves space for the following incremental data. This, in turn, ensures
the accommodation of incoming classes in the feature space without compromising previously
acquired knowledge. Our experimental results showcase state-of-the-art performance across
three benchmark datasets, including mini-ImageNet, CIFAR100, and CUB datasets. The code
will be made publicly available.

This chapter is based on [AKS24]. This paper accepted as a highlight at CVPR 2024. Anna
Kukleva, as the co-first author, contributed to the conceptual development of this project and
the writing of the paper. This paper is based on the master thesis of Noor Ahmed. Anna
Kukleva acted as Noor Ahmed’s supervisor during the project and played a significant role in
the paper’s writing.

11.1 Introduction

Real-world applications frequently encounter various challenges when acquiring data incre-
mentally, with new information arriving in continuous portions. This scenario is commonly re-
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Incremental  Class
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Incremental  Class
After Alignment

Pseudo Targets Class Means

Reserved
Space
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Data Features

Figure 11.1: PCA analysis on feature space before and after alignment. Left: Before aligning
incremental classes to orthogonal pseudo-targets. Right: After aligning incremental classes to
assigned targets using OrCo loss. Our loss effectively reduces misalignment. Additionally, it
enhances generalization for incoming classes by explicitly reserving space.

ferred to as Class Incremental Learning (CIL) [RKSL17a, WCW+
19, HVD15, LH17a, CMJG+

18,
HPL+

19, BP19, ZZW+
21, ZXG+

20, SCL+
18, LMH+

18, CDAT18]. Within CIL, the foremost
challenge lies in preventing catastrophic forgetting [MC89, GMX+

13, KPR+
17], where previ-

ously learned concepts are susceptible to being overwritten by the latest updates. However, in
a Few-Shot Class Incremental Learning (FSCIL) scenario [THC+

20, ZSL+
21, KKS21a, ZLX+

23,
KHSM22, ZFK+

21, CRF+
21, ZWY+

22, YYL+
23, her, MSR21, her], characterized by the intro-

duction of new information with only a few labeled samples, two additional challenges emerge:
overfitting and intransigence [SSZ17, CLK+

19]. Overfitting arises as the model may memorize
scarce input data and lose its generalization ability. On the other hand, intransigence involves
maintaining a delicate balance, preserving knowledge from abundant existing classes while
remaining adaptive enough to learn new tasks from a highly limited dataset. Advances in
dealing with catastrophic forgetting, overfitting and intransigence are important steps toward
improving the practical value of these methods.

Catastrophic forgetting is commonly tackled in CIL methods [RKSL17a, HPL+
19, KK18],

which assume ample labeled training data. However, standard CIL methods struggle in
scenarios with limited labeled data, such as FSCIL [THC+

20]. To address the three challenges
posed by FSCIL, recent approaches [ZLX+

23, ZSL+
21] focus primarily on regularizing the

feature space during incremental sessions, mitigating the risk of overfitting. These methods
rely on a frozen backbone pretrained with standard cross-entropy on a substantial amount
of data from the base session. However, we argue that achieving high performance on
the pretraining dataset may not necessarily result in optimal generalization in subsequent
incremental sessions with limited data. Therefore, in the first phase, we propose enhancing
feature space generalization through contrastive learning, leveraging data from the base session.

In this work, we introduce the OrCo framework, a novel approach built on two fundamental
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pillars: features’ mutual orthogonality on the representation hypersphere and contrastive learn-
ing. During the first phase, we leverage supervised [KTW+

20] and self-supervised contrastive
learning [GH10, CKNH20, OLV18] for pretraining the model. The interplay between these two
learning paradigms enables the model to capture various types of semantic information that
is particularly beneficial for the novel classes with limited data [CFN+

22, ICP+
21, ADC+

22],
implicitly addressing the intransigence issue. After the pretraining, we generate and fix mutually
orthogonal random vectors, further referred to as pseudo-targets. In the second phase, we aim
to align the fixed pretrained backbone to the pseudo-targets using abundant base data. The
learning objective during this phase is our OrCo loss, which consists of three integral compo-
nents: perturbed supervised contrastive loss (PSCL), loss term that enforces orthogonality of
features in the embedding space, and standard cross-entropy loss. Notably, our PSCL leverages
generated pseudo-targets to maximize margins between the classes and to preserve space
for incremental data, enhancing orthogonality through contrastive learning (see figure 11.1).
The third phase of our framework, which we apply in each subsequent incremental session,
similarly aims to align the model with the pseudo-targets, but using only few-shot data from
the incremental sessions. During the third phase, our PSCL addresses limited data challenges,
mitigating the overfitting problem to the current incremental session and catastrophic forgetting
of the previous sessions through margin maximization.

We summarize the contributions of this work as follows:

• We introduce the novel OrCo framework designed to tackle FSCIL, that is built on orthog-
onality and contrastive learning principles throughout both pretraining and incremental
sessions.

• Our perturbed supervised contrastive loss introduces perturbations of orthogonal, data-
independent vectors in the representation space. This approach induces increased margins
between classes, enhancing generalization.

• We showcase robust performance on three datasets, outperforming previous state-of-the-
art methods. Furthermore, we perform a thorough analysis to evaluate the importance of
each component.

11.2 Method

We begin with necessary preliminaries in section 11.2.1, followed by the description of our
OrCo framework in section 11.2.2 and OrCo loss in section 11.2.3.

11.2.1 Preliminaries

FSCIL Setting. FSCIL consists of multiple incremental sessions. An initial 0-th session is often
reserved to learn a generalisable representation on an abundant base dataset. This is followed
by multiple few-shot incremental sessions with limited data. To formalise, an M-Session N-Way
and K-Shot FSCIL task consists of Dseq = {D0, D1, ..., DM}. These are all the datasets written in

sequence where Di = {(xi, yi)}|D
i |

i=1 is the dataset for the i-th session. The 0-th session dataset
D0, also referred to as base dataset, consists of C0 classes, each with a large number of samples.
The training set for each following few-shot incremental session (i > 0) has N classes. Each of
these classes has K samples, typically ranging from 1 to 5 samples per class. Taking the i-th
session as an example, the model’s performance is assessed on validation sets from the current
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Figure 11.2: Overview of OrCo framework. Our OrCo framework is a three-phase approach for
FSCIL. Phase 1 (Pretrain): We pretrain both backbone and projection head with SCL and SSCL
on base dataset D0. Before the next phase, we generate mutually orthogonal pseudo-targets.
Phase 2 (Base Alignment): We aim to align the base dataset D0 to the pseudo-targets through
our OrCo loss. This involves pulling class means towards the nearest pseudo-targets and
pushing forces based on perturbations around unassigned pseudo-targets (grey stars without
assigned colored class means) to increase the margin and preserve space for incoming classes.
Phase 3 (Few-Shot Alignment): Phase 3, employed in each subsequent incremental session, is
similar to Phase 2 and assigns pseudo-targets to incremental class means with further alignment
with our OrCo loss.

(i-th) and all previously encountered datasets (< i). The entire FSCIL task comprises a total of
C classes. In our OrCo framework, we use base dataset D0 for pretraining the model during
phase 1 and for base alignment during phase 2.
Target Generation. We employ a Target Generation loss, similarly as in [LCY+

22], to generate
mutually orthogonal vectors across the representation hypersphere with a dimensionality of
d. First, we define a set of random vectors T = {ti} where {ti} ∈ Rd. The optimization of the
following loss with respect to these random vectors maximizes the angle between any pair of
vectors ti, tj ∈ T, thereby ensuring their mutual orthogonality:

LTG(T) =
1
|T|

|T|

∑
i=1

log
|T|

∑
j=1

eti ·tj/τo (11.1)

where τo is the temperature parameter. These optimized vectors, which we further refer to
as pseudo-targets, remain fixed throughout our training process.

Contrastive Loss. The objective of contrastive representation learning is to create an em-
bedding space where similar sample pairs are in close proximity, while dissimilar pairs are
distant. In this work, we adopt the InfoNCE loss [KTW+

20, OLV18] as our contrastive objective.
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With positive set Pi and negative set Ni defined for each data sample zi, called anchor, this loss
aims to bring any zj ∈ Pi closer to its anchor zi and push any zk ∈ Ni further away from the
anchor zi:

LCL(i; θ) =
−1
|Pi| ∑

zj∈Pi

log
exp(zi · zj/τ)

∑
zk∈Ni

exp(zi · zk/τ)
, (11.2)

where τ is the temperature parameter. In the classical self-supervised contrastive learning
(SSCL) scenario, where labels for individual instances are unavailable, the positive set comprises
augmentations of the anchor, and all other instances are treated as part of the negative
set [OLV18]. In contrast, for the supervised contrastive loss (SCL), the positive set includes all
instances from the same class as the anchor, while the negative set encompasses instances from
all other classes [KTW+

20]. To enhance clarity, we denote the supervised contrastive loss as
LSCL and self-supervised contrastive loss as LSSCL.
Supervised Contrastive Loss. Given a set of sample-label pairs (xi, yi) ∈ ZSCL, we define
the positive set PSCL

i for xi as the collection of pairs (xj, yj) where j varies over all instances
such that yj = yi. Correspondingly, the negative set NSCL

i is defined as ZSCL \ PSCL
i . Then,

supervised contrastive loss (SCL) is defined as:

LSCL(i; θ) =
−1

|PSCL
i | ∑

xj∈PSCL
i

log
exp(xi · xj/τ)

∑
xk∈NSCL

i

exp(xi · xk/τ)
.

Self-Supervised Contrastive Loss. Given a set of samples xi ∈ ZSSCL, we define a positive
for xi as A(xi) where A(·) is a random transformation. Then, self-supervised contrastive loss
(SSCL) loss is defined as:

LSSCL(i; θ) = −1 · log
exp(xi · A(xi)/τ)

∑
xk∈ZSSCL,i ̸=k

exp(xi · xk/τ)
.

Orthogonality Loss In this section, we further expand on the orthogonality loss in our frame-
work. We employ the orthogonality loss as an implicit geometric constraint on the set O
predicated on the current batch. O contains the following: mean features for all classes within
batch µj, assigned targets not represented within batch and all unassigned targets Ti

u.
Formally, let us assume the session i with data Di and classes Ci. In order to define a

set O we compute some preliminaries. Firstly, for every training batch B we compute the
within-batch mean for all data features. This is computed as:

µj =
1

|Cj|

|Cj|

∑
k=0

zk, ∀j ∈ Ci
B (11.3)

where Ci
B ∈ Ci refers to all classes appearing in this particular batch. The combined set of

all means can then be termed MB. For the classes that did not appear in this batch we define
as ¬Ci

B = Ci \ Ci
B. Subsequently we define a mapping function from seen class labels to the

assigned pseudo target.

h : Ci → Ti (11.4)

We incorporate the remaining real data by adding the following set of assigned pseudo
targets as ¬Ti

B = h(¬Ci
B). For completeness, we combine the above with the unassigned targets

Ti
u leading to the following definition of O:
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O = {MB ∪ ¬Ti
B ∪ Ti

u | B} (11.5)

Finally, the orthogonality loss takes the form:

LORTH(O) =
1
|O|

|O|

∑
i=1

log
|O|

∑
j=1

eoi ·oj/τo , oi, oj ∈ O (11.6)

In essence, the orthogonality loss introduces a subtle geometric constraint between real
class features and the pseudo-targets. Additionally the batch-wise construction helps regularise
the loss function.

Although the improvement from the Orthogonality loss are not prominent like in PSCL, it
remains measurable and consistent across settings (e.g. in table 11.2 line 1 vs line 2, line 3 vs
line 4), and thus contributes to our results. Additionally, we would like to highlight that each
loss term in equation 11.10 incorporates orthogonality constraints either implicitly or explicitly.
E.g. the orthogonality enforced on the pseudo-targets implies an implicit orthogonality among
the features as they are pushed to these targets.

We consider SCL, SSCL and the orthogonality losses as the cornerstone guiding our work
due to their discriminative nature, robustness, and extendability.

11.2.2 OrCo Framework

Overview. Our OrCo framework (see figure 11.2) for FSCIL begins with a pretraining of
the model in the first phase, focusing on learning representations, which are transferable to
the new tasks. To achieve this, we leverage both supervised and self-supervised contrastive
losses [CFN+

22, ICP+
21]. Before the second phase, we generate a set of mutually orthogonal

vectors, which we term as pseudo-targets. In the subsequent second phase, referred to as
base alignment in figure 11.2, we allocate pseudo-targets to class means and ensure alignment
through our OrCo loss, using abundant base data D0. The third phase, implemented in each
subsequent incremental session, similarly focuses on assigning incoming but few-shot data
to unassigned pseudo-targets, followed by alignment through our OrCo loss. Our OrCo loss
comprises three key components: cross-entropy, orthogonality loss, and our novel perturbed
supervised contrastive loss (PSCL). The cross-entropy loss aligns incremental data with assigned
fixed orthogonal pseudo-targets, the orthogonality loss enforces a geometric constraint on the
entire feature space to mimic the pseudo-targets distribution, and our PSCL enhances crucial
robustness for FSCIL tasks through margin maximization and space reservation, leveraging
mutual orthogonality of pseudo-targets.
Phase 1: Pretrain. In the first pretraining phase, we learn an encoder that accumulates
knowledge and generates distinctive features. Using a combination of supervised contrastive
loss (SCL) and self-supervised contrastive loss (SSCL), we enhance feature separation within
classes, improving model transferability to incremental sessions [CFN+

22, ICP+
21]. To this

end, we train the model encoder f and MLP projection head g using base data D0, mapping
input images to Rd feature space. The pretraining loss is then defined as:

Lpretrain(D0; f , g) = (1 − α) ∗ LSCL + α ∗ LSSCL, (11.7)

where α controls the contribution of each contrastive loss.
Pseudo-targets. During the first phase, we do not employ any explicit class vectors that can be
used for linear classification. Therefore, we generate data-independent mutually orthogonal
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pseudo-targets T = {tj} ∈ Rd on the hypersphere by optimizing loss shown in equation 11.1,
where |T| >= C. Further, these pseudo-targets are fixed and assigned to classes, which, in
turn, maximize margins between the classes and improve generalization.
Phase 2: Base Alignment. In addition to the pretraining phase, we introduce the second
phase based on the base dataset D0. This phase initiates alignment between the projection
head g and the set of generated pseudo-targets T. More specifically, we create class means by
averaging features with the same labels. Then, we employ a one-to-one matching approach,
utilizing the Hungarian algorithm [Kuh55], to assign class means with the most fitting set of
pseudo-targets T0, where |T0| = |C0|. Note that each class yj ∈ C0 is then associated with the
respective pseudo-target t0

j ∈ T0 and we denote the remaining unassigned pseudo-targets as
T0

u = T \ T0. Further, we use pseudo-targets T0 as base class representations for classification.
Despite the optimal initial assignment, we enhance the alignment of the projection head g and
the respective pseudo-targets T0 through the optimization of our OrCo loss. Further insights
into the specifics and motivation behind our OrCo loss, we elaborate on in section 11.2.3.
Phase 3: Few-Shot Alignment. In the third phase of our framework, applied in each subsequent
incremental session, our goal remains to align incoming data with the pseudo-targets. The
following sessions introduce few shot incremental data Di for the i-th session. Building on
previous methods [CMJG+

18, WCW+
19, KKS21a, CRF+

21], we maintain some exemplars from
previously seen classes, constituting a joint set Di

joint = {Di ∪ {⋃i−1
j=0 D̃j}}, where D̃j denotes

saved exemplars from earlier sessions. Keeping random exemplars from previous sessions
serves to mitigate both overfitting and catastrophic forgetting issues. Similarly to the second
phase, we assign pseudo-targets to incremental class means. To be specific, we determine
the optimal assignment between Ti−1

u and the current class means, resulting in the optimal
assignment set of pseudo-targets Ti. Respectively, the unassigned set of pseudo-targets becomes
Ti

u = Ti−1
u \ Ti. During incremental session i, we optimize our OrCo loss given data Di

joint,
pseudo-targets T = {Ti}i

0 ∪ Ti
u and the assignment between T = {Ti}i

0 and the respective
classes.

