Andreas Meier
SEKI Report SR-2004-03

=
a2 «
= .9
(@
o B
°
5 8
a2 A
53
P.m
Y o
© "o
o QO
~
A

o <
=
=

/eprqs-tun-sBe-ana//:diag A MM

ANVINHAD
NAMONEGUVYS 17099-0 -
MILVNYOANI HOITHAGHOVA d FEpi-ach. ol
SHANVTUVVS SHA LYLISHAAINN HOd3ay |IM3S

The Proof Planners of {XMEGA:
A Technical Description

Andreas Meier
Saarland University, FR Informatik
and DFKI
66041 Saarbriicken, Germany
email:{ameier } @ags.uni-sb.de

Abstract

The QIMEGA proof development system employs proof planning for automated proof con-
struction at the abstract level of methods. In this report we discuss the technical concepts
underlying proof planning in Q2MEGA and give detailed descriptions of the algorithms of the
two proof planners of the QMEGA system: PLAN which performs simple proof planning with
methods and MULTI which performs multiple-strategy proof planning.

1 Introduction

Proof planning was originally conceived as an extension of tactical theorem proving to enable
automated theorem proving at the abstract level of tactics. BUNDY’s key idea in [9] is to aug-
ment individual tactics with pre- and postconditions. This results in planning operators, so-called
methods. Thus, proof planning integrates both, elements from tactical theorem proving and ele-
ments from Artificial Intelligence (AI) planning. In the QMEGA [56] system the traditional proof
planning approach is enriched by incorporating mathematical knowledge into the planning process
(see [45]) and the introduction of the additional hierarchical level of strategies (see [44]).

Domain-specific knowledge can be encoded in methods, in control rules, and in external systems
such as computer algebra systems or constraint solvers. Methods can encode not only general
proving steps but also steps particular to a mathematical domain. Control rules enable meta-level
reasoning about the current proof planning state as well as about the entire history of the proof
planning process in order to guide the search.

The simple proof planner of the IMEGA system, which is called PLAN, searches at the level
of methods, i.e., it searches for applicable methods and applies the instantiated methods. Case-
studies revealed the drawbacks of the simple planner: It combines the application of methods, the
instantiation of variables, and backtracking in a pre-defined way. Moreover, the functionalities
of these subcomponents are very restricted. The hard-coded combination of operations with re-
stricted functionalities prohibits the use of mathematical knowledge of certain proof constructions
and their combination. As a result, the planner fails on problems for which more flexibility and
knowledge is needed in the proof planning process (see [44, 34]).

These observations motivated the development of proof planning with multiple strategies.
Proof planning with multiple strategies decomposes the previous monolithic proof planning pro-
cess and replaces it by separate but collaborating operations, so-called strategies, which can realize
different plan refinements and modifications, e.g., differerit kinds of step (i.e., instantiated method)
computation and selection, different kinds of backtracking, different kinds of variable instantiation
etc. Moreover, the decision on when to apply a strategy is not encoded once and forever into a
fixed control procedure but rather is determined by meta-level reasoning using heuristic control
knowledge of strategies and their combination. As compared with the previous proof planning,
strategies and their heuristic control introduce another hierarchical level and can encode further

(mathematical) domain knowledge. We realized proof planning with multiple strategies in the
MuLTI planner.

In this technical report, we describe the technical concepts underlying proof planning in {MEGA
and give detailed descriptions of the algorithms of both planners of QMEGA. The structure of the
report is as follows: We first describe the basics of knowledge-based proof planning in section 2, in
particular, methods and control rules and the incorporation of external systems. In the subsequent
section, we give a detailed description of PLAN including the discussion of a sample application.
Section 4 introduces proof planning with multiple-strategies and gives a conceptual description of
MULTI, which is complemented by a detailed technical description in section 5.

2 Basics of Proof Planning in QMEGA

Proof planning in IMEGA considers mathematical theorems as planning problems and combines
tactical theorem proving and Al planning techniques. Hence, we start with a brief account of
how theorem proving can be seen as an Al-planning problem comprising brief discussions of the
background proof development in SMEGA and Al-planning. Next, we discuss tasks and the PDS,
which represent the current status during a proof planning process. Afterwards, we introduce
QIMEGA’s method and control rule languages, describe the instantiations of methods, which are
called actions, and briefly discuss the incorporation of external systems into proof planning.

Notation 2.1: Functions that are part of the descriptions of methods, control rules, and algo-
rithms are denoted with a special font (e.g., term-at-position). Since the core of YMEGA is imple-
mented in LISP these functions are LISP functions in the implementation. For clarity, we write
the application of the function func to the arguments arg,...,args not in LISP syntax, i.e.,

(func arg, ... argn), but in prefix notation, i.e., func(argi,...,argn).
Notation 2.2: We denote a set of items it1,...,it, with {it1,...,itn}. A list or sequence of
items (i.e., ordered set of items) itq, ..., it, we write as [ity,...,it,]. [] denotes the empty list. On

sets the operations U, N, — are defined as usual. On lists U denotes the concatenation of lists. The
result of list; — list, is list; without all elements that are in list;. The operations first, last, rest,
and reverse are defined on lists. The function first returns the first element of a list whereas the
function /ast returns the last element of a list. The function rest returns the list that results from
the deletion of the first element from the initial list. The function reverse returns a list whose
elements are in the reverse order of the elements of the input list.

The set of all items it that satisfy a certain property P(it) is written as {it|P(it)}. The analogous
list is written as [it|P(it)]. The elements of such a list are ordered arbitrarily, if no order is
explicitly specified.

Sets are denoted with symbols in calligraphic style (e.g., M for a set of methods and C for a set
of control rules). Lists are denoted with symbols that are marked with an arrow as superscript

(e.g., A for a sequence of actions).

2.1 From Theorem Proving to AI-Planning

Proof Development in QMEGA

The basic logic of the proof development system YMEGA is a higher-order variant of Gentzen'’s
natural deduction (ND) calculus [23]. Similar to many interactive systems (c.f., NUPRL [14],
IsABELLE [51], HoL [25], coq [15], QUODLIBET [30]) QMEGA employs tactics for the construction
of complex and more abstract proofs. The idea in tactical theorem proving [48] is that repeatedly
occurring sequences of inference steps are encapsulated into macro steps, so-called tactics, which
enable interactive proof construction at a higher level of abstraction.

Since tactic applications can be expanded to 2MEGA’s basic ND-calculus and can be combined
with the application of ND-rules §MEGA needs a hierarchical proof data structure that represents
a (partial) proof attempt at different levels of abstraction. This data structure is called the proof

plan data structure PDS [12]. We will present the proof objects stored in a PDS in a linearized
style with proof lines as introduced in [2]. A proof line is of the form L. AFF (R), where L
is a unique label, AFF a sequent denoting that the formula F can be derived from the set of
hypotheses A, and (R) is a justification expressing how the line was derived. Lines that are not
yet derived from other lines are called open lines and have an open justification. A line that is not
open is called a closed line.

For instance, the initial PDS for the proof problem with theorem Thm and assumptions
Assy, ..., Ass, is:

Lass;- Lase FAssi (Hyp)
LA-‘JSn' LAssn '_ Assn (Hyp)
Lrhm. Lassyr - LAssn ks Th‘m (Open)

AI-Planning
An AlI-planning problem! consists of

1. a description of the initial state of the world in some formal language,
2. a description of the agent’s goals in some formal language, and
3. a description of the possible operations that the agent can performs in some formal language.

An Al-planner is an algorithm that is applied to a planning problem and returns a sequence
of actions, i.e., instantiated operations, which will achieve the goal, when executed in any world
satisfying the initial state description. Such a sequence of actions is also called a solution plan.

A very simple, yet very influential language is the STRIPS representation.? STRIPS describes
the initial state of the world with a complete set of ground literals. It restricts the type of
goals that may be specified to conjunctions of positive literals. Operations are represented in
the STRIPS language as operators (also called operator schemata) with preconditions and effects.
The preconditions of each operator have the same restriction as the problem’s goals: they are a
conjunction of positive literals. An operator’s effects are a conjunction that may includes both,
positive and negative literals. All the positive literals in the operator’s effects are called the add-list
of the operator, while all the negative literals are called the delete-list of the operator.

The classical approach to solve planning problems is precondition achievement planning [17].
Precondition achievement planning goes back to the General Problem Solver, GPS [50}. STRIPS
focused and distilled the technique to the form used in planning: During the planning process,
first an unsatisfied precondition is chosen (this condition is not true and but it should be). Then,
the available operators are checked whether their add list contains an effect to achieve this pre-
condition. One operator is chosen, appropriately instantiated (bind the variables of the operator
to elements of the plan), and the resulting action is inserted into the plan under development.
Then, the preconditions of the introduced action become new unsatisfied preconditions of the plan
whereas the initially unsatisfied precondition is satisfied by an effect of the introduced action.

Theorem Proving as AI-Planning Problem

The initial state of a proof planning problem consists of the proof assumptions and the goal
description consists of the theorem. Methods are the operators of proof planning, where methods
are tactics known from tactical theorem proving augmented with pre- and postconditions in order
to derive operators for Al-planning. Simple proof planning searches for a solution plan, i.e.,
a sequence of instantiated methods that transforms the initial state into a state in which the
theorem holds. In order to find a solution plan, it searches for applicable methods and applies

1See [64, 54] for introductions to Al-planning.
2The acronym “STRIPS” stands for “STanford Research Institute Problem Solver’, a very famous and influential
planner build in the 1970s to control an unstable mobile robot known as “Shakey” [21, 20].

the instantiated methods. Similar to Al-planning we call the instantiation of a method (i.e., the
instantiation of a proof planning operator) an action.

2.2 Tasks and the PDS

Central during the proof planning process in JMEGA are so-called tasks, which express the logical
dependencies between goals and assumptions, and a PDS, which represents the partial proof plan
constructed so far. We shall now first explain the role of these two fundamental structures.

In Al-planning, an unsatisfied precondition in a plan under construction can be satisfied with
a matching effect of any other action in the plan. In proof planning, however, this is not the case
because of the logical context of open lines. Thus, 2MEGA’s proof planning uses so-called tasks
to express which proof lines (closed and open) can be used to construct a subplan for an open
line. A task is a pair (Lopen, SUPPSL,,.,) Where Lopen is an open line and SUPPSL,,., is a
set of lines. The first element of a task is called the task line or the goal of the task and the
second element is called the support lines or supports. The formula of the goal is also called task
formula. A task with goal Lopen and supports SUPPSL,,,, is written as Lopen 4« SUPPSL,,,,, -
During the planning process a list of all current tasks is stored in a so-called agenda. For a
problem with theorem Thm and assumptions Assi, ..., Ass, the initial agenda consists of the
task Lrpm €4 {Lass,,---»Lass,} where Lass, and Ly, are the proof lines of the initial PDS of
the problem.

As example for the necessity to maintain a separate set of supports for each goal consider the
introduction of a case-split. Let a goal F|[x] have the support line z > 0Vz < 0.3 The introduction
of a case-split results in two branches with: subtask F[z] « {z > 0,...} and F[z] «{z <0,...}.
It would be incorrect, if the second subtask used the first assumption or vice versa. Moreover,
actions can remove support lines of a task such that afterwards the planner cannot use these lines
anymore. This is sensible, for instance, when an action simplifies a given support line with formula
z 4+ 0 > 0 to the new support with formula z > 0. Likely, the old support will not be needed

anymore.
The proof plan under construction is represented in a PDS. The initial PDS consists of the
lines Lrhm and Lass,, - - -, Lass,- The effects and the preconditions of actions in MEGA’s proof

planning are proof lines. When a new action is added, then the new lines derived by this action
are added into the PDS. Moreover, all effect lines of the action are justified by an application of
the method of the action to the premises of the action. For instance, if an action of method M
has the premise lines L; and L, and the effect line L3, then L3 becomes justified in the PDS by
(M Ly Ly).

The justifications of the proof lines in the constructed PDS comprise the same information as
causal links known from partial-order planning (see [64, 54}): which preconditions of an action are
satisfied by which effects of other actions and — vice versa — which effects of an action are used
to satisfy which preconditions of other actions. Thus, the PDS stores information such as which
lines are used by actions and which lines depend on which other lines. Moreover, it keeps track of
all proof lines created so far. Thereby, open lines in the PDS represent unsatisfied preconditions
of actions (initially, the theorem) whereas closed lines are effects of actions (initially, the proof
assumptions).

During a proof planning process, tasks in the agenda do always correspond to open lines in the
PDS, that is, for an open line in the current PDS there exists a task in the current agenda with
this line as goal and vice versa. Thus, with respect to the agenda and the constructed PDS, we
can state the aim of the proof planning process as follows: Compute a sequence of actions, which
derives, starting from the initial agenda and the initial PDS, an empty agenda and a closed PDS,
that is, a PDS without open lines. The solution proof plan is a record of this sequence of actions.
The simultaneous achievement of an empty agenda and a closed PDS mirrors the two roots of
proof planning: From the Al-planning point of view the aim is to compute a sequence of actions

3To simplify this example, we just write the formulas of the goal and the support line instead of the whole proof
lines.

that satisfy all goals, that is, to reach an empty agenda. From the tactical theorem proving point
of view the aim is to apply a sequence of tactics, which result in a closed PDS.

The proof planners PLAN and MULTI essentially work on an agenda and its tasks. First,
they compute applicable actions for the current tasks. Then, they select one action and apply it.
This results in new tasks. Technically, the simultaneous maintenance of a PDS during the proof
planning process is not necessary for the two planners. In particular, if needed, a closed PDS could
be constructed from the computed set of actions later on. However, historically proof planning in
QMEGA did construct a PDS and an agenda was only introduced as a bookkeeping mechanism for
the open proof lines. Practically, the PDS is important because of two reasons: First, {MEGA’s
tools for user interaction (e.g., its graphical user interface) are based on the PDS as the central
data structure. During the proof planning process the constructed PDS is presented to the user
as the current state of progress. When describing sample applications of PLAN and MULTI in
section 3.5 and 4.5 we shall also use PDSs as a means to display and discuss the constructed proof
plans. Second, the PDS is a representation of the current proof plan, i.e., the current sequence of
actions, and explicitly stores information that is important for the control rules (e.g., which lines
depend on which other lines etc.). Although this information could be computed from the current
sequence of actions each time it is needed, it is more convenient to use the PDS as a bookkeeper.

2.3 Methods

Methods encode the knowledge of the relevant proof steps of mathematical domains. Tech-
nically, a method in 2MEGA is a frame data structure with the slots declarations, parameters,
application conditions, premises, conclusions, outline computations, expansion computations, and proof
schema.

The premises and conclusions of a method specify the preconditions and the effects of the
method.# The conclusions should be logically inferable from the premises. The union of conclusions
and premises is called the outline of a method. Declarative descriptions of the formulas of the
outline can be given in the proof schema, which also provides the schematic or procedural expansion
information (see below).

Premises and conclusions may be annotated with & and ©. The annotations are needed to
indicate whether a method is used for forward or backward search. As opposed to Al-planning,
where operators typically can be applied for both forward search and backward search, a method in
QIMEGA is either used in forward search or in backward search. This is because methods typically
comprise complex computations that are reasonable either in one direction or in the other direction.

As example, consider methods that employ a computer algebra system to simplify numerical
expressions. A backward method can employ the computer algebra system in order to reduce
a goal to a simplified goal. A corresponding forward method can employ the computer algebra
system in order to derive a simplified support line. But what should the backward method perform
when applied forwards? Does it obtain a “simplified” support line and tries to “complicate” it in
order to obtain a more “difficult” support? Vice versa, what should the forward method perform
when applied backwards? Does it obtain a “simplified” goal, which it tries to “complicate”?

Backward and forward methods are specified as follows: A backward method has & conclusions
and @ premises as well as © premises and blank premises. To compute an action of the method,
one of the © conclusions is matched with the goal of a given task and both, the © premises and the
blank premises, are matched with supports of the task. When the resulting action is introduced
into the proof plan, then the goal is closed in the PDS and the & premises are added to the PDS
and become goals of new tasks. These new tasks inherit the supports of the initial task except
that the © premises are removed. The blank premises are not affected. A forward method has
@ conclusions as well as © premises and blank premises. To compute an action of the method,
the © premises and the blank premises are matched with the support lines of a given task. When
the resulting action is introduced into the proof plan, then the & conclusions are added to the

4That preconditions and effects of a method are called the premises and conclusions of the method, respectively,
is an example for the combination of Al-planning and tactical theorem proving in proof planning. If we see the
method as tactic, then the effects of a method are the conclusions of a tactic and the preconditions are the premises.

