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A B S T R A C T

Recent advancements in natural language processing have led to growing interest in
critical domains such as legal, finance, and healthcare. In particular, medical language
processing has emerged as a focus of its own. As the number of unstructured text and
structured ontologies increases, applying information extraction techniques becomes
an essential first step for downstream applications in healthcare. To partially meet
these needs, this dissertation studies knowledge acquisition for medical language pro-
cessing under real-world low-resource conditions. This includes limited-to-no labeled
data, multilingualism, domain specificity, and missing knowledge. The focus is on the
fundamental building blocks of information extraction, entities and relations, where
the proposed methods derive representations from pre-trained language models for
unstructured text and knowledge graph embedding models for structured data.

First, we consider entity-centric learning in the clinical domain, starting with multi-
lingual and unsupervised concept extraction from text for semantic indexing to named
entity transfer for privacy-preserving cross-lingual de-identification. We demonstrate
the effectiveness of transfer learning with multilingual and domain-specific language
models in supervised, unsupervised, and few-shot settings. In particular, we follow
a pre-train and then fine-tune paradigm to achieve better performance compared to
state-of-the-art neural architectures for concepts extraction from multilingual clinical
texts. Whereas for unsupervised extraction, we propose a hybrid framework, Dense
Phrase Matching, which combines embedding-based matching with concepts string
matching, showing strong improvements on lexically rich texts, with further appli-
cation to multilingual clinical texts. We then propose a Transformer based transfer
learning framework, T2NER, that offers to bridge the gap between growing research in
deep transformer models, NER transfer, and domain adaptation. We use T2NER for the
task of identifying protected health information by empirically investigating the few-
shot cross-lingual transfer property of multilingual BERT, which primarily has been
the focus of zero-shot transfer, and propose an adaptation strategy that significantly
improves clinical de-identification for code-mixed texts with few samples.

Second, we consider relation-centric learning in the biomedical domain, starting with
distantly supervised relation extraction from text for knowledge base enrichment to
multi-relational link prediction for discovering missing facts in the knowledge graph.
We showcase the utility of scientific language models for relation extraction and ef-
ficient tensor factorization for knowledge graph completion. We first propose entity-
enriched relation classification BERT for multi-instance learning, whereby knowledge
sensitive data encoding scheme is introduced that significantly reduces noise in dis-
tant supervision. We then investigate existing broad-coverage biomedical relation ex-
traction benchmarks to identify a notable shortcoming of overlapping training and test
relationships which we address by introducing a more accurate benchmark MedDis-
tant19. Lastly, we propose an efficient knowledge graph completion model, LowFER,
that achieves on par or state-of-the-art on several datasets in general and biomedical
domains. We show that LowFER’s representation capacity is fully expressive to han-
dle arbitrary relation types and its low-rank generalization of Tucker decomposition
encapsulates existing models as special cases.
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Z U S A M M E N FA S S U N G

Durch die Einführung elektronischer Patientenakten (EHR) können Krankenhäuser
und klinische Einrichtungen auf große Mengen heterogener Patientendaten zugreifen.
Diese Daten bestehen aus strukturierten Daten (Versicherungen, Abrechnungen und
Laborergebnisse) und unstrukturierten Daten (Arztbriefe, Aufnahme-/Entlassungsdat-
en und Medikationsschritte). Unstrukturierte Texte sind von großer Bedeutung für die
Anwendung von Methoden der Informationsextraktion, um relevante Konzepte, En-
titäten, Ereignisse und Interaktionen zu lernen. Darüber hinaus verfügen wir über
zahlreiche strukturierte taxonomische Ressourcen im medizinischen Bereich. Diese
medizinischen Wissensquellen werden von Fachleuten kuratiert und können ein reich-
haltiges Lernsignal liefern, bei dem die medizinischen Konzepte in eine hierarchische
Struktur eingeordnet werden.

Da Text- und Wissensdatenbanken eine gemeinsame Schnittstelle für Anwendun-
gen zur Informationsextraktion im Gesundheitswesen darstellen, spielen sie in dieser
Dissertation als Eingabequellen eine zentrale Rolle. Da die medizinische Sprachverar-
beitung darauf abzielt, aussagekräftige Informationen aus unstrukturiertem Text zu
extrahieren und zu analysieren, um sie in strukturierte Daten umzuwandeln, ist ein
häufig verwendetes Format das der Entität und der Beziehungen zwischen ihnen,
welches hier im Mittelpunkt des Lernens von Repräsentationen steht. Insbesondere
werden in dieser Dissertation die folgenden Bedingungen betrachtet, die sich aus der
Verfügbarkeit von geringen Ressourcen ergeben:

• Limitierte bis keine annotierte Daten: Eine immer wiederkehrende Herausforde-
rung von überwachten Lernmethoden ist die Verfügbarkeit von annotierten Daten,
die sich in Bezug auf Zeit und Kosten für die medizinische Sprachverarbeitung
noch verschärft, da für die Erstellung der Daten Experten benötigt werden.

• Mehrsprachigkeit: Trotz der Fortschritte im Bereich der Analyse von elektron-
ischen Patientenakten konzentrieren sich die meisten Forschungsarbeiten bisher
auf die englische Sprache. Aufgrund zu geringer oder kaum verfügbarer Daten
in anderen Sprachen, stellt die Erforschung und Entwicklung mehrsprachiger
Gesundheitssysteme immer noch eine sehr große Herausforderung dar.

• Domänenspezifität: Eine unmittelbare Folge der Arbeit mit medizinischer Sprach-
verarbeitung ist die Spezifität der Domäne, die bei der Arbeit in Teilgebieten wie
Krebs oder Schlaganfall noch ausgeprägter ist.

• Fehlendes Wissen: Mit dem kontinuierlichen Wachstum der biomedizinischen
Literatur besteht ein ständiger Bedarf an der Erstellung, Anreicherung und Aktu-
alisierung der Wissensdatenbanken, um fehlende Fakten zu entdecken und neue
hinzuzufügen.

Was die Modellierung betrifft, so verwenden wir in erster Linie vortrainierte Sprach-
modelle zur Darstellung unstrukturierter Texte und Modelle für Einbettungen von Wis-
sensgraphen zur Darstellung strukturierter multirelationaler Daten. In den nächsten Ab-
schnitten geben wir einen Überblick über jeden Teil der Arbeit, der in entsprechende
Kapitel unterteilt ist, einschließlich der relevanten Forschungsfragen und Beiträge.
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Teil I: Entitätszentriertes Lernen

In diesem Teil konzentrieren wir uns auf das Lernen von Repräsentationen für En-
titäten, die die Grundlage für das relationale Lernen bilden. Das Auffinden von En-
titäten umfasst die Erkennung, Verknüpfung, Typisierung und deren Abgleich, wobei
wir uns hauptsächlich auf die Entdeckung von Konzepten und Entitäten aus dem Text
für nachgelagerte Anwendungen oder den Aufbau neuer Taxonomien und Wissens-
datenbanken konzentrieren.

Kapitel 2: Konzeptextraktion

Wie bereits erwähnt, haben sich die meisten Forschungsarbeiten trotz des digitalen
Fortschritts im Gesundheitswesen auf die englische Sprache konzentriert, mit nur weni-
gen neueren Möglichkeiten für andere Sprachen (Névéol et al., 2018). Wir gehen dieses
Problem an, indem wir uns auf die Aufgabe der Extraktion von klinischen Konzepten
aus mehrsprachigen elektronischen Patientendaten (EHRs - Electronic Health Records)
konzentrieren. Die hier betrachteten Konzepte sind eine Teilmenge einer gegebenen
Wissensbasis und einem relevanten Teilgebiet, z. B. krebsbezogene Konzepte aus ICD-
10 oder schlaganfallbezogene Konzepte aus SNOMED CT (Donnelly et al., 2006). Ein
Konzept ist definiert als eine semantische Texteinheit, die im Text explizit angegeben
werden kann oder auch nicht, sich aber auf einen zugrunde liegenden Begriff aus
einer Wissensbasis bezieht, wobei eine explizit erwähnte benannte Entität als Sonder-
fall eines Konzepts betrachtet wird. Sobald wir klinisch relevante Konzepte aus dem
Text extrahiert haben, kann ein impliziter Abgleich zwischen Text und Wissensbasis
für die semantische Indizierung von Texten für die Suche und Wissensentdeckung ver-
wendet werden.

Um den Abgleich zu erlernen, gehen wir von zwei Szenarien aus, die von der
Verfügbarkeit von annotierten Daten abhängen. Wenn wir eine Sammlung von (Text,
Konzepte)-Paaren haben, reduziert sich das Problem auf eine überwachte Multi-Label-
Konzeptklassifikation. Traditionelle Methoden zur Konzeptextraktion haben von Featu-
re-Engineering und dem Nachschlagen in domänenspezifischen Wörterbüchern prof-
itiert (Bounaama and Amine, 2018; Gobeill and Ruch, 2018), wobei neuronale Netz-
werke den Stand der Technik für englische klinische Texte verbessert haben (Baumel et
al., 2018). Im Gegensatz dazu hat das Vor-Trainieren tiefer neuronaler Modelle (Qiu et
al., 2020) viele Sprachverstehensaufgaben deutlich verbessert, einschließlich der Fein-
abstimmung bei Problemen mit geringen Ressourcen. In Kapitel 2 untersuchen wir
zunächst die Auswirkungen des Transferlernens in einer überwachten Umgebung für
deutsche klinische Texte. Wir betrachten eine umfassende Reihe von neuronalen Base-
lines, die modernste Textklassifizierer auf der Basis von Convolutional Neural Network
(CNN), Long-Short Term Memory (LSTM) und Gated Recurrent Unit (GRU) Kodierern
umfassen, während wir neuartige Beschreibungs- und Self-Attention-Modelle vorschla-
gen. Um die durch die Behandlung von Deutschen Texten entstehenden Lücken teil-
weise aufzuzeigen, führen wir außerdem die automatische maschinelle Übersetzung
ein, um Deutsche Texte ins Englische zu übersetzen, und untersuchen die durch vor-
trainierte statische und kontextualisierte Einbettungen verursachten Domänenlücken.
Wir betrachten folgende vortrainierte Sprachmodelle: multilinguale bidirektionale Enc-
oder-Repräsentationen von Transformatoren (mBERT) (Devlin et al., 2019a) für Deutsch
und seine domänenspezifische englische Variante BioBERT (Lee et al., 2020) unter dem
Paradigma vortrainieren, dann feinabstimmen.
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Unsere experimentelle Auswertung ergibt einen F1-Score von 73%, was die Effek-
tivität der impliziten Konzeptrepräsentation der BERT-Text-Encoder unterstreicht und
gleichzeitig den Aufwand verringert, domänenspezifische Anpassungen durchzuführen,
etwa durch spezielle Wörterbücher, Feature-Engineering oder durch die Spezifikation
komplexer neuronaler Architekturen. Wir haben auch festgestellt, dass die automa-
tische maschinelle Übersetzung die absoluten Modellwerte im Durchschnitt um 6%
verbessert hat, was die Sprachlücke verdeutlicht. Schließlich wirkten sich domänen-
spezifische Worteinbettungen stärker auf die statischen Modelle aus als auf die kon-
textbezogenen. Diese Modelle und Ergebnisse sind in Amin et al. (2019) veröffentlicht.

Das Erlernen des Abgleichs (engl. Alignment) als unüberwachtes Problem ähnelt je-
doch einer "Zero-Shot" Klassifizierungsaufgabe, bei der wir nur eine Sammlung von
Texten und einen vordefinierten Satz von Begriffen haben. Trotz aktuellster Forschungse-
rgebnisse erfordert die Feinabstimmung manuell annotierte Daten in Form von (Text,
Konzepte)-Paaren, die für viele Sprachen und klinische Teilbereiche nicht ohne weit-
eres verfügbar sind. Inspiriert von aktuellen Arbeiten im Bereich des Zero-Shot En-
tity Linking (ZSEL) (Wu et al., 2020a), schlagen wir einen hybriden Ansatz für die
unüberwachte Konzeptextraktion vor, der Wörterbuch- und Kontextabgleiche verwen-
det, um die genannten Kandidaten zu generieren. Für die Generierung von Kandidaten
verwenden wir Modelle zur unüberwachten Keyphrase Extraction (KPE) und Contex-
tual Span Detection (CSD). Die extrahierten Bereiche werden mithilfe von CPMerge
(Okazaki and Tsujii, 2010) und Dense Nearest Neighbour Search mit FAISS (Johnson et
al., 2019) abgeglichen, wobei die Einbettungen mit einem kontextuellen satzbasierten
Paraphrasen-Modell berechnet werden (Reimers and Gurevych, 2019). Schließlich wen-
den wir eine einfache Filterschwelle an, um die Teilmenge der Konzepte zu erhalten.
Wir evaluieren unseren Ansatz an einem englischsprachigen Datensatz für Arzneimit-
telrezensionen und erreichen dabei einen beträchtlichen Leistungszuwachs von 12%
F1-Score im Vergleich zu QuickUMLS (Soldaini and Goharian, 2016), und verwenden
ihn in einem unbeaufsichtigten mehrsprachigen Setup für den deutschen klinischen
Text wie im überwachten Fall, wobei wir einen F1-Score von 11% erzielen.

Kapitel 3: Erkennung von Entitäten

Ein Sonderfall eines Konzepts ist eine benannte Entität, die in biomedizinischer Liter-
atur oder klinischen Berichten vorkommen, wie z. B. der Name eines medizinischen
Gerätes (MRI), einer Krankheit (Schlaganfall) oder eines Proteins (PEX-13). Die Extrak-
tion von benannten Entitäten aus Text und die anschließende Typisierung der Entitäten
ermöglicht den Aufbau einer Wissensbasis mit einer sauberen Taxonomie. Die Erstel-
lung umfangreicher annotierter Korpora ist jedoch eine Herausforderung, weshalb wir
häufig auf Methoden des Transferlernens zurückgreifen. Wie in Kapitel 2 gesehen, er-
möglichen vortrainierte Sprachmodelle zwar einen effektiven Konzepttransfer, ohne
jedoch eine spezielle Experimentierumgebung für die Erkennung von benannten En-
titäten (NER) bereitzustellen. Gleichzeitig hat die Forschung auf dem Gebiet des NER-
Transfers in den letzten Jahren erhebliche Fortschritte gemacht, und es wurden viele
neue Verfahren vorgeschlagen.

In Kapitel 3 stellen wir zunächst ein allgemeines Transformer-basiertes Transfer-
Learning-Framework für die Named Entity Recognition (T2NER) vor, das in PyTorch
(Paszke et al., 2019) für die Aufgabe der Entitätenerkennung mit tiefen Transforma-
tormodellen entwickelt wurde, die traditionell von LSTM-Netzwerken profitiert hat.
Das Framework basiert auf der Transformer-Bibliothek (Wolf et al., 2020) und unter-
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stützt verschiedene Transfer-Learning-Szenarien, von sequentiellem Transfer bis hin
zu Domänenanpassung, Multi-Task-Learning und semi-supervised Learning. T2NER
zielt darauf ab, die Lücke zwischen den algorithmischen Fortschritten in diesen Bere-
ichen zu schließen, indem es diese mit dem Stand der Forschung bei Transformer-
Modellen kombiniert, um eine einheitliche, leicht erweiterbare Plattform zu bieten. Es
kann für die Transfer-Learning-Forschung in der ressourcenarmen NER und für reale
Anwendungen, wie die biomedizinische NER, verwendet werden. Das Framework ist
zusammen mit seinen Konstruktionsprinzipien und der Systembeschreibung in Amin
and Neumann (2021) veröffentlicht.

Neben biomedizinischen Konzepten und Entitäten enthalten klinische Texte in der
Regel auch geschützte Gesundheitsinformationen (PHI - Patient Health Information),
was ein Risiko für die Identifizierung der Patienten darstellt , wenn diese gegenüber
Informationsextraktionswerkzeugen für nachgelagerte Anwendungen offengelegt wer-
den. Daher ist es von entscheidender Bedeutung, solche sensiblen Daten zu entfernen,
um eine ethische und sicherheitsrelevante natürlich-sprachliche Verarbeitung gemäß
der GDPR-Verordnung zu gewährleisten. Bestehende Arbeiten zur De-Identifizierung
(wo es als ein spezielles NER-Problem betrachtet wird) beruhen auf der Verwendung
großer annotierter Korpora in englischer Sprache (Stubbs et al., 2017; Stubbs and
Uzuner, 2015), was für reale mehrsprachige Umgebungen in der Regel ungeeignet
ist. Vorgefertigte Sprachmodelle besitzen ein großes Potenzial für den sprachenüber-
greifenden Transfer in ressourcenarmen Umgebungen, einschließlich NER. Allerdings
ist das Modellverhalten bezüglich einer "Few-shot" sprachübergreifenden NER-Übertr-
agung mit dem Potenzial für eine domänenspezifische klinische De-Identifizierung
unklar.

Um diese Frage zu untersuchen, zeigen wir empirisch die few-shot sprachenüber-
greifende Transfereigenschaft von mBERT für NER und setzen diese in einer realen
ressourcenarmen Anwendung ein, wo zweisprachige (spanisch-katalanisch) klinische
Notizen im Schlaganfallbereich de-identifizert werden müssen. Wir (a) schlagen eine
optimale sprachübergreifende "Few Shot" Transferstrategie vor, (b) annotieren ein Zie-
lentwicklungsset und (c) konstruieren einen annotierten "Few shot" Zielkorpus für ef-
fektives sprachübergreifendes Transferlernen. Das Entwicklungsset wird für die Ausw-
ahl von Modellen mit wenigen Stichproben eingesetzt, bei denen wir nur einige hun-
dert annotierte Beispiele für das Training verwenden. Unser Modell verbessert den
Zero-Shot-F1-Score von 73,7% auf 91,2% im Gold-Evaluierungsset, wenn mBERT aus
dem synthetischen MEDDOCAN-Korpus (Marimon et al., 2019) in Spanisch mit un-
serem sprachübergreifenden "Few-shot" Zielkorpus angepasst wird. Bei der Verallge-
meinerung auf einen Testsatz außerhalb der Stichprobe erreicht das beste Modell einen
F1-Score von 97,2% bei einer manuell durchgeführten Auswertung. Diese Ergebnisse
sind in Amin et al. (2022b) veröffentlicht.

Teil II: Relationen-Zentriertes Lernen

In diesem Teil gehen wir davon aus, dass wir eine Wissensbasis (Knowledge Base -
KB) mit einer sauberen und aussagekräftigen Taxonomie semantischer Typen (oder
Klassen) haben und dass diese Typen mit einem umfassenden Satz normalisierter (d.h.
eindeutig identifizierter) Entitäten befüllt sind. Eine solche KB kann mit den in Teil I
erörterten entitätszentrierten Lernansätzen gegeben oder teilweise befüllt werden.
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Kapitel 4: Relationsextraktion

Computer können nur begrenzt Wissen generieren, da das gesamte Faktenwissen über
unsere Welt von Menschen geschaffen und in Enzyklopädien, wissenschaftlichen Pub-
likationen, Büchern oder Tagesnachrichten dokumentiert wird (Weikum et al., 2021).
Relationsextraktion (RE) ist eine solche Aufgabe der Wissensentdeckung, die darauf
abzielt, Interaktionen zwischen Entitäten aus Texten zu lernen, um strukturiertes Wis-
sen in Form von (Subjekt, Prädikat, Objekt) (SPO)-Tripeln auszugeben, die entweder
eine bestehende, von Menschen kuratierte KB bereichern oder halbautomatisch eine
neue aufbauen können.

Im biomedizinischen Bereich ist dies jedoch eine Herausforderung, da es an an-
notierten Daten mangelt und die Kosten für eine Annotation hoch sind, da hierfür
Experten benötigt werden. Distant Supervision (DS) wird häufig verwendet, um den
Mangel an annotierten Daten zu beheben, indem Beziehungen zwischen der Wissens-
basis und Rohtexten automatisch berechnet werden (Mintz et al., 2009). Eine solche
Pipeline ist anfällig für Rauschen aufgrund einer großen Anzahl falsch positiver Ergeb-
nisse, wobei frühere Arbeiten von Dai et al. (2019) ein Framework für gegenseitiges
Lernen von Han et al. (2018a) mit biomedizinischem Text und Knowledge Graph
(KG) unter Verwendung von Hilfsaufgaben, einschließlich Knowledge Graph Com-
pletion (KGC) und Klassifizierung von Entitätstypen, erweiterten. Sie zeigten, dass die
Verwendung von "Attention-Mechanismen" mit einem Wissensgraphen bei der Ent-
fernung von Rauschen mit einem Piece-wise Convolutional Neural Network (PCNN)
Satz-Encoder helfen kann. In Teil I haben wir gezeigt, dass vortrainierte Sprachmod-
elle und ihre domänenspezifischen Varianten effektive Entitätsrepräsentationen mit
Transferlernen liefern. Darauf aufbauend und inspiriert von Dai et al. (2019), die eine
Wissensbasis verwenden, und von Alt et al. (2019), die das OpenAI GPT für Bag-level
Multi-Instance Learning (Bag-Level-MIL) (Surdeanu et al., 2012) für DSRE (Distant Su-
pervision Relation Extraction) für die allgemeinen Domäne fein-justierten, konzentri-
eren wir uns auf wissensbasierte DSRE in der biomedizinischern Domäne (Bio-DSRE).

In Kapitel 4 schlagen wir zunächst vor, das Rauschen von DS zu reduzieren, indem
wir ein mit Entitäten angereichertes Klassifizierungsmodell für Relationen (RBERT)
durch ein einfaches KB-kontrolliertes Kodierungsschema auf das Problem der Bag-
Level-MIL für DSRE erweitern. Die Kodierung identifiziert die Head- und Tail-Rolle
von Entitäten aus dem Wissensgraphen (Knowledge Graph - KG) durch Markierung
und durchläuft tiefe Transformator-Schichten mit Attention. Die daraus resultierende
textuelle Repräsentation können in eine Relation-Repräsentation zusammengeführt
werden, die implizit das gegenseitige Lernen mit Text und KG datengesteuert kodiert.
Das vorgeschlagene Model MIL-RBERT reduziert das Rauschen signifikant und er-
reicht eine State-of-the-Art-Leistung mit 68,4% AUC und 64,9% F1-Score, mit einem
absoluten 7% P@2k-Gewinn im Vergleich zu Dai et al. (2019). Die Datenpipeline und
das Modell sind in Amin et al. (2020a) veröffentlicht.

Neben dem Rauschen besteht die zweite große Herausforderung in der Skalierung
auf eine große Anzahl von Konzepten, um eine breite Abdeckung zu erreichen. Die
bestehenden Arbeiten im Bereich der breit-angelegten Biomedical Distant Supervi-
sion Relation Extraction (Bio-DSRE) liefern jedoch sehr genaue Ergebnisse (Amin et
al., 2020a; Hogan et al., 2021; Xing et al., 2020), einschließlich unseres Beitrags aus
dem letzten Abschnitt, was uns veranlasst hat, die verwendeten Benchmarks genauer
zu untersuchen. Außerdem veranlasst uns das Fehlen einer gründlichen Evaluierung
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von domänenspezifischen Sprachmodellen für die biomedizinische Relationsextraktion
dazu, die domänenspezifischen Sprachmodelle gründlich zu untersuchen.

Wir beginnen mit der Untersuchung bestehender Benchmarks auf mögliche Trainings-
und Testlecks von KG-Tripeln und finden signifikante Überschneidungen von 26%
bis 86%. Solche Lecks wirken sich auf die Leistung des Modells aus, da es durch
einfaches Auswendiglernen der Trainingsrelationen eine höhere Punktzahl erreichen
kann, anstatt auf neue, bisher unbekannte Relationen zu generalisieren. Als Ursachen
für diese Probleme erkennen wir die Normalisierung der Textform von Begriffserwäh-
nungen auf ihre eindeutigen Bezeichner und die unsachgemäße Behandlung inverser
Beziehungen. Im Gegensatz dazu gibt es genauere Benchmarks, die sich jedoch auf
engere Arten von Interaktionen konzentrieren. Um die Probleme mit der breiten Ab-
deckung von Benchmarks zu lindern und diese Lücke zu schließen, stellen wir einen
neuen Benchmark MedDistant19 vor, der seinen Wissensgraphen aus der weit ver-
breiteten Gesundheitsontologie SNOMED CT (Chang et al., 2020) bezieht. Mit dem
Erfolg von domänenspezifischen vortrainierten Sprachmodellen (Gu et al., 2021) und
inspiriert von bestehenden gründlichen Studien zur Relationsextraktion in der allge-
meinen Domäne (Alt et al., 2020; Gao et al., 2021a; Peng et al., 2020), führen wir eine
umfassende Evaluierung mit MedDistant19 für die biomedizinische Domäne durch.
Der Benchmark und die Ergebnisse sind in Amin et al. (2022a) veröffentlicht.

Kapitel 5: Vervollständigung von Wissensgraphen

Trotz manuell oder halbautomatisch erstellter KBs sind die meisten von Natur aus
unvollständig und enthalten nur eine begrenzte Anzahl von beobachteten Fakten aus
dem allgemeinen oder biomedizinischen Bereich, die als strukturierte Beziehungen
zwischen Entitäten dargestellt werden. Um dieses Problem teilweise zu lösen, konzen-
trieren wir uns auf eine weit verbreitete Aufgabe beim statistischen relationalen Lernen,
nämlich die der Vorhersage von Verbindungen bzw. der Vervollständigung von Wis-
sensgraphen, wobei wir von einer unvollständigen, von Menschen erstellten KB ausge-
hen. Als ein Ergebnis erhalten wir eine gering-dimensionale multirelationale graphis-
che Darstellung von Entitäten und ihren Beziehungen, die zur Aufdeckung fehlen-
der Fakten (Vollständigkeit) oder zur Überprüfung der Gültigkeit von Fakten (Veri-
fizierung) verwendet werden kann. Zur Lösung dieses Problems wurden bisher sowohl
lineare als auch nichtlineare Einbettungsmodelle vorgeschlagen. Bilineare Modelle sind
aussagekräftig, neigen aber zur Überanpassung und können zu einem quadratischen
Wachstum der Parameter bei der Anzahl der Beziehungen führen, was uns veranlasst
hat, diese Richtung zu untersuchen.

Da einfachere Modelle zum Standard geworden sind, mit bestimmten Einschränkun-
gen für die bilineare Abbildung als Parameter für Relationen, schlagen wir in Kapitel 5

ein faktorisiertes bilineares Pooling-Modell vor, das üblicherweise beim multimodalen
Lernen (Yu et al., 2017) verwendet wird, um eine bessere Fusion von Entitäten und
Relationen zu erreichen, was zu einem effizienten und constraint-freien Tensor Fak-
torisierungsmodell, LowFER, führt. Empirisch evaluieren wir Teilmengen von Freebase
(Bollacker et al., 2008), WordNet (Miller, 1992) und YAGO (Rebele et al., 2016) für die
allgemeine Domäne und UMLS (Bodenreider, 2004) und SNOMED CT (Donnelly et al.,
2006) für die biomedizinischen Domäne und erreichen dabei eine Leistung, die dem
Stand der Forschung entspricht.

Aus formaler Sicht ist eine wichtige theoretische Eigenschaft von KGC-Modellen ihre
volle Ausdrucksfähigkeit. Ein vollständig ausdrucksstarkes Modell kann Beziehungen

xiv



jeden Typs darstellen, einschließlich symmetrischer, asymmetrischer, reflexiver und
transitiver Beziehungen, um nur einige zu nennen. Modelle wie RESCAL, HolE, Com-
plEx, SimplE und TuckER haben gezeigt, dass sie voll ausdrucksstark sind (Balaže-
vić et al., 2019b; Kazemi and Poole, 2018; Trouillon and Nickel, 2017; Wang et al.,
2018b). Darüber hinaus wurde von Kazemi and Poole (2018) gezeigt, dass RESCAL,
DistMult, ComplEx und SimplE zu einer Familie von bilinearen Modellen mit unter-
schiedlichen Mengen von Constraints gehören. Später stellte Balažević et al. (2019b)
fest, dass TuckER alle diese Modelle als Spezialfälle verallgemeinert. Diese theoretis-
chen Untersuchungen helfen uns auch, LowFER formal besser zu verstehen.

Wir beweisen, dass LowFER voll aussagekräftig ist, indem wir Schranken für die
Dimensionalität der Einbettung und den Rang der Faktorisierung angeben. Es ver-
allgemeinert das auf der Tucker-Zerlegung basierende TuckER-Modell (Balažević et
al., 2019b) als eine effiziente Approximation mit niedrigem Rang (Low-Rank Approx-
imation), ohne die Leistung wesentlich zu beeinträchtigen. Aufgrund der Low-Rank-
Approximation kann die Modellkomplexität durch den Faktorisierungsrang kontrol-
liert werden, wodurch das mögliche kubische Wachstum von TuckER vermieden wird.
Bei extrem niedrigen Rängen bewahrt LowFER die Leistung und bleibt dabei parame-
tereffizient. Das Modell und die Ergebnisse sind in Amin et al. (2020b) veröffentlicht.

xv





P U B L I C AT I O N S

The dissertation is composed of the following peer-reviewed articles:

Saadullah Amin, Günter Neumann, Katherine Ann Dunfield, Anna Vechkaeva, Kathryn CLEF’19
Concept
Extraction
Chapter 2

Annette Chapman, and Morgan Kelly Wixted (2019). MLT-DFKI at CLEF eHealth 2019:
Multi-label Classification of ICD-10 Codes with BERT. In Proceedings of the 20th Confer-
ence and Labs of the Evaluation Forum (Working Notes) (pp. 1–15). Lugano, Switzerland.
CEUR Workshop Proceedings.

Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield & Günter Neumann (2020). ICML’20
Knowledge
Graph
Completion
Chapter 5

LowFER: Low-rank Bilinear Pooling for Link Prediction. In Proceedings of the 37th Inter-
national Conference on Machine Learning (pp. 257-268). Online. Proceedings of Machine
Learning Research.

Saadullah Amin*, Katherine Ann Dunfield*, Anna Vechkaeva & Günter Neumann BioNLP’20
Relation
Extraction
Chapter 4

(2020). A Data-driven Approach for Noise Reduction in Distantly Supervised Biomed-
ical Relation Extraction. In Proceedings of the 19th SIGBioMed Workshop on Biomedical
Language Processing (pp. 187-194). Online. Association for Computational Linguistics.

Saadullah Amin & Günter Neumann (2021). T2NER: Transformers based Transfer EACL’21
Named
Entity
Recognition
Chapter 3

Learning Framework for Named Entity Recognition. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: System Demonstra-
tions (pp. 212-220). Online. Association for Computational Linguistics.

Saadullah Amin, Noon Pokaratsiri Goldstein, Morgan Kelly Wixted, Alejandro García- BioNLP’22
Named
Entity
Recognition
Chapter 3

Rudolph, Catalina Martínez-Costa & Günter Neumann (2022). Few-Shot Cross-lingual
Transfer for Coarse-grained De-identification of Code-Mixed Clinical Texts. In Proceed-
ings of the 21st Workshop on Biomedical Language Processing (pp. 200-211). Dublin, Ireland.
Association for Computational Linguistics.

Saadullah Amin*, Pasqaule Minervini*, David Chang, Pontus Stenetorp & Günter COLING’22
Relation
Extraction
Chapter 4

Neumann (2022). MedDistant19: Towards an Accurate Benchmark for Broad-Coverage
Biomedical Relation Extraction. In Proceedings of the 29th International Conference on Com-
putational Linguistics (pp. 2259-2277). Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

* The authors contributed equally.

xvii

http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://proceedings.mlr.press/v119/amin20a.html
https://aclanthology.org/2020.bionlp-1.20/
https://aclanthology.org/2020.bionlp-1.20/
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2022.bionlp-1.20/
https://aclanthology.org/2022.bionlp-1.20/
https://aclanthology.org/2022.coling-1.198/
https://aclanthology.org/2022.coling-1.198/




A C K N O W L E D G E M E N T S

I am grateful to Günter for providing the freedom to conduct this research in an in-
dependent way and for his time, support, feedback, and discussions as supervisor. It
instilled a certain degree of confidence in me that resulted in gradual scientific growth.

I am grateful to Josef for giving me the opportunity to conduct this work at his Multi-
linguality and Language Technology (MLT) department at DFKI. I sincerely appreciate
his continued support to carry out the research and for his time to provide feedback.

As a colleague and friend, I thank Stalin for the support, discussions, brainstorming
sessions, and fun talks. It helped me with a gentle start to this journey while transition-
ing to the new work-life environment in Saarbrücken. I am thankful to Koel for her
unwavering support, encouragement, and countless talks that helped me gradually see
the end of this journey. I found a sound Ph.D. batchmate and a valuable friend in her.
I am thankful to Noam for his friendship, unconditional help, and ample support that
guided me towards this research programme. I am grateful to be reached out following
his recommendation as it stepped me closer to my academic goals.

I am thankful to Sheheryaar for the inspiring intellectual exchanges shared over
the years. I am thankful for the support, talks, and friendship Kathryn offered. I am
grateful to Katie Ann and Anna for always being a fun bunch to talk to and work with,
and to Iza for her kind help and support. I am also thankful to Tom for his constant
eagerness to help and to Dominik for the pragmatic research talks.

During this time, I had the opportunity to work with and learn from several bright
students including Kathryn, Jannis, Noon, Katie Ann, Anna, Morgan, and Mei. Also at
the MLT Lab, I am thankful to several colleagues including Stephan, Corinna, Simon,
and Lucia for keeping the administrative issues at bay. For research collaborations, I am
grateful to Pasquale, Pontus, David, Cati, and Alejandro. In the industry, I am thankful
to Jo for providing me with a timely opportunity and openly supporting me towards
my ambitions. Furthermore, I thank my former colleagues Bala, Adnan, and Todd for
the interesting roles offered and to my academic referees Amir, Awais, and Murtaza.

I am humbly grateful for the unparalleled support, love, prayers, and kindness
Ammi and Abbu have offered. I am only able to fulfill my ambitions because of their
hardships and innumerable sacrifices. I am forever thankful to them for putting me
on an educational path and for the values taught that helped me weather the hardest
times. I am grateful to Baji, Sid, Bhai Jaan, Saif, and Assad for completing the support
block in the family. I greatly appreciate my family’s patient presence while I focused on
my goals. I have been lucky to discover mindfulness practice that helped me maintain
a healthy state of mind and provided clarity when I needed the most.

I am thankful for the generous funding from the EU project Precise4Q (777107)
and partial funding from the BMBF through the projects DEEPLEE (01IW17001) and
CoRA4NLP (01IW20010). I am grateful to all the reviewers and the organizers of the
scientific conferences in which the publications of this dissertation have appeared. I am
thankful to the open-source communities for making this a more accessible pathway.
Lastly, I am thankful for the computing resources provided by the DFKI. Without these,
this research would not have been possible for practical reasons.

xix





C O N T E N T S

1 introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Part-I: Entity-centric Learning . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Part-II: Relation-centric Learning . . . . . . . . . . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

i entity-centric learning 13

2 multilingual and unsupervised clinical concept extraction

for semantic indexing 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Supervised Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Unsupervised Methods . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Multilingual Concept Extraction . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Neural Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Unsupervised Concept Extraction . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Dense Phrase Matching . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Linguistic Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Candidate Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Concept Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 transformer based ner transfer with application to cross-
lingual clinical de-identification 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 NER Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Clinical De-identification . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Transformer based Transfer Learning Framework for NER . . . . . . . . . 32

3.3.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Data Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Cross-lingual Clinical De-identification . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Few-Shot Cross-Lingual NER Transfer . . . . . . . . . . . . . . . . . 40

3.4.3 Data and Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xxi



xxii contents

ii relation-centric learning 45

4 scientific language models for distantly supervised biomedi-
cal relation extraction 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Distantly Supervised RE . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Broad-Coverage Biomedical RE . . . . . . . . . . . . . . . . . . . . . 49

4.3 Multi-Instance Learning based Relational BERT . . . . . . . . . . . . . . . 50

4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Entity Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 MedDistant19 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.4 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 knowledge graph completion in the general and biomedical

domain with low-rank bilinear pooling 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Non-linear Models for KGC . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Linear Models for KGC . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Low-rank Knowledge Graph Completion . . . . . . . . . . . . . . . . . . . 67

5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Multi-modal Factorized Bilinear Pooling . . . . . . . . . . . . . . . 67

5.3.3 LowFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Full Expressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Relation with TuckER . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Relation with Family of Bilinear Models . . . . . . . . . . . . . . . 73

5.4.4 Relation with HypER . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 discussion and future work 83

6.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iii appendix 87

a few-shot cross-lingual de-identification dataset 89

a.1 Guttmann Clinical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

a.2 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



contents xxiii

a.2.1 Annotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

a.2.2 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

a.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

a.2.4 Disagreements and Resolution . . . . . . . . . . . . . . . . . . . . . 91

a.3 MEDDOCAN Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 92

b umls .v2 and meddistant19 benchmarks 95

b.1 UMLS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

b.2 UMLS.v2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

b.2.1 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

b.2.2 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

b.2.3 Groups Linking and Negative Sampling . . . . . . . . . . . . . . . 96

b.2.4 Bag Composition and Splits . . . . . . . . . . . . . . . . . . . . . . . 96

b.3 MedDistant19 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

b.3.1 Semantic Groups and Semantic Types . . . . . . . . . . . . . . . . . 98

b.3.2 UMLS License Agreement . . . . . . . . . . . . . . . . . . . . . . . . 100

b.3.3 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

b.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

b.3.5 Experimental Setup and Hyperparameters . . . . . . . . . . . . . . 101

b.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

c lowfer proofs and experimental details 105

c.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

c.1.1 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

c.1.2 Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

c.1.3 Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

c.2 Scoring Subsumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

c.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

c.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

c.3.2 LowFER with Non-linearity . . . . . . . . . . . . . . . . . . . . . . . 108

c.3.3 Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

bibliography 111





1I N T R O D U C T I O N

We will start the dissertation by providing a conceptual overview of the work, along
with examples. We introduce each Chapter in terms of motivation, problem, research
questions, and contributions. We use two sources of knowledge as input, text as un-
structured data and knowledge base as structured data. These input sources provide
a commonly used setting for medical language processing, but other modalities exist,
such as images, videos, audio, and sensor data. However, they are considered out of the
thesis’ scope. We focus on two medical domains, biomedical and clinical, and where
applicable, we discuss the methods both in a more general setting and for a specific
sub-domain. We study four low-resource dimensions: labeled data, domain specificity,
multilingualism, and missing knowledge, and split the work into entity-centric and
relation-centric learning as shown in Figure 1. Our goal in this Chapter is to highlight
the dissertation’s overall scope and organization.

Figure 1: Knowledge Acquisition for Low-Resource Medical Language Processing: An overview of the
dissertation across core Chapters. Knowledge acquisition tasks are divided into entity discovery, relation
extraction, and knowledge graph completion (Ji et al., 2021). Entity discovery and relation extraction
aim to construct or enrich a knowledge base from the text or use an existing one for knowledge-aware
applications, whereas knowledge graph completion extends an incomplete one. Entities and relations
between them form the basis of these tasks, which we study here to address the emerging needs of low-
resource medical language processing.

1.1 overview

By adopting Electronic Health Record (EHR) systems, hospitals, and clinical institutes
can access large amounts of heterogeneous patient data. Such data consists of struc-
tured inputs (insurance, billing, and lab results) and unstructured inputs (doctor notes,
admission/discharge details, and medication steps). Unstructured texts are often more
challenging for applying information extraction methods to learn relevant concepts,
entities, events, and interactions. Furthermore, we have a large number of taxonomic
resources in the medical domain. These structured resources are curated by domain
experts and provide a rich learning signal, where the medical concepts are classified
into a hierarchical structure. Figure 2 shows an example snippet from one such KB.
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2 introduction

Figure 2: A partial snippet of hierarchical taxonomy for the concept E08 under sub-chapter E08-E13 (Dia-
betes mellitus) under chapter E00-E89 (Endocrine, nutritional and metabolic diseases) from International
Classification of Diseases 10th revision (ICD-10) (Organization, 2004).

Since text and knowledge bases provide a common setting for information extrac-
tion applications in healthcare, they play a central role in this dissertation as input
sources. Further, as medical language processing1 aims to extract and parse meaningful
information from unstructured text to transform it into structured data (Ananiadou
and McNaught, 2006), one commonly used format is through entity and relation infor-
mation, which is the focus of our represeantation learning-based approaches in this thesis.
Lastly, the following low-resource conditions are considered in this dissertation:

• Limited-to-no Labeled Data: A recurring challenge of supervised learning meth-
ods is availability of labeled data, which is exacerbated in terms of time and costs
for medical language processing needing domain experts.

• Multilingualism: Despite the EHR advances, most research has focused on En-
glish, with only a few recent studies for other languages (Névéol et al., 2018),
making multilingual health systems a major challenge.

• Domain Specificity: A direct consequence of working with medical language
processing is the specificity of the domain, which is more pronounced when
working with sub-domains such as cancer or stroke.

• Missing Knowledge: With the continuous growth of biomedical literature, there
is a constant need to construct, enrich, and update the knowledge bases for dis-
covering missing facts and adding new ones.

As for modeling, we primarily use pre-trained language models to represent unstruc-
tured text and knowledge graph embedding models to represent structured multi-relational
data. The thesis is structured into two main parts entity-centric learning and relation-
centric learning. In the next sections, we will provide an overview of each part divided
into Chapters, including research questions and contributions.

1 We coin this term with a purpose to unify literature from biomedical text mining, biomedical language
processing (BioNLP), clinical language processing (Clinical NLP), and medical NLP.
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Figure 3: Chapter 2 targets supervised and unsupervised clinical concept extraction for semantic indexing.
In the example input, mentions overweight and diabetes trigger the assignment of ICD-10 concepts E65-E68

and E10-E14 to text. The text is translated from German to English for readability.

1.1.1 Part-I: Entity-centric Learning

In this part, we focus on entity representation learning, which forms the basis of rela-
tional learning. Entity discovery includes recognition, linking, typing, and alignment (Ji
et al., 2021), where we mainly focus on discovering concepts and entities from the text
for downstream applications or constructing new taxonomies and knowledge bases.

1.1.1.1 Chapter 2: Concept Extraction

As discussed earlier, despite the digital advances in healthcare, most research has fo-
cused on English, with only a few recent studies for other languages (Névéol et al.,
2018). We address this by focusing on the task of multilingual clinical concept extrac-
tion from text in EHRs. The concepts considered here are a subset of a given knowledge
base and domain of interest, e.g., cancer-related concepts from ICD-10 or stroke-related
concepts from SNOMED CT (Donnelly et al., 2006). A concept is defined as a semantic
unit of text that may or may not be explicitly stated in the text but refers to an underly-
ing term from a KB, where a named entity mentioned explicitly is considered a special
case of a concept. Once we have extracted clinically relevant concepts from the text,
an implicit alignment between text and knowledge base can be used for semantically
indexing texts for search and knowledge discovery.

To learn the alignment, we assume two scenarios depending on the availability of
labeled data. When we have a collection of (text, concepts) pairs, the problem reduces
to a supervised multi-label concept classification. Traditional methods in concept ex-
traction have benefited from feature engineering and dictionary look-ups (Bounaama
and Amine, 2018; Gobeill and Ruch, 2018), where neural networks have improved the
state-of-the-art for English clinical texts (Baumel et al., 2018). In contrast, pre-training
deep neural models (Qiu et al., 2020) has significantly improved many language un-
derstanding tasks, including fine-tuning on low-resource problems, which motivates
us to investigate our first research question.

RQ1: How effective is supervised transfer with pre-trained language models for multilin-
gual clinical concept extraction?
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Chapter 2 first studies the impact of transfer learning in a supervised setting for
German clinical text. We consider a comprehensive suite of neural baselines that in-
clude state-of-the-art text classifiers based on Convolutional Neural Network (CNN),
Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) encoders while
proposing novel label descriptions and self-attention models. To partly assess the lan-
guage gap, we further introduce the use of automatic machine translation for trans-
forming text to English and we study the domain gap by using pre-trained static and
contextualized embeddings. We consider deep language models: multilingual Bidirec-
tional Encoder Representation from Transformers (mBERT) (Devlin et al., 2019a) for
German and its domain-specific variant BioBERT (Lee et al., 2020) for English under
the pre-train then fine-tune paradigm. Our experimental evaluation resulted in an F1

score of 73% compared to the baseline of 35% (Neves et al., 2019b), highlighting the
effectiveness of implicit concept representation from the BERT text encoders, alleviat-
ing the need to construct dictionaries, features, and complex neural architectures. We
also find that automatic machine translation into richly resourced English improved
absolute model scores by 6% on average over the results achieved in the original Ger-
man source, highlighting the language gap. Lastly, domain-specific word embeddings
impacted the static models more than the contextual ones. These models and findings
are published in the following peer-reviewed article (Amin et al., 2019):

Saadullah Amin, Günter Neumann, Katherine Ann Dunfield, Anna Vechkaeva, Kath-
ryn Annette Chapman, and Morgan Kelly Wixted (2019). MLT-DFKI at CLEF eHealth
2019: Multi-label Classification of ICD-10 Codes with BERT. In Proceedings of the 20th
Conference and Labs of the Evaluation Forum (Working Notes) (pp. 1–15). Lugano, Switzer-
land. CEUR-WS.

