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Abstract
Titanium dioxide, frequently used in commonplace products, is now regularly detected in aquatic environments.
Understanding its toxic effects on native biota is essential. However, combined toxicity with commonly occurring pollutants,
such as the pharmaceutical diclofenac, may provide more insight into environmental situations. Therefore, the present study
aimed to evaluate the effects of titanium dioxide and diclofenac, individually and combined, on the macrophyte Egeria
densa. Diclofenac uptake and removal by the macrophyte were assessed. Diclofenac and titanium dioxide were mixed prior
to exposure to allow binding, which was assessed. Toxicity of the individual compounds and the combination was evaluated
by assaying enzymes as bioindicators of biotransformation and the antioxidative system. Cytosolic glutathione S-transferase
and glutathione reductase activities were increased by diclofenac, titanium dioxide, and the combination. Both enzymes’
activities were more significantly elevated by diclofenac and the combination than nanoparticles alone. Microsomal
glutathione S-transferase was unaffected by diclofenac exposure but inhibited with titanium dioxide and the mixture.
Diclofenac elicited the most significant response. Based on the data, the cytosolic enzymes effectively prevented damage.

Keywords Oxidative stress ● Biotransformation ● Nanomaterials ● Pharmaceutical pollution ● Primary producer ● Macrophyte

Highlights
● mGST was inhibited by TiO2, but DCF exposure was insignificant.
● cGST and GR activities increased with DCF exposure.
● No synergistic effect on cGST and GR with combined exposure.
● DCF, rather than TiO2, was responsible for oxidative stress-related toxicity.
● Macrophytes remained healthy despite exposures at high concentrations.
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Introduction

Various engin eered nanomaterials are produced in hun-
dreds of tons per year (Hendren et al. 2011). The nano-
technology industry has enormous growth prospects and
opportunities for commercial development due to the vast
range of applications of nanomaterials and particles.
Nanoparticles (NPs), which are in the 10−9 m range, are
used in electronics, medical and pharmaceutical industries,
consumer goods, food production, as well as military
applications (Khan et al. 2019). NPs are of great importance
for scientific studies as a middle link between bulk materials
and atomic structures. These minute particles have a much
larger surface-to-volume ratio than similar masses of larger-
scale materials. As the surface area per mass of material
increases, considerably more material can come into contact
with surrounding substances. The larger the surface area,
the greater the substance’s reactivity, allowing improved
catalysts to be created (Lien et al. 2015); e.g., the drastic
property changes of gold NPs as oxidants compared to gold
macroparticles. NPs’ mechanical and magnetic properties
also differ from their regular-shaped counterparts, meaning
that adhesion and capillary forces exceed macroscopic for-
ces, including superparamagnetic forces (Wahajuddin and
Arora 2012). Thermal and optical properties also shift; i.e.,
with decreasing size, surface energy increases, thus redu-
cing melting points (Mashayekh and Dorranian 2014).

The use of titanium (IV) oxide (or titanium dioxide,
TiO2-NPs) is increasing due to its nanosized features, low
toxicity, biocompatibility, intrinsic properties, and manu-
facturing techniques (Jarosz et al. 2016; Kafshgari et al.
2019; Molaeirad et al. 2015; Naseri et al. 2015). These
nanomaterials are also recognized for their high refractive
index, light scattering capabilities, and photocatalytic
activities in the presence of UV with equal or higher energy
than its bandgap energy. TiO2-NPs occur in three crystalline
phases, brookite, rutile, and anatase, with the latter showing
a more extensive band gap and, thus, the highest photo-
catalytic effects (Skocaj et al. 2011). Therefore, TiO2-NPs
are one of the most commonly used metal oxides (Jova-
nović 2015). They are widely used in paints, floor coatings,
paper cosmetics, cleaning products, and sunscreens. How-
ever, some studies have shown contradictory evidence
regarding the toxicity and long-term stability of these NPs,
as reviewed by Skocaj et al. (2011). Among others, TiO2

has been implicated in oxidative stress induction as well as
cellular dysfunction as it produces hydroxyl radicals with
cytotoxic effects. However, the response of the anti-
oxidative system in this regard remains unexplored.