PDS and become new support lines of the task. Moreover, the & premises are removed from the
supports of the task. Again, the blank premises are not affected.

Method: =Subst-B
type-variables: a
declarations variables: fo, fg, ta, tg, POSposition
tfcxv tf(_{n >‘f110

parameters DOS
(1) valid-position-p(f,pos)
appl. conds. (2) [term-at-position(f,pos) =t V
term-at-position(f,pos) = t']
premises ®Lo, L,
conclusions ©Lg

outline computations |f’ — replace-at-position(f t.t',pos)
tf «— term-at-position(f,pos)
expansion computations |t f’' « term-at-position(f’,pos)

Af «— lambda-abstraction(f,pos)

Li. a Ft=t 0

L. a F f’ (Open)

Li. a FVPaouP(tf') = P(tf) (=g =)
proof schema Ls. & - ()\f) (tf’) = (Af)(tf) (Ve Li Af)

Le. a Fftf']= f[tf] (A= Ls)

Ly. a +f (=g Lz Le)

Figure 1: The =Subst-B method.

Consider the method =Subst-B, given in Figure 1, which can be used in all domains that
employ the equality =. Essentially, the method performs an equality substitution. It has two
preconditions L; and L3, where the proof schema determines L) to be an equation. The only
conclusion is L3. =Subst-B is a backward method. The introduction of an action of =Subst-B
closes a task line whose formula matches with the formula of L3 and introduces a new task whose
goal is the instantiation of Lp. That is, the formula of the new goal results from the formula of the
initial goal by substitution with the equation, which is the formula of a support of the initial task
that matched with L;. For instance, =Subst-B applied to the task even(a+1) < {a=1,...}°
introduces the new goal even(l + 1).

In the declarations of a method the variables of the method and their types are introduced.

The parameters of a method are specific variables that influence the resulting action, when the
method is instantiated. The =Subst-B method has the parameter pos which is of type position.
The method can be applied to different positions, e.g., for the task even(a +a) « {a=1,...} at
the first or the second occurrence of a in the goal. The choice of pos determines which a should
be replaced.

The application conditions of a method are meta-level descriptions that restrict the applicability
of a method. The application conditions can consist of arbitrary LISP functions. The method
=Subst-B has two application conditions: (1) the position pos has to be a valid position in the
formula f and (2) the subterm in f at the position pos is t or t. Note that application conditions
reason only about whether the application of a method is valid in a certain situation; they do not
reason about whether the application is useful.

The outline computations of a method allow to apply arbitrary LISP functions to compute
the new terms and formulas of new outline lines generated by an application of the method.
The outline computation of =Subst-B specifies that the new formula f’ is computed from f by

5To simplify this example, we just write the formulas of the goal and the support line instead of the whole proof
lines.

replacing ¢ by t’ or ¢’ by t at the position pos depending on whether the subterm in f at position
pos istort'.

Similarly, the ezpansion computations of a method allow to apply arbitrary LISP functions to
compute the new terms and formulas generated during the expansion of an action of the method.
The expansion computation of =Subst-B specifies that the terms tf and tf’ are computed as
the subterms of f and f’ at position pos, respectively. Moreover, the term Af is computed as a
A-abstraction of f where the term at position pos is replaced by the A -bound variable (that is,
essentially \f has the form Az,. f[z], where f[z] is the term that results from f by replacing the
subterm at position pos by z).

The proof schema of a method is a declarative description of the outline of a method and of the
expansion of actions of the method. Expansions of actions corresponds to both tactic expansions
and expansions of HTN-planning [60]. When an action of the method is expanded, then for
each conclusion a new subproof is introduced into the PDS resulting in new justifications of the
conclusion at a lower level of abstraction. For instance, the proof schema of =Subst-B specifies
that the defined concept = in the premise is replaced by its definition. Then, the calculus rules
VE, A=, and =g are applied to derive the conclusion of the method.

Generally, proof construction may require to construct mathematical objects, for instance, if
a method has to instantiate existentially quantified variables by witness terms. A witness term
has to be a concrete term. However, if the method is applied at an early stage of the proof,
the planner generally has no knowledge of the true nature of the witness term. Therefore, the
actual instantiation of witnesses is postponed; rather, methods introduce so-called meta-variables
as temporary substitutes for the actual witness terms, which will be determined at a later point
in the planning process and subsequently instantiated.

Notation 2.3: In this report, we write muv for meta-variables. If several meta-variables occur,
we attach subscripts to mv in order to distinguish the meta-variables. We either use the variable
for whose instantiation the meta-variable is a substitute as subscript (e.g., we write mv, if mv is
a substitute for the instantiation of the variable z) or we use numbers. If the decomposition of
a quantified formula results in the introduction of a constant, then we write c for this constant.
Similar to the notation for meta-variables, we use either the initial variable or numbers as subscripts
to distinguish several occurring constants.

Notation 2.4: Methods are written in SMALL CAPITAL FONT (e.g., =Subst-B). The name of
backward methods ends with -B whereas the name of forward methods ends with -F.

2.4 Actions

An action is an instantiation of a method. Technically, an action in QMEGA is a frame data
structure that has the slots method, task, premises, conclusions, binding, and constraints. The method
of an action is a pointer to the method of which the action is an instantiation. The task of an
action is a pointer to the task with respect to which the action was computed. The conclusions
and premises of an action are sets of proof lines, respectively, which can be annotated with ©
and @. The binding of an action is a substitution that (1) maps outline lines of the method to
proof lines and (2) maps variables specified in the declarations of the method to terms, positions,
etc. The constraints of an action are constraints that can be created by the evaluation of the
application conditions of a method and that have to be passed to external constraint solvers (see
section 2.6). Similar to methods, we call the union of the premises and conclusions of an action
the outline of the action. The union of @ premises and & conclusions of an action is also called the
new lines of an action (i.e., the proof lines which are produced by an action), whereas the union of
© premises, blank premises, and © conclusions is called the given lines of an action (i.e., the proof
lines which have to be given in order to compute an action). Actions of forward methods are also
called forward actions whereas actions of backward methods are also called backward actions.

Example 2.5:

Action

method =Subst-B
task Lrhm «{Lass,, Lass,}
premises @ Lrhm'. Lass,, Lass, F even(c+b) (Open)
LAss;- LA551 F a=c (Hyp)
conclusions|© Lrpm. Lass,,Lass, F even(a+b) (Open)
isding {L3 = Lthm,L1 — Lass,» L2 = LThm', f — even(a+b),a — v,
t—a,t' > c,pos—><11>,f even(c+b)}

constraints |{)

Figure 2: An action with the =Subst-B method.

Consider the action in Figure 2. It is an instantiation of the method =Subst-B computed with
respect to the task Lrpm 4 {LAass,, LAassy}. The proof line Lrpm, is the only conclusion of the
"action (annotated with ©) whereas the proof lines L 455, and Lrpm are the premises of the action
(LThm' annotated with @). The binding maps all outline lines of the =Subst-B method (i.e.,
Ly, Ls, L3) to the conclusions and the premises of the action and maps all variables declared in
=Subst-B to terms and positions. The constraints of this action are empty.

The instantiation of a method in order to compute an admissible action comprises the following
steps: First, the formulas of the conclusions and premises have to be matched with formulas
of goals and their supports. If this succeeds, then the application conditions can be evaluated.
If they evaluate to true, the method is applicable (wrt. to the computed matchings). Then, the
outline computations have to be performed and the new lines of the outline have to be computed to
complete the action. A detailed description on how actions are computed, selected, and introduced
into a proof plan is given in the next section, when we describe PLAN. For the action in Figure 2
we give a summary of the computation and introduction into a proof plan here.

Suppose the current PDS corresponding to the task Lrnm, € {Lass;, LAass,} is:

Lass,- Lassy Fay,=c, (Hyp)
LA532~ LAssy F bl/ic (Hyp)
Lrhm- Lass Lass, I €VENo(a+b) (Open)

When the action in Figure 2 is computed, then first the lines L, and L3 of the method =Subst-B
are matched with the lines L 455, and Ly, of the PDS, respectively. Afterwards, the application
conditions are evaluated and the outline computations of the method are performed. Next, the
missing outline is computed. In our example, the new @ premise L7, is computed and is justified
with Open. When the action is introduced, then its effect Lrp,, is justified in the PDS by an
application of the method =Subst-B to the premises Lrpm,: and L 445, Of the action. Moreover,
the new proof line Lrpn, is introduced into the PDS. The resulting PDS is:

Lass,- Lassy Fa,=c, (Hyp)

Lassy. Lassy Fb,=c (Hyp)

Lynmi- Lass; Lass, | even(c+b) (Open)

LThm- Lass;-Lase, [evEN,o(a+b) (=Subst-B Lyyms Lass;)

The task Lrhm 4 {Lass;, Lass,} in the agenda is replaced by the task Lznm: € {Lass;, Lass, }-

Proof planning in QMEGA is a process that computes actions and introduces them into the
proof plan under construction. However, since the introduced actions are represented in the PDS
as applications of their methods we also use the phrase action application instead of action intro-
duction, if we want to emphasize the changes in the PDS. We also use the following vocabulary
from tactical theorem proving. We say that the application of a backward action closes an open
line or a task, if the open line or the goal of the task is an effect of the action and is closed by the
introduction of the action into the proof plan under construction. We say that a forward action
1s applied to some lines or to some supports, if the lines or supports are the preconditions of the
action. Moreover, we say that we apply a method to a task or to some lines as an abbreviation
for the application of an action of the method to the task or to some lines.

2.5 Control Rules

Control rules provide guidance of the proof planning process by declaratively representing heuris-
tical knowledge that corresponds to mathematical intuition about how to prove a goal in a certain
situation. In particular, these rules provide the basis for meta-level reasoning and a global guid-
ance since they can express conditions for a decision that depends on all available knowledge
about the proof planning process so far. Several experiments indicate the superiority of a separate
representation of control knowledge by control rules [49]. This representation is well-suited for
modifications and for learning. The control rules used in QMEGA’s proof planning were adopted
from the control rule approach of the Al-planner PRODIGY [62],

In the planning process control rules guide decisions at choice points, e.g., which task to
tackle next or which method to apply next. They achieve this by reasoning about the heuristic
utility of different alternatives® in order to promote the alternatives that seem to suit best in the
current situation, where ‘situation’ comprises all available information on the current status such
as the current tasks, their supports, the planning history, failed attempts etc. To manipulate an
alternative list control rules can remove elements, prefer certain elements, or add new elements.
This way, the ranking of alternatives is dynamically changed. This can help to prune the search
space or to promote certain promising search paths.

Technically, control rules consist of an IF- and a THEN-part. The IF-part is a predicate on the
current proof planning ‘situation’, whereas in the THEN-part modifications of alternative lists are
stated. Moreover, each control rules specifies its kind, i.e., the choice point in the proof planning
process it guides.

(control-rule prove-inequality
(kind methods)
(IF (and (goal-matches (REL A B))
(in REL {<,>,%,2}))
(THEN (prefer (TELLCS-B TELLCS-F ASKCS-B SIMPLIFY-B
SIMPLIFY-F SOLVE*-B COMPLEXESTIMATE-B
SETFOCUS-B))))

Figure 3: The control rule prove-inequality.

Figure 3 gives as example the control rule prove-inequality, which is evaluated during the
selection of the next method to apply. In its IF-part prove-inequality checks whether the
current goal is an inequality. If this is the case, it prefers the methods TELLCS-B, TELLCS-F,
AskCS-B, SIMPLIFY-B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, and SETFOCUS-B in
this order (these methods are explained in section 2.6 and section 3.5). The prefer states that
the methods specified in the control rule are preferred before all other methods, i.e., the specified
methods are ordered in front of the resulting alternative list. Other possible modifications of
alternative lists are select, reject, defer, and order-in-front. select states that all other methods
except those specified in the control rule are eliminated from the list of alternative methods.
reject removes all alternatives specified in the control rule from a given alternative list, the latter
two manipulations reorder the alternative list. defer orders all specified alternatives at the end
of the alternative list, and order-in-front orders specified alternatives in front of other specified
alternatives. Finally, there is the insert modification. It allows to introduce new elements in an
alternative list. A typical situation for using an insert control rule is when a general control rule
— which is applied first — removes some elements from the alternative list, which are needed in
a particular situation. Then a more specific insert control rule, which is applied later on, can
introduce the needed elements again.

6As opposed to application conditions of methods, which reason about the legal feasibility of applications of
methods (see last section).

Notation 2.6: Control rules are denoted in the typewriter font (e.g., prove-inequality).
Technically, control rules are frame data structures. Since they are considerably simpler as, for
instance, methods, we do not present them in the data structure fashion (as we do with methods)
rather we give their LISP encoding. That is, the content of Figure 3 is the specification of the
control rule prove-inequality as it is in §MEGA’s data base.

2.6 Incorporating External Systems into Proof Planning

We use a special kind of domain knowledge in MEGA, namely the knowledge about and in external
“expert” systems. Proof problems usually require many different capabilities for their solution, for
instance, computation and object construction. In order to solve problems, it is often necessary to
access several systems with complementary capabilities and to make use of their results. Various
“expert” systems exist for mathematical problem solving, which have their specific data structures
and very efficient algorithms, e.g., computer algebra systems, constraint solvers, model generators,
and machine-oriented automated theorem provers. They can support the proof planning process
by performing computations, detecting inconsistencies, suggesting instantiations of variables, or
solving subproblems.

In general, QMEGA’s proof planning can treat computations from external systems in two
ways: as hints or as proof steps. The difference is that the soundness of hints is checked by the
subsequent proof planning process, which either fails or succeeds for the given hint. To guarantee
the soundness of proof steps, special procedures have to be provided, which transform the output
of an external system into a subproof that QMEGA can check, i.e., special procedures that perform
the expansion of such proof steps to ND. Technically, the interface of proof planning to external
systems is realized by the LISP functions of methods and control rules. Methods can call external
systems in their application conditions and outline computations;” similarly, control rules can
employ external systems in the predicates of their IF-part.

Figure 4 and Figure 5 show the two methods COMPLEXESTIMATE-B and TELLCS-B whose
application conditions comprise calls to external systems, respectively. Both methods are central
for planning limit problems (see section 3.5).

CoMPLEXESTIMATE-B is a method for estimating the magnitude of the absolute value of com-
plex terms.® COMPLEXESTIMATE-B is applicable to tasks whose goal has the formula |b| < €
(corresponding to line Lg in Figure 4) and that have supports with formula |a] < € (corre-
sponding to line L; in Figure 4). In its application conditions COMPLEXESTIMATE-B uses the
function linearextract. When applied to a and b linearextract employs the computer algebra system
MAPLE [52] to compute suitable terms k and ! such that b = k*a+! holds. linearextract also com-
putes a substitution o such that bo = ko * ao + lo holds (where bo, ko, lo result from b, k, 1 by the
application of the substitution o, respectively). Thereby, the substitution ¢ maps meta-variables
in a, b to terms. COMPLEXESTIMATE-B is applicable only, if MAPLE provides k and ! such that
linearextract evaluates to true. If this is the case, the application of a corresponding action of the
method reduces the original task to five tasks whose goals correspond to the lines L2, L4, Ls, Lg, L7
in Figure 4. L7 has the formula conjunct, which is computed from the substitution o by the func-
tion form-conjunction. This formula is the conjunction of the mappings of the substitution o. That
is, if o maps the meta-variables mvy, ..., mv, to the terms ti,...,t,, respectively, then conjunct
has the form mv=t1 A ... Amv,=t,. If o is empty, then conjunct is simply T'rue, the primitive
truth. The justification fir for Lg in the proof schema is only an abbreviation that stands for
a sequence of about 20 tactic steps that comprises, in particular, an application of the triangle
inequality. The application of MAPLE is reflected in line Lg of the proof schema, which is justified
by the tactic CAS. When this tactic is expanded, it employs the SAPPER [58] system to obtain a
formal proof of the statement bo = ko * ao + lo suggested by MAPLE.

7Technically, calls of external systems in the expansion computations of methods are also possible. Currently,

there is no method that performs such calls.
8CoMPLEXESTIMATE-B essentially is a reconstruction (see [41]) of BLEDSOE’S limit heuristic that was used in a

special-purpose program [8].