11.2.3 OrCo Loss

During the second and the third phases, we optimize the parameters of the projection head
g with our OrCo loss. This loss comprises three integral components: our novel perturbed
supervised contrastive loss (PSCL), cross-entropy loss (CE) and orthogonality loss (ORTH), see
figure 11.3. The aim of optimizing the OrCo loss is to align classes with their assigned pseudo-
targets, simultaneously maximizing the margins between classes. This, in turn, enhances
overall generalization performance.

To maximize the margins in the representation space, we introduce uniform perturbations
of the pseudo-targets T, resulting in perturbed pseudo-targets T̃ = {t̃j}|T|0 defined as

t̃j = tj + U (−λ, λ), (11.8)

where U stands for uniform distribution and λ defines sampling boundaries. To utilize the
introduced perturbations, we redefine positive Pj and negative Nj sets for the contrastive loss
for the anchor zj in equation 11.7. Note that during incremental session i the positive set Pi

j

in the standard SCL contains all zk ∈ Di
joint such that the label yk is equal to anchor label yj,

e.g. in figure 11.3, all yellow circles belong to the positive set for yellow anchor zj. And the
negative set consists of remaining samples Ni

j = Di
joint \ Pi

j , in figure 11.3, the negative set is
composed of all other colors.
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Figure 11.3: OrCo loss consists of three components: our proposed perturbed supervised
contrastive loss (PSCL), cross-entropy loss (CE), and orthogonality loss (ORTH). zj denotes the
real data anchor point for a contrastive loss, z̄j denotes the proposed unassigned pseudo-target
anchor, and tj denotes an additional positive sample for yellow class in the form of an assigned
pseudo-target.

To adapt standard SCL to PSCL, we expand the definition of the positive set. The anchor
zj, with its assigned pseudo-target tj ∈ T, becomes an additional positive pair, see figure 11.3.
Furthermore, considering the previously defined pseudo-target perturbations, we incorporate
them into the positive set, resulting in P̃i

j = Pi
j
⋃

tj
⋃

t̃j. In figure 11.3, the positive set for yellow
anchor zj contains all yellow circles and additionally the pseudo-target tj with its perturbations.
This extension of the positive set introduces additional pushing forces for incremental classes
and, therefore, enables the maximization of margins between classes. We show that this
approach proves to be especially advantageous in scenarios with limited samples, as it mimics
augmentations in the feature space.

On the other hand, we expand the anchor definition. In standard SCL, each anchor zj

belongs to the set of real training data Di
joint, e.g. in figure 11.3, anchors for standard SCL

are only circles. However, we propose to use anchors from both real data and unassigned
pseudo-targets (circles and unassigned stars in figure 11.3), specifically zj ∈ Di

joint and z̄j ∈ Ti
u.

The positive set for the anchor z̄j ∈ Ti
u (unassigned pseudo-target) contains only corresponding

perturbed pseudo-targets P̃i
j = {t̃j} (dashed stars around z̄j in figure 11.3), while the negative

set Ñi
j = {Di

joint
⋃

T̃i
u} \ {t̃j} includes all real data and other perturbed pseudo-targets. This

approach ensures that each unassigned pseudo-target pushes all other classes away, thereby
promoting space preservation for the following incremental sessions.

To complement PSCL, we employ cross-entropy loss for sample zj that pulls class features
to their assigned targets during the few-shot incremental session i:

LCE(zj) = − ∑
c∈{CI}i

1

yclog
exp(zjtT

c )

∑k∈{CI}i
1

exp(zktT
c )

. (11.9)
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Finally, the orthogonality loss as defined in equation 11.1 applies a geometric constraint to
class features such as to mimic the ideal target orthogonality. Our OrCo loss is a combination
of the three losses introduced above:

LOrCo = LPSCL + LCE + LORTH. (11.10)

To test our representation space, we assign a label based on the nearest assigned pseudo-target.

11.3 Experiments

In section 11.3.1, dataset and evaluation protocol are introduced. Then we compare with
state-of-the-art methods on 3 popular benchmarks in section 11.3.2. Finally, we validate the
effectiveness of each of the components in section 11.3.3.

11.3.1 Datasets and Evaluation

We conduct evaluation of our OrCo framework on three FSCIL benchmark datasets: mini-
ImageNet [RDS+15], CIFAR100 [KH09] and CUB200 [WBW+

11]. In the setting formalised by
[THC+

20] mini-ImageNet and CIFAR100 are organized into 60 base classes and 40 incremental
classes structured in a 5-way, 5-shot FSCIL scenario for a total of 8 sessions. CUB200, a dataset
for fine-grained bird species classification, contains equal number of base and incremental
classes for a total of 200 classes. The dataset is organised as a 10-way, 5-shot FSCIL task and
presents a rigorous challenge.

Performance measure Commonly used FSCIL datasets all have a quantity bias towards the
base classes. mini-ImageNet and CIFAR100 have both 60% of the data in the base classes
and CUB200 with 50%. Consequently, standard accuracy measures like Top-1 accuracy will
be skewed in favour of the base-classes. For instance, a method which has a base accuracy
Abase = 100% on CUB200 and performs weakly on the first incremental session A1

inc = 10%
would produce a Top-1 average accuracy A1

cls = 91.82%. At first glance, this accuracy may
not entirely represent inherent biases in a method, though such measures are commonly used
to benchmark performance. To tackle this, harmonic mean has risen as a robust evaluation
measure in FSCIL [KKS21a, ZWY+

22, ZLX+
23]. In the given scenario, the harmonic mean

would penalise the method aggressively resulting in a metric score of A1
hm = 18.18%, accurately

indicating bias. More concretely, we compute harmonic mean by combining base class accuracy
and incremental session accuracy: Aj

hm = (2 × Abase × Aj
inc)/(Abase + Aj

inc). In addition to this,
we propose average harmonic mean (aHM) which is simply averaging the harmonic mean
scores from all sessions for a consolidated view.

Implementation Details Our model is optimised using LARS [YGG17] for the pretraining phase
and SGD with momentum for phase 2 and 3. For CUB200 dataset, we skip the pretraining
following [YYL+

23, ZSL+
21, THC+

20] and initialize the model with ImageNet pretrained
weights. For the second and third phase, we finetune only the projection head. For the PSCL
loss we choose a perturbation magnitude λ = 1e-2. We train the projection head for 10 epochs
during the second phase and 100 epochs for the third phase. Cosine scheduling is employed
with a maximum learning rate set to 0.1. Augmentations include, random crop, random
horizontal flip, random grayscale and a random application of color jitter.
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Method Base Acc
Session-wise Harmonic Mean (%) ↑

aHM ∆aHM
1 2 3 4 5 6 7 8

IW [QBL18] 83.10 49.49 45.09 45.98 46.30 44.67 42.48 43.26 45.65 45.36 +12.76

FACT [ZWY+
22] 75.78 27.20 27.84 27.94 25.17 22.46 20.54 20.88 21.25 24.16 +33.96

CEC [ZSL+
21] 72.17 31.91 31.84 30.98 30.74 28.14 26.78 26.96 27.42 29.35 +28.78

C-FSCIL [her] 76.60 9.74 20.53 28.68 31.91 34.85 35.05 37.72 37.92 29.55 +28.57

LIMIT [ZYM+
22] 73.27 40.34 33.58 31.81 31.74 29.32 29.11 29.57 30.28 31.97 +26.15

LCwoF [KKS21a] 64.45 41.24 38.96 39.08 38.67 36.75 35.47 34.71 35.02 37.49 +20.63

BiDist [ZLX+
23] 74.67 42.42 43.86 43.87 40.34 38.97 38.01 36.85 38.47 40.35 +17.77

NC-FSCIL [YYL+
23] 84.37 62.34 61.04 55.93 53.13 49.68 47.08 46.22 45.57 52.62 +5.50

OrCo 83.30 68.71 63.87 60.94 57.98 55.27 52.41 52.68 53.12 58.12

Table 11.1: Sota comparison on mini-ImageNet. aHM denotes the average of the harmonic
mean across all sessions. IW [QBL18] is evaluated based on the model learning in our pretrain
phase. A detailed breakdown of the results into base and individual incremental sessions is in
the supplement.

PSCL CE ORTH
Session-wise Harmonic Mean (%) ↑

aHM
1 2 3 4 5 6 7 8

✓ 65.46 56.29 44.12 36.96 26.90 21.11 18.90 16.19 35.74

✓ ✓ 65.30 56.21 43.96 37.30 28.31 22.01 19.66 16.64 36.17

✓ 50.70 45.42 42.68 39.84 38.71 37.94 36.26 35.87 40.93

✓ ✓ 52.34 47.24 43.79 41.62 41.15 39.68 38.69 37.34 42.73

✓ ✓ 68.04 63.94 60.22 58.00 55.44 51.51 51.88 52.74 57.72

✓ ✓ ✓ 68.71 63.87 60.94 57.98 55.27 52.41 52.68 53.12 58.12

Table 11.2: Influence of UniCon loss components. PSCL denotes perturbed supervised
contrastive loss, CE denotes cross-entropy, ORTH denotes orthogonality loss. See figure 11.3
for visualization of each component. Ablation study on mini-ImageNet.

Sampling aHM

Rand 57.23

Orth 58.12

Table 11.3: Importance of explicit orthogonality loss for pseudo-target generation. Rand
denotes random sampling from normal distribution.
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Figure 11.4: Sota comparisons on CIFAR100 and CUB200 datasets. Performance curves, that
measure harmonic mean, of our method comparing to recent sota methods. Left: CIFAR100.
Right: CUB200. ∆aHM denotes the average harmonic mean improvement over the runner-up
method.

11.3.2 Comparison to state-of-the-art

In this section, we conduct a comparative analysis of our proposed OrCo with recent state-
of-the-art approaches. Table 11.1 presents the results obtained on the mini-ImageNet dataset,
while figure 11.4 illustrates the evaluation results on the CUB200 and CIFAR100 datasets. Our
method demonstrates superior performance across all three datasets, surpassing previous
state-of-the-art methods by a significant margin, particularly achieving improvements of 9.4%
and 5.5% on CIFAR100 and mini-ImageNet, respectively. Notably, the effectiveness of OrCo is
consistently evident across all incremental sessions.

In addition to reporting results for the standard FSCIL methods, we also present the
performance of the Imprinted Weights method (IW) [QBL18] based on our model pretrained
during Phase 1. The robust performance of this method indicates the efficacy of our pretraining
strategy in facilitating effective transferability to downstream tasks, such as incremental few-
shot learning sessions, thereby addressing the intransigence problem.

11.3.3 Analysis

To validate the effectiveness of each component of our framework, in this section, we show an
analysis based on the mini-ImageNet dataset.
OrCo loss. We assess the efficacy of the components comprising our OrCo loss in table 11.2.
The OrCo loss consists of three integral components illustrated in figure 11.3: the cross-entropy
loss (CE), the orthogonality loss (Orth), and the perturbed supervised contrastive loss (PSCL).
We observe that CE struggles to generalize on underrepresented incremental classes. On
the contrary, PSCL enhances the robust SCL approach with pseudo target perturbations and
provides better class separation. PSCL, on its own, shows steady generalization, with only a
14.83% drop in harmonic mean. CE, however, while starting strong, ultimately becomes biased
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Figure 11.5: Measurement of angle during orthogonality optimization. The green curve
corresponds to the evolution of the average angle between all pairs during the optimization.
The gray curve shows measurements of random pairs at each epoch.

towards base classes, leading to a significant 49.26% drop in harmonic mean. By integrating
the dynamic yet fundamentally discerning features of CE with the stability offered by PSCL,
a significant enhancement in harmonic mean is achieved. Moreover, the orthogonality loss
(ORTH) plays a crucial role in consistently improving performance (+0.4%). Its integration into
our loss formulation further underscores the significance of orthogonality.
Influence of mutually orthogonal pseudo-targets. We note that independent randomly
sampled vectors from a Gaussian distribution N (0, 1) are theoretically orthogonal on the
surface of a unit sphere. However, in practice, we observe only a near-orthogonal behavior,
as illustrated in our training curve for orthogonal pseudo-target generation in figure 11.5.
To examine the impact of a perfectly orthogonal target space, we assess our method using
both randomly sampled targets from a Gaussian distribution and our generated orthogonal
targets, as presented in table 11.3. We observe a 0.89% improvement in performance when
explicit orthogonality constraints are applied. This finding suggests that an aligned and
orthogonal feature space is more effective in addressing data imbalances between base and
incremental sessions. Consequently, we incorporate orthogonality as a fundamental principle
in our framework, recognizing its significant role in enhancing the overall effectiveness of our
model.
Pseudo-targets perturbations. OrCo relies on perturbations of fixed pseudo-targets to
introduce a margin between previously encountered and incoming classes. We compare OrCo
against a variant where the contrastive loss does not receive any pseudo-targets’ perturbations
(w/o). In contrast to this, our perturbation schemes with sampling λ, as in equation 11.8, from
Gaussian (N ) and uniform (U ) distributions consistently enhance the final session harmonic
mean (HM8) by over 30%, as shown in table 11.4.

For a detailed evaluation of our method, we employ false positive and cosine similarity
analyses. By measuring the false positive rate within only incremental classes (FPinc), we
observe improved separation between the few-shot classes with the perturbed objective.

Subsequently, we calculate the average inter-class cosine similarity (Simcls) for all base and
few-shot incremental classes, providing an indication of the spread of each class on the unit
sphere. A lower value suggests more compact representations. Notably, we observe values at
least 10 times lower for the training with perturbations. Lastly, we assess the availability of space
around unassigned pseudo-targets (Simcls→target) by computing the average similarity of all
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Perturbation FPinc ↓ Simcls ↓ Simcls→target ↓ HM8 ↑
w/o 66.5 0.105 0.013 20.14

N 54.6 0.002 0.006 50.23

U 52.5 0.011 0.006 53.12

Table 11.4: Influence of perturbations in PSCL. Comparison of our PSCL loss with or without
perturbations of pseudo-targets. N , U denotes Gaussian and Uniform distributions, respec-
tively, from which λ, as in equation 11.8, sampled during training. FPinc refers to the False
Positive rate among all incremental classes. Simcls computes the average pairwise cosine
similarity between all class pairs. Simcls→target indicates the pairwise cosine similarity between
classes and unassigned target pairs over all sessions. HM8 refers to the 8-th and final session
harmonic mean.