Engineered NPs, including titanium-based nanomater-
ials, have been detected in the environment at concentra-
tions up to 48 ng/ml (Tovar-Sánchez et al. 2013); however,
Environmental Fate Modeling predicts this level to be closer

to 10000 ng/ml (Maurer-Jones et al. 2013). These particles
may enter the environment in various ways, primarily
through industrial wastewater. NP-containing personal care
products may also deposit in domestic wastewater and, from
there, enter sewage sludge (Coll et al. 2016; Sun et al.
2016). Once in aquatic ecosystems, NPs could mix with
other pollutants, including pharmaceuticals, and could
affect keystone species in various ways. According to
Thiagarajan et al. (2021), who reviewed the interactions
between nanomaterial, pharmaceuticals, and nano/micro-
plastics, these compounds are commonly detected in aquatic
environments globally and bound to co-occur and interact.
As the adverse effects of pharmaceuticals have already been
recognized (Fent 2008; Mezzelani and Regoli 2022), it
becomes vital to understand the impact of NPs on biota and
in combinations with pharmaceuticals detected in surface
waters globally. One such globally detected drug is diclo-
fenac (DCF) (Li 2014). The environmental concentration of
DCF in aquatic environments varies considerably (Lonap-
pan et al. 2016). Fekadu et al. (2019) reported mean
diclofenac concentrations detected in European waters to
range from approx. 3 to 5 ng/ml and in African waters from
approx. 5 to 7 ng/ml.

As a first step in evaluating the toxicity of NPs as well as
their combined toxicity as vectors for pharmaceuticals,
TiO2-NP in its anatase form was selected for this study due
to its wide use. The toxicity of TiO2-NPs, DCF, and a
combination of the NPs and the pharmaceutical, was eval-
uated on the ecologically essential macrophyte species
Egeria densa. Macrophytes serve as primary producers, as
well as habitat, shelter, and breeding space for other
organisms contributing to the overall biodiversity. They
also influence the nutrient cycles in aquatic environments
(Bakker et al. 2016; Esteves 1998; Kennedy et al. 2004;
Pott and Pott 2003; Thomaz and Cunha 2010); and are
excellent bioindicators (Ravera 2001). E. densa was selec-
ted based on its advantageous features, including rapid
growth and natural ubiquity, and due to the limited infor-
mation on adverse effects on this macrophyte caused by
NPs. Additionally, information on how E. densa responds
to NPs and pharmaceuticals may help evaluate its potential
utility in the phytoremediation of water contaminated with
these substances. E. densa has been shown to efficiently
remediate NPs such as Ag-NPs (Bernas et al. 2017) and
pharmaceuticals (De Morais Calado et al. 2019). However,
information on the phytoremediation of DCF and TiO2, as
well as a combination of the two, is lacking.

Toxicity is often mediated by oxidative stress, as an
organism’s inability to eliminate increased reactive oxygen
species (ROS) at a cellular level would lead to severe
adverse effects and eventual mortality (Sarkar et al. 2014).
Fluctuations in the antioxidative enzyme responses are often
used as bioindicators of oxidative stress (Gutteridge 1995).
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In the present study, glutathione reductase (GR) and glu-
tathione S-transferase (GST) were selected as biomarkers.
GR is an antioxidative defense enzyme involved in recy-
cling glutathione to combat ROS generated from xenobio-
tics. GST is a crucial enzyme in phase II of the
biotransformation system, which is vital in eliminating
xenobiotics.

The study, therefore, aimed to evaluate the toxicity of
TiO2 and DCF as well as combined toxicity in E. densa by
evaluating GST and GR as biomarkers of antioxidative
response to xenobiotic exposure.

Materials and methods

Chemicals and reagents

DCF (sodium salt, ≥99%) was bought from Cayman Che-
mical Company (Michigan, USA). Stock solutions were
prepared in pure ethanol as required, and further dilutions
were conducted in the cultivation/exposure media of choice.

Anatase TiO2 (100% anatase, <25 nm, specific surface
area 45- 50 m2/g, purity 99.7%) was purchased from Sigma-
Aldrich Co. Ltd. (Steinheim, Germany) and was from the
same batch as used by Okupnik et al. (2015) who char-
acterized the material in terms of size, morphology, zeta
potential, z-average hydrodynamic diameter, and the poly-
dispersity index (PDI).