10

Method: COMPLEXESTIMATE-B
variables: b, €, a, €, [, k,
ao, ko, lo, bo, eo, €0,

declarations .
conjunct, o
meta-variables: mv
parameters
appl. conds. linearextract(a, b,l, k, o)
premises L1, ®L2, ®L4, ®Ls, ®Le, SL7
conclusions ©Lg

ao := subst-apply (o, a)

ko := subst-apply (o, k)

lo := subst-apply (o, 1)

outline computations |bo := subst-gpply (o, b)

€0 := subst-apply (o, €)

€'o := subst-apply (o, €’)
conjunct := form-conjunction (o)

expansion computations

L. a Flaj<¢é 0
L. a Feo < ngw (Open)
Ls. o Flao| < 552%- (< trans L1 L3)
Lsy. a F Ik’U' < mv (Open)
proof schema Ls. a Flloj<$ (Open)
Le. & FO<mu (Open)
L;. a Fconjunct (Open)
Ls. & Fbo=ko*aoc+loc (CAS)
Le. & Flb<e (fiz L3 Lg Ls L L7 L)

Figure 4: The COMPLEXESTIMATE-B method.

For instance, when applied to a task with formula |(f(cz) —g(cz)) — (l1 —l2)| < € and a support
with formula | f(mvz) — 11| < €’ with a meta-variable mu,, then linearextract succeeds and provides
k=1,1 = g(cz)—!2, and a substitution ¢ that maps mv, to c;. The application of a corresponding
action of COMPLEXESTIMATE-B reduces the given task to new tasks whose goals are |1| < mu,
€ < 55—, |9(cz) — L2| < §, 0 < mv, and muz=c,.

The method TELLCS-B realizes an interface to CoSZE [47], a constraint solver for inequalities
and equations over the field of real numbers. TELLCS-B is applicable to tasks with formulas
rel(a,b) where rel is a binary predicate. Examples of matching predicates are, for instance, <, <.
In its application conditions TELLCS-B first tests whether a or b contain some meta-variables. If
this is the case, rel(a, b) is interpreted as a constraint on these meta-variables. TELLCS-B applies
then the function test-CS that connects to CoSZE to test (1) whether rel(a,b) is a syntactically
valid constraint for CoSZE (in particular, rel has to be <,<,>,>,=, or #) and (2) whether
rel(a, b) is consistent with the current constraint store of CoSZE. If this is the case, TELLCS-B is
applicable and the corresponding action of TELLCS-B contains in its constraints slot the constraint
rel(a,b). The introduction of the action closes the goal without producing further subtasks and
passes rel(a, b) as new constraint to CoSZE.

Figure 6 shows an action of the method TELLCS-B. This action contains the constraint
0 < mwp, which is annotated with CoSZE to indicate that the constraint has to be passed
to CoSZE. The constraint results from the evaluation of the application condition test-cs of
TeELLCS-B.

CoSZIE can provide instantiations of the constrained meta-variables that are consistent with
the collected constraints. For instance, suppose during the proof planning process there are three
tasks whose goals have the formulas 0 < mvp, mvp < 61, mvp < d2, which all contain the meta-

11

Method: TELLCS-B

declarations variables: a, b, rel
parameters

(1) metavar-in(a) V metavar-in(b)
2ppl. €nds. (2) test-CS (CoSTE rel(a, b))
premises
conclusions oL,

outline computations

expansion computations
proof schema Li. a Frelo(ay,by,) (ProveCS)

Figure 5: The TELLCS-B method.

Action
method |(TELLCS-B
task Ly « {L4, L5}

premises
conclusions|© Lyg. Ly, Ls F 0 < mvp (Open)
binding {Ly — Lip,a — 0,b = mvp,rel —»<}
constraints [{CoSZE:0 < mup}

Figure 6: An action with the TELLCS-B method.

variable mvp. All three goals are closed by actions of TELLCS-B. Moreover, suppose there are
also two supports with formulas 0 < §; and 0 < &, which are passed to CoSZE by actions of the
method TELLCS-F, which is the analogous of TELLCS-B to pass constraints in supports to CoSZE.
From the resulting constraint store, CoSZE can compute min(dy, d2) as suitable instantiation for
mup. Moreover, CoSZE provides traces of its computations, which can be used to expand the
applications of the actions of TELLCS-B.

Another method that establishes a connection to CoSZE is ASKCS-B. Similar to TELLCS-B,
this method is applicable to tasks whose goal formulas are of the form rel(a,b). But whereas
TELLCS-B demands that a or b contain some meta-variables, ASKCS-B covers the case that a
and b contain no meta-variables. An application condition of ASKCS-B passes the formula to
CoSZE and asks CoSTE whether the formula holds with respect to the constraints collected so
far. If this is the case, then AskKCS-B closes the goal. Since CoSZE can also handle formulas on
concrete real numbers, for instance, 1 < 2 or 0 < 0, AskCS-B can also close goals whose formulas
are expressions on concrete real numbers.

Note that besides TELLCS-B and TELLCS-F also the methods VI-B and JE-F pass constraints
to CoSZE. Actions of VI-B perform backward applications of the ND-rule V; by reducing a task
with task formula Vz. P[z] to a new task with task formula P[c], where the variable x is replaced
by a constant ¢. For each meta-variable mv in P[c] an action of VI-B also passes the Eigenvariable
constraint clgmuv to CoSZE that states that the instantiation for mv is not allowed to contain c.
This constraint guarantees the adherence with the Eigenvariable conditions of the V; rule of the
ND-calculus. Actions of the IJE-F method perform a forward step with the 3¢ rule. Similar to
action of VI-B they pass Eigenvariable constraints to CoSZE that demand the adherence of the
Eigenvariable conditions of the 3g rule.

3 Proof Planning with PLAN

PLAN is QOMEGA’s simple proof planner. It proceeds by successively computing and introducing
actions into a proof plan under construction. Preceding the formal description of PLAN (see

12

section 3.2), Table 1 shows the skeleton of PLAN’s algorithm. Essentially, PLAN follows the
precondition achievement paradigm (see section 2.1). First, it selects a task to work on. Then, it
computes actions for this task and selects one action, which it introduces into the proof plan under
construction. This results in new tasks on which PLAN continues. If PLAN fails to compute
an action for a selected task, then it performs backtracking. Although actions can perform both,
forward reasoning and backward reasoning, an action is always chosen with respect to a task
in order to close or to reduce the gap between the goal and the supports of the task.® Some
decisions in PLAN can be guided by control rules, for instance, the selection of the next task
and the selection of the next action. Other decisions, however, are hard-coded into the system.
For instance, PLAN employs backtracking if and only if it tackles a task, for which it fails to
compute an action. Moreover, it employs external constraint solvers to obtain instantiations for
meta-variables if and only if the agenda is empty and the PDS is closed.

1. When the current agenda is empty and the current PDS is closed, then apply external
constraint solvers to compute variable instantiations consistent with the collected constraints

and terminate.
Select a task T from the agenda.

Compute and select an action A with respect to T'.

B b

If an action A could be computed for T, then introduce A. Goto step 1.

5. If no action A could be computed for T', then backtrack the action whose introduction created
the task T. Goto step 1.

Table 1: Cycle of PLAN.

A node in the search space of PLAN is given by a set of tasks, i.e., an agenda. PLAN starts
with the initial agenda. The next node in the search space is reached by the introduction of
an action, which changes the agenda etc. A forward action creates a new task by changing the
supports of a given task whereas a backward action replaces a task by some new tasks with new
goals. The planning process stops as soon as a node in the search space is reached whose set of
tasks is empty.

Proof planning does not suffer from the conjunctive goal problems of Al-planners that perform
precondition achievement planning.'® The derivation of a formula F in the subplan for a subgoal is
not threatened or removed by the derivation of the negated formula —F in the subplan for another
subgoal. Hence, PLAN does not perform any threat resolution like demotion or promotion of
actions. Moreover, since no re-ordering of introduced actions is performed, PLAN is a total-order
planner that computes a sequence of actions.

PLAN'’s subprocedure for action deletion performs dependency-directed backtracking [59]. In-
stead of backtracking to the last decision point (so-called chronological backtracking), the idea of
dependency-directed backtracking is to analyze which decisions along a search branch caused a
failure. Then, decisions are removed and alternatives are tried based on the found dependencies,
rather than the chronological order in which decisions were made. Since there is some ambiguity
in the previous use of the term dependency-directed backtracking. We use the term as defined
in [53] (p. 212): “Sometimes, though, we have additional information that tells us which guess
(along a search branch) caused the problem. We’d like to retract only that guess and the work that

9In the existing implementation PLAN can introduce a forward action with respect to several tasks simultane-
ously. This corresponds to the successive application of several actions to a single task, respectively. In order to
simplify the formal discussion of PLAN we shall describe the action introduction only with respect to one task.

10Given a conjunctive goal, it seems natural to try divide and conquer, but the subplans achieving the single
subgoals may interfere and do not achieve the desired goals together. A famous example for this problem is the
so-called “Sussman anomaly” problem in the blocks world. A detailed discussion of planning in the blocks world
as well as the “Sussman anomaly” can be found in standard Al-textbooks, e.g., in [54].

13

ezplicitly depended on it, leaving everything else that has happened in the meantime intact. This
is exactly what dependency-directed backtracking does.” Note that in this approach dependency-
directed backtracking does not return to an already visited search state but can lead to a new
state not visited before. In [24] the same approach is called dynamic backtracking because of the
dynamic way in which the search is structured. In [28] the term dependency-directed backtracking
refers to the approach that analyzes which decision caused a failure and to backtrack to this choice
point. That is, all steps done after this decision are removed and an already visited search state
is reached again.

Besides the information on the current planning state PLAN has also to maintain information
on the search performed so far. In particular, it is necessary to store and make use of information on
failing decisions in order to try alternatives instead. Search procedures that perform chronological
backtracking often use search trees, which capture possible alternatives as well as made and failed
decisions to store information on the traversed search space (e.g., see [1]). Since PLAN performs
dependency-directed backtracking we decided for a different approach. PLAN maintains a so-
called history. A history is a sequence of manipulation records. Figure 7 shows the skeletons of
the two manipulation records, the action-introduction record and the action-deletion record, of
PLAN.

Action-Introduction:

agenda Action-Deletion:
introduced-action agenda

alternatives deleted-action
new-tasks

Figure 7: Manipulation records in PLAN.

The slot agenda captures the context in which the manipulation was done (i.e., the agenda before
the manipulation), the slots introduced-action and deleted-action capture the performed manipulation
(i.e., the introduced or deleted action), the slot alternatives captures alternative actions available
as the introduced action was chosen, and the slot new-tasks captures the new tasks created by
the application of the chosen action. PLAN records each action introduction or deletion with a
corresponding entry in the history. It makes direct use of this information, when selecting the next
action: it does not choose again an action that was already deleted (see section 3.4). Since PLAN
does not return to a particular search state it does not make direct use of the stored alternative
actions. However, the information of the history is available to the control rules, which can reason
on backtracked steps and possible alternative actions.!!

In the remainder of this section, we give a detailed description of PLAN. First, we give some
formal definitions that culminate in a definition of proof plans and solution proof plans. Then, the
subsequent sections give detailed descriptions of PLAN’s main algorithm and its subalgorithms
for action computation and deletion. As conclusion of the section, we discuss a sample application
of PLAN.

Notation 3.1: In the remainder of the report, the following symbols (maybe labeled with some
subscripts or superscripts) are associated with the following objects:

A denotes a sequence of actions,
P denotes a PDS,

A denotes an agenda,

H denotes a history.

3.1 Formal Definition of Proof Plans in PLAN

The aim of this section is to give a formal description of proof plans. We start with definitions of
a proof planning problem, an initial PDS of a proof planning problem, and an initial agenda of a

11'We are currently extending manipulation records to capture also information on the reasons that support a
certain decision.

14

proof planning problem.

Definition 3.2 (Proof Planning Problem): A proof planning problem is a quadruple
(Thm,{Assi, ..., Assn}, M,C) where Thm and Assy,. .., Ass, are formulas in QMEGA’s higher-
order language, M is a set of methods, and C is a set of control rules. Thm is also called the
theorem of the proof planning problem whereas Ass, ..., Ass, are called the assumptions of the
proof planning problem.

Definition 3.3 (Initial PDS, Initial Agenda): Let (Thm, {Assy,...,Assn}, M,C) be a proof
planning problem. The initial PDS of this proof planning problem is the PDS that consists of
an open line Ly, with formula Thm and the lines L 445, with formula Ass; and the hypothesis
justification Hyp, respectively. The initial agenda of the proof planning problem is the agenda
that consists of the task LThm € {LAass,, .- -, LAss, }- The task Lrpm € {Lassy,---,Lass,} is also
called the initial task of the proof planning problem. O

Next, we define, when an action is applicable with respect to a PDS. Informally speaking,
this is the case, when the given lines of the action are in the PDS. Afterwards, we introduce the
action introduction function ®, which describes the operational semantics of an action when it
is applied to an agenda, a PDS, and a sequence of actions (i.e., ® defines a transition relation
between triples of agendas, PDSs, and sequences of actions).

Definition 3.4 (Applicable Actions): Let P be a PDS and Aaq4q an action. Moreover, let £
be the set of proof lines of P and let ©Concs be the © conclusions, © Prems the © premises, and
BPrems the blank premises of Agqgq.

Aqdd is applicable with respect to P if

e (6Concs U 6Prems U BPrems) is a subset of L.
0

Definition 3.5 (Action Introduction Function ®): The action introduction function ® is a
partial function that maps a sequence of actions, an agenda, a PDS, and an action into a sequence
of actions, an agenda, and a PDS, i.e.,

@:XxAxPanddHE’xA’xP’.
Let Ag4g be an action that is applicable with respect to the PDS P. Let @&Concs be the &
conclusions, ©Concs the © conclusions, @ Prems the & premises, ©Prems the © premises, and
BPrems the blank premises of Azq4. Moreover, let T = Lopen 4« SUPPS,,,,, be the task of
Acdd.
Prems:=@Prems U ©Prems U BPrems,
Concs:=@®Concs U &Concs
New-Lines:=®Concs U ®&Prems
New-Supps:=(SUPPSL,,., UPConcs) — &Prems.
New-Tasks:=|L 4 New-Supps | L € ®Prems].
If_:/f isa sequence_‘oanctions and A is an agenda that contains the task T of A,q44, then the result
(A, A’ P’) of ®(A, A, P, Agaq) is defined by:

® /i":= /TU [Aadd]~

o Ave New-TasksU (A — [T])) if Lopen € ©Concs,
" |[Lopen <« New-Supps] U New-TasksU (A — [T)) else.

e P’ results from P by

1. adding the proof lines New-Lines, respectively, and

15

2. justifying the proof lines ©Concs and @Concs with the justification (M Prems), re-
spectively, where M is the method of Agqq.

O

The recursive extension ® is called ®. ® introduces a whole sequence of actions (the arrow of
& indicates that this function introduces a sequence of actions Agq4q4).

Definition 3.6 (Recursive Action Introduction Function ®): The recursive action intro-

duction function disa partial function that maps a sequence of actions, an agenda, a PDS, and

a sequence of actions into a sequence of actions, an agenda, and a PDS, i.e.,
‘f’:A’XAXPXA‘addI—)A”XA’XP,.

d is recursively defined as follows:

Let A be a sequence of actions, A an agenda, P a PDS, and A,44 & sequence of actions.

1. If A,q44 is empty then Ci;(ff, AP, /Tadd) = (ff,A,P).

2. Otherwise let Agqq := first(/fadd) and ff’add e feSt(l‘Tadd)- If Agqq is applicable with respect

to P, and if A contains the task of Aggq, then o
D(A,A, P, Asdd) = (P(A,A, P, Avda), A'add)-

O

With the function ® we can now define proof plans and solution proof plans.

Definition 3.7 (Proof Plans and Solution Proof Plans):

Let (Thm,{Assi,...,Assp}, M,C) be a proof planning problem, Pin;; the initial PDS of this
problem, and Ajnit its initial agenda.

A proof plan for the proof planning problem is a triple PP = (ﬁ, A, P) with a sequence of actions
A, an agenda A, and a PDS P such that:

1. the methods of each action of A are in M,
2. (A') Aw P) = 5([]7 Ai’nitv Pinita A‘)v

é solution proof plan for the proof planning problem is a sequence of actions A such that
®([], Ainit, Pinit, A) has an empty agenda and a closed PDS. O

Because of this definition, we can also say that ® maps a proof plan and an action into a proof
plan and that ® maps a proof plan and a sequence of actions into a proof plan.

3.2 The PLAN Algorithm

Figure 8 gives a pseudo-code description of the PLAN algorithm. PLAN obtains as input a proof
plan PP = (ff, A, P), a history H, a list of methods M, and a list of control rules C.}? PLAN
generates a sequence of pairs of proof plans PP and histories H. The user of IMEGA can start
PLAN with the initial PDS, the initial agenda, and the set of methods and control rules of a proof
planning problem. In order to reach the next proof plan and the next history PLAN performs
a cycle of termination check, task selection, action selection and action introduction or action
deletion. It terminates when either the agenda of the current proof plan is empty (see step 1 in
Figure 8) or when there are neither further actions to be introduced nor actions to be removed
(see step 5 in Figure 8). In the former case PLAN was successful and returns the proof plan and
the constructed closed PDS. In the latter case, PLAN did traverse the complete search space
without finding a proof plan and returns fail.