Pretrain Strategy Phase 1:Accuracy aHM

CE 85.70 55.20

SCL 85.18 57.38

SCL + SSCL (Ours) 85.95 58.12

Table 11.5: Influence of pretraining. aHM denotes average harmonic mean. CE is cross-entropy,
SCL is supervised countrastive loss, and SSCL is self-supervised contrastive loss.

data features with respect to all unassigned targets. A higher average similarity corresponds to
smaller margins between the features and the unassigned pseudo-targets. Table 11.4 illustrates
that perturbations indeed increase the margin around unassigned pseudo-targets.
Influence of pretraining. To evaluate our pretraining strategy, we compare it against
cross entropy (CE) and standard supervised contrastive loss (SCL) [KTW+

20]. As shown
in table 11.5, the addition of self-supervised contrastive loss (SCL+SSCL) to the pretraining
session significantly enhances generalization on unseen data, showcasing improved transfer
capabilities, which aligns with previous findings [CFN+

22, ICP+
21]. Additionally, we present

the accuracy on the validation set for the base classes D0 immediately after the pretrain phase
for each strategy.

While all strategies exhibit close to 85% accuracy on the base validation set, our approach
yields a 0.74% higher average harmonic mean compared to SCL and a notable 2.92% im-
provement over CE. The significance of this lies in the fact that our frozen backbone network,
maintained during incremental sessions, is capable of producing strong and unique features
even for unseen classes.
Frozen parameters. Table 11.6 illustrates how OrCo effectively addresses catastrophic forgetting
by adopting a strategy of freezing the backbone and training only the projection head. The
observed overall performance decay, along with a 2.7% greater loss of base accuracy across all
sessions, demonstrates favorable outcomes for decoupling the learning process after Phase 1.
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Fine-tuned params Performance Decay ↓ Base Decay ↓
f , g 28.94 20.52

g 26.99 17.83

Table 11.6: Influence of frozen paramters. Analysing of catastrophic forgetting when 1) fine-
tuning the entire model ( f + g) and 2) fine-tuning only the projection head (g).

11.4 Conclusion

This chapter introduce the OrCo method to boost the performance of FSCIL by addressing its
inherent challenges: catastrophic forgetting, overfitting, and intransigence. The OrCo frame-
work is a novel approach that tackles these issues by leveraging features’ mutual orthogonality
on the representation hypersphere and contrastive learning. By combining supervised and
self-supervised contrastive learning during pretraining, the model captures diverse semantic
information crucial for novel classes with limited data, implicitly addressing the intransigence
challenge. Employing the proposed OrCo loss during subsequent incremental sessions ensures
alignment with the generated fixed pseudo-targets, maximizing margins between classes and
preserving space for incremental data. This comprehensive approach not only enhances fea-
ture space generalization but also mitigates overfitting and catastrophic forgetting, marking
steps toward improving the practical value of incremental learning methods in real-world
applications.

Our analysis demonstrates that our method surpasses previously developed methods.
However, addressing the bias resulting from the disproportionate availability of data for
pretraining and subsequent tasks remains a challenging task that calls for further exploration
in future research.



IV
L e a r n i n g B e y o n d S u p e r v i s i o n

While traditional methods often assume a closed-world scenario,
in many real-world applications, the environment is dynamic and
constantly changing, presenting new classes, concepts, or data
distributions over time. Therefore, in this section, our emphasis
shifts towards learning beyond the boundaries of the closed-set data
provided during training.

In Chapter 12, we explore a realistic open-set semi-supervised
scenario where the objective is twofold: accurately classify closed-set
classes and detect outliers that fall outside these classes. Our analysis
reveals that classification and detection pose conflicting challenges,
hindering the learning of each task. Consequently, we propose
decoupling these tasks using linear layers, enabling us to leverage
unlabeled data without compromising performance.

In Chapter 13, we further explore the open-world scenario
with the assistance of pretrained vision-language models. Specifically,
we tackle the challenges of egocentric action recognition and
emphasize the difficulty in generalizing due to the lack of pretraining
web data for this domain. Therefore, we propose a simple yet
effective adaptation method for foundational models to transition to
new domains.
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In this chapter, we discuss open-set setting that refers to the setting when recognition of
unseen classes is required at the time of evaluation in combination with semi-supervised
learning that effectively leverages unlabeled data to improve model generalization. More-

over, we tackle the problem when unlabeled data contain outliers from the novel categories
that do not appear in the labeled set that is more challenging scenario than standard open-set
setting. this chapter, we explore the open-set setting, where recognizing unseen classes during
evaluation is necessary, together with semi-supervised learning methods that effectively utilize
unlabeled data to enhance model generalization. Furthermore, we address the challenge of
outliers from novel categories present in the unlabeled data, which presents a more complex
scenario than the standard open-set setting. However, SSL models often underperform in such
open-set scenarios due to closed-set classifiers. In this chapter, we study the challenging and
realistic open-set SSL setting, where the goal is to both correctly classify inliers and to detect
outliers. Intuitively, the inlier classifier should be trained on inlier data only. However, we find
that inlier classification performance can be largely improved by incorporating high-confidence
pseudo-labeled data, regardless of whether they are inliers or outliers. Also, we propose to
utilize non-linear transformations to separate the features used for inlier classification and
outlier detection in the multi-task learning framework, preventing adverse effects between them.
Additionally, we introduce pseudo-negative mining, which further boosts outlier detection
performance. The three ingredients lead to what we call Simple but Strong Baseline (SSB)
for open-set SSL. In experiments, SSB greatly improves both inlier classification and outlier
detection performance, outperforming existing methods by a large margin.

This chapter is based on [FKDS23b]. As a second author, Anna Kukleva contributed to
the project in the scientific discussions, writing of the paper and creating the figures.
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Figure 12.1: Open-set semi-supervised learning considers a realistic and challenging setting,
where unlabeled data contains samples from novel classes (seen outliers) that do not appear in
the labeled data. At test time, the model should correctly classify inliers, while identifying
outliers seen during the training and, most importantly, unseen outliers that do not appear in
the training set. We measure test accuracy for the inlier classification performance and AUROC
for the outlier detection performance. Our method (SSB) achieves superior performance in
both tasks.

12.1 Introduction

Semi-supervised learning (SSL) has achieved great success in improving model performance by
leveraging unlabeled data [Lee13, LA17, TV17, MMKI18, BCG+

19, BCC+
20, SBL+

20, XDH+
20,

FKS21, ZWH+
21, WCF+

22]. However, standard SSL assumes that the unlabeled samples come
from the same set of categories as the labeled samples, which makes them struggle in open-set
settings [OOR+

18], where unlabeled data contain out-of-distribution (OOD) samples from
novel classes that do not appear in the labeled set (see Fig. 12.1). In this chapter, we study this
more realistic setting called open-set semi-supervised learning, where the goal is to learn both a
good closed-set classifier to classify inliers and to detect outliers as shown in Fig. 12.1.

Recent works on open-set SSL [HFC+
21, CZLG20, SKS21, YIIA20, GZJ+20, HHLY22,

HHYY22, HYG22] have achieved strong performance [WBH19, MR, HA04, AY01] through
a multi-task learning framework, which consists of an inlier classifier, an outlier detector, and a
shared feature encoder, as shown in Figure 12.2. The outlier detector is trained to filter out
OOD data from the unlabeled data so that the classifier is only trained on inliers. However,
this framework has two major drawbacks. First, detector-based filtering often removes many
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inliers along with OOD data, leading to suboptimal classification performance due to the low
utilization ratio of unlabeled data. Second, the inlier classifier which shares the same feature
encoder with the outlier detector can have an adverse effect on the detection performance as
shown in Table 12.1.

To this end, we contribute a Simple but Strong Baseline, SSB, for open-set SSL with three
ingredients to address the above issues. (1) In contrast to detector-based filtering aiming
to remove OOD data, we propose to incorporate pseudo-labels with high inlier classifier
confidence into the training, irrespective of whether a sample is an inlier or OOD. This not only
effectively improves the unlabeled data utilization ratio but also includes many useful OOD
data that can be seen as natural data augmentations of inliers (see Fig. 12.5). (2) Instead of
directly sharing features between the classifier and detector, we add non-linear transformations
for the task-specific heads and find that this effectively reduces mutual interference between
them, resulting in more specialized features and improved performance for both tasks. (3) In
addition, we propose pseudo-negative mining to further improve outlier detector training by
enhancing the data diversity of OOD data with pseudo-outliers. Despite its simplicity, SSB
achieves significant improvements in both inlier classification and OOD detection. As shown in
Fig. 12.1, existing methods either struggle in detecting outliers or have difficulties with inlier
classification while SSB obtains good performance for both tasks.

12.2 Related Work

In this section, we discuss prior work on the open-set semi-supervised learning. We will not
revisit the topic of semi-supervised learning and open-set learning as previously discussed in
Chapter 2.

First shown by [OOR+
18], standard SSL methods suffer from performance degradation

when there are out-of-distribution (OOD) samples in unlabeled data. Since then, various
approaches have been proposed to address this challenge [CZLG20, GZJ+20, YIIA20, SKS21,
HFC+

21, PYJS22, HHLY22, HHYY22, HYG22]. Existing methods seek to alleviate the effect of
OOD data by filtering them out in different ways so that the classification model is trained
with inliers only. For example, [CZLG20] uses model ensemble [Sch90] to compute soft
pseudo-labels and performs filtering with a confidence threshold; [GZJ+20] proposes a bi-level
optimization to weaken the loss weights for OOD data; [YIIA20] assigns an OOD score to each
unlabeled data and refines it during the training; [SKS21] leverages one-vs-all (OVA) classifiers
[SS21] for OOD detection and propose a consistency loss to train them; [HFC+

21] proposes
a cross-modal matching module to detector outliers. [HYG22] employs adversarial domain
adaptation to filter unlabeled data and find recyclable OOD data to improve the performance;
[HHLY22] uses energy-discrepancy to identify inliers and outliers. In contrast, we show that if
the representations of the inlier classifier and the outlier detector are well-separated, OOD data
turns out to be a powerful source to improve the inlier classification without degrading the
detection performance. So, instead of filtering OOD data, we use a simple confidence-based
pseudo-labeling to incorporate them into the training.

12.3 Method

In this section, we first present the problem setup of open-set semi-supervised learning (SSL).
Then, we give an overview of our method SSB in Section 12.3 before presenting details of the
three simple yet effective ingredients used in our method in Section 12.3.2, 12.3.3, and 12.3.4.
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Figure 12.2: Left: Our baseline for open-set SSL consists of an inlier classifier gc, an outlier detec-
tor gd, and a shared feature encoder f whose features are separated from the task-specific heads
by two projection heads hc and hd. Unlike the detector-based filtering, we adopt confidence-
based pseudo-labeling by the inlier classifier to leverage useful OOD data for classifier training.
For detector training, we train one-vs-all (OVA) classifiers as in OpenMatch [SKS21]. Right:
Given the inlier scores (s1 to s4), pseudo-negative mining selects confident negatives (s2 and s3
in the figure), whose inlier scores are lower than a pre-defined threshold, as pseudo-outliers to
help the outlier detector training.

Problem setup and notations: As shown in Fig. 12.1, open-set SSL generalizes the settings of
standard SSL and out-of-distribution (OOD) detection. It considers three disjoint sets of classes:
C corresponds to the inlier classes that are partially annotated, US contains the outlier classes
seen during training but without annotations, and lastly, UU is composed of the classes that are
not seen during training (only seen at test time). The training data contains a small labeled set
Dlabeled = {(xl

i , yi)}N
i=1 ⊂ X ×C and a large unlabeled set Dunlabeled = {(xu

i )}M
i=1 ⊂ X , where X

is the input space. While the labeled set only consists of samples of inlier classes, the unlabeled
set contains both samples from C and US . Thus, the the ground-truth label of xu is from C ∪ US
with C ∩ US = ∅.

The goal of open-set SSL is to train a model that can perform good inlier classification
as well as detecting both seen and unseen outliers. Without loss of generality, consider a
test set Dtest = {(xi, yi)}N

i=1 ⊂ X × (C ∪ US ∪ UU ), where C ∩ UU = ∅ and US ∩ UU = ∅. The
learned model should be able to correctly classify inliers {(xi|yi ∈ C)} and detect outliers from
{(xi|yi ∈ US )} as well as {(xi|yi ∈ UU )}, which is crucial for practical applications.

12.3.1 Method Overview

Following [HFC+
21, CZLG20, SKS21, YIIA20, GZJ+20, HHLY22, HHYY22, HYG22], we adopt

a multi-task learning framework for open-set SSL, which performs inlier classification and
outlier detection. As shown in Fig. 12.2, SSB comprises four components: (1) An inlier classifier
gc, (2) an outlier detector gd, (3) a shared feature encoder f , and (4) importantly, two projection
heads hc and hd. Inspired by [SKS21], the outlier detector gd consists of |C| one-vs-all (OVA)
binary classifiers, each of which is trained to distinguish inliers from outliers for each single
class. Given a batch of labeled data Xl = {(xl

i , yi)}Bl
i=1 and unlabeled data Xu = {(xu

i )}
Bu
i=1, the

total loss for training the model is:

Ltotal = Lcls(Xl , Xu; f , hc, gc) + Ldet(Xl , Xu; f , hd, gd) (12.1)
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where Lcls and Ldet are the classification and detection losses, respectively. For the sake of
brevity, we will drop the dependencies of the loss function on f , hc, gc, hd, and gd in the
following. The complete algorithm of SSB is summarized by Alg. 1 in Appendix D.

During inference, the test image is first fed to the inlier classifier to compute the class
prediction. Then, the corresponding detector is used to decide whether it is an inlier of the
predicted class or an outlier. We explain the details of SSB in the following three sections.

12.3.2 Boosting Inlier Classification with Classifier Pseudo-Labeling

Existing methods for open-set SSL [HFC+
21, CZLG20, SKS21, YIIA20, GZJ+20] aim to eliminate

OOD data from the classifier training. This is typically accomplished by training outlier
detectors that can filter out OOD data from unlabeled data, as shown in Fig. 12.2. However, as
we will see in Table 12.3, detector-based filtering often removes many inliers along with OOD
data, which leads to a low utilization ratio of unlabeled data and hinders inlier classification
performance.

In this work, instead of using detector-based filtering, we propose to incorporate unlabeled
data with confident pseudo-labels (as generated by the inlier classifier) into the training, irre-
spective of whether it is inlier or OOD data. This not only effectively improves the unlabeled data
utilization ratio but also includes many useful OOD data as natural data augmentations of
inliers into the training (see Fig. 12.5). Inspired by [SBL+

20], we train the model with pseudo-
labels from the inlier classifier whose confidence scores are above a pre-defined threshold.
Specifically, for each unlabeled sample xu

i , we first predict the pseudo-label distribution as
p̂u

i = softmax(hc(gc( f (xu
i ))). Then, the confidence score of the pseudo-label is computed as

max p̂u
i . Finally, the cross-entropy loss is calculated for samples whose pseudo-labels have

confidence scores greater than a pre-defined threshold τ as:

Lu
cls(X

u) =
1

Bu

Bu

∑
i=1
1(max p̂u

i ≥ τ)H( p̂u
i , ŷu

i ) (12.2)

where H(·, ·) denotes the cross-entropy, ŷu
i = argmaxp̂u

i , and 1(·) is the indicator function
which outputs 1 when the confidence score is above the threshold τ.

The total classification loss is computed as the summation of a labeled data loss and the
unlabeled data loss as:

Lcls(Xl , Xu) = Ll
cls(X

l) + Lu
cls(X

u) (12.3)

where Ll
cls is a standard cross-entropy loss for labeled data.