Authors Contribution: I proposed the ideas, designed the experiments, implemented
the models, and performed the analysis. I wrote the paper. My co-authors provided
feedback on the manuscript. Günter Neumann suggested participating in the CLEF
eHealth 2019 shared task (Kelly et al., 2019b; Neves et al., 2019a), contributed to initial
brainstorming discussions, and supervised the project. Additionally, Stalin Varanasi
provided helpful input for the implementation, including masking operations, resid-
ual connections, and a weighted cross-entropy loss in PyTorch (Paszke et al., 2019).

However, solving the text-concept alignment as an unsupervised problem is similar
to a zero-shot classification task when we only have a collection of text and a pre-
defined set of concepts. Despite state-of-the-art results, our fine-tuning based approach
as presented above requires manually labeled data as (text, concepts) pairs, which may
not be readily available for many languages and clinical sub-domains, prompting us
to the next research question.

RQ2: Can we partly address the labeled data requirement of supervised clinical concept
extraction with an unsupervised approach?

Inspired by Zero-Shot Entity Linking (ZSEL) (Wu et al., 2020a), we propose a hy-
brid approach for unsupervised concept extraction that uses dictionary and contextual
matching to generate mentioned candidates. For candidate generation, we use unsu-
pervised Keyphrase Extraction (KPE) and Contextual Span Detection (CSD) models.

http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
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Figure 4: Chapter 3 considers recognizing the explicit mention of entity – a special case of concept – in
text with a focus on transfer learning and application to de-identification. The relevant Protected Health
Information (PHI) is redacted in clinical de-identification to preserve patient privacy, whereas the entity
spans are recognized with their types for knowledge base construction and relation extraction.

The extracted spans are matched using CPMerge (Okazaki and Tsujii, 2010) and dense
nearest neighbor search with FAISS (Johnson et al., 2019), where the embeddings are
computed with a contextual paraphrased sentence embeddings model (Reimers and
Gurevych, 2019). Finally, we apply a simple filtering threshold to get the concept subset.
We evaluate our approach on a drugs review dataset in English (Yates and Goharian,
2013), reaching a considerable performance gain of 12% F1 score compared to Quick-
UMLS (Soldaini and Goharian, 2016), and utilize it in an unsupervised multilingual
setup for the German clinical text as in the supervised case, obtaining 11% F1 score.

1.1.1.2 Chapter 3: Named Entity Recognition

A special case of a concept is a named entity such as a medical device (MRI), a dis-
ease (stroke), a protein (PEX-13), etc., in biomedical literature or clinical narratives. Ex-
tracting named entities from text followed by entity typing allows us to automatically
populate a knowledge base with a clean taxonomy. However, obtaining large-scale an-
notated corpora is challenging, and we often resort to transfer learning methods. As
highlighted in Chapter 2, pre-trained language models allow for an effective transfer of
concept representations but lack a dedicated experimental test bed for Named Entity
Recognition (NER). Concurrently, the research in NER transfer has made significant
progress in recent years leading us to explore the following research question.

RQ3: How can we bridge the gap between research in pre-trained language models and
algorithmic advances in NER transfer?

To meet these needs, in Chapter 3, we first present a general-purpose Transformer
based Transfer Learning Framework for Named Entity Recognition (T2NER) created in
PyTorch (Paszke et al., 2019) for the task of NER with deep transformer models, which
traditionally has benefited from LSTM networks. As the core modeling engine, the
framework is built upon the Transformers (Wolf et al., 2020) library. It supports several
transfer learning scenarios from sequential transfer to domain adaptation, multi-task
learning, and semi-supervised learning. It aims to bridge the gap between the algorith-
mic advances in these areas by combining them with the state-of-the-art in transformer
models to provide a unified platform that is readily extensible. It can be used for trans-
fer learning research in low-resource NER and real-world applications, such as medical
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NER. The framework, along with its design principles, NER transfer algorithms, and
system description, is published in the following peer-reviewed article (Amin and Neu-
mann, 2021):

Saadullah Amin & Günter Neumann (2021). T2NER: Transformers based Transfer
Learning Framework for Named Entity Recognition. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for Computational Linguistics: System Demon-
strations (pp. 212-220). Online. ACL.

Authors Contribution: I proposed the ideas, identified the design principles, initi-
ated the development project, designed the architecture, and implemented the frame-
work. I wrote the paper. Günter Neumann provided feedback on the manuscript and
supervised the project.

Besides biomedical concepts and entities, clinical texts contain Protected Health In-
formation (PHI) that risks patient identification when exposed to information extrac-
tion tools for downstream applications. Therefore, it is critical to remove such sensitive
information to ensure ethical and private NLP according to GDPR (Regulation, 2016).
Existing works in de-identification (solved as NER) rely on using large-scale annotated
corpora in English (Stubbs et al., 2017; Stubbs and Uzuner, 2015), which often is un-
suitable for real-world multilingual settings. Pre-trained language models have shown
great potential for zero-shot cross-lingual transfer in low-resource settings (Pires et al.,
2019; Wu and Dredze, 2019), including NER. However, to date model behavior is un-
clear in few-shot cross-lingual NER transfer with a potential for domain-specific clinical
de-identification. We, therefore, address this gap in the next research question.

RQ4: What characteristic NER transfer property of multilingual pre-trained language
models can effectively be applied to low-resource clinical de-identification?

To investigate the question, we empirically show the few-shot cross-lingual trans-
fer property of mBERT for NER and apply it to solve a low-resource and real-world
challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke
domain. We (a) propose an optimal few-shot cross-lingual transfer strategy (b) anno-
tate a target development set, and (c) construct an annotated few-shot target corpus for
effective cross-lingual transfer with T2NER. The development set is used for few-shot
model selection, where we only use a few hundred labeled examples for training. Our
model improves the zero-shot F1-score from 73.7% to 91.2% on the gold evaluation set
when adapting mBERT from the synthetic MEDDOCAN (Marimon et al., 2019) cor-
pus in Spanish with our few-shot cross-lingual target corpus. When generalized to an
out-of-sample test set, the best model achieves a human-evaluation F1 score of 97.2%.
These findings are published in the following peer-reviewed article (Amin et al., 2022b):

Saadullah Amin, Noon Pokaratsiri Goldstein, Morgan Kelly Wixted, Alejandro García-
Rudolph, Catalina Martínez-Costa & Günter Neumann (2022). Few-Shot Cross-lingual
Transfer for Coarse-grained De-identification of Code-Mixed Clinical Texts. In Pro-
ceedings of the 21st Workshop on Biomedical Language Processing (pp. 200-211). Dublin,
Ireland. ACL.

https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2022.bionlp-1.20/
https://aclanthology.org/2022.bionlp-1.20/


1.1 overview 7

Authors Contribution: I led the annotation project, proposed the ideas, implemented
the models, and developed the annotation toolkit. Noon Pokaratsiri Goldstein did the
manual annotation, conducted data inspection, provided clinical insights, reviewed the
out-of-sample test set, and contributed to writing. Morgan Kelly Wixted also did the
manual annotation. Both annotators adjusted the 2014 i2b2 VA/Challenge (Stubbs and
Uzuner, 2015) guidelines to make it suitable for coarse-grained de-identification. Ale-
jandro García-Rudolph reviewed the out-of-sample test set. Catalina Martínez-Costa
suggested the MEDDOCAN corpus. I wrote the main paper. My co-authors provided
feedback on the manuscript. Günter Neumann presented the need for clinical de-
identification and supervised the project. Additionally, Josef van Genabith provided
comments that helped improve the final version of the paper.

1.1.2 Part-II: Relation-centric Learning

In this part, we assume that we have a knowledge base with a clean and expressive
taxonomy of semantic types (or classes) and that these types are populated with a
comprehensive set of canonicalized (i.e., uniquely identified) entities. Such a KB may
be given or partially populated with entity-centric learning approaches discussed in
Part-I.

1.1.2.1 Chapter 4: Relation Extraction

Machines are limited in generating knowledge since all factual knowledge about our
world is created by humans and documented in an encyclopedia, scientific publications,
books, or daily news (Weikum et al., 2021). Relation Extraction (RE) is one such task
of knowledge discovery that aims at learning interactions between entities from text
to output structured knowledge in the form of (subject, predicate, object) (SPO) triples
that can either enrich an existing human-curated KB or semi-automatically construct a
new one.

However, in the biomedical domain, this is challenging due to the lack of labeled
data and high annotation costs, needing domain experts. Distant Supervision (DS)
is commonly used to tackle the scarcity of annotated data by automatically pairing
knowledge base relationships with raw texts (Mintz et al., 2009). Such a pipeline is
prone to noise due to a large number of false positives, where prior work of Dai et al.
(2019) extended a mutual learning framework of Han et al. (2018a) with biomedical
text and a Knowledge Graph (KG) using auxiliary tasks, including Knowledge Graph
Completion (KGC) and entity type classification. They showed that using attention
with a KG can help in denoising using a Piece-wise Convolutional Neural Network
(PCNN) sentence encoder. In Part-I, we showed that pre-trained language models and
their domain-specific variants provides effective entity representations with transfer
learning. Building on this and inspired by Dai et al. (2019), utilizing a knowledge
base, and by Alt et al. (2019), who fine-tuned OpenAI GPT for bag-level Multi-Instance
Learning (MIL) (Surdeanu et al., 2012) for Distantly Supervised Relation Extraction
(DSRE) in the general domain, we arrive at the next research question.

RQ5: Can a KB be utilized for denoising relation representations from domain-specific
language models for distantly supervised biomedical RE?
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Figure 5: Chapter 4 studies KB enrichment where the biomedical texts are tagged with (subject, object)
pairs from an existing KB using distant supervision to mine new triples from the text. The sentence
tagged with (MRI, lacunar infarction) implicitly express the relation diagnoses.

In Chapter 4, we first propose to reduce the distant supervision noise by extending
an entity-enriched Relation classification BERT model (Wu and He, 2019) (RBERT) to
the problem of bag-level MIL for DSRE through a KB-guided encoding scheme. Our
encoding identifies the head and tail role of entities from the knowledge graph by entity
markers and passes through deep transformer layers with self-attention. The resulting
textual representation can be pooled into a relation representation, which implicitly
encodes the mutual learning with text and KG in a data-driven manner. The pro-
posed MIL-RBERT significantly reduces noise, reaching state-of-the-art performance
with 68.4% AUC and 64.9% F1 score, with an absolute 7% P@2k gain compared to Dai
et al. (2019). The data pipeline and model are published in the following peer-reviewed
article (Amin et al., 2020a):

Saadullah Amin*, Katherine Ann Dunfield*, Anna Vechkaeva & Günter Neumann
(2020). A Data-driven Approach for Noise Reduction in Distantly Supervised Biomed-
ical Relation Extraction. In Proceedings of the 19th SIGBioMed Workshop on Biomedical
Language Processing (pp. 187-194). Online. ACL.

Authors Contribution: I proposed the ideas, created the data, designed the experi-
ments, implemented the models, and performed the analysis. Katherine Ann Dunfield
worked on the initial implementation of RBERT in PyTorch from TensorFlow, created
parts of the earlier dataset, provided helpful references in related work, and refined
the model graphics. Anna Vechkaeva created parts of the earlier dataset and drafted
the initial version of model graphics. I wrote the paper. My co-authors provided the
feedback, and Günter Neumann supervised the project. Additionally, Qin Dai gener-
ously guided us through the steps to obtain relevant triples data from the UMLS, and
Dominik Stammbach kindly provided his TensorFlow implementation of RBERT de-
veloped for the general domain RE.

In addition to noise, the second major challenge comes from scaling to a large num-
ber of concepts for broad-coverage. However, the existing works in broad-coverage
Distantly Supervised Biomedical Relation Extraction (Bio-DSRE) report very accurate
results (Amin et al., 2020a; Hogan et al., 2021; Xing et al., 2020), including our con-
tribution from the last section, prompting us to inspect the benchmarks used in the
evaluations. A potential lack of careful and thorough evaluation of domain-specific

https://aclanthology.org/2020.bionlp-1.20/
https://aclanthology.org/2020.bionlp-1.20/
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language models for biomedical relation extraction leads us to the next research ques-
tion.

RQ6: Are there limitations to accurately evaluate domain-specific language models for
broad-coverage distantly supervised biomedical RE?

We start by investigating existing benchmarks for possible train-test leakage of KG
triples and find significant portions overlapping from 26% up to 86%. Such leakage im-
pacts the model performance as it allows it to score higher by simply memorizing the
training relations rather than generalizing to new, previously unknown ones. We iden-
tify the sources of these issues as normalizing the textual form of concept mentions to
their unique identifiers and improper handling of inverse relations. In contrast, more
accurate benchmarks exist (Hong et al., 2020; Marchesin and Silvello, 2022) but focus
on narrower types of interactions. To alleviate the broad-coverage benchmark issues
and bridge this gap, we present a new benchmark MedDistant19 which draws its
knowledge graph from the widely used healthcare ontology SNOMED CT (Chang et
al., 2020). Further, with the success of domain-specific pre-trained language models
(Gu et al., 2021), and inspired by existing thorough relation extraction studies in the
general domain (Alt et al., 2020; Gao et al., 2021a; Peng et al., 2020), we conduct an
extensive evaluation using MedDistant19 for the biomedical domain. The benchmark
and findings are published in the following peer-reviewed article (Amin et al., 2022a):

Saadullah Amin*, Pasqaule Minervini*, David Chang, Pontus Stenetorp & Günter
Neumann (2022). MedDistant19: Towards an Accurate Benchmark for Broad-Coverage
Biomedical Relation Extraction. In Proceedings of the 29th International Conference on
Computational Linguistics (pp. 2259-2277). Gyeongju, Republic of Korea. ICCL.

Authors Contribution: The ideas and issues emerged from an initial meeting on
GitHub. I created the benchmark, designed the experiments, proposed the baselines,
conducted the language model experiments, and performed the analysis. Pasquale
Minervini connected through GitHub, which eventually resulted in collaboration; he
participated in all the discussions, implemented the baselines, re-run the AMIL (Hogan
et al., 2021) code, reached out to the National Library of Medicine (NLM), invited
Pontus Stenetorp, and contributed to writing. David Chang helped with obtaining
SNOMED CT triples. Pontus Stenetorp participated in the discussions. I wrote the
main paper. My co-authors provided feedback on the manuscript, and Günter Neu-
mann supervised the project. Additionally, William Hogan kindly provided data and
code for the AMIL re-run.

1.1.2.2 Chapter 5: Knowledge Graph Completion

Despite the fact that manually or semi-automatically constructed KBs are already use-
ful, most are incomplete by nature, with only a limited number of observed facts from
the general or biomedical domain represented as structured relations between entities.
To partly address this issue, we focus on the important task in statistical relational
learning of link prediction or knowledge graph completion, where we assume access
to a human-curated incomplete KB. As a result, we obtain a low-dimensional multi-
relational graph representation of entities and relations that can be used to discover

https://aclanthology.org/2022.coling-1.198/
https://aclanthology.org/2022.coling-1.198/
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Figure 6: Chapter 5 aims to discover missing knowledge by link prediction. Here the goal is to complete
the query (MRI, diagnoses, ?) with a target entity from the KB such as Obstructive Hydrocephalus assuming
we learn from existing facts such as (MRI, diagnoses, Lacunar Infarction). As a result, we obtain a low-
dimensional entity and relation representation.

missing facts (completeness) or check the validity of others (verification). Both linear
and non-linear embedding models have been proposed to solve the problem. Bilinear
models, while expressive, are prone to overfitting and can lead to quadratic growth of
parameters in the number of relations, guiding us to our next research question.

RQ7: How to represent entity and relation in a parameter efficient way for knowledge
graph completion in the general and biomedical domain?

Since simpler models have become standard, with certain constraints on the bilinear
map as relation parameters, in Chaper 5, we propose a factorized bilinear pooling
model, commonly used in multi-modal learning (Yu et al., 2017), for a better fusion
of entities and relations, leading to an efficient and constraint-free tensor factorization
model, LowFER. Empirically, we evaluate on subsets of Freebase (Bollacker et al., 2008),
WordNet (Miller, 1992), and YAGO (Rebele et al., 2016) in the general domain and
UMLS (Bodenreider, 2004) and SNOMED CT (Donnelly et al., 2006) for the biomedical
domain, reaching on par or state-of-the-art performance.

More formally, we note that a key theoretical property of KGC models is their ability
to be fully expressive. A fully expressive model can represent relations of any type, in-
cluding symmetric, asymmetric, reflexive, and transitive, among others. Models such
as RESCAL, HolE, ComplEx, SimplE, and TuckER have been shown to be fully expres-
sive (Balažević et al., 2019b; Kazemi and Poole, 2018; Trouillon and Nickel, 2017; Wang
et al., 2018b). Furthermore, it was shown by Kazemi and Poole (2018) that RESCAL,
DistMult, ComplEx, and SimplE belong to a family of bilinear models with a different
set of constraints. Later, Balažević et al. (2019b) established that TuckER generalizes
all of these models as special cases. These theoretical investigations lead us to our last
research question.

RQ8: What theoretical insights can be drawn about the expressivity and generalizability
of the efficient parameterization?

We prove LowFER is fully expressive, providing bounds on the embedding dimen-
sionality and factorization rank. LowFER generalizes the Tucker decomposition based
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TuckER model (Balažević et al., 2019b) as an efficient low-rank approximation with-
out substantially compromising the performance. Due to low-rank approximation, the
model complexity can be controlled by the factorization rank, avoiding the possible
cubic growth of TuckER. At extremely low ranks, LowFER preserves the performance
while staying parameter efficient. The model and the findings are published in the fol-
lowing peer-reviewed article (Amin et al., 2020b):

Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield & Günter Neumann (2020).
LowFER: Low-rank Bilinear Pooling for Link Prediction. In Proceedings of the 37th In-
ternational Conference on Machine Learning (pp. 257-268). Online. PMLR.

Authors Contribution: I proposed the ideas, organized formal understanding, de-
signed the experiments, implemented the models, and performed the analysis. Stalin
Varanasi participated in the theoretical discussions, helped the model’s understanding
in terms of tensor operations, drafted an initial version of the model’s interpretation
with existing works, provided input for related work, and proofread the paper. Kather-
ine Ann Dunfield participated in the initial discussions of the idea, provided motiva-
tion input for entity and relation feature fusion, typeset most tables, and organized the
paper’s layout and graphics. I wrote the paper. My co-authors provided feedback on
the manuscript. Günter Neumann supervised the project. Additionally, the implemen-
tation largely benefited from the open-source code released by the TuckER authors.

1.2 contributions

Below we summarize contributions in terms of the peer-reviewed articles and the code
released. We also declare the funding sources.

Publications

• Chapter 2: Concept Extraction

Paper : Saadullah Amin, Günter Neumann, Katherine Ann Dunfield, Anna Vechk-
aeva, Kathryn Annette Chapman, and Morgan Kelly Wixted (2019). MLT-DFKI CLEF’19,

Precise4Qat CLEF eHealth 2019: Multi-label Classification of ICD-10 Codes with BERT. In
Proceedings of the 20th Conference and Labs of the Evaluation Forum (Working Notes)
(pp. 1–15). Lugano, Switzerland. CEUR Workshop Proceedings.
Code : https://github.com/suamin/ICD-BERT

• Chapter 3: Named Entity Recognition

Paper : Saadullah Amin & Günter Neumann (2021). T2NER: Transformers based
Transfer Learning Framework for Named Entity Recognition. In Proceedings of the EACL’21,

Precise4Q,
CoRA4NLP

16th Conference of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations (pp. 212-220). Online. Association for Computational
Linguistics.
Code : https://github.com/suamin/T2NER

http://proceedings.mlr.press/v119/amin20a.html
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
https://github.com/suamin/ICD-BERT
https://aclanthology.org/2021.eacl-demos.25/
https://aclanthology.org/2021.eacl-demos.25/
https://github.com/suamin/T2NER
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Paper : Saadullah Amin, Noon Pokaratsiri Goldstein, Morgan Kelly Wixted, Ale-
jandro García-Rudolph, Catalina Martínez-Costa & Günter Neumann (2022). Few-BioNLP’22,

Precise4Q,
CoRA4NLP

Shot Cross-lingual Transfer for Coarse-grained De-identification of Code-Mixed
Clinical Texts. In Proceedings of the 21st Workshop on Biomedical Language Processing
(pp. 200-211). Dublin, Ireland. Association for Computational Linguistics.
Code : https://github.com/suamin/FewDeid 2

• Chapter 4: Relation Extraction

Paper : Saadullah Amin*, Katherine Ann Dunfield*, Anna Vechkaeva & Gün-
ter Neumann (2020). A Data-driven Approach for Noise Reduction in DistantlyBioNLP’20,

Precise4Q,
DEEPLEE

Supervised Biomedical Relation Extraction. In Proceedings of the 19th SIGBioMed
Workshop on Biomedical Language Processing (pp. 187-194). Online. Association for
Computational Linguistics.
Code : https://github.com/suamin/MIL-RBERT

Paper : Saadullah Amin*, Pasqaule Minervini*, David Chang, Pontus Stenetorp
& Günter Neumann (2022). MedDistant19: Towards an Accurate Benchmark forCOLING’22,

Precise4Q,
CoRA4NLP

Broad-Coverage Biomedical Relation Extraction. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics (pp. 2259-2277). Gyeongju, Republic
of Korea. International Committee on Computational Linguistics.
Code : https://github.com/suamin/MedDistant19

• Chapter 5: Knowledge Graph Completion

Paper : Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield & Günter Neu-
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Precise4Q,
DEEPLEE

ings of the 37th International Conference on Machine Learning (pp. 257-268). Online.
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2M U LT I L I N G U A L A N D U N S U P E RV I S E D C L I N I C A L C O N C E P T
E X T R A C T I O N F O R S E M A N T I C I N D E X I N G

2.1 introduction

EHR systems offer rich data sources that can improve healthcare systems by applying
information extraction, representation learning, and predictive modeling techniques
(Shickel et al., 2018). Among many other applications, one commonly studied task is
the automatic assignment of medical concepts from a knowledge base, e.g. ICD-10

(Organization, 2004), to clinical notes (Crammer et al., 2007). The problem is to learn
a mapping from natural language clinical text to a selected subset of concepts from a
given domain of interest, such as cancer or stroke. For a new document, the system can
assign one or more concepts that allow semantic indexing for search and discovery.

Learning such mapping in a supervised manner is seen as a multi-label classifica-
tion problem, and is one way to solve the problem, besides hierarchical classification,
learning-to-rank, and unsupervised methods. Despite the advances in clinical concept
extraction, the challenges of multilingual text have been under-studied mainly due to
a lack of labeled corpora with the recent exception of electronic health information
extraction shared tasks. Concurrently, NLP has made significant progress in transfer
learning that motivates us to study its effectiveness in multilingual clinical concept
extraction for RQ1 in §2.3 as stated:

RQ1: How effective is supervised transfer with pre-trained language models for multilin-
gual clinical concept extraction?

A closely related task for such text-to-knowledge mapping is entity linking, which
generally consists of two sub-tasks of surface form extraction, i.e., mention recogni-
tion, and named entity disambiguation. A surface form is a contiguous span of text
that implicitly refers to a concept. The disambiguation task aims to link the identified
named entity to ground truth entities from a given knowledge base. Traditionally, this
is a supervised learning task but requires laborious labeling, whereas, in the case of
unseen entities, it is referred to as Zero-Shot Entity Linking (ZSEL). Comparatively,
the approaches for unsupervised concept extraction use approximate string matching
to extract fuzzy candidate mentions in text and align them with the concepts of inter-
est. However, recent advances in medical entity linking have shown the possibility of
a hybrid framework combining dictionary and embedding-based matching (Loureiro
and Jorge, 2020). Inspired by this and scalable ZSEL (Wu et al., 2020a), we investigate
a dense phrase matching framework for unsupervised concept extraction to study the
impact on the labeled data requirement of incurred in the supervised counterpart with
RQ2 in §2.4 as stated:

RQ2: Can we partly address the labeled data requirement of supervised clinical concept
extraction with an unsupervised approach?
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16 concept extraction

The contents of §2.2.1 and §2.3 have appeared in the peer-reviewed article of Amin et al.
(2019) and are included here with minor corrections where appropriate. The contents of
§2.2.2 and §2.4 are only appearing in this dissertation.

2.2 related work

2.2.1 Supervised Methods

Clinical concept extraction for semantic indexing of health-related documents has been
well studied, both in the previous Conference and Labs of the Evaluation Forum (CLEF)
eHealth shared tasks and in general (Crammer et al., 2007). Traditional approaches
range from rule-based and dictionary look-ups (Bounaama and Amine, 2018) to ma-
chine learning models (Gobeill and Ruch, 2018).

More recently, the focus has been on applying deep learning, where several archi-
tectures have been proposed using convolutional, recurrent, and hybrid models. Fli-
coteaux (2018) uses a shallow CNN and improves its predictions for rare labels by
dictionary-based lexical matching. Baumel et al. (2018) addresses the challenges of
long documents and the high cardinality of the label space (Johnson et al., 2016) by
modifying the Hierarchical Attention Network (HAN) (Yang et al., 2016) with label
attention.

Ševa et al. (2018) builds a multilingual death cause extraction model using an LSTM
encoder-decoder, with concatenated French, Hungarian, and Italian fastText embed-
dings (Grave et al., 2018) as inputs and causes extracted from concept dictionaries as
outputs. Ive et al. (2018) uses a character-level CNN (Zhang et al., 2015) encoder for
French and Italian with a bidirectional RNN decoder. Jeblee et al. (2018) enriches word
embeddings with language-specific Wikipedia text and creates an ensemble model
from a CNN classifier and GRU encoder-decoder. While successful, these approaches
make an auto-regressive assumption on output codes, which only holds when there
is a single path from parent to child code for a given document. However, in concept
extraction, a document can have multiple disjoint paths in a Directed Acyclic Graph
(DAG) formed by a concept hierarchy (Silla and Freitas, 2011). Additionally, the de-
coder suffers from vocabulary sparsity and variance in low-resource datasets.

Contextualized word embeddings, ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019b), derived from pre-trained bidirectional language models trained on large texts,
have been shown to improve performance on many NLP tasks: Question Answering
(QA), Textual Entailment, Sentiment Classification, Constituency Parsing, and Named
Entity Recognition (NER). Sequential transfer with these models involves a pre-train
then fine-tune strategy for a downstream supervised task to achieve substantial qual-
itative gains with limited data and task-specific engineering. Hence, they are simple,
efficient, and performant. Motivated by this and the recent work of domain-specific
variants (Lee et al., 2019), we study BERT for multilingual clinical concept extraction.

2.2.2 Unsupervised Methods

Concept extraction pipelines of MetaMap (Aronson and Lang, 2010) and cTAKES
(Savova et al., 2010) are widely used in research and industrial applications. The former
uses a shallow parser to generate candidate phrases; then, for each candidate phrase,
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a range of lexical variations are generated; finally, each phrase is scored based on its
distance to concepts in UMLS (Bodenreider, 2004). A word disambiguation tool is fur-
ther used to favor concepts that are semantically consistent with the surrounding text.
Similarly, cTAKES matches candidate phrases as well as their permutations and lexical
variations with concepts in UMLS and a list of concepts maintained by the Mayo Clinic
(Soldaini and Goharian, 2016).

QuickUMLS (Soldaini and Goharian, 2016) is a fast and unsupervised approach
based on approximate dictionary matching. It employs a series of filters on the se-
quence of tokens and part-of-speech tags to extract candidate phrases, which are
then matched to UMLS concepts with an approximate dictionary-matching algorithm
called CPMerge (Okazaki and Tsujii, 2010). Other unsupervised methods include Max-
Matcher (Zhou et al., 2006) and MeTAE (Ben Abacha and Zweigenbaum, 2011).

MedLinker (Loureiro and Jorge, 2020) is a state-of-the-art system trained on a large-
scale supervised entity linking dataset MedMentions (Mohan and Li, 2018). It is a
hybrid approach of neural models and dictionary-based string matching. It follows a
two-step pipeline, a mention recognition followed by entity linking. The entity linking
step uses contextual embeddings for entity classification and combines it with seman-
tic similarity matching. To handle zero-shot (unseen) entities, it relies on a dictionary-
based CPMerge algorithm, thus offering a hybrid approach. Our unsupervised concept
extraction pipeline largely follows MedLinker, where we propose two variants of men-
tion detection and combine them with a dense matching approach, following zero-shot
entity linking (Wu et al., 2020a), that provides a framework to study unsupervised ex-
tractions.

2.3 multilingual concept extraction

CLEF eHealth 2019 (Kelly et al., 2019a) Task 1 (Neves et al., 2019b) advances research
in multilingual concept extraction by focusing on German Non-Technical Summaries
(NTS) of animal experiments collected from the AnimalTestInfo database to classify
according to ICD-10-GM 2016

1. The AnimalTestInfo database was developed in Ger-
many to make the non-technical summaries of animal research studies available in a
searchable and easily accessible web-based format (Bert et al., 2017). This task requires
an automated approach to classify the NTSs, whereby the data entails challenging
attributes of multilingualism, domain specificity, and concept skewness with a hierar-
chical structure. It serves as the basis for us to study RQ1 by conducting a thorough
evaluation of neural architectures with static word embeddings and fine-tuning pre-
trained multilingual and domain-specific language models. In the next section, we will
provide details of the models considered.

2.3.1 Neural Architectures

2.3.1.1 Convolutional Networks

A CNN learns local features of input representations through varying numbers and
sizes of filters performing convolution operations. They have succeeded in many text
classification tasks (Johnson and Zhang, 2017; Zhang et al., 2015) and while many
advanced CNN architectures exist, we only employ a shallow model of Kim (2014).

1 https://www.dimdi.de/static/de/klassifikationen/icd/icd-10-gm/kode-suche/htmlgm2016/

https://www.dimdi.de/static/de/klassifikationen/icd/icd-10-gm/kode-suche/htmlgm2016/
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Figure 7: An example document tagged with concepts E10-E14 (diabetes mellitus) and E65-E68 (obesity and
other overeating) containing related words to concepts descriptions.

2.3.1.2 Recurrent Networks

In recurrent networks, we focus on attention-based models. The attention mechanism,
initially proposed in sequence-to-sequence-based Neural Machine Translation (NMT),
allows the decoder to attend to encoder states while making predictions (Bahdanau
et al., 2015). Attention generates a probability distribution over features, where the
model learns to put more weight on relevant features. In our study, we consider three
attention-based models.

HAN deals with the problem of document classification by modeling attention at
each hierarchical level of the document, i.e., words and sentences (Yang et al., 2016).
This lets the model first attend word encoder outputs in a sentence, followed by at-
tending to the sentence encoder outputs to classify a document. Similar to Yang et al.
(2016), we use bidirectional GRUs as word and sentence encoders.

We introduce a Self-attention LSTM (SLSTM) network, which is a single-layer model
based on a bidirectional LSTM encoder with a dense self-attention and residual con-
nection. An input sequence is first passed through the encoder, and encoded represen-
tations are self-attended with a residual path to produce outputs.

ICD-10 concepts have textual descriptions, e.g. concept A80-A89 is about viral infec-
tions of the central nervous system, which serves as additional meta-data for the model to
make predictions. Figure 7 shows a document containing words related to those found
in the descriptions of their labeled concepts. Such words may or may not be present
in the document, with the potential to be utilized to enrich the encoder representation
through attention. To our knowledge, this is the first time the concept descriptions are
directly used to align with input text via attention. The closest work t ours is from
Baumel et al. (2018), where the author uses label attention, but they directly consider
the concept as a unit of representation, creating an embedding lookup. By using de-
scription texts, we also create an embedding layer for concepts where a concept repre-
sentation is obtained via each token’s average word embeddings. We call this network
Concept-attentive LSTM (CLSTM) and describe it formally below.

Let X = {x1, x2, ..., xn} ∈ Rn×d be an n-length input document sequence, where xi is
a d-dimensional embedding vector for input word wi belonging to document vocabu-
lary VD. Let T = {t1, t2, ..., tm} ∈ Rm×l be an m-concepts by l-length description rep-
resentation matrix, where each ti = {ti1 , ti2 , ..., til} ∈ Rl×d and tij is a d-dimensional
embedding vector for code i’s description word j, belonging to the descriptions vocabu-
lary VT . The embedding matrices are different for documents and concept descriptions
since the description words can be missing in the document vocabulary. Similarly, we
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used different LSTM encoders for document and code words. The network then trans-
forms input as Xout = CLSTM(X, T), with following operations:

Xenc = [x1enc
, x2enc

, ..., xnenc ]

xienc
= LSTMW(xi)

Tenc = [t1enc
, t2enc

, ..., tmenc ]

tienc
=

1

l

l∑
j=1

LSTMC(tij)

Xout = [Xenc; Tenc] ∈ R(n+m)×h

A = softmax(XoutX
T
out) ∈ R(n+m)×(n+m)

Xout = Xout +ATXout

Xout =
1

n

n∑
j=1

Xoutj

where Xenc is a sequence of word encoder (LSTMW) outputs and Tenc is a sequence of
averaged description words encodings by the code encoder (LSTMC). We concatenate
the document word sequence with the description sequence and perform self-attention
A, followed by residual connection and average over the resulting sequence to obtain
the final representation.

2.3.2 Transfer Learning

Pre-training large models on an unsupervised corpus with a language modeling objec-
tive and then fine-tuning the same model for a downstream supervised task eliminates
the need for heavily engineered task-specific architectures. BERT (Devlin et al., 2019b)
is a recently proposed model, following ELMo (Peters et al., 2018) and OpenAI GPT
(Radford et al., 2018). It is a multi-layer bidirectional transformer encoder with a feed-
forward multi-headed self-attention encoder (Vaswani et al., 2017). BERT is trained
with two objectives, masked language modeling: predicting a missing word in a sentence
from the context and next sentence prediction: predicting whether two sentences are
consecutive sequences. BERT has improved the state-of-the-art in many language un-
derstanding tasks. Recent works show that it sequentially models something akin to
an NLP pipeline consisting of POS tagging, parsing, NER, semantic role labeling, and
coreference resolution (Tenney et al., 2019). Similar works have been performed to un-
derstand and interpret BERT’s learning capacity (Goldberg, 2019; Yogatama et al., 2019)
but currently to the best of our knowledge there is no study on multilingual concept
extraction. Therefore, we investigate BERT in our task and show that it achieves better
results than other models. Besides neural baselines and pre-trained language models,
we also consider a Term Frequency-Inverse Document Frequency (TF-IDF) weighted
bag-of-words based linear Support Vector Machine (SVM) model as a simple baseline.

2.3.3 Machine Translation

Since the documents are domain-specific and multilingual, it is difficult for open-
domain and multilingual pre-trained models to effectively transfer representations.
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Concept No. of documents (training and validation)

II 1515

C00-C97 1479

IX 930

VI 799

C00-C75 732

Table 1: Top-5 most frequent concepts in German clinical texts.

Furthermore, Amplayo et al. (2018) suggests that each language has linguistic and
cultural characteristics that contain different signals to classify a specific class. Based
on this and the fact that automatic machine translation is generally available, we con-
sider it for data transformation and show improvements across all models. Since En-
glish has readily accessible biomedical literature available as free texts, we use English
translations for our documents and fine-tune domain-specific model BioBERT (Lee et
al., 2019), showing significant gain while highlighting the language performance gap
between the English translation of the data and the German original data.

2.3.4 Experiments

2.3.4.1 Data

The dataset contains 8,385 training documents, including validation, and 407 test doc-
uments, all in German. Each document has six text fields: document title, use goals of
the experiment, possible harms caused to animals, and comments about replacement,
reduction, and refinement in the scope of 3R principles.

The documents are assigned one or more concepts from ICD-10-GM (German Mod-
ification version 2016), which exhibits a hierarchy forming a DAG (Silla and Freitas,
2011), where the highest-level nodes are called chapters, and their direct child nodes
are called groups. The depth of most chapters is one, but in some cases, it goes to the
second level (e.g., M00-M25, T20-T32) and, in one case, up to the third level (C00-C97).
Documents are assigned heterogeneous concepts such that a parent and child node
can co-exist, and a child node can have multiple parents. Moreover, 91 documents are
missing one or more of the six text fields, and only 6,472 have labels (5,820 in the
training set and 654 in the validation set), while 52 have only chapter-level concepts.
Table 1 shows the top-5 most frequent concepts. These concepts account for more than
90% of the dataset leading to a long-tailed distribution. Due to a shallow hierarchy, we
formulate the task as a multi-label classification problem instead of a hierarchical one.

Pre-processing: We consider each document as one text field, i.e., all six fields are
joined together to form one input text. As mentioned, only 6,472 documents are labeled,
out of which 654 are in the validation set from a total of 842. Since there is no ground
truth available for 188 documents, we cannot evaluate them, so we ignored them dur-
ing training. This way we avoided adding an extra NA class label as a placeholder
for predicting no class for such documents. We assume that all documents must be
indexed similarly to MEDLINE auto-indexing of new PubMed articles and, therefore,
inherently each one has one or more true ICD-10 concepts assigned to them. However,
the official evaluation of CLEF eHealth 2019 penalizes model predictions for 188 doc-
uments by considering them false positives. We will cover this in detail in the results
section.
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Data Transformation: To translate German documents to English, we used auto-
matic translation from the Google Translate API v2

2. For both German and English,
we use language-specific sentence and word tokenizers offered by NLTK (Loper and
Bird, 2002) and spaCy3, respectively. Tokens with document frequencies outside 5 and
60% of the training corpus were removed, and only top-10,000 tokens were kept to
limit the vocabulary. This applies to all models other than BERT, which uses the Word-
Piece tokenizer (Wu et al., 2016) and builds its own vocabulary. Lastly, we remove
all the classes with a frequency of less than 15 in training. All the experiments were
performed with the validation set to find the best parameters.

2.3.4.2 Implementation

TF-IDF + Linear SVM: For the baseline, we use the scikit-learn implementation of
LinearSVC with one-vs-all training (Pedregosa et al., 2011).

CNN: We configured the CNN with 64 channels and filter sizes of 3, 4, and 5.
HAN: Following Yang et al. (2016), we also used bidirectional GRU encoders with a

hidden size of 300. We set the maximum number of sentences in documents and the
maximum number of words in a sentence as 40 and 10, respectively.

SLSTM: A bidirectional LSTM encoder with a hidden size of 300.
CLSTM: Similar to SLSTM, but with an additional matrix T of size: total number of

descriptions, which is 230 as collected from ICD-10-GM, times maximum description
sequence length of 10.

BERT: We used PyTorch’s implementation of BERT4 with default parameters. To
avoid memory issues, we used a maximum sequence length of 256 with batch size 6.

Ensemble: Based on the validation set results, we also created an ensemble of the
top-2 models (across the model classes) as a weighted combination of their raw scores,
where then the prediction for each example is given by:

ŷ = 1{σ(κ× S1 + (1− κ)× S2) > 0.5} ∈ {0, 1}|C|

S1 and S2 are raw probability scores from the first and second-best models, respectively,
while σ is the sigmoid function and |C| is the number of classes. We select the best
value of κ on the validation set such that the F1-score of the ensemble is higher than
individual models. Figure 8 shows κ variation with performance metrics.

For all the models, except BERT, we used a batch size of 64, a sequence length of
256, a learning rate of 0.001 with Adam (Kingma and Ba, 2015a), and 50 epochs with
early stopping. We used class-balanced binary cross-entropy loss for training and F1-
micro score as the performance metric. Experiments were performed on a single 12GB
NVIDIA TitanXp GPU. We implemented these models in PyTorch (Paszke et al., 2019),
and our code is publicly available.5 We used the following pre-trained German models:

• FTde: fastText DE Common Crawl (300d)6

• BERTde: BERT-Base, Multilingual Cased (768d)7

2 https://cloud.google.com/translate/docs/translating-text
3 https://spacy.io/usage/models
4 https://github.com/huggingface/pytorch-pretrained-BERT
5 https://github.com/suamin/ICD-BERT
6 https://fasttext.cc/docs/en/crawl-vectors.html
7 https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip

https://cloud.google.com/translate/docs/translating-text
https://spacy.io/usage/models
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/suamin/ICD-BERT
https://fasttext.cc/docs/en/crawl-vectors.html
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
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Models P R F1

Baseline
TF-IDFde 90.72 58.73 71.30

TF-IDFen 90.69 65.45 76.03

CNN
FTde 86.08 57.37 68.85

FTen 85.76 61.59 71.69

PubMeden 87.95 65.10 74.82

HAN
FTde 78.86 58.79 67.37

FTen 83.52 64.50 72.79

PubMeden 85.10 69.61 76.58

SLSTM
FTde 85.55 64.86 73.76

FTen 87.53 67.65 76.32

PubMeden 87.33 70.09 77.77

CLSTM
FTde 83.60 63.97 72.48

FTen 84.39 69.14 76.01

PubMeden
†

87.87 70.21 78.05

BERT
Multide 70.96 83.41 76.68

BERTen 79.63 84.60 82.04

BioBERTen
‡

80.35 85.61 82.90

Ensemble (†, ‡) 86.29 83.11 84.67

Table 2: Results on the validation set where overall best is boldfaced and second best underlined.

and the following for English:

• FTen: fastText EN Common Crawl (300d)

• PubMeden: PubMed word2vec (400d)8

• BERTen: BERT-Base, Cased (768d)9

• BioBERTen: BioBERT (768d)10

2.3.5 Results

Table 2 summarizes the results on the validation set for all models with different pre-
trained embeddings. In all of our experiments, working with translated English texts
improved the score by an average of 4.07%, even though automatic translation is likely
to introduce some noise. This can be attributed to the fact that there is an abundance of
English texts compared to the other languages. However, it could also be supported by
English having a stronger linguistic signal (Amplayo et al., 2018) to extract the concepts
where the German models underperform.

The bag-of-words baseline showed the highest precision and outperformed neural
models, HAN and CNN, for German and English with Common Crawl embeddings.
Generally, HAN performs better when documents are relatively long, e.g., Baumel et al.

8 https://archive.org/details/pubmed2018_w2v_400D.tar
9 https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip

10 https://github.com/naver/biobert-pretrained/releases/tag/v1.0-pubmed-pmc

https://archive.org/details/pubmed2018_w2v_400D.tar
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://github.com/naver/biobert-pretrained/releases/tag/v1.0-pubmed-pmc
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Figure 8: The graph shows the effect of varying κ to create an ensemble of top-2 models. The optimal
value is at κ=0.63, represented by the redline’s intersection with the x-axis.

(2018) reports strong results with HAN-based models on MIMIC datasets (Johnson et
al., 2016), where the average document size exceeds 1,900 tokens. After pre-processing,
the average document length in our case was approximately 340. For CNN, advanced
variants (with multiple filters) can potentially result in better performance.

SLSTM and CLSTM, being single-layer networks, performed comparably and better
than the baseline. SLSTM relies only on self-attention and residual connections, and
even better scores are achieved by BERT models composed of stacked multi-headed
self-attention and residual blocks. For CLSTM, since many documents in the corpus
are missing the description words, the model had weak attention alignments between
documents and concepts descriptions meta-data. However, CLSTM performed reason-
ably well, obtaining the second-best score with PubMed embeddings.

BERT performed better than other models in German and English, with an absolute
average score of 6% higher, showing the effectiveness of transfer learning for super-
vised multilingual clinical concept extraction to answer RQ1. BioBERTen performed
just slightly (+0.86%) better than BERTen; this was also noticeable in relation extraction
task in Lee et al. (2019), where domain-specific and general BERT performed compara-
bly. This partly shows BERT’s ability to generalize and be robust to domain shifts with
limited learning from only 5,000 training documents. However, it contradicts the recent
findings of Yogatama et al. (2019), where authors study domain shifts and catastrophic
forgetting in pre-trained language models. Furthermore, the impact of using in-domain
pre-trained models was more significant for static embeddings with PubMeden word
embeddings outperforming open-domain FTen by an average of 2.77%. Unfortunately,
we were not able to conduct a similar analysis for German due to a lack of pre-trained
medical domain German word embeddings. BERT models had the highest recall but
relatively poor precision. While problematic in general, this is preferable in real-world
medical applications, where recall is of much more importance, especially for billing
purposes.