12Both methods M and control rules C are lists and not sets since the order in these lists are relevant. The order
in M gives a default order in which the methods are tried, when no control rules fire and determine a different
order (see section 3.4). The order in C determines the order in which the control rules are evaluated.

16

Input: (1) a proof plan PP = (A',A,‘P) with a sequence of actions A, an agenda A, and a PDS
P, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a solution proof plan and a closed PDS or fail.

Algorithm: PLAN((./T, A, 'P),ﬁ,M,C)

1. Termination
If A is empty, then terminate and return employ-CS(A,P).

2. Task Selection .
Let current task T:= first(evalcrules-tasks (A,C))
where T is the pair Lopen, 4« SUPPSL

open

3. Action Selection
Let (Ag44,4):=CHOOSEACTION(T,H , M ,C)
where Agqq4q is an action and A is a set of alternative actions.

4. Action Introduction
If Agaq is given
then
(A, A, P):=®(A,A, P, Agaa).
H’:=add-action-intro-record (ff ,A,Aadd,A).

If extract-constraints (Agaq) # 0
then
pass-constraints (extract-constraints (Asqq4))-

PLAN((A",A°,P"),H’,M,C).

5. Action Deletion
If Agqq is not given
then
If Ais empty
then
Terminate and return fail.
else
Let Aqeason:=find-introducing-action(T,H).
(A, A, P’), H’):=BACKTRACK ((A,A,P),H [Areason])

PLAN((A’,A’,P’),H’ ,MC).

Figure 8: The PLAN algorithm.

If the current agenda is not empty, then PLAN first selects the next task to tackle (step 2 in
Figure 8). To do so, PLAN employs the function evalcrules-tasks. evalcrules-tasks evaluates the
control rules C of the kind ‘Tasks’ on the tasks list of the current agenda and returns a (possibly)
changed alternative list.!3 Then, PLAN picks the fist element of the resulting list as current task.

Next, PLAN employs the subalgorithm CHOOSEACTION to compute an action (step 3 in Fig-
ure 8). CHOOSEACTION is applied to the current task, the methods M, and the control rules C. It
tries to compute admissible actions and — if successful - it selects one action and returns it. Since

13 Although we do not explicitly provide the current proof plan and the current history as arguments for
evalcrules-tasks, the predicates in the IF-part of the evaluated control rules can make use of this status in-
formation. This holds for all kinds of control rules, not only for the control rules of kind ‘Tasks’ evaluated here.

17

CHOOSEACTION is a complex algorithm we shall discuss it in detail in section 3.4.

If CHOOSEACTION returns an action, then PLAN introduces the action (step 4 in Figure 8). It
creates a new proof plan by applying the action introduction function @ to the current proof plan
and the chosen action. Moreover, it creates a new history by adding a new action-introduction
record entry to the history. PLAN uses the function extract-constraints to access the constraints
of an action. When the action contains constraints for the connected external constraint solvers,
then PLAN employs the function pass-constraints, which passes the constraints to the respective
external system. PLAN does not check whether the new constraints are accepted by the respective
external system. Rather, it assumes that corresponding consistency checks are performed by
CHOOSEACTION as part of the evaluation of the application conditions of a method, when an action
is computed.

‘When CHOOSEACTION fails to provide an action, then PLAN tries to delete actions in the current
proof plan (step 5 in Figure 8). If the current sequence of actions is empty, then this is obviously
not possible. When there are no more actions that can be introduced and the current sequence
of actions is empty, then PLAN did traverse the complete search space (complete wrt. to the
methods M and the control rules C) without finding a solution proof plan. In this case, PLAN
terminates and returns fail. If there are actions that can be deleted, then PLAN employs the
function find-introducing-action to determine the action whose introduction created the task T' for
which no action can be computed. The information about which action introduction did introduce
which task can be found in the history in the action-introduction entries. Then, PLAN employs
the subalgorithm BACKTRACK to perform the deletion of the selected action and all further actions
that explicitly depend on it. BACKTRACK is applied to the current proof plan, the current history,
and a list with the action to be deleted as only element. It returns a changed proof plan and a
changed history. Since BACKTRACK is a complex algorithm we shall discuss it in detail in the next
section.

When the agenda is empty, then the introduction of actions stops and PLAN applies the
function employ-CS to the computed action sequence and the constructed PDS (step 1 in Figure 8).
This function employs the external constraint solvers to compute instantiations for the meta-
variables. Then, it substitutes all occurrences of the meta-variables in proof lines of the PDS and
the actions by their instantiations, respectively. It returns the resulting action sequence and the
instantiated PDS, which are then the output of PLAN.

Although proof planning actions are complex actions in the sense of HTN-planning, the expan-
sion of actions is not performed within PLAN. Rather, there are separate procedures in {MEGA
for the expansion of actions. When an expansion fails to produce a calculus-level proof and results
in new open lines, then PLAN can be re-invoked on the new tasks.

3.3 Deletion of Actions

Before we describe the BACKTRACK algorithm, we shall introduce the notion of dependency among
actions and when an action is deletable. When an action is introduced into a proof plan, then it
modifies the elements of the proof plan. Other actions introduced later on may depend on these
modifications. More concretely, when the new lines introduced by an action are used as given
lines by other actions introduced later on, then these actions depend on the preceding action.
Afterwards, we define the function for the deletion of an action from a proof plan. Since action
deletion is conceptually the inverse operation of action introduction we call this function o1
although technically @~ is not the inverse function of ®.

Definition 3.8 (Dependent Actions): Let A be a sequence of actions with

A=[A11 < Bodi § A‘i—-l,Aiv Ai+17 # wie An]
Let A; be an action with the @ conclusions &Concs, and the & premises @Prems. An action
Aj € {Aiqr, .. .,An} depends on A;, if A; is an action whose sets of conclusions or premises

contains a proof line of @Concs or @Prems (which are the new proof lines introduced by A4;). O

18

Definition 3.9 (Deletable Actions): Let A be a sequence of actions with
. A [Alv"' i— 17Adel1Ai+11”'7An]-
Age is deletable with respect to A, if the set of actions in A that depend on Age; is empty. O

In the following definition of the function ®~! we describe the modifications of the sequence
of actions, the agenda, and the PDS caused by the deletion of an action. Although the notion of
deletability of an action is defined only with respect to a sequence of actions, we demand in the
definition of ®~! that the agenda and the PDS are not arbitrary ones, but created by this sequence
of actions (in particular, by the action that should be deleted). The described modifications cannot
be performed with respect to an arbitrary PDS or an arbitrary agenda.

Definition 3.10 (Action Deletion Function ®~!): The action deletion function ®~! is a
partial function that maps a sequence of actions, an agenda, a PDS, and an action into a sequence
of actions, an agenda, and a PDS, i.e.,

L AXAXP X Ager— A x A x P
Let Age be a deletable action in A. Let ®Concs be the @ conclusions, ©Concs the © conclusions,
@®Prems the @ premises, ©Prems the © premises, and BPrems the blank premises of Age;.
Moreover, let T = L €« SUPPSL be the task of Age.
Lines-To-Remove:=®Concs U @Prems.
Tasks-To-Remove:=|L « SUPPS, € A| L € ®&Prems].
New-Tasks:=[T].
If A is an agenda and P is a PDS that results from the introduction of A (to some agenda and
some PDS), then the result (A, A, P’) of <I>‘1(A‘, A, P, Ager) is defined by:

o A= A—|Agal.
e A= New-Tasks U (A — Tasks-To-Remove).
e P’ results from P by

1. removing the lines Lines-To-Remove and
2. justifying the proof lines ©Concs with Open, respectively.
O

A pseudo-code description of the algorithm BACKTRACK is given in Figure 9. BACKTRACK is
applied to a proof plan PP = (4, A ,P), a history H, and a list of actions Age; that have to be
deleted. BACKTRACK generates a sequence of pairs of proof plans PP and histories H by deleting
successively the actions in Adel If an action in Adel is not deletable, then it is necessary to delete
further actions. BACKTRACK returns the proof plan and the history that result from the deletion of
all necessary actions.

The first step in BACKTRACK is a check whether the list of actions that should be deleted is
empty. If this is the case, BACKTRACK terminates and returns the current proof plan and the
current history. Otherwise, it selects the first action Age; from the list (step 2 in Figure 9). If Age
is deletable, BACKTRACK deletes it from the current proof plan by employing ®~! and adds a new
action-deletion entry to the history (step 3 in Figure 9). When A4 contains constraints, then
BACKTRACK employs the function delete-constraints, which tells the respective constraint solvers to
delete these constraints since they are not longer existing. Afterwards, BACKTRACK is applied to
the changed proof plan, the changed history, and the remaining actions to be deleted.

If Ager is not deletable (step 4 in Figure 9), then BACKTRACK calls the function dependent-actions
to compute the actions that depend from Age; and that have to be deleted in order to make Age
deletable. BACKTRACK is then recursively applied to the current proof plan, the current history,
and the concatenation of the actions computed by dependent-actions and the current actions that
have to be deleted.

As example for a situation, where an action is not deletable because other actions depend on it,
consider the following situation. PLAN introduces an action A that reduces a task with goal L to

19

Input: (1) a proof plan PP = (A, A, P) with a sequence of actions A, an agenda A, and a PDS
P, (2) a history H, (3) a sequence of actions Age;.

Output: A proof plan PP’ = (A’, A’, P’) and a history H'.

-

Algorithm: Backtrack((/f, A, P),ﬁ, del)

1. Tel_'.mination R
If Age; is empty, then terminate and return ((4, A, P), H).

2. Pick Action _
Let Ager:=first(Age:)-

3. Action Deletion
If Age; is deletable wrt. A
then
(A, A, P):=3"1(A, A, P, Ager)-
H ’:=add—action-del—record([—7 A Ager).

If extract-constraints (Age;) # 0
then
delete-constraints (extract-constraints (Agei))-

BACKTRACK ((A’,A’,P’), H’ rest(A41)).

4. Deletion Expansion
If Age; is not deletable wrt. A
ther—l"nEw -,
Ao :=dependend-actions(Agel, A).
BACKTRACK((4,A,P),H, Ay U Ager).

Figure 9: The BACKTRACK algorithm.

two new tasks with goals L; and L,. Next, PLAN applies the action A; to close L;. Afterwards,
PLAN fails to apply an action to the task with goal L, and employs BACKTRACK to remove the
action A that introduced L,. However, the deletion of A would not only remove the line Ly, but
also the line L; with respect to which action A; was introduced. Hence, before A can be deleted
the action A; has to be deleted.

3.4 Action Computation and Selection

CHOOSEACTION is the subalgorithm of PLAN that computes alternative lists of actions and selects
one of them. Figure 10 shows a pseudo-code description of the algorithm. CHOOSEACTION is applied
to a task, the current history, and the lists of methods M and control rules C. If successful,
CHOOSEACTION returns a selected action and a set of alternative actions (see step 7 in Figure 10),
otherwise it returns fail (see step 2 in Figure 10).

CHOOSEACTION computes actions successively. It starts with an under-specified, initial action
that contains only a chosen method and the given task. Then, it successively matches lines of the
method with the goal and the supports of the task as well as variables specified in the declarations
of the method with terms, positions, etc. The substitutions of these matchings refine successively
the binding of the action such that more and more specified actions are created. In order to
check whether a particular action of a method is valid, CHOOSEACTION evaluates the application
conditions of the method with respect to the binding of the action. Afterwards, it completes the
binding of the actions by conducting the outline computations and by computing the new lines.

20

Input: (1) a task T, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a pair of an action and a list of actions or fail.

Algorithm: ChooseAction(T,H,M,C)
Let T=Lopen €« SUPPSL

1. Order Methods
Methods:= evalcrules-methods (M,C,T).

open

2. Select Method
If Methods empty
then
Terminate and return fail.
else
M:=first(Methods).
Actions:=initial-action-set(T', M).

3. Match Goal
Let ©Concs be the © conclusions of M.
Actions:=match-goal (L open,6Concs,Actions).
If Actions empty, then Methods:=rest(Methods), goto 2.

4. Select and Match Supports and Parameters
Let ©Prems and BPrems be the © premises and blank premises of M.
Let Params be the parameter variables of M.
Supps+ Params:=evalcrules-s+p(SUPPS,....C,T,M ,Actions).
Actions:= match-s+p (Supps+Params,&Prems U BPrems,
Params,Actions).
If Actions empty, then Methods:=rest(Methods), goto 2.

5. Evaluate Application Conditions
Actions:=eval-appl-conds (Actions,M).
If Actions empty, then Methods:=rest(Methods), goto 2.

6. Outline Computations
eval-outline-computations (Actions).
complete-outline(Actions).

7. Select an Action .
Actions:=remove-backtracked(Actions,H).
Actions:=evalcrules-actions (Actions,C).

If Actions =0
then
Methods:=rest(Methods), goto 2.
else

Terminate and return (first(Actions),rest (Actions)).

Figure 10: The CHOOSEACTION algorithm.

Finally, it selects one action among the resulting fully specified actions.
In the following, we explain CHOOSEACTION with the example 2.5 of section 2.4. We apply
CHOOSEACTION to the task L7pnm € {Lass,, Lass, }, an empty history, a list of methods that contains

21

=Subst-B, and a list of control rules that contains the control rule supps+params-=Subst whose
impact is explained below.

The first step in CHOOSEACTION is the re-ordering of the alternative list of methods. This
is done by the function evalcrules-methods, which obtains as input M, C and the given task.
evalcrules-methods evaluates the control rules in C of kind ‘Methods’ on M and returns a (possibly)
changed list of alternative methods. From this list CHOOSEACTION picks the first one (step 2 in
Figure 10) and employs the function initial-action-set to create the initial set of actions that consists
of one action whose premises, conclusions, bindings, and constraints are empty, whose method is
the chosen method, and whose task is the given task.

For our example, we assume that evalcrules-methods returns the list [=Subst-B, ...]. Then,
CHOOSEACTION chooses =Subst-B as method and produces an initial set of actions that contains
only the following action:

Action
method =Subst-B
task Lrpm < {LAss1 y LAssg}
premises ' '
conclusions
binding
constraints

The next step (step 3 in Figure 10) in CHOOSEACTION matches the goal with the © conclusions
of the selected method. To do so, CHOOSEACTION employs the function match-goal. This function
is applied to the goal, the © conclusions of the selected method, and the set of actions computed
so far. Its computations and its output depend on the existence of © conclusions in the chosen
method. If the method has no © conclusions (i.e., a forward method), then match-goal simply
returns the list of actions it obtained as input. If the method has © conclusions (i.e., a backward
method), then match-goal matches the goal with the & conclusions, respectively. For each success-
ful matching it creates a new action whose binding contains the substitution resulting from the
matching and whose conclusions contain the goal annotated with ©. Finally, match-goal returns
the set of all new actions.

In our example the matching of the goal Ly, with the © conclusions of =Subst-B results in
a substitution with two elements: Lg — L., and f — even(a + b). Thus, match-goal returns an
actions set that contains only the following action:

Action

method =Subst-B
task Lrhm < {LAssl s LAss;}
premises
conclusions|© Lrim. Lass,, Lass, = even(a+ b) (Open)
binding [{Ls — Lrpm, f — even(a + b)}
constraints

Next, CHOOSEACTION chooses supports and parameters and matches them with © and blank
premises and the parameter variables of the selected method (step 4 in Figure 10). This results
in further substitutions, which refine the actions computed so far. First, CHOOSEACTION evaluates
the control rules of the kind ‘Supps+Params’. This is done by the function evalcrules-s+p, which
is applied to the supports of the goal, the control rules C, the task, the current method, and
the actions computed so far. Control rules of the kind ‘Supps+Params’ do not only reorder and
manipulate the support lines but they return a new type of elements, namely pairs of support
lines and parameter instantiations. Thus, the parameter selection is not an isolated decision but
is combined with the selection of support lines.* Then, CHOOSEACTION employs the function

14We decided for this combined approach since typically the parameter selection is directly related to the support
line selection.

22

match-s+p. match-s+p obtains as input the pairs of support lines and parameter instantiations,
the © and blank premises of the selected method, and the set of actions computed so far. With
respect to each action computed so far (i.e., depending on the binding of an action computed so
far) match-s+p matches the support lines and parameters pairs with the © and blank premises and
the parameter variables of the method, respectively. For each successful matching it creates a new
action whose binding is extended with the substitution resulting from the matching and whose
premises comprise the matched support lines. Finally, match-s+p returns the set of new actions.