Despite its simplicity, we obtain a substantial performance improvement in inlier classifica-
tion through classifier confidence-based pseudo-labeling as shown in Table 12.1. Our method
is conceptually different from previous methods as we aim to leverage OOD data rather than
remove them. On the one hand, our method effectively improves the unlabeled data utilization
ratio as shown in Table 12.3, which leads to great inlier classification performance improvement.
On the other hand, our method provides an effective way of leveraging useful OOD data for
classifier training. In fact, many OOD data are natural data augmentations of inliers and are
beneficial for classification performance if used carefully. As shown in Fig. 12.5, the selected
OOD data present large visual similarities with samples of inlier classes, and, thus, significantly
enhance the data diversity, leading to improved generalization performance.
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12.3.3 Non-Linear Feature Boosting

In previous methods, simply including OOD samples into the classifier training harms de-
tection performance since the inlier classifier and the outlier detector use the same feature
representation [SKS21, YIIA20, HFC+

21]. On the one hand, the classifier uses OOD data as
pseudo-inliers, thus mixing their representations in the feature space. On the other hand,
the outlier detector is trained to distinguish inliers and outliers, which leads to separated
representations in the feature space. As a result, the contradiction between the classifier and the
outlier detector ultimately adversely affects each other, which limits the overall performance,
as shown in Table 12.1.

In this work, we find empirically that simply adding non-linear transformations between
the task-specific heads and the shared feature encoder can effectively mitigate the adverse
effect. Given a sample xi, two multi-layer perceptron (MLP) projection heads hc and hd are used
to transform the features from the encoder. The output of the network is thus hc(gc( f (xi))) for
the classifier and hd(gd( f (xi))) for the outlier detector. Compared to the previous methods,
the non-linear transformations effectively prevent mutual interference between the classifier
and detector, resulting in more specialized features and improved performance in both tasks.
In Table 12.1, while the OOD detection performance degenerates when adding OOD data for
classifier training for the model without the projection heads, SSB, in contrast, still exhibits
excellent performance in detecting outliers with the help of the projection heads. Moreover, the
efficacy of the non-linear projection head also generalizes to other frameworks. We show in the
experiment section that it is compatible with various SSL backbones and open-set SSL methods
and leads to performance improvement.

12.3.4 Outlier Detection with Pseudo-Negative Mining

In this section, we first describe the outlier detector used in SSB and then introduce a simple
yet effective technique called pseudo-negative mining to improve the outlier detector training.

Following [SKS21], we adopt |C| one-vs-all (OVA) binary classifiers for OOD detection,
where each OVA classifier is trained to distinguish between inliers and outliers for each
individual inlier class. Given a labeled sample xl

i from class yi, it is regarded as an inlier for
class yi and an outlier for class k, k ̸= yi. Therefore, the OVA classifiers can be trained using
binary cross-entropy loss on the positive-negative pairs constructed from the labeled set as:

Ll
det(X

l) = − 1
Bl

Bl

∑
i=1

log(pyi(x
l
i)) +

1
K ∑

k ̸=yi

log(1 − pk(xl
i)) (12.4)

where pk(xl
i) is the inlier score of xl

i for class k computed by the k-th detector and K = |C| − 1.
However, due to data scarcity, it is difficult to learn good representations for outliers with

labeled data only. To this end, we propose pseudo-negative mining to further improve the
outlier detector training by leveraging confident negatives as pseudo-outliers to enhance the
data diversity of OOD data. As shown in Fig. 12.2, given an unlabeled sample xu

i , we consider it
as a pseudo-outlier for class k if the inlier score for class k is lower than a pre-defined threshold.
Then, xu

i is used as a negative sample to calculate the cross-entropy loss of class k. The final
loss for xu

i is the summation over all classes using it as the negative sample:

Lu
det(x

u
i ) = − 1

∑k 1(pk < θ)

|C|

∑
k=1

1(pk < θ)log(1 − pk(xu
i )) (12.5)
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where pk is the inlier score from the k-th detector and 1(·) is the indicator function which
outputs 1 when the confidence score is less than the threshold θ. This increases the data diversity
of outliers and improves generalization performance as shown in Table 12.5. Compared to
standard pseudo-labels, pseudo-outliers have much higher precision because we specify which
classes the sample does not belong to rather than which class it belongs to. The latter is a
more difficult task than the former. Therefore, pseudo-negative mining is less susceptible to
inaccurate predictions while increasing data utilization.

Our final loss for detector training also includes Open-set Consistency (OC) loss [SKS21]
and entropy minimization (EM) [GB05] because they can lead to further improvement. The
overall loss for training the detector is as follows:

Ldet(Xl , Xu) = Ll
det(X

l) + λu
detL

u
det(X

u) + λu
OCLu

OC(X
u) + λu

emLu
em(X

u) (12.6)

where λu
det, λu

OC, and λu
em are loss weights; Lu

OC is the soft open-set consistency regularization
loss, which enhances the smoothness of the OVA classifier with respect to input transformations;
Lu

em is the entropy minimization loss, which encourages more confident predictions.

12.4 Experiments

In this section, we first compare SSB with existing methods in Section 12.4.1, and then provide
an ablation study and further analysis in Section 12.4.2.
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Figure 12.3: Classification and detection performance on CIFAR-10 and CIFAR-100 with
varying numbers of inlier classes and labeled data. We measure test accuracy for the inliers
classification performance and AUROC for the outlier detection performance. While standard
SSL methods suffer in outlier detection and open-set SSL methods suffer in inlier classification,
SSB achieves good performance in both tasks. Noted that the reported outlier detection
performance is the average AUROC in detecting both seen and unseen outliers. Please see Appendix
A for a detailed breakdown of the results in tables and results on more benchmarks.
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Figure 12.4: Classification performance versus the outlier detection performance on
ImageNet-30. SSB achieves good performance in both inlier classification and OOD de-
tection. Please see Appendix A for a detailed breakdown of the results in tables.

12.4.1 Main Results

Datasets & Evaluation. As mentioned in Section 13.3, the goal of open-set SSL is to train
a good inlier classifier as well as an outlier detector that can identify both seen and unseen
outliers. Therefore, we need to construct three class spaces: inlier classes C, seen outlier classes
US , and unseen outlier classes UU . For each setting: the labeled set contains samples from C
only; the unlabeled set contains samples from C and US ; the test set contains samples from
C, US , and UU . The inlier classification performance is evaluated on C using test accuracy as
in standard supervised learning. The OOD detection performance is measured by AUROC
following [SKS21] and we report the average performance in detecting seen outliers and
unseen outliers (see Appendix A for separate AUROC on seen outliers and unseen outliers).

Following [SKS21], we evaluate SSB on CIFAR-10 [KH09], CIFAR-100 [KH09], and ImageNet
[DDS+09] with different numbers of labeled data. For CIFAR-10, the 6 animal classes are used
as inlier classes, and the rest 4 are used as seen outlier classes during the training. Additionally,
test sets from SVHN [NWC+

11], CIFAR-100, LSUN [YSZ+
15], and ImageNet are considered as

unseen outliers, and used to evaluate the detection performance on unseen outliers. For CIFAR-
100, the inlier-outlier split is performed on super classes, and two settings are considered: 80

inlier classes (20 outlier classes) and 55 inlier classes (45 outlier classes). Similar to CIFAR-10,
test sets from SVHN, CIFAR-10, LSUN, and ImageNet are used to evaluate the detection
performance on unseen outliers. For ImageNet, we follow [SKS21] to use ImageNet-30[HG16],
which is a subset of ImageNet containing 30 distinctive classes. The first 20 classes are used as
inlier classes while the rest 10 are used as outlier classes. Stanford Dogs [KJYFF11], CUB-200

[CZSL20], Flowers102 [NZ08], Caltech-256 [GHP07], Describable Textures Dataset [cim], LSUN
are used as unseen outlier classes at test time.
Implementation details. We use Wide ResNet-28-2 [ZK16] as the backbone for CIFAR experi-
ments and ResNet-18 [HZRS16] for ImageNet experiments. As standard SSL models do not
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have the notion of OOD detection, we adopt the method in [HG16], where the OOD score of
an input image x is computed as 1 − max softmax( f (x)) and f denotes the model. Thus, the
input image is considered as an outlier if the OOD score is higher than a pre-defined threshold.
For other open-set SSL methods, we directly employ the authors’ implementations and follow
their default hyper-parameters.

For SSB, we use two two-layer MLPs with ReLU [NH10] non-linearity to separate represen-
tations for all settings. The hidden dimension is 1024 for CIFAR settings and 4096 for ImageNet
settings. For classifier training, we follow [SBL+

20] and set the threshold τ as 0.95. For outlier
detector training, we set λu

det as 1 for all settings and follow [SKS21] for the weights of OC loss
and entropy minimization. The threshold θ is 0.01 for all experiments (see ablation in Appendix
C). Following [SKS21], we train our model for 512 epochs with SGD [KW52] optimizer. The
learning rate is set as 0.03 with a cosine decay. The batch size is 64. Additionally, we defer the
training of the outlier detector until epoch 475 to reduce the computational cost as we find
empirically the deferred training does not comprise the model performance. The ablation on
the deferred training is in Appendix C.

When combined with standard SSL methods (e.g. SSB + FlexMatch), we replace the classifier
training losses in Equation 1 with the corresponding losses of different methods while keeping
the outlier detector the same. When combined with open-set SSL methods (e.g. MTC + SSB),
we make three modifications. First, we separate the outlier detector branch from the classifier
branch using the proposed MLP projection head. Second, we replace the outlier detector
training losses with our loss from Equation 6. Third, we do not filter unlabeled data with the
outlier detector for classifier training.
Results. We compare SSB with both standard SSL and open-set SSL methods. Fig. 12.3
and 12.4 summarize the inlier test accuracy and outlier AUROC for CIFAR datasets and
ImageNet, respectively. Considering the goal of open-set SSL is to achieve both good inlier
classification accuracy and outlier detection, SSB greatly outperforms standard SSL methods in
outlier detection, and open-set SSL methods in inlier classification. For example, on CIFAR-10

with 25 labels, the AUROC of our best method is 11.97% higher than the best method excluding
ours. Moreover, when combined with standard SSL algorithms, our method demonstrates
consistent improvement in OOD detection, and in most cases, better test accuracy for inlier
classification. This suggests the flexibility of our method, which makes it possible to benefit
from the most advanced approaches. Note that the performance improvement of SSB can not
be simply explained by the increased number of parameters introduced in the projection heads.
Please see Fig. 12.7 for a comparison between SSB and other methods + MLP heads.

Additionally, SSB is more robust to the number of labeled data than others. We achieve
reasonable performance given a small number of labeled data while other methods fail to
generalize. For example, on CIFAR-10 with 6 inlier classes, OpenMatch has similar inlier
accuracy as ours at 50 labels. When the number of labeled data is halved, their performance
decreases to 54.88% while our method still has a test accuracy of 91.74%. Please see Appendix
B for comparisons on more benchmarks.

12.4.2 Ablation Study

In this section, we analyze the design choices of SSB and show their importance through
ablation experiments. If not specified, we use CIFAR-10 with 25 labeled data as our default
setting for ablation. The same data split is used for fair comparison.
Importance of non-linear projection heads. As mentioned in Section 13.3, we use 2-layer MLPs
to mitigate the adverse effect between the inlier classifier and outlier detector. Here we study
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the effect of the projection heads in Table 12.1. As we can see, incorporating confidence filtering
yields a significant improvement in inlier classification performance (resulting in a 12.23% to
13.18% increase). However, the OOD detection performance experiences a substantial decline
when the projection heads are missing (AUROC from 89.67% to 63.46%). This is because
the classifier tends to mix the features of inliers and outliers with the same pseudo-labels
in a shared feature space, which contradicts the goal of the outlier detector. The addition
of the projection heads not only restores the OOD detection performance but also achieves
superior results when combined with confidence filtering. Adding the projection heads in
combination with confidence filtering not only restores the OOD detection performance but
achieves even better performance, which indicates the importance of representation separation.
Note that it is important to have two independent projection heads for the inlier classifier and
outlier detector. A shared projection head does not restore the OOD detection performance as
shown in Table 12.1. Moreover, we show in Table 12.2 that both classification and detection
performance degrade when swapping the task-specific features of a pre-trained model with
the fixed encoder. In particular, when re-training the detector (just a fully-connected layer)
on top of classification features, seen AUROC drops from 89.18% to 53.99%, which suggests
our model learns more task-specific features. Therefore, the utilization of the projection heads
separates concerns between the classifier and detector, which eases the difficulties of the task
and allows them to be trained jointly without adversely affecting each other. The effect of the
depth and the width of the projection head is studied in Appendix C.

Proj.
head

Conf.
filter

Inlier Cls.
(Acc.)

Outlier Det.
(AUROC)

78.05 89.67

shared 76.75 91.92

separate 78.47 90.92

✓ 90.28 63.46

shared ✓ 90.93 63.87

separate ✓ 91.65 94.76

Table 12.1: Effect of the projection head and confidence-based pseudo-labeling for classifier
training. We use a 2-layer MLP as the projection head. All models are trained with pseudo-
negative mining on the same data split.

Improving data utilization with confidence-based pseudo-labeling. Here we study the effect
of different classifier training strategies. We compare three unlabeled data filtering methods
for classifier training: (1) det. selects pseudo-inliers with the outlier detector as in [SKS21]; (2)
det. (tuned), where we choose the selection threshold in detector-based filtering so that the
recall of actual inlier samples matches ours; (3) conf. uses unlabeled data whose confidence is
higher than a pre-defined threshold, which is our method. As shown in Table 12.3, although
det. successfully removes many OOD data, it also eliminates many inliers, resulting in a low
utilization ratio of unlabeled data (0.29% unlabeled data are used in training). In contrast, our
method includes pseudo-labels with high classifier confidence into the training, irrespective of
whether a sample is out-of-distribution, which leads to a high utilization ratio of unlabeled data
(94.22%), thus, outperforming det. with a large margin. Moreover, our method also outperforms
det (tuned) whose data selection threshold is tuned for better performance. This is because we
incorporate a significant amount of OOD data in the training process (40.16% v.s. 16.90%). In
fact, many OOD data are natural data augmentation of inliers, which can substantially improve
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Encoder

Classifier

Detector

MLP

MLP

Ours

Previous Methods

Encoder

Detector

Pseudo-Negative Mining

Confident 

negatives

Confident 

positives

Unknown
Confidence filtering

MLP

Encoder

Classifier Detector

Encoder

Classifier Detector

(a) Default (b) Swap

Nearest Neighbor
Inlier Cls.

(Acc.)
Outlier Det.
(AUROC)

default (a) 55.04 99.43
swap cls. & det. features (b) 53.70 77.89

Table 12.2: Classification and detection performance using features of different heads. We fix
the encoder and MLP heads and evaluate the classification and detection performance using
nearest neighbors on labeled set. Our model learns specialized features since swapping hc and
hd leads to inferior performance in both tasks.

closed-set classification if used carefully. When removing pseudo-labeled OOD data using an
oracle during the training. The inlier classification accuracy decreases by 3.37% on CIFAR-10

with 25 labels (from 91.65% to 88.28%), which suggests pseudo-labeled OOD data are helpful
for inlier classification. In Fig. 12.5, we visualize top-5 confident OOD samples predicted for
three inlier classes from conf. on CIFAR-100. We can see that the selected samples are related to
the inlier classes and contain the corresponding semantics despite being outliers. For example,
OOD data selected for sea are images with sea background (more examples in Appendix E).