We also combined the top-2 models, BioBERTen and CLSTSM-PubMeden, to obtain
an ensemble that performed better than both and achieved the best score of 84.67%
on the validation set. The goal was to improve BERT’s precision without a substantial
loss in the recall. As shown in Figure 8 at κ = 0.63, the ensemble obtained the highest
F1-score. This amounts to an increase in BioBERTen precision by 7.24% at an expense
of 2.5% recall.
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Models
Original Modified

P R F1 P R F1

Baseline
TF-IDFde 89.58 52.74 66.39 93.01 52.74 67.31

TF-IDFen 88.31 60.79 72.01 91.53 60.79 73.06

CNN
FTde 80.30 54.66 65.04 86.99 54.66 67.13

FTen 78.09 58.74 67.05 83.33 58.74 68.91

PubMeden 80.89 64.36 71.69 86.74 64.36 73.90

HAN
FTde 71.45 54.66 61.93 80.60 54.66 65.14

FTen 75.88 62.70 68.67 82.10 62.70 71.10

PubMeden 79.51 66.41 72.37 84.82 66.41 74.49

SLSTM
FTde 79.17 64.11 70.85 85.37 64.11 73.23

FTen 82.53 65.77 73.20 86.26 65.77 74.63

PubMeden 77.13 68.07 72.32 83.15 68.07 74.85

CLSTM
FTde 83.60 63.97 72.48 87.52 63.97 73.91

FTen 75.74 65.00 69.96 82.62 65.00 72.76

PubMeden
†

82.15 68.19 74.52 86.82 68.19 76.39

BERT
Multide 54.10 83.39 65.62 68.23 83.39 75.05

BERTen 62.09 83.26 71.11 75.20 83.26 79.03

BioBERTen
‡

63.68 85.56 73.02 76.57 85.56 80.82

Ensemble (†, ‡) 74.44 81.86 77.98 83.13 81.86 82.49

Table 3: Results on the test set where the overall best is boldfaced and the second best underlined. The
Original column refers to the official evaluation setup, and the Modified refers to the case where we
ignore test documents without gold labels for evaluation.

Test Scores: The test set contains 407 documents, which we first translate to English
and then run predictions with BioBERTen as our inference model. We obtained a test
F1-micro of 73% with 86% recall and 64% precision, as posted by official results. Our
model ranked second in CLEF 2019 eHealth Task 1, but there was a significant differ-
ence between test and validation set performances, particularly low precision. After
the gold set was released, we probed it and found that the official script provided by
the shared task considers all predictions on test examples for which there is no gold
label, 93 of them, as false positives. Comparing examples with predictions where the
gold standard is unavailable is intrinsically impossible. To emphasize, we give an ex-
ample, if we take a test document with id 20486 where the gold labels are {C00-C97,
C76-C80, II} and our best model predicted {C00-C97, C76-C80, II} i.e., a perfect match
with maximum score. Given the official evaluation, if this example did not have the
gold standard available, our model predictions would all have been considered false
positives. Therefore, it degrades the precision of a model that may have generalized
well to predict future examples.

Table 3 shows this comparison on the test set, where in the Original column, we use
the same evaluation as provided by the task. In the Modified column, we remove all
documents from the evaluation for which gold labels are unavailable. Table 3 shows
that the recall column remains the same as the original, with only the precision column
changing, hence improving the F1 score. With the modification, all the models have
similar performance as on the validation set where we removed unlabeled examples.
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Figure 9: Overview of the unsupervised concept extraction framework with dense phrase matching com-
bined with string matching (Algorithm 1). Dashed lines show optional paths, where the concepts of
interest are pre-specified with their textual description, and input is a query document.

Furthermore, the submitted system achieves a test score of 80.82% now compared to
that of 82.90% on the validation set. Finally, the ensemble model obtains the highest
scores of 77.98% and 82.49% with original and modified evaluations, respectively.

2.4 unsupervised concept extraction

In supervised concept extraction from clinical text (Amin et al., 2019; Crammer et
al., 2007), we assume that we have access to manually annotated (text, concepts) pairs.
However, this might be unfeasible for low-resource languages or challenging focused
domains such as cancer or stroke in real-world applications. The key idea behind un-
supervised approaches for concept extraction is to use approximate string matching
for extracting fuzzy candidate mentions in text and aligning them with the concepts
of interest. Prior works have mainly focused on string matching only. However, recent
advances in medical entity linking have shown the utility of a hybrid framework com-
bining dictionary and embedding-based matching (Loureiro and Jorge, 2020). Inspired
by this and the advances in zero-shot entity linking (Wu et al., 2020a), we investigate
a dense phrase matching framework for unsupervised concept extraction to study the
labeled data requirement of supervised methods as part of RQ2.

2.4.1 Dense Phrase Matching

In entity linking, the first step is detecting candidate mentions that might refer to the
underlying knowledge base concept. For example, the text ".. more and more adolescents
are morbidly overweight and suffer from type 2 diabetes ..." indicates the presence of con-
cepts diabetes mellitus and obesity and other overeating from ICD-10 (Organization, 2004).
Therefore, a robust mention recognition model is a critical component of concept ex-
traction pipelines.

Secondly, we need to search for each mentioned candidate in a collection of concepts.
To scale to modern medical ontologies, we propose a fast and dense nearest neighbor
search with FAISS (Johnson et al., 2019). The dense embedding is derived from an
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off-the-shelf paraphrase embeddings model and can be replaced by any model similar
to those discussed in §2.3.4.2. Lastly, we search for candidates in approximate and
exact string-matching indices, effectively resulting in a hybrid framework. Figure 9

shows our framework, and Algorithm 1 outlines the Dense Phrase Matching (DPM).
We describe each component in detail in the following sections.

2.4.2 Linguistic Processing

In this step, we perform basic text processing and run the document through a lin-
guistic pipeline such as spaCy (Honnibal and Montani, 2017). This step involves tok-
enization, sentence segmentation, and POS tagging. In the case of long documents, we
divide them into segments to obtain smaller, more manageable document segments.
We use a fixed number of sentences to limit document length.

2.4.3 Candidate Extraction

One of the main components in our pipeline is the candidate extractor. While using raw
n-grams as candidates can yield high recall, it comes at the expense of noise, affecting
precision. To improve this, we use short text spans that are more informative using
unsupervised Keyphrase Extraction (KPE) or Concept Span Detection (CSD).

Keyphrase Extraction: The unsupervised keyphrase extraction methods mainly use
different features of the document, such as word frequency, position, linguistic fea-
tures, topic, length, the relationship between words, and external knowledge-based
information. Graph-based keyphrase extraction is one of the most effective and widely
used methods. Inspired by PageRank (Page et al., 1999), TextRank abstracts the docu-
ment into a graph, where words or phrases are nodes in the graph and relationships
between words are edged (Mihalcea and Tarau, 2004). We use TextRank in this work
with plug-in support to apply other approaches.

Concept Span Detection: Besides KPE, we propose a method based on mentions
recognition. Unlike MedLinker (Loureiro and Jorge, 2020), we use the MedMentions
(Mohan and Li, 2018) dataset to identify text spans of interest without entity type.
We train a multilingual model on the MedMentions (in English) and use it to infer
candidates from new texts. The approach is language and document length agnostic
and can provide noisy candidates. Note that the MedMentions dataset is in English,
but the model is multilingual, so we expect it to have a weak zero-shot performance
to generalize to unseen languages. Lastly, KPE and CSD focus on noun phrases, i.e.,
concepts hence limiting the performance when semantic units are non-conceptual.

2.4.4 Concept Matching

Embedder: The next important component of our pipeline is the text embedder. Here
we propose an improved language-agnostic version of the Sentence BERT (Reimers and
Gurevych, 2019) (S-BERT) at the level of short texts. The focus is to enhance Seman-
tic Textual Similarity (STS). More specifically, the authors train an expert monolingual
semantic textual similarity model and use knowledge distillation in a teacher-student
framework to adapt it to several other languages using a parallel corpus. Besides STS,
natural language inference, paraphrase identification, and duplicate detection models
have also been proposed in S-BERT. While these embeddings are derived based only
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Algorithm 1 Dense Phrase Matching

Input: Collection of documents (D), Collection of concepts (C), Threshold (t), Em-
bedder (E)
Ce = Embed concepts in C via E

Store Ce in a dense index I:
if |C| ⩽ 500 then

I = FullSearchIndex ▷ Exact
else

I = ApproximateSearchIndex ▷ k-NN
end if
Update I with Ce ▷ Populate index
R = [ ] ▷ Initialize matches collection
for d ∈ D do: ▷ Collect candidates

Pre-process the document
Parse the document
(optional) Segment long documents
X = Extract candidates from the document
(optional) Filter noisy candidates from X

Xe = Embed candidates in X with E

R1 = Run 1-NN search using I

Filter out matches below the threshold t

(optional) R2 = Run appx. string match
(optional) R3 = Run Trie exact match
Rd = R1 ∪ R2 ∪ R3 ▷ List of document matches
Append Rd to R

end for
Return R

on textual information, they lack the structural information of background ontology.
Knowledge graph embeddings, discussed in Chapter 5, provide a more informative
solution to capture such information and can easily be integrated with our work; how-
ever, we leave this to future work.

Index: We use approximate search in dense space with FAISS, which provides effi-
cient search algorithms and scales up to billions of samples suitable for modern med-
ical ontologies. There are two main components at its core: Vector Quantization (VQ),
which significantly reduces initial search space to clustered sub-spaces. Second, the
inverted file index points to the centroids with Product Quantization (PQ) to further
speed up the search. Once the concepts are embedded, the resulting vectors are in-
dexed, and candidates can be used as queries to find top-1 matches to obtain R1 in
Algorithm 1. The overall framework is agnostic to embeddings, scalable, and efficient.

String Matching: Finally, we use a simple and efficient approximate dictionary
matching algorithm called CPMerge (Okazaki and Tsujii, 2010) for τ-overlap join of
inverted lists. Alternatively, we can also use the Faerie11 (Li et al., 2011) algorithm
based on the single and multi-heap based method with unified similarity and dis-
similarity support. We also optionally combine approximate dictionary matching with
exact string matching using Trie structure.

11 https://github.com/suamin/PyNemex

https://github.com/suamin/PyNemex
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2.4.5 Experiments

2.4.5.1 Data

We use two benchmark datasets to compare state-of-the-art unsupervised and super-
vised concept extractors, QuickUMLS and mBERT. A corpus of consumer-generated
reviews was used that cover commonly used breast cancer drugs: Anastrozole, Ex-
emestane, Letrozole, Raloxifene, and Tamoxifen; Drugs Review dataset (ADR; Yates
and Goharian, 2013). We categorize this dataset as lexical since most concepts can be
recognized with certain lexical variations. ADR is in English, but our approach can
be applied to other languages off-the-shelf, whereas QuickUMLS is limited to English.
For the multilingual experiment, we consider the German clinical dataset collected
from the AnimalTestInfo database used in supervised concept extraction §2.3.4.1. The
state-of-the-art on this dataset uses supervised fine-tuning and this data set is consid-
erably more challenging than the lexical dataset as it requires a deeper understanding
of semantics.

2.4.5.2 Implementation

Our implementation has the following core modules:

• flashtext12 based exact matching.

• sentence-transformers13 based multilingual XLM-R paraphrase embeddings for
semantic matching. We select this based on the assumption that paraphrases
capture some character and word order variations and that both semantic and
lexical variations can jointly be captured.

• FAISS14 based exact or approximate dense nearest neighbor search similar to Wu
et al. (2020a).

• textaCy15 based automatic KPE.

• simstring16 for CPMerge based approximate string matching.

• T2NER17 for training the CSD model, which we will introduce in the next Chapter
(Amin and Neumann, 2021) using the BIO-scheme (Farber et al., 2008) while
ignoring the entity types for MedMention with multilingual BERT for 3 epochs
and 2e-5 learning rate.

2.4.6 Results

Table 4 shows the result on the ADR dataset. First, we see that CSD outperforms the
KPE method in both cases. On ADR, our system achieved more than 12% F1 score im-
provement over QuickUMLS, whereas KPE based approach also outperformed Quick-
UMLS by 6% F1 score. It shall be noted that the KPE is unsupervised, but we use

12 https://github.com/vi3k6i5/flashtext
13 https://github.com/UKPLab/sentence-transformers
14 https://github.com/facebookresearch/faiss
15 https://github.com/chartbeat-labs/textacy
16 https://github.com/nullnull/simstring
17 https://github.com/suamin/T2NER

https://github.com/vi3k6i5/flashtext
https://github.com/UKPLab/sentence-transformers
https://github.com/facebookresearch/faiss
https://github.com/chartbeat-labs/textacy
https://github.com/nullnull/simstring
https://github.com/suamin/T2NER
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Method Threshold (t) F1 P R Speed (ms/doc)

QuickUMLS 0.9 0.48 0.47 0.50 22
DPM + KPE 0.7 0.54 0.61 0.53 52

DPM + CSD 0.8 0.60 0.67 0.58 105

Table 4: Unsupervised concept extraction result on lexical dataset.

Figure 10: Precision-Recall trade-off with varying matching thresholds.

the external corpus for span detection without entity types in CSD. This limitation
can be addressed by utilizing distantly supervised corpora (WikiMed, PubMedDS) as
proposed in Vashishth et al. (2021). Therefore, our proposed method (DPM) has the po-
tential to be utilized in an unsupervised fashion for concept extraction to partly answer
RQ2.

We also note a trade-off between precision and recall as we vary the matching thresh-
old between [0.6− 1.0] (Figure 10). The higher recall for CSD shows the model’s ability
to generalize to unseen concepts by understanding the context for enhanced candidate
extraction. QuickUMLS is significantly faster as it only applies spaCy for linguistic an-
notation while we also perform text embedding, indexing, and hybrid search. In the
case of CSD, we perform BERT-inference to tag sequences, which is expensive as it
requires passing the input sequence through 12 transformer layers.

To directly compare our results from supervised experiments, Table 5 shows multi-
lingual results. Since QuickUMLS lacks such support, we only compare DPM with our
state-of-the-art supervised approach that fine-tunes mBERT (Amin et al., 2019). Despite
only using noisy candidates and a pre-trained multilingual paraphrase model, our ap-
proach showed a zero-shot performance of 11% F1-score, which is dramatically lower
than the supervised model with 65% F1-score trained on 5,000 labeled documents.
This shows that the labeled data is essential for performant models and in particular
for low-resource clinical text to address the remainder of RQ2. As we will empirically
show in the next Chapter the strong few-shot cross-lingual transfer of mBERT for en-
tity representation, a special case of a concept, it can also be investigated for few-shot
concept extraction, which we leave as future work.
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Method F1 P R

Supervised 0.65 0.54 0.83

Unsupervised 0.11 0.11 0.13

Table 5: Concept extraction results on a semantic multilingual German dataset, where the supervised
results are taken from our work (Amin et al., 2019) on the original test set as shown in Table 3 above.

2.5 conclusion

In this Chapter, we addressed an important task of clinical text mining, concept extrac-
tion. We conducted a thorough study of neural methods for supervised concept extrac-
tion showing the effectiveness of transfer learning with pre-trained multilingual and
domain-specific language models, thus addressing RQ1. Such a transferable represen-
tation can significantly reduce the engineering required to develop domain-sensitive
models. We further demonstrated that the automatic machine translation brought sig-
nificant performance gain.

Considering our unsupervised setup in poorly resourced scenarios, we presented
a hybrid framework utilizing contextual, and dictionary matching approaches with
dense phrase matching. In cases where we are more interested in noun-phrased con-
cepts, our approach is highly effective and has the potential to serve in a multilingual
setup, thus addressing RQ2.



3T R A N S F O R M E R B A S E D N E R T R A N S F E R W I T H A P P L I C AT I O N T O
C R O S S - L I N G U A L C L I N I C A L D E - I D E N T I F I C AT I O N

3.1 introduction

Building on the previous Chapter, we now focus on a special case of concept, named
entities in text. Named Entity Recognition (NER) is an important task in information
extraction, benefiting the downstream applications such as entity linking (Cucerzan,
2007), relation extraction (Culotta and Sorensen, 2004), and question answering (Krish-
namurthy and Mitchell, 2015). NER has been challenging in NLP due to large varia-
tions in entity names and flexibility in how entities are mentioned. These challenges
are further enhanced in low-resource NER settings, such as for medical and multilin-
gual text, where the added difficulty comes from the difference in text genre and entity
names across languages and domains (Jia et al., 2019).

As discussed in the last Chapter, recent successes in transfer learning have mainly
come from pre-trained language models with contextualized word embeddings based
on deep transformer models (Devlin et al., 2019a; Radford et al., 2019). These models
achieve state-of-the-art in several NLP tasks such as named entity recognition, docu-
ment classification, and question answering. Due to their wide success and community
adoption, successful frameworks like Transformers (Wolf et al., 2020) have emerged. In
NER, the existing framework of NCRF++ (Yang and Zhang, 2018) lacks the core in-
frastructure to directly support these models with state-of-the-art transfer learning
algorithms.

Therefore, in the first part of this Chapter, we present an adaptable and general-
purpose development framework, T2NER, for growing research in transfer learning
with deep transformer models for NER. This is in contrast to the standard LSTM-
based approaches, which have largely and successfully dominated the NER research.
Our framework is aimed to bridge the gap in algorithmic advances in NER transfer
with pre-trained language models to address RQ3 in §3.3 as stated:

RQ3: How can we bridge the gap between research in pre-trained language models and
algorithmic advances in NER transfer?

In the second part of the Chapter, we address the real-world needs and challenges
of clinical privacy with T2NER. Clinical texts contain rich information about patients,
including their gender, age, profession, residence, family, and history, that is useful
for record-keeping and billing purposes (Johnson et al., 2016; Shickel et al., 2017). We
focus on removing Protected Health Information (PHI) from clinical texts, also called
de-identification. We collect real patient data where the target texts are code-mixed
(Spanish-Catalan) and domain-constrained (stroke). To avoid high annotation costs,
we consider a more realistic setting where we annotate a gold evaluation corpus and
a few hundred examples for training. Our approach is motivated by the empirical
investigation of the strong performance of multilingual pre-trained language models
in few-shot cross-lingual transfer for NER with high sample efficiency in comparison to
supervised or unsupervised approaches to study RQ4 in §3.4 as stated:

31
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RQ4: What characteristic NER transfer property of multilingual pre-trained language
models can effectively be applied to low-resource clinical de-identification?

The contents of §3.2.1 and §3.3 have appeared in the peer-reviewed article of Amin and
Neumann (2021). The contents of §3.2.2 and §3.4 have appeared in the peer-reviewed
article of Amin et al. (2022b). These sections are included here with minor corrections
where appropriate.

3.2 related work

3.2.1 NER Transfer

Transfer learning research in NER is an important and well-studied area due to two
challenges. First, NER models show relatively high variance even when trained on
the same domain data (Reimers and Gurevych, 2017). Second, these models poorly
generalize when tested on data from different domains and languages, and even more
so when they contain unseen entity mentions (Agarwal et al., 2020; Augenstein et
al., 2017; Wang et al., 2020a). To cater to these issues, research has proposed several
advances, including multi-task and joint learning (Jia et al., 2019; Lin et al., 2018; Pan
et al., 2017; Peng and Dredze, 2017; Wang et al., 2020a), adversarial learning (Keung et
al., 2019; Zhou et al., 2019), feature transfer (Daumé III, 2007; Kim et al., 2015; Wang et
al., 2018c), newer architectures (Jia and Zhang, 2020; Lin et al., 2018), parameter sharing
(Lee et al., 2018; Lin and Lu, 2018; Yang et al., 2018), parameter generation (Jia et al.,
2019), mixture-of-experts (Chen et al., 2018), and usage of external resources (Wang
et al., 2020c; Xie et al., 2018). We collectively label them as NER transfer algorithms.

3.2.2 Clinical De-identification

2014 i2b2/UTHealth (Stubbs and Uzuner, 2015), and the 2016 CEGS N-GRID (Stubbs
et al., 2017) shared tasks explore the challenges of clinical de-identification on dia-
betic patient records and psychiatric intake records, respectively. Earlier works include
machine learning and rule-based approaches (Meystre et al., 2010; Yogarajan et al.,
2018), with Liu et al. (2017b) and Dernoncourt et al. (2017) being the first to pro-
pose neural models. Friedrich et al. (2019) proposed an adversarial approach to learn
privacy-preserving text representations and Yang et al. (2019) used domain-specific
embeddings trained on unlabeled corpora. While most works have mainly focused on
English, some efforts have been made for Swedish using real patient data (Alfalahi
et al., 2012; Velupillai et al., 2009) and for Spanish using a synthetic dataset introduced
in the MEDDOCAN shared task (Marimon et al., 2019).

3.3 transformer based transfer learning framework for ner

As discussed in the last Chapter, recent advances in deep transformer models have
achieved state-of-the-art in several NLP tasks, where NER has traditionally benefited
from LSTM networks. Concurrently, the research in NER transfer is making algorith-
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Figure 11: Overview of the T2NER framework.

mic advances, which can potentially benefit from performant encoders. Therefore, we
present a Transformer based Transfer Learning Framework for Named Entity Recogni-
tion (T2NER) created in PyTorch for the task of NER with deep transformer models
that concerns RQ3.1

3.3.1 Design Principles

T2NER is divided into several components, as shown in Figure 11. The core design
principle is to seamlessly integrate the Transformers (Wolf et al., 2020) library as the
backend for modeling while extending it to support different transfer learning scenar-
ios with a range of existing algorithms. Transformers offer optimized implementations
of several deep transformer models, including BERT (Devlin et al., 2019a), GPT (Rad-
ford et al., 2019), RoBERTa (Liu et al., 2019), and XLM (Conneau and Lample, 2019)
among others, with multi-GPU, distributed, and mixed precision training.

The second design principle is inspired by transfer learning frameworks in com-
puter vision, Dassl.pytorch (Zhou et al., 2020)2 and Trans-Learn (Jiang et al., 2020)3,
that unify domain adaptation, domain generalization, and semi-supervised learning,
thus allowing easy benchmarking, fair comparisons, and reproducibility. T2NER builds
upon these transfer learning scenarios and offers a range of integrations (Figure 12).

The final design principle aims to unify the NER transfer research and offer a frame-
work to test them with deep transformer models, wherever such an algorithmic ab-
straction is possible while exploring new paradigms.

3.3.2 Data Module

3.3.2.1 Sources

The primary data source is NER task data which is expected to be labeled or unlabeled
in the CoNLL format. We adopt a widely used Begin-Inside-Outside (BIO) tagging

1 https://github.com/suamin/T2NER
2 https://github.com/KaiyangZhou/Dassl.pytorch
3 https://github.com/thuml/Transfer-Learning-Library

https://github.com/suamin/T2NER
https://github.com/KaiyangZhou/Dassl.pytorch
https://github.com/thuml/Transfer-Learning-Library
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Figure 12: Transfer learning scenarios supported in T2NER. The adaptation scenarios apply to the cross-
domain, cross-lingual, or a mix of both. These scenarios can further be complemented with multi-task learn-
ing. (a) Single source supervised or unsupervised domain or language adaptation (b) Multi-source supervised
or unsupervised domain or language adaptation (c) Single source semi-supervised learning with partially
labeled data. Further new directions in NER, such as multi-source adaptation with semi-supervised or
few-shot learning of the target, are possible.

scheme (Farber et al., 2008). In practice, the differences in results arising from different
schemas are negligible (Ratinov and Roth, 2009). A simple preprocessing routine is
provided to standardize the data files and the required metadata used throughout the
framework.

In particular, for a given named collection of the form domain.datasetname, possibly
split into train, validation, and test files, T2NER creates output data files named as
lang.domain.datasetname-split and lang.domain.dataset name.labels, where lan-
guage information is provided by the user. A placeholder (xxx) can be used in place of
missing domain or language metadata. We tokenize using Transformers and split sen-
tences longer than the user-defined maximum length for preprocessing. An example
output file can be of the form en.news.conll-train, referring to the CoNLL 2003 train
set from the news domain in English (Tjong Kim Sang, 2002a). Besides NER data, ad-
ditional task data can be provided, for example, language modeling, POS tagging, and
language alignment resources (bilingual dictionaries or parallel sentences).

3.3.2.2 Readers

These classes are designed to serve the data needs of a given transfer learning scenario
in a modular and extensible way. The framework provides SimpleData, SimpleAdaptat-
ionData, MultiData, and SemiSupervisedData, which are suitable for single dataset
NER, cross-lingual and cross-domain NER, multi-task NER, and single dataset semi-
supervised NER, respectively. Each class is derived from a base class BaseData and
can be extended for other scenarios. As a concrete example, consider a dataset reader
class SimpleAdaptationData in T2NER, which can provide training data for source and
target language or domain up to a requested number of copies.

3.3.3 Models

A model is composed of three main components, a base encoder from Transformers
(Wolf et al., 2020), an additional network (X-nets) on top of the encoder, useful in
feature extraction based methods, and the prediction layers.
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An encoder is the model backbone that takes as input tokenized text and returns
hidden states such as those from BERT (Devlin et al., 2019a) or RoBERTa (Liu et al.,
2019). There are five encoder modes that we support:

• finetune: Fine-tunes the encoder and uses the last layer’s hidden states.

• freeze: Freezes the encoder and uses the last layer’s hidden states.

• firstn: Freezes only the first n layers of the encoder and uses the last layer’s
hidden states (Wu and Dredze, 2019).

• lastn: Freezes the encoder and uses the aggregated hidden states by summing
the outputs from the last n layers (Wang et al., 2020c).

• embedonly: Uses and fine-tunes the embedding layer of the encoder only.

X-nets are neural architectures that can optionally be modeled on top of the encoder
to act as a feature extractor or pooler to process the hidden states. In T2NER, we
provide a multi-layered transformer and bidirectional LSTM by default.

Prediction layers offer the final classification layer for the sequence labeling tasks.
Following Devlin et al. (2019a), the default prediction layer in T2NER is linear, with
additional support for a linear-chain Conditional Random Field (CRF) (Lafferty et al.,
2001). In the multi-task setting, several output layers from different datasets in dif-
ferent domains or languages might be available with partial or exact entity types as
outputs. To help the transfer across the tasks, private and shared prediction layers are
also supported (Lin et al., 2018; Wang et al., 2020a).

With these underlying components, models are mainly implemented as single or
multi-task architectures. To support a wide range of encoders in a unified API, T2NER
adopts the Auto classes design from the Transformers. Figure 13 shows the class hier-
archies, outlining the customized extensions with further possibilities to extend with
external model implementations.

3.3.3.1 Criterions

For a given sequence of length L with tokens x = [x1, x2, ..., xL], labels y = [y1,y2, ...,yL],
where yi ∈ ∆C is a one-hot entity type vector with C types, and the linear prediction
layer, the NER loss is defined as:

L(y; x) = −

C∑
i=1

L∑
j=1

yij logp(hj = i|xj)

where p(hj = i|xj) is the probability of token xj being labeled as entity type i and hj

is the model output. When p is softmax, this becomes a cross-entropy loss. To tackle
class imbalance in real-world applications, T2NER also offers two-class sensitive loss
functions extensions for token classification:

• Focal loss (Lin et al., 2017) adds a modulating factor to the standard softmax,
which reduces the loss contribution from easy examples and extends the range
in which an example receives low loss.

• LDAM loss (Cao et al., 2019) is a label-distribution-aware function that encour-
ages the model to have the optimal trade-off between per-class margins by pro-
moting the minority classes to have larger margins.
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3.3.3.2 Auxiliary Tasks

Multi-task learning has systematically proved beneficial for NER transfer (Jia et al.,
2019; Jia and Zhang, 2020; Lin et al., 2018; Wang et al., 2020a). Several auxiliary tasks
are supported in a multi-task model by default:

• Language Classification: In the cross-lingual setting, this task provides an addi-
tional classification signal over the languages (e.g., English and Spanish) used in
the training data (Keung et al., 2019).

• Domain Classification: In the cross-domain setting, this task provides an additional
classification signal over the domains (e.g., News and Biomedical) used in the
training data (Wang et al., 2020a).

• Adversarial Classification: In the cross-lingual or cross-domain setup, this task pro-
vides an additional adversarial classification signal over the languages or do-
mains to learn invariant features used in the training data (Chen et al., 2018;
Keung et al., 2019).

• Language Modeling: While pre-trained transformer models are already trained on
specific corpora, this task adds causal language modeling signal during fine-
tuning over the raw task texts (Jia et al., 2019; Jia and Zhang, 2020; Rei, 2017).

• Entity Type Classification: To better extract entity type knowledge, an additional
linear classifier is added. This performs classification over entity types such as
[Per, Loc, Org, ...] without the segmentation tags such as B/I/E (Jia and Zhang,
2020).

• Shared Tagging: In NER settings where the entity types might differ, a shared
prediction layer across all the entity types provides an additional signal to the
base NER tasks.

• All-Outside Classification: This binary classification task predicts if the sentence
has entity types other than the outside (O) type.

3.3.3.3 Optimization Modules

T2NER provides thin wrappers around the optimizers and learning rate schedulers
from PyTorch and Transformers.

3.3.4 Algorithms

A trainer is the central class concept that binds together all the components and
provides a unified setup to develop, test, and benchmark the algorithms. Figure 13

shows the hierarchy of trainer classes. Each transfer learning scenario inherits from the
BaseTrainer class, where each scenario can further be extended to create an algorithm-
specific training regime. This allows the researchers to focus mainly on the algorithms’
logic while the framework fulfills the requirements of a chosen transfer scenario. Fol-
lowing Jiang et al. (2020) and Zhou et al. (2020), a few training algorithms are imple-
mented by default which we briefly describe. In the following, a feature extractor is
referred to as the base encoder with any X-nets. An optional pooling strategy {mean,
sum, max, attention, ...} can be applied to aggregate the hidden states.
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Figure 13: Class hierarchies in T2NER for two main class concepts. (Left) Main model architectures in
single and multi-task settings with the adoption of Auto classes concepts from Transformers (Wolf et al.,
2020), where customized functionality or new modeling concepts can easily be added. (Right) Main trainer
classes offer a particular transfer learning scenario and extend it to a specific transferring algorithm.

In the following, domain and language can be used interchangeably. For the sake of
the discussion, we use the word domain.

Gradient Reversal Layer (GRL) adds a domain classifier trained to discriminate
whether input features come from the source or target domain. In contrast, the feature
extractor is trained to confuse the domain classifier into matching feature distributions
(Ganin and Lempitsky, 2015).

Earth Mover Distance (EMD) adds a critic that maximizes the difference between
unbounded scores of source and target features. This effectively returns the approx-
imation of Wasserstein distance between source and target feature distributions (Ar-
jovsky et al., 2017). The overall objective jointly minimizes NER cross-entropy loss and
Wasserstein distance. Theoretically, GRL effectively minimizes Jensen-Shannon (JS) di-
vergence, which suffers from discontinuities and thus provides poor gradients for the
feature extractor. In contrast, Wasserstein distance is stable and less prone to hyperpa-
rameter selection (Chen et al., 2018). For stable training, a common strategy is to add
a gradient penalty (Gulrajani et al., 2017), which is also provided in T2NER.

Keung Adversarial is closely related to GRL but additionally uses the generator loss
such that the features are difficult for the discriminator to classify correctly between
source and target. The optimization is carried out in a step-wise fashion for the feature
extractor, discriminator, and generator (Keung et al., 2019).

Maximum Classifier Discrepancy (MCD) adds a second classifier to measure the
discrepancy between the predictions of two classifiers on target samples. This is based
on the observation that two different classifiers can measure the target samples outside
the support of the source. Overall, MCD solves a minimax problem in which the goal is
to find two classifiers that maximize the discrepancy on the target sample and a feature
generator that minimizes this discrepancy (Saito et al., 2018).

Minimax Entropy (MME) decreases the entropy on unlabeled target features in an
adversarial manner by using GRL to obtain high-quality discriminative features (Saito
et al., 2019). Besides unsupervised domain adaptation, the method can be used in
semi-supervised and few-shot learning scenarios when some labeled target samples
are available.
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Figure 14: An example configuration file showing an instantiation of the multi-task cross-lingual adapta-
tion of CoNLL datasets from English and Spanish to German and Dutch for zero-shot transfer.

Other algorithms, such as classical Conditional Entropy Minimization (CEM) for
semi-supervised learning (Grandvalet and Bengio, 2004) or recent works based on
Maximum Mean Discrepancy (MMD) for multi-source domain adaptation (Peng et
al., 2019a) can be added. In general, extending T2NER to newer algorithms is simple
and flexible, addressing the gap between research in pre-trained language models and
algorithmic advances as stated in RQ3.

T2NER offers a single entry point to the framework, which relies on a base JSON
configuration file, and an experiment-specific JSON configuration file with an optional
algorithm name to run. An example experiment-specific configuration file is shown in
Figure 14. The command below shows an example run:

Figure 15: Example command showing T2NER usage for unsupervised adaptation with gradient reversal
layer method.

Similar to other frameworks, it can be further developed and used as a standard
Python library. In the next section, we shift our focus to a real-world use case of T2NER
for few-shot cross-lingual clinical de-identification in a domain-specific setup.



3.4 cross-lingual clinical de-identification 39

Figure 16: The process of text de-identification, solved as NER, involves the removal of a predefined set
of direct identifiers in text (Elliot et al., 2016). For clinical notes, this set is often the PHI categories (or
types) defined by the Health Insurance Portability and Accountability Act (HIPAA) (Gunn et al., 2004).
The example here shows a de-identified excerpt of a patient note from the Spanish-Catalan stroke dataset
used in our study. The text is translated into English for readability.

3.4 cross-lingual clinical de-identification

With growing interest and innovations in data-driven digital technologies, privacy has
become an important legal topic for technology to be regulations compliant. In Eu-
rope, the General Data Protection Regulation (GDPR) (Regulation, 2016) requires data
owners to have a legal basis for processing personally identifiable information (PII),
which also includes the explicit consent of the subjects. In cases where explicit consent
is impossible, anonymization is often seen as a resorted-to solution.

GDPR-compliant anonymization requires the complete and irreversible removal of
any information that may lead to a subject’s data being identified (directly or indirectly)
from a dataset (Elliot et al., 2016). However, de-identification is limited to removing
specific predefined direct identifiers; further replacement of such direct identifiers with
pseudonyms is referred to as pseudonymization (Alfalahi et al., 2012). Generally, de-
identification can be seen as a subset of anonymization despite interchangeable usage
of the terms in the literature (Chevrier et al., 2019). We focus on solving the problem
of de-identification in the clinical domain as a sequence labeling task, specifically NER
(Lample et al., 2016).

As outlined in Lison et al. (2021), a significant challenge in clinical text de-identification
is the lack of labeled data. These challenges are further pronounced in a multilingual
or cross-lingual setup with a clinical sub-domain. Hartman et al. (2020) showed that
a small number of manually labeled PHI examples could significantly improve perfor-
mance. In parallel, prior works in few-shot NER consider the problem where a model
is trained on one or more source domains and tested on unseen domains with a few
labeled examples per class, some with entity tags different from those in the source do-
mains (Yang and Katiyar, 2020). Models are trained with prototypical methods, noisy
supervised pre-training, or self-labeling (Huang et al., 2020). In contrast, we consider
a setting where the target and source domains share the same entity (PHI) tags but
with a few labeled examples in the target language. We take this approach to study
the needs of RQ4. A similar setup has been employed in few-shot question answering
(Ram et al., 2021).
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3.4.1 Problem Definition

We approach the de-identification problem as an NER task. Given an input sentence
x with N words: x = [xi]i=1:N, we feed it to a T2NER encoder fϕ : RN → RN×d to
obtain a sequence of hidden representations h = [hi]i=1:N

h = fϕ(x).

We then feed h into an NER classifier, which is a linear classification layer with the
softmax activation function to predict the PHI label of x:

pθ(Y|x) = softmax(WTh + b).

pθ(Y|x) ∈ RN×|P| is the probability distribution of PHI labels for sentence x and P is
the PHI label set. θ = [ϕ, W ∈ Rd×|P|, b ∈ R|P|] denote the set of learnable parameters
and d being the hidden dimension. The model is trained to minimize the per-sample
negative log-likelihood:

L = −
1

N

N∑
i=1

logpθ(Yi = yi|xi). (1)

For pre-trained LMs, this setting corresponds to NER fine-tuning (Wu and Dredze,
2019). When we jointly fine-tune on more than one NER dataset, we refer to it as
multi-task learning following T2NER.

Definition 1 (Few-Shot NER). Given an entity label set P, we define the task of few-shot
NER as having access to K ⩽ M labeled sentences containing each element p ∈ P at least
once, where K is a small number (e.g., in [50, 500]) and M is orders of magnitude larger (e.g.,
⩾ 1000).

Definition 2 (Few-Shot NER Transfer). Given an NER dataset in a source domain (or lan-
guage), we define the task of few-shot cross-domain (or cross-lingual) NER transfer as adapting
a model trained on the source domain (or language) to a target domain (or language) with access
to a few-shot corpus (Def. 1).

The Few-Shot NER Transfer setting is different from prior studies in NER transfer,
including few-shot (Huang et al., 2020), unsupervised (Keung et al., 2020), and semi-
supervised NER (Amin and Neumann, 2021).

3.4.2 Few-Shot Cross-Lingual NER Transfer

mBERT (Devlin et al., 2019a) has been shown to achieve robust performance for zero-
shot cross-lingual transfer tasks, including NER (Pires et al., 2019; Wu and Dredze,
2019). Adversarial learning has been applied with limited gains (Keung et al., 2019)
in unsupervised approaches to improve zero-shot NER transfer, whereas feature align-
ments have shown better results (Wang et al., 2020c). Meta-learning with minimal re-
sources (Wu et al., 2020c) and word-to-word translation (Wu et al., 2020b) have shown
further performance gains. The current state-of-the-art approach of Chen et al. (2021b)
combines token-level adversarial learning with self-labeled data selection and knowl-
edge distillation.
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Figure 17: An empirical investigation of few-shot cross-lingual NER transfer in mBERT. We compare
different transfer learning scenarios from English (EN) to Spanish (ES) for two pairs of datasets as a pre-
liminary study to investigate the effectiveness of the few-shot cross-lingual transfer in mBERT: CoNLL-
2003 to CoNLL-2002 (left) and i2b2-2014 to MEDDOCAN (right). We use supervised fine-tuning on the
entire training set of the target language (ES) as the upper bound and the zero-shot score of the model.
(pre-trained only on the source language (EN) training set) as the lower bound for target language (ES) per-
formance. We then consider 50, 100, 250, and 500 examples from the target language as few-shot training
corpora and train the models for 15 epochs. The models without any pre-training on the source corpus
(scratch) eventually outperform the lower bound as the number of examples grow; with sufficient epochs,
the model with only 50 target-language samples reaches more than 10% gain in the de-identification task
(right: scratch-50). However, we find the cross-lingual transfer-learning strategy to be most sample effi-
cient when pre-trained on source language—50-shot performance (left & right: pretrain-50) comparable to
500-shot (left & right: scratch-500). We apply this strategy to address the real-world challenges of Spanish-
Catalan de-identification.

CoNLL (EN)→ CoNLL (ES) F1

Pires et al. (2019) 73.59

Wu and Dredze (2019) 74.96

Keung et al. (2019) 74.30

Wang et al. (2020c) 75.77

Wu et al. (2020c) 77.30

Wu et al. (2020b) 76.75

Chen et al. (2021b) 79.00

few-50 (or pretrain-50) 78.30

Table 6: Cross-lingual transfer results on CoNLL. few-50 represents our fine-tuning of EN-trained mBERT
with 50 random labeled samples from ES.

To investigate the few-shot transferability of mBERT, we consider two pairs of datasets
with English as the source language and Spanish as the target language: the CoNLL-
2003/CoNLL-2002 (Tjong Kim Sang, 2002b,c) in the general domain and i2b2/MEDDOC-
AN (Marimon et al., 2019; Stubbs and Uzuner, 2015) in the clinical domain. We report
the results of our preliminary study in Figure 17. We observed that with as few as
50 random labeled training samples from the target language, we obtained substantial
gains for both datasets, with near state-of-the-art on CoNLL (Table 6). We refer to this
as few-shot cross-lingual transfer property of mBERT for NER, thus partially addressing
RQ4. Our study highlights that the property holds for different domains (general and
clinical), where the latter focuses on the de-identification task. We leave a large-scale
study on more datasets with different languages and domains as future work.



42 named entity recognition

Figure 18: Our few-shot cross-lingual transfer strategy for clinical text de-identification.

Compared to supervised (unsupervised) methods, which use complete labeled (un-
labeled) target data, our few-shot approach is sample-efficient and alleviates the need for
complex pipelines (Chen et al., 2021b; Wu et al., 2020b,c) and large-scale annotations.
Furthermore, Keung et al. (2020) highlights the spurious effects of using source data as
a development set and recommends using target data as a development set for model
selection in NER transfer. Our findings and those in Hartman et al. (2020) motivate
us to (a) propose an optimal few-shot cross-lingual transfer strategy (outlined in Figure
18), (b) annotate a target development set, and (c) construct an annotated few-shot target
corpus for effective cross-lingual transfer learning.

3.4.3 Data and Annotation

Our dataset consists of stroke patient records collected at Institut Guttmann.4 Table 7

summarizes the raw data statistics and Table 31 in Appendix §A.1 describes the topics
present in the texts. We set aside 100 randomly sampled notes for out-of-sample gener-
alizability evaluation. The remainder of the notes are considered for our development
and few-shot corpora sampling; 396k sentences are tokenized in the process.

We follow a protocol similar to Gao et al. (2021b), which uses a fine-tuned BERT
model’s predictions for constructing a manually annotated dataset to evaluate distantly
supervised relation extraction models. In particular, we train mBERT on the MEDDO-
CAN corpus, using coarse-grained PHI categories {DATE, AGE, LOCATION, NAME,
CONTACT, PROFESSION, ID} with the BIO scheme (Farber et al., 2008), for evaluation
and few-shot training data selection. We use the trained model to make predictions on
the dataset and observe that the model predicts PHI on only 50k out of the 396k sen-
tences. A dataset of 5000 sentences (< 2% of raw sentences) is constructed from a
mix of randomly sampled 2500 sentences from this 50k and 2500 from the remaining
sentences.

We split the dataset into two partitions of 2500 sentences for independent annotation
by two annotators. The annotation is performed one sentence at a time by applying one
of the 7 coarse-grained PHI labels to each token using the T2NER-annotate toolkit
(Amin and Neumann, 2021). Each annotator’s confidence level between 1-5 is recorded
for the token-level labels for each sample. To record the inter-annotator agreement, we
use token-level Cohen’s kappa (Cohen, 1960) statistic reaching a value of 0.898. The two
annotators agreed on 3924 sentences, resulting in our final evaluation set. To save an-
notation costs for developing a few-shot target corpus, we resolved the disagreements to
obtain a 384-sentence few-shot corpus for training (see Appendix §A.2 for annotation
details).

4 https://www.guttmann.com/ca/institut-universitari-guttmann-uab

https://www.guttmann.com/ca/institut-universitari-guttmann-uab
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Patients Notes ES CA Other

1,500 327,775 42.8% 53.0% 4.2%

Table 7: Raw statistics of the Spanish (ES)-Catalan (CA) data from the stroke domain.

Our source dataset (the MEDDOCAN corpus) consists of 1000 synthetically gener-
ated clinical case studies in Spanish (Marimon et al., 2019). A practicing physician
selected the corpus manually and augmented it with PHI from discharge summaries
and clinical records. In contrast, our target corpus focuses on the stroke domain and
contains PHI from real-world records. Since the target data is code-mixed between
Spanish and Catalan, with the majority (53%) being Catalan, the transfer from Spanish
source data (MEDDOCAN) is cross-lingual.5

3.4.4 Experiments

We conduct our experiments with the T2NER framework (Amin and Neumann, 2021).6

For the baseline, we consider zero-shot performance on the evaluation set of the mBERT
encoder fine-tuned on the MEDDOCAN training set consisting of 16,299 samples. We
then fine-tune it on the few-shot target corpus as outlined in Figure 18. Following the
multi-task learning (Lin et al., 2018) approach in T2NER, we jointly fine-tune mBERT
on the MEDDOCAN and few-shot target corpora. Since the few-shot corpus is much
smaller, multi-task learning helps the model transfer. It further acts as a regularization
approach by sharing parameters between the datasets. To improve performance on the
target data, we further fine-tune with the few-shot target corpus after the first step
of fine-tuning to have improved target performance; for the model to be an expert in
target, (Cao et al., 2020). All the models are trained for 3 epochs with a learning rate
of 3e-5 and linear warm-up of 10%. For few-shot fine-tuning only, the model is trained
for 25 epochs.