All chemicals used for exposure and analysis were of
analytical-grade quality and were obtained from Sigma-
Aldrich Co Ltd. (Steinheim, Germany) unless stated
otherwise.

Egeria densa

E. densa (strands of 10–20 cm) was purchased from
Extraplant (Extragroup GmbH, Germany) and cultivated in
a glass tank (100 cm × 60 cm × 60 cm) at 24 ± 1 °C. The
plants were grown under cool white fluorescent light with a
light intensity of 38 μE/m2/s and a 14:10-h light-dark
photoperiod. The culture media consisted of modified Pro-
vasoli’s culture medium containing CaCl2 (0.2 g/l),
NaHCO3 (0.106 g/l), and sea salt (0.1 g/l) in de-ionized
water (Vilvert et al. 2017). The macrophytes were accli-
mated to laboratory conditions for seven days before the
exposures. DCF uptake into E. densa and removal from the
media were evaluated prior to the exposure experiments to
establish its suitability for this investigation. Three-
centimeter E. densa strands were exposed to 250 ng/ml
DCF in beaker experiments against controls for 96 h under
the same conditions as during acclimation (n= 5). Plant and
media samples were collected after 24, 48, 72, and 96 h.
DCF was extracted from the plant tissue as detailed by De

Morais Calado et al. (2019), and DCF was quantified as
described in section 2.4.

Exposure setup

Three treatment solutions were prepared. The first consisted
of DCF diluted to 250 ng/ml in the E. densa cultivation
media. Concentrations previously reported for DCF in
wastewater and the environment served as guidance for
choosing this exposure concentration (Esterhuizen-Londt
et al. 2017). The second exposure solution consisted of
250 ng/ml DCF combined with 1 mg/ml TiO2-NP anatase in
cultivation media, and the third consisted of 1 mg/ml TiO2-
NP anatase only in the cultivation media. The control
consisted of the macrophyte cultivation media without
additions of other chemicals. A sample from each prepared
exposure solution was collected for qualitative analysis with
liquid chromatography-tandem mass spectroscopy (time 0).
The solutions were stirred for 24 h in the dark, and a second
sample was taken for analysis to measure any degradation
or binding (time 24).

After the 24 h binding/degradation study, the treatment
solutions were decanted in 100 ml beakers in replicates of
five, and a 20 ± 1 cm strand of E. densa was added to each
replicate and exposed for 24 h under the same conditions as
during cultivation. After 24 h of exposure, another media
sample was taken for quantitative analysis (time 48). The
plant material was removed from the treatments, washed in
distilled water, dried, and snap-frozen in liquid nitrogen.
The samples were stored at −80 °C until further processing
to evaluate the enzyme activities.

Quantitative analysis of diclofenac

DCF was quantified on a 1200 infinity series liquid chro-
matography (Agilent, Waldbronn, Germany) coupled to
triple quadrupole mass spectrometry (model 6460, Agilent)
(LC-MSMS) with electron spray ionization (Jet Stream,
Agilent) using a Kinetex™ C18 reverse phase column
(2.1 × 100 mm, 1.7 U, 100 Å, Phenomenex, Aschaffenburg,
Germany). The LC-MSMS settings and protocol were
detailed by Esterhuizen-Londt et al. (2017) with a 0.5 pg on
column (S/N > 5) limit of quantification. Prior to analysis,
all samples were centrifuged at 10,000 × g at 10 °C for
30 min.

Enzyme extraction and activity assays

The enzymes were extracted according to Pflugmacher
(2004). In short, the frozen plant material was pestled to a
refined power using liquid nitrogen, and 1.5 g thereof was
suspended in 0.1 M potassium phosphate buffer (pH 6.5)
containing 20% glycerol, 1.4 mmol/l dithioerythritol, and
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1 mmol/l ethylenediaminetetraacetic acid. The samples were
stirred for 20 min before centrifugation at 5400 × g (4 °C)
for 10 min to remove cell debris. The supernatant was
centrifuged at 86,900 × g (4 °C) for 60 min to collect the
microsomal fraction. The supernatant was subjected to
ammonium sulfate precipitation (35–80%), collecting the
pellet after centrifugation. The cytosolic enzymes, now
contained in the pellet, were suspended in a 20 mM pH
7 sodium phosphate buffer. The samples were desalted
using Sephadex NAP-10 columns (GE Healthcare, Little
Chalfont, UK).