Filter method det. det (tuned) conf. (ours)

Te
st Inlier Clf. (Acc.) 47.20 86.53 91.65

Outlier Det. (AUROC) 57.72 87.87 94.76

Tr
ai

n

Utilization ratio of:
- Unlabeled 0.29 58.09 94.22

- OOD data 0.04 16.90 40.16

Prec. of pseudo-inliers 95.17 86.53 58.30

Recall of inliers 0.47 93.86 92.14

Table 12.3: Effect of different OOD filtering methods for classifier training. We compare three
filtering methods: conf. denotes the confidence-based pseudo-labeling; det. uses the outlier
detector to select pseudo-inliers for classifier training; det. (tuned) is a tuned version of det. that
matches the recall of inliers with our method. We compare the performance as well as the data
utilization ratio, precision, and recall of the inliers from unlabeled data during training. All
models are trained with pseudo-negative mining and the projection head on the same data
split.

Effect of pseudo-negative mining. Table 12.5 shows the effect of pseudo-negative mining. We
compare our pseudo-negative mining with standard pseudo-labeling which predicts artificial
labels for unlabeled data and uses confident predictions with labeled data loss. While standard
pseudo-labeling does not help the OOD detection performance further, pseudo-negative
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Sea

Wolf

Road

Figure 12.5: OOD samples can be used as data augmentation to improve the generalization
performance. The figure shows three semantic classes from labeled data (wolf, road, and sea),
and top-5 confident OOD samples predicted for those classes. The ground-truth semantic
class of the OOD sample is on the top of each image. We can see that OOD data with high
confidence present large visual similarities to the corresponding semantic classes.

mining improves the seen AUROC by 4.73% over the model without pseudo-negative mining.
Compared to standard pseudo-labeling, pseudo-negative mining not only includes more
unlabeled data into the training, but also presents high precision for the selected pseudo-
outliers as shown in Fig. 12.6.

As mentioned in Section 12.3.4, we utilize unlabeled data with low inlier scores as pseudo-
outliers to enhance the data diversity of outlier classes. An unlabeled sample is used as a
pseudo-outlier only if its confidence score is less than a pre-defined threshold θ. Table 12.4
compares the results of different thresholds. We can see that our method achieves similar
performance as long as θ takes a relatively small value, which suggests the good robustness of
our method against this hyper-parameter. We provide more ablation on loss weight and data
augmentation in Appendix C.

Threshold θ
Inlier Cls.

(Acc.)
Outlier Det.

(seen AUROC)

0.2 91.87 92.96

0.1 92.03 93.16

0.05 91.97 94.21

0.01 91.65 94.76
0.005 91.52 94.75

0.001 91.70 94.15

Table 12.4: Effect of different thresholds θ for pseudo-negative mining. Our method shows
good robustness against a wide range of thresholds. We use CIFAR-10 with 25 labeled data
here.

Ablation on outlier detectors. Here, we compare the performance of different outlier detection
methods. Specifically, we choose three schemes from recent works, including the binary
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Pseudo-
labeling

Inlier Cls.
(Acc.)

Outlier Det.
(AUROC)

None 91.52 90.03

Standard 91.63 89.69

Pseudo-neg. 91.65 94.76

Table 12.5: Effect of pseudo-negative mining for OOD detection. All models are trained with
confidence-based pseudo-labeling and a 2-layer MLP projection head on the same data split.
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Figure 12.6: Compared to standard pseudo-labeling, pseudo-negative mining has not only
higher prediction precision, but also higher data utilization rate.

classifier from MTC [YIIA20], cross-modal matching from T2T [HFC+
21], and OVA classifiers

from OpenMatch [SKS21]. As shown in Table 12.6. While all methods show reasonable
performance, OVA classifiers exhibit the best performance in both inlier classification and OOD
detection. Hence, we use OVA classifiers as the outlier detector in our final model.

OOD Detector
Inlier Cls.

(Acc.)
Outlier Det.
(AUROC)

binary classifier [YIIA20] 70.93 76.12

cross-modal matching [HFC+
21] 69.27 75.99

OVA classifiers [SKS21] 71.00 82.62

Table 12.6: Comparison between different outlier detectors. The experiment is conducted on
CIFAR-100 with 55 inlier classes and 25 labels per class.

Compatibility with other open-set SSL methods. We evaluated the compatibility of our
method with other open-set SSL techniques in Table 12.7. Our results indicate that our method
is highly compatible, as all existing methods showed improved performance in both inlier
classification and outlier detection when combined with our approach. This demonstrates the
flexibility of our method and suggests that it can be easily integrated into existing frameworks
as a plug-and-play solution.
Equal-parameter comparison. As mentioned in Section 12.4.1, the performance improvement
of SSB can not be simply explained by the increased number of parameters introduced in the
projection heads. Here we compare SSB with other methods + MLP heads so that they have
the same number of parameters as SSB. As shown in Fig. 12.7, adding MLP heads improves
the performance of other methods, but SSB still greatly outperforms all of them, indicating
that the performance improvement of our method can not be merely explained by the increase
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Inlier Cls.
(Acc.)

Outlier Det.
(AUROC)

MTC 60.24 69.88

MTC + Ours 60.42 74.98

T2T 64.78 52.93

T2T + Ours 66.98 69.50

OpenMatch 68.53 80.00

OpenM. + Ours 71.00 82.62

Table 12.7: Integrating our method with other open-set SSL methods improves performance.
The setting is CIFAR-100 with 55 inlier classes and 25 labels per class.

of the model capacity.
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Figure 12.7: Comparison between SSB and other methods with the same model parameters.
The performance improvement of SSB can not be simply explained by the increased number of
parameters.

12.5 Conclusion

In this chapter, we study a realistic and challenging setting, open-set SSL, where unlabeled data
contains outliers from categories that do not appear in the labeled data. We first demonstrate
that classifier-confidence-based pseudo-labeling can effectively improve the unlabeled data
utilization ratio and leverage useful OOD data, which largely improves the classification
performance. We find that adding non-linear transformations between the task-specific head
and the shared features provides sufficient decoupling of the two heads, which prevents
mutual interference and improves performance in both tasks. Additionally, we propose
pseudo-negative mining to improve OOD detection. It uses pseudo-outliers to enhance the
representation learning of OOD data, which further improves the model’s ability to distinguish
between inliers and OOD samples. Overall, we achieve state-of-the-art performance on several
benchmark datasets, demonstrating the effectiveness of the proposed method.

Nonetheless, SSB has potential limitations. Despite the improved overall performance, the
outlier detector suffers from overfitting as the performance gap between detecting seen outliers
and unseen outliers is still very large. Therefore, in the future, more regularizations need to be
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considered to improve generalization. Another drawback is that our method is not able to deal
with long-tail distributions, which is also realistic in practice. Presumably, our method will
have difficulty distinguishing inliers of tail classes and OOD data due to the data scarcity at
tail.

In the next chapter, Chapter 13, we investigate an unconstrained environment where the
objective is not solely to detect and reject unseen classes, but rather to discover and classify
novel categories. This scenario, commonly referred to as the open-world scenario, we explore
leveraging pretrained vision-language models on egocentric action recognition task.
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In this chapter, we delve into the open-world scenario, leveraging vision-language (VLMs)
pretrained models, as there has been growing interest in adapting VLMs to image and
third-person video classification due to their success in zero-shot recognition. However,

the adaptation of these models to egocentric videos has been largely unexplored. To address
this gap, we propose a simple yet effective cross-modal adaptation framework, which we call
X-MIC. Using a video adapter, our pipeline learns to align frozen text embeddings to each
egocentric video directly in the shared embedding space. Our novel adapter architecture is
specifically tailored to egocentric videos, focusing attention on the hand region. This results
in an enhanced alignment of text embeddings to the egocentric video domain, leading to a
significant improvement in cross-dataset generalization. We evaluate our approach on the
Epic-Kitchens, Ego4D, and EGTEA datasets for fine-grained cross-dataset action generalization,
demonstrating the effectiveness of our method.

This chapter is based on [KSR+24]. As the first author, Anna Kukleva conducted all
experiments and was the main writer.

13.1 Introduction

Egocentric action recognition has recently become a popular research topic due to the rising
interest in augmented reality and robotics. Recently, two large-scale egocentric datasets Epic-
Kitchens [DDF+

22] and Ego4D [GWB+
22b], capturing the daily activities of users have been

introduced. While there is a growing interest in studying action recognition on egocentric
datasets, evaluations primarily occur within the same dataset; lacking cross-dataset evaluations
that is crucial for real-world deployment of recognition models. Testing models on different
datasets presents several challenges, such as encountering unfamiliar environments, different
users, and previously unseen objects and their corresponding actions, all of which can signif-
icantly impact performance. Recently, vision-language models [JYX+

21, RKH+
21, ZJM+

22]
such as CLIP [RKH+

21] have demonstrated remarkable performance across diverse third-
persons datasets like Kinetics-600 [KCS+17] and ImageNet [ima], showcasing their ability to

203
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Figure 13.1: Egocentric video classification with VL models. Top: Standard zero-shot CLIP.
As the dominant object in the scene is painting, the model predicts class “painting” while the
object of interest is “brush”. Bottom: CLIP model with our X-MIC adaptation directly in the
shared VL embedding. X-MIC vectors adapt focus of the CLIP model to the hand area, guiding
text modality to capture egocentric domain-specific information.

generalize effectively and achieving zero-shot performance of 59.8% and 76.2%, respectively.
However, their zero-shot performance drops significantly when applied to egocentric datasets
like Epic-Kitchens, with noun and verb recognition reaching only 8.8% and 5.9%, respectively;
highlighting the domain gap between third-person and egocentric data.

CLIP’s zero-shot generalization to new datasets leverages learning a shared embedding
space for text and visual modalities. To enhance generalization to new domains, a prominent
research direction [ZYLL22b] explores adapting the text encoder by appending trainable prompt
tokens to class tokens, modifying the class-text input from “a photo of an apple” to “<learnable
prompt> apple”. As an alternative approach, recent work has proposed to train feature adapters
on both the visual and textual domains [CDW+

22, GGZ+
23], drawing insights from the NLP
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works [HGJ+19, SM19]. Despite their promising results, these methods overlook the inherent
characteristics of the egocentric video domain. To overcome this, we propose a simple yet
effective adapter architecture, injecting egocentric video-specific knowledge into a frozen VL
embedding space, depicted in Fig. 13.1. Our method transforms each video through an adapter
into a vector for cross-modal instance conditioning of text — referred to as X-MIC-vector.
Our cross-modal adaptation directly in the embedding space results in significantly improved
efficiency during training & testing. Moreover, a new adapter module disentangles frozen
visual encoder from the visual temporal modeling through cross-modal adaptation. Each
X-MIC-vector is video-specific, therefore, allowing us to align any frozen text to each input
video individually. Finally, to align the text embedding to the video, we simply sum the
X-MIC-vector to the text embedding vectors.

We extensively evaluate our approach on Epic-Kitchens [DDF+
22], Ego4D [GWB+

22b]
and EGTEA [LLR18] datasets, demonstrating superior generalization compared to SOTA
VL-adaptation methods.
Our contributions can thus be summarized as:

• Addressing the task of egocentric cross-dataset and zero-shot action recognition with
VLMs that is designed for real-world applications, e.g. AR, addressing the impracticality
of collecting data from every new environment;

• A simple yet effective framework, referred to as X-MIC, for cross-modal adaption of
VL models directly in the pre-trained VL embedding space; our module disentangles
temporal modeling from the frozen visual encoder;

• A novel egocentric spatial-temporal attention module enhances information around
hands, thereby improving egocentric action recognition performance;

• Thorough comparisons with respect to image and video state-of-the-art VL adaptation
methods which demonstrate the effectiveness of our approach.

13.2 Related Work

In this section, we discuss prior work on the egocentric action generalization and adaption
of vision-language models to video domain. We will not revisit the topic of vision-language
large-scale adaptation methods for the image domain as previously discussed in Chapter 2.
Egocentric Action Generalization. While egocentric vision gained attention with datasets like
Epic-Kitchens [DDF+

22] and Ego4D [GWB+
22b], current state-of-the-art [ZK22, XANS22,

PCA+
21, WLM+

22, KNZD19, XLG+
20, ZAC+

19, SCS+] mainly focus primarily on intra-
dataset evaluation, which limits their applicability to real-world scenarios. Several methods
fine-tuned CLIP on egocentric datasets, [ZMKG23, LWS+22, PSN+

23], yet generalization on
fine-grained verbs and nouns recognition remains underexplored. Our work comprehensively
investigates both intra-dataset and inter-dataset generalization on both verbs and nouns.
Adapting VLMs to Videos. Recent advancements in prompt learning extend to third-person
videos. A5/A6 [JHZ+

22] uses textual prompts and a temporal module atop the visual encoder
while keeping both encoders frozen. EVL [LGZ+

22] discards the text encoder, relying solely on
temporally encoded frame features from CLIP image encoder. Vita-CLIP [was23] uses shallow
prompts on the text encoder, similar to [ZYLL22b], and introduces deep temporal prompts for
the visual encoder. OAP [CSMY24] generalizes the verbs observed during training to an open
vocabulary of objects with a prompt-based object encoder. Our method builds on existing work
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Figure 13.2: Overview of our X-MIC method and previous adaptation methods of VLMs.
Baselines: No Fusion is a standard zero-shot video classification method. The average of the
frame representations is compared to text representations in the shared VL embedding space.
Early Fusion & Uni-Modal is a prompt learning method, where the learnable parameters are
concatenated to text tokens and optimized through the text encoder. Subsequently, the text
encoder is adapted to the new domain. Early Fusion & Cross-Modal is a prompt learning
approach, an extension of Early Fusion & Uni-Modal method, where additional learnable
parameters are introduced in the form of an adapter. This adapter maps video presentations to
embedding space of text tokens, which are then concatenated to learnable prompts and text
tokens. Memory consumption, required for forward-backwards pass through the text encoder,
expands with respect to all combinations of all text-labels and videos in the batch. Late Fusion
& Uni-Modal is a method, where adaptation of both encoders is based on the feature blending
of original text and video representations with the adapted corresponding representations.
Ours: X-MIC adaptation method falls in Late Fusion & Cross-Modal category. Adapted video
features are blended with the original text features. Simple yet efficient adaptation of text
modality to each individual video is efficient as it does not require gradient propagation
through text or video encoders. Additionally, we propose to employ Visual Encoder II, offering
flexibility in utilizing various types of visual features for conditioning purposes.

while introducing an adapter architecture specifically tailored to egocentric domain, resulting
in superior performance.

13.3 Method

We begin by introducing the preliminaries such as classification with VLMs like CLIP and
different types of VL adaptation in Sec. 13.3.1. Then, in Sec. 13.3.2, we give an overview of
our adapter method for text conditioning and present our egocentric-spatio-temporal attention
module.
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13.3.1 Preliminaries and Baselines on VL Adaptation

Vision-language models (VLMs), such as CLIP, demonstrate effective zero-shot generalization
across various downstream tasks for image recognition and third-person video recognition.
However, certain domains, like egocentric videos, still face challenges due to a significant gap
between web-collected and egocentric data.

Below, we provide an overview existing prompt learning and adapter-based methods.