3.4.5 Results

Table 8 shows our results. Fine-tuning the baseline mBERT model with the few-shot
target corpus improves the F1-score from 73.7% to 88.6%, a substantial gain of 14.9%,
highlighting the effectiveness of few-shot cross-lingual transfer with mBERT and address-
ing the remainder of RQ4. The significant increase in recall (26% points) compared
to precision (3.4% points) suggests an increase in the model’s capacity to recognize
domain-specific entities. Multi-task fine-tuning improves the F1-score to 89.5%; further
fine-tuning on the few-shot target corpus boosts the best model’s performance to 91.2%.
Figure 19 shows per-PHI-label scores on the development set and their frequency. The
model performs almost perfectly on DATE and AGE since most DATE and AGE la-
beled segments are similar between Spanish and Catalan as they are simple numbers
(for DATE) and numbers followed by the word (for AGE; ‘edad’ in both Spanish and
Catalan). There are differences in time expressions, e.g., day of the week, as the words
are distinctly dissimilar. However, structurally there is only a slight difference. Further,
the model struggles with the ID class due to the low sample size (5 instances in the

5 Although similar, Spanish and Catalan are distinct languages. The domain of MEDDOCAN is missing an
explicit mention in Marimon et al. (2019), therefore it is omitted.

6 https://github.com/suamin/T2NER

https://github.com/suamin/T2NER
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Transfer Strategy Precision Recall F1

Fine-tune (M) 80.1 68.2 73.7
Fine-tune (M)→ Fine-tune (F) 83.5 94.2 88.6

Multi-task (M + F) 86.0 93.3 89.5
Multi-task (M + F)→ Fine-tune (F) 87.7 95.0 91.2

Table 8: Results on the development set from the code-mixed stroke data. M denotes the MEDDOCAN
(Marimon et al., 2019) training set (source) normalized to 7 PHIs (see Appendix §A.3) at the sentence
level, and F denotes our few-shot target corpus. Here multi-task learning refers to the joint fine-tuning of
two datasets following T2NER.

Figure 19: NER metrics on the evaluation set for each entity type with their frequency in
development/few-shot training sets.

few-shot corpus). It is generally challenging to disambiguate between an alphanumeric
string and a PHI ID, as also noted by the ID class’ high recall. Our error analysis reveals
high false positives for the PROFESSION label in Catalan, e.g. ‘Coloma de Gramenet’ (a
LOCATION) and ‘Dialogant’ (being able to communicate) are both labeled as PROFES-
SION. Further, we tokenize the 100 out-of-sample notes into sentences to test model
generalization and make predictions with our best model. The resulting annotated sen-
tences are reconstructed into patient notes and manually evaluated by two reviewers
(one external and one annotator) for occurrences of true and false positives and nega-
tives. The model achieves precision, recall, and F1 scores of 95.1%, 99.3%, and 97.1%,
respectively, on the out-of-sample notes, highlighting the effectiveness of our approach.

3.5 conclusion

In this Chapter, we presented a Transformer based framework for transfer learning
research in NER. We laid out the design principles, detailed the architecture, and pre-
sented the transfer scenarios and representative algorithms. T2NER offers to bridge the
gap between growing research in deep transformer models, NER transfer, and domain
adaptation, thus addressing RQ3.

We then applied T2NER to the task of clinical notes de-identification in a low-
resource scenario where the target texts are code-mixed (Spanish-Catalan), domain-
constrained (stroke), and lack a cost-prohibitive large-scale annotation. By empirically
investigating the few-shot cross-lingual transfer property of mBERT, we proposed an
adaptation strategy that significantly boosts zero-shot performance and offers gener-
alizability while keeping the required size of annotated samples low, thus addressing
RQ4.
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4S C I E N T I F I C L A N G U A G E M O D E L S F O R D I S TA N T LY S U P E RV I S E D
B I O M E D I C A L R E L AT I O N E X T R A C T I O N

4.1 introduction

In Part-I, we developed low-resource entity-centric learning approaches with clinical
applications. Starting with this Chapter, we assume that a knowledge base has been
constructed partially or entirely where we switch our focus on relation-centric learning
now in the biomedical domain. One important information extraction task is the min-
ing of structured data from unstructured text for knowledge discovery and manage-
ment. In this regard, scientific literature offers rich interactions between entities men-
tioned in the text (Craven, Kumlien, et al., 1999; Xu and Wang, 2014), which can be help-
ful for applications such as bio-molecular information extraction, pharmacogenomics,
and identifying Drug-Drug Interactions (DDIs), among others (Luo et al., 2017b).

Manually annotating these relations for training supervised learning systems is an
expensive and time-consuming process (Kilicoglu et al., 2011; Li et al., 2016; Segura-
Bedmar et al., 2011, 2013). Distant Supervision (DS) provides a useful way to obtain
large-scale data for RE (Mintz et al., 2009). However, DS for data collection also tends
to result in an increased amount of noise, as the target relation may only sometimes be
expressed (Ritter et al., 2013; Takamatsu et al., 2012). As individual instance labels are
unknown (Wang et al., 2018a), a common strategy is to use Multi-Instance Learning
(MIL) by aggregating relational sentences into a bag representation for classification.
Since a knowledge base is used for distant supervision and mutual learning between
text and KG has been shown to reduce noise (Dai et al., 2019; Han et al., 2018a), we
aim to directly encode this implicit knowledge using positional markings and latent
relation direction (see Figure 21). Specifically, we propose sentence-level Relation en-
riched BERT (Wu and He, 2019) to bag-level MIL (MIL-RBERT) for biomedical RE with
KB-sensitive markings, k-tag, to address RQ5 in §4.3 as stated:

RQ5: Can a KB be utilized for denoising relation representations from domain-specific
language models for distantly supervised biomedical RE?

Secondly, to scale to a large number of biomedical entities, broad-coverage bench-
marks have been proposed, including ours in MIL-RBERT, for whom we investigate
train-test leakage of knowledge graph triples and find significant portions overlap-
ping. Such leakage impacts the model performance as it allows it to score higher by
simply memorizing the training relations rather than generalizing to new, previously
unknown ones. We identify the sources of these issues as normalizing the textual form
of concept mentions to their unique identifiers and improper handling of inverse rela-
tions. More accurate benchmarks exist (Hong et al., 2020; Marchesin and Silvello, 2022)
but focus on narrower types of interactions. To alleviate the training-test data leakage
in established broad coverage benchmarks and clean but narrow coverage benchmarks,
we present a new benchmark MedDistant19 which draws its knowledge graph from
the widely used healthcare ontology SNOMED CT (Chang et al., 2020). Further, with

47
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Iron deficiency is the most common MND worldwide and leads to microcytic anemia , 
decreased capacity for work , as well as impaired immune and endocrine function .

Iron deficiency anaemia ( IDA ) and beta-thalassaemia are the most common causes of 
microcytic anaemia .

Studies here reported indicated that the anemia is hypochromic and microcytic anemia 
of blood loss and iron deficiency , in spite of the presence of large amounts of iron in 

the pulmonary tissue .

The high proportion of microcytic anaemia and the fact that gender differences were 
only seen after the menarche period in women suggest that iron deficiency was the 

main cause of anaemia .

MCV/RBC and (MCV)2 X MCH separated successfully the subjects with microcytic 
anaemia ( heterozygous thalassaemia and iron deficiency ) from normal controls .

Significantly higher serum homocysteine levels were reported in the iron deficiency 
anemia group compared to normal controls and in subjects with microcytic anemia and 

normal ferritin.

CUI: (C0240066, C0085576)
Semantic Type: (Disease or Syndrome, Disease or Syndrome)

Semantic Group: (Disorders, Disorders) 
cause_of

✓
✓

✓

Figure 20: An example of a bag instance representing the UMLS concept pair (C0240066, C0085576) ex-
pressing the relation cause_of. In this example, three out of six sentences express the relation, while others
are incorrect labels resulting in noise from the distant supervision.

the success of scientific language models for biomedical and clinical tasks (Gu et al.,
2021), and inspired by existing RE evaluation studies in the general domain (Alt et al.,
2020; Gao et al., 2021a; Peng et al., 2020), we conduct a thorough analysis to address
RQ6 in §4.4 as stated:

RQ6: Are there limitations to accurately evaluate domain-specific language models for
broad-coverage distantly supervised biomedical RE?

The contents of §4.2.1 and §4.3 have appeared in the peer-reviewed article of Amin et al.
(2020a). The contents of §4.2.2 and §4.4 have appeared in the peer-reviewed article of Amin
et al. (2022a). These sections are included here with minor corrections where appropriate.

4.2 related work

4.2.1 Distantly Supervised RE

Relation extraction is an important task in NLP. Traditionally, supervised methods
require large-scale annotated corpora, whereas distant supervision allows for the auto-
mated collection of potentially noisy training examples by aligning a given knowledge
base with a collection of text sources (Mintz et al., 2009). Such a form of weak super-
vision is combined with multi-instance learning by creating a bag of instances (Riedel
et al., 2010) for corpus-level triple extraction.1 Earlier works rely on the assumption
that at least one of the evidence samples in a bag represents the target relation in a
triple (Hoffmann et al., 2011; Riedel et al., 2010; Surdeanu et al., 2012). Recently, Piece-
wise Convolutional Neural Networks (PCNN) (Zeng et al., 2014) have been applied to
DS (Zeng et al., 2015), with notable extensions in selective attention (Lin et al., 2016)
and the modeling of noise dynamics (Luo et al., 2017a). Han et al. (2018a) proposed a
joint learning framework for Knowledge Graph Completion (KGC), studied in the next

1 RE is used to refer to two different tasks: sentence-level detection of relational instances and corpus-level
triples extraction, i.e. a knowledge graph completion task (Amin et al., 2020b) but from the text.
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Chapter, and RE with mutual attention, showing that DS improves downstream KGC
performance. At the same time, KGC acts as an indirect signal to filter textual noise.

Relevant to distant RE with pre-trained language models, Alt et al. (2019) extended
the OpenAI Generative Pre-trained Transformer (GPT) model (Radford et al., 2019) for
bag-level MIL with selective attention (Lin et al., 2016). Sun et al. (2019a) enriched the
pre-training stage with KB entity information, resulting in improved performance. For
sentence-level RE, Wu and He (2019) proposed an entity marking strategy for BERT
(referred to as RBERT) to perform relation classification. Specifically, they mark the
entity boundaries with special tokens following the order they appear in the sentence.
Likewise, Baldini Soares et al. (2019) studied several data encoding schemes and found
marking entity boundaries important for sentence-level RE. With such an encoding,
they proposed a novel pre-training scheme for distributed relational learning suited
for few-shot relation classification (Han et al., 2018b).

4.2.2 Broad-Coverage Biomedical RE

In the biomedical domain, rule-based (Abacha and Zweigenbaum, 2011; Kilicoglu et al.,
2020) and weakly supervised approaches (Peng et al., 2016) have been proposed. Roller
and Stevenson (2014) first proposed the use of DS with the Unified Medical Language
System (UMLS) Metathesaurus (Bodenreider, 2004) as a KB and PubMed (Canese and
Weis, 2013) MEDLINE abstracts as text collection and showed promising results.

One major challenge in biomedical RE is to scale for broad-coverage (Kilicoglu et al.,
2011, 2020). First Dai et al. (2019) implemented a knowledge-based attention mecha-
nism (Han et al., 2018a), using improved KG models, ComplEx (Trouillon et al., 2017)
and SimplE (Kazemi and Poole, 2018), as well as additional auxiliary tasks to mitigate
noise. Xing et al. (2020) introduced a large-scale BioRel benchmark focusing on drug-
disease and gene-cancer interactions and showed significant performance gain over a
comprehensive selection of baselines. Recent works shifted to focus on using scientific
language models for Bio-DSRE. We extend relation-enriched sentence-level BERT to
handle bag-level MIL in §4.3 and demonstrate that preserving the direction of the KB
relationships can denoise the training signal (Amin et al., 2020a). We also outline the
steps to create a broad-coverage benchmark from UMLS. Following this, Hogan et al.
(2021) introduced the concept of Abstractified MIL (AMIL) by including different argu-
ment pairs belonging to the same semantic type pair in one bag, boosting performance
on rare triples.

For domain-specific Bio-DSRE, Hong et al. (2020) introduced the BERE framework
for latent tree learning and self-attention to use the semantic and syntactic information
in the sentence for MIL. They also introduced a Drug-Target Interactions (DTI) Bio-
DSRE benchmark, suitable for drug repositioning, drawn from DrugBank (Wishart et
al., 2018). Concurrent work of Marchesin and Silvello (2022) introduced a large-scale
semi-automatically curated benchmark TGBA for Gene-Disease Associations (GDA).
TGBA uses DisGeNET (Piñero et al., 2020), which collects data on human genotype-
phenotype relationships.

In supervised RE, ChemProt (Krallinger et al., 2017) and DDI-2013 (Herrero-Zazo
et al., 2013) focus on multi-class interactions between chemical-protein and drug-drug,
respectively. EU-ADR (Van Mulligen et al., 2012) and GAD (Bravo et al., 2015) focus
on binary relations between genes and diseases, while CDR (Li et al., 2016) focuses
on binary relations between chemicals and diseases, therefore, being limited in their
coverage of entity and relation types.
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4.3 multi-instance learning based relational bert

4.3.1 Problem Definition

We formally define the problem of bag-level MIL for RE. Let E and R represent the set
of entities and relations from a knowledge base KB, respectively. For h, t ∈ E and r ∈ R,
let (h, r, t) ∈ KB be a fact triple for an ordered tuple (h, t). We denote all such (h, t)
tuples by a set G+, i.e., there exists some r ∈ R for which the triple (h, r, t) belongs to
the KB, called positive groups. Similarly, we denote by G− the set of negative groups,
i.e., for all r ∈ R, the triple (h, r, t) does not belong to KB. The union of these groups is
represented by G = G+ ∪G−.2 We denote by Bg = [s

(1)
g , ..., s(m)

g ] an unordered sequence
of sentences, called bag, for g ∈ G such that the sentences contain the group g = (h, t),
where the bag size m can vary. Let f be a function that maps each element of the
bag to a low-dimensional relation representation [r(1)g , ..., r(m)

g ]. With h, we represent
the bag aggregation function that maps instance-level relation representation to a final
bag representation bg = h(f(Bg)). The goal of distantly supervised bag-level MIL for
corpus-level RE is to predict the missing relation r given the bag with p(r|bg).

4.3.2 Entity Markers

Wu and He (2019) and Baldini Soares et al. (2019) showed that using special markers
for entities with BERT in the order they appear in a sentence encodes the positional
information that improves the performance of sentence-level RE. It allows the model
to focus on target entities when other entities are also present in the sentence, implic-
itly doing entity disambiguation and reducing noise. In contrast, for bag-level distant
supervision, the noise sources can be attributed to several factors for a given triple
(h, r, t) and bag Bg:

1. Evidence sentences may not express the relation.

2. Multiple entities appear in the sentence, requiring the model to disambiguate
target entities, among others.

3. The relation prediction direction between head and tail entity.

4. Discrepancy between the order of the target entities in the sentence and knowl-
edge base.

To address (1), common approaches are to learn a negative relation class NA and use
better bag aggregation strategies (Alt et al., 2019; Lin et al., 2016; Luo et al., 2017a).
For (2), encoding positional information is important, such as in PCNN (Zeng et al.,
2014), that takes into account the relative positions of head and tail entities (Zeng et
al., 2015), and in Baldini Soares et al. (2019) and Wu and He (2019) for sentence-level
RE. To account for (3) and (4), multi-task learning with KGC and mutual attention has
proved effective (Dai et al., 2019; Han et al., 2018a). Simply extending sentence-sensitive
marking to bag-level can be adverse, as it enhances (4), and even if the composition is
uniform, it distributes the evidence sentence across several bags. On the other hand,
expanding relations to multiple sub-classes based on direction (Wu and He, 2019) en-
hances class imbalance and distributes supporting sentences. To jointly address (2), (3),

2 The sets are disjoint, G+ ∩ G− = ∅
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and (4), we introduce KB-sensitive encoding for scientific language models suitable for
bag-level distant RE to study RQ5.

Formally, for a group g = (h, t) and a matching sentence s
(i)
g with tokens (x0, ..., xL)3,

we add special tokens $ and ^ to mark the entity spans as:
Sentence ordered called s-tag, entities are marked in the order they appear in the

sentence. Following Baldini Soares et al. (2019), let s1 = (i, j) and s2 = (k, l) be the
index pairs with 0 < i < j− 1, j < k,k ⩽ l− 1 and l ⩽ L delimiting the entity mentions
e1 = (xi, ..., xj) and e2 = (xk, ..., xl) respectively. We mark the boundary of s1 with $
and s2 with .̂ Note, e1 and e2 can be either h or t.

KB ordered called k-tag, entities are marked in the order they appear in the KB. Let
sh = (i, j), and st = (k, l) be the index pairs delimiting head (h) and tail (t) entities,
irrespective of the order they appear in the sentence. We mark the boundary of sh with
$ and st with .̂

Under this terminology, s-tag is used by Baldini Soares et al. (2019) and Wu and
He (2019) for span identification. In Wu and He (2019), each relation type r ∈ R is
further expanded to two sub-classes as r(e1, e2) and r(e2, e1) to capture direction while
holding the s-tag annotation as fixed. Since the ordered tuple (h, t) is given for DSRE,
the task is reduced to relation classification without direction. This side information is
encoded in the data with k-tag, covering (2) but also (3) and (4). To account for (1), we
also experiment with selective attention (Lin et al., 2016), which has been widely used
in other works (Alt et al., 2019; Han et al., 2018a; Luo et al., 2017a).

4.3.3 Model Architecture

BERT (Devlin et al., 2019a) is used as our base sentence encoder; specifically, BioBERT
(Lee et al., 2020), and we extend RBERT (Wu and He, 2019) to bag-level MIL. Figure 21

shows the model’s architecture with k-tag. Consider a bag Bg of size m for a group g ∈
G representing the ordered tuple (h, t), with corresponding spans Sg = [(s

(1)
h , s(1)t ), ...,

(s
(m)
h , s(m)

t )] obtained with k-tag, then for a pair of sentences in the bag and spans we
have, (s(i), (s(i)h , s(i)t )). We can represent the model in three steps, such that the first
two steps represent the map f and the final step h, as follows:

1. Sentence Encoding: BERT is applied to the sentence and the final hidden state
H(i)

0 ∈ Rd, corresponding to the [CLS] token, is passed through a linear layer4 W(1) ∈
Rd×d with tanh(.) activation to obtain the global sentence information as h(i)

0 .
2. Relation Representation: For the head entity, represented by the span s

(i)
h =

(j,k) for k > j, we apply average pooling 1
k−j+1

∑k
n=j H(i)

n , and similarly for the tail

entity with span s
(i)
t = (l,m) for m > l, we get 1

m−l+1

∑m
n=l H(i)

n . The pooled repre-
sentations are then passed through a shared linear layer W(2) ∈ Rd×d with tanh(.)
activation to obtain h(i)

h and h(i)
t . To get the final latent relation representations, we con-

catenate the pooled entities representation with [CLS] as r(i)g = [h(i)
0 ; h(i)

h ; h(i)
t ] ∈ R3d.

3. Bag Aggregation: After applying the first two steps to each sentence in the bag,
we obtain [r(1)g , ..., r(m)

g ]. With a final linear layer consisting of a relation matrix Mr ∈
R|R|×3d and a bias vector br ∈ R|R|, we aggregate the bag information with h in two
ways:

3 x0 =[CLS] and xL =[SEP]
4 Each linear layer is implicitly assumed with a bias vector
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Figure 21: Multiple Instance Learning (MIL) based bag-level relation classification BERT with KB ordered
entity marking (MIL-RBERT). Special markers $ and ̂ always delimit the span of head (hs,he) and tail
(ts, te) entities regardless of their order in the sentence. The markers capture the position of entities and
latent relation direction.

Average: The bag elements are averaged as:

bg =
1

m

m∑
i=1

r(i)g

Selective Attention: For a row r ∈ Mr representing the relation r ∈ R, we get the
attention weights as:

αi =
exp(rT r(i)g )∑m
j=1 exp(rT r(j)g )

bg =

m∑
i=1

αir
(i)
g

Following bg, a softmax classifier is applied to predict the probability p(r|bg; θ) of rela-
tion r being a true relation with θ representing the model parameters. For optimization,
we minimize the cross-entropy loss during training.5

4.3.4 Experiments

For evaluating our proposed entity encoding schemes, we derive our data (UMLS.v2)
similar to Dai et al. (2019) and report the data construction details in Appendix §B.2.
We compare each tagging scheme, s-tag and k-tag, with average (avg) and selective
attention (attn) bag aggregation functions. To test the setup of Wu and He (2019), which
follows s-tag, we expand each relation type (exprels) r ∈ R to two sub-classes r(e1, e2)
and r(e2, e1) indicating relation direction from the first entity to second and vice versa.
For all experiments, we used batch size 2, bag size 16 with sampling (see §B.2.4 for
details on bag composition), learning rate 2e-5 with linear decay, and 3 epochs. As

5 https://github.com/suamin/MIL-RBERT

https://github.com/suamin/MIL-RBERT
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Model Bag Agg. AUC F1 P@100 P@200 P@300 P@2k P@4k P@6k

Dai et al. (2019) - - - - - - .913 .829 .753

s-tag avg .359 .468 .791 .704 .649 .504 .487 .481

attn .122 .225 .587 .563 .547 .476 .441 .418

s-tag+exprels avg .383 .494 .508 .519 .521 .507 .508 .511

attn .114 .216 .459 .476 .482 .504 .496 .484

k-tag avg .684 .649 .974 .983 .986 .983 .977 .969
attn .314 .376 .967 .941 .925 .857 .814 .772

Table 9: Noise reduction results for different models and data split.

the standard practice (Weston et al., 2013), evaluation is performed by constructing
candidate triples by combining the entity pairs in the test set with all relations (except
NA) and ranking the resulting triples. The extracted triples are matched against the
test triples and the Precision-Recall (PR) curve, Area Under the PR Curve (AUC), F1

measure, and Precision@k, for k in {100, 200, 300, 2k, 4k, 6k} are reported.

4.3.5 Results

Performance metrics are shown in Table 9 and plots of the resulting PR curves in Figure
22. Since our data differs from Dai et al. (2019), the AUC cannot be directly compared.
However, P@k indicates the general ranking performance of extracting the true triples
and can therefore be compared. Generally, models annotated with k-tag perform signif-
icantly better than other models, with k-tag+avg achieving state-of-the-art P@{2k,4k,6k}
compared to the previous state-of-the-art (Dai et al., 2019). The best model of Dai et al.
(2019) uses a PCNN sentence encoder, with additional tasks of SimplE (Kazemi and
Poole, 2018) based KGC and KG-attention, entity-type classification, and named en-
tity recognition. In contrast, our data-driven method, k-tag, greatly simplifies this by
directly encoding the KB information, i.e., order of the head and tail entities and, there-
fore, the latent relation direction, thus addressing RQ5 for denoising. Consider again
the example in Figure 20 where our source triple (h, r, t) is (Iron Deficiency, cause_of,
Microcytic Anaemia), and only half of the sentences have the same order of entities as
KB. This discrepancy is conveniently resolved with k-tag (note in Figure 21, for other
sentences, the extracted entities sentence order is flipped to KG order when concate-
nating, unlike s-tag). Such knowledge can be seen as learned when jointly modeling
with KGC. However, considering the task of bag-level distant RE only, the KG triples
are known information, and we utilize this information explicitly with k-tag encoding.

As PCNN (Zeng et al., 2015) can account for the relative positions of head and tail
entities, it also performs better than the models tagged with s-tag using sentence order.
Similar to Alt et al. (2019)6, we also note that the pre-trained contextualized models
result in improved long-tail performance. s-tag+exprels reflects the direct application
of Wu and He (2019) to bag-level MIL for distant RE. In this case, the relations are
explicitly extended to model entity direction appearing first to second in the sentence
and vice versa. This implicitly introduces independence between the two sub-classes of

6 Their model does not use any entity marking strategy.



54 relation extraction

Figure 22: Precision-Recall (PR) curve for entity encoding schemes for noise reduction on UMLS.v2. We
see that the models with k-tag perform better than the s-tag with average aggregation showing consistent
performance for long-tail relations.

the same relation, limiting the gain from shared knowledge. Likewise, such expanded
relations further enhance class imbalance in more fine-grained classes.

Although selective attention (Lin et al., 2016) has been shown to improve the perfor-
mance of distant RE (Alt et al., 2019; Han et al., 2018a; Luo et al., 2017a), models in
our experiments with such an attention mechanism significantly underperformed, in
each case bumping the area under the PR curve and making it flatter. We note that
more than 50% of bags are under-sized, in many cases, with only 1-2 sentences, requir-
ing repeated over-sampling to match fixed bag size, making it difficult for attention to
learn a distribution over the bag with repetitions and further adding noise. For such
cases, the distribution should ideally be uniform, as with averaging, resulting in better
performance.

Despite these results, we identify limitations in the UMLS.v2 data construction pro-
cess and others (Hogan et al., 2021; Xing et al., 2020) in the next section and present
a more accurate benchmark MedDistant19 to thoroughly evaluate scientific language
models.

4.4 meddistant19 benchmark

Noting the high accuracy of Bio-DSRE, we first investigate recent results from the
broad-coverage Bio-DSRE literature by probing the respective datasets for overlaps
between training and test sets. Specifically, in UMLS, each concept is mapped to a
Concept Unique Identifier (CUI), and a given CUI might have different surface forms
(Bodenreider, 2004). We thus probe for CUI-based KG triples leakage. Our results are
shown in Table 11 for UMLS.v2 (Amin et al., 2020a), UMLS.v3 (Hogan et al., 2021),
and BioRel (Xing et al., 2020). For UMLS.v2 and UMLS.v3, the triples use surface
forms of CUIs rather than the CUIs themselves, which results in an overlap between
training and test sets. For example, consider a relationship between a pair of UMLS
entities (C0013798, C0429028). These two entities can appear in different forms within
a text, such as (electrocardiography, Q-T interval), (ECG, Q-T interval), and (EKG, Q-T
interval); each of these distinct pairs still refers to the same original pair (C0013798,
C0429028). In UMLS.v2, we made sure of eliminating all such text-based leakage, but
when canonicalized to their CUIs, this results in leakage across the splits as reported in
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Benchmark Relations No Train-Test Overlap Broad-Coverage Ontology

UMLS.v1 (Roller and Stevenson, 2014) 7 - ✗ UMLS
DTI (Hong et al., 2020) 6 ✓ ✗ DrugBank

UMLS.v2 (Amin et al., 2020a) (Ours) 355 ✗ ✓ UMLS
BioRel (Xing et al., 2020) 125 ✗ ✓ NDFRT, NCI

UMLS.v3 (Hogan et al., 2021) 275 ✗ ✓ UMLS
TBGA (Marchesin and Silvello, 2022) 4 ✓ ✗ DisGeNET

MedDistant19 22 ✓ ✓ SNOMED CT

Table 10: The landscape of Distantly Supervised Biomedical Relation Extraction (Bio-DSRE) benchmarks:
all the existing broad-coverage datasets have corpus-level triples overlap between the train and test splits
(Table 11), where the Knowledge Graph (KG) is also extracted from multiple ontologies. The DTI and
TBGA benchmarks focus on harmonized ontology but are limited to drug-target interactions and gene-
disease associations. In contrast, MedDistant19 has a broader coverage of entities and their semantic
types and is normalized to a single ontology, SNOMED CT, which has significant clinical relevance.
We named the datasets from (Amin et al., 2020a; Hogan et al., 2021; Roller and Stevenson, 2014) to
UMLS.v2/3/1 since the original works were missing the names. For UMLS.v1, there is no publicly avail-
able code to reconstruct the dataset; thus, the overlap information is missing.

Triples Train Valid Test

BioRel 39,969 17,815 (86.17%) 17,927 (86.37%)
UMLS.v2 211,789 41,993 (26.7%) 89,486 (26.5%)
UMLS.v3 23,163 2,643 (44.38%) 5,184 (40.12%)

Table 11: Training-test leakage we identified in the existing broad-coverage benchmarks. Numbers be-
tween parentheses show the percentage overlap of CUI triples.

Table 11. In contrast, BioRel directly splits CUI triples without accounting for inverse
relations that can also result in leakage (Chang et al., 2020). Since DSRE aims at corpus-
level triples extraction, train-test triples leakage is problematic (see Table 12) compared
to supervised sentence-level RE, where we aim to generalize to newer contexts.

We found no such overlap for DTI and TBGA, where the datasets used in (Dai et
al., 2019; Roller and Stevenson, 2014) are private. Noting these shortcomings, we in-
troduce a new and accurate benchmark MedDistant19 for broad-coverage Bio-DSRE.
Our benchmark utilizes clinically relevant SNOMED CT Knowledge Graph (Chang et
al., 2020), extracted from the UMLS, that offers a careful selection of the concept types
and is suitable for large-scale biomedical relation extraction. Table 10 summarizes the
current landscape of Bio-DSRE benchmarks. Our inspection and its results partially
address RQ6.

4.4.1 Documents

We used PubMed MEDLINE abstracts published up to 2019
7 as our text source, contain-

ing 32,151,899 abstracts. Following Hogan et al. (2021), we used ScispaCy
8 (Neumann

et al., 2019) for sentence tokenization, resulting in 150,173,169 unique sentences. We
further introduce the use of ScispaCy for linking entity mentions to their UMLS CUIs
and filtering disabled concepts from UMLS, which resulted in entity-linked mentions
at the sentence-level.

7 https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
8 https://github.com/allenai/scispacy

https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
https://github.com/allenai/scispacy
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Model and Data
Original Filtered

AUC F1 AUC F1

Amin et al. (2020a) 68.4 64.9 50.8 53.1
Hogan et al. (2021) 82.6 77.6 11.8 19.8

Table 12: State-of-the-art domain-specific Bio-DSRE language models evaluated on the respective datasets
before (Original) and after (Filtered) removing test relationships also appearing in the training set.

Named entity recognition (NER) and normalization were two primary sources of er-
rors in biomedical RE, as shown in Kilicoglu et al. (2020). While ScispaCy is reasonably
performant among other options for biomedical entity linking, it remains quite noisy
in practice; e.g., Vashishth et al. (2021) showed that ScispaCy had only about a 50%
accuracy on extracting concepts in benchmark datasets. Despite this being a limitation,
using ScispaCy is better than relying on string matching alone (Amin et al., 2020a; Dai
et al., 2019; Hogan et al., 2021).

4.4.2 Knowledge Base

We use UMLS2019AB9 as our primary knowledge source and apply a set of rules,
resulting in a distilled and carefully reduced version of UMLS2019AB. The UMLS
Metathesaurus (Bodenreider, 2004) covers concepts from 222 source vocabularies, thus
being the most extensive ontology of biomedical concepts. However, covering all on-
tologies can be challenging, given the interchangeable nature of the concepts. For exam-
ple, programmed cell death 1 ligand 1 is an alias of concept C1540292 in the HUGO Gene
Nomenclature Committee ontology (Povey et al., 2001), and it is an alias of concept
C3272500 in the National Cancer Institute Thesaurus. This makes entity linking more
challenging since a surface form can be linked to multiple entity identifiers, and it is
easier to have overlaps between training and test sets since the same fact may appear
in both with different entity identifiers.

Furthermore, benchmark corpora for biomedical NER (Doğan et al., 2014; Li et al.,
2016) and RE (Herrero-Zazo et al., 2013; Krallinger et al., 2017) focus on specific en-
tity types (e. g.diseases, chemicals, proteins), and are usually normalized to a single
ontology (Kilicoglu et al., 2020). Following this trend, we also focus on a single vo-
cabulary for Bio-DSRE using SNOMED CT, the most widely used clinical terminology
worldwide for documentation and reporting in healthcare (Chang et al., 2020).

Since UMLS classifies each entity in a type taxonomy of Semantic Types (STY) and
Semantic Groups (SG) (Figure 33), this allows for narrowing the concepts of interest.
Following Chang et al. (2020), we first consider 8 semantic groups in SNOMED CT:
Anatomy (ANAT), Chemicals & Drugs (CHEM), Concepts & Ideas (CONC), Devices
(DEVI), Disorders (DISO), Phenomena (PHEN), Physiology (PHYS), and Procedures
(PROC). We then remove CONC and PHEN as they are far too general to be informa-
tive for Bio-DSRE. For a complete list of semantic types covered in MedDistant19, see
Table 42. Similarly, each relation is categorized into a type and has a reciprocal relation
in UMLS (Table 41), which can result in train-test leakage (Dettmers et al., 2018).

The steps above follow Chang et al. (2020), with the difference that we only consider
relations of type has relationship other than synonymous, narrower, or broader (RO); this

9 https://download.nlm.nih.gov/umls/kss/2019AB/umls-2019AB-full.zip

https://download.nlm.nih.gov/umls/kss/2019AB/umls-2019AB-full.zip
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Properties Prior MD19

approximate entity linking ✓

unique NA sentences ✓

inductive ✓

triples leakage ✓

NA-type constraint ✓

NA-argument role constraint ✓

Table 13: MedDistant19 (MD19) key data construction properties in comparison with the recent broad-
coverage Bio-DSRE works.

Facts Training Validation Testing

Inductive (I) 261,797 48,641 97,861

Transductive (T) 318,524 28,370 56,812

Table 14: The number of raw inductive and transductive SNOMED-KG triples used for alignment with
text.

is consistent with prior works in Bio-DSRE. We also exclude uninformative relations,
same_as, possibly_equivalent_to, associated_with, temporally_related_to, and ignore inverse
relations as generally is the case in RE.

In addition, Chang et al. (2020) ensures that the validation and test set do not contain
any new entities, making it a transductive learning setting where we assume all test
entities are known beforehand. However, we are expected to extract relations between
unseen entities in real-world applications of biomedical RE. To support this setup, we
derive MedDistant19 using an inductive KG split method proposed by Daza et al.
(2021) (see Appendix A in their paper). Table 14 summarizes the statistics of the KGs
used for alignment with the text. We use train, validation, and test split ratios of 70%,
10%, and 20%. Relationships are defined between CUIs and have no overlap between
training, validation, and test sets.

4.4.2.1 Knowledge-to-Text Alignment

We now describe the procedure for searching fact triples to match relational instances
in text.

Let E and R respectively denote the set of UMLS CUIs and relation types, and let
G ⊆ E× R× E denote the set of relationships contained in UMLS. For producing a
training-test split, we first create a set G+ ⊆ E× E of related entity pairs as:

G+ = {(ei, ej) | ⟨ei,p, ej⟩ ∈ G∨ ⟨ej,p, ei⟩ ∈ G}

Following this, we obtain a set of unrelated entity pairs by corrupting one of the entities
in each pair in G+ and making sure it does not appear in G+, obtaining a new set
G− ⊆ E× E of unrelated entities, defined as follows:

G− = {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) ̸∈ G+}

∪ {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) ̸∈ G+}
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Summary
Entities Relations STY SG
20,256 22 51 6

Split Instances Facts Bags Inst. per Bag NA (%)

Train 450,071 5,455 88,861 5.06 90.0%
Valid 39,434 842 10,475 3.76 91.2%
Test 91,568 1,663 22,606 4.05 91.1%

Table 15: Summary statistics of the MedDistant19 dataset using Inductive SNOMED KG split (Table 14).
The number of relations includes the unknown relation type (NA).

Figure 23: (Left) Entity distribution based on Semantic Types. (Right) Relations distribution.

During the corruption process, we enforce two constraints: 1) type constraint – the two
entities appearing in each negative pair in G− should belong to an entity type pair
from G+, and 2) role constraint – the noisy head (tail) entity in negative pairs must have
appeared in a head (tail) role from a pair in G+.

A naive choice for the negative group could be G− = (E× E) − G+, for which the
current approach is only a subset; however, enumerating all possible entity pairs can
be infeasible if |E| is high. Furthermore, we do not assume the completeness of UMLS
and only derive a fixed sub-graph from the 2019 version subject to the to the constraints
stated above. This process is similar to Local-Closed World Assumption (LCWA, Dong
et al., 2014; Nickel et al., 2016a), in which a KG is assumed to be only locally complete:
if we observed a triple for a specific entity ei ∈ E, then we assume that any non-existing
relationship (ei, ej) denotes a false fact and include them in G−. Therefore, it is likely
that if a triple emerges in a new PubMed article such that it violates the negative
sampling assumptions, it will be considered a false negative. However, this amount is
negligible due to intractable search space that scales with the size of the KG.

For each entity-linked sentence, we only consider those sentences that have SNOMED
CT entities and have pairs in G+ and G−. Selected positive and negative pairs are
mutually exclusive and have no overlap across splits. Since we only consider unique
sentences associated with a pair, this makes for unique negative training instances, in
contrast to Amin et al. (2020a), who considered generating positive and negative pairs
from the same sentence. We define negative examples as relational sentences mention-
ing argument pairs with unknown relation type (NA), i.e. there might be a relationship,
but the considered set of relations does not cover it. Our design choices are summa-
rized in Table 13.
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Model Bag Strategy AUC F1-micro F1-macro P@100 P@200 P@300 P@1k P@2k

CNN

- AVG 27.3 33.0 16.1 50.0 46.0 44.0 41.0 33.6
- ONE 30.4 36.7 18.2 67.0 58.5 52.6 43.5 34.4

✓ AVG 30.4 36.2 19.8 70.0 58.0 56.0 46.0 35.5
✓ ONE 34.6 40.4 17.8 77.0 72.5 67.6 50.0 37.3
✓ ATT 35.0 40.1 19.8 78.0 73.5 68.6 51.4 36.4

PCNN

- AVG 27.2 32.4 12.9 54.0 49.5 50.3 40.7 33.2
- ONE 29.8 36.7 16.2 66.0 55.5 52.3 44.4 34.2

✓ AVG 29.6 37.3 20.5 59.0 50.5 50.0 47.0 35.9
✓ ONE 28.6 36.5 18.1 66.0 65.0 62.0 44.7 33.7
✓ ATT 32.5 38.2 14.4 71.0 71.0 67.3 49.0 35.2

GRU

- AVG 42.7 47.4 27.8 78.0 74.0 76.0 59.2 42.7
- ONE 46.4 49.3 29.2 86.0 80.5 78.3 61.2 44.9

✓ AVG 28.6 37.2 17.9 57.0 57.0 56.0 45.3 35.4
✓ ONE 32.6 40.8 17.7 73.0 70.5 66.3 51.2 37.0
✓ ATT 36.6 40.9 22.2 77.0 72.0 67.6 51.3 38.7

BERT

- AVG 79.8 76.1 65.3 95.0 96.0 96.0 90.2 67.2
- ONE 79.3 76.1 64.7 93.0 94.0 94.0 89.2 67.4

✓ AVG 78.3 73.1 51.1 99.0 97.5 96.6 87.8 66.0
✓ ONE 67.0 55.7 44.4 89.0 90.5 91.0 78.7 57.8
✓ ATT 64.6 56.4 42.7 89.0 87.5 85.6 75.4 57.9

Table 16: Baseline results for MedDistant19.

We also remove mention-level overlap across the splits and apply type-based men-
tion pruning. Specifically, we pool mentions by type and remove the sentences which
have the mention appearing more than 10,000 times. We selected this threshold based
on manual inspection of frequent mentions in each semantic type, so the information
loss is minimal. At the same time, we still removed generalized mentions such as dis-
ease, drugs, temperature etc. We provide a complete list of mentions removed by this step
in Table 40. Table 15 shows the final summary of MedDistant19 using an inductive
split covering 20,256 entities with 51 types and 343 type pairs. Figure 23 shows entity
and relation plots following a long-tail distribution.

4.4.3 Experiments

MedDistant19 is released in a format that is compatible with the widely adopted RE
framework OpenNRE (Han et al., 2019).10 To report our results, we use the corpus-level
Area Under the Precision-Recall (PR) curve (AUC), Micro-F1, Macro-F1, and Precision-
at-k (P@k) with k ∈ {100, 200, 300, 1k, 2k}, and the sentence-level Precision, Recall, and
F1. Due to the imbalanced nature of relational instances, following Gao et al. (2021a),
we report Macro-F1 values, and following Hogan et al. (2021), we report sentence-level
RE results on relationships, including frequent and rare triples.

10 https://github.com/suamin/MedDistant19

https://github.com/suamin/MedDistant19
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Figure 24: Precision-Recall curves for BERT baselines on MedDistant19.

4.4.4 Baselines

Our baseline experiments largely follow the setup of Gao et al. (2021a) with the addi-
tion of GRU models.11 For sentence encoding, we use CNN (Liu et al., 2013), PCNN
(Zeng et al., 2015), bidirectional GRU (Hong et al., 2020), and BERT (Devlin et al.,
2019a). We use GloVe (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013) for
CNN/PCNN/GRU models and initialize BERT with BioBERT (Lee et al., 2020).

We trained our models both at sentence-level and at bag-level. In contrast, prior works
only considered bag-level training for Bio-DSRE. The sentence-level setup is similar to
standard RE (Wu and He, 2019), with the difference that the evaluation is conducted
at the bag-level. We also consider different pooling strategies, namely average (AVG),
which averages the representations of sentences in a bag, at least one (ONE, Zeng et al.,
2015), which generates relation scores for each sentence in a bag, and then selects the
top-scoring sentence, and attention (ATT), which learns an attention mechanism over
the sentences within a bag.

4.4.4.1 Encoder

Table 16 presents our main results. In all the cases, the BERT sentence encoder per-
formed better than others since pre-trained language models are effective for entity-
centric transfer learning (Amin and Neumann, 2021), domain-specific fine-tuning (Amin
et al., 2019), and can implicitly store relational knowledge during pre-training (Petroni
et al., 2019). This trend is similar to the general domain, and the BERT-based experi-
ments provide consistent baselines lacking in the prior works. Similar to the general
domain (Gao et al., 2021a), we find sentence-level training to perform better than the
bag-level. However, BERT+bag+AVG had much better precision for the top-scoring
triples at the expense of long-tail performance. At the sentence-level, those instances
that have been correctly labeled by distant supervision (e. g.Figure 20) provide enough
learning signal, given the generalization abilities of LMs. However, the model is sup-
posed to jointly learn from clean and noisy samples in bag-level training, thus limiting
its overall performance. But, we do not find this trend for CNN/PCNN. Instead, the
bag-level models performed slightly better except for GRU. We further plot Precision-
Recall (PR) curves for BERT-based baselines in Figure 24.

11 https://github.com/pminervini/meddistant-baselines

https://github.com/pminervini/meddistant-baselines
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Model 1-1 1-M M-1

BERT+bag+AVG 66.6 48.3 66.6
BERT+bag+ONE 52.6 33.2 47.1
BERT+bag+ATT 56.4 30.7 26.4

Table 17: Averaged F1-micro score on the relation-specific category for bag pooling methods. The cate-
gories are defined using the cardinality of head and tail SGs.

Model P R F1

All Triples

BERT+sent+AVG 0.79 0.65 0.71
BERT+bag+AVG 0.72 0.64 0.68

Common Triples

BERT+sent+AVG 0.98 0.62 0.76
BERT+bag+AVG 0.96 0.60 0.74

Rare Triples

BERT+sent+AVG 0.97 0.70 0.82

BERT+bag+AVG 0.95 0.73 0.83

Table 18: Sentence-level RE metrics comparing BERT baselines trained at bag and sentence-level with AVG
pooling on Rare and Common subsets of MedDistant19. The triples include NA relational instances.

4.4.4.2 Pooling Strategy

In all cases, AVG proved to be a better pooling strategy; this finding is consistent with
prior works. Both Amin et al. (2020a) and Gao et al. (2021a) found ATT to produce
less accurate results with LMs, which we also find to hold true for MedDistant19.
To further study the impact of bag-level pooling strategies, we analyze the relation
category-specific results. Following Chang et al. (2020), we grouped the relations based
on cardinality, where the cardinality is defined as for a given relation type if the set
of head or tail entities belongs to only one semantic group, then it has a cardinality
one otherwise, M (many). The results are shown in Table 17 for bag-level BERT-based
models with three pooling schemes. On average, models struggled the most with the
1-M category due to a need for more training signals to differentiate between heteroge-
neous entity types pooled over instances in a bag. While we would expect symmetric
performance, to some extent, in 1-M and M-1 categories, the difference highlights that
the KB-direction plays a role in Bio-DSRE, which previously has been used to de-noise
the training signal (Amin et al., 2020a).