In our example, the control rule supps+params-=Subst fires and returns the two support lines
and parameter instantiation pairs ({Lass; }, <11 >) and ({Lassp}, <12 >), where <11 > is
the parameter position of the a in the formula even(a + b) of the goal Lrpm and < 1 2 > is the
parameter position of the b.15 For both pairs and with respect to the only action computed so far,
match-s+p succeeds to match the premise L; and the parameter pos of =Subst-B with the content
of the pairs, respectively. It returns a set of actions that contains the following two elements:

Action

method =Subst-B

task Lrpm < {LAssuLAssz}

premises |Lass,. Lass, - a=c (Hyp)

conclusions|© Lrpm. Lass,, Lass, F even(a+ b) (Open)

{Ls — Lrhm,L1 — Lass,, f — even{a+b),a — v,

hinding t—a,t' - cpos—><11>}
constraints
Action
method =Subst-B
task Lrhm < {LAssl) LASSQ}

premises |Lass,- Lass, = b=c (Hyp)

conclusions|© Lrpm. Lass,, Lass, F even(a+ b) (Open)

{Ls — Lrhm,L1 — Lass,, f — even(a+b),a — v,
t—b,t' — c,pos »< 12>}

binding

constraints

The first action results from matching L; and pos with L4s, and < 1 1 >, respectively,
whereas the second action results from matching L; and pos with L 455, and < 1 2 >, respectively.

In the next step (step 5 in Figure 10), CHOOSEACTION evaluates the application conditions of
the selected method. The evaluation of the application conditions is performed by the function
eval-appl-conds, which obtains as input the actions computed so far and the selected method.
For each given action eval-appl-conds evaluates the application conditions of the method with
respect to the binding of the action. The evaluation of application conditions can create further
substitutions, which are then added to the binding of the action. Moreover, the evaluation can
create constraints for external constraint solvers, which are then added as constraints of the action.
Each action for which the evaluation fails is rejected. eval-app/-conds returns the set of all actions
for which the evaluation succeeds.

In our example, the application conditions of =Subst-B evaluate to true for both actions
computed so far. Since no constraint results from the evaluation of the application conditions the
constraints of both actions are set to the empty set.

Next, CHOOSEACTION completes the actions by conducting the outline computations of the
selected method and by computing the new outline lines (i.e., @ premises and conclusions) (see
step 6 in Figure 10). This is done by the functions eval-outline-computations and complete-outline,
which both are applied to the set of actions computed so far. Both functions do not change the

15The control rule supps+params-=Subst fires if the current method is =Subst-B and if there are some support
lines that are equations such that one side of the equations equals a subterm in the formula of the goal. If
supps+params-=Subst finds such a support line it returns a pair consisting of the support line and the respective
subterm position in the formula of the goal.

23

set of actions but they refine the actions already in the set. eval-outline-computations evaluates the
outline computations for each action and adds the resulting substitutions to the binding of the
action. Similarly, complete-outline computes the missing outline lines for each action and adds the
corresponding substitutions to the binding of the action. New outline lines are justified as follows:
@ premises are justified with Open whereas new @& conclusions are justified by an application of
the selected method to the premises of the action.

For our example, eval-outline-computations and complete-outline complete the actions computed
so far as follows:

Action

method =Subst-B

task LThm < {LAsslv LAssz}

@ Lrhm'. Lass,,Lass, F even(c+ b) (Open)

LAssl- LAssl F a=c (Hyp)

conclusions|© Lrhm. Lass,, Lass, b even(a +b) (Open)

{Ls — Lthm,L1 — Lass;; L2 = LThm', f — even(a+b),a — v,
t— a,t' — c,pos < 11>, f — even(c+b)}

premises

binding

constraints |()

Action

method =Subst-B

task L1hm < {LAssl) LAss;}

. @ Lrhm'- Lass,sLass, F even(a+ c) (Open)

premices LAssz- LAssg F b=c (Hyp)

conclusions |© Lrhm. Lass,,Lass, F even(a+b) (Open)

{L3~ LThm,L1 = Lassy; Lz = LTam', f — even(a+b),a — v,
t— bt — c,pos -<12>, f — even(a+c)}

binding

constraints |(}

Finally, CHOOSEACTION decides for one of the computed actions (step 7 in Figure 10). First, it
rejects all actions that correspond to actions that have already been backtracked. This is done
by the function remove-backtracked, which is applied to the current set of actions and the given
history. If an action has the same given lines and the same binding as an action that is stored in the
history as deleted action, then this action is removed from the alternative list. To the remaining
actions CHOOSEACTION applies the function evalcrules-actions to evaluate the control rules of kind
‘Actions’. Provided the resulting list of actions is not empty, CHOOSEACTION terminates and returns
a pair consisting of the first element of the list of actions and the rest of the list of actions (i.e.,
the chosen action and the list of alternatives). If the list of actions is empty, then CHOOSEACTION
returns to the method selection point (step 2 in Figure 10) and repeats the sequence of matchings,
application condition evaluation, outline computations evaluation, and outline completion for the
next method of the method list. Similarly, CHOOSEACTION returns to the method selection point
and selects the next method, when the set of actions becomes empty during the matchings or by
the evaluation of the application conditions. If CHOOSEACTION fails to compute an action that does
not correspond to a backtracked action and is not rejected by the control rules, then it terminates
and returns fail (see step 2 in Figure 10).

3.5 Example

In the following, we shall explain the application of PLAN to a problem from the limit domain.
Theorems of the limit domain make statements about the limit lim f(z) of a function f at a point
r—a

a, about the limit limseq X of a sequence X, about the continuity of a function f at a point a, and
about the derivative of a function f at a point a. The standard definitions of limit, continuity, and
derivative comprise so-called e—d criterions, i.e., proofs of such theorems postulate the existence
of a § such that a conjecture of the form ...|X| < € is proved under assumptions of the form

24

...|Y| < 4. For instance, the definition of lim in A-notation is:
lim = ModaMVe. (0 <e= 36 (0<IAVL.(z—a| >0A|z—a| < d=|f(z) - | <¢)))

An example theorem from the limit domain is LIM+ that states that the limit of the sum of
two functions f and g equals the sum of their limits; that is, if lim f(z) =!; and lim g(z) = l2 then
Tr—a r—a

lim (f(z) + g(z)) = l1 + l2. When the definition of lim is expanded, the corresponding planning
r—a Tr—a

problem consists of two assumptions

z1—a|l>0A|z1 —a|l <81 = |f(z1) — L] < e1)))

Ver. (0 < €1 = Jb1. (0 < 61 /\V.’I:l.(
and _
Ve (0 < €2 = 302.(0 < 02 AVz2. (Jz2 — a| > 0 A |22 — a] < 82 = |g(z2) — I2] < €2))).

And the theorem becomes
Va(0<e=>35.(0<dAVz.(Jz—a|>0A|z—a| <éd=|(f(z) +g(x)) — (1 + 2)| <¢€))).

Similar theorems in this class are LIM- and LIM* for the difference and the product of limits
of functions. Moreover, there are corresponding theorems about continuity. Continuous+ states
that the sum of two continuous functions is continuous, and Continuous- and Continuous* make
similar statements for the difference and product of continuous functions.

When proving a limit theorem like LIM+, a § has to be constructed that depends on an ¢
such that certain estimations hold. This is a non-trivial task for students as well as for traditional
automated theorem provers.l® The typical way a mathematician discovers a suitable ¢ is by
incrementally restricting the possible values of . When proof planning limit theorems, PLAN
adapts this approach by cooperating with the constraint solver CoSZE: (in)equality tasks that
are simple enough for CoSZE (i.e., tasks that are in the input language for CoSZE) are passed
to CoSZE and CoSIE provides suitable instantiations for 6, when solutions for meta-variables are
computed and inserted into the final proof plan.)

For finding e-d-proofs, among others, the general methods 3I-B, 3JE-F, VI-B, VE-F, AI-B,
AE-F, =I1-B, =E-F, SETFocuUs-B, and =Subst-B and the domain-specific methods TELLCS-B,
TELLCS-F, AskCS-B, SOLVE*-B, SIMPLIFY-B, SIMPLIFY-F, and COMPLEXESTIMATE-B are
required. We introduced AskKCS-B, TELLCS-B, TELLCS-F, COMPLEXESTIMATE-B, VI-B, and
JE-F already in section 2.6; =Subst-B is explained already in section 2.3. Similar to VI-B and
3E-F also 3JI-B, VE-F, AI-B, AE-F, =1-B, and =E-F apply certain natural deduction rules.
Actions of 31-B perform a backward 3; step. They close a goal with formula 3z. P[z] and introduce
a task whose goal has the formula P[mwv] in which z is replaced by a new meta-variable mu.
Similarly, actions of VE-F perform a forward Vg step and derive a new support P[mv] with a new
meta-variable mv from a given support Vz. P[z]. Actions of AI-B perform a backward A; step and
reduce a task whose goal has the formula A; A A3 to new tasks whose goals have the formulas A4;
and A. Actions of AE-F perform the corresponding forward Ag decompositions on conjunctive
support lines. Actions of =>I-B perform a backward = step and reduce a task with goal A = B
to a new task whose goal has the formula B and A as additional hypothesis. Moreover, A becomes
the formula of a new support for this task. Actions of =E-F perform an =g step. When applied
to a task with goal C and an support with formula A = B they introduce two new tasks: a task
with goal C, which contains also a new support with B as formula, and a task with goal A. Actions
of the SOLVE*-B method exploit transitivity of <, >, <, > and reduce a goal with formula a; < b;
to a new task with formula o0 < b0 in case a support as < by exists and a;, a2 can be unified
by the substitution o. Then, also a further new task is created whose formula is the conjunction
of all mappings of the substitution o (compare description of method COMPLEXESTIMATE-B in

16 BLEDSOE proposed in 1990 several versions of LIM+ as a challenge problem for automated theorem proving [7].
The simplest versions of LIM+ (problem 1 and 2 in [7]) are at the edge of the capabilities of traditional automated
theorem provers but LIM* is certainly beyond their capabilities.

25

section 2.6). SIMPLIFY-B passes the goal of a given task to the computer algebra system MAPLE
and asks MAPLE to simplify it. If MAPLE succeeds, then the given task is reduced to a new task
with the simplified formula. The analogous method SIMPLIFY-F derives a support with a simpler
formula from a given support by calling MAPLE. Actions of SETFOCUS-B highlight a subformula
in a support.

When applied to an e—0—problem, PLAN first decomposes the initial task with a complex
formula into subtasks whose formulas are (in)equalities. This is done by actions that decompose
formulas in tasks, e.g., actions of the methods AI-B, VI-B, 3I-B etc.

When faced with an inequality goal, PLAN first tries to apply the methods TELLCS-B and
AskCS-B, which both employ CoSZE. TELLCS-B passes the goal to CoSZE, whereas AskCS-B
asks CoSZE whether the goal is entailed by its current constraints. If an inequality is too complex
to be handled by CoSZE, then PLAN tries to apply methods that reduce an inequality to simpler
inequalities. So, PLAN successively produces simpler inequalities, until it reaches inequalities
that are accepted by CoSZE. This approach — handle with CoSZE or simplify — is guided by the
control rule prove-inequality given in Figure 3 in section 2.5, which is the central control rule to
accomplish e--proofs with PLAN. In its IF-part prove-inequality checks whether the current
goal is an inequality. If this is the case, it prefers the methods TELLCS-B, TELLCS-F, AskCS-B,
SIMPLIFY-B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, and SETFOCUS-B in this order.

In order to apply methods such as COMPLEXESTIMATE-B and SOLVE*-B unwrapping of
(in)equality supports from the initial assumptions is necessary. This is realized as follows: First,
PLAN applies SETFocus-B to highlight a promising subformula in a support (the application
of SETFocUs-B is suggested by prove-inequality if no other method is applicable, promising
subformulas are chosen by another control rule guiding the supports and parameters choice point).
Next, the highlighted subformula is unwrapped by actions that decompose supports, e.g., actions
of the methods AE-F, VE-F, JE-F etc.

Finally, when no task is left and PLAN invokes the function employ-CS, CoSZE computes
instantiations for the meta-variables that are consistent with the collected constraints.

Next, we briefly discuss the application of PLAN to the LIM+ problem.'” PLAN first decom-
poses the initial theorem to tasks with the formulas 0 < mvs and |(f(cz) + g(cz)) — (1 +12)] < ce
where mv; is a meta-variable introduced for § and ¢; and c. are constants that replace x and e,
respectively. Moreover, the assumptions 0 < ¢, |cz — a|] > 0, and |¢; — a| < muvs are created
during the decomposition of the initial theorem and become supports of the new tasks. 0 < muvs
can be passed directly to CoSZE by an action of TELLCS-B. |(f(cz) + g9(cz)) — (h + 12)] < ce
cannot be passed to CoSZE directly. This triggers the decomposition of one of the two initial
assumptions. If the initial assumption on f is decomposed, then PLAN obtains as new sup-
ports 0 < ¢5, and |f(muvg,) — l1] < mve,. Now PLAN can compute and introduce an action of
CoMPLEXESTIMATE-B using the latter new support line. During the evaluation of the application
conditions of COMPLEXESTIMATE-B the substitution mv,, — ¢, is created and the computer alge-
bra system MAPLE computes a decomposition (f(cz)+g(cz))—(li+12) = 1x(f(cz)—11)+(g(cz }+12)
(that is, the variables k and ! of COMPLEXESTIMATE-B are bound to 1 and g(c;)—I2, respectively).
Thus, the action of COMPLEXESTIMATE-B introduces new tasks with formulas mv,, < 2—f7=n—v,
|1] < mv, 0 < mu, |g(cz) — l2| < %, and mv,, =c;. The formulas of the former three tasks and
of the last one can all be passed directly to CoSZE by actions of TELLCS-B. To deal with the
remaining task with formula |g(c;) —l2| < § PLAN decomposes the second initial assumption (on
g) and derives new support lines with formulas 0 < ¢s, and |g(muvz,) — 2| < mve,. An action of
SoLvE*-B reduces the goal with respect to the second new support to two new tasks with formulas
Mue, < %f- and mug,=cz. Both tasks are closed by actions of TELLCS-B and their formulas are
passed to CoSZE.

The decomposition of the initial assumptions results not only in the used support lines but also
in tasks with the formulas 0 < muv,,, |mvz, —a| > 0, |mvz, — a| < ¢s5, from the assumption on f
and the analogue tasks from the assumption on g. The task 0 < muv,, is closed by the introduction
of an action of TELLCS-B, which passes the formula to CoSZE. To close the other tasks PLAN

17A detailed description on how MULTI solves this problem is given in section 4.5.

26

introduces actions of the method SOLVE*-B that use the supports with formulas |¢; — a| < mw;
and |c; — a| > 0 (from the decomposition of the initial goal). The application of SOLVE*-B to
the task |muvz, — a| < ¢s, and the support |¢; — a| < mus results in two new tasks with formulas
mus < ¢5, and mvg, =cz. The application of SOLVE*-B to the task |mv;, —a| > 0 and the support
|ez — a| > 0 results also in two new tasks with formulas 0 < 0 and muvz,=c,. Whereas 0 < 0 is
closed by an actions of ASKCS-B the other three tasks are closed by actions of TELLCS-B, which
pass their formulas to CoSZE. The corresponding tasks from the assumption on g are handled in
the same way. Thereby the constraints mvs < ¢5,, mvg,=cz, and mug,=c; are passed to CoSZE.
Moreover, some actions of the TELLCS-F method during the planning process pass constraints in
support lines to CoSZE: 0 < ¢s,, 0 < ¢5,, 0 < ce.

After propagating constraints, CoSZE has the final constraint store in Figure 11. When asked
for suitable instantiations for the meta-variables, CoSZE provides the bindings mvz, — ¢z, mvg, —
Cz, MV — 1, mue, — %, mue, — %, and mvs — min(cs,, cs,). These instantiations computed by

2 2
CoSZE are exactly the solutions that standard textbooks use for 4, €1, and €2 for LIM+.

MUz, = Cg
MUz, = Cg

0 < c¢5 < 4o

0 < c5 < oo

0 < ece < +o0

0 < mvy < §,555
0 < mv, < %

0 < muvs < c¢5,C5

1 < mw < ﬁw;q

Figure 11: The final constraint store of CoSZE for LIM+.

PLAN can successfully plan all the challenge problems of BLEDSOE [7], i.e., the limit theorems
LIM+, LIM-, LIM*, the theorems Continuous+, Continuous—, Continuous*, lim z = @, lim ¢ = ¢,
r—a

r—a

and the theorem that the composition of continuous functions is again continuous.