The protein concentrations of the two fractions of each
sample were measured according to Bradford (1976). The
enzymatic activities of GST (microsomal and cytosolic) and
GR (cytosolic) were measured spectrophotometrically
(Infinite M200, Tecan, Männedorf, Switzerland) and
expressed in the SI units of kat/mg protein. GST activity
(EC 2.5.1.18) was assayed by measuring an increase in
optical density at 340 nm following to conjugation of glu-
tathione and 1-chloro-2,4-dinitrobenzene (Habig et al.
1974). GR activity (EC 1.6.4.2) was measured as a decrease
at 340 nm as nicotinamide adenine dinucleotide phosphate
(NADPH) was consumed (Carlberg and Mannervik 1985).

Statistical analyses

All statistical analyses were performed using IBM® SPSS®
Statistics 28.0.0.0 (190) (2021). The DCF concentrations
quantified in the treatments were compared with the inde-
pendent samples t test, and the DCF concentrations quan-
tified over time were compared using the paired-samples t
test. The enzyme activity data did not meet the requirements
of sphericity and homogeneity, and thus, the non-parametric
Kruskal-Wallis test with pairwise comparisons was used,
observing an alpha value of 0.05 after Bonferroni correction
(Sokal and Rohlf 1987).

Results and discussion

DCF degradation and binding to TiO2

Under the experimental conditions for the binding study
prior to exposure with the macrophyte, the DCF con-
centration (Fig. 1), without TiO2-NPs, remained unchanged
after 24 h (p= 0.060). However, in the presence of TiO2-
NPs, the DCF concentration decreased by 11.9%
(p < 0.001). DCF degradation was not found in the treat-
ments without TiO2-NPs. Therefore, the undetected 11.9%
in the presence of TiO2-NPs was likely due to binding to the
NPs. Considering the concentrations of DCF (250 ng/ml in
100 ml= 25 µg) and the TiO2-NPs (1 mg/ml in
100 ml= 100 mg) per replicate, 2.98 µg DCF was bound

per 100 mg of TiO2 (29.8 µg/g) after 24 h. TiO2 photo-
catalysis of DCF was previously demonstrated by Rizzo
et al. (2009). However, degradation can be excluded as
these experiments were conducted in the dark. Similar to the
findings in the present study, Rizzo et al. (2009) reported
that after 30 min, 14% of the DCF (5 µg/ml) was adsorbed
to the TiO2 (0.2 mg/ml) in the dark, and thereafter saturated
under the prevailing conditions. No DCF contamination
was detected in the pure TiO2-NP treatments.

Enzymatic responses of Egeria densa

Studies regarding the adverse effects of DCF on macro-
phytes are limited. However, the available studies indicate
moderate toxicity as the EC50 of DCF was determined to
range from 7 to 350 µg/ml for microalgae such as Desmo-
desmus subspicatus and Pseudokirchneriella subcapitata, as
well as macrophytes such as Lemna minor, Nasturtium
officinale, and Callitriche platycarpa (Cleuvers 2003; Fer-
rari et al. 2003; Joachim et al. 2021). In the present study, a
DCF exposure concentration of 250 ng/ml was used. DCF
was internalized by the macrophyte dose-dependently over
time at a rate of 3.2 ng/g/h after the first 24 h, which
decreased to 1.5 ng/g/h after 96 h (Fig. S1). Accordingly, at
the conclusion of all exposures, all plants in all treatments
visually appeared healthy, and no chlorosis or necrosis could
be observed. Nevertheless, DCF toxicity is said to increase
under the sunlight due to the toxicity of its photo-
transformation byproducts, mainly 2-[(2-chlorophenyl)
amino] benzaldehyde (CPAB) for which an EC50 of
4800 ng/ml was determined, which is 10-times lower than
that of DCF (48100 ng/ml) for Scenedesmus vacuolatus

Fig. 1 Concentration of free diclofenac. Quantitative analysis of
soluble diclofenac (DCF) at the start and end of the 24-h incubation
period on its own (DCF, positive control), in the presence of titanium
dioxide (DCF+NP), and the nanoparticles on its own (NP, negative
control). Bars represent average DCF concentration ± standard devia-
tion as measured by liquid chromatography-tandem mass spectroscopy
(n= 3)
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(Schulze et al. 2010). For the generation of photo-
transformation byproducts, Schmitt-Jansen et al. (2007)
indicated that for S. vacuolatus, maximal toxicity was
achieved after 53 h of light exposure to 50,000 ng/ml of
DCF. Furthermore, Andreozzi et al. (2003), studying the
photodegradation of DCF, indicated that the half-life was
around five days under constant light conditions. Thus, the
relatively low DCF concentration (250 ng/ml) and the short
incubation under light (14 h) used in the present study would
not induce substantial adverse effects by CPAB generation.