4.4.4.3 Long-Tail Performance

Following Hogan et al. (2021), we also perform sentence-level triples evaluation of
BERT-based encoders trained at sentence-level and bag-level. The authors divided
the triples (including NA instances) into two categories: those with 8 or more sen-
tences are defined as common triples and others as rare triples. Table 18 shows these
results. We note that both training strategies performed comparably on rare triples
with BERT+sent+AVG more precise than BERT+bag+AVG at the expense of low recall.
However, we find a noticeable difference in common triples where BERT+sent+AVG
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Figure 25: Ablation showing the effect of different text encoding methods, namely Only Type (OT), Only
Context (OC), Context + Type (CT), Only Mention (OM), and Context + Mention (CM), with MedDis-
tant19.

performed better. At the bag level, the model can overfit to a certain type and mention
heuristics, whereas sentence-level training allows more focus on context. The current
state-of-the-art model from Hogan et al. (2021) creates a bag of instances by abstracting
entity pairs belonging to the same semantic type pair into a single bag, thus produc-
ing heterogeneous bags. Due to such bag creation, it is not suited for sentence-level
models.

4.4.5 Analysis

Context, Mention, or Type? RE models are known to rely heavily on information from
entity mentions, most of which is type information, and existing datasets may leak
shallow heuristics via entity mentions that can inflate the prediction results (Peng et
al., 2020). To study the importance of mentions, contexts, and entity types in MedDis-
tant19, we take inspiration from (Han et al., 2020; Peng et al., 2020) and conduct an
ablation of different text encoding methods. We consider entity mentions with special
entity markers (Amin et al., 2020a) as the Context + Mention (CM) setting, which is
common in RE with LMs. We then remove the context and only use mentions, the
Only Mention (OM) setting, which reduces to KG-BERT (Yao et al., 2019) for relation
prediction. We then only consider the context by replacing subject and object entities
with special tokens, resulting in the Only Context (OC) setting. Lastly, we consider two
type-based (STY) variations as Only Type (OT) and Context + Type (CT). We train the
models at the sentence-level and evaluate them at the bag-level.

We observe in Figure 25 that the CM method had the highest performance, but sur-
prisingly, OM performed quite well. This highlights the ability of LMs to memorize the
facts and act as soft KBs (Petroni et al., 2019). This trend is also consistent with general-
domain (Peng et al., 2020). The poor performance in the OC setting shows that the
model struggles to understand the context, more pronounced in noise-prone distant
RE than in supervised RE. Our CT setup can be seen as a sentence-level extrapolation
of the AMIL model (Hogan et al., 2021), which struggles to perform better than the
baseline (OM). However, comparing OC with CT, it is clear that the model benefits
from type information as it can help constrain the space of the relations. Using only
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Split AUC F1-micro F1-macro

Inductive (I) 79.9 76.2 65.4
Transductive (T) 79.6 73.3 65.9

Table 19: BERT+sent+AVG performance on corpora created with an inductive and transductive set of
triples.

the type information had the least performance as the model fails to disambiguate
between different entities belonging to the same type.

Inductive or Transductive? To study the impact of transductive and inductive splits
(Table 14), we created another Bio-DSRE corpus using the transductive train, validation,
and test triples. The corpus generated differs from the inductive one, but it can offer
insights into the model’s ability to handle seen (transductive) and unseen (inductive)
mentions. As shown in Table 19, inductive performance is slightly better than trans-
ductive for corpus-level extractions in terms of AUC. However, the F1-macro score is
better for transductive. We conclude that the model can learn patterns that exploit men-
tions and type information to extrapolate to unseen mentions in the inductive setup.

Does Expert Knowledge Help? We now consider several pre-trained LMs with dif-
ferent knowledge capacities specific to biomedical and clinical language understanding
to gain insights about the state-of-the-art encoders’ performance and effectiveness on
the MedDistant19 benchmark.

We use BERT (Devlin et al., 2019a) as the baseline. We next consider only those
pre-trained models trained with Masked Language Modeling (MLM) objectives using
domain-specific corpora. This includes ClinicalBERT (Alsentzer et al., 2019), BlueBERT
(Peng et al., 2019b), BioBERT (Lee et al., 2020), SciBERT (Beltagy et al., 2019), and
PubMedBERT (Gu et al., 2021). We categorize these models as non-experts since they
are only trained with Masked Language Modeling (MLM) objective.

Secondly, we consider expert models that modify the MLM objective or introduce
new pre-training tasks using external knowledge, such as UMLS. MedType (Vashishth
et al., 2021), initialized with BioBERT, is pre-trained to predict semantic types. KeBi-
oLM (Yuan et al., 2021), initialized with PubMedBERT, uses relational knowledge by
initializing the entity embeddings with TransE (Bordes et al., 2013), improving entity-
centric tasks, including RE. UmlsBERT (Michalopoulos et al., 2021), initialized with
ClinicalBERT, modifies MLM to mask words belonging to the same CUI and further
introduces semantic type embeddings. SapBERT (Liu et al., 2021), initialized with Pub-
MedBERT, introduces a metric learning task for clustering synonyms together in an
embedding space.

Table 20 shows the results of these sentence encoders fine-tuned on the MedDis-
tant19 dataset at sentence-level with AVG pooling. Without domain-specific knowl-
edge, BERT performs slightly worse than the lowest-performing biomedical model,
highlighting the presence of shallow heuristics in the data common to the general and
biomedical domains. While domain-specific pre-training improves the results, similar
to Gu et al. (2021), we find clinical LMs underperform on the biomedical RE task.
There was no performance gap between BlueBERT, SciBERT, and BioBERT. However,
PubMedBERT brought improvement, consistent with Gu et al. (2021).

For expert knowledge-based models, we noted a negative impact on performance.
While we would expect type-based models, MedType and UmlsBERT, to bring improve-
ment, their effect can be attributed to overfitting certain types and patterns. KeBioLM,
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Encoder
Knowledge Type

AUC
Biomedical Clinical Type Triples Synonyms

Non-Expert Models

BERT 0.72

ClinicalBERT ✓ ✓ 0.73

BlueBERT ✓ 0.78

SciBERT ✓ 0.78

BioBERT ✓ 0.79

PubMedBERT ✓ 0.80

Expert Knowledge Models

MedType ✓ ✓ 0.77

KeBioLM ✓ ✓ 0.80
UmlsBERT ✓ ✓ ✓ 0.75

SapBERT ✓ ✓ 0.78

Table 20: Fine-tuning domain-specific LMs on MedDistant19.

initialized with PubMedBERT, has the same performance despite seeing the triples
used in MedDistant19 during pre-training, highlighting the difficulty of the Bio-
DSRE. SapBERT, which uses the knowledge of synonyms, also hurt PubMedBERT’s
performance, suggesting that while synonyms can help in entity linking, RE is a more
challenging task in noisy real-world scenarios. With these analyses, we conclude the
remainder of RQ6.

4.5 conclusion

In this Chapter, we proposed relation-enriched BERT to bag-level MIL (MIL-RBERT)
and introduced a simple entity encoding scheme to reduce the noise in distantly super-
vised biomedical RE. We noted that the position of entities in a sentence and the order
in KB encodes the latent direction of relation, which plays an important role in learn-
ing under such noise. With a relatively simple data encoding scheme, we showed that
it sufficiently reduced noise, alleviating the need for additional tasks, thus addressing
RQ5.

Following this, we investigated the landscape of biomedical relation extraction bench-
marks obtained with distant supervision and found either train-test leakage or cover-
age limitations, highlighting the need for an accurate broad-coverage benchmark for
Bio-DSRE. We alleviated the limitation by utilizing a clinical sub-graph from SNOMED
CT for constructing the benchmark and laying out the best practices. We thoroughly
evaluated the benchmark with scientific language models, showing promising rela-
tional representation capacity, thus addressing RQ6.



5K N O W L E D G E G R A P H C O M P L E T I O N I N T H E G E N E R A L A N D
B I O M E D I C A L D O M A I N W I T H L O W- R A N K B I L I N E A R P O O L I N G

5.1 introduction

A knowledge graph is a large collection of structured data, organized as entities and re-
lations between them, in the form of fact triples <sub, rel, obj>. However, the usefulness
of a KG in the general and biomedical domain is affected primarily by its incomplete-
ness, which we also addressed through corpus-level triples extraction from text for
knowledge base enrichment in the last Chapter. Link prediction or knowledge graph
completion is a common task in statistical relational learning. It aims to infer missing
facts from existing ones by scoring a relation and entities triple to predict its correctness
and avoids the costs and time of manually extending knowledge bases. Several KGC
models have been proposed, including linear and non-linear approaches, collectively
recognized as Knowledge Graph Embedding (KGE) models. A KGE model outputs
low-dimensional entity and relation representations that have significant utility for the
biomedical domain (Chang et al., 2020). Therefore, we focus on multi-relational knowl-
edge representation here with evaluation in the general and biomedical domains.

Bilinear models have been used in multi-modal learning due to their expressive
nature. The fusion of features from different modalities plays a crucial role in the per-
formance of a model. The underlying assumption is that the distributions of features
across modalities may vary significantly, and the representation capacity of the fused
features may be insufficient, limiting the final prediction performance (Yu et al., 2017).
Firstly, we apply the same assumption to knowledge bases by considering that the
entities and relations come from different multi-modal distributions, and good fusion
between them can complete a KG. However, a significant drawback of using bilinear
models is the quadratic growth of parameters, which results in high computational and
memory costs and risks overfitting. In multi-modal learning, factorization techniques
have been researched to address these challenges (Fukui et al., 2016; Kim et al., 2017;
Yu et al., 2017), and constraint-based bilinear maps have become a common standard
in KGC (Kazemi and Poole, 2018; Trouillon et al., 2016; Yang et al., 2015). Applying
constraints can be seen as hard regularization since it allows for incorporating back-
ground knowledge (Kazemi and Poole, 2018) but restricts the learning potential of the
model due to limited parameter sharing (Balažević et al., 2019b). We, therefore, focus
on a constraint-free and efficient approach using the low-rank factorization of a bilin-
ear model, LowFER. Our work extends the multi-modal factorized bilinear pooling
(MFB) model, introduced by Yu et al. (2017), and applies it to the KGC task to address
RQ7 in §5.3 as stated:

RQ7: How to represent entity and relation in a parameter efficient way for knowledge
graph completion in the general and biomedical domain?

Secondly, we investigate the theoretical properties of LowFER to understand its rep-
resentation capacity better. We focus on its expressiveness to correctly model every
relation type and to subsume existing models to address RQ8 in §5.4 as stated:

65
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RQ8: What theoretical insights can be drawn about the expressivity and generalizability
of the efficient parameterization?

The contents of this Chapter have appeared in the peer-reviewed article of Amin et al.
(2020b) and are included here with minor corrections where appropriate. The experimental
results on biomedical KBs are only appearing in this dissertation.

5.2 related work

5.2.1 Non-linear Models for KGC

KGE models such as ConvE (Dettmers et al., 2018) and HypER (Balažević et al., 2019a)
use 2D and 1D convolution on the subject entity and relation representations respec-
tively. Both perform well in practice and are efficient, but the former lacks direct inter-
pretation, whereas the latter is related to tensor factorization. Translational methods
(Bordes et al., 2013; Feng et al., 2016; Ji et al., 2015; Lin et al., 2015; Nguyen et al., 2016;
Wang et al., 2014) use additive dissimilarity scoring functions, and they differ in terms
of the constraints applied to the projection matrices. While interpretable, they are theo-
retically limited as they have shown to be not fully expressive (Kazemi and Poole, 2018;
Wang et al., 2018b). There are several other works (Das et al., 2018; Ebisu and Ichise,
2018; Nickel et al., 2016b; Schlichtkrull et al., 2018; Shen et al., 2018; Sun et al., 2019b;
Yang et al., 2017), but we will mainly focus on linear models in this Chapter.

5.2.2 Linear Models for KGC

All discussed linear models could be seen as decomposing a binary KG tensor using
different factorization methods. One way to decompose this tensor is to factorize its
slices in the relation dimension with DEDICOMP (Harshman, 1978). RESCAL (Nickel
et al., 2011), a relaxed version of DEDICOMP, decomposes using a scoring function that
consists of a bilinear product between subject and object entity vectors with a relation-
specific matrix. RESCAL tends to overfit due to the quadratic growth of parameters in
the number of relations. Others use Canonical Polyadic decomposition (CPD or simply
CP) (Harshman and Lundy, 1994; Hitchcock, 1927) to factorize the binary tensor. In
CP, each value in the tensor is obtained as a sum of multiple Hadamard products
of three vectors, representing the subject, object, and relation. DistMult (Yang et al.,
2015), equivalent to INDSCAL (Carroll and Chang, 1970), also uses sum of Hadamard
product of three vectors with a diagonal relation matrix, unlike RESCAL, to account
for overfitting.

ComplEx (Trouillon and Nickel, 2017; Trouillon et al., 2016) uses complex-valued vec-
tors for entities and relations to explicitly model asymmetric relations. SimplE (Kazemi
and Poole, 2018) extends CP by introducing two vectors (head and tail) for each en-
tity and two for relations (including the inverse). Tucker decomposition (Tucker, 1966)
based TuckER (Balažević et al., 2019b) learns a 3D core tensor, which is multiplied with
a matrix along each mode to approximate the binary tensor. A key difference between
CP-based methods and TuckER is that TuckER learns representations via embeddings
and a shared core tensor.
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5.3 low-rank knowledge graph completion

5.3.1 Problem Definition

Given a set of entities E and relations R in a knowledge graph KG, the task of KGC is
to assign a score s to a triple (es, r, eo):

s = f(es, r, eo)

where es ∈ E is the subject entity, eo ∈ E is the object entity and r ∈ R is the relation
between them. The scoring function f estimates the general binary tensor T ∈ |E|×
|R|× |E|, by assigning a score of 1 to Tijk if relation rj exists between entities ei and
ek, 0 otherwise. The scoring function can be a linear or non-linear model trained to
predict the correctness of a triple to belong to the KG.

5.3.2 Multi-modal Factorized Bilinear Pooling

Downstream performance for tasks such as visual question answering strongly de-
pends on the multi-modal fusion of features to leverage the heterogeneous data (Liu
et al., 2018). Bilinear models are expressive as they allow for pairwise interactions be-
tween the feature dimensions but also introduce a considerable number of parameters
that lead to high computational and memory costs and the risk of overfitting (Fukui
et al., 2016). Substantial research has therefore focused on efficiently computing the
bilinear product.

In Multi-modal Compact Bilinear (MCB) pooling (Fukui et al., 2016; Gao et al., 2016),
authors employ a sampling-based approximation that uses the property that the tensor
sketch projection (Charikar et al., 2004; Pham and Pagh, 2013) of the outer product of
two vectors can be represented as their sketches’ convolution. Multi-modal Low-rank
Bilinear (MLB) pooling (Kim et al., 2017) uses two low-rank projection matrices to
transform the features from the original space to a shared space. It is followed by
the Hadamard product, which was later generalized by the Multi-modal Factorized
Bilinear (MFB) pooling (Yu et al., 2017). In contrast to KGC bilinear models, these
models allow for parameter sharing and, generally, are constraint-free. Our work is
based on the MFB model but can also be seen as related to Liu et al. (2018), therefore
we present it formally next.

Given two feature vectors x ∈ Rm, y ∈ Rn and a bilinear map W ∈ Rm×n, the
bilinear transformation is defined as z = xTWy ∈ R. To obtain a vector in Ro, o such
maps have to be learned (e.g., in RESCAL, these would be relation-specific matrices),
resulting in a large number of parameters. However, W can be factorized into two
low-rank matrices:

z = xTUVTy = 1T (UTx ◦VTy)

where U ∈ Rm×k, V ∈ Rn×k, k is the factorization rank, ◦ is the Hadamard product
of two vectors and 1 ∈ Rk is a vector of all ones. Therefore, to obtain an output feature

vector z ∈ Ro, two 3D tensors are required, Wx = [U1, U2, ..., Uo]
reshape−−−−→ W

′
x and

Wy = [V1, V2, ..., Vo]
reshape−−−−→W

′
y, where Wx ∈ Rm×k×o, Wy ∈ Rn×k×o are 3D tensors

and W
′
x ∈ Rm×ko, W

′
y ∈ Rn×ko are their reshaped 2D matrices respectively. The final
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(fused) vector z is then obtained by summing non-overlapping windows of size k over
the Hadamard product of projected vectors using W

′
x and W

′
y:

z = SumPool(W
′T
x x ◦W

′T
y y,k) (2)

At k = 1, MFB reduces to MLB, which converges slowly, and MCB requires very
high-dimensional vectors to perform well (Yu et al., 2017). Further, MFB significantly
lowers the number of parameters with low-rank factorized matrices and leads to better
performance.

5.3.3 LowFER

Consider that entities and relations are not intrinsically bound and come from two
different modalities, such that good fusion between them can potentially result in a
knowledge base of fact triples. Entities and relations can be shown to possess certain
properties that allow them to function similarly to others within the same modality.

For example, the relation cause-of shares inherent properties with the relation diag-
noses. As such, similar entity pairs can yield similar relations, given appropriate shared
properties. Like in multi-modal auditory-visual fusion, where the sound of a roar may
better predict a resulting image within the distribution of animals that roar, a relation
such as diagnoses, can better predict an entity pair within a distribution of (procedure, dis-
ease) entity pairs. In KGC, we assume that the latent decomposition with MFB can help
the model capture different aspects of interactions between an entity and a relation,
leading to better scoring with the missing entity. We, therefore, apply the Low-rank
Factorization trick of bilinear maps with k-sized non-overlapping summation pooling
(cf. §5.3.2) to Entities and Relations (LowFER) to study RQ7.

More formally, for an entity e ∈ E, we represent its embedding vector e of de di-
mension as a look-up from entity embedding matrix E ∈ Rne×de , where ne = |E|.
Similarly, for a relation r ∈ R, we represent its embedding vector r of dr dimension
as a look-up from relation embedding R ∈ Rnr×dr , where nr = |R|. Then, for a given
triple (es, r, eo), we define our scoring function as:

f(es, r, eo) := g(es, r) · eo = g(es, r)Teo (3)

where g(., .) ∈ Rde is a vector valued function of the subject entity vector es and the
relation vector r, defined from Eq. 2 as:

g(es, r) := SumPool(UTes ◦VT r,k) (4)

where matrices U ∈ Rde×kde and V ∈ Rdr×kde represent our model parameters. We
can re-write the Eq. 4 more compactly as:

g(es, r) = Skdiag(UTes)VT r (5)

where diag(UTes) ∈ Rkde×kde and Sk ∈ Rde×kde is a constant matrix1 such that:

Sk
i,j =

1, ∀j ∈ [(i− 1)k+ 1, ik]

0, otherwise

1 Note that at k = 1, S1 = Ide
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Figure 26: Overview of the LowFER model. For an input tuple (es, r) and target entity eo, we first get
entity vectors es, eo ∈ Rde from entity embedding matrix E ∈ Rne×de and relation vector r ∈ Rdr from
relation embedding matrix R ∈ Rnr×dr , where ne and nr are number of entities and relations in KG.
LowFER projects es and r into a common space Rkde followed by Hadamard product and k-summation
pooling, where k is the factorization rank. The output vector z is then matched against the target entity
eo to give a final score.

Using this compact notation in Eq. 3, the final scoring function of LowFER is obtained
as:

f(es, r, eo) = (Skdiag(UTes)VT r)Teo (6)

5.3.4 Training

To train the LowFER model, we follow the setup of Balažević et al. (2019b). First,
we apply a sigmoid non-linearity after Eq. 6 to get the probability p(y(es,r,eo)) =
σ(f(es, r, eo)) of a triple belonging to a KG. Then, for every triple (es, r, eo) in the
dataset, a reciprocal relation is added by generating a synthetic example (eo, r−1, es)
(Dettmers et al., 2018; Lacroix et al., 2018) to create the training set D. For faster training,
Dettmers et al. (2018) introduced 1-N scoring, where each tuple (es, r) and (eo, r−1) is
simultaneously scored against all entities e ∈ E to predict 1 if e = eo or es respectively
and 0 elsewhere (see Trouillon et al. (2017) and Sun et al. (2019b) for other methods to
collect negative samples).

The model is trained with binary cross-entropy instead of margin-based ranking loss
(Bordes et al., 2013), which is prone to overfitting for knowledge completion (Kazemi
and Poole, 2018; Trouillon and Nickel, 2017). For a mini-batch B of size m drawn from
D, we minimize:

min
Θ

1

m

∑
(e,r)∈B

−
1

ne

ne∑
i=1

yi log(p(y(e,r,ei))) + (1− yi) log(1− p(y(e,r,ei)))

where yi is a target label for a given entity-relation pair (e, r) for entity ei, p(y(e,r,ei))
is the model prediction and Θ represents model parameters.

Following Yu et al. (2017), we also apply power normalization x← sign(x)|x|0.5 and
l2-normalization x ← x/||x||2 before summation pooling to stabilize the training from
large output values as a result of Hadamard product in Eq. 4.
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Model Full Expressibility Bounds

RESCAL (Nickel et al., 2011) (de,dr) = (ne,n2
e)

HolE (Nickel et al., 2016b) de = dr = 2nenr + 1

ComplEx (Trouillon et al., 2016) de = dr = nenr

SimplE (Kazemi and Poole, 2018) de = dr = min(nenr,n+ 1)

TuckER (Balažević et al., 2019b) (de,dr) = (ne,nr)

LowFER (de,dr) = (ne,nr) for k = min(ne,nr)

Table 21: Bounds for fully expressive linear models, where n is the number of true facts, and k is the
factorization rank. The trivial bound is given by n2

enr.

5.4 theoretical analysis

5.4.1 Full Expressibility

A key theoretical property of knowledge representation models is their ability to be
fully expressive, which we define formally as:

Definition 3. Given a set of entities E, relations R, correct triples T ⊆ E×R×E and incorrect
triples T ′ = E×R×E \T, then a model M with scoring function f(es, r, eo) is said to be fully
expressive iff it can accurately separate T from T ′ for all es, eo ∈ E and r ∈ R.

A fully expressive model can represent relations of any type, including symmetric,
asymmetric, reflexive, and transitive among others. Models such as RESCAL, HolE, Com-
plEx, SimplE, and TuckER have been shown to be fully expressive (Balažević et al.,
2019b; Kazemi and Poole, 2018; Trouillon and Nickel, 2017; Wang et al., 2018b). On
the other hand, DistMult is not fully expressive as it enforces symmetric relations only.
Further, Wang et al. (2018b) showed that TransE is not fully expressive, which was later
expanded by Kazemi and Poole (2018), showing that other translational variants, in-
cluding, FTransE, STransE, FSTransE, TransR, and TransH are likewise not fully expres-
sive. By virtue of the universal approximation theorem (Cybenko, 1989; Hornik, 1991),
neural networks can be considered fully expressive (Kazemi and Poole, 2018). Table 21

summarizes the bounds of linear models that are fully expressive. With Proposition 1, we
establish that LowFER is fully expressive and provide bounds on the entity and relation
embedding dimensions and the factorization rank k to partially address RQ8.

Proposition 1. For a set of entities E and a set of relations R, given any ground truth T, there
exists an assignment of values in the LowFER model with entity embeddings of dimension de =
|E|, relation embeddings of dimension dr = |R| and the factorization rank k = min(de,dr) that
makes it fully expressive.

As a given example, consider a set of entities E = {e1, e2, e3, e4} and relations
R = {r1, r2, r3, r4} such that r1 is reflexive, r2 is symmetric, r3 is asymmetric, and r4
is transitive, then for ground truth T = {(e1, r1, e1), (e1, r2, e2) , (e2, r2, e1), (e3, r3, e2)
, (e4, r4, e3), (e3, r4, e1), (e4, r4, e1)} and following the settings in Proposition 1, Figure
27 shows the model parameters U and V for this toy example. Now, consider the case
k = de = ne, then U copies each entity vector in k-sized slices and V buckets target en-
tities per relation such that each source entity is distributed into disjoint sets. Note that
reshaping V as 3D tensor of size nr×ne×ne and transposing the first two dimensions
results in binary tensor T.
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Figure 27: LowFER model parameters for a toy dataset under the settings used in Proposition 1. Top: For
the case when k = de = ne. Bottom: For the case when k = dr = nr.

The bounds presented in Table 21 are weak and, in practice, not very useful. They
are derived for checking the full expressibility of a model only, which is also referred
to as model being universal in Wang et al. (2018b), to handle all-types of relations with
zero error, i.e., perfect reconstruction of the binary tensor T for a given KG. Since
factorization-based methods can be seen as approximating the true binary tensor, more
useful bounds can be derived by studying the quality of the approximations for a given
accuracy level. The bounds for RESCAL, ComplEx, and HolE are reported from Wang
et al. (2018b) while for SimplE (Kazemi and Poole, 2018) and TuckER (Balažević et al.,
2019b), from their respective papers.

5.4.2 Relation with TuckER

Initially, it was shown by Kazemi and Poole (2018) that RESCAL, DistMult, ComplEx,
and SimplE belong to a family of bilinear models with a different set of constraints. Later,
Balažević et al. (2019b) established that TuckER generalizes all of these models as spe-
cial cases. In this section, we will formulate a relationship between our model and
TuckER (Balažević et al., 2019b), followed by relations with the family of bilinear mod-
els in the next section. This provides a unifying view and shows LowFER’s ability to
generalize while addressing the remainder of RQ8.

TuckER’s scoring function is defined as follows (Balažević et al., 2019b):

ϕt(es, r, eo) = W×1 es ×2 r×3 eo (7)

where W ∈ Rde×dr×de is the core tensor, es, eo ∈ Rde and r ∈ Rdr are subject entity,
object entity and the relation vectors respectively. ×n denotes the tensor product along
the n-th mode. First, note that Eq. 5 can be expanded as:

Sk(UTes ◦VT r) =



eTs (
∑k

i=1 ui ⊗ vi)r
...

eTs (
∑jk

i=(j−1)k+1
ui ⊗ vi)r

...
eTs (

∑kde

i=k(de−1) ui ⊗ vi)r
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Figure 28: Low-rank approximation of the core tensor W of TuckER (Balažević et al., 2019b) with LowFER
by summing k low-rank 3D tensors, where each tensor is obtained by stacking de rank-1 matrices obtained
by the outer product of k-apart columns of U and V.

where ui ∈ Rde and vi ∈ Rdr are column vectors of U and V respectively and ⊗
represents the outer product of two vectors. To take the vectors es and r out, we re-
alize the above matrix operations differently. We first create k matrices sliced from
U and V each, such that each matrix is formed by choosing all adjacent column vec-
tors that are k distance apart in U (and V), i.e., for the l-th slice, we have W(l)

U =

[ul, uk+l, ..., uk(de−1)+l] ∈ Rde×de and W(l)
V = [vl, vk+l, ..., vk(de−1)+l] ∈ Rdr×de .

Taking the column-wise outer product of these sliced matrices forms a 3D tensor in
Rde×dr×de . With slight abuse of notation, we also use ⊗ to represent this tensor opera-
tion. It can be viewed as transforming the matrix obtained by mode-2 Khatri-Rao prod-
uct into a 3D tensor (Cichocki et al., 2016). Now consider a 3D tensor W ∈ Rde×dr×de

as the sum of these k products:

W =

k∑
i=1

W(i)
U ⊗W(i)

V (8)

Figure 28 shows these operations. With this tensor, the scoring function f in Eq. 6 can
be re-written as TuckER’s scoring function as follows:

ϕ̂t(es, r, eo) = W×1 es ×2 r×3 eo (9)

It should be noted that W in Eq. 9 is obtained as a summation of k low-rank 3D
tensors, each of which is obtained by stacking rank-1 matrices in contrast to TuckER’s
core tensor W in Eq. 7, which can be a full rank 3D tensor. Our model can therefore
approximate TuckER and can be viewed as a generalization of TuckER (Balažević et al.,
2019b). We further show that we can accurately obtain W with appropriate W(i)

U ’s and
W(i)

V ’s in Eq. 8 through Proposition 2.

Proposition 2. Given a TuckER model with entity embedding dimension de, relation embed-
ding dimension dr and core tensor W, there exists a LowFER model with k <= min(de,dr),
entity embedding dimension de and relation embedding dimension dr that accurately repre-
sents the former.

LowFER and TuckER parameters grow linearly in the number of entities and rela-
tions as O(nede + nrdr). However, LowFER’s shared parameters through decoupled
low-rank matrices can control complexity through the factorization rank, making it



5.4 theoretical analysis 73

more flexible, e.g., consider d = de = dr, the core tensor W of TuckER grows as O(d3).
In contrast, LowFER grows only as O(kd2). For example, in Lacroix et al. (2018), au-
thors used de = dr = 2000, which would require more than 8 billion parameters to
model with TuckER compared to only 4k million for LowFER, with k controlling the
growth. More generally, at k = de/2, LowFER has an equal number of parameters
as TuckER; therefore, we expect similar performance at such rank values. In practice,
k = {1, 10, 30} performs well, thus partially addressing RQ7.

5.4.3 Relation with Family of Bilinear Models

This section will establish relations between LowFER and other bilinear models. For
simplicity, we consider the relation embedding to be a constant matrix R = Inr in all
the cases and use V to model relation parameters. However, the conditions presented
here can be extended otherwise with a remark that they are not unique.

5.4.3.1 RESCAL

Nickel et al. (2011) define the scoring function as:

ϕr(es, rl, eo) = eTs Wleo

where Wl ∈ Rde×de is l-th relation matrix. For LowFER to encode RESCAL with Eq.
6, we set k = de, dr = nr and U = [ Ide

| Ide
| ... | Ide

] ∈ Rde×d2
e (block matrix

partitioned as de identity matrices of size de × de). This is effectively taking a row l

from V ∈ Rnr×de
2
, reshaping it to de× de matrix and then taking the transpose to get

the equivalent Wl in RESCAL’s scoring function.

5.4.3.2 DistMult

Yang et al. (2015) define the scoring function as:

ϕd(es, rl, eo) = eTs diag(wl)eo

where wl ∈ Rde is the vector for l-th relation. For LowFER to encode DistMult with
Eq. 6, we set k = 1, dr = nr and U = Ide

. This is effectively taking a row l from
V ∈ Rnr×de and creating a diagonal matrix of it to get the equivalent diag(wl) in
DistMult’s scoring function.

5.4.3.3 SimplE

Kazemi and Poole (2018) define the scoring function as:

ϕs(es, rl, eo) =
1

2
(hT

es
diag(rl)teo + hT

eo
diag(r−1

l )tes)

where hes , heo ∈ Rd are subject, object entities head vectors, tes , teo ∈ Rd are subject,
object entities tail vectors and rl, r−1

l ∈ Rd are relation and inverse relation vectors.
Let ês = [tes ; hes ] ∈ R2d, eo = [heo ; teo ] ∈ R2d and r̂l = [r−1

l ; rl] ∈ R2d then SimplE
scoring is equivalent to 1

2 êTs diag(r̂l)eo, where ês and r̂l are obtained by swapping the
head, tail vectors in es = [hes ; tes ] and relation, inverse relation vectors in rl = [rl; r−1

l ]
respectively. For LowFER to encode SimplE, U becomes a permutation matrix (ignoring
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Figure 29: Modeling the family of bilinear models with LowFER, (from left-to-right): RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), SimplE (Kazemi and Poole, 2018) and ComplEx (Trouillon et al., 2016)
(see §5.4.3 for details).

the 1
2 scaling factor), swapping the first d-half with the second d-half of a given vector

in R2d and l-th row in V is r̂l, more specifically, with Eq. 6, we set k = 1, de = 2d, dr =
nr and U ∈ R2d×2d is a block matrix with four partitions such that, U12 = U21 = 1

2Id
and 0s elsewhere.

5.4.3.4 ComplEx

Trouillon et al. (2016) define the scoring function as:

ϕc(es, rl, eo) = Re(es)Tdiag(Re(rl))Re(eo) + Im(es)Tdiag(Re(rl))Im(eo)

+ Re(es)Tdiag(Im(rl))Im(eo) − Im(es)Tdiag(Im(rl))Re(eo)

where Re(.) and Im(.) represent the real and imaginary parts of a complex vector. Con-
sider ês = [Re(es); Im(es)] ∈ R2d and êo = [Re(eo); Im(eo)] ∈ R2d then the ComplEx
scoring function can be obtained as êTs Wlêo, where Wl ∈ R2d×2d represents the l-th
relation matrix such that its diagonal is [Re(rl); Re(rl)], the d offset diagonal is Im(rl)
and −d offset diagonal is −Im(rl). For LowFER to encode ComplEx, similar to Sim-
plE, we will use two permutation matrices to obtain the above four terms. That is, in
Eq. 9, we have k = 2, de = 2d, dr = nr, U ∈ R2d×4d is such that W(1)

U is a block
matrix with W(1)

U11
= W(1)

U12
= Id and 0 elsewhere. Further, W(2)

U is also a block ma-

trix with W(2)
U21

= −Id, W(2)
U22

= Id and 0 elsewhere. Lastly, V ∈ Rnr×4d is such that

W(1)
V row l has [Re(rl); Im(rl)] and W(2)

V row l has [Im(rl); Re(rl)], i.e., W(2)
V = W(1)

V P,
where P ∈ R2d×2d is the d-half swapping permutation matrix. Figure 29 demonstrates
LowFER parameters for the family of bilinear models under the conditions discussed in
this section.

5.4.4 Relation with HypER

HypER (Balažević et al., 2019a) is a convolutional model based on hypernetworks (Ha
et al., 2017), where the relation-specific 1D filters are generated by the hypernetwork
and convolved with the subject entity vector. Balažević et al. (2019a) showed that it
could be understood in terms of tensor factorization up to a non-linearity. With a
similar argument, we show that LowFER encodes HypER, bringing it closer to the
convolutional approaches.
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Dataset ne nr ne/nr Training Validation Testing

General KBs

WN18 40, 943 18 2, 275 141, 442 5, 000 5, 000
WN18RR 40, 943 11 3, 722 86, 835 3, 034 3, 134
FB15k 14, 951 1, 345 11 483, 142 50, 000 59, 071
FB15k-237 14, 541 237 61 272, 115 17, 535 20, 466
YAGO10-3 123, 182 37 3, 329 1, 079, 040 5, 000 5, 000

Biomedical KBs

UMLS 135 46 4 5, 216 625 661

SNOMED CT 293, 879 162 1, 814 1, 965, 111 49, 103 49, 570
SNOMED CT (ES) 137, 013 26 5, 270 249, 110 27, 599 55, 457

Table 22: Datasets used for KGC experiments, where ne=number of entities, nr=number of relations and
the entities-to-relations ratio ne/nr is approximated to the nearest integer.

HypER scoring function is defined as (Balažević et al., 2019a):

ϕh(es, r, eo) = h(vec(es ∗ Fr)W)eo (10)

where Fr = vec−1(Hr) ∈ Rnf×lf , H ∈ Rnflf×dr (hypernetwork), W ∈ Rnflm×de , vec(.)
transforms n×m matrix to nm-sized vector, vec−1(.) does the reverse operation, ∗ is
the convolution operator, h(.) is ReLU non-linearity and nf, lf and lm = de − lf + 1

are number of filters, filter length and output length of convolution.
The convolution between a filter and the subject entity embedding can be seen as a

matrix multiplication, where the filter is converted to a Toeplitz matrix of size lm × de.
With nf filters, we can realize a 3D tensor of size nf × lm × de. Since the filters are
generated by the hypernetwork, we have dr such 3D tensors, resulting in a 4D tensor of
size nf× lm× de× dr (Balažević et al., 2019a). Without loss of generality, we can view
this 4D tensor as a 3D tensor F ∈ Rnflm×de×dr . Taking mode-1 product as F ×1 WT

returns a final tensor G ∈ Rde×de×dr . Thus, HypER operations vec(es ∗ Fr)W simplify
to G×3 r×2 es. At k = de, with U ∈ Rde×d2

e as block identity matrices (same as in
LowFER’s relation to RESCAL) and V ∈ Rdr×de2

set to GT (G viewed as a matrix of
size d2

e × dr and transposed), LowFER’s score in Eq. 6 represents HypER, up to the
non-linearity.

5.5 experiments

We conducted the experiments on five benchmark datasets in the general domain,
WN18 (Bordes et al., 2013), WN18RR (Dettmers et al., 2018), FB15k (Bordes et al.,
2013), FB15k-237 (Toutanova et al., 2015) as small-scale KG and YAGO10-3 (Mahdis-
oltani et al., 2015) as large-scale KG. For biomedical knowledge completion, we con-
sider the UMLS (Kok and Domingos, 2007) as small-scale KG and SNOMED CT (U.S.
Edition), extracted from UMLS2019AB, following the steps proposed in Chang et al.
(2020) as large-scale KG. We also consider a multilingual, domain-specific, and clinical
sub-graph for stroke using SNOMED CT (Spanish Edition) relevant to clinical notes of
Table 7 in Chapter 3. See Appendix §C.3 for the dataset details, including best hyper-
parameters and additional experiments.
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WN18 FB15k

Linear Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

No

TransE 0.454 0.089 0.823 0.934 0.380 0.231 0.472 0.641
Neural LP 0.940 − − 0.945 0.760 − − 0.837
R-GCN 0.819 0.697 0.929 0.964 0.696 0.601 0.760 0.842
ConvE 0.943 0.935 0.946 0.956 0.657 0.558 0.723 0.831
TorusE 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832
HypER 0.951 0.947 0.955 0.958 0.790 0.734 0.829 0.885

Yes

DistMult 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
HolE 0.938 0.930 0.945 0.949 0.524 0.402 0.613 0.739
ComplEx 0.941 0.936 0.936 0.947 0.692 0.599 0.759 0.840
ANALOGY 0.942 0.939 0.944 0.947 0.725 0.646 0.785 0.854
SimplE 0.942 0.939 0.944 0.947 0.727 0.660 0.773 0.838
TuckER 0.953 0.949 0.955 0.958 0.795 0.741 0.833 0.892

LowFER-1 0.949 0.945 0.951 0.956 0.720 0.639 0.774 0.859
LowFER-10 0.950 0.946 0.952 0.958 0.810 0.760 0.843 0.896
LowFER-k* 0.950 0.946 0.952 0.958 0.824 0.782 0.852 0.897

Table 23: General domain knowledge completion results on WN18 and FB15k.

We implemented LowFER2 using the open-source code released by TuckER (Balaže-
vić et al., 2019b)3. We did random search over the embedding dimensions in {30, 50, 100,
200, 300} for de and dr. Further, we varied the factorization rank k in {1, 5, 10, 30, 50,
100, 150, 200}, with k = 1 (LowFER-1) and k = 10 (LowFER-10) as baselines. For
WN18RR and WN18, we found best de = 200 and dr = 30 with k value of 30 and
10 respectively. For FB15k-237, we found best de = dr = 200 at k = 100. These embed-
ding dimensions match the best reported in TuckER (Balažević et al., 2019b). However,
for FB15k, we found using the configuration of de = 300 and dr = 30 to be consistently
better than de = dr = 200. For a fair comparison, we also reported the results for
de = dr = 200 and the best configuration when de = 200 and (dr,k) ⩽ 200 (Table 29).

Similar to Balažević et al. (2019b), we used Batch Normalization (Ioffe and Szegedy,
2015) but additionally power normalization and l2-normalization to stabilize training
from large outputs following the Hadamard product in the main scoring function (Yu
et al., 2017)4. We tested the best-reported hyperparameters of Balažević et al. (2019b)
with random search and observed good performance in initial testing. With de, dr and
k selected, we used a fixed set of values for the rest of the hyperparameters reported in
Balažević et al. (2019b), including learning rate, decay rate, entity embedding dropout,
MFB dropout, output dropout and label smoothing (Pereyra et al., 2017; Szegedy et al.,
2016) (see Table 43 for the best hyperparameters). We used Adam (Kingma and Ba,
2015a) for optimization. In all the experiments, we trained the models for 500 epochs
with batch size 128 and reported the final results on the test set.

2 https://github.com/suamin/LowFER
3 https://github.com/ibalazevic/TuckER
4 We observed no performance degradation by removing these additional normalization techniques but we

used it in all the experiments to be consistent with prior work of Yu et al. (2017).

https://github.com/suamin/LowFER
https://github.com/ibalazevic/TuckER
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WN18RR FB15k-237

Linear Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

No

Neural LP − − − − 0.250 − − 0.408
R-GCN − − − − 0.248 0.151 0.264 0.417
ConvE 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501
RotatE − − − − 0.297 0.205 0.328 0.480
HypER 0.465 0.436 0.477 0.522 0.341 0.252 0.376 0.520

Yes

DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419
ComplEx 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428
TuckER 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544

LowFER-1 0.454 0.422 0.470 0.515 0.318 0.233 0.348 0.483
LowFER-10 0.464 0.433 0.477 0.523 0.352 0.261 0.386 0.533
LowFER-k* 0.465 0.434 0.479 0.526 0.359 0.266 0.396 0.544

Table 24: General domain knowledge completion results on WN18RR and FB15k-237.

5.5.1 Results

General KBs: Table 23 and 24 shows our KGC results in the general domain, where
LowFER-1, LowFER-10 and LowFER-k* represent our model for k = 1, k = 10 and
k = best. We choose LowFER-1 and LowFER-10 as baselines. Overall, LowFER reaches
competitive performance on all the datasets with state-of-the-art results on FB15k and
FB15k-237. On WN18 and WN18RR, TuckER is marginally better than LowFER.

LowFER performs well at low-ranks with significantly less number of parameters
compared to other linear models (Table 27). At k = 1, it performs better than or on
par with non-linear and linear models (including ComplEx and SimplE) except Hy-
pER and TuckER. For FB15k-237, LowFER-1 (∼3M parameters) outperforms R-GCN,
RotatE, DistMult and ComplEx by an average of 5.9% on MRR, and it additionally
outperforms convolutional models (ConvE, HypER) at k = 10 with only +0.8M param-
eters. On FB15k, the best reported TuckER model is improved upon, with an absolute
+1.9% increase on the toughest Hits@1 metric. This already achieves state-of-the-art
with almost half the parameters, ∼5.5M, in contrast to TuckER’s ∼11.3M. On WN18RR
and WN18, LowFER-1 outperforms all the models, excluding TuckER and HypER.
With LowFER-k*, we just about reach state-of-the-art performance on WN18RR and
FB15k-237. On FB15k, we reach new state-of-the-art for ∼9.51M parameters with +2.9%
and +4.1% improvement on MRR and Hits@1.

The empirical gains can be attributed to LowFER’s ability to perform good fusion
between entities and relations while avoiding overfitting through low-rank matrices
remaining parameter efficient, with strong performance even at extreme low-ranks.
Further, like TuckER, it allows for parameter sharing through the U and V matrices,
unlike ComplEx and SimplE, which rely only on embedding matrices.

For large-scale KG in the general domain, we report results on YAGO3-10, a subset
of YAGO3 (Mahdisoltani et al., 2015), consisting of 123, 182 entities and 37 relations
such that each entity has at least 10 relations. We used the same best hyperparameters
as for WN18RR. Table 25 shows that our model outperforms state-of-the-art models
including RotatE and HypER. It is worth noting that LowFER-k* on YAGO3-10 has
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Model MRR Hits@1 Hits@3 Hits@10

DistMult 0.340 0.240 0.380 0.540
ComplEx 0.360 0.260 0.400 0.550
ConvE 0.440 0.350 0.490 0.620
RotatE 0.495 0.402 0.550 0.670
HypER 0.533 0.455 0.580 0.678
LowFER-k* 0.537 0.457 0.583 0.688

Table 25: Large-scale knowledge completion results on YAGO3-10.

Model MRR Hits@1 Hits@3 Hits@10

UMLS

NeuralLP 0.778 0.643 − 0.962
NTP-λ 0.912 0.843 − 1.000
MINERVA 0.825 0.728 − 0.968
ComplEx 0.929 0.887 − 0.985
ConvE 0.940 0.902 − 0.992
LowFER-k* 0.929 0.870 0.985 0.995

SNOMED CT

TransE 0.346 0.212 − 0.597
ComplEx 0.461 0.360 − 0.652
DistMult 0.420 0.309 − 0.626
SimplE 0.432 0.337 − 0.615
RotatE 0.317 0.162 − 0.599
LowFER-k∗ 0.455 0.372 0.494 0.618

SNOMED CT (ES)

TransE 0.074 0.046 0.0793 0.120
DistMult 0.103 0.067 0.111 0.171
ComplEx 0.139 0.091 0.155 0.229
LowFER 0.119 0.087 0.130 0.180

Table 26: Biomedical knowledge completion results with UMLS and SNOMED CT.

only ∼26M parameters compared to ∼61M parameters of RotatE (Sun et al., 2019b),
which also includes their self-adversarial negative sampling.