Video Classification with VL Dual Encoders. Trained on hundreds of millions of text and
visual data pairs, VL dual encoders bring the two modalities together in a shared embedding
space. When evaluating models pretrained on extensive web data, a crucial metric is their ability
to transfer to other downstream tasks without additional fine-tuning, a process commonly
known as zero-shot evaluation. To perform zero-shot classification, one needs to propagate a
set of C predefined classes in the form of text, denoted as t = “Image of a <class>” through a
pre-trained text encoder T(·). This process extracts individual text embeddings, represented
as et = T(t) ∈ R1×D for each class. Subsequently, these vectors undergo l2 normalization,
resulting in ēt = et

||et|| (hereafter, the overline symbol ē indicates l2 normalization of vector

e). Then a matrix ĒT ∈ RC×D is constructed, representing a simple linear classifier, and is
thus referred to as the text-based classifier. To classify an input video v, we sample N frames,
denoting the sampled frames as v′ = {zi}N , where zi represents a frame from the video v.
Subsequently, all sampled frames are mapped using the frozen visual encoder V(·) to the
shared VL embedding. Applying average pooling over the embeddings of the frames yields a
single-vector video representation: ēv′ = avg_pool({V(zi)}N) ∈ R1×D. The video vector ēv′ is
then classified using the text-based classifier ĒT.

No Fusion. We refer to frozen dual encoders T(·) and V(·) without additional adaptation as
“No Fusion” baseline.

Early Fusion and Uni-Modal Adaptation. A prompt learning-based method, CoOp [ZYLL22b],
introduces P learnable vectors appended to all C input text classes in the token embeddings of
the textual encoder (see Fig. 13.2). To optimize these prompts, gradients are propagated through
the frozen text encoder for C × P × D adaptable parameters, where D is the dimensionality of
the tokens. This optimization remains independent of the batch size of the visual input.

Early Fusion and Cross-Modal Adaptation. A follow-up work, CoCoOp [ZYLL22a], extends
learnable text prompts to cross-modal prompts by introducing an adapter module of the frozen
visual encoder to the token embedding space (see Fig. 13.2). In this architecture, each of the C
class-tokens are appended not only with P learnable text prompts but also with individual
input-conditioned prompts generated by the adapter. Optimizing these prompts for a batch of
size B involves propagating B × P × D × C gradients, making training inefficient and slow as
shown in [ZYLL22a].

Late Fusion and Uni-Modal Adaptation. CLIP-Adapter [GGZ+
23] adopts a late fusion

approach as an alternative to early fusion adaptation. The text and visual encoders are followed
by uni-modal adapter modules that generate adapted uni-modal feature vectors. These adapted
features are then fused with the corresponding original features in the VL embedding space,
subsequently optimized with the standard classification loss. This optimization is efficient due
to the lightweight nature of adapters, eliminating the need for heavy text-encoder gradient
propagation.
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13.3.2 X-MIC Adaptation

Overview. We aim at achieving generalization in egocentric action recognition across domains
and to novel action classes. Our X-MIC-adaptation framework is designed to improve the
alignment between frozen text representations and the egocentric visual domain directly within
the VL embedding space. To adapt the text modality to the egocentric domain, we introduce a
simple yet effective cross-modal text conditioning operation based on the input videos. Specifi-
cally, each X-MIC-vector serves as an adapted video representation. We align any frozen text
representation to each individual input video by a simple addition operation with the X-MIC-
vector. Consequently, text representations are adapted to individual input videos, and these
adapted text embeddings are further utilized for the classification of corresponding videos into
fine-grained noun and verb classes. Moreover, by introducing an egocentric-spatio-temporal
attention module, we aggregate temporal information between video frames and emphasize
areas around hands to enhance hand-object interactions. X-MIC-vectors offer dual benefits: a
simple and efficient cross-modal conditioning approach, and the decoupling of domain-specific
knowledge from the frozen VL embedding, resulting in improved generalization on egocentric
videos.
X-MIC Adaptation. Our adaptation method, X-MIC, aligns frozen text class embeddings
directly to the new domain in the shared VL embedding space. During training and inference,
our approach resembles zero-shot classification, as we classify frozen video representations
from the original visual backbone V(·) using an adapted text-based classifier ĒT tailored to
each input video v. This enables efficient domain adaptation without the need for fine-tuning
the entire model, categorizing our method as late fusion with cross-modal adaptation.

Specifically, for an input video v, we sample N frames to form a sparse video sequence
v′ = {zi}N . The video sequence v′ is then decoded using the original visual encoder V(·),
resulting in a single vector ēv. Additionally, we encode the C classes into the text-based classifier
ĒT as detailed in Sec. 13.3.1.

To generate the X-MIC-vector, we introduce a second frozen visual encoder, denoted as
VI I(·). This secondary encoder can either be an identical copy of the original encoder V(·) or a
distinct pre-trained encoder. In Sec. 13.4.1, we demonstrate that incorporating a different type
of VI I(·) can result in significant generalization improvements. For instance, DINO [ODM+

23],
which is uni-modal, captures distinct characteristics [PKH+

22] of the visual input compared to
multi-modal CLIP like models that focus solely on main objects.

We employ the second encoder VI I(·) to produce an intermediate representation of frames,
denoted as xv = {VI I(zi)}N . Before adapting the intermediate representation, we apply
l2-normalization to the vector. See Sec. 13.4.4 for a detailed analysis of the impact of this
normalization. Our video adapter A(·) incorporates a temporal aggregation module. By
feeding these intermediate representations into this module, we obtain the final X-MIC-vector
for adaptation, represented as av = A(x̄v).

Finally, to adapt the frozen text-based classifier ĒT to the video v, we simply sum X-
MIC-vector with each class representation in the embedding space: et + av ∈ RD, and when
combined, these updated vectors form an adapted text-based classifier Eav

T . Subsequently, we
classify the video representation ēv with the adapted text-based classifier Eav

T . The process of
classification with X-MIC-adaptation can be summarized as follows:

c = argmaxt < et + A(VI I(xv)), ēv >, (13.1)

where c represents the class with the highest similarity between the adapted text-based classifier
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Figure 13.3: Ego-Spatio-Temporal Attention Module. Our video-adapter module for X-MIC
adaptation of egocentric videos. It takes a sequence of full frames interleaved with hand
crops in input, and outputs X-MIC vector av, representing video v as a single vector for text
conditioning in the shared VL embedding space.

Eav
T and the video v, and < ·, · > denotes dot product.

Ego-Spatio-Temporal Attention Module. Our adaptation module consist of two transformer
blocks bS(·) and bT(·) designed to aggregate different types of information. This module not
only adapts each video to the shared VL embedding space but also captures egocentric video-
specific spatial and temporal information, through bS(·) and bT(·) respectively. To capture
hand-object interactions better, we introduce an attention block that focuses on regions around
hands, see Fig. 13.3. This involves applying self-attention between frame crops covering hands
and full frames, guiding the model to emphasize information around hands, a crucial region of
interest in egocentric videos. To aggregate temporal information from the video, we employ a
temporal self-attention block, similar to [JHZ+

22] that updates the frame representations. Our
X-MIC-vector for adaptation is derived by applying average pooling over all updated frame
representations.

Egocentric videos may include diverse backgrounds and involve significant camera motion.
By focusing on the region around hands through cropping and applying self-attention to both
the full frame and the cropped region, we guide our model to prioritize attention on the hands.
More specifically, for each frame, we use the full frame zi and the cropped hand region zhand

i
from the same frame. We get the intermediate representations through the video encoder, for
the full frame xi = VI I(zi) and the hand region xhand

i = VI I(zhand
i ). We concatenate the two to

obtain an intra-frame sequence [xi; xhand
i ] ∈ R2×D. We derive the intra-frame representation xbS

i
by averaging the updated representations from both the full and cropped frames:

xbS
i = avg_pool(bS([xi; xhand

i ])). (13.2)

To capture the temporal relations across frames, we apply self-attention between all frames
of the video. Specifically, we use the second transformer bT(·) block to update xbS

i frame
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representations, which we aggregate with average pooling into our X-MIC-vector:

av = avg_pool(bT([x
bS
1 , xbS

2 , · · · , xbS
N ])). (13.3)

In this way, our adaptation module effectively incorporates egocentric video-specific spa-
tial and temporal information into the frozen vision-language embedding space, enhancing
generalization to novel classes.

13.4 Experiments

Our X-MIC method is mainly evaluated on the cross-dataset setting between two large-
scale egocentric video datasets Ego4D [GWB+

22b] and Epic-Kitchens [DDF+
22] datasets.

Additionally, we evaluate generalization performance on the small-scale EGTEA [LLR18]
dataset.

13.4.1 Datasets

Ego4D [GWB+22b]. We a subset of Ego4D [GWB+
22b] annotated with fine-grained noun and

verb labels, specifically from the FHO benchmark task. In this benchmark the training set
consists of 64K video clips, while the testing set comprises 33K clips. The average clip duration
is 8 seconds, resulting in a total of approximately 215 hours of videos, excluding irrelevant
background clips. The dataset contains 521 noun classes and 117 verb classes.
Epic-Kitchens [DDF+22]. We use the Epic-Kitchens100, comprising 67K video clips for training
and 10K video clips for testing. The average clip length is 3.5 seconds, totaling about 70 hours,
excluding irrelevant background clips. The dataset features annotations for 300 noun classes
and 97 verb classes, focusing on kitchen-related topics.
EGTEA [LLR18] We use this dataset solely for model testing, given its training set of 8,000

video clips with clip length of 3.2 seconds. During inference, we combine three test splits
resulting in 6K video clips in total. The dataset is annotated with fine-grained 20 verb and 54

noun classes.

13.4.2 Implementation Details

We evaluate the generalization performance based on the adaptation of the pre-trained CLIP
ViT-B/16 model, unless otherwise specified. For model training, we use AdamW with(β1,
β2) = (0.9, 0.999) and weight decay of 0.01 for 15 epochs with a fixed learning rate of 1e-
6. The Transformer module b1 contains 1 self-attention layer, whereas temporal attention
module b2 includes 2 self-attention layers. During training, we sample 16 random frames, and
during evaluation we sample frames uniformly. For detecting the hand regions, we use the
100DOH [SGSF20] detector, extracting bounding boxes for each frame.
Cross-Datasets Evaluation. In this work, we investigate the generalization performance of
fine-grained noun and verb recognition across egocentric datasets. Our objective is two-
fold: achieving strong performance within the dataset on the corresponding test set and
demonstrating robust generalization to a shared dataset. We compute the harmonic mean
between these two to gauge the balance of different types of generalization. For instance, we
train our models on Ego4D and subsequently evaluate on both the Ego4D and Epic-Kitchens
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Trained on Ego4D (E4D) Trained on Epic-Kitchens (EK)
ta Nouns Verbs Nouns Verbs

Evaluation dataset E4D EK hm E4D EK hm EK E4D hm EK E4D hm
ZS CLIP - 5.89 8.74 7.03 2.18 4.25 2.88 8.74 5.89 7.03 4.25 2.18 2.88

CoOp - 28.22 10.87 15.70 22.57 20.42 21.44 21.56 9.37 13.06 30.91 13.35 18.64

Co-CoOp - 30.00 9.51 14.44 21.31 12.99 16.14 24.23 9.27 13.41 34.16 14.17 20.03

CLIP-Adapter - 30.00 8.95 13.78 22.82 19.94 21.28 33.21 5.73 9.77 36.70 16.09 22.37

CLIP-Adapter* ✓ 31.26 10.00 15.16 27.32 22.28 24.54 34.40 4.67 8.22 48.69 15.52 23.54

A5 ✓ 31.39 7.84 12.55 26.31 22.77 24.41 32.04 3.31 5.99 46.05 17.93 25.81

Vita-CLIP ✓ 33.52 10.61 16.11 22.66 25.81 24.13 34.41 9.52 14.91 48.78 13.47 21.11

X-MIC ✓ 33.54 15.35 21.06 28.93 26.48 27.65 30.64 12.32 17.57 50.01 18.10 26.58
X-MIC+DINO ✓ 35.85 18.96 24.80 28.27 29.49 28.86 44.07 11.45 18.17 53.02 16.01 24.60

Table 13.1: SOTA comparison on within- and cross-dataset evaluation on Ego4d and Epic
Kitchens datasets. Left: Models trained on Ego4D. Right: Models trained no Epic-Kitchens.
Evaluation is on noun and verb classes. ta denotes temporal attention in the corresponding
method, other methods apply simple average of the frames. hm stands for harmonic mean
evaluation. X-MIC+DINO denotes our model with DINO [ODM+

23] as Visual Encoder II.

Trained on E4D, Evaluated on EK Trained on EK, Evaluated on E4D
ta Nouns Verbs Nouns Verbs

Eval. subset shared novel hm shared novel hm shared novel hm shared novel hm
ZS CLIP - 10.38 13.58 11.77 12.32 4.32 6.40 11.38 10.49 10.92 2.73 9.84 4.27

CoOp - 16.86 16.02 16.43 25.03 5.97 9.64 15.77 10.11 12.32 20.22 5.69 8.89

CoCoOp - 16.35 11.51 13.51 24.34 0.00 0.00 17.31 11.46 13.79 15.32 6.46 9.09

CLIP-Adapter - 12.46 5.99 8.09 21.48 3.09 5.40 8.72 7.42 8.02 19.60 3.00 5.20

CLIP-Adapter* ✓ 16.24 12.22 13.95 25.29 1.23 2.35 14.67 7.68 10.08 24.17 4.50 7.59

A5 ✓ 15.25 5.24 7.80 27.90 3.09 5.56 13.54 5.71 8.03 24.29 0.55 1.07

Vita-CLIP ✓ 15.84 6.15 8.86 27.22 4.11 7.14 14.60 9.76 11.69 16.46 6.58 9.40

X-MIC ✓ 20.04 21.51 20.75 29.01 7.00 11.27 19.66 12.24 15.09 23.00 7.16 10.92
X-MIC+DINO ✓ 25.56 20.52 22.76 31.92 6.38 10.63 18.91 10.67 13.65 20.55 6.48 9.85

Table 13.2: Zero-shot action generalization. Left: The models are trained on Ego4D (E4D)
and subsequently evaluated on Epic-Kitchnes (EK) using disjoint subsets of classes (shared
and novel). Right: The models are trained on Epic-Kitchens (EK) and then evaluated in a
cross-dataset manner on subsets of classes within Ego4D.
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Nouns Verbs
Evaluated on Ego4D EGTEA hm Ego4D EGTEA hm

ZS CLIP 5.89 19.70 9.07 2.18 18.71 3.51

CoOp 29.23 23.90 26.29 22.57 26.45 24.35

Co-CoOp 29.85 27.90 28.84 21.31 27.74 24.10

CLIP-Adapter 30.00 21.41 24.98 22.82 26.51 24.52

CLIP-Adapter * 29.18 22.40 25.34 27.32 26.57 26.93

A5 33.50 23.70 27.76 26.31 28.03 27.14

Vita-CLIP 33.52 17.24 22.76 22.66 27.63 24.89

X-MIC 33.54 29.21 31.21 28.93 31.41 30.12
X-MIC+DINO 35.85 30.32 32.84 28.27 32.01 30.01

Table 13.3: SOTA comparison on EGTEA dataset. The model is trained on Ego4D dataset
and evaluated in zero-shot manner on EGTEA. X-MIC+DINO denotes our model with
DINO [ODM+

23] as Visual Encoder II.

test sets. In Table 13.2, we further analyse zero-shot generalization by identifying disjoint
subsets of seen and novel classes across datasets.