4 Proof Planning with Multiple Strategies

Proof planning with multiple strategies decomposes the previous monolithic proof planning pro-
cess and replaces it by separated parameterized algorithms as well as different instances of these
algorithms, so-called strategies. The strategies, which specify different behaviors of the algorithms,
are the basic elements for proof construction in multiple-strategy proof planning. That is, the goal
of multiple-strategy proof planning is to compute a sequence of strategy applications that derives
a given theorem from a given set of assumptions. The decision on when to apply a strategy is not
encoded once and forever into the system but rather is determined by meta-level reasoning using
heuristic control knowledge of strategies and their combination.

In the following, we first introduce in section 4.1 the basic concepts of proof planning with
multiple strategies and illustrate them with examples. Then, we describe in section 4.2 MULTI’s
blackboard architecture. Section 4.3 discusses the reasoning at the strategy-level with strategic
control rules. We conclude with an informal description of all algorithms currently employed by
MULTI that are not exemplified in section 4.1.

27

4.1 Algorithms, Strategies, and Tasks

Algorithms
MULTI enables the incorporation of heterogeneous, parameterized algorithms for different kinds

of proof plan refinements and modifications. Currently, MULTI employs the following algorithms
(technical descriptions of these algorithms, i.e., of the plan refinements or modifications they

perform, are given in section 5):
PPLANNER refines a proof plan by introducing new actions.
INSTMETA refines a proof plan by instantiating meta-variables.

BACKTRACK modifies a proof plan by removing refinements of other algorithms.

EXP refines a proof plan by expanding complex steps.

ATP refines a proof plan by solving subproblems with traditional machine-oriented automated
theorem provers.

CPLANNER refines a proof plan by transferring steps from a source proof plan or fragment.

The decomposition of PLAN allows to extend and generalize the functionalities of its subcom-
ponents. This results in the independent and parameterized algorithms PPLANNER, INSTMETA, and
BACKTRACK for action introduction, meta-variable instantiation, and backtracking. EXP, ATP, and
CPLANNER integrate new refinements of the proof plan.

Strategies
Instances of these algorithms can be specified in different strategies. Technically, a strategy is a

condition-action pair. The condition part states when the strategy is applicable. The action part
consists of a modification or refinement algorithm and an instantiation of its parameters. Similar
to the knowledge of the applicability of methods we separate the legal and heuristic knowledge of
the applicability of strategies. The condition part of a strategy states the legal conditions that
have to be satisfied in order for the strategy to be applicable, whereas strategic control rules reason
about the heuristic utility of the application of strategies.

To ezxecute or to apply a strategy means to apply its algorithm to the current proof planning
state with respect to the parameter instantiation specified by the strategy. For instance, the
parameters of PPLANNER are a set of methods, a list of control rules, a termination condition, and
an action selection procedure. When MULTI executes a PPLANNER strategy, the PPLANNER algorithm
introduces only actions that use the methods specified in the strategy. The actions are computed
and selected by the action selection procedure (e.g., CHOOSEACTION or CHOOSEACTIONALL) specified
by the strategy. The action selection procedures evaluate then the control rules specified by the
strategy during the computation of actions. The application of the strategy terminates, when
its termination condition is satisfied. Hence, different strategies of PPLANNER provide a means to
structure the method and control rule knowledge. Both algorithms, INSTMETA and BACKTRACK, have
one parameter. The parameter of INSTMETA is a function that determines how the instantiation
for a meta-variable is computed. If MULTI applies a INSTMETA strategy with respect to a meta-
variable mv, and if the computation function of the strategy yields a term t for mv, then INSTMETA
substitutes mwv by t in the proof plan. The parameter of BACKTRACK is a function that computes
a set of refinement steps of other algorithms that have to be deleted. When MULTI applies
a BACKTRACK strategy, then BACKTRACK removes all refinement steps that are computed by the
function of the strategy as well as all steps that depend from these steps.

Notation 4.1: Strategies are denoted in the sans serif font (e.g., NormalizeLineTask, UnwrapHyp).

Tasks
MULTI extends the task concept of PLAN. Since MULTI employs further kinds of tasks, the

tasks used in PLAN (i.e., a pair consisting of an open line and its supports) are called line-
tasks in MULTI. MULTI uses also instantiation-tasks and erpansion-tasks. The introduction of a

28

meta-variable into the plan results in an instantiation-task, that is, the task to instantiate this
meta-variable. Similarly, the introduction of a method or tactic step into the PDS, which is
constructed during the proof planning process, results in an expansion-task, that is, the task to
expand this step. An instantiation-task stores the meta-variable for which an instantiation has to
be constructed. The instantiation task for meta-variable mv is written as mwv|/™*t. An expansion-
task consists of a proof line L in the PDS, which is justified with a method or a tactic application.
The expansion-task with line L is written as L|F*P. MULTI stores all used kinds of tasks in an
agenda.

Different tasks can be tackled by different algorithms and strategies. For instance, since strate-
gies of INSTMETA introduce instantiations for meta-variables they can tackle instantiation-tasks.
EXP is the suitable choice to deal with expansion-tasks, whereas strategies of PPLANNER or ATP can
tackle line-tasks. A strategy checks in its condition part whether it is applicable to a particular
task. That is, the condition of a strategy is a predicate on tasks. To apply a strategy to a task
means to execute the strategy with respect to the task.

The algorithms and kinds of tasks currently employed by MULTI have been derived from the
case studies. However, the MULTI framework is envisaged to be extended by further algorithms
and further kinds of tasks, if needed.

Example Strategies

In the following, we describe some strategies needed to accomplish e-d-proofs (see section 3.5).
The methods and control rules for e-é-proofs are structured into the three strategies Normalize-
LineTask, UnwrapHyp, and Solvelnequality. All three strategies are instantiations of PPLANNER.
A more detailed description of the application of these strategies and their cooperation when
accomplishing e-d-proofs is given in section 4.5.

The strategy Solvelnequality (see Table 2) is applicable to prove line-tasks whose formulas
are inequalities or whose formulas can be reduced to inequalities. It comprises methods such
as COMPLEXESTIMATE-B, TELLCS-B, TELLCS-F, AskCS-B, and SOLVE*-B (see section 3.5).
Its list of control rules contains the rules prove-inequality and eager-instantiate. Possible
actions are computed and selected with the CHOOSEACTION procedure. The strategy terminates,
when there are no further line-tasks whose formulas are inequalities or whose formulas can be
reduced to inequalities. Note that it is the parameterization of PPLANNER that makes Solvelnequality
appropriate to tackle line-tasks whose formulas are inequalities as stated in the condition part of

the strategy.

Strategy: Solvelnequality
Condition | inequality-task
Algorithm PPLANNER
Action Procedure | CHOOSEACTION
Methods CoMPLEXESTIMATE-B, TELLCS-B,
Action TELLCS-F, SOoLVE*-B, AskCS-B ...
C-Rules prove-inequality, eager-instantiate,
Termination no-inequalities

Table 2: The Solvelnequality strategy.

NormalizeLineTask (see Table 3) is used to decompose line-tasks whose goals are complex for-
mulas with logical connectives and quantifiers. Typical methods in NormalizeLineTask are AI-B
and VI-B (see section 3.5). NormalizeLineTask employs the CHOOSEACTION procedure for the action
computation and selection and terminates, when all complex line-tasks are decomposed to literal
line-tasks.

The aim of UnwrapHyp (see Table 4) is to unwrap a focused subformula of an assumption in
order to make it available for proving a line-task. The list of its methods includes, for instance,
VE-F and AE-F. The control rule tackle-focus determines that, if UnwrapHyp is applied, then

29

Strategy: NormalizeLineTask
Condition | complex-line-task
Algorithm PPLANNER
Action Procedure | CHOOSEACTION
) Methods VI-B, 3I-B, AI-B,
Action
C-Rules
Termination literal-line-tasks-only

Table 3: The NormalizeLineTask strategy.

the actions of the available methods can be used only if they use a support in their premises that
carries a focus and when their conclusions do not tackle the focused subformula. For instance, if a
line-task has the supports By A B; and A; A (A2 A focus(As A Aq)), then only actions of AE-F that
use the second support with the focus are allowed. The introduction of two actions of AE-F derive
the new support focus(As A A4) to which no further action of AE-F can be applied since it would
decompose the focused subformula. Similar to NormalizeLineTask and Solvelnequality, UnwrapHyp
uses the CHOOSEACTION algorithm. It terminates as soon as all focused formulas are unwrapped.

Strategy: UnwrapHyp

Condition | focus-in-subformula
Algorithm PPLANNER
Action Procedure | CHOOSEACTION

Action Methods VE-F, JE-F, AE-F, ...
C-Rules tackle-focus
Termination focus-at-top

Table 4: The UnwrapHyp strategy.

In order to instantiate meta-variables that occur in constraints collected by CoSZE, we im-
plemented the two INSTMETA strategies InstlfDetermined and ComputelnstFromCS (see Table 5).
InstlfDetermined is applicable only, if CoSZE states that a meta-variable is already determined by
the constraints collected so far. Then, the computation function connects to CoSZE and receives
this unique instantiation for the meta-variable. ComputelnstFromCS is applicable to all meta-
variables for which constraints are stored in CoSZE. The computation function of this strategy
requests from CoSZE to compute an instantiation for a meta-variable that is consistent with all
constraints collected so far.

Strategy: InstlfDetermined
Condition | determined-in-cs
Algorithm | INSTMETA
Function get-determined-instantiation |

Action

Strategy: ComputelnstFromCS

Condition | mv-in-cs

Algorithm | INSTMETA

Function compute-consistent-instantiation

Action

Table 5: The INSTMETA strategies InstlfDetermined and ComputelnstFromCS.

The dependency-directed backtracking described in section 3.3 is realized as the strategy Back-
TrackActionToTask (see Table 6) of the BACKTRACK algorithm. BackTrackActionToTask instantiates
the BACKTRACK algorithm with the function step-to-line-task, which computes the action that in-
troduced a line-task. BackTrackActionToTask is applicable to each line-task.

30

Strategy: BackTrackActionToTask
Condition | line-task

Algorithm | BACKTRACK
Function step-to-line-task

Action

Table 6: The BackTrackActionToTask strategy.

4.2 MuLtl’s Blackboard Architecture

"""""""""""""""""""""""""""" Control
Blackboard

Job Offers

MetaReasoner

Demands

Memory

Proof
SolveLinearInequality Blackboard

NormalizeTask

BackTrackActionToTask | ——=

AN

N

-<
N\

STRATEGIES

Strategic

Proof Plan:
- Sequence of Actions
- Agenda
-PDS

- Sequence of
binding stores

Scheduler

[T NN

LI] V“

InstIfDetermined it

History

Figure 12: MULTI’s blackboard architecture.

When we designed proof planning with multiple strategies, we aimed at a system that allows
for the flexible cooperation of independent components for proof plan refinement and modification,
guided by meta-reasoning. For the implementation we decided to use a blackboard architecture
because this is an established means to organize the cooperation of independent components for
solving a complex problem.

The fundamental ideas of the blackboard model [18] are (1) the segmentation of the knowledge
base into modules that are kept separate and independent and (2) the separation of the inference
engines that work on that knowledge. Each knowledge module can employ its own inference
engine. The communication between the modules is limited to reading and writing in a common
working memory, the blackboard. The blackboard can be further structured into regions that, for
instance, contain different data structures. A basic blackboard architecture consists of a structured
blackboard and the modular inference engine/knowledge base pairs which are called the knowledge
sources.

The objective of each knowledge source is to contribute to the solution of the problem whose

31

problem-solving state data are kept on the global blackboard. Control of knowledge source acti-
vation in blackboard systems is data-directed and event-driven. That is, the activation of the next
knowledge source is determined by the changes of the data on the blackboard caused by other
knowledge sources, rather than by explicit calls from other knowledge sources or some central
sequencing mechanism. Knowledge sources check whether they are applicable with respect to the
current solution state on the blackboard and indicate their applicability. Control modules choose
the next knowledge source based on the solution state and on the existence of knowledge sources
capable of improving the current state of the solution. As a result, blackboard systems do not rely
on a pre-defined control of the application of the involved components but provide the flexibility
to employ their knowledge sources opportunistically.

In the following, we give an informal overview on the MULTI system and the ideas behind it.
A detailed technical description of the algorithms and concepts as well as a formal definition of
strategic proof planning with MULTI are given in the next section.

MULTI’s architecture is displayed in Figure 12. In this figure dashed arrows indicate infor-
mation flow whereas solid arrows indicate that a knowledge source changes the content of the
respective blackboard. MULTI’s architecture is similar to the HEARSAY-III [19] and the BB1 [26]
blackboard systems in that it employs two blackboards, the so-called proof blackboard and the
control blackboard.

We decided for a two-blackboard architecture to emphasize the importance of both the solution
of the proof planning problem whose status is stored on the proof blackboard and the solution
of the control problem, that is, which possible strategy should the system perform next. The
proof blackboard contains the current strategic proof plan, which consists of a sequence of actions,
an agenda, a PDS, and a sequence of binding stores, which store the collected instantiations of
meta-variables, as well as the strategic history. The control blackboard contains three repositories
to store information relevant for the control problem: job offers, demands, and a memory.

Corresponding to the two blackboards, there are also two sets of knowledge sources shown in
Figure 12 that work on these blackboards. The strategies are the knowledge sources that work
on the proof blackboard. A strategy can change the proof blackboard by refining or modifying
the agenda, the PDS, the history of strategies, and bindings of the meta-variables. The strategy
component contains all the strategies that can be used. If a strategy’s condition part is satisfied
with respect to a certain task in the agenda, then the strategy posts its applicability with respect
to this task as a job offer onto the control blackboard. Technically, a job offer is a pair (S,T)
with a strategy S and a task T, which signs that T satisfies the condition of S. That is, in
the terminology of blackboard systems, a task that satisfies the condition of a strategy is the
event that triggers the strategy. The MetaReasoner is the knowledge source working on the control
blackboard. It evaluates strategic control knowledge represented by strategic control rules in order
to rank the job offers. The architecture contains a scheduler that checks the control blackboard,
for its highest ranked job offer. Then, it executes the strategy of the job offer with respect to the
task specified in the job offer. In a nutshell, MULTI operates according to the cycle in Figure 13,
which passes the following steps:

Job Offer Strategies whose condition is true put a job offer onto the control blackboard.

Guidance The MetaReasoner evaluates the strategic control rules to order the job offers on the
control blackboard.

Invocation A scheduler invokes the strategy who posed the highest ranked job offer.

Execution The algorithm of the invoked strategy is executed with respect to the parameter
instantiation specified by the strategy.

Demands and the Memory
The choice of a job offer can depend on particular demand information issued by strategies
onto the control blackboard and the content of the memory. An executed strategy can reason

32

Execution Guidance

Invocation

Figure 13: Cycle of MULTI.

on whether it should interrupt. This can be sensible if the strategy is stuck or if it turns out
that it should not proceed before another strategy is executed. Then, the execution of a strategy
interrupts itself, places demands for other strategies onto the control blackboard, and stores a
pair consisting of its execution status and the demands it posed in the memory. Interrupted
executions of a strategy stored in the memory place job offers for their re-invocation onto the
control blackboard. A job offer from the memory consists just of a pointer to the memory entry
that posed this job offer. If such a job offer is scheduled, the interrupted strategy execution is
re-invoked from the memory.

By posing demands and interrupting strategies particularly desired cooperations between
strategies can be realized. For instance, in order to enable a flexible instantiation of meta-variables
during the proof planning process (as opposed to PLAN’s approach) the INSTMETA strategy In-
stifDetermined and the PPLANNER strategy Solvelnequality have to cooperate. This cooperation
works as follows: The strategy Solvelnequality contains the control rule eager-instantiate. If
evaluated during an execution of Solvelnequality, this control rule checks whether InstlfDetermined
is applicable for an occurring meta-variable. If this is the case, it causes the interruption®® of the
execution of the Solvelnequality strategy and poses the demand that InstlfDetermined should be
applied with respect to the instantiation-task of the meta-variable. The status of the interrupted
Solvelnequality strategy is stored in the memory from where it can be reinvoked as soon as the
posed demand is satisfied by the corresponding application of InstlfDetermined.

Binding Stores

MULTI allows to reason on existing meta-variables and possible instantiations for them. An
equation of the form muv,:=®t, where muv, is a meta-variable and t,, is a term of the same type a
is called a binding. t is called the instantiation of the binding for mv. During the strategic proof
planning process the current set of bindings is stored in a so-called binding store.