Biomedical KBs: Table 26 shows our results for all the datasets. We find Com-
plEx (Trouillon et al., 2016) and LowFER to have comparable performance for UMLS
where ConvE performed best. These result discrepancies can partly be attributed to
the different subset extractions from the original UMLS (Kok and Domingos, 2007).
For SNOMED CT, LowFER had the best performance for the Hits@1 metric at the ex-
pense of long-tail performance compared to ComplEx for Hits@10. For domain-specific
Spanish KG with SNOMED CT (ES) ComplEx performed relatively better, where we
used DGL-KE (Zheng et al., 2020) with default parameters for training the baselines
and used our LowFER implementation. For evaluation, LowFER performs 1-N scoring
over 137,013 entities where we could only evaluate on 80,000 entities during inference
for other models due to memory constraints with the DGL-KE evaluation protocol.
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Figure 30: Influence of increasing the LowFER factorization rank on MRR and Hits@1 scores for FB15k.

Model WN18 FB15k-237 WN18RR FB15k

ComplEx 16.4 6.0 16.4 6.5
SimplE 16.4 - 16.4 6.5
TuckER 9.4 11.0 9.4 11.3
LowFER-1 8.2 3.0 8.2 4.6
LowFER-10 8.6 3.8 8.6 5.5
LowFER-k* 8.6 11.3 9.6 9.5

Table 27: Comparison between the number of parameters in millions (M) of strong linear models. For
LowFER-k*, the k values are 10, 100, 30 and 50 for WN18, FB15k-237, WN18RR and FB15k respectively.

Therefore, the discrepancy in the results may also be due to different implementations
and hyperparameter optimization as thoroughly investigated in Ruffinelli et al. (2020).

The overall effectiveness of LowFER on both the general and biomedical domains
shows that our model provides a good representation of entities and relations for a
given KG to address the remainder of RQ7. We supplement further details in Appendix
§C.3.3.

5.5.2 Analysis

Factorization Rank: From knowledge completion results, we observe that rank plays
an important role depending on the entities-to-relations ratio in the dataset. For de =
200 and dr = 30, we vary k from {1, 5, 10, 30, 50, 100, 150, 200} on FB15k and plot the
MRR and Hits@1 scores (Figure 30). From k = 1 to k = 5, the MRR score increases
from 0.62 to 0.72 and Hits@1 increases from 0.53 to 0.64. For higher ranks (after 50),
the change is minimal. Empirically, the effect of k diminishes as the number of enti-
ties per relation becomes larger, e.g., it is ∼ 3722 for WN18RR in contrast to ∼ 11 for
FB15k. We suspect this could be because as ne ≫ de, most of the knowledge is learned
through embedding matrices rather than the model parameters U and V. To test this,
we took a trained LowFER model on the WN18 dataset and added zero mean Gaussian
noise with variance in {1.0, 1.25, 1.5, 1.75, 2.0} to U and V and evaluated on the test set.
The MRR score changed from 0.95 to {0.92, 0.84, 0.65, 0.42, 0.24} for each level of noise.
This shows that, in noisy settings, the embeddings have the potential to capture more
knowledge than the shared parameters.

Empirically, we found when de = dr, taking k = de/2 performs nearly the same
as TuckER (Balažević et al., 2019b). This can be observed in LowFER-k* for FB15k-
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Figure 31: Influence of changing the LowFER entity embedding dimension de on Hits@1 metric and
growth of parameters in million (M).

k Params (M) MRR Hits@1 Hits@3 Hits@10

1 3.60 0.634 0.538 0.695 0.803
5 3.92 0.720 0.641 0.776 0.860
10 4.33 0.742 0.667 0.790 0.871
30 5.93 0.774 0.709 0.817 0.885
50 7.53 0.776 0.713 0.818 0.886

100 11.53 0.779 0.717 0.821 0.887

Table 28: Knowledge completion results on FB15k with de = dr = 200.

237 (de = dr = 200, k = 100), where our results are almost indistinguishable from
TuckER’s. This can be expected as the number of parameters in both models is almost
the same (∼11M). It should be noted that when we train LowFER, we initialize with
two i.i.d matrices, which are not shared. This is in contrast to TuckER’s core tensor (Eq.
7), allowing us to reach almost the same performance despite less parameter sharing.

Embedding Dimension: The size of entity embedding dimension de accounts for
the significant number of parameters in LowFER, growing linearly with the number
of entities ne. To study the effect, we trained our models on FB15k, with dr = 30,
k = 50 constant, and varying de in {30, 50, 100, 150, 200, 250, 300, 350, 400}. As shown
in Figure 31, increasing the entity embedding dimension significantly increases the
Hits@1 metric for almost linear growth in the number of parameters. However, it only
improves till 300 and starts overfitting afterwards.

In Balažević et al. (2019b), authors reported de = dr = 200 as best choice of dimen-
sions for TuckER on FB15k, however, we found using de = 300 and dr = 30 better with
a lower number of parameters for LowFER. For a fair comparison, we also provide
the results for de = dr = 200 for k in {1, 5, 10, 30, 50, 100} in Table 28. As k increases,
we see an improvement over all the metrics. At k = 100, where we expected LowFER
to match TuckER’s performance (MRR=0.795, Hits@1=0.741, ∼11 million parameters),
it was lower (−1.6% on MRR and −2.4% on Hits@1). In comparison, our model with
de = 300, dr = 30 and k = 10 with ∼5.6 million parameters only, gives better results
than this setting and TuckER. Therefore, at de = dr = 200, our model is most likely
overfitting.

As noted above it could be that LowFER is overfitting therefore, we did a coarse grid
search over the relation embedding dimension in {30, 50, 100, 150, 200} and k in {1, 5, 10,
30, 50, 100, 150, 200} while keeping de = 200 fixed. We found dr = 50 at k = 150
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Model Params (M) MRR Hits@1 Hits@3 Hits@10

TuckER 11.3 0.795 0.741 0.833 0.892
LowFER-k* 10.6 0.795 0.739 0.831 0.891
LowFER-k* + Reg 10.6 0.802 0.749 0.837 0.892

Table 29: Knowledge completion results on FB15k with de = 200, dr = 50, k = 150 and l2-regularization
0.0005.

WN18 WN18RR

LowFER TuckER LowFER TuckER

also_see 0.638 0.630 0.627 0.614
derivationally_related_form 0.954 0.956 0.957 0.957
has_part 0.944 0.945 0.138 0.129
hypernym 0.961 0.962 0.189 0.189
instance_hypernym 0.986 0.982 0.576 0.591
member_meronym 0.930 0.927 0.155 0.131
member_of_domain_region 0.885 0.885 0.060 0.083
member_of_domain_usage 0.917 0.917 0.025 0.096
similar_to 1.0 1.0 1.0 1.0
synset_domain_topic_of 0.956 0.952 0.494 0.499
verb_group 0.974 0.974 0.974 0.974

Table 30: Relation specific test set results on WN18 and WN18RR with LowFER-k* and best reported
TuckER model (Balažević et al., 2019b).

reaches almost the same performance as TuckER with ∼10.6M parameters compared
to TuckER’s ∼11.3M parameters. We also experimented with l2-regularization (Reg)
and noted minor improvements, with regularization strength 0.0005. Table 29 summa-
rizes these results. Note that all the experiments reported in the main results were
without regularization. In general, we only noticed slight improvements in FB15k with
l2-regularization.

Relation Types: KGC models that can discover relation types automatically with-
out prior knowledge indicate better generalization. As shown, and discussed in §5.4,
LowFER, among other models (Table 21), can learn to capture all relation types with-
out additional constraints. However, these bounds are loose in practice and require
large dimensions, prompting an inspection of their performance on different relation
types. In Kazemi and Poole (2018), it was identified that WN18 contains redundant
relations, i.e., ∀ei, ej ∈ E : (ei, r1, ej) ∈ T ⇔ (ej, r2, ei) ∈ T, such as <hyponym, hy-
pernym>, <meronym, holonym> etc. To alleviate this, Dettmers et al. (2018) proposed
WN18RR with such relations removed since knowledge about one can help infer the
knowledge about the other. Table 30 shows the per relation results of LowFER and
TuckER on WN18 and WN18RR. We see that performance drops for 7 relations, with
an average performance decrease of −70.6% and −69.3% for LowFER and TuckER
respectively (with the highest decrease on member_of_domain_usage for both). For sym-
metric relations (such as derivationally_related_form), the performance is approximately
the same where we observe severe limitations to model asymmetry. We believe this is
because LowFER (also TuckER) is constraint-free, and adding certain constraints based
on background knowledge is necessary to improve the model’s accuracy.

SimplE is the only fully expressive model that has been formally shown to address
these limitations (cf. Proposition 3, 4, and 5 in Kazemi and Poole (2018)). Since LowFER
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subsumes SimplE, such rules can be studied for extending LowFER to incorporate the
background knowledge.

5.6 conclusion

In this Chapter we proposed a simple and parameter-efficient model, LowFER, that
performs on par or state-of-the-art in the general and biomedical domain for infer-
ring missing knowledge, thus addressing RQ7. It offers a strong baseline to the deep
learning based models and raises further interest in studying linear models for KGC.

We showed that LowFER is fully expressive and generalizes to other linear models in
KGC, providing a unified theoretical view, thus addressing RQ8. We also highlighted
some limitations concerning gains on harder relations, which still need to be addressed.
This shows that the constraint-free and parameter-efficient linear models, which allow
for parameter sharing, are better from a modeling perspective but are still similarly
limited in learning difficult relations.



6D I S C U S S I O N A N D F U T U R E W O R K

In this Chapter, we will briefly revisit the research contributions, discuss the work
across Chapters and summarize possible future work corresponding to each knowl-
edge acquisition task presented in this dissertation.

6.1 research contributions

For entity-centric learning, we started by conducting a thorough study of neural meth-
ods in Chapter 2 for supervised concept extraction showing the effectiveness of transfer
learning with pre-trained multilingual and domain-specific language models which ad-
dressed RQ1 (pp. 15, 17, 23, 30). For unsupervised concept extraction, we presented a
Dense Phrase Matching approach which is highly effective when the texts are rich with
noun-phrased concepts with a potential to serve in a multilingual setting to address
RQ2 (pp. 15, 25, 29, 30). In Chapter 3, we presented a Transformer based framework
for transfer learning research in NER which offers to bridge the gap between growing
research in deep transformer models, NER transfer, and domain adaptation address-
ing RQ3 (pp. 31, 33, 28, 44). We then applied T2NER to the task of clinical notes
de-identification by empirically investigating the few-shot cross-lingual transfer property
of mBERT and proposed an adaptation strategy that significantly boosts over zero-shot
performance while keeping the required size of annotated samples low to address RQ4
(pp. 32, 39, 41, 43, 44).

For relation-centric learning, we proposed relation-enriched BERT to bag-level multi-
instance learning in Chapter 4 and showed that with a KB-sensitive data encoding
scheme, it sufficiently reduced distant supervision noise, alleviating the need for addi-
tional tasks which addressed RQ5 (pp. 47, 51, 53, 64). We further investigated the land-
scape of distantly supervised biomedical relation extraction benchmarks and found
either train-test leakage or coverage limitations to propose MedDistant19, which we
thoroughly evaluated with scientific language models, showing promising relational
representation capacity addressing RQ6 (pp. 48, 55, 64). In Chapter 5 we proposed
a simple and parameter-efficient knowledge graph completion model, LowFER, that
performs on par or state-of-the-art in the general and biomedical domain for inferring
missing knowledge to address RQ7 (pp. 65, 68, 73, 79, 82). We showed that LowFER is
fully expressive and generalizes to other linear models in knowledge graph completion,
providing a unified theoretical view that addressed RQ8 (pp. 66, 70, 71, 82).

6.2 discussion

Concept extraction is related to biomedical or clinical entity linking, where the first
step is to perform named entity recognition and then concept normalization (Neu-
mann et al., 2019). For example, the CANTEMIST (CANcer TExt MIning Shared Task –
tumor named entity recognition) 2020 proposes a codes classification task in two stages:
NER followed by concept extraction (Miranda-Escalada et al., 2020). The solutions with
NER as the first step had consistently better performance than those without, further
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highlighting that Chapters 2 and 3 are conceptually related. However, we leave such
a pipeline approach for future work. Recently, multi-label classification has emerged
to address the growing literature on COVID-19 with LitCovid (Chen et al., 2021a) for
real-world medical language processing.

While Chapter 3 focused on clinical text de-identification, the methods presented in
T2NER generally apply to low-resource medical NER (Crichton et al., 2017), which is a
crucial first step for mining triples from the text, the subject of Chapter 4. Furthermore,
the sensitive information collected from the text can serve as a PHI-KB itself that can
be used for pseudonymization and privacy-enhanced clinical language processing.

The second part of the thesis builds towards knowledge base enrichment with re-
lational learning. The task of mutual learning with relation extraction (Chapter 4)
and knowledge graph completion (Chapter 5) has been previously studied (Han et
al., 2018a; Toutanova et al., 2015; Weston et al., 2013). The advances in pre-trained
language models have shown the presence of relational cues as part of pre-training,
which allows PLMs to act as soft KBs (Petroni et al., 2019), thus prompting their use
for knowledge extraction.

However, access to an incomplete KB allows learning from statistical correlations to
represent entities and relations, as shown in Chapter 5. The two representation learning
paradigms from text and KB are complementary but different. When dealing with text,
we mainly look at semantics and syntax, while from KB, we primarily learn from the
structural components of the underlying knowledge graph. Combining the two is an
active research area (Colon-Hernandez et al., 2021).

From a methodological perspective, we consistently found simple methods to provide
strong empirical gains. Our findings highlight the need for stronger baselines and our
limitations show the prevalent challenges of domain-specific NLP.

6.3 future work

Concept Extraction: The methods presented in Chapter 2 can be followed up by joint
learning of named entities for concept extraction and normalization. However, required
data might be in short supply when dealing with in-domain and low-resource lan-
guages (e.g., Estonian or Catalan medical documents). Such deficiencies encourage
research for better cross-lingual and cross-domain methods that can be transferred
effectively, similar to transfer learning algorithms discussed in Chapter 3. Noting the
importance of concept span detection in dense phrase matching, further improvements
in this direction are encouraged.

Named Entity Recognition: For T2NER, the following directions can be considered:

• Create benchmark data and compare the transfer learning algorithms (Ramesh
Kashyap et al., 2021; Ramponi and Plank, 2020).

• Investigate adding support for traditional few-shot (Huang et al., 2020), nested
(Wang et al., 2020b) and document-level (Schweter and Akbik, 2020) NER.

• Assess the framework’s performance in terms of speed and efficiency and com-
pare it with other tools1.

1 https://github.com/JayYip/bert-multitask-learning

https://github.com/JayYip/bert-multitask-learning
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• While the framework focuses on the task of NER, adding related tasks such as
relation extraction, entity linking, and question answering might boost perfor-
mance through multi-task learning.

Furthermore, the results for clinical de-identification show potential for future appli-
cations in other low-resource scenarios. A thorough comparative study across domains
and languages to qualify the robustness of few-shot transfer should be pursued. Lastly,
studying few-shot domain and language adversarial approaches for biomedical NER
can be investigated.

Relation Extraction: Compared to methods presented in Chapter 4, a more formal
and theoretically ground noise modeling approach could be studied with regularized
optimal transport (OT) (Cuturi, 2013), considering a ground metric between textual
and KB relation representations. Such an application of OT distances has been shown
in T2NER adaptation algorithms (EMD), which can be extrapolated here. Considering
the importance and application of tensor factorization (Chapter 5), studying joint fac-
torization approaches with 4th-order tensor decomposition, where one shall consider
mutual learning instead of regularized distance with shared tensor, could be explored.
Lastly, with the need for emerging multilingual medical applications (Chapter 2 and 3),
studying Bio-DSRE for languages other than English could become important, where
low-resource conditions are more extreme following the trend in the general domain
(Bhartiya, Badola, et al., 2022).

Knowledge Graph Completion: A prominent direction should be comprehensive
benchmarking with medical KBs including RepoDB (Brown and Patel, 2017), MSI (Ruiz
et al., 2021), Hetionet (Himmelstein and Baranzini, 2015), OpenBioLink (Breit et al.,
2020), DRKG (Ioannidis et al., 20 2), and BioKG (Walsh et al., 2020). Studying the impact
of regularization schemes as a trade-off between parameter sharing and constraints
can be explored. To further enhance the expressivity, a Quaternion (Hamilton, 1866)
generalization of Tucker decomposition (Tucker, 1966) can be formulated and further
a move towards inductive tensor completion should be investigated.





Part III

A P P E N D I X





AF E W- S H O T C R O S S - L I N G U A L D E - I D E N T I F I C AT I O N D ATA S E T

In this Appendix, we present additional details about the few-shot cross-lingua de-
identification dataset discussed in Chapter 3.

The contents of this Appendix have appeared in Amin et al. (2022b).

a.1 guttmann clinical notes

In addition to the 7 coarse-grained PHI entities (Stubbs and Uzuner, 2015) discussed in
§3.4.3, our dataset contains cross-sentence recurring entities about topics that may be
of interest in the clinical domain. These topics are grouped by their potential clinical
application areas and are summarized in Table 31.

The label frequency distribution, as noted in Figure 19, is consistent with general
characteristics of medical notes, which usually highlight notable events such as symp-
tom onsets, procedures, admissions, transfers, and discharges, in addition to the date
of each documentation. As a result, they tend to contain a higher frequency for the
DATE PHI, whereas the lower occurrence of the NAME PHI compared to the AGE
and LOCATION entities is consistent with how healthcare providers usually commu-
nicate patient information.

Medical professionals are trained to refer to patients simply by their age, gender, and
the appropriate diagnosis to avoid inadvertently sharing HIPAA-sensitive information,
e.g., "a 60-year-old male with ischemic stroke admitted on [DATE] from [LOCATION] (...)".
The patient’s name may be used at the beginning of a medical note; however, subse-
quent anaphoric references are often accomplished via pronouns, omitting the NAME
entity in the process. In addition, as it is applicable to Spanish medical records, nomi-
native pronouns anaphorically referencing a patient may be omitted as they are gram-
matical in Spanish. As discussed in the main Chapter, we avoid releasing our dataset
due to the presence of real PHI information. However, we will consider replacing the
real PHI with synthetic ones, similar to MEDDOCAN, for a possible GDPR-compliant
release. Table 32 shows the few-shot training and development corpus statistics.

a.2 annotation

a.2.1 Annotators

Two graduate research assistants completed the annotation of the dataset. Both anno-
tators had at a minimum CEFR1 B2-C1 Spanish (Castilian) proficiency. One annotator
also had clinical experience in the cardiovascular and cerebrovascular specialty, includ-
ing knowledge of Spanish medical terminology. Neither annotator had formal training
in Catalan; both had prior experience working with text data in this language with
stroke domain.

1 https://www.coe.int/en/
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Topic Areas Subcategories

Diagnostics &
Treatments

Ischemic vs Hemorrhagic
Affected areas and vessels
Comorbidities
Medication history
Associated lifestyle factors
Treatments and interventions

Symptoms &
Monitoring

Vital signs
Lab results and cultures
Pain and comfort
Bladder and bowel controls

Long-term Care &
Discharge Planning

Mobility
Cognitive ability
Nutrition
Psychosocial factors

Table 31: Topics and subcategories in the clinical notes obtained from the Guttmann Institut use to con-
struct the few-shot dataset.

a.2.2 Guidelines

The annotation process followed criteria for each entity as described in Stubbs and
Uzuner (2015). The 7 entities: AGE, CONTACT, DATE, ID, LOCATION, NAME, and
PROFESSION represent a larger granularity of the 18 HIPAA-defined PHI (Stubbs and
Uzuner, 2015). We examined the training sets of i2b2 (Stubbs and Uzuner, 2015) and
MEDDOCAN (Marimon et al., 2019) and adapted the i2b2 annotation guidelines to
create our own annotation guidelines. This step was necessary since we only focused
on coarse-grained PHI types compared to fine-grained types considered in these two
datasets. The adjusted guidelines utilized in this annotation process are summarized
in Table 36.

a.2.3 Procedure

Both annotators reviewed and revised their work without discussion or knowledge
of the other annotator’s work. In cross-revision, the reviewing annotator only made
corrections when labeling inconsistencies were due to a lack of medical terminology
comprehension. During revision, no changes to the original annotator’s confidence
level rating were made.

Confidence Level: The criteria for the confidence levels are annotator dependent as
summarized in Table 35 with examples. PHI has been manually modified from the
original data to preserve privacy while maintaining exemplary characteristics for each
label entity type.

Skipped Sentences: Each annotator followed an independent set of criteria to ex-
clude sentences from annotation, as demonstrated by examples in Table 34.
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Description Observation

Sentences annotated by annotator (A) 4400

Sentences annotated by annotator (B) 4343

Sentences annotated and revised by (A, B) 4314
Agreements 3924

Disagreements 390

Token-level Cohen’s Kappa score 0.898

Development Corpus 3924

w entity mentions 1493

w/o entity mentions 2431

Few-Shot Target Corpus 384

w entity mentions 369

w/o entity mentions 15

Table 32: Few-shot Cross-lingual De-identification dataset annotation and final statistics.

a.2.4 Disagreements and Resolution

An attempt was made to review the 390 sentences where our annotators disagreed
to find a resolution. Main sources of disagreement were due to (a) annotation criteria
discrepancy, (b) ambiguity between related entities, and (c) annotation errors. After fur-
ther revision to correct identified errors and clarify ambiguous annotation criteria, an
agreement was reached for 384 sentences while 6 sentences were left unannotated due
to insufficient context. Confidence levels from both annotators were left unchanged.
These sentences constituted our few-shot target corpus in the pipeline explained in Fig-
ure 18.

Inclusion Criteria Discrepancy: Most disagreements were related to discrepancies
in the inclusion of surrounding words such as determiners, punctuation marks, and
descriptive phrases. This is prevalent, particularly, in the LOCATION and PROFES-
SION entities. One annotator considered denoted sentences with these characteristics a
lower confidence level of 4 compared to sentences without determiners or punctuation
marks surrounding LOCATION tokens. The resolution step changed the annotations
to be more consistent with the annotation guidelines described in Table 36.

Ambiguity Between Related Entities: Another source of disagreements in the LO-
CATION PHI stems from abbreviation usage and confusion with the NAME PHI. In
instances where the syntax is ambiguous, annotators may not be able to infer correctly
that certain unknown abbreviations are place names. Since it is common that places
are named after people’s names and vice versa, a lack of contextual information cre-
ated unresolvable ambiguity regarding the NAME and LOCATION entities. DATE
and AGE also demonstrated similar disagreement behavior. In particular, numerical
and text expressions involving ‘years’ may express age or time depending on context.

Annotation Errors: A few disagreements were due to mislabeling or erroneous omis-
sions. There were fewer than 5 such instances in the 390 disagreements. Notable errors
were associated with mislabeling proper names that resemble valid named entities. For
instance, some assessment tools are named after people or places names e.g. Barcelona
Test and Boston (Naming) Test.
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PHI Fine-grained Types

AGE EDAD_SUJETO_ASISTENCIA

CONTACT NUMERO_TELEFONO, NUMERO_FAX, CORREO_ELECTRONICO, URL_WEB

DATE FECHAS

ID

ID_ASEGURAMIENTO, ID_CONTACTO_ASISTENCIAL, NUMERO_BENEF_PLAN_SALUD,
IDENTIF_VEHICULOS_NRSERIE_PLACAS, IDENTIF_DISPOSITIVOS_NRSERIE,

IDENTIF_BIOMETRICOS, ID_SUJETO_ASISTENCIA, ID_TITULACION_PERSONAL_SANITARIO,
ID_EMPLEO_PERSONAL_SANITARIO, OTRO_NUMERO_IDENTIF

LOCATION HOSPITAL, INSTITUCION, CALLE, TERRITORIO, PAIS, CENTRO_SALUD

NAME NOMBRE_SUJETO_ASISTENCIA, NOMBRE_PERSONAL_SANITARIO

PROFESSION PROFESION

OTHER
SEXO_SUJETO_ASISTENCIA, FAMILIARES_SUJETO_ASISTENCIA,

OTROS_SUJETO_ASISTENCIA, DIREC_PROT_INTERNET

Table 33: MEDDOCAN PHI (coarse-grained) and fine-grained types (Marimon et al., 2019).

Annotator Sample sentence Explanation

A

“Actualmente reside en
XXXX-Xxxx Xxxxxxxx,
Treballadora Social.”
[Currently resides in
XXXX-Xxxxx Xxxxxxxx,
social worker.]

The underlined words
are grouped as a single word token.
From the context it’s clear
that ‘XXXX’ belongs to ‘LOCATION’
and ‘Xxxxx Xxxxxxxx’ are
‘NAME’ entities.

B
“Lmarxa. [sic]”
[March or walks]

Annotator does not
have enough context
to understand this
token to annotate.

Table 34: Examples of sentences skipped by annotators and rationales.

a.3 meddocan normalization

The original MEDDOCAN dataset (Marimon et al., 2019) provides document-level de-
identification annotations, following 2014 i2b2/UTHealth (Stubbs and Uzuner, 2015),
of 1000 clinical notes which are divided into 500, 250, and 250 for training, validation,
and testing respectively. It contains 29 fine-grained entity types classified into 8 coarse-
grained PHI types as shown in Table 33. Compared to i2b2 (2014), MEDDOCAN has
an additional OTHER category which we normalized to O in the BIO schema, resulting
in 7 coarse-grained PHI types considered in Chapter 3. We tokenized the 500 training
notes resulting in a total of 16,299 sentences. The conversion script is publicly available
with T2NER. 2

2 https://github.com/suamin/T2NER/blob/master/utils/convert_i2b2style_xml_to_conll.py

https://github.com/suamin/T2NER/blob/master/utils/convert_i2b2style_xml_to_conll.py
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Level Annotator Criteria Sample Sentence Explanation

1

A

Annotator is unable to assign
labels due to insufficient
contextual information from
the given sentence.

“PASe."
[PASe.] or [ENTer.]

The token may be an unknown
acronym or an oddly typed
imperative form of the verb
“to enter". Insufficient context.

B
Annotator is unable to assign
labels due to
lack of comprehension.

“Allitat, en DDLL.”
[n/a]

Annotator did not understand
this sentence in Catalan
sufficiently to annotate.

2

A
Annotator is unsure
about the assigned labels
due to contextual ambiguity.

““50 años.”
[50 years]

Without any surrounding context,
the years can be ‘AGE’
or a temporal expression;
annotator thinks it’s most likely to be AGE,
but does not feel confident enough
to make a determination.

B

Annotator is unsure about
the assigned labels due
to lack of medical knowledge
or terminology.

“Urocultiu [sic] 13.01: +
per A. baumanii multiR.”
Urine Culture 13.01: +
for MDR
A. baumanii

Annotator omitted this sentence
due to uncertainty about
the word A. baumanii, whether it
could be a NAME or a
non-labeled entity.

3

A

Annotator is confident about
the labels, but some context
maybe missing that could
change the entity labels.

“712345678)."
This is likely a phone number
CONTACT, but may
also be an ID entity.

B

Annotator is confident about the sentence
in general, but has some doubt
due to presumed lack of
specialized knowledge.

“hipoTA [sic] asintomática."
[Asymptomatic hypotension.]

Annotator did not specify any
label but was unsure whether
there was a labeled entity
or not.

4

A

Annotator is confident
about the labels, but the sentence may
have some inconsistencies with
the gold standard sentences.

"El marido la vió y llamó
a la ambulancia e ingresó
en el hospital de Xxxxxxx."
[The spouse saw her and
called the ambulance and
she was admitted to Xxxxxxx
hospital.]

Annotator was unsure whether
to only annotate ‘Xxxxxxx’ or
‘hospital de Xxxxxxx’ or
‘el hospital de Xxxxxxx’ as LOCATION

B

Annotator is confident about
the labels, but the sentence may
have some inconsistencies with
the gold standard sample sentences.

“Torna d’Oftalmologia de
Xxx Xxxx ( Dra. [sic]"
[Returns from Xxx Xxxx
Ophthalmology (Dra. ]

Annotation unsure whether or
not to include Ophthalmology
as part of ‘LOCATION’

5

A

Annotator is confident
and there’s no ambiguity regarding
name entities of the labels.
This could mean that the sentences
have no entities to be annotated
or that all the entities needing
annotations are consistent with
the gold standard sample sentences.

“Cito a control el próximo
25.12.20 y doy pautas
a la esposa."
[I make a follow-up
appointment for the upcoming date
25.12.20 and I give the
prescription to the wife.]

It’s clear that ‘25.12.20’ is a
DATE PHI.

B

It is clear to the annotator that
the sentence has no entities to
be annotated or that the entities
are consistent with gold standard
annotation. This could be either
apparent at first glance or because
the sentence has been seen several
times before, which increases the
annotator’s confidence regarding
the assigned label(s).

“Cito a control el próximo
25.12.20 y doy pautas
a la esposa."
[I make a follow-up
appointment for the upcoming date
25.12.20 and I give the
prescription to the wife.]

It’s clear that ‘25.12.20’ is a
DATE PHI.

Table 35: Confidence level criteria and examples as reported by the two annotators. In instances where
PHI entities are utilized in the examples, we replaced the characters with generic alphanumeric characters
or with fictitious information (while maintaining the same PHI type).
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PHI Criteria

AGE

Annotate only the numerical part of the expression; include both numerical and word expressions of age (e.g. 36 or thirty-six ).
Include the words ‘years’, ‘months’, and ‘days’ when they express age.
Include expressions that describe an age group e.g. ‘adolescent’, ‘recently born’, ‘newborn’.
Include punctuation associated with age, including separate tokens, e.g. in his/her 30’s.

CONTACT
All forms of contact information, e.g. pager, phone numbers, e-mail address.
Physical or mailing address is annotated as ‘Location’
Include punctuation and symbols that occur with contact information, e.g. include all tokens in ‘(123) 456-789’.

DATE

Include days of the week and months.
Include punctuation in all formats.
Include the word ‘year’ and ‘month’ that is part of a date-time expression, e.g. ‘the year 2000’.
Include prepositions that are part of a date-time expression, e.g. include the word ‘of’ in ‘5th of May’.

ID

Include all identification numbers such as Medical Record Number (MRN), Social Security Number (SSN), Document ID, device lot number, etc.
Include any alpha-numeric expressions appearing at the beginning of the document or next to a name that’s not formatted as a date.
When separated by punctuation, annotate all parts of the expression including punctuation, e.g. include all tokens in ‘12-34-5678’.
Exclude the ID descriptive words and associated punctuation, e.g. exclude ‘MRN’ and ‘:’ in ‘MRN: 1234567’.

LOCATION

Include all place names and all parts of an address: street name, city, state, county, province, region, and country.
Include punctuation in the address.
Include Zip/postal codes.
Include organization names.
Include words that specify the location when they appear as part of a ‘Location’ entity, e.g. include the word ‘Center’ in ‘Social Security Center’.

NAME
Include only the person’s names.
Include punctuation between first and last names when present
Exclude titles and salutations.

PROFESSION

Include all professional titles, e.g. annotate ‘MD’ in the phrase ‘X works as an MD’.
Exclude professional titles in name suffixes, e.g. exclude ‘MD’ in the phrase ‘Dr. X Y, MD’.
Include professional and occupational descriptions, e.g. annotate ‘carpentry in the phrase ‘X works in carpentry’.
Annotate the entire expression describing a profession, e.g. annotate all tokens in a phrase such as ‘worker in a cafeteria’.
Exclude workplace names; annotate workplace names as ‘Location’ instead.

Table 36: Adjusted annotation guidelines with examples for each PHI type.
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In this Appendix, we present additional details for the UMLS.v2 and MedDistant19

benchmarks discussed in Chapter 4.

The contents of §B.2 have appeared in the Appendix of Amin et al. (2020a). The contents
of §B.1 and §B.3 have appeared in the Appendix of Amin et al. (2022a).

b.1 umls files

In UMLS (Bodenreider, 2004), a concept is provided with a unique identifier called
Concept Unique Identifier (CUI), a term status (TS), and whether or not the term is
preferred (TTY) in a given vocabulary, e.g., SNOMED CT. The concepts are stored
in a file distributed by UMLS called MRCONSO.RRF.1 Each concept further belongs to
one or more semantic types (STY), provided in a file called MRSTY.RRF, with a type
identifier TUI. There are 127 STY2 in the UMLS2019AB version, which are mapped to
15 semantic groups (SG).3. The relationships between the concepts are organized in a
multi-relational graph distributed in a file called MRREL.RRF4.

b.2 umls .v2 benchmark

Similar to Dai et al. (2019), UMLS5 (Bodenreider, 2004) was used as our KB and MED-
LINE abstracts6 as our text source. A data summary is shown in Table 37. We approx-
imate the same statistics as reported in Dai et al. (2019) for relations and entities, but
it is important to note that the data does not contain the same samples. We divided
triples into the train, validation, and test sets, and following Dai et al. (2019) and We-
ston et al. (2013), we make sure that there are no overlapping textual facts across the
splits. Additionally, we added a constraint that there is no sentence-level overlap be-
tween the training and held-out sets. We performed group negative sampling, where
20% of the data was reserved for testing, and of the remaining 80%, we used 10% for
validation and the rest for training.

Triples Entities Relations Positive Groups Negative Groups

169,438 27,403 355 92,070 64,448

Table 37: Overall statistics of the UMLS.v2 benchmark.

1 https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
2 https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_2018AB.txt
3 https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemGroups_2018.txt
4 https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/
?report=objectonly

5 We used 2019 release: umls-2019AB-full
6 https://www.nlm.nih.gov/bsd/medline.html
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b.2.1 Knowledge Base

The fact triples were obtained for English concepts, filtering for RO relation types only
(Dai et al., 2019). We collected 9.9M (CUI_head, relation_text, CUI_tail) triples.

b.2.2 Documents

From 34.4M abstracts, we extracted 160.4M unique sentences. To perform a fast and
scalable search, we used a Trie data structure7 to index all the textual descriptions of
UMLS entities. To obtain a clean set of sentences, we set the minimum and maximum
sentence character length to 32 and 256, respectively, and further considered only those
sentences where matching entities were mentioned only once. The latter decision was
to lower the noise that may come when only one instance of multiple occurrences is
marked for a matched entity. With these constraints, the data was reduced to 118.7M
matching sentences.

b.2.3 Groups Linking and Negative Sampling

Recall the entity groups G = G+ ∪ G− (§4.3.1). For training with NA relation class, we
generated hard negative samples with an open-world assumption (Baldini Soares et al.,
2019; Lerer et al., 2019) suited to bag-level multiple instance learning (MIL). From 9.9M
triples, we removed the relation type and collected 9M CUI groups in the form of (h, t).
Since each CUI is linked to more than one textual form, all text combinations for two
entities were considered for a given pair, resulting in 531M textual groups T for the
586 relation types.8

Next, for each matched sentence, let P2
s denote the size 2 permutations of entities

present in the sentence, then T ∩ P2
s return groups which are present in KB and have

matching evidence (positive groups, G+). Simultaneously, with a probability of 1
2 , we

removed the h or t entity from this group and replaced it with a novel entity e in the
sentence, such that the resulting group (e, t) or (h, e) belonged to G−. This method
resulted in sentences that were seen both for the true triple and the invalid ones. Fur-
ther, using the constraints that the relation group sizes must be between 10 to 1500,
we found 354

9 relation types (approximately the same as Dai et al. (2019)) with 92K
positive groups and 2.1M negative groups, which were reduced to 64K by considering
a random subset of 70% of the positive groups.

b.2.4 Bag Composition and Splits

For bag composition, we created constant-sized bags by randomly under- or over-
sampling the sentences in the bag (Han et al., 2019) to avoid larger bias towards com-
mon entities (Baldini Soares et al., 2019). The true distribution had a long tail, with
more than 50% of the bags having 1 or 2 sentences. We defined a bag to be uniform if
the special markers represented the same entity in each sentence, either h or t. If the
special markers can take on both h or t, we considered that bag to have a mix composi-
tion. The k-tag scheme, on the other hand, naturally generates uniform bags. Further, to

7 https://github.com/vi3k6i5/flashtext
8 This step partially leads to the training-test leakage that was identified and addressed in MedDistant19.
9 355 including NA relation

https://github.com/vi3k6i5/flashtext
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Model Split Triples Triples (w/o NA) Groups Sentences (Sampled)

k-tag
train 92,972 48,563 92,972 1,487,552

valid 13,555 8,399 15,963 255,408

test 33,888 20,988 38,860 621,760

s-tag
train 91,555 47,588 125,852 2,013,632

valid 13,555 8,399 22,497 359,952

test 33,888 20,988 55,080 881,280

s-tag+exprels
train 125,155 71,402 125,439 2,007,024

valid 22,604 16,298 22,607 361,712

test 55,083 39,282 55,094 881,504

Table 38: Sumary statistics of UMLS.v2 benchmark splits.

Figure 32: Relative proportions of the entities present in MedDistant19, based on the semantic groups.

support the setting of Wu and He (2019), we followed the s-tag scheme and expanded
the relations by adding a suffix to denote the directions as r(e1, e2) or r(e2, e1), with
the exception of the NA class, resulting in 709 classes. For fair comparisons with k-tag,
we generated uniform bags with s-tag as well, by keeping e1 and e2 the same per bag.
Due to these bag composition and class expansion (in one setting, exprels) differences,
we generated three different splits, supporting each scheme, with the same test sets in
cases where the classes were not expanded, and a different test set when the classes
are expanded. Table 38 shows the statistics for these splits.

b.3 meddistant19 benchmark

This section presents additional details about MedDistant19, including the final set
of relations considered (with their inverses obtained from the UMLS) and a complete
list of semantic types (STY). Since, in relation extraction (RE), we are not interested in
bidirectional extractions; therefore it is sufficient to only model one direction. For more
discussion on the relations in UMLS, including transitive closures, see §3.1 in Chang
et al. (2020). We used UMLS2019AB to be consistent with the related works. The final
set of relations considered in MedDistant19 is presented in Table 41. Note that we
only considered relations belonging to the RO (has a relationship other than synonymous,
narrower, or broader) type, which is consistent with UMLS.v2. This consideration ignores
relations such as isa, which defines hierarchy among relations.
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b.3.1 Semantic Groups and Semantic Types

As we noted in Figure 23, entities and relations follow a long-tail distribution. This has
a significant impact on the quality of the dataset created. For example, in the general
domain, the standard benchmark, NYT10 (Riedel et al., 2010), has more than half of
the positive instances belonging to one relation type /location/location/contains.
Figure 32 shows the relative proportions of the semantic groups in MedDistant19.

Further, we used an inductive split set with 70%, 10%, and 20% proportions of train,
validation, and test splits for constructing MedDistant19. Below are example instances
from the benchmark in OpenNRE (Han et al., 2019) format:

{

"text": "In one patient who showed an increase of plasma

prolactin level , associated with low testosterone and

LH , a microadenoma of the pituitary gland ( prolactinoma )

was detected .",

"h": {

"id": "C0032005", "pos": [130, 145],

"name": "pituitary gland"

},

"t": {

"id": "C0033375", "pos": [148, 160],

"name": "prolactinoma"

},

"relation": "finding_site_of"

}

/----------------------------------------------------------/

{

"text": "Severe heart disease may result in cardiac cirrhosis

in the elderly , with ascites and hepatomegaly .",

"h": {

"id": "C0018799", "pos": [7, 20],

"name": "heart disease"

},

"t": {

"id": "C0085699", "pos": [35, 52],

"name": "cardiac cirrhosis"

},

"relation": "cause_of"

}

/----------------------------------------------------------/

{

"text": "Complications closely associated to the osteosynthesis

appeared only in instable fractures ( 7 % ) .",

"h": {
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"id": "C0016658", "pos": [81, 90],

"name": "fractures"

},

"t": {

"id": "C0016642", "pos": [40, 54],

"name": "osteosynthesis"

},

"relation":

"direct_morphology_of"

}

/----------------------------------------------------------/

{

"text": "Gluten proteins , the culprits in celiac disease

( CD ) , show striking similarities in primary

structure with human salivary proline-rich proteins

( PRPs ) .",

"h": {

"id": "C2362561", "pos": [0, 15],

"name": "Gluten proteins"

},

"t": {

"id": "C0007570", "pos": [34, 48],

"name": "celiac disease"

},

"relation":

"causative_agent_of"

}

/----------------------------------------------------------/

{

"text": "Postherpetic neuralgia is an unfortunate aftermath

of shingles , and is most likely to develop , and most

persistent , in elderly patients .",

"h": {

"id": "C0032768", "pos": [0, 22],

"name": "Postherpetic neuralgia"

},

"t": {

"id": "C0019360", "pos": [54, 62],

"name": "shingles"

},

"relation": "occurs_after"

}
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ROOT

Anatomy
(ANAT)
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Figure 33: Type Hierarchy: each concept in the UMLS is classified under a type taxonomy. The coarse-
grained and fine-grained entity types are referred to as Semantic Group (SG) and Semantic Type (STY)
respectively.

b.3.2 UMLS License Agreement

To use the MedDistant19 benchmark, the user must have signed the UMLS agree-
ment10. The UMLS agreement requires those who use the UMLS (Bodenreider, 2004)
to file a brief report once a year to summarize their use of the UMLS. It also requires
acknowledging that the UMLS contains copyrighted material and that those copyright
restrictions are respected. The UMLS agreement requires users to agree to obtain agree-
ments for EACH copyrighted source before its use within a commercial or production
application.

b.3.3 Risks

While MedDistant19 does not have direct risk, we provide the dataset while ask-
ing users to respect the UMLS license before downloading it. This user agreement is
needed to use our benchmark and to respect the source ontologies licenses. We provide
this with the hope to accelerate reproducible research in Bio-DSRE by having ready-to-
use corpora, with only the condition that the user has obtained the license. We provide
users with this note and hope this will be respected. However, there is a risk that users
may download the data and re-distribute it without respecting the UMLS license. In
case of such exploitation, we will add the UMLS authentication layer to protect data
where the user will be required to provide a UMLS API key, which will be validated,
and only then will the data be allowed to be downloaded.

b.3.4 Limitations

We provide several limitations of our work as presented in its current form. MedDis-
tant19 aims to introduce a new benchmark with good practices. However, it is still
limited in the scope of ontologies considered. It also has a limited subset of relation
types provided by UMLS. For example, the current benchmark does not include an
important relation may_treat because it is outside SNOMED CT. Since MedDistant19

is focused on SNOMED CT, it lacks coverage of important protein-protein interactions,
drug side-effects, and relations involving genes as provided by RxNorm, Gene Ontol-
ogy, etc.

MedDistant19 is automatically created and susceptible to noise and thus needs to
be approached carefully as a potential source for biomedical knowledge. While the

10 https://uts.nlm.nih.gov/license.html

https://uts.nlm.nih.gov/license.html
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Encoder Bag Size Batch Size Embedding

CNN+sent+AVG - 128 biowordvec
CNN+sent+ONE - 128 biowordvec
CNN+bag+AVG 8 128 GloVe
CNN+bag+ONE 16 256 GloVe
CNN+bag+ATT 8 256 GloVe

PCNN+sent+AVG - 128 biowordvec
PCNN+sent+ONE - 128 biowordvec
PCNN+bag+AVG 4 128 GloVe
PCNN+bag+ONE 8 128 GloVe
PCNN+bag+ATT 8 128 GloVe

GRU+sent+AVG - 128 biowordvec
GRU+sent+ONE - 128 biowordvec
GRU+bag+AVG 8 128 biow2v
GRU+bag+ONE 16 256 GloVe
GRU+bag+ATT 16 128 GloVe

Table 39: Best hyperparameters for CNN, PCNN, and GRU sentence encoders.

dataset was not created to represent true biomedical knowledge, it has the potential to
be treated as a reliable reference.

b.3.5 Experimental Setup and Hyperparameters

We followed the experimental setup of Gao et al. (2021a) for BERT-based experiments.
Specifically, we used batch size 64, with a learning rate of 2e-5, maximum sequence
length 128, and bag size 4. We used a single NVIDIA Tesla V100-32GB for BERT-based
experiments. Each experiment took about 1.5 hrs, with half an hour per epoch. We also
attempted to perform a grid search for BERT experiments, but it was too expensive
to continue; therefore, we abandoned those jobs. Since we only used the base models,
they amount to 110 million parameters. During fine-tuning, we did not freeze any parts
of the model.