13.4.3 X-MIC Comparison to SOTA

In Tables 13.1 and 13.2, we start with comparing our method to CLIP. Notably, on both
the Ego4D and Epic-Kitchens datasets, CLIP yields surprisingly low results for both verbs
and nouns, in contrast to its strong performance on third-person datasets [KCS+17, SZS12].
Next, we compare our method to other adaptation methods of VLMs which have shown
improvements on image and video recognition benchmarks.
Image-based Adaptation Methods. First, we present a comparison to image-based adaptation
models, including CoOp [ZYLL22b], CoCoOp [ZYLL22a], and CLIP-Adapter [GGZ+

23] which
do not contain a temporal component. Our analysis in Table 13.1 shows that early fusion-based
models like CoOp and CoCoOp exhibit limited learning capacity, resulting in poorer perfor-
mance compared to other models for both nouns and verbs when evaluated within-dataset,
especially on Epic-Kitchens. This aligns with earlier findings shown in [CGT+

22]. A late
fusion-based framework, CLIP-Adapter, improves the within-dataset scores but demonstrates
weaker generalization on nouns for cross dataset evaluation. However, a more detailed analysis
of generalization performance in Table 13.2 reveals that CoOp [ZYLL22b] demonstrates robust-
ness even in the absence of any temporal attention module. We hypothesize that other models
may be more prone to overfitting on the shared classes due to a larger number of parameters.
Video-based Adaptation Methods. In Table 13.1 we evaluate the performance of recent
third-person video adaptation models, specifically A5 [JHZ+

22] and Vita-CLIP [was23], in
an egocentric scenario. Additionally, we enhance the CLIP-Adapter model by incorporating
temporal attention and evaluate its effectiveness as a video model. We notice that the inclusion
or exclusion of a temporal component, beyond simple averaging, has a relatively minor impact
on noun recognition using CLIP-Adapter. To illustrate, when trained on the Epic-Kitchens
dataset, CLIP-Adapter, with (denoted as CLIP-Adapter*) and without a temporal attention
module, exhibits comparable performance in noun recognition within the dataset (EK), with
scores of 33.21% and 34.40%, respectively. However, the role of temporal attention becomes
crucial in enhancing verb recognition performance, as evidenced by consistent improvements
across both datasets and all models. A5 [JHZ+

22], which combines both early fusion and
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Nouns Verbs
E4D EK hm E4D EK hm

F 31.68 14.20 19.61 27.19 24.02 25.51

H 31.35 14.02 19.37 26.32 26.59 26.46

F+H 33.54 15.35 21.06 28.93 26.48 27.65

Table 13.4: Influence of Ego-Spatial-Temporal attention. F denotes full frames, H denotes
hand crops. F+H correspond to our proposed attention module. All models share the same
architecture of the temporal attention module.

Nouns Verbs
E4D EK hm E4D EK hm

w/o 31.41 13.31 18.69 22.65 20.19 21.34

w/ 33.54 15.35 21.06 28.93 26.48 27.65

Table 13.5: Influence of temporal attention. Replacing the temporal module with a simple
average decreases verb and noun recognition. The models share the same architecture for
Ego-Spatial attention module.

temporal attention, shows poor cross-dataset generalization on nouns for both datasets, aligning
with the findings reported by its authors [JHZ+

22] in the context of cross-dataset third-
person video generalization. The recent SOTA model on third-person video generalization,
Vita-CLIP [was23], demonstrates enhanced noun recognition on both datasets but exhibits
lower verb recognition on Ego4D. In contrast to other video adaptation models, we decouple
temporal attention from the frozen backbone and introduce X-MIC-vector, encapsulating all
temporal information. Moreover, employing cross-modal adaptation, we introduce video-
specific classifiers. For each video, we create an individual text-based classifier, which is
adapted with our X-MIC-vector. Our approach demonstrates state-of-the-art generalization
performance while maintaining high performance on within-dataset evaluation. Moreover, by
leveraging DINO pretrained model [ODM+

23] as visual encoder VI I , we observe significant
improvements on within-dataset evaluation. In Table 13.3, we present our evaluation on
EGTEA. Overall, we note consistent trends across all methods.

13.4.4 Ablations

In this section, we evaluate the effectiveness of our design choices. For all ablations, we train
models on Ego4D and evaluate on Ego4D and Epic-Kitchens datasets. As backbone, we use
CLIP ViT-B/16, unless otherwise specified.
Ego-Spatial-Temporal Attention. In Table 13.4, we demonstrate the impact of utilizing full
frames, that usually includes scene context, and hand crops on the performance of egocentric
videos. We observe that concentrating solely on hand regions enhances verb generalization,
whereas the utilization of full images proves marginally more advantageous for noun general-
ization. When employing our proposed ego-spatial-temporal attention mechanism, we achieve
a notable improvement in the harmonic mean. Specifically, there is a 1.45% increase for nouns
and a 2.14% boost for verbs compared to using full frames. By guiding the model to consider
context in relation to hand areas, our attention approach not only enhances performance within
the dataset but also showcases improved cross-dataset performance.
Larger backbone. In Table 13.6, we assess the effectiveness of our method using a bigger CLIP
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Nouns Verbs
Evaluation dataset E4D EK hm E4D EK hm

CLIP
ViT-L/16

Zero-Shot 5.89 8.74 7.03 2.18 4.25 2.88

X-MIC 33.54 15.35 21.06 28.93 26.48 27.65

ViT-L/14
Zero-Shot 8.40 13.88 10.46 8.57 9.70 9.10

X-MIC 33.75 22.46 26.97 28.13 28.93 28.52

Lavila ViT-L/14
Zero-Shot 24.99 31.06 27.69 6.19 15.74 8.88

X-MIC 35.18 34.97 35.08 12.28 24.66 16.37

Table 13.6: Influence of different backbones. We compare the performance of CLIP ViT-L/14

with ViT-L/16. Additionally, we provide a comparison of CLIP backbone, pretrainied on
text-image pairs, to Lavila backbone, pretrained on pairs of egocentric videos and narrations
from full Ego4D.

norm Nouns
E4D EK hm

n1 33.54 15.35 21.06
none 32.64 14.34 19.92

n2,n3 32.74 14.59 20.19

n1,n2,n3 31.99 14.49 19.95

n1,n2 15.81 12.3 13.83

n1,n3 12.12 11.34 11.71

Table 13.7: Influence of feature normalization. [n1] corresponds to the normalization of visual
features after the VI I encoder and before the adapter and demonstrates an optimal balance
between normalization and no normalization. [n2] corresponds to the normalization of the
X-MIC vector before summation with text representation. [n3] corresponds to the normalization
of text representation before summation with the X-MIC vector.

Nouns Verbs
ZS X-MIC ZS X-MIC

prompts E4D EK E4D EK hm E4D EK E4D EK hm
<class> 5.89 8.74 33.54 15.35 21.06 2.18 4.25 28.93 26.48 27.65
Image of a <class> 10.52 6.75 32.31 14.81 20.31 3.28 5.40 28.56 25.98 27.21

Video of a <class> 10.32 6.80 32.62 14.77 20.33 2.93 5.97 28.14 22.70 25.13

Egocentric image a <class> 9.61 7.11 32.09 15.65 21.04 2.98 3.83 28.58 24.02 26.10

Image of a hand holding a <class> 10.09 6.32 32.92 14.28 19.92 3.29 9.87 27.53 19.33 22.71

Egocentric image of a hand holding <class> 9.23 6.86 33.29 15.83 21.45 2.41 6.24 27.66 16.94 21.01

Table 13.8: Influence of prompting the frozen text model with additional context. ZS denotes
zero-shot CLIP evaluation. Noun recognition is robust to contextual variations, while verb
recognition performs best without additional context.
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model, specifically comparing the performance of CLIP ViT-L/14 with ViT-L/16. While we do
not observe performance gains for within the dataset evaluations, a compelling trend emerges
in cross-dataset generalization, particularly on nouns. Notably, employing the larger model ViT-
L/14 results in a significant improvement of over 7% in noun and 2.45% in verb generalization
on Epic. This encouraging outcome underscores the potential of vision transformers and
suggests that further exploration and refinement of these models could yield even more
substantial gains in cross-dataset generalization.

Egocentic VL backbone. Table 13.6 presents an evaluation on X-MIC-model performance using
backbones CLIP and Lavila [ZMKG23], which is pretrained on text-video pairs from the Ego4D
dataset in a contrastive manner. Note that the Lavila backbone initializes its model from CLIP
pretrained models. We first compare the zero-shot results from the original CLIP backbone
and Lavila. Lavila demonstrates a significant improvement in noun recognition by 16.59% on
the Ego4D dataset and noun generalization to Epic by 17.18%. While Lavila shows a decrease
in verb recognition accuracy within the dataset by 2.38% , its generalization to Epic verbs
increases by 6.04%. This outcome is surprising, as we initially expected Lavila to generalize
better on verbs due to its training on an egocentric dataset, indicating a strong bias toward
object-oriented pretraining strategies. We observe similar trends when our model utilizes CLIP
versus Lavila as a backbone, where noun generalization increases significantly, while verb
generalization slightly decreases.

Prompts for text encoder. In Table 13.8, we evaluate the performance of zero-shot CLIP and
our model by prompting the frozen text model for classification with additional context. Our
experiments include specific details like "Video of a" or indications of hands and an egocentric
view. We find that zero-shot noun performance is the best with the standard “Image of a ”
context for Ego4D and without context for Epic-Kitchens. However, zero-shot verb recognition
benefits from an additional context, achieving 3.29% and 9.87% on Ego4d and Epic-Kitchens,
respectively. With our X-MIC adaptation, we observe that noun recognition remains robust
to these changes, while verb recognition is sensitive and performs best when no additional
context is provided highlighting the complexity of incorporating contextual information in
egocentric scenarios.

Importance of normalization. We investigate the significance of feature normalization in the
embedding space in Table 13.7. n1 represents our default choice, involving the normalization of
visual features after the VI I encoder and before the adapter. n2 indicates the normalization of X-
MIC-vector, i.e., visual features after our video-adapter module, prior to summation with frozen
text features. Lastly, n3 denotes the normalization of frozen text features before summation
with X-MIC-vector. The ’none’ corresponds to no normalization. [n1] demonstrates the optimal
balance between regularization and no regularization. Configurations [n1], [n2,n3], [n1,n2,n3],
and ’none’ all yield symmetric feature magnitudes before the summation of frozen text features
and X-MIC-vector and marginally change the harmonic mean. Conversely, variations such as
[n1,n2] and [n1,n3] result in imbalances during the summation of different modalities, leading
to suboptimal performance.

13.5 Conclusion

In this chapter, we introduce X-MIC, a simple yet effective cross-modal adaptation framework
for VLMs, that injects egocentric video information into the frozen VL embedding, achieving
significant improvements in fine-grained cross-dataset egocentric recognition of nouns and
verbs. Moreover, X-MIC vectos offer decoupling of the domain-specific knowledge from the
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frozen VL embedding. This allows to explore different visual backbones for text conditioning
directly in the embedding space, showing improved generalization.

It is important to note that our explorations in this chapter focus solely on video classification
and do not encompass text-vision tasks like text-to-video retrieval, which would necessitate
using text-conditioned videos instead of our video-conditioned text representations. We plan
to explore this direction in future work.
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Recent advances in deep learning have significantly increased its demand across various
applications that become integral in our daily lives. Tools developed from pre-trained
deep learning models have seamlessly integrated into our everyday routines. However,

the efficacy of these advances depends on the availability of data and corresponding annotations
tailored to specific tasks. The process of gathering annotations is labour-intensive and time-
consuming, especially when aiming for large-scale, high-quality datasets. Furthermore, the
dynamic nature of the world makes it impossible to label every aspect of the world. The
prohibitive costs associated with annotations present a barrier to scaling up annotations for
diverse tasks. Therefore, to facilitate the expansion of datasets and address a wider range of
tasks, it is important to explore ways to mitigate annotation and data collection costs.

14.1 Key Insights and Conclusions

In this thesis, we investigated challenges arising when full supervision for training models is not
available and explored four complimentary research directions: First, in Part I, we investigate
learning without labels, referred to as self-supervised and unsupervised methods, to better
understand video and image representations. To learn from data without labels, it is intuitive
to inject priors such as invariance, speed of the actions in the videos, or semantic information
granularity to obtain powerful data representations. We found that formulating the objective for
self-supervised learning that reflects the inherent biases of the data can significantly enhance
performance on the downstream tasks. Moreover, gaining insights into the learning dynamics
of contrastive learning methods proved beneficial for training on underexplored long-tail data
and improving representations in the latent space. Then, in Part II, we considered scenarios
involving reduced supervision levels. We proposed to automate annotation of videos on large
scale leveraging large-language models. To reduce annotation costs, we proposed to omit
precise annotations for one of the modalities in multimodal learning, namely in text-video and
image-video settings, and transfer available knowledge to large copora of unlabeled video data.
Moreover, we studied semi-supervised learning scenario, where only a subset of annotated
data alongside unlabeled data, and explored influence of different regularization techniques
on pseudo-labeling of unlabeled data. In Part III, we contributed towards the scenarios where
parts of available data is inherently limited due to privacy and security reasons or naturally
rare, which not only restrict annotations but also limit the overall data volume. Training with
imbalanced data typically results in severe imbalance in predictions. However, by employing
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our calibration, space reservation, and margin enhancement techniques, the network can
substantially enhance performance on underrepresented samples while maintaining strong
performance on classes represented with abundant samples. Finally, in Part IV, we explored
scenarios where the model is asked to generalize beyond the given set of object or action
classes. In an open-set setting, our framework decouples the tasks of detecting outliers and
classifying the known classes into two parallel branches. This approach notably enhances
both tasks, as we discovered that optimizing these tasks over the same representations can
lead to conflicting outcomes. Furthermore, there has been increasing interest in adapting
vision-language models (VLMs) for image and third-person video classification, driven by their
success in zero-shot recognition. However, the adaptation of these models to egocentric videos
remains largely unexplored. We proposed a new approach to investigate the domain gap
between pretrained VLMs and egocentric videos, along with a straightforward yet powerful
framework for adapting these models to the new domain in open world setting.

In the following, we revisit the contributions of individual chapters in more detail, before
discussing future work in Section 14.2.

Part I, Learning Without Supervision: In the first part, our research is focused on unsuper-
vised and self-supervised learning to develop effective image and video recognition models
using powerful and robust representations.

In Chapter 3, we explored the unsupervised learning of temporal action segmentation in
untrimmed instructional videos, videos where content is designed to teach viewers how to
perform some activity or task. We proposed a novel approach to learn an embedding that
captures the inherent order of actions in instructional videos by learning the relationships
between frames based on their relative timing. This reflects the natural flow of instructional
videos, where actions typically have a specific sequence (e.g., pouring water into a mug requires
holding the mug first). To demonstrate the effectiveness of our learned representations, we
introduced an unsupervised decoding method that segments videos into coherent action
segments based on an ordered clustering of the embedded features.

In Chapter 4, similarly, we leveraged the inherent biases present in videos, where the
behavior of actions is predefined by the task at hand. Unintentional actions refer to instances
where something does not proceed as intended, such as a person stumbling instead of continu-
ing forward. This behavior can be simulated through temporal transformations like changes
in motion direction and speed. We specifically formulated these temporal transformations
for unintentional actions to bias the model towards capturing abrupt changes in behavior.
By pretraining the model to predict these transformations in a self-supervised manner, we
observed that our task-specific representations notably enhance performance across various
tasks involving unintentional actions.