New bindings are not applied to existing proof lines in the constructed PDS or to proof lines
in existing actions. Since the application of the bindings would replace occurrences of the meta-
variables by occurrences of their current instantiations, it would not be possible to backtrack
binding decisions in order to bind meta-variables differently (since the information on which sub-
terms of the proof lines have been which meta-variables would have been lost). Rather, the current
bindings are applied to copies of proof lines as soon as these are used. For instance, if a line-task
has the task formula |mv, — ¢| < ¢s and the current binding store contains the binding mug=be,
then PPLANNER applies the current binding to a copy of the task formula (see section 5.5.2 for de-
tails). The resulting formula, namely |c — ¢| < ¢, is then used in the action computation process
instead of |mv, — ¢| < ¢5. Methods can become applicable wrt. the instantiated formula whereas
they are not applicable wrt. the original formula with the meta-variables. For our example, a
method for arithmetic simplifications becomes applicable and can reduce the formula |c — | < ¢
to 0 < ¢s which is not possible for |mv, — ¢| < cs. However, this step depends on the binding of
mug; if this binding is removed (by backtracking the step that introduced the binding), then this

181nterruption is an explicit choice point in the PPLANNER algorithm, see section 5.5.2.

33

step is not valid anymore.

MULTI constructs a sequence of binding stores in order to keep track of the dependencies
between the changing bindings and the introduced actions. The introduction of a new binding
creates a new binding store in the sequence. All following steps are performed with respect
to this current binding store. When bindings are removed, then the binding store before the
introduction of this binding is restored and all following binding stores are removed from the
sequence. Moreover, all actions that potentially depend on the removed binding stores are deleted
as well (for details see section 5.5.7 where backtracking in MULTI is described). We extended the
notion of an action in proof planning for MULTI (see section 5.2). Actions have an additional slot
binding-store in order to store a pointer to the binding store that was the current one when the
action was computed.

Notation 4.2: In the remainder of the report, the following symbols (maybe labeled with some
subscripts or superscripts) are associated with the following objects:

BS denotes a binding store,

BS denotes a sequence of binding stores.

4.3 Reasoning at the Strategy-Level

In the MULTI system, no order or combination of refinements or modifications on the proof black-
board is pre-defined. The choice of strategy applications results from meta-reasoning at the
strategy-level that is conducted by the MetaReasoner, which evaluates the strategic control rules
on the job offers on the control blackboard. Strategic control rules are formulated in the same
control rule language as control rules on tasks, methods, supports and parameters, and actions
(see section 2.5). They can reason about all information stored on the control blackboard and the
proof blackboard (i.e., about the proof plan constructed so far and the plan process history) as
well as about the mathematical domain of the proof planning problem.

The advantage of this knowledge-based control approach is that the control of MULTI can
be easily extended and changed by modifying the strategic control rules. In contrast, when the
combination of integrated components of a system is hard-coded into a control procedure, then each
extension or change requires reimplementation of parts of the main control procedure. Moreover,
the strategic control rules declaratively represent the heuristical control knowledge of how to
combine the strategies of MULTI, so that this knowledge can be communicated to the user.

In the following, we shall discuss five strategic control rules, which are the backbone of the
strategic control in MULTIL.

The use of demands and the memory for the goal-directed cooperation of strategies is realized
by the strategic control rules prefer-demand-satisfying-offers, prefer-memory-offers, and
defer-memory-offers given in Figure 14. The rule prefer-demand-satisfying-offers states
that, if a job offer on the control blackboard satisfies a demand on the control blackboard, then
this job offer is preferred. Similarly, prefer-memory-offers states that, if there is a job offer
from an interrupted strategy execution in the memory and all demands of this strategy execution
are already satisfied, then this job offer should be preferred. defer-memory-offers defers job
offers from interrupted strategy executions, if they have still unsatisfied demands.

The rules prefer-backtrack-if-failure and reject-applied-offers (see Figure 15) re-
alize a basic failure reasoning and the rejection of already applied strategies. The purpose of
the prefer-backtrack-if-failure rule is to integrate backtracking with strategies of PPLANNER.
When a PPLANNER strategy runs into a failure, that is, it encounters a line-task for which it finds
no applicable action, then it interrupts and stores the status of its execution in the memory.
prefer-backtrack-if-failure causes backtracking by preferring a job offer of the BackTrack-
ActionToTask strategy with the line-task on which the execution of the PPLANNER strategy failed.
Afterwards, the interrupted strategy execution can be re-invoked on the changed proof blackboard.
The idea behind reject-applied-offers is that a strategy that failed on a task should not be
tried again on this task (although it is still applicable to the task, and, thus, it places a job offer
onto the control blackboard). reject-applied-offers checks whether a job offer corresponds

34

(control-rule prefer-demand-satisfying-offers
(kind strategic)
(IF (job-offer-satisfies-demand JO))
(THEN (prefer J0)))

(control-rule prefer-memory-offers
(kind strategic)
(IF (and (job-offer-from-memory JO)
(no-further-demands JO)))
(THEN (prefer J0)))

(control-rule defer-memory-offers
(kind strategic)
(IF (and (job-offer-from-memory JO)
(further-demands JO0)))
(THEN (defer J0)))

Figure 14: The three strategic control rules prefer-demand-satisfying-offers,
prefer-memory-offers, and defer-memory-offers.

(control-rule reject-applied-offers
(kind strategic)
(IF (job-offer-already-applied JO))
(THEN (reject J0)))

(control-rule prefer-backtrack-if-failure

(kind strategic)

(IF (and (algorithm-of-last-strategy-is PPLANNER)
(last-strategy-failure-on-line-task T)
(backtrack-job-offer-on JO T)))

(THEN (prefer J0)))

Figure 15: The strategic control rules reject-applied-offers and prefer-back
-track-if-failure.

to a strategy execution that has already been tried but was backtracked later on. In this case,
reject-applied-offers rejects the job offer.

The priority!® of these control rules increases in the following order: prefer-demand-satis-
fying-offers, prefer-memory-offers, defer-memory-offers, reject-applied-offers,
prefer-backtrack-if-failure. Although these control rules are the backbone of MULTI’s con-
trol, they realize only a default behavior and can be excluded by the user of MULTI or can be
overridden by other strategic control rules with higher priority.

4.4 Further Algorithms

The strategies PPLANNER, INSTMETA, and BACKTRACK are introduced and exemplified in section 4.1.
Here we shall informally introduce the other three algorithms used in MULTI, namely EXP, ATP,
and CPLANNER. Formal descriptions of all algorithms can be found in section 5.5.

19The MetaReasoner evaluates first the strategic control rules with lower priority. Since they are evaluated later
on, the strategic control rules with higher priority cause the final changes of the alternative list of job offers.

35

Exp
The algorithm EXP tackles expansion-tasks. An expansion-task does not refer directly to an

introduced action but contains a proof line in the constructed PDS whose justification is a complex
step, that is, a method or a tactic application. For a proof line L with an abstract justification
(J P1 ...P,) where J is a method or a tactic and Pi,..., P, are the premises, EXP computes a
proof segment, which derives L from Py, ..., P, at a lower level of abstraction. If J is a method,
then EXP computes the proof segment by instantiating the proof schema of J. If J is a tactic,
then EXP evaluates the expansion function of J. Afterwards, EXP adds the new proof lines into the
constructed PDS and adds a new justification to L at a lower level of abstraction.

Currently, the algorithm EXP is not parameterized. Since we distinguish technically between
a strategy and its algorithm we have implemented the strategy ExpS as the only strategy for the
EXP algorithm. The application condition of ExpS states that this strategy is applicable to all

expansion-tasks.

ATP
The algorithm ATP enables the application of automated theorem provers within MULTI in

order to prove line-tasks. Its parameters are two functions for the application of an automated
theorem prover (or several ones) and the check whether the obtained output is accepted as a proof.
The first function obtains as input the line-task to which the ATP strategy is applied and returns
the output of the employed ATP(s). The second function obtains the output of the ATPs and
returns either true or false where true means that the function accepts the output as proof.

When a strategy of ATP succeeds for a line-task Lopen 4« SUPPSL,,.,, then ATP closes the
line Lopen by the application of the tactic atp to the premises SUPPSL,,.,. Moreover, the output
obtained from the application function of the strategy becomes the parameter of the justification.
Whether this tactic application can be expanded depends on the accepted output. Currently, the
expansion function of atp can deal with the following outputs:

e Resolution proofs from the provers OTTER [31], BLIKSEM [16], Spass [63], PROTEIN [5],
and equational proofs produced by the provers EQP [32] and WALDMEISTER [27]. On these
outputs the expansion function of atp calls TRAMP [33], a proof transformation system that
transforms resolution-style proofs into assertion level ND-proofs to be integrated into the

PDS.
o ND-proofs produced by TRAMP, if TRAMP is used as prover and not as transformation

system (see below), and — withi little transformational effort — ND-proofs provided by
the higher-order prover TPS [3] (see [6] on what kind of transformations are necessary to

incorporate TPS proofs into a PDS).

Other output of automated theorem provers can be accepted by the respective strategies of
ATP but cannot be further processed currently by the expansion function of the atp tactic.

Strategy: CallTramp

Condition | first-order-problem
Action ATP Apply employ-tramp-on-task
ATP Output Check | check-assertion-proof

Table 7: The CallTramp strategy.

As example of a strategy of ATP consider CallTramp, which is depicted in Table 7. The ap-
plication condition of CallTramp, first-order-problem, is satisfied by line-tasks, whose formulas are
first-order. The application function, employ-tramp-on-task, employs TRAMP not as transforma-
tion module but as prover. This is possible since TRAMP cannot only transform the output of the
connected provers but can also call these provers on a problem. When employed in this mode,
TRAMP obtains a problem formalization, calls the connected automated theorem provers on the

36

problem, and returns — if one of the connected provers succeeds — an assertion-level ND-proof.
The output check function of CallTramp, check-assertion-proof, checks whether the output provided
by TRAMP is an ND-proof of the task.?°

CPLANNER

Case-based reasoning is the approach to tackle new problems or subproblems by adapting given
solutions or parts of given solutions of other problems or subproblems [10]. Case-based reasoning
components for QMEGA were first developed as stand-alone systems not directly intertwined with
the proof planner or other components. The last system developed in this paradigm was the
TOPAL system [61, 46].

TOPAL obtains as input a source proof plan and a target problem. It successively transfers
method applications from the source proof plan into a proof plan of the target problem. To do so,
it computes and maintains possible mappings from objects of the source proof plan (e.g., tasks and
proof lines) to corresponding objects of the target proof plan. With these mappings it computes
new actions for the target proof plan from actions in the source proof plan. TOPAL processes the
given source proof plan chronologically which means that TOPAL selects the actions to transfer in
the order of the source proof plan.

The CPLANNER algorithm in MULTI extends TOPAL in several ways. First, CPLANNER is param-
eterized and enables the realization of different kinds of case-based reasoning. For instance, we
realized a task-directed approach as an alternative to the chronological TOPAL approach. This
task-directed approach, which is encoded in the CPLANNER strategy TaskDirectedAnalogy (see Ta-
ble 8), first selects a task in the target proof plan and then selects an action to transfer in the
source proof plan depending on the selected task. Second, CPLANNER allows not only for the trans-
fer of method applications but also for the transfer of strategy applications from a strategic source
proof plan into a strategic target proof plan. Moreover, the integration of CPLANNER into MULTI
enables the flexible combination of case-based reasoning with the other algorithms in MULTI.

The parameters of CPLANNER are a list of so-called action transfer procedures, a list of control
rules, and a termination condition. Action transfer procedures describe how source actions are
transfered into target actions. The control rules guide the selection of action transfer procedures
and interrupts. The termination condition specifies when the execution of the strategy terminates.

Technically, an action transfer procedure is a triple of a list of choice points, a list of instan-
tiation functions, and a computation function. The choice points specify which objects have to
be selected during the transfer process, the instantiation functions provide the alternative lists for
the choice points, respectively, and the computation function computes either a new target action
or a new demand for a tuple of selected objects. When the computation function provides a new
target action, then CPLANNER introduces this action into the proof plan under construction. A
demand causes CPLANNER to interrupt with this demand (see section 5.5.3 for details).

For instance, TaskMeth is an action transfer procedure that realizes a task-directed transfer of
source actions. TaskM eth specifies the choice points target task, source action, target premises,
and target parameters in this order. That is, it first selects the task in the target problem to tackle
and then selects the action to transfer in the source problem depending on this task. Finally, it
chooses the target premises and target parameters depending on the selected target task and the
selected source action. The computation function of TaskMeth obtains the chosen objects as
input and computes a new action of the method of the source action.

TaskInst is an action transfer procedure for applications of INSTMETA strategies. It first chooses
an instantiation-task in the target plan. Next, it chooses an application of an INSTMETA strategy in
the source plan. Then, its computation function creates the demand to tackle the instantiation-
task with the INSTMETA strategy of the source action.

TaskPPlanner is an action transfer procedure for applications of PPLANNER strategies. It first
chooses a line-task in the target proof plan and next an application of a PPLANNER strategy in the

20 check-assertion-proof checks only whether the returned object is a proof tree whose root is the goal of the
task and whose leaves are the supports of the task. It does not check whether each justification is correct since this
would demand to expand the assertion-level proof.

37

source plan. The application of a PPLANNER strategy essentially consists of a sequence of method
actions (see section 5.2 for details). TaskPPlanner reduces the transfer of the selected PPLANNER
strategy application to the transfer of the corresponding method action sequence. That is, it
creates a demand for the recursive application of the CPLANNER strategy TaskDirectedAnalogy with
respect to the selected task and with the sequence of method actions as source actions.

The action transfer procedures TaskMeth, TaskInst, and TaskPPlanner are combined in
the CPLANNER strategy TaskDirectedAnalogy, which is given in Table 8, in order to realize the task-
directed transfer approach. The application condition of TaskDirectedAnalogy, always-true-line+inst,
is satisfied by all line- and instantiation-tasks. The list of control rules is empty. The termination
condition, no-local-tasks, is satisfied, when the initial task to which the strategy is applied and all
tasks derived from this task are closed.

Strategy: TaskDirectedAnalogy
Condition | always-true-line+inst

Action Trans. Procs. | TaskMeth, Task P Planner, TaskInst
Action C-Rules [

Termination no-local-tasks

Source Actions (free)

Table 8: The TaskDirectedAnalogy strategy

The applicability of TaskDirectedAnalogy is primarily not restricted by its condition part
always-true-line+inst, but by its additional parameter, source actions, which is not a parameter
of the algorithm CPLANNER. Such additional parameters of strategies are called free parameters.
They are not instantiated once and forever in the strategy. Rather, strategic control rules can
suggest instantiations for a free parameter during the proof planning attempt.?! A strategy with
free parameters is applied only if a strategic control rule instantiates the free parameters.

The free parameter of TaskDirectedAnalogy, source actions, has to be instantiated by a strategic
control rule with the sequence of source actions that the strategy should transfer.?? A strategic
control rule can choose, for instance, a complete source proof plan from a database of solved
problems or it can choose a subsequence of actions of a given source proof plan. Instead of using
actions of another problem (so-called ezternal analogy) a strategic control rule can also suggest a
subsequence of actions of the proof plan under construction to be transfered to another part of
the same proof plan (so-called internal analogy).

Examples and a detailed discussion of case-based reasoning in MULTI can be found in [55].

4.5 Example

To accomplish e-6-proof plans MULTI combines the PPLANNER strategies NormalizeLineTask, Un-
wrapHyp, and Solvelnequality and the INSTMETA strategies InstlfDetermined and ComputelnstFromCS
(see section 4.1), which interface CoSZE. In the following, we illustrate with the LIM+ example
(introduced in section 3.5) how MULTI employs these strategies. However, before we elaborate the
examples we discuss the employed strategies and their cooperation.

4.5.1 The Strategies and Their Cooperation

The strategy Solvelnequality (see Table 2 in section 4.1) is central for accomplishing e-§-proofs
with MuLTI. It is applicable to prove line-tasks whose goals are inequalities or whose goals can
be reduced to inequalities. A goal is reducible to inequalities if it contains defined terms whose
unfolding will result in inequalities, for instance, lim, limseq, cont, and deriv. Solvelnequality

21 Technically, strategies with free parameters post job offers, when their condition is satisfied and strategic control
rules can then instantiate the free parameters by attaching instantiations to the job offer.

22The instantiation functions of the action transfer procedures look up the given source actions during the
execution of the strategy and suggest then alternatives depending on these actions.