For CNN and PCNN, we performed grid search with Adam (Kingma and Ba, 2015b)
optimizer using learning rate 0.001 for 20 epochs with batch size ∈ {128, 256}, bag size
∈ {4, 8, 16, 32}, 200-d word embeddings ∈ {Word2Vec (Mikolov et al., 2013)11, GloVe
(Pennington et al., 2014)}, and with (test-time) pooling ∈ {ONE, AVG} when using
sentence-level training and pooling in {ONE, AVG, ATT} when using bag-level train-
ing. We ran this task on a cluster with support for array jobs. These amounted to over
700 experiments and took 3 days. We fixed other hyperparameters from literature (Han
et al., 2018a), with position dimension set to 5, kernel size set to 3, and dropout set to
0.5. These are also the default in OpenNRE (Han et al., 2019). The hyperparameters that
had the most influence were batch size, bag size, and pre-trained word embeddings.
All the experiments reported in MedDistant19 were with a single run.

For sentence tokenization with SciSpacy, it took 9hrs with 32 CPUs (4GB each) and
a batch size of 1024 to extract 151M sentences. Further, the SciSpacy entity linking job
took about half TB of RAM with 72 CPUs (6GB each) with a batch size of 4096 with
40hrs of run-time to link 145M unique sentences.

11 We used domain-specific word embeddings biowordvec and biow2v similar to Marchesin and Silvello
(2022).
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Semantic Type 10k-20k 20k-30k ⩾ 30k

Body Part, Organ, or Organ Component bladder, heart, retinal, lungs, spinal, kidneys, colon eyes, lung, kidney, intestinal liver, brain
Organism Function death period, blood pressure -
Body Location or Region head - -

Therapeutic or Preventive Procedure
injection, prevention, chemotherapy, application stimulation, delivery intervention, procedure, removal, operation
resection, infusion, treatments, therapeutic
surgical treatment, CT, surgical, transplantation

Neoplastic Process cancer - tumor, tumors
Disease or Syndrome obesity, disorder, disorders diseases, stroke disease, infection, condition, hypertension
Laboratory Procedure test, erythrocytes - cells
Diagnostic Procedure US, biopsy, ultrasound MRI -
Finding lesion, interaction, mass, difficulty, dependent abnormal presence, positive, negative, severe, lesions
Hormone insulin - -
Biologically Active Substance amino acids, glucose, ATP protein, proteins
Pharmacologic Substance medication - drugs, drug
Injury or Poisoning strains injury, exposure damage
Tissue tissue, bone marrow, tissues - -
Organism Attribute male - temperature, age
Immunologic Factor antibody, antibodies - -
Health Care Activity investigations examination assessment
Body Substance plasma, blood, skin - -
Body System - cardiovascular -
Mental Process - - concentrations, concentration
Congenital Abnormality - abnormalities -

Table 40: Semantic types affected by type-based mention pruning with removed mentions placed in their
respective frequency bins.

b.4 discussion

In the biomedical domain, health experts are often concerned with a particular type
of interaction, for example, drug-target and gene-disease. However, the number of on-
tologies is constantly growing (222 in UMLS2019AB), thus a growing need for a more
general-purpose relation extraction benchmark. Broad-coverage benchmarks exist for
biomedical entity linking, such as MedMentions (Mohan and Li, 2018), but they still
lack many important concepts involved in relational learning. The research community
has come up with several RE benchmarks (see Table 10), but the challenge remains as
new entities and relations emerge with the constant growth of biomedical literature.
Hence, constructing a broad benchmark for biomedical RE is challenging due to do-
main requirements; nonetheless, having an accurate benchmark could offer utility for
future research.

Further, the train-test overlap highlights the need to systematically assess the pro-
posed benchmarks for inconsistencies that can overestimate the model performance.
Similar assessments have shown in QA generalization where train-test overlap inflates
the model performance (Liu et al., 2022). Related to RE generalization, Rosenman et al.
(2020) exposed shallow heuristics while Taillé et al. (2021) showed that neural RE mod-
els could retain triples, primarily due to type hints. MedDistant19 partially addresses
these issues by an inductive setup that can offer insights into the generalization trend
in biomedical RE using unseen entities.
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Relation Inverse Relation

finding_site_of has_finding_site
associated_morphology_of has_associated_morphology

method_of has_method
interprets is_interpreted_by

direct_procedure_site_of has_direct_procedure_site
causative_agent_of has_causative_agent

active_ingredient_of has_active_ingredient
interpretation_of has_interpretation

component_of has_component
indirect_procedure_site_of has_indirect_procedure_site

direct_morphology_of has_direct_morphology
cause_of due_to

direct_substance_of has_direct_substance
uses_device device_used_by

focus_of has_focus
direct_device_of has_direct_device

procedure_site_of has_procedure_site
uses_substance substance_used_by

associated_finding_of has_associated_finding
occurs_after occurs_before

is_modification_of has_modification

Table 41: (Left) 21 relations included in MedDistant19, excluding NA relation. (Right) For completeness,
we also include their inverse relations.
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SG TUI Semantic Type

ANAT

T017 Anatomical Structure
T029 Body Location or Region
T023 Body Part, Organ, or Organ Component
T030 Body Space or Junction
T031 Body Substance
T022 Body System
T021 Fully Formed Anatomical Structure
T024 Tissue

CHEM

T116 Amino Acid, Peptide, or Protein
T195 Antibiotic
T123 Biologically Active Substance
T103 Chemical
T200 Clinical Drug
T196 Element, Ion, or Isotope
T126 Enzyme
T131 Hazardous or Poisonous Substance
T125 Hormone
T129 Immunologic Factor
T130 Indicator, Reagent, or Diagnostic Aid
T197 Inorganic Chemical
T114 Nucleic Acid, Nucleoside, or Nucleotide
T109 Organic Chemical
T121 Pharmacologic Substance
T192 Receptor
T127 Vitamin

DEVI
T074 Medical Device
T075 Research Device

DISO

T020 Acquired Abnormality
T190 Anatomical Abnormality
T049 Cell or Molecular Dysfunction
T019 Congenital Abnormality
T047 Disease or Syndrome
T033 Finding
T037 Injury or Poisoning
T048 Mental or Behavioral Dysfunction
T191 Neoplastic Process
T046 Pathologic Function
T184 Sign or Symptom

PHYS

T201 Clinical Attribute
T041 Mental Process
T032 Organism Attribute
T040 Organism Function
T042 Organ or Tissue Function
T039 Physiologic Function

PROC

T060 Diagnostic Procedure
T065 Educational Activity
T058 Health Care Activity
T059 Laboratory Procedure
T063 Molecular Biology Research Technique
T062 Research Activity
T061 Therapeutic or Preventive Procedure

Table 42: 51 semantic types (STY) along with their TUIs and semantic groups (SG) covered in MedDis-
tant19.
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In this Appendix, we provide proofs and additional experimental details for LowFER
discussed in Chapter 5.

The contents of this Appendix have appeared in Amin et al. (2020b) with the exception
of biomedical KBs.

c.1 proofs

c.1.1 Proposition 1

Proof. First, we will prove the case for k = de, with the proof for the case k = dr

following a similar argument. For both cases, we represent entity embedding vector as
ei ∈ {0, 1}|E|, such that only i-th element is 1, and similarly, relation embedding vector
as rj ∈ {0, 1}|R|, such that only j-th element is 1. We represent with U ∈ Rde×kde and
V ∈ Rdr×kde the model parameters, then, given any triple (ei, rj, el) ∈ T with indices
(i, j, l), such that 1 ⩽ i, l ⩽ |E| and 1 ⩽ j ⩽ |R|:

For k = de: We let Umn = 1 for n = m+ (o− 1)de, for all m in {1, ...,de} and for all
o in {1, ...,k} and 0 otherwise. Further, let Vpq = 1 for p = j and q = (l− 1)de + i and
0 otherwise. Applying g(ei, rj) and taking dot product of the resultant vector with el
(Eq. 6) perfectly represents the ground truth as 1. Also, for any triple in T ′, a score of
0 is assigned.

For k = dr: We let Umn = 1 for m = i and n = (l− 1)de + j and 0 otherwise. Further,
let Vpq = 1 for q = p+ (o− 1)de, for all p in {1, ...,dr} and for all o in {1, ..,k} and 0

otherwise. Rest of the argument follows the same as for k = de.

c.1.2 Proposition 2

Proof. From Eq. 8 and 9, observe that the m-th slice of the core tensor W on object
dimension is approximated by adding k rank-1 matrices, each of which is a cross
product between m-th column in W(l)

U and m-th column in W(l)
V , for all l in {1, ...,de}.

Each slice of the core tensor W on object dimension has a maximum rank min(de,dr)
and from Singular Value Decomposition (SVD), there exists n (⩽ min(de,dr)) scaled
left singular and scaled right singular vectors whose sum of the cross products is equal
to the slice. By choosing these scaled left singular vectors, scaled right singular vectors
and zero vectors (in case the rank of the corresponding slice is less than the maximum
rank of any such slice) as columns for matrices W(l)

U , W(l)
V , for all l in {1, ...,de}, the

core tensor W is obtained from Eq. 8 with k ⩽ min(de,dr).
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c.1.3 Proposition 3

RotatE (Sun et al., 2019b), a state-of-the-art dissimilarity-based model alleviates the
issues of TransE by learning counterclockwise rotations in the complex space. For a
triple (h, r, t), RotatE models the tail entity as t = h ◦ r, where h, t ∈ Cd are head and
tail embeddings and r ∈ Cd is the relation embedding with a restriction on the element-
wise modulus, |ri| = 1. Therefore, it only affects the phases of the entity embeddings
in the complex vector space. Sun et al. (2019b) showed that it can learn symmetric,
assymmetric, inverse and composition relations (cf. Lemma 1, 2, 3) and degenerates to
TransE (cf. Theorem 4). However, we note that RotatE is also not fully expressive due to
its inability to model the transitive relations in the general case, i.e., irrespective of the
size of the embedding dimension.

Proposition 3. RotatE is not fully expressive due to a limitation on transitive relations.

Proof. Consider {e1, e2, e3} = ∆ ⊂ E and r ∈ R be a transitive relation on ∆ such that
r(e1, e2), r(e2, e3) and r(e1, e3) belong to the ground truth. Let e1, e2, e3, r ∈ Cd be
the embedding vectors for RotatE. Let us assume that r(e1, e2) and r(e2, e3) hold with
RotatE, then we get e2 = r ◦ e1 and e3 = r ◦ e2. From definition of transitive relation we
know that r(e1, e2)∧ r(e2, e3) =⇒ r(e1, e3), here we obtain e3 = r ◦ r ◦ e1. Therefore
for r(e1, e3) to hold with RotatE, we must have r ◦ r = r =⇒ r = 1, which in turn
suggest e1 = e2 = e3 but e1, e2, e3 are distinct entities. More concretely, this condition
requires that for all elements of relation embedding ri, cos(θr,i) + isin(θr,i) should
match cos(2θr,i) + isin(2θr,i), which is only possible when θr,i ∈ {0, 2π}, effectively no
rotation.

c.2 scoring subsumptions

Here we briefly summarize the subsumption findings of related works. We only discuss
the published findings and refrain from any implied results.

First, Hayashi and Shimbo (2017) showed the equivalence between ComplEx and
HolE up to a constant factor using Parseval’s theorem1, which was also discussed
in Trouillon and Nickel (2017). Then, the key contributions came from the work of
Wang et al. (2018b), who showed that RESCAL subsumes TransE, ComplEx, HolE,
and DistMult by the arguments of ranking tensor. Kazemi and Poole (2018) presented
a unified understanding of RESCAL, DistMult, ComplEx, and SimplE as the family
of bilinear models under different constraints on the bilinear map. In contrast to the
black box 2D-convolution based ConvE model, HypER (Balažević et al., 2019a) showed
that 1D-convolution with hypernetworks (Ha et al., 2017) come close to well-established
factorization based methods up to a non-linearity. Balažević et al. (2019b) showed that
with certain constraints on the core tensor of the Tucker decomposition (Tucker, 1966),
it could subsume the family of bilinear models.

In §5.4.2, we showed that LowFER subsumes TuckER and can be seen as providing a
low-rank approximation of the core tensor2 with accurate representation under certain
conditions (Proposition 2). We also showed that LowFER could subsume the family of

1 For x, y ∈ Rd, it states that xTy = 1
dF(x)

TF(y), where F : Rd → Cd is the discrete Fourier transform
(DFT).

2 The rank of a tensor is the minimal number of rank-1 tensors that yield it in a linear combination. It is
known that the tensor rank is NP-hard to compute, and for a 3rd-order tensor n×m× k, it can be more
than min(n,m,k) but no more than min(nm,nk,mk) (Miettinen, 2011). Whereas, the n-rank of a tensor
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Figure 34: Subsumption map of KGC models for known relationships: each node represents a model,
where a directed edge shows that the parent node has shown to subsume the child under some conditions.
The dotted line shows that the relationship is not general enough, where the grey nodes represent fully
expressive models, the white nodes represent the models that have shown to be not fully expressive, and the
dashed ones are ones where this property is not known. The size of a node is relative to the number of
outgoing edges. * HypER (Balažević et al., 2019a) has shown to be related to factorization-based methods
up to a non-linearity, but the authors did not specify any explicit modeling subsumption of other models.

bilinear models in §5.4.3 and HypER up to a non-linearity in §5.4.4. Figure 34
3 provides

a network style map for the models discussed here.

c.3 experiments

In this section, we will present the evaluation metrics’ details, choice of hyperparame-
ters and report additional experiments.

c.3.1 Evaluation Metrics

In §5.5 we reported the results with standard metrics of Mean Reciprocal Rank (MRR)
and Hits@k for k ∈ {1, 3, 10}. In general, for each test triple (es, r, eo), we score all the
triples (es, r, e) for all e ∈ E. We then compute the inverse rank of the true triple and
average them over all the examples. However, Bordes et al. (2013) identified an issue
with this evaluation and introduced filtered MRR, where we only consider triples of
the form {(es, r, e) | ∀e ∈ E s.t. (es, r, e) ̸∈ train ∪ valid ∪ test} during evaluation. We,
therefore, reported filtered MRR for all the experiments. The Hits@k metric computes
the percentage of test triples whose ranking is less than or equal to k.

W is the dimension of the vector space spanned by the n-mode vectors, which are the columns of the
matrix unfolding W(n) (De Lathauwer et al., 2000).

3 https://bit.ly/3k641Ba

https://bit.ly/3k641Ba
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Dataset lr dr de dr k dE dMFB dOut ls

WN18 0.005 0.995 200 30 10 0.2 0.1 0.2 0.1
WN18RR 0.01 1.0 200 30 30 0.2 0.2 0.3 0.1
FB15k 0.003 0.99 300 30 50 0.2 0.2 0.3 0.0
FB15k-237 0.0005 1.0 200 200 100 0.3 0.4 0.5 0.1
YAGO10-3 0.01 1.0 200 30 30 0.2 0.2 0.3 0.1

UMLS 0.001 1.0 200 200 100 0.3 0.4 0.5 0.1
SNOMED CT 0.0005 1.0 200 200 100 0.3 0.4 0.5 0.1
SNOMED CT (ES) 0.0005 1.0 256 32 12 0.3 0.4 0.5 0.1

Table 43: Best performing hyper-parameter values for LowFER, where lr=learning rate, dr=decay rate,
de=entity embedding dimension, dr=relation embedding dimension, k=LowFER factorization rank,
dE=entity embedding dropout, dMFB=MFB dropout, dOut=output dropout and ls=label smoothing.
Please note that dE, dMFB and dOut are the same as d#1, d#2 and d#3 as in TuckER (see Appendix
A in Balažević et al. (2019b)) respectively.

Dataset MRR Hits@1 Hits@3 Hits@10

FB15k-237 ↓ 0.345 0.256 0.378 0.526
FB15k ↓ 0.818 0.771 0.850 0.898
WN18RR ↓ 0.457 0.429 0.469 0.511
WN18 0.950 0.946 0.952 0.957

Table 44: KGC results with LowFER-k* and additional tanh non-linearity. The ↓ shows that the perfor-
mance went down compared to the linear counterparts reported in Tables 23 and 24.

c.3.2 LowFER with Non-linearity

Similar to Kim et al. (2017), here we perform a simple ablation study by adding non-
linearity to the LowFER scoring function as follows:

f̄(es, r, eo) = (σ(Skdiag(UTes)VT r))Teo

where we use hyperbolic tangent σ = tanh non-linearity. Applying a non-linear activa-
tion function can be seen as increasing the representation capacity of the model, but
Table 44 shows that the general performance of LowFER goes down.

c.3.3 Models Comparison

In §5.5, we compared LowFER with non-linear models including ConvE (Dettmers et
al., 2018), R-GCN (Schlichtkrull et al., 2018), Neural LP (Yang et al., 2017), RotatE (Sun
et al., 2019b)4, TransE (Bordes et al., 2013), TorusE (Ebisu and Ichise, 2018) and HypER
(Balažević et al., 2019a). In linear models, we compared against DistMult (Yang et al.,
2015), HolE (Nickel et al., 2016b), ComplEx (Trouillon et al., 2016), ANALOGY (Liu
et al., 2017a), SimplE (Kazemi and Poole, 2018) and state-of-the-art TuckER (Balažević
et al., 2019b) model. Results for the Canonical Tensor Decomposition (Lacroix et al.,
2018) were not included due to the uncommon choice of extremely large embedding
dimensions of de = dr = 2000.

Additional models that were not reported in the main results due to partial results
but were still outperformed by LowFER include M-Walk (Shen et al., 2018) with their

4 Where we reported their results in Table 24 without the self-adversarial negative sampling. For a fair
comparison, see Appendix H in their paper.
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reported metrics of MRR=0.437, Hits@1=0.414, and Hits@3=0.445 on WN18RR and
MINERVA (Das et al., 2018) with Hits@10=0.456 on FB15k-237.

The results in Table 23 and 24 for all the models were taken from Balažević et al.
(2019a) and Balažević et al. (2019b) respectively. Lastly, to perform per relations com-
parisons, we trained the TuckER models with the best-reported configurations in Bal-
ažević et al. (2019b) for WN18 and WN18RR.

For YAGO10-3, results for DistMult, ComplEx, and ConvE were taken from Dettmers
et al. (2018) and for RotatE (Sun et al., 2019b) (with self-adversarial negative sampling)
and HypER (Balažević et al., 2019a) were taken from respective papers.

For biomedical knowledge graph completion, results for UMLS were reported from
Lin et al. (2018), for SNOMED CT from Chang et al. (2020), and for SNOMED CT (ES)
are our own runs.
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[64] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. “NCBI disease corpus: a resource for disease name
recognition and concept normalization.” In: Journal of biomedical informatics 47 (2014), pp. 1–10.

[65] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. “Knowledge vault: a web-scale approach to probabilistic knowledge fusion.”
In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014. Ed. by Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang,
and Rayid Ghani. ACM, 2014, pp. 601–610. doi: 10.1145/2623330.2623623. url: https://doi.org/10.1145/
2623330.2623623.

[66] Kevin Donnelly et al. “SNOMED-CT: The advanced terminology and coding system for eHealth.” In: Studies
in health technology and informatics 121 (2006), p. 279.

[67] Takuma Ebisu and Ryutaro Ichise. “TorusE: Knowledge Graph Embedding on a Lie Group.” In: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. AAAI
Press, 2018, pp. 1819–1826. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227.

[68] Mark Elliot, Elaine Mackey, Kieron O’Hara, and Caroline Tudor. The Anonymisation Decision-Making Frame-
work. UKAN. 2016.

[69] Benjamin Farber, Dayne Freitag, Nizar Habash, and Owen Rambow. “Improving NER in Arabic Using a
Morphological Tagger.” In: Proceedings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08). Marrakech, Morocco: European Language Resources Association (ELRA), 2008. url: http://www.
lrec-conf.org/proceedings/lrec2008/pdf/625_paper.pdf.

[70] Jun Feng, Minlie Huang, Mingdong Wang, Mantong Zhou, Yu Hao, and Xiaoyan Zhu. “Knowledge graph
embedding by flexible translation.” In: Fifteenth International Conference on the Principles of Knowledge Represen-
tation and Reasoning. 2016.

[71] Rémi Flicoteaux. “ECSTRA-APHP@ CLEF eHealth2018-task 1: ICD10 Code Extraction from Death Certifi-
cates.” In: CLEF. 2018.

https://doi.org/10.18653/v1/W19-2601
https://aclanthology.org/W19-2601
https://openreview.net/forum?id=Syg-YfWCW
https://aclanthology.org/P07-1033
https://doi.org/10.1145/3442381.3450141
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16227
http://www.lrec-conf.org/proceedings/lrec2008/pdf/625_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/625_paper.pdf


bibliography 115

[72] Max Friedrich, Arne Köhn, Gregor Wiedemann, and Chris Biemann. “Adversarial Learning of Privacy-
Preserving Text Representations for De-Identification of Medical Records.” In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguis-
tics, 2019, pp. 5829–5839. doi: 10.18653/v1/P19-1584. url: https://aclanthology.org/P19-1584.

[73] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach. “Multi-
modal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding.” In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas: Association for Compu-
tational Linguistics, 2016, pp. 457–468. doi: 10.18653/v1/D16-1044. url: https://aclanthology.org/D16-
1044.

[74] Yaroslav Ganin and Victor Lempitsky. “Unsupervised domain adaptation by backpropagation.” In: Interna-
tional conference on machine learning. PMLR. 2015, pp. 1180–1189.

[75] Tianyu Gao, Xu Han, Yuzhuo Bai, Keyue Qiu, Zhiyu Xie, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun,
and Jie Zhou. “Manual Evaluation Matters: Reviewing Test Protocols of Distantly Supervised Relation Ex-
traction.” In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Online: Association
for Computational Linguistics, 2021, pp. 1306–1318. doi: 10.18653/v1/2021.findings-acl.112. url: https:
//aclanthology.org/2021.findings-acl.112.

[76] Tianyu Gao, Xu Han, Yuzhuo Bai, Keyue Qiu, Zhiyu Xie, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun,
and Jie Zhou. “Manual Evaluation Matters: Reviewing Test Protocols of Distantly Supervised Relation Ex-
traction.” In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Online: Association
for Computational Linguistics, 2021, pp. 1306–1318. doi: 10.18653/v1/2021.findings-acl.112. url: https:
//aclanthology.org/2021.findings-acl.112.

[77] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. “Compact Bilinear Pooling.” In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Com-
puter Society, 2016, pp. 317–326. doi: 10.1109/CVPR.2016.41. url: https://doi.org/10.1109/CVPR.2016.41.

[78] Julien Gobeill and Patrick Ruch. “Instance-based learning for ICD10 categorization.” In: CLEF. 2018.

[79] Yoav Goldberg. “Assessing BERT’s Syntactic Abilities.” In: ArXiv preprint abs/1901.05287 (2019). url: https:
//arxiv.org/abs/1901.05287.

[80] Yves Grandvalet and Yoshua Bengio. “Semi-supervised Learning by Entropy Minimization.” In: Advances
in Neural Information Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18,
2004, Vancouver, British Columbia, Canada]. 2004, pp. 529–536. url: https://proceedings.neurips.cc/paper/
2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html.

[81] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. “Learning Word Vec-
tors for 157 Languages.” In: Proceedings of the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA), 2018. url: https:
//aclanthology.org/L18-1550.

[82] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jian-
feng Gao, and Hoifung Poon. “Domain-specific language model pretraining for biomedical natural language
processing.” In: ACM Transactions on Computing for Healthcare (HEALTH) 3.1 (2021), pp. 1–23.

[83] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville. “Improved
Training of Wasserstein GANs.” In: Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ul-
rike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett.
2017, pp. 5767–5777. url: https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-
Abstract.html.

[84] Patrick P Gunn, Allen M Fremont, Melissa Bottrell, Lisa R Shugarman, Jolene Galegher, and Tora Bikson.
“The health insurance portability and accountability act privacy rule: a practical guide for researchers.” In:
Medical care (2004), pp. 321–327.

[85] David Ha, Andrew M. Dai, and Quoc V. Le. “HyperNetworks.” In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
url: https://openreview.net/forum?id=rkpACe1lx.

[86] William Rowan Hamilton. Elements of quaternions. London: Longmans, Green, & Company, 1866.

[87] Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yaoliang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Jie Zhou,
and Maosong Sun. “More Data, More Relations, More Context and More Openness: A Review and Outlook
for Relation Extraction.” In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Suzhou,
China: Association for Computational Linguistics, 2020, pp. 745–758. url: https://aclanthology.org/2020.
aacl-main.75.

[88] Xu Han, Tianyu Gao, Yuan Yao, Deming Ye, Zhiyuan Liu, and Maosong Sun. “OpenNRE: An Open and
Extensible Toolkit for Neural Relation Extraction.” In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations. Hong Kong, China: Association for Computational Linguistics, 2019, pp. 169–
174. doi: 10.18653/v1/D19-3029. url: https://aclanthology.org/D19-3029.

https://doi.org/10.18653/v1/P19-1584
https://aclanthology.org/P19-1584
https://doi.org/10.18653/v1/D16-1044
https://aclanthology.org/D16-1044
https://aclanthology.org/D16-1044
https://doi.org/10.18653/v1/2021.findings-acl.112
https://aclanthology.org/2021.findings-acl.112
https://aclanthology.org/2021.findings-acl.112
https://doi.org/10.18653/v1/2021.findings-acl.112
https://aclanthology.org/2021.findings-acl.112
https://aclanthology.org/2021.findings-acl.112
https://doi.org/10.1109/CVPR.2016.41
https://doi.org/10.1109/CVPR.2016.41
https://arxiv.org/abs/1901.05287
https://arxiv.org/abs/1901.05287
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html
https://aclanthology.org/L18-1550
https://aclanthology.org/L18-1550
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://openreview.net/forum?id=rkpACe1lx
https://aclanthology.org/2020.aacl-main.75
https://aclanthology.org/2020.aacl-main.75
https://doi.org/10.18653/v1/D19-3029
https://aclanthology.org/D19-3029


116 bibliography

[89] Xu Han, Zhiyuan Liu, and Maosong Sun. “Neural Knowledge Acquisition via Mutual Attention Between
Knowledge Graph and Text.” In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by
Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 4832–4839. url: https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/16691.

[90] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. “FewRel: A Large-
Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation.” In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, 2018, pp. 4803–4809. doi: 10.18653/v1/D18-1514. url: https://aclanthology.
org/D18-1514.

[91] Richard A Harshman. “Models for analysis of asymmetrical relationships among N objects or stimuli.” In:
First Joint Meeting of the Psychometric Society and the Society of Mathematical Psychology, Hamilton, Ontario, 1978.
1978.

[92] Richard A Harshman and Margaret E Lundy. “PARAFAC: Parallel factor analysis.” In: Computational Statistics
& Data Analysis 18.1 (1994), pp. 39–72.

[93] Tzvika Hartman, Michael D Howell, Jeff Dean, Shlomo Hoory, Ronit Slyper, Itay Laish, Oren Gilon, Danny
Vainstein, Greg Corrado, Katherine Chou, et al. “Customization scenarios for de-identification of clinical
notes.” In: BMC medical informatics and decision making 20.1 (2020), pp. 1–9.

[94] Katsuhiko Hayashi and Masashi Shimbo. “On the Equivalence of Holographic and Complex Embeddings
for Link Prediction.” In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 554–559.
doi: 10.18653/v1/P17-2088. url: https://aclanthology.org/P17-2088.

[95] María Herrero-Zazo, Isabel Segura-Bedmar, Paloma Martínez, and Thierry Declerck. “The DDI corpus: An
annotated corpus with pharmacological substances and drug–drug interactions.” In: Journal of biomedical
informatics 46.5 (2013), pp. 914–920.

[96] Daniel S Himmelstein and Sergio E Baranzini. “Heterogeneous network edge prediction: a data integration
approach to prioritize disease-associated genes.” In: PLoS computational biology 11.7 (2015), e1004259.

[97] Frank L Hitchcock. “The expression of a tensor or a polyadic as a sum of products.” In: Journal of Mathematics
and Physics 6.1-4 (1927), pp. 164–189.

[98] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld. “Knowledge-Based
Weak Supervision for Information Extraction of Overlapping Relations.” In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, 2011, pp. 541–550. url: https://aclanthology.org/P11-1055.

[99] William P Hogan, Molly Huang, Yannis Katsis, Tyler Baldwin, Ho-Cheol Kim, Yoshiki Baeza, Andrew Bartko,
and Chun-Nan Hsu. “Abstractified Multi-instance Learning (AMIL) for Biomedical Relation Extraction.” In:
3rd Conference on Automated Knowledge Base Construction. 2021.

[100] L. Hong, J. Lin, S. Li, F. Wan, H. Yang, T. Jiang, D. Zhao, and J. Zeng. “A novel machine learning framework
for automated biomedical relation extraction from large-scale literature repositories.” In: Nature Machine
Intelligence 2 (2020), pp. 347–355. doi: 10.1038/s42256- 020- 0189- y. url: https://www.nature.com/
articles/s42256-020-0189-y.

[101] Matthew Honnibal and Ines Montani. “spaCy 2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing.” To appear. 2017.

[102] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks.” In: Neural networks 4.2 (1991),
pp. 251–257.

[103] Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. “Few-Shot Named Entity Recognition: A Comprehensive Study.” In:
ArXiv preprint abs/2012.14978 (2020). url: https://arxiv.org/abs/2012.14978.

[104] Vassilis N Ioannidis, Xiang Song, Saurav Manchanda, Mufei Li, Xiaoqin Pan, Da Zheng, Xia Ning, Xiangxiang
Zeng, and George Karypis. “Drkg-drug repurposing knowledge graph for covid-19.” In: ArXiv preprint abs/
2010 (20 2). url: https://arxiv.org/abs/2010.

[105] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift.” In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015. Ed. by Francis R. Bach and David M. Blei. Vol. 37. JMLR Workshop and Conference
Proceedings. JMLR.org, 2015, pp. 448–456. url: http://proceedings.mlr.press/v37/ioffe15.html.

[106] Julia Ive, Natalia Viani, David Chandran, André Bittar, and Sumithra Velupillai. “KCL-Health-NLP@ CLEF
eHealth 2018 Task 1: ICD-10 Coding of French and Italian Death Certificates with Character-Level Convo-
lutional Neural Networks.” In: 19th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF
2018, Avignon, France, 10 September 2018 through 14 September 2018. Vol. 2125. CEUR-WS. 2018.

[107] Serena Jeblee, Akshay Budhkar, Saša Milic, Jeff Pinto, Chloé Pou-Prom, Krishnapriya Vishnubhotla, Graeme
Hirst, and Frank Rudzicz. “Toronto CL at CLEF 2018 eHealth Task 1: Multi-lingual ICD-10 Coding using an
Ensemble of Recurrent and Convolutional Neural Networks.” In: CLEF. 2018.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16691
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16691
https://doi.org/10.18653/v1/D18-1514
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
https://doi.org/10.18653/v1/P17-2088
https://aclanthology.org/P17-2088
https://aclanthology.org/P11-1055
https://doi.org/10.1038/s42256-020-0189-y
https://www.nature.com/articles/s42256-020-0189-y
https://www.nature.com/articles/s42256-020-0189-y
https://arxiv.org/abs/2012.14978
https://arxiv.org/abs/ 2010
http://proceedings.mlr.press/v37/ioffe15.html


bibliography 117

[108] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. “Knowledge Graph Embedding via Dynamic
Mapping Matrix.” In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, 2015, pp. 687–696. doi: 10 . 3115 / v1 / P15 - 1067. url: https :
//aclanthology.org/P15-1067.

[109] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. “A survey on knowledge graphs:
Representation, acquisition, and applications.” In: IEEE Transactions on Neural Networks and Learning Systems
(2021).

[110] Chen Jia, Xiaobo Liang, and Yue Zhang. “Cross-Domain NER using Cross-Domain Language Modeling.”
In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: As-
sociation for Computational Linguistics, 2019, pp. 2464–2474. doi: 10.18653/v1/P19- 1236. url: https:
//aclanthology.org/P19-1236.

[111] Chen Jia and Yue Zhang. “Multi-Cell Compositional LSTM for NER Domain Adaptation.” In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational
Linguistics, 2020, pp. 5906–5917. doi: 10.18653/v1/2020.acl-main.524. url: https://aclanthology.org/
2020.acl-main.524.

[112] Junguang Jiang, Bo Fu, and Mingsheng Long. Transfer-Learning-library. https://github.com/thuml/Transfer-
Learning-Library. 2020.

[113] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. “MIMIC-III, a freely accessible
critical care database.” In: Scientific data 3.1 (2016), pp. 1–9.

[114] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search with GPUs.” In: IEEE Transac-
tions on Big Data 7.3 (2019), pp. 535–547.

[115] Rie Johnson and Tong Zhang. “Deep Pyramid Convolutional Neural Networks for Text Categorization.” In:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 562–570. doi: 10.18653/v1/P17-
1052. url: https://aclanthology.org/P17-1052.

[116] Seyed Mehran Kazemi and David Poole. “SimplE Embedding for Link Prediction in Knowledge Graphs.”
In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 4289–4300. url:
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html.

[117] Liadh Kelly, Hanna Suominen, Lorraine Goeuriot, Mariana Neves, Evangelos Kanoulas, Dan Li, Leif Az-
zopardi, Rene Spijker, Guido Zuccon, Harrisen Scells, and João Palotti. “Overview of the CLEF eHealth
Evaluation Lab 2019.” In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of
the Tenth International Conference of the CLEF Association (CLEF 2019). Lecture Notes in Computer Science. Ed. by
Fabio Crestani, Martin Braschler, Jacques Savoy, Andreas Rauber, et al. Berlin Heidelberg, Germany: Springer,
2019.

[118] Liadh Kelly, Hanna Suominen, Lorraine Goeuriot, Mariana Neves, Evangelos Kanoulas, Dan Li, Leif Az-
zopardi, Rene Spijker, Guido Zuccon, Harrisen Scells, et al. “Overview of the CLEF eHealth evaluation lab
2019.” In: International Conference of the Cross-Language Evaluation Forum for European Languages. Springer. 2019,
pp. 322–339.

[119] Phillip Keung, Yichao Lu, and Vikas Bhardwaj. “Adversarial Learning with Contextual Embeddings for Zero-
resource Cross-lingual Classification and NER.” In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, 2019, pp. 1355–1360. doi: 10.18653/
v1/D19-1138. url: https://aclanthology.org/D19-1138.

[120] Phillip Keung, Yichao Lu, Julian Salazar, and Vikas Bhardwaj. “Don’t Use English Dev: On the Zero-Shot
Cross-Lingual Evaluation of Contextual Embeddings.” In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, 2020, pp. 549–
554. doi: 10.18653/v1/2020.emnlp-main.40. url: https://aclanthology.org/2020.emnlp-main.40.

[121] Halil Kilicoglu, Graciela Rosemblat, Marcelo Fiszman, and Thomas C Rindflesch. “Constructing a semantic
predication gold standard from the biomedical literature.” In: BMC bioinformatics 12.1 (2011), pp. 1–17.

[122] Halil Kilicoglu, Graciela Rosemblat, Marcelo Fiszman, and Dongwook Shin. “Broad-coverage biomedical
relation extraction with SemRep.” In: BMC bioinformatics 21 (2020), pp. 1–28.

[123] Jin-Hwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak Zhang.
“Hadamard Product for Low-rank Bilinear Pooling.” In: 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. url:
https://openreview.net/forum?id=r1rhWnZkg.

[124] Yoon Kim. “Convolutional Neural Networks for Sentence Classification.” In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, 2014, pp. 1746–1751. doi: 10.3115/v1/D14-1181. url: https://aclanthology.org/D14-1181.

https://doi.org/10.3115/v1/P15-1067
https://aclanthology.org/P15-1067
https://aclanthology.org/P15-1067
https://doi.org/10.18653/v1/P19-1236
https://aclanthology.org/P19-1236
https://aclanthology.org/P19-1236
https://doi.org/10.18653/v1/2020.acl-main.524
https://aclanthology.org/2020.acl-main.524
https://aclanthology.org/2020.acl-main.524
https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library
https://doi.org/10.18653/v1/P17-1052
https://doi.org/10.18653/v1/P17-1052
https://aclanthology.org/P17-1052
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://doi.org/10.18653/v1/D19-1138
https://doi.org/10.18653/v1/D19-1138
https://aclanthology.org/D19-1138
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://aclanthology.org/2020.emnlp-main.40
https://openreview.net/forum?id=r1rhWnZkg
https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/D14-1181


118 bibliography

[125] Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Minwoo Jeong. “New Transfer Learning Techniques for
Disparate Label Sets.” In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, 2015, pp. 473–482. doi: 10 . 3115 / v1 / P15 - 1046. url: https :
//aclanthology.org/P15-1046.

[126] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[127] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[128] Stanley Kok and Pedro M. Domingos. “Statistical predicate invention.” In: Machine Learning, Proceedings
of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007. Ed. by
Zoubin Ghahramani. Vol. 227. ACM International Conference Proceeding Series. ACM, 2007, pp. 433–440.
doi: 10.1145/1273496.1273551. url: https://doi.org/10.1145/1273496.1273551.

[129] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Martın Pérez Pérez, Jesús Santamaría, Gael Pérez Ro-
dríguez, Georgios Tsatsaronis, and Ander Intxaurrondo. “Overview of the BioCreative VI chemical-protein
interaction Track.” In: Proceedings of the sixth BioCreative challenge evaluation workshop. Vol. 1. 2017, pp. 141–146.

[130] Jayant Krishnamurthy and Tom M. Mitchell. “Learning a Compositional Semantics for Freebase with an
Open Predicate Vocabulary.” In: Transactions of the Association for Computational Linguistics 3 (2015), pp. 257–
270. doi: 10.1162/tacl_a_00137. url: https://aclanthology.org/Q15-1019.

[131] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. “Canonical Tensor Decomposition for Knowl-
edge Base Completion.” In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, 2018, pp. 2869–2878. url: http://proceedings.mlr.press/
v80/lacroix18a.html.

[132] John D Lafferty, Andrew McCallum, and Fernando CN Pereira. “Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data.” In: Proceedings of the Eighteenth International Conference
on Machine Learning. 2001, pp. 282–289.

[133] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. “Neural
Architectures for Named Entity Recognition.” In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, 2016, pp. 260–270. doi: 10.18653/v1/N16- 1030. url: https:
//aclanthology.org/N16-1030.

[134] Ji Young Lee, Franck Dernoncourt, and Peter Szolovits. “Transfer Learning for Named-Entity Recognition
with Neural Networks.” In: Proceedings of the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA), 2018. url: https:
//aclanthology.org/L18-1708.

[135] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
“BioBERT: pre-trained biomedical language representation model for biomedical text mining.” In: ArXiv
preprint abs/1901.08746 (2019). url: https://arxiv.org/abs/1901.08746.

[136] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
“BioBERT: a pre-trained biomedical language representation model for biomedical text mining.” In: Bioinfor-
matics 36.4 (2020), pp. 1234–1240.

[137] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich.
“Pytorch-BigGraph: A Large Scale Graph Embedding System.” In: Proceedings of Machine Learning and Systems
2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019. Ed. by Ameet Talwalkar, Virginia Smith, and
Matei Zaharia. mlsys.org, 2019. url: https://proceedings.mlsys.org/book/282.pdf.

[138] Guoliang Li, Dong Deng, and Jianhua Feng. “Faerie: efficient filtering algorithms for approximate dictionary-
based entity extraction.” In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011. Ed. by Timos K. Sellis, Renée J. Miller, Anastasios Kementsi-
etsidis, and Yannis Velegrakis. ACM, 2011, pp. 529–540. doi: 10.1145/1989323.1989379. url: https://doi.
org/10.1145/1989323.1989379.

[139] Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert Leaman, Allan Peter Davis,
Carolyn J Mattingly, Thomas C Wiegers, and Zhiyong Lu. “BioCreative V CDR task corpus: a resource for
chemical disease relation extraction.” In: Database 2016 (2016).

[140] Bill Yuchen Lin and Wei Lu. “Neural Adaptation Layers for Cross-domain Named Entity Recognition.”
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 2012–2022. doi: 10.18653/v1/D18-1226. url: https:
//aclanthology.org/D18-1226.

[141] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. “Focal Loss for Dense Object
Detection.” In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 2999–3007. doi: 10.1109/ICCV.2017.324. url: https://doi.org/10.1109/
ICCV.2017.324.

https://doi.org/10.3115/v1/P15-1046
https://aclanthology.org/P15-1046
https://aclanthology.org/P15-1046
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1162/tacl_a_00137
https://aclanthology.org/Q15-1019
http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
https://doi.org/10.18653/v1/N16-1030
https://aclanthology.org/N16-1030
https://aclanthology.org/N16-1030
https://aclanthology.org/L18-1708
https://aclanthology.org/L18-1708
https://arxiv.org/abs/1901.08746
https://proceedings.mlsys.org/book/282.pdf
https://doi.org/10.1145/1989323.1989379
https://doi.org/10.1145/1989323.1989379
https://doi.org/10.1145/1989323.1989379
https://doi.org/10.18653/v1/D18-1226
https://aclanthology.org/D18-1226
https://aclanthology.org/D18-1226
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ICCV.2017.324


bibliography 119

[142] Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song Liu. “Modeling Relation Paths
for Representation Learning of Knowledge Bases.” In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, 2015, pp. 705–
714. doi: 10.18653/v1/D15-1082. url: https://aclanthology.org/D15-1082.

[143] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. “Neural Relation Extraction with
Selective Attention over Instances.” In: Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics, 2016,
pp. 2124–2133. doi: 10.18653/v1/P16-1200. url: https://aclanthology.org/P16-1200.

[144] Ying Lin, Shengqi Yang, Veselin Stoyanov, and Heng Ji. “A Multi-lingual Multi-task Architecture for Low-
resource Sequence Labeling.” In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, 2018,
pp. 799–809. doi: 10.18653/v1/P18-1074. url: https://aclanthology.org/P18-1074.

[145] Pierre Lison, Ildikó Pilán, David Sanchez, Montserrat Batet, and Lilja Øvrelid. “Anonymisation Models for
Text Data: State of the art, Challenges and Future Directions.” In: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics, 2021, pp. 4188–4203.
doi: 10.18653/v1/2021.acl-long.323. url: https://aclanthology.org/2021.acl-long.323.

[146] ChunYang Liu, WenBo Sun, WenHan Chao, and Wanxiang Che. “Convolution neural network for relation
extraction.” In: International Conference on Advanced Data Mining and Applications. Springer. 2013, pp. 231–242.

[147] Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel Collier. “Self-Alignment Pretraining
for Biomedical Entity Representations.” In: Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Online: Association for Computational
Linguistics, 2021, pp. 4228–4238. doi: 10.18653/v1/2021.naacl-main.334. url: https://aclanthology.org/
2021.naacl-main.334.

[148] Hanxiao Liu, Yuexin Wu, and Yiming Yang. “Analogical Inference for Multi-relational Embeddings.” In:
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
PMLR, 2017, pp. 2168–2178. url: http://proceedings.mlr.press/v70/liu17d.html.

[149] Linqing Liu, Patrick Lewis, Sebastian Riedel, and Pontus Stenetorp. “Challenges in Generalization in Open
Domain Question Answering.” In: Findings of the Association for Computational Linguistics: NAACL 2022. Seattle,
United States: Association for Computational Linguistics, 2022, pp. 2014–2029. doi: 10.18653/v1/2022.
findings-naacl.155. url: https://aclanthology.org/2022.findings-naacl.155.

[150] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. “Roberta: A robustly optimized bert pretraining approach.” In: ArXiv
preprint abs/1907.11692 (2019). url: https://arxiv.org/abs/1907.11692.

[151] Zengjian Liu, Buzhou Tang, Xiaolong Wang, and Qingcai Chen. “De-identification of clinical notes via recur-
rent neural network and conditional random field.” In: Journal of biomedical informatics 75 (2017), S34–S42.

[152] Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, AmirAli Bagher Zadeh, and
Louis-Philippe Morency. “Efficient Low-rank Multimodal Fusion With Modality-Specific Factors.” In: Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguistics, 2018, pp. 2247–2256. doi: 10.18653/v1/P18-
1209. url: https://aclanthology.org/P18-1209.

[153] Edward Loper and Steven Bird. “NLTK: The Natural Language Toolkit.” In: Proceedings of the ACL-02 Work-
shop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics.
Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, 2002, pp. 63–70. doi: 10.3115/
1118108.1118117. url: https://aclanthology.org/W02-0109.