In Chapter 5, we aimed to improve representation learning on long-tail data by enhancing
discrimination of the underrepresented classes. We investigated the behavior of one of the most
popular variants of self-supervised methods, specifically contrastive methods, and uncovered
correlations between the temperature parameter and the creation of semantic clusters. We
discovered that by adjusting the temperature parameter τ, we can influence the type of
semantic information captured in the embedding space. Traditionally, τ has been treated as a
constant hyperparameter. However, in this study, we proposed the use of a dynamic τ and
demonstrate that a simple cosine schedule can lead to significant improvements in the learned
representations.

Part II, Learning with Limited Supervision: In the second part, we explored various
scenarios that allow to reduce the level of supervision necessary for training models.

In Chapter 6, we investigated scenarios where only a subset of annotated data, alongside
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unlabeled data, is available—a scenario commonly referred to as semi-supervised learning.
Traditionally, available labels are extended to unlabeled data through pseudo-labeling. However,
obtaining accurate pseudo-labels necessitates training a generalizable model on the limited
labeled data. To enhance generalizability, we explored various regularization techniques.
Among these, consistency regularization, which enforces invariant representations, is one
of the most effective and efficient methods for semi-supervised learning. Nevertheless, our
findings indicate that encouraging equivariance instead, achieved by increasing the feature
distance, further enhances performance. By applying different types of regularization to
different features in the embedding, we were able to improve both the generalization of the
model and the accuracy of pseudo-labeling.

In Chapter 7, we addressed the challenge of downstream fine-tuning on video-text pairs,
which typically requires abundant densely annotated in-domain video data. To bypass the high
annotation costs associated with this task, we introduced a novel setting: text-video retrieval
with uncurated & unpaired data. In this new setting, training solely relies on text queries and
uncurated web videos, without any paired text-video data. Additionally, we proposed the
In-Style method, which facilitates the transfer of the style from the target text queries to the
vast collection of video data. We evaluated our pseudo-generated annotated text-video pairs
on downstream tasks and observed performance comparable to fully supervised training. This
represents a significant step toward achieving low-cost targeted downstream fine-tuning.

In Chapter 8, we further explored low-cost video annotations, specifically discovering that
web images serve as an excellent source of pseudo-labels transferable to videos However,
bridging the gap between web images and videos involves two distinct challenges: a spatial
domain shift between web images and video frames, and a modality gap between image and
video data. To tackle these challenges, we proposed a cyclic-based approach aimed at iteratively
addressing each challenge in isolation. Utilizing a spatial model, we narrowed the gap between
images and video frames by enforcing consistency. Additionally, employing a spatio-temporal
model, we learned temporal information that is necessary for understanding videos.

In Chapter 9, we considered large-scale multimodal instructional video pretraining datasets.
A common method for collecting such video datasets at scale involves web crawling to gather
relevant videos. Typically, these videos come with free, noisy annotations in the form of
automatically transcribed speech converted into subtitles using automatic speech recognition
systems. These subtitles are then utilized for pretraining models. However, the alignment
between this speech and the videos is often suboptimal, resulting in less-than-ideal training
supervision. To address this issue, we proposed leveraging large language models to enhance
the quality and alignment of these subtitles with their corresponding videos. With our
automatic prompting pipeline, we can generate human-like video captions on a large scale
without requiring human supervision. This improvement in the quality of text-video pairs
used for pretraining results in significantly enhanced representations for various downstream
video tasks.

Part III, Learning with Limited Data: In the third part, we considered settings that reflect
scenarios where there are only a limited number of training samples available per task, and the
model is required to dynamically adapt to the new environment, relying only on a few labeled
samples.

In Chapter 10, we placed particular focus on learning balanced representations for both
overrepresented and underrepresented data while processing only a portion of the data at
any given time. The main challenge of this task is to integrate new information relying solely
on a limited number of data samples while retaining previously acquired knowledge from
abundant data. We discovered that classification learned with overrepresented data tends to
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result in overly confident predictions. In order to accommodate novel classes, we introduced a
base-normalized cross-entropy approach that dynamically adjusts the cross-entropy loss based
on input samples, facilitating faster acquisition of new information. To recalibrate learning
after training on novel data, we employed balanced replay, incorporating both previous and
novel classes, which leads to calibrated performance.

In Chapter 11, we tackled the task of continual learning with limited data from the metric
learning perspective. First, we found that combining self-supervised learning with supervised
learning significantly improves the learned representations, enabling effective generalization to
subsequent tasks with limited data. Furthermore, partitioning the representation space into
distinct subspaces for each class allowed us to accommodate novel classes without sacrificing
performance on previously learned classes. By explicitly enhancing the margins between classes,
we promoted compact representations of each class, resolving conflicts between conflicting
classes and leading to more effective representations.

Part IV, Learning Beyond Supervision: In the fourth part, we shifted our attention towards
learning beyond the boundaries of the data presented during training at any moment of the
training. One of the prominent challenges lies in finding a balance between memorizing
patterns from the observed data and generalizing to unseen classes.

In Chapter 12, we investigated a realistic scenario where the available data at training time
comprises labeled few-shot samples and an additional unlabeled set of data with unknown
classes. The objective is twofold: correctly classify test samples belonging to known classes and
simultaneously detect outliers representing unknown classes. Surprisingly, we discovered that
the classification performance can be significantly improved by incorporating unlabeled data,
even when some samples do not belong to the respective classification classes. However, in
this situation, the task of detecting unknown classes conflicts with the classification task. To
address this, we proposed disentangling the two tasks using linear layers, which significantly
enhanced performance for both objectives.

In Chapter 13, we further explored the open-world setting with the help of vision-language
pretrained models. In particular, we addressed the challenges of egocentric action recognition,
highlighting the challenge of generalization due to the absence of pretraining web data in
this domain. Hence, we introduced a simple yet effective cross-modal adaptation framework
enabling the adaptation of a general multimodal classifier to each input video individually.
Furthermore, we focused specifically on the egocentric domain and leveraged spatial infor-
mation around hands to enhance the attention of the model. We showed that our framework
yields remarkable generalization to the new domain and unseen classes.

14.2 Future Directions

In the following, we provide a discussion on potential future directions within the scope of this
thesis. Our focus lies on areas we find especially important and exiting, particularly in light
of foundational models such as large language models or multimodal models. These models
have opened up a wide range of possibilities across various applications. We prioritize topics
that diverge from conventional settings, such as few-shot learning, where models are trained
from scratch on minimal data, which may not be as relevant. Instead, we explore learning,
evaluation and adaptation of foundational models with multimodal or limited data scenarios.
To achieve this vision, below we outline a few future directions we plan to pursue.
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14.2.1 Learning Representations

Learning representations that accurately reflect the intricate underlying structure of training
data is crucial for deep learning models to achieve improved performance, generalization, and
robustness across diverse tasks and domains. Hence, it is essential to develop models that
address the inherent complexity of the data.

Multi-modal class imbalance in self-supervised learning: Learning robust representations
encompasses capturing semantic information across various levels of granularity. Different
tasks may require different degrees of detail to be captured effectively. However, natural data
often adheres to a long-tail distribution, where certain events occur only in specific circum-
stances. When learning from such data, it becomes important to understand whether the
algorithm adequately captures rare events or exhibits bias towards overrepresented samples.
To tackle this challenge, in future work, we are interested in investigating the biases present in
large-scale pretrained models due to inherent natural distributions. Additionally, we aim to
explore methods that can help mitigating these pitfalls in the future, ensuring that models learn
from diverse and representative data while avoiding skewed representations. Extending our
understanding in this area will be vital for developing more inclusive and accurate machine
learning models across a range of applications.

Large-scale meta-learning for self-supervised methods: Current self-supervised large-scale
learning requires extensive datasets, with models expected to perform well across a variety
of tasks. We believe that the exploration of meta-learning methods at a large scale holds
significant potential. Specifically, we propose exploring adaptive self-supervised learning
techniques capable of dynamically adjusting representations based on available data and task
demands. This approach would entail simulating diverse scenarios during training, thereby
streamlining adaptation to more specific domains.

Improving alignment and quality of pretraining data: Expanding on the ideas presented in
Chapter 9, we are interested in enhancing the alignment and overall quality of pretraining
multimodal data. This could encompass several tasks, such as exploring strategies to integrate
supplementary contextual visual, language, sound, potentially touch cues into the captioning
procedure could prove beneficial. Investigating methods to alleviate noise and errors inherent
in pretraining data sets is another promising direction. This would require through analysis
of the potential biases and noise in the data with the following methods to mitigate them.
Moreover, the development of automatic speech recognition systems capable of contextual con-
ditioning on both short-term and long-term video content for generating descriptive narratives
in real time is an interesting direction for the future work.

14.2.2 Reducing the Annotation Costs

The high cost and labor involved in collecting and annotating large datasets pose a significant
challenge. To address this bottleneck, a key area of research lies in developing strategies that
reduce reliance on extensive labeled data. This includes leveraging weaker annotation methods
across multiple modalities and effectively utilizing limited sets of available labeled samples
across modalities.
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Mutimodal generalization to unseen tasks and domains with limited data: Exploring strate-
gies to enhance the generalization of multimodal representations across diverse tasks and
domains is an additional direction, particularly for scenarios where labeled data is scarce. This
could involve developing methods to disentangle task-specific and task-agnostic features within
the learned representations, exploring methods for obtaining transferable features robust to
task and domain variations, investigating approaches for few-shot learning capable of tailoring
multi-modal general representations to novel tasks with minimal labeled data, or adapting
models trained on one modality or domain to excel in another modality or domain despite
limited labeled samples.

Mutlimodal methods to reduce annotation costs: Extending the approach proposed in Chap-
ter 7 to address multimodal learning scenarios beyond text-video retrieval is a further direction.
This could involve exploring methods for leveraging unpaired data in other modalities, such
as audio-video or image-text pairs, and developing techniques to effectively align and fuse
information from different modalities for downstream tasks such as captioning, retrieval, or
generation.

Transfer learning across modalities: Research on transfer learning techniques that can transfer
knowledge from a source modality with abundant data to a target modality with limited data
will be important. This could involve exploring methods for adapting pre-trained models from
one modality to another, developing techniques for learning shared representations across
modalities, investigating approaches for domain adaptation or fine-tuning in multi-modal
settings, or exploring data augmentation techniques specifically designed for improving gener-
alization across modalities with limited or abundant data. This could also involve developing
modal-specific data augmentation strategies, such as temporal language shift relative to the
corresponding video [MZA+

19].

14.2.3 Understanding and Adaptation of the Representations

Investigating the relationship between different representations is important, alongside ex-
panding this understanding to different data types to enhance model performance and reveal
general learning principles. Moreover, by improving standard benchmarks to accurately reflect
real-world scenarios and adapting methods to specific domains and tasks, novel low-cost
learning approaches will address real-world challenges effectively.

Understanding of the learned representations: In our thesis, we uncovered a strong correlation
between a specific hyperparameter and the semantic information learned by our model, as
outlined in Chapter 5. Further exploring how learning algorithms behave across different types
of data is essential. Recent methods like masked image modeling [HCX+

22] and diffusion
models [RBL+

21] offer promising starting points for models, but it is crucial to understand
any potential problems they may bring. Expanding our understanding in this area not only
improves model performance but also helps uncover general principles guiding learning across
various datasets.

Evaluation and benchmarking of low-cost learning approaches in real-world scenarios:
Improve the existing standard benchmarks to accurately reflect the challenges faced by current
foundational models in adapting to diverse low-cost scenarios. This could include comparing
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the performance of different methods under various conditions, such as different levels of
supervision, domain shifts, or data modalities, and identifying the strengths and limitations of
each approach in different scenarios. Furthermore, these benchmarks must include rigorous
testing of methods in settings characterized by data scarcity or class imbalance, thereby evaluat-
ing their efficacy in dynamic and evolving environments. Additionally, the benchmarks should
compare the performance of these methods against established state-of-the-art approaches
to understand their relative strengths and limitations comprehensively. Improving standard
benchmarks to is crucial for development of novel effective methods for applying foundational
models in real-world contexts.

Application to the specific domains and tasks: Methods in few-shot and incremental learning
scenarios are driven by real-world demands, such as medical imaging or sensor data analysis.
Yet, current benchmarks rely on standard object recognition pipelines using datasets like
ImageNet, failing to capture the intricacies of real-world data. Therefore, we think that it is
necessary to assess these methods using domain-specific data and, moreover, develop methods
specifically for the respective domains. By addressing domain-specific challenges, this research
can yield practical applications and profound impacts across diverse fields.

Domain-specific adaptation techniques: Explore domain-specific adaptation techniques to
improve the performance of models in specific application domains or tasks. This could involve
developing tailored adaptation methods that leverage domain-specific information, such as
spatial or temporal cues in egocentric action recognition, medical imaging data, or natural
language processing tasks. Additionally, research could focus on developing techniques for
fine-tuning pretrained models on domain-specific data with limited labeled samples, potentially
incorporating transfer learning or meta-learning approaches to improve adaptation efficiency.

Egocentric action recognition: In Chapter 13, we found that current general-purpose Vision-
Language Models (VLMs) underperform when applied to egocentric videos. Yet, investigations
into egocentric video analysis remain relatively limited, requiring a more diverse exploration of
fine-grained recognition in this evolving domain. Notably, recognition of third-person activities
surpasses that of egocentric activity recognition by a significant margin [ZG23, RkM+

23b].
It is important to understand the challenges, discrepancies, and influential factors affecting
performance to move advancements towards achieving more adaptive real-world assistance in
interactive settings.

Long-term activity and verb recognition: Current vision-language models rely on recognizing
objects in static images or simple actions during the training from the datasets collected from
the web, therefore, these models lack understanding of long-term context and fine-grained
verbs [MCN+

23]. To address this, we are interested in developing algorithms that adapt these
models for domains requiring a deeper understanding of the sequence of events, like egocen-
tric videos. By enabling fine-grained activity recognition beyond just objects, these models
can unlock real-world applications in augmented reality (AR) glasses that understand user
interactions or robots capable of performing complex tasks like preparing a meal. Ultimately,
overcoming these limitations promotes a future where vision-language models seamlessly
integrate with our daily lives.
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14.2.4 A Broader View on the Topic

Our long-term goal is to create methods that facilitate model adaptation to the ever-changing
world, encompassing new environments and diverse tasks, while minimizing the associated
data collection and annotation overhead. Real-world scenarios often present specialized tasks
with scarce, diverse, imbalanced and noisy data, highlighting the limitations of traditional,
fully-supervised learning on downstream tasks. To overcome this challenge, it is natural to
rely on foundational models that offer a powerful starting point for various downstream tasks,
eliminating the need to build models entirely from scratch for each specific task. However,
to adapt models in the data limited scenarios, we should explore alternative supervision
signals and methods. Exploring the influence of different modalities (vision, language, audio,
touch) on human perception will significantly enhance the generalizability of AI models. By
incorporating more than just sight and sound, the models will improve the understanding of the
real world by perceiving and reacting to situations from multiple perspectives. Therefore, I am
interested in developing efficient learning algorithms that integrate these diverse information
sources in different learning scenarios like self-supervised learning, few-shot learning and
semi-supervised learning. With that we can achieve cost-effective and robust training protocols,
enabling AI models to succeed in real-world environments and adapt with limited data.
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