When exposing E. densa to DCF, the microsomal GST
(mGST) activity was not elevated (p= 1) at the applied
concentrations. However, with exposure to the TiO2-NP
alone or in combination with DCF, the mGST activity was
inhibited (Fig. 2A). Compared to the control, the E. densa
mGST activity was reduced by 73.8% (p < 0.001) with
exposure to DCF in combination with TiO2-NP and 59.8%
with NPs (p= 0.050). Since most microsomal enzyme
substrates are lipophilic compounds (Yu 2002), the detox-
ification mechanism will be limited for hydrophilic com-
pounds such as DCF. The data indicate that the
mitochondrial detoxification of TiO2 is limited; however,
more so in the presence of DCF. Thus, cGST is more likely
to be involved in detoxifying the two compounds.

The activity of cGST (Fig. 2B), in contrast, was sig-
nificantly elevated with exposure to all three treatments.

Exposure to DCF increased the enzyme activity 16.6 ± 0.5-
fold with DCF as well as DCF-TiO2-NP (p < 0.001). NP
exposure caused a 6.4-fold increase in cytosolic GST (cGST)
activity (p= 0.004). In general, the phi and tau classes of
plant-specific cGST are predominantly present to detoxify and
restrict the effects of xenobiotics (Kumar and Trivedi 2018).
In Solanum lycopersicum L., GST activity increased 1.5-fold
with exposure to 1500 ng/ml DCF (Sousa et al. 2021).

Previously, GST activity in the macrophyte T. latifolia
associated with DCF exposure was studied by Bartha et al.
(2014). Using a similar photometric analytical method, the
authors reported no elevation of the GST activity after 24 h
of exposure to 1000 ng/ml DCF. However, the activity was
significantly induced after 72 h. In contrast to the results
presented here, Alkimin et al. (2020) reported inhibition of
the GST level in L. minor exposed to 375 ng/ml, 750 ng/ml,
and 1500 ng/ml DCF. Changes in antioxidant enzyme
activity and its related gene expression are associated with
antioxidant capacity and response in time courses (Dinler
et al. 2014). Interestingly, Varela-Valencia et al. (2014)
reported induced expression of the GST gene with anatase
TiO2 after only 6 h. However, in the present study, only the
activities of cGST increased.

GSTs are often associated with antioxidative defense
mechanisms and biotransformation, as reviewed by
Edwards et al. (2000). However, in the present study, the
mGSTs were inhibited with exposure to the NPs and in
combination with DCF, which may have led to elevated
oxidative stress. Nanomaterials have been shown to bind to
some proteins, such as bovine serum albumen (Giacomelli
et al. 1997), and specific enzymes, such as lysozyme (Xu
et al. 2010) and lactate dehydrogenase (MacCormack et al.
2012), leading to structural changes and inhibition (Xu et al.
2010).

Fig. 2 Glutathione S-transferase activities. Activities of the (A)
microsomal and (B) cytosolic glutathione S-transferase (GST) of
Egeria densa exposed to diclofenac (DCF), TiO2-NP pre-exposed to
DCF (DCF+NP), and TiO2-NP. Bars present average enzyme
activity ± standard deviation (n= 5)