[154] Daniel Loureiro and Alípio Mário Jorge. “Medlinker: Medical entity linking with neural representations and
dictionary matching.” In: European Conference on Information Retrieval. Springer. 2020, pp. 230–237.

[155] Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing Zhu, Songfang Huang, Rui Yan, and Dongyan Zhao.
“Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix.”
In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 430–439. doi: 10.18653/v1/P17-
1040. url: https://aclanthology.org/P17-1040.

[156] Yuan Luo, Özlem Uzuner, and Peter Szolovits. “Bridging semantics and syntax with graph algorithms—state-
of-the-art of extracting biomedical relations.” In: Briefings in bioinformatics 18.1 (2017), pp. 160–178.

[157] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. “YAGO3: A Knowledge Base from Multi-
lingual Wikipedias.” In: CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015. url: http://cidrdb.org/cidr2015/
Papers/CIDR15\_Paper1.pdf.

[158] S. Marchesin and G. Silvello. “TBGA: a large-scale Gene-Disease Association dataset for Biomedical Relation
Extraction.” In: BMC Bioinformatics 23.1 (2022), p. 111. doi: 10.1186/s12859- 022- 04646- 6. url: https:
//bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04646-6.

https://doi.org/10.18653/v1/D15-1082
https://aclanthology.org/D15-1082
https://doi.org/10.18653/v1/P16-1200
https://aclanthology.org/P16-1200
https://doi.org/10.18653/v1/P18-1074
https://aclanthology.org/P18-1074
https://doi.org/10.18653/v1/2021.acl-long.323
https://aclanthology.org/2021.acl-long.323
https://doi.org/10.18653/v1/2021.naacl-main.334
https://aclanthology.org/2021.naacl-main.334
https://aclanthology.org/2021.naacl-main.334
http://proceedings.mlr.press/v70/liu17d.html
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://doi.org/10.18653/v1/2022.findings-naacl.155
https://aclanthology.org/2022.findings-naacl.155
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P18-1209
https://doi.org/10.18653/v1/P18-1209
https://aclanthology.org/P18-1209
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://aclanthology.org/W02-0109
https://doi.org/10.18653/v1/P17-1040
https://doi.org/10.18653/v1/P17-1040
https://aclanthology.org/P17-1040
http://cidrdb.org/cidr2015/Papers/CIDR15\_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15\_Paper1.pdf
https://doi.org/10.1186/s12859-022-04646-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04646-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04646-6


120 bibliography

[159] Montserrat Marimon, Aitor Gonzalez-Agirre, Ander Intxaurrondo, Heidy Rodriguez, Jose Lopez Martin,
Marta Villegas, and Martin Krallinger. “Automatic De-identification of Medical Texts in Spanish: the MED-
DOCAN Track, Corpus, Guidelines, Methods and Evaluation of Results.” In: IberLEF@ SEPLN. 2019, pp. 618–
638.

[160] Stephane M Meystre, F Jeffrey Friedlin, Brett R South, Shuying Shen, and Matthew H Samore. “Automatic
de-identification of textual documents in the electronic health record: a review of recent research.” In: BMC
medical research methodology 10.1 (2010), pp. 1–16.

[161] George Michalopoulos, Yuanxin Wang, Hussam Kaka, Helen Chen, and Alexander Wong. “UmlsBERT: Clin-
ical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language
System Metathesaurus.” In: Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Online: Association for Computational Linguistics,
2021, pp. 1744–1753. doi: 10.18653/v1/2021.naacl-main.139. url: https://aclanthology.org/2021.naacl-
main.139.

[162] Pauli Miettinen. “Boolean tensor factorizations.” In: 2011 IEEE 11th International Conference on Data Mining.
IEEE. 2011, pp. 447–456.

[163] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text.” In: Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing. Barcelona, Spain: Association for Computational Linguistics,
2004, pp. 404–411. url: https://aclanthology.org/W04-3252.

[164] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. “Distributed Representa-
tions of Words and Phrases and their Compositionality.” In: Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger. 2013, pp. 3111–3119. url: https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html.

[165] George A. Miller. “WordNet: A Lexical Database for English.” In: Speech and Natural Language: Proceedings of a
Workshop Held at Harriman, New York, February 23-26, 1992. 1992. url: https://aclanthology.org/H92-1116.

[166] Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. “Distant supervision for relation extraction with-
out labeled data.” In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP. Suntec, Singapore: Association for
Computational Linguistics, 2009, pp. 1003–1011. url: https://aclanthology.org/P09-1113.

[167] Antonio Miranda-Escalada, Eulàlia Farré, and Martin Krallinger. “Named Entity Recognition, Concept Nor-
malization and Clinical Coding: Overview of the Cantemist Track for Cancer Text Mining in Spanish, Corpus,
Guidelines, Methods and Results.” In: IberLEF@ SEPLN (2020), pp. 303–323.

[168] Sunil Mohan and Donghui Li. “MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts.”
In: Automated Knowledge Base Construction (AKBC). 2018.

[169] Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. “ScispaCy: Fast and Robust Models for
Biomedical Natural Language Processing.” In: Proceedings of the 18th BioNLP Workshop and Shared Task. Flo-
rence, Italy: Association for Computational Linguistics, 2019, pp. 319–327. doi: 10.18653/v1/W19-5034. url:
https://aclanthology.org/W19-5034.

[170] Aurélie Névéol, Hercules Dalianis, Sumithra Velupillai, Guergana Savova, and Pierre Zweigenbaum. “Clinical
natural language processing in languages other than english: opportunities and challenges.” In: Journal of
biomedical semantics 9.1 (2018), pp. 1–13.

[171] Mariana L Neves, Daniel Butzke, Antje Dörendahl, Nora Leich, Benedikt Hummel, Gilbert Schönfelder, and
Barbara Grune. “Overview of the CLEF eHealth 2019 Multilingual Information Extraction.” In: CLEF (Working
Notes). 2019.

[172] Mariana Neves, Daniel Butzke, Antje Dörendahl, Nora Leich, Benedikt Hummel, Gilbert Schönfelder, and
Barbara Grune. “Overview of the CLEF eHealth 2019 Multilingual Information Extraction.” In: Experimental
IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Tenth International Conference of the
CLEF Association (CLEF 2019). Lecture Notes in Computer Science. Ed. by Fabio Crestani, Martin Braschler,
Jacques Savoy, Andreas Rauber, et al. Berlin Heidelberg, Germany: Springer, 2019.

[173] Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark Johnson. “STransE: a novel embedding model of
entities and relationships in knowledge bases.” In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California:
Association for Computational Linguistics, 2016, pp. 460–466. doi: 10.18653/v1/N16- 1054. url: https:
//aclanthology.org/N16-1054.

[174] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A Review of Relational Machine
Learning for Knowledge Graphs.” In: Proc. IEEE 104.1 (2016), pp. 11–33.

[175] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. “Holographic Embeddings of Knowledge
Graphs.” In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. Ed. by Dale Schuurmans and Michael P. Wellman. AAAI Press, 2016, pp. 1955–1961. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12484.

https://doi.org/10.18653/v1/2021.naacl-main.139
https://aclanthology.org/2021.naacl-main.139
https://aclanthology.org/2021.naacl-main.139
https://aclanthology.org/W04-3252
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://aclanthology.org/H92-1116
https://aclanthology.org/P09-1113
https://doi.org/10.18653/v1/W19-5034
https://aclanthology.org/W19-5034
https://doi.org/10.18653/v1/N16-1054
https://aclanthology.org/N16-1054
https://aclanthology.org/N16-1054
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12484


bibliography 121

[176] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way Model for Collective Learning on
Multi-Relational Data.” In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011. Ed. by Lise Getoor and Tobias Scheffer. Omnipress, 2011,
pp. 809–816. url: https://icml.cc/2011/papers/438\_icmlpaper.pdf.

[177] Naoaki Okazaki and Jun’ichi Tsujii. “Simple and Efficient Algorithm for Approximate Dictionary Matching.”
In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010). Beijing, China:
Coling 2010 Organizing Committee, 2010, pp. 851–859. url: https://aclanthology.org/C10-1096.

[178] World Health Organization. International statistical classification of diseases and related health problems. Vol. 1.
World Health Organization, 2004.

[179] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking: Bringing
order to the web. Tech. rep. Stanford InfoLab, 1999.

[180] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. “Cross-lingual Name
Tagging and Linking for 282 Languages.” In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics,
2017, pp. 1946–1958. doi: 10.18653/v1/P17-1178. url: https://aclanthology.org/P17-1178.

[181] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 8024–8035. url: https:
//proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[182] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in
Python.” In: Journal of machine learning research 12.Oct (2011), pp. 2825–2830.

[183] Hao Peng, Tianyu Gao, Xu Han, Yankai Lin, Peng Li, Zhiyuan Liu, Maosong Sun, and Jie Zhou. “Learning
from Context or Names? An Empirical Study on Neural Relation Extraction.” In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational
Linguistics, 2020, pp. 3661–3672. doi: 10.18653/v1/2020.emnlp-main.298. url: https://aclanthology.org/
2020.emnlp-main.298.

[184] Nanyun Peng and Mark Dredze. “Multi-task Domain Adaptation for Sequence Tagging.” In: Proceedings
of the 2nd Workshop on Representation Learning for NLP. Vancouver, Canada: Association for Computational
Linguistics, 2017, pp. 91–100. doi: 10.18653/v1/W17-2612. url: https://aclanthology.org/W17-2612.

[185] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. “Moment Matching for
Multi-Source Domain Adaptation.” In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp. 1406–1415. doi: 10.1109/ICCV.2019.00149.
url: https://doi.org/10.1109/ICCV.2019.00149.

[186] Yifan Peng, Chih-Hsuan Wei, and Zhiyong Lu. “Improving chemical disease relation extraction with rich
features and weakly labeled data.” In: Journal of cheminformatics 8.1 (2016), pp. 1–12.

[187] Yifan Peng, Shankai Yan, and Zhiyong Lu. “Transfer Learning in Biomedical Natural Language Processing:
An Evaluation of BERT and ELMo on Ten Benchmarking Datasets.” In: Proceedings of the 18th BioNLP Workshop
and Shared Task. Florence, Italy: Association for Computational Linguistics, 2019, pp. 58–65. doi: 10.18653/
v1/W19-5006. url: https://aclanthology.org/W19-5006.

[188] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global Vectors for Word Represen-
tation.” In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
url: https://aclanthology.org/D14-1162.

[189] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. “Regularizing neural
networks by penalizing confident output distributions.” In: ArXiv preprint abs/1701.06548 (2017). url: https:
//arxiv.org/abs/1701.06548.

[190] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. “Deep Contextualized Word Representations.” In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics, 2018, pp. 2227–2237. doi: 10.
18653/v1/N18-1202. url: https://aclanthology.org/N18-1202.

[191] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander
Miller. “Language Models as Knowledge Bases?” In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, 2019, pp. 2463–2473. doi: 10.18653/
v1/D19-1250. url: https://aclanthology.org/D19-1250.

[192] Ninh Pham and Rasmus Pagh. “Fast and scalable polynomial kernels via explicit feature maps.” In: The 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013. Ed. by Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley,
Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy. ACM, 2013, pp. 239–247. doi:
10.1145/2487575.2487591. url: https://doi.org/10.1145/2487575.2487591.

https://icml.cc/2011/papers/438\_icmlpaper.pdf
https://aclanthology.org/C10-1096
https://doi.org/10.18653/v1/P17-1178
https://aclanthology.org/P17-1178
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.298
https://aclanthology.org/2020.emnlp-main.298
https://aclanthology.org/2020.emnlp-main.298
https://doi.org/10.18653/v1/W17-2612
https://aclanthology.org/W17-2612
https://doi.org/10.1109/ICCV.2019.00149
https://doi.org/10.1109/ICCV.2019.00149
https://doi.org/10.18653/v1/W19-5006
https://doi.org/10.18653/v1/W19-5006
https://aclanthology.org/W19-5006
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://arxiv.org/abs/1701.06548
https://arxiv.org/abs/1701.06548
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://aclanthology.org/D19-1250
https://doi.org/10.1145/2487575.2487591
https://doi.org/10.1145/2487575.2487591


122 bibliography

[193] Janet Piñero, Juan Manuel Ramírez-Anguita, Josep Saüch-Pitarch, Francesco Ronzano, Emilio Centeno, Fer-
ran Sanz, and Laura I Furlong. “The DisGeNET knowledge platform for disease genomics: 2019 update.” In:
Nucleic acids research 48.D1 (2020), pp. D845–D855.

[194] Telmo Pires, Eva Schlinger, and Dan Garrette. “How Multilingual is Multilingual BERT?” In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Compu-
tational Linguistics, 2019, pp. 4996–5001. doi: 10.18653/v1/P19-1493. url: https://aclanthology.org/P19-
1493.

[195] S Povey, R Lovering, E Bruford, M Wright, M Lush, and H Wain. “The HUGO Gene Nomenclature Committee
(HGNC).” In: Hum Genet 109.6 (2001), pp. 678–680. doi: 10.1007/s00439-001-0615-0. url: http://www.ncbi.
nlm.nih.gov/pubmed/11810281.

[196] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. “Pre-trained models for
natural language processing: A survey.” In: Science China Technological Sciences 63.10 (2020), pp. 1872–1897.

[197] Alec Radford, Karthik Narasimhan, Time Salimans, and Ilya Sutskever. Improving language understanding with
unsupervised learning. Tech. rep. Technical report, OpenAI, 2018.

[198] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. “Language models
are unsupervised multitask learners.” In: OpenAI blog 1.8 (2019), p. 9.

[199] Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, and Omer Levy. “Few-Shot Question Answering
by Pretraining Span Selection.” In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Online: Association for Computational Linguistics, 2021, pp. 3066–3079. doi: 10.18653/v1/2021.acl-long.
239. url: https://aclanthology.org/2021.acl-long.239.

[200] Abhinav Ramesh Kashyap, Devamanyu Hazarika, Min-Yen Kan, and Roger Zimmermann. “Domain Di-
vergences: A Survey and Empirical Analysis.” In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. Online: Association for
Computational Linguistics, 2021, pp. 1830–1849. doi: 10.18653/v1/2021.naacl- main.147. url: https:
//aclanthology.org/2021.naacl-main.147.

[201] Alan Ramponi and Barbara Plank. “Neural Unsupervised Domain Adaptation in NLP—A Survey.” In: Pro-
ceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain (Online): International
Committee on Computational Linguistics, 2020, pp. 6838–6855. doi: 10.18653/v1/2020.coling-main.603.
url: https://aclanthology.org/2020.coling-main.603.

[202] Lev Ratinov and Dan Roth. “Design Challenges and Misconceptions in Named Entity Recognition.” In:
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009). Boulder, Col-
orado: Association for Computational Linguistics, 2009, pp. 147–155. url: https://aclanthology.org/W09-
1119.

[203] Thomas Rebele, Fabian Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey, and Gerhard Weikum.
“YAGO: A multilingual knowledge base from wikipedia, wordnet, and geonames.” In: International seman-
tic web conference. Springer. 2016, pp. 177–185.

[204] Protection Regulation. “Regulation (EU) 2016/679 of the European Parliament and of the Council.” In: Regu-
lation (eu) 679 (2016), p. 2016.

[205] Marek Rei. “Semi-supervised Multitask Learning for Sequence Labeling.” In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Associ-
ation for Computational Linguistics, 2017, pp. 2121–2130. doi: 10.18653/v1/P17- 1194. url: https://
aclanthology.org/P17-1194.

[206] Nils Reimers and Iryna Gurevych. “Reporting Score Distributions Makes a Difference: Performance Study of
LSTM-networks for Sequence Tagging.” In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017, pp. 338–348.
doi: 10.18653/v1/D17-1035. url: https://aclanthology.org/D17-1035.

[207] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.”
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Compu-
tational Linguistics, 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410. url: https://aclanthology.org/D19-
1410.

[208] Sebastian Riedel, Limin Yao, and Andrew McCallum. “Modeling relations and their mentions without la-
beled text.” In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer.
2010, pp. 148–163.

[209] Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Etzioni. “Modeling Missing Data in Distant Supervision
for Information Extraction.” In: Transactions of the Association for Computational Linguistics 1 (2013), pp. 367–
378. doi: 10.1162/tacl_a_00234. url: https://aclanthology.org/Q13-1030.

[210] Roland Roller and Mark Stevenson. “Self-supervised relation extraction using UMLS.” In: International Con-
ference of the Cross-Language Evaluation Forum for European Languages. Springer. 2014, pp. 116–127.

https://doi.org/10.18653/v1/P19-1493
https://aclanthology.org/P19-1493
https://aclanthology.org/P19-1493
https://doi.org/10.1007/s00439-001-0615-0
http://www.ncbi.nlm.nih.gov/pubmed/11810281
http://www.ncbi.nlm.nih.gov/pubmed/11810281
https://doi.org/10.18653/v1/2021.acl-long.239
https://doi.org/10.18653/v1/2021.acl-long.239
https://aclanthology.org/2021.acl-long.239
https://doi.org/10.18653/v1/2021.naacl-main.147
https://aclanthology.org/2021.naacl-main.147
https://aclanthology.org/2021.naacl-main.147
https://doi.org/10.18653/v1/2020.coling-main.603
https://aclanthology.org/2020.coling-main.603
https://aclanthology.org/W09-1119
https://aclanthology.org/W09-1119
https://doi.org/10.18653/v1/P17-1194
https://aclanthology.org/P17-1194
https://aclanthology.org/P17-1194
https://doi.org/10.18653/v1/D17-1035
https://aclanthology.org/D17-1035
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://doi.org/10.1162/tacl_a_00234
https://aclanthology.org/Q13-1030


bibliography 123

[211] Shachar Rosenman, Alon Jacovi, and Yoav Goldberg. “Exposing Shallow Heuristics of Relation Extraction
Models with Challenge Data.” In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics, 2020, pp. 3702–3710. doi: 10.18653/
v1/2020.emnlp-main.302. url: https://aclanthology.org/2020.emnlp-main.302.

[212] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. “You CAN Teach an Old Dog New Tricks! On
Training Knowledge Graph Embeddings.” In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. url: https://openreview.net/forum?
id=BkxSmlBFvr.

[213] Camilo Ruiz, Marinka Zitnik, and Jure Leskovec. “Identification of disease treatment mechanisms through
the multiscale interactome.” In: Nature communications 12.1 (2021), pp. 1–15.

[214] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. “Semi-Supervised Domain
Adaptation via Minimax Entropy.” In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp. 8049–8057. doi: 10.1109/ICCV.2019.00814.
url: https://doi.org/10.1109/ICCV.2019.00814.

[215] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. “Maximum Classifier Discrepancy
for Unsupervised Domain Adaptation.” In: 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 2018, pp. 3723–3732. doi:
10.1109/CVPR.2018.00392. url: http://openaccess.thecvf.com/content\_cvpr\_2018/html/Saito\
_Maximum\_Classifier\_Discrepancy\_CVPR\_2018\_paper.html.

[216] Guergana K Savova, James J Masanz, Philip V Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. “Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):
architecture, component evaluation and applications.” In: Journal of the American Medical Informatics Associa-
tion 17.5 (2010), pp. 507–513.

[217] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
“Modeling relational data with graph convolutional networks.” In: European Semantic Web Conference. Springer.
2018, pp. 593–607.

[218] Stefan Schweter and Alan Akbik. “FLERT: Document-Level Features for Named Entity Recognition.” In:
ArXiv preprint abs/2011.06993 (2020). url: https://arxiv.org/abs/2011.06993.

[219] Isabel Segura-Bedmar, Paloma Martínez Fernández, and Daniel Sánchez Cisneros. “The 1st DDIExtraction-
2011 challenge task: Extraction of Drug-Drug Interactions from biomedical texts.” In: (2011).

[220] Isabel Segura-Bedmar, Paloma Martínez, and María Herrero-Zazo. “SemEval-2013 Task 9 : Extraction of
Drug-Drug Interactions from Biomedical Texts (DDIExtraction 2013).” In: Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic
Evaluation (SemEval 2013). Atlanta, Georgia, USA: Association for Computational Linguistics, 2013, pp. 341–
350. url: https://aclanthology.org/S13-2056.

[221] Jurica Ševa, Mario Sänger, and Ulf Leser. “WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10

coding using multi-lingual embeddings and recurrent neural networks.” In: CLEF. 2018.

[222] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. “M-Walk: Learning to Walk
over Graphs using Monte Carlo Tree Search.” In: Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett. 2018, pp. 6787–6798. url: https://proceedings.neurips.cc/paper/2018/hash/
c6f798b844366ccd65d99bc7f31e0e02-Abstract.html.

[223] Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi. “Deep EHR: a survey of recent ad-
vances in deep learning techniques for electronic health record (EHR) analysis.” In: IEEE journal of biomedical
and health informatics 22.5 (2017), pp. 1589–1604.

[224] Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi. “Deep EHR: a survey of recent ad-
vances in deep learning techniques for electronic health record (EHR) analysis.” In: IEEE journal of biomedical
and health informatics 22.5 (2018), pp. 1589–1604.

[225] Carlos N Silla and Alex A Freitas. “A survey of hierarchical classification across different application do-
mains.” In: Data Mining and Knowledge Discovery 22.1-2 (2011), pp. 31–72.

[226] Luca Soldaini and Nazli Goharian. “Quickumls: a fast, unsupervised approach for medical concept extrac-
tion.” In: MedIR workshop, sigir. 2016, pp. 1–4.

[227] Amber Stubbs, Michele Filannino, and Özlem Uzuner. “De-identification of psychiatric intake records: Overview
of 2016 CEGS N-GRID Shared Tasks Track 1.” In: Journal of biomedical informatics 75 (2017), S4–S18.

[228] Amber Stubbs and Özlem Uzuner. “Annotating longitudinal clinical narratives for de-identification: The
2014 i2b2/UTHealth corpus.” In: Journal of biomedical informatics 58 (2015), S20–S29.

[229] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. “ERNIE: Enhanced representation through knowledge integration.” In: ArXiv preprint
abs/1904.09223 (2019). url: https://arxiv.org/abs/1904.09223.

https://doi.org/10.18653/v1/2020.emnlp-main.302
https://doi.org/10.18653/v1/2020.emnlp-main.302
https://aclanthology.org/2020.emnlp-main.302
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://doi.org/10.1109/ICCV.2019.00814
https://doi.org/10.1109/ICCV.2019.00814
https://doi.org/10.1109/CVPR.2018.00392
http://openaccess.thecvf.com/content\_cvpr\_2018/html/Saito\_Maximum\_Classifier\_Discrepancy\_CVPR\_2018\_paper.html
http://openaccess.thecvf.com/content\_cvpr\_2018/html/Saito\_Maximum\_Classifier\_Discrepancy\_CVPR\_2018\_paper.html
https://arxiv.org/abs/2011.06993
https://aclanthology.org/S13-2056
https://proceedings.neurips.cc/paper/2018/hash/c6f798b844366ccd65d99bc7f31e0e02-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c6f798b844366ccd65d99bc7f31e0e02-Abstract.html
https://arxiv.org/abs/1904.09223


124 bibliography

[230] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph Embedding by Re-
lational Rotation in Complex Space.” In: 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/forum?id=
HkgEQnRqYQ.

[231] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D. Manning. “Multi-instance Multi-
label Learning for Relation Extraction.” In: Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: Association for
Computational Linguistics, 2012, pp. 455–465. url: https://aclanthology.org/D12-1042.

[232] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. “Rethinking
the Inception Architecture for Computer Vision.” In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 2818–2826.
doi: 10.1109/CVPR.2016.308. url: https://doi.org/10.1109/CVPR.2016.308.

[233] Bruno Taillé, Vincent Guigue, Geoffrey Scoutheeten, and Patrick Gallinari. “Separating Retention from Ex-
traction in the Evaluation of End-to-end Relation Extraction.” In: Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing. Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, 2021, pp. 10438–10449. doi: 10.18653/v1/2021.emnlp-main.816. url: https:
//aclanthology.org/2021.emnlp-main.816.

[234] Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa. “Reducing Wrong Labels in Distant Supervision for
Relation Extraction.” In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Jeju Island, Korea: Association for Computational Linguistics, 2012, pp. 721–729. url:
https://aclanthology.org/P12-1076.

[235] Ian Tenney, Dipanjan Das, and Ellie Pavlick. “BERT Rediscovers the Classical NLP Pipeline.” In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Compu-
tational Linguistics, 2019, pp. 4593–4601. doi: 10.18653/v1/P19-1452. url: https://aclanthology.org/P19-
1452.

[236] Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity
Recognition.” In: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002). 2002. url:
https://aclanthology.org/W02-2024.

[237] Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity
Recognition.” In: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002). 2002. url:
https://aclanthology.org/W02-2024.

[238] Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity
Recognition.” In: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002). 2002. url:
https://aclanthology.org/W02-2024.

[239] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon.
“Representing Text for Joint Embedding of Text and Knowledge Bases.” In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics,
2015, pp. 1499–1509. doi: 10.18653/v1/D15-1174. url: https://aclanthology.org/D15-1174.

[240] Théo Trouillon, Christopher R Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guillaume Bouchard.
“Knowledge graph completion via complex tensor factorization.” In: The Journal of Machine Learning Research
18.1 (2017), pp. 4735–4772.

[241] Théo Trouillon and Maximilian Nickel. “Complex and holographic embeddings of knowledge graphs: a
comparison.” In: ArXiv preprint abs/1707.01475 (2017). url: https://arxiv.org/abs/1707.01475.

[242] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. “Complex Em-
beddings for Simple Link Prediction.” In: Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q. Wein-
berger. Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org, 2016, pp. 2071–2080. url: http:
//proceedings.mlr.press/v48/trouillon16.html.

[243] Ledyard R Tucker. “Some mathematical notes on three-mode factor analysis.” In: Psychometrika 31.3 (1966),
pp. 279–311.

[244] Erik M Van Mulligen, Annie Fourrier-Reglat, David Gurwitz, Mariam Molokhia, Ainhoa Nieto, Gianluca
Trifiro, Jan A Kors, and Laura I Furlong. “The EU-ADR corpus: annotated drugs, diseases, targets, and their
relationships.” In: Journal of biomedical informatics 45.5 (2012), pp. 879–884.

[245] Shikhar Vashishth, Denis Newman-Griffis, Rishabh Joshi, Ritam Dutt, and Carolyn P Rosé. “Improving
broad-coverage medical entity linking with semantic type prediction and large-scale datasets.” In: Journal
of Biomedical Informatics 121 (2021), p. 103880.

[246] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. “Attention is All you Need.” In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed.
by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett. 2017, pp. 5998–6008. url: https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://aclanthology.org/D12-1042
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.18653/v1/2021.emnlp-main.816
https://aclanthology.org/2021.emnlp-main.816
https://aclanthology.org/2021.emnlp-main.816
https://aclanthology.org/P12-1076
https://doi.org/10.18653/v1/P19-1452
https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1452
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
https://doi.org/10.18653/v1/D15-1174
https://aclanthology.org/D15-1174
https://arxiv.org/abs/1707.01475
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


bibliography 125

[247] Sumithra Velupillai, Hercules Dalianis, Martin Hassel, and Gunnar H Nilsson. “Developing a standard for
de-identifying electronic patient records written in Swedish: precision, recall and F-measure in a manual and
computerized annotation trial.” In: International journal of medical informatics 78.12 (2009), e19–e26.

[248] Brian Walsh, Sameh K. Mohamed, and Vít Novácek. “BioKG: A Knowledge Graph for Relational Learning
On Biological Data.” In: CIKM ’20: The 29th ACM International Conference on Information and Knowledge Man-
agement, Virtual Event, Ireland, October 19-23, 2020. Ed. by Mathieu d’Aquin, Stefan Dietze, Claudia Hauff,
Edward Curry, and Philippe Cudré-Mauroux. ACM, 2020, pp. 3173–3180. doi: 10.1145/3340531.3412776.
url: https://doi.org/10.1145/3340531.3412776.

[249] Jing Wang, Mayank Kulkarni, and Daniel Preotiuc-Pietro. “Multi-Domain Named Entity Recognition with
Genre-Aware and Agnostic Inference.” In: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. Online: Association for Computational Linguistics, 2020, pp. 8476–8488. doi: 10.18653/
v1/2020.acl-main.750. url: https://aclanthology.org/2020.acl-main.750.

[250] Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. “Pyramid: A Layered Model for Nested Named Entity
Recognition.” In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, 2020, pp. 5918–5928. doi: 10.18653/v1/2020.acl-main.525. url:
https://aclanthology.org/2020.acl-main.525.

[251] Xinggang Wang, Yongluan Yan, Peng Tang, Xiang Bai, and Wenyu Liu. “Revisiting multiple instance neural
networks.” In: Pattern Recognition 74 (2018), pp. 15–24.

[252] Yanjie Wang, Rainer Gemulla, and Hui Li. “On Multi-Relational Link Prediction With Bilinear Models.”
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q.
Weinberger. AAAI Press, 2018, pp. 4227–4234. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16900.

[253] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge Graph Embedding by Translating
on Hyperplanes.” In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada. Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 1112–1119. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531.

[254] Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen, Weinan Zhang, Shaodian Zhang, Yimei Gao, Gen Gu,
Ken Chen, and Yong Yu. “Label-Aware Double Transfer Learning for Cross-Specialty Medical Named Entity
Recognition.” In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, 2018, pp. 1–15. doi: 10.18653/v1/N18-1001. url: https://aclanthology.
org/N18-1001.

[255] Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang, Graham Neubig, and Jaime G. Carbonell. “Cross-lingual
Alignment vs Joint Training: A Comparative Study and A Simple Unified Framework.” In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. url: https://openreview.net/forum?id=S1l-C0NtwS.

[256] Gerhard Weikum, Xin Luna Dong, Simon Razniewski, Fabian Suchanek, et al. “Machine knowledge: Creation
and curation of comprehensive knowledge bases.” In: Foundations and Trends® in Databases 10.2-4 (2021),
pp. 108–490.

[257] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. “Connecting Language and Knowl-
edge Bases with Embedding Models for Relation Extraction.” In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA: Association for Computational Linguistics,
2013, pp. 1366–1371. url: https://aclanthology.org/D13-1136.

[258] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir Sajed, Daniel
Johnson, Carin Li, Zinat Sayeeda, et al. “DrugBank 5.0: a major update to the DrugBank database for 2018.”
In: Nucleic acids research 46.D1 (2018), pp. D1074–D1082.

[259] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing.” In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, 2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp- demos.6. url: https://
aclanthology.org/2020.emnlp-demos.6.

[260] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. “Scalable Zero-shot
Entity Linking with Dense Entity Retrieval.” In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, 2020, pp. 6397–
6407. doi: 10.18653/v1/2020.emnlp-main.519. url: https://aclanthology.org/2020.emnlp-main.519.

[261] Qianhui Wu, Zijia Lin, Börje F. Karlsson, Biqing Huang, and Jianguang Lou. “UniTrans : Unifying Model
Transfer and Data Transfer for Cross-Lingual Named Entity Recognition with Unlabeled Data.” In: Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. Ed. by Christian
Bessiere. ijcai.org, 2020, pp. 3926–3932. doi: 10.24963/ijcai.2020/543. url: https://doi.org/10.24963/
ijcai.2020/543.

[262] Qianhui Wu, Zijia Lin, Guoxin Wang, Hui Chen, Börje F Karlsson, Biqing Huang, and Chin-Yew Lin. “En-
hanced meta-learning for cross-lingual named entity recognition with minimal resources.” In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34. 2020, pp. 9274–9281.

https://doi.org/10.1145/3340531.3412776
https://doi.org/10.1145/3340531.3412776
https://doi.org/10.18653/v1/2020.acl-main.750
https://doi.org/10.18653/v1/2020.acl-main.750
https://aclanthology.org/2020.acl-main.750
https://doi.org/10.18653/v1/2020.acl-main.525
https://aclanthology.org/2020.acl-main.525
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://doi.org/10.18653/v1/N18-1001
https://aclanthology.org/N18-1001
https://aclanthology.org/N18-1001
https://openreview.net/forum?id=S1l-C0NtwS
https://aclanthology.org/D13-1136
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://aclanthology.org/2020.emnlp-main.519
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543
https://doi.org/10.24963/ijcai.2020/543


126 bibliography

[263] Shanchan Wu and Yifan He. “Enriching Pre-trained Language Model with Entity Information for Relation
Classification.” In: Proceedings of the 28th ACM International Conference on Information and Knowledge Man-
agement, CIKM 2019, Beijing, China, November 3-7, 2019. Ed. by Wenwu Zhu, Dacheng Tao, Xueqi Cheng,
Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu. ACM, 2019, pp. 2361–2364. doi:
10.1145/3357384.3358119. url: https://doi.org/10.1145/3357384.3358119.

[264] Shijie Wu and Mark Dredze. “Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT.” In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Compu-
tational Linguistics, 2019, pp. 833–844. doi: 10.18653/v1/D19-1077. url: https://aclanthology.org/D19-
1077.

[265] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. “Google’s neural machine translation system: Bridging
the gap between human and machine translation.” In: ArXiv preprint abs/1609.08144 (2016). url: https:
//arxiv.org/abs/1609.08144.

[266] Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A. Smith, and Jaime Carbonell. “Neural Cross-Lingual
Named Entity Recognition with Minimal Resources.” In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018,
pp. 369–379. doi: 10.18653/v1/D18-1034. url: https://aclanthology.org/D18-1034.

[267] R. Xing, J. Luo, and T. Song. “BioRel: towards large-scale biomedical relation extraction.” In: BMC Bioin-
formatics 21-S.16 (2020), p. 543. doi: 10.1186/s12859- 020- 03889- 5. url: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-020-03889-5.

[268] Rong Xu and QuanQiu Wang. “Automatic construction of a large-scale and accurate drug-side-effect asso-
ciation knowledge base from biomedical literature.” In: Journal of biomedical informatics 51 (2014), pp. 191–
199.

[269] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. “Embedding Entities and Relations for
Learning and Inference in Knowledge Bases.” In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015. url: http://arxiv.org/abs/1412.6575.

[270] Fan Yang, Zhilin Yang, and William W. Cohen. “Differentiable Learning of Logical Rules for Knowledge Base
Reasoning.” In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017, pp. 2319–
2328. url: https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-
Abstract.html.

[271] Jie Yang, Shuailong Liang, and Yue Zhang. “Design Challenges and Misconceptions in Neural Sequence La-
beling.” In: Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico,
USA: Association for Computational Linguistics, 2018, pp. 3879–3889. url: https://aclanthology.org/C18-
1327.

[272] Jie Yang and Yue Zhang. “NCRF++: An Open-source Neural Sequence Labeling Toolkit.” In: Proceedings
of ACL 2018, System Demonstrations. Melbourne, Australia: Association for Computational Linguistics, 2018,
pp. 74–79. doi: 10.18653/v1/P18-4013. url: https://aclanthology.org/P18-4013.

[273] Xi Yang, Tianchen Lyu, Qian Li, Chih-Yin Lee, Jiang Bian, William R Hogan, and Yonghui Wu. “A study
of deep learning methods for de-identification of clinical notes in cross-institute settings.” In: BMC Medical
Informatics and Decision Making 19.5 (2019), pp. 1–9.

[274] Yi Yang and Arzoo Katiyar. “Simple and Effective Few-Shot Named Entity Recognition with Structured
Nearest Neighbor Learning.” In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics, 2020, pp. 6365–6375. doi: 10.18653/
v1/2020.emnlp-main.516. url: https://aclanthology.org/2020.emnlp-main.516.

[275] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. “Hierarchical Attention
Networks for Document Classification.” In: Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies. San Diego, California: As-
sociation for Computational Linguistics, 2016, pp. 1480–1489. doi: 10.18653/v1/N16- 1174. url: https:
//aclanthology.org/N16-1174.

[276] Liang Yao, Chengsheng Mao, and Yuan Luo. “KG-BERT: BERT for knowledge graph completion.” In: ArXiv
preprint abs/1909.03193 (2019). url: https://arxiv.org/abs/1909.03193.

[277] Andrew Yates and Nazli Goharian. “ADRTrace: detecting expected and unexpected adverse drug reactions
from user reviews on social media sites.” In: European Conference on Information Retrieval. Springer. 2013,
pp. 816–819.

[278] Vithya Yogarajan, Michael Mayo, and Bernhard Pfahringer. “A survey of automatic de-identification of lon-
gitudinal clinical narratives.” In: ArXiv preprint abs/1810.06765 (2018). url: https://arxiv.org/abs/1810.
06765.

https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.18653/v1/D19-1077
https://aclanthology.org/D19-1077
https://aclanthology.org/D19-1077
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/D18-1034
https://aclanthology.org/D18-1034
https://doi.org/10.1186/s12859-020-03889-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03889-5
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03889-5
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://aclanthology.org/C18-1327
https://aclanthology.org/C18-1327
https://doi.org/10.18653/v1/P18-4013
https://aclanthology.org/P18-4013
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://aclanthology.org/2020.emnlp-main.516
https://doi.org/10.18653/v1/N16-1174
https://aclanthology.org/N16-1174
https://aclanthology.org/N16-1174
https://arxiv.org/abs/1909.03193
https://arxiv.org/abs/1810.06765
https://arxiv.org/abs/1810.06765


bibliography 127

[279] Dani Yogatama, Cyprien de Masson d’Autume, Jerome Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, et al. “Learning and evaluating general
linguistic intelligence.” In: ArXiv preprint abs/1901.11373 (2019). url: https://arxiv.org/abs/1901.11373.

[280] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. “Multi-modal Factorized Bilinear Pooling with Co-attention
Learning for Visual Question Answering.” In: IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 1839–1848. doi: 10.1109/ICCV.2017.202.
url: https://doi.org/10.1109/ICCV.2017.202.

[281] Zheng Yuan, Yijia Liu, Chuanqi Tan, Songfang Huang, and Fei Huang. “Improving Biomedical Pretrained
Language Models with Knowledge.” In: Proceedings of the 20th Workshop on Biomedical Language Processing.
Online: Association for Computational Linguistics, 2021, pp. 180–190. doi: 10.18653/v1/2021.bionlp-1.20.
url: https://aclanthology.org/2021.bionlp-1.20.

[282] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. “Distant Supervision for Relation Extraction via Piece-
wise Convolutional Neural Networks.” In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. Lisbon, Portugal: Association for Computational Linguistics, 2015, pp. 1753–1762. doi:
10.18653/v1/D15-1203. url: https://aclanthology.org/D15-1203.

[283] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. “Relation Classification via Convolu-
tional Deep Neural Network.” In: Proceedings of COLING 2014, the 25th International Conference on Computa-
tional Linguistics: Technical Papers. Dublin, Ireland: Dublin City University and Association for Computational
Linguistics, 2014, pp. 2335–2344. url: https://aclanthology.org/C14-1220.

[284] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. “Character-level Convolutional Networks for Text Classifi-
cation.” In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. Ed. by Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett. 2015, pp. 649–657. url: https : / / proceedings .
neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html.

[285] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang, and George
Karypis. “DGL-KE: Training Knowledge Graph Embeddings at Scale.” In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, 739–748.

[286] Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu, Meng Fang, Rick Siow Mong Goh, and Kenneth Kwok.
“Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition.” In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational
Linguistics, 2019, pp. 3461–3471. doi: 10.18653/v1/P19-1336. url: https://aclanthology.org/P19-1336.

[287] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. “Domain Adaptive Ensemble Learning.” In: ArXiv
preprint abs/2003.07325 (2020). url: https://arxiv.org/abs/2003.07325.

[288] Xiaohua Zhou, Xiaodan Zhang, and Xiaohua Hu. “MaxMatcher: Biological concept extraction using ap-
proximate dictionary lookup.” In: Pacific RIM international conference on artificial intelligence. Springer. 2006,
pp. 1145–1149.

https://arxiv.org/abs/1901.11373
https://doi.org/10.1109/ICCV.2017.202
https://doi.org/10.1109/ICCV.2017.202
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://aclanthology.org/2021.bionlp-1.20
https://doi.org/10.18653/v1/D15-1203
https://aclanthology.org/D15-1203
https://aclanthology.org/C14-1220
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/P19-1336
https://aclanthology.org/P19-1336
https://arxiv.org/abs/2003.07325



	Dedication
	Declaration
	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Overview
	1.1.1 Part-I: Entity-centric Learning
	1.1.2 Part-II: Relation-centric Learning

	1.2 Contributions

	Entity-centric Learning
	2 Multilingual and Unsupervised Clinical Concept Extraction for Semantic Indexing
	2.1 Introduction
	2.2 Related Work
	2.2.1 Supervised Methods
	2.2.2 Unsupervised Methods

	2.3 Multilingual Concept Extraction
	2.3.1 Neural Architectures
	2.3.2 Transfer Learning
	2.3.3 Machine Translation
	2.3.4 Experiments
	2.3.5 Results

	2.4 Unsupervised Concept Extraction
	2.4.1 Dense Phrase Matching
	2.4.2 Linguistic Processing
	2.4.3 Candidate Extraction
	2.4.4 Concept Matching
	2.4.5 Experiments
	2.4.6 Results

	2.5 Conclusion

	3 Transformer based NER Transfer with Application to Cross-lingual Clinical De-identification
	3.1 Introduction
	3.2 Related Work
	3.2.1 NER Transfer
	3.2.2 Clinical De-identification

	3.3 Transformer based Transfer Learning Framework for NER
	3.3.1 Design Principles
	3.3.2 Data Module
	3.3.3 Models
	3.3.4 Algorithms

	3.4 Cross-lingual Clinical De-identification
	3.4.1 Problem Definition
	3.4.2 Few-Shot Cross-Lingual NER Transfer
	3.4.3 Data and Annotation
	3.4.4 Experiments
	3.4.5 Results

	3.5 Conclusion


	Relation-centric Learning
	4 Scientific Language Models for Distantly Supervised Biomedical Relation Extraction
	4.1 Introduction
	4.2 Related Work
	4.2.1 Distantly Supervised RE
	4.2.2 Broad-Coverage Biomedical RE

	4.3 Multi-Instance Learning based Relational BERT
	4.3.1 Problem Definition
	4.3.2 Entity Markers
	4.3.3 Model Architecture
	4.3.4 Experiments
	4.3.5 Results

	4.4 MedDistant19 Benchmark
	4.4.1 Documents
	4.4.2 Knowledge Base
	4.4.3 Experiments
	4.4.4 Baselines
	4.4.5 Analysis

	4.5 Conclusion

	5 Knowledge Graph Completion in the General and Biomedical Domain with Low-rank Bilinear Pooling
	5.1 Introduction
	5.2 Related Work
	5.2.1 Non-linear Models for KGC
	5.2.2 Linear Models for KGC

	5.3 Low-rank Knowledge Graph Completion
	5.3.1 Problem Definition
	5.3.2 Multi-modal Factorized Bilinear Pooling
	5.3.3 LowFER
	5.3.4 Training

	5.4 Theoretical Analysis
	5.4.1 Full Expressibility
	5.4.2 Relation with TuckER
	5.4.3 Relation with Family of Bilinear Models
	5.4.4 Relation with HypER

	5.5 Experiments
	5.5.1 Results
	5.5.2 Analysis

	5.6 Conclusion

	6 Discussion and Future Work
	6.1 Research Contributions
	6.2 Discussion
	6.3 Future Work


	Appendix
	A Few-Shot Cross-lingual De-identification Dataset
	A.1 Guttmann Clinical Notes
	A.2 Annotation
	A.2.1 Annotators
	A.2.2 Guidelines
	A.2.3 Procedure
	A.2.4 Disagreements and Resolution

	A.3 MEDDOCAN Normalization

	B UMLS.v2 and MedDistant19 Benchmarks
	B.1 UMLS Files
	B.2 UMLS.v2 Benchmark
	B.2.1 Knowledge Base
	B.2.2 Documents
	B.2.3 Groups Linking and Negative Sampling
	B.2.4 Bag Composition and Splits

	B.3 MedDistant19 Benchmark
	B.3.1 Semantic Groups and Semantic Types
	B.3.2 UMLS License Agreement
	B.3.3 Risks
	B.3.4 Limitations
	B.3.5 Experimental Setup and Hyperparameters

	B.4 Discussion

	C LowFER Proofs and Experimental Details
	C.1 Proofs
	C.1.1 Proposition 1
	C.1.2 Proposition 2
	C.1.3 Proposition 3

	C.2 Scoring Subsumptions
	C.3 Experiments
	C.3.1 Evaluation Metrics
	C.3.2 LowFER with Non-linearity
	C.3.3 Models Comparison


	Bibliography