38

unfolds occurrences of these concepts both in the goal and in the supports of the task. The
method for unfolding defined concepts in goals is DEFNUNFOLD-B, whereas DEFNUNFOLD-F
unfolds defined concepts in supports. The central idea of Solvelnequality to tackle inequality goals
is similar to the approach of PLAN when accomplishing e-6-proofs (see section 3.5): pass to
CoSZE or simplify. Hence, also similar to PLAN’s approach, the control rule prove-inequality
given in Figure 3 in section 2.5 is central in Solvelnequality.

Solvelnequality comprises the knowledge of how to deal with inequalities and with problems
that can be reduced to inequalities. As opposed thereto, the strategies NormalizeLineTask and
UnwrapHyp comprise the domain-independent, general knowledge of how to decompose complex
formulas with logical connectives and quantifiers. Solvelnequality decides once for the decompo-
sition of a complex goal or the unwrapping of a subformula from a complex support. Then, it
switches to NormalizeLineTask or UnwrapHyp, which perform all single decomposition steps. This
saves Solvelnequality from reasoning permanently on the application of methods that decompose
single logical connectives and quantifiers such as AI-B or AE-F.

Technically, the cooperation between Solvelnequality and NormalizeLineTask and UnwrapHyp
works as follows. For line-tasks whose goals are complex formulas that contain inequality subfor-
mulas (e.g., goals that arise from unfolding lim, limseg, cont, or deriv) Solvelnequality interrupts
and places a demand for the strategy NormalizeLineTask on the control blackboard. Guided by
this demand, MULTI invokes NormalizeLineTask, which decomposes the complex goal. When re-
invoked by MULTI, Solvelnequality can tackle the inequalities in the resulting goals. The switch
from Solvelnequality to UnwrapHyp is driven by missing support inequalities, which are needed
for the application of the methods COMPLEXESTIMATE-B and SOLVE*-B. If the other methods
preferred by prove-inequality fail, then the application of SETFOCUs-B highlights a subfor-
mula in an existing support. Afterwards, Solvelnequality interrupts and places a demand for the
invocation of UnwrapHyp to unwrap the highlighted subformula. When the subformula is un-
wrapped, Solvelnequality can continue with a new support that may enable further steps. The
application of SETFOCUS-B (i.e., the selection of the support and the subformula to highlight)
is guided by the control rule choose-unwrap-support for the supports and parameters choice
point. choose-unwrap-support analyzes the supports of the task on which the other methods
are not applicable. It searches for inequality subformulas in the supports that are similar to the
goal of the task. The idea is that similar formulas are likely to unify with the goal such that
CoMPLEXESTIMATE-B and SOLVE*-B become applicable.

To accomplish e-6-proofs plans also two INSTMETA strategies, namely ComputelnstFromCS and
InstlfDetermined, are used that interface the constraint solver CoSZE. Whereas InstlfDetermined
asks CoSZE for instantiations of meta-variables that are already determined by the collected
constraints, ComputelnstFromCS asks CoSZE to compute instantiations for the occurring meta-
variables that are consistent with the collected constraints.

The invocation of ComputelnstFromCS is delayed by the strategic control rule delay-Compute-
InstCosie until all line-tasks are closed. This delay of the computation of instantiations for
meta-variables is sensible, since the instantiations should not be computed before all constraints
are collected, that is, not before all line-tasks are closed. However, when the current constraints
already determine a meta-variable, then a further delay of the corresponding instantiation is not
necessary. Rather, immediate instantiations of determined meta-variables can simplify a problem
(e.g., see [35]).

To enable the flexible instantiation of determined meta-variables Solvelnequality cooperates
with the strategy InstlfDetermined. Technically, this works as follows. When CoSZ€E signals that a
meta-variable is determined, then the control rule eager-instantiate in Solvelnequality fires. It
interrupts Solvelnequality and places a demand for InstlfDetermined with respect to the determined
meta-variable. After the introduction of a binding for the meta-variable by InstlfDetermined MULTI
re-invokes Solvelnequality.

39

4.5.2 The LIM+ Example with MuLTI

The LIM+ problem states that the limit of the sum of two functions f and g equals the sum of
their limits. That is, the problem states that

LIM+: lim (f(z) + 9(x)) = I; + 1
follows from Limy: lim f(z) =y
Ir—a
and Limg: lim g(z) = I,.
Ir—a

Figure 16 and Figure 17 show the interesting parts, i.e., the parts created by Solvelnequality,
of the resulting PDS. We indicate the contributions of NormalizeLineTask and UnwrapHyp by
justifications in the PDS such as (UnwrapHyp L3) (in line Ls9) and (NormalizeLineTask Lg L;2)
(in line L,), which abbreviate the proof segments created by these strategies. The complete PDS
is given in appendix B. Note that we describe the proof planning process in progress. Hence, we
introduce meta-variables, when they arise. When there is a binding for a meta-variable during the
proof planning process, then the proof lines created after the introduction of the binding use the
instantiation of the meta-variable in order to clarify the following computations.

Limg. Limg I-}i_r&f(:t) =l (Hyp)
Limg. Limy + zli_r’nag(a:) =l (Hyp)
Ly. Limy FVe1a(0 < €3 = 351.(0 < 81 A (DEFNUNFOLD-F Limy)
Vzie(lz1 —a| <81 Alz1—a| >0
= |f(z1) - lf] < e1)))
L3. Lim, FVe2e (0 < €2 = 362.(0 < 62 A (DEFNUNFOLD-F Limyg)
Vzo.(lz2 —a| < d2 A2 —a] >0
= |g(z2) — Ig] < €2)))
Ly, Ly F0 < cs AVZ1(|z1 —a| < c5, Alz1—a| >0 (Hyp)
= [f(z1) — Iy] < muey)
Lga. Ly F0< c5, AVZ2e(lz2 —a| < 5, Alz2—a| >0 (Hyp)
= [g(z2) ~ lo| < muey)
L. Ln Flez —a| >0A ez —a| < my; (Hyp)
Ls. Ls FO<ece (Hyp)
Lsa. ™Ha F muz,=cz (TELLCS-B)
Lss. H2 Fmue, < % * Ce (TELLCS-B)
Lyg. ™ Flg(muz,) — lg} < mue, (UnwrapHyp L3)
Lys. Ha Flglez) — lg[< i« Ce (SOLVE*-B Lo Ls2 Ls3)
L3y7. ™ Flglez) —lg| < 3 *ce (UnwrapHyp
L3 L4g L3g Lso Ls1)
L3;. M, FN| < mv (TeELLCS-B)
Lz, ™ Fmue, < g5 (TELLCS-B)
L3s. ™, Flglez) —lg| < % (SMPLIFY-B L37)
Lzs. ™ FO<mu (TeLLCS-B)
L3s. ™Ha F mug, =cz (TELLCS-B)
Lag. ™, 1 f(mug,) — L] < mue (UnwrapHyp Lg2)
Ly, ™y FI((flez) + 9(cz)) = 1) = lg] < ee (CoMPLEXESTIMATE-B
Log L3y Laz L3z Laa L3s)
Lis. M FI((f(ex) + glez)) = If) — lg] < ce (UnwrapHyp
L2 L7 L1 Lag Lao)
Lia. Hs FI(flez)+ g(ez)) — Ly +1g)] < ce (SIMPLIFY-B L1g)
Lg. Hq F0 < mus (TELLCS-B)
L. Limg Limgh Ve (0 <e= 36(0 <A (NormalizeLineTask Lg Li2)
Vi.(lr —a|<dA|z—a| >0
= [(f(x) + 9(z)) = (5 + 1) < ¢)))
LIM+. Limyj, Lim,kxlgxla(f(z) +g(x)=ls+1g (DEFNUNFOLD-B Lj)
Hy = {Limf. Lim§, Ls,Lq,, Lnl}, Ha = {Lim;, Lima, Ls, L1y, La;, L,u}
H; = (Li"’!f. Limgy,Ls, L1y}, Hy = {Lim,. Limg, Ls}

Figure 16: e-d-proof for LIM+ (part I).

The proof planning process starts with the invocation of Solvelnequality on the initial task
LIM+ «{Limy, Limg}. Solvelnequality first unfolds the occurrences of lim. Afterwards, it

40

switches to NormalizeLineTask, which decomposes the resulting complex goal in line L, into the
goals |(f(ez)+9(ez))— (5 +1g)| < ce in L1z and 0 < mus in Lg where ¢, and ¢, are constants intro-
duced for the universally quantified variables € and z in L; and muvs is a meta-variable introduced
for the existentially quantified variable 4.

Both new goals are inequalities and Solvelnequality tackles them guided by the control rule
prove-inequality. It closes 0 < muws directly by an application of TELLCS-B, which passes
the formula to CoSZE. |(f(cz) + g{cz)) — (If +1g)] < ce is not accepted by CoSTE and therefore
TELLCS-B is not applicable. Solvelnequality simplifies this goal to |((f(cz)+9(cz))—lf)—lg] < ce in
line L6 but then fails to solve this goal with the given supports. choose-unwrap-support detects
the subformula |f(z1) — lf| < €1 of Ly as a promising support and guides the application of the
method SETFoCUS-B to highlight the subformula. This triggers the interruption of Solvelnequality
and the invocation of UnwrapHyp for this subformula. The application of UnwrapHyp yields the
new support |f(muvg,) — lf| < mve, in line Lyg, but also the three new goals 0 < muv,, in line Lig,
|mvz, —a| < ¢5, in Lag, and |muvg, —a| > 0in Lzg. Here UnwrapHyp introduces the constant cs, for
the existentially quantified variable d; and the meta-variables mv,, and mug, for the universally
quantified variables €; and z; in Lo.

When Solvelnequality is re-invoked, it can apply COMPLEXESTIMATE-B to the goal |((f(cz) +
glez)) — lf) — lg| < ce and the new support |f(muvg,) — | < muve,. This results in the five
new goals |1| < mv in L31, mve, < 555 in L3z, |g(cz) — lg| < % in L3z, 0 < mv in Lg,
and muvy,=c; in L3s. Except L33 all goals are closed by applications of TELLCS-B, which pass
the respective formulas as constraints to CoSZE. Since mvg, =c; determines mvz, in CoSIE the
control rule eager-instantiate fires and interrupts Solvelnequality. Its demand causes MULTI to
invoke InstlfDetermined on the instantiation-task of mv;,. InstifDetermined introduces the binding
mug,:=" ¢, into the strategic proof plan.

The re-invoked Solvelnequality simplifies |g(cz) — Ig| < & to |g(cz) — lg| < 3 * ¢c in La7 but
then fails on this goal with the existing supports. choose-unwrap-support detects the subfor-
mula |g(z2) — lg] < €2 of L3 as a promising support and guides the corresponding application
of the method SETFOCUS-B to highlight this subformula. Afterwards, Solvelnequality interrupts
and MULTI switches to UnwrapHyp, which unwraps the subformula and yields the new support
|g(mug,) —lg| < mue, in line L4g. The unwrapping yields also the three new goals 0 < mv,, in line
L3g, |mug, —a| < cs, in Lsg, and |mvg, —a| > 0 in Ls;. UnwrapHyp introduces the constant cs, for
the existentially quantified variable d; and the meta-variables mv,, and muv,, for the universally
quantified variables €2 and z2 in L3.

When re-invoked, Solvelnequality applies SOLVE*-B to the goal |g(cz) — 14| < %* ce and the new
support |g(muz,) — lg| < mve,. This results in the new goals mvz,=c; in Lsz and mve, < 3 * c
in Ls3, which Solvelnequality closes by TELLCS-B. muv;,=c; determines the meta-variable mv,,
in CoSZE. Thus, the control rule eager-instantiate suggests a switch from Solvelnequality to
InstlfDetermined, which introduces the binding muv,,:= ¢, into the strategic proof plan.

Lig. Hs F0 < mue, (TELLCS-B)

L3g. M3 F0 < mue, (TELLCS-B)

Li1. L1 Flez —al > 0A ez — a| < mug (Hyp)

Lis. Ly Flez —a| >0 (AE-F Li1)

Li3z. L Flez — a] < mug (/\E-F Lu)

Le1. Hi FoO<LO (AskCS-B)

Lsg. Ha Fmus < cs, (TELLCS-B)

Ls7. M2 F0OLO0 (AskCS-B)

Lss. M2 Fmus < cs, (TELLCS-B)

Lag. Hi F|mvz, —al < c5 (SoLvE*-B L13 Lsg)

L3p. Ha - |7’7’L‘IJ;;l —a|>0 (SoLve*-B Li14 Le1)

Lso. H2 Flmuz, —a| < cs, (SoLvE*-B Li13 Lss)

Ls1. M2 F|muz, —al >0 (SoLvE*-B L14 Ls7)
Hy = {Lim!, Limg, Ls, L1, Lzl}, Ho = {Limf, Limg, Ls, L1, L2, L42}
H3={L‘imf.L’im9,L5,L11}, 7‘{4 ={LiW1f,L’img,L5}

Figure 17: e-6-proof for LIM+ (part II).

41

Afterwards, Solvelnequality has to deal with the remaining goals Lig, Log, L3, and Lsg, Lsg,
Ls;, which resulted from the applications of the UnwrapHyp strategy. Figure 17 gives the PDS
segment created by Solvelnequality for these goals. It closes Lig and Lgg directly by TELLCS-B.
The inequalities in the other goals cannot be passed to CoSZE directly because TELLCS-B is
not applicable to them. Instead, Solvelnequality applies SOLVE*-B to these goals with supports
that stem from the decomposition of the initial goal by NormalizeLineTask. The applications
of SOLVE*-B result in inequality goals, which Solvelnequality closes either with TELLCS-B or
AskCS-B.

After closing all line-tasks, Solvelnequality terminates. Next, MULTI invokes Computelnst-
FromCS on the instantiation-tasks and CoSZE provides instantiations for the meta-variables that
are consistent with the collected constraints (see Figure 11 in section 3.5). ComputelnstFromCS
inserts these instantiations as the bindings

mu:=b1, mue,:=" %, mve,:=b %, and mvs:=min(cs,, cs;)

into the strategic proof plan.

5 Formal Description of MULTI

In the previous section, we explained the design of MULTI and its basic concepts. In this section,
we shall give a formal description of MULTI.

Proof planning with multiple strategies computes strategic actions and introduces them into
a strategic proof plan. A strategic action is the instantiation of a strategy pattern corresponding
to method actions, which are instantiations of methods. Similar to proof plans in PLAN a
strategic proof plan consists of a sequence of actions, an agenda, and a PDS. Strategic proof
plans contain additionally a sequence of so-called binding stores to keep track of introduced meta-
variable instantiations.

The structure of the section is as follows. First, we introduce some new data structures used by
MuLTl. In section 5.2, we describe the different kinds of strategic actions in MULTI. Afterwards,
we formally describe strategic proof plans and give the operational semantics of strategic actions
in section 5.3. Section 5.4 describes the strategic manipulation records, which MULTI uses to
construct a history. After the introduction of all necessary elements, we describe MULTI’s main
cycle and the modification and refinement algorithms integrated so far in section 5.5. We conclude
this section with the discussion of some particular technical features of MULTI in section 5.6.

5.1 New Data Structures

In this section, we discuss some new data structures used in MULTI and their role during the
strategic proof planning process.

Task Tags

In MULTI, a strategy is executed with respect to a particular task (from the blackboard point of
view we can say that the existence of the task triggers the invocation of the strategy). A particular
execution of a strategy tackles then the task by which it was triggered rather than arbitrary
tasks. This is easy to realize for the algorithms EXP, ATP, and INSTMETA since these algorithms
perform just one refinement step before they terminate. The situation is more complicated for the
algorithms PPLANNER and CPLANNER since they may perform a sequence of proof plan modifications
(e.g., introduce several actions) before they terminate or interrupt. When applied with respect
to an initial task, these algorithm should tackle this task and tasks that are derived from it but
they should ignore other tasks in the agenda. Moreover, if a strategy execution of CPLANNER or
PPLANNER interrupts and other strategies are executed, then some of these strategies work on tasks
created by the interrupted strategy some of them work on other tasks. When the initial strategy
is re-invoked again, then it should tackle tasks derived from its own tasks but it should ignore

42

other tasks created meanwhile. To organize this behavior a maintenance mechanism is needed,
which keeps track of which tasks are relevant for which strategies.

In MULTI, the desired behavior is supported by so-called task tags. When a strategy of
CPLANNER and PPLANNER is invoked, then it creates a new task tag @7, which uniquely refers
to this execution of the strategy. The task tag is pinned to the task that triggered the strategy.
When a proof plan modification in MULTI reduces a task to some new tasks, then the new tasks
inherit all tags from the initial one. An execution of a strategy of CPLANNER or PPLANNER considers
only tasks that carry its tag. When the strategy execution terminates, then its tag is removed from
all tasks. When a strategy execution interrupts