Fig. 3 Glutathione reductase activities. Glutathione reductase (GR)
activity of Egeria densa exposed to diclofenac (DCF), TiO2-NP pre-
exposed to DCF (DCF+NP), and TiO2-NP. Bars present average
enzyme activity ± standard deviation (n= 5)
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Considerating the key role GR plays in the cellular
control of oxidative stress by the generation of glutathione
(GSH), E. densa’s GR activity (Fig. 3) responded in the
same manner as cGST (Fig. 2B). The GR activity increased
by 12.2-fold with exposure to DCF and a combination of
DCF+NP (p < 0.001). Exposure to the TiO2-NP only
resulted in a 4.7-fold increase in activity. Since TiO2

nanoparticles are considered one of the safest and low-toxic
materials, the significant increase in GR activity indicated
that exposure to TiO2 induced substantial effects. Okupnik
and Pflugmacher (2016) also reported a significant increase
in the GR activity in Hydrilla verticillata with exposure to
anatase TiO2. In the study by Bartha et al. (2014), the GR
activity increased in shoots but not in roots of T. latifolia
exposed to 1000 ng/ml DCF for seven days. Sousa et al.
(2021) reported increased GR activity in both roots and
shoots of S. lycopersicum L. However, the exposure con-
centration was up to 5000 ng/ml DCF for five weeks.

In contrast to mGST, cGST and GR activities were not
inhibited with exposure to the NPs alone. Studies have
proposed preferential binding of specific NPs to certain
enzymes (Bayraktar et al. 2006; Fischer et al. 2002). Our
data supports this as mGST and cGST are structurally dis-
tinct isozymes and evolutionarily diverse (Vaish et al.
2020). Some studies have also discussed the possibility that
high ROS concentrations induce DNA and RNA damage,
lipid peroxidation, and protein oxidation/denaturation with
consequent enzyme inhibition (Alkimin et al. 2020). Fur-
thermore, TiO2 particles are known to interact with phos-
pholipids through possible binding by hydroxyl groups of
the terminal glycerol (Le et al. 2014). Another study
showed that TiO2 made pits in membranes (Batiuskaite
et al. 2022). These studies demonstrate that TiO2 affects the
integrity of membranes, which is necessary for mGST to
remain functional, potentially explaining the loss of activity
observed here. Investigating the role of lipid peroxidation
related to the functionality of the mGSTs in the future is
essential in understanding potentially associated oxidative
stress. Nevertheless, the preferential binding of NPs seems
more plausible and warrants future research.

To summarize the results, the activity of mGST was
inhibited by the TiO2 nanoparticles, and the effect of DCF
was insignificant. Oppositely, the activities of cGST and
GR were increased by DCF, but no synergistic effect was
found with the TiO2 nanoparticles. However, it is known
that cytosolic GSTs are more involved in detoxification than
mitochondrial and microsomal GSTs (Dasari et al. 2018).
Therefore, it is estimated that the major contributor to the
elevated antioxidant response observed in aquatic macro-
phyte E. densa is DCF rather than the TiO2 nanoparticles. In
general, the macrophyte was able to cope with the adverse
effects associated with exposure to these high concentra-
tions of DCF and TiO2, as well as a combination of the two,

as visually evident from lack of chlorosis or necrosis and
the plants continued to grow throughout the exposure
period.

The concentration of pollutants utilized in the present
study exceeds that of currently measured concentrations;
however, these concentrations of titanium dioxide and DCF
may increase in the future to these values. This study pro-
vides a brief insight into the toxic effects of titanium
dioxide, diclofenac, and their combined toxicity on the
antioxidant and the biotransformation system in the model
aquatic macrophyte E. densa. Assessing other physiological
markers, such as, for example, total reactive oxygen species,
chlorophyll content, gene expression of the biotransforma-
tion and antioxidative enzymes, would provide more
information on the toxicity of the individual xenobiotics and
combined toxicity. Furthermore, additional information on
combined toxicity is needed; therefore, ecotoxicological
investigations with various combinations and mixtures are
required.

Conclusion

The study shows that even at concentrations higher than
environmentally detected, the macrophyte E. densa
responds to environmental pollutants such as nanoparticles
and pharmaceuticals, in this case, TiO2 and DCF, ade-
quately by elevating antioxidative responses and bio-
transformation processes to avoid adverse effects. Further
studies are required to understand why mGST but not cGST
is inhibited by the nanomaterials. The study illustrates the
discrepant results when comparing the physiological out-
comes with exposure to the compounds in single and
mixtures. This information becomes essential when con-
sidering the cocktails of pollutant mixtures in the environ-
ment and thus emphasizes the importance of considering the
synergistic and antagonistic effects of mixture effects in
future experiments.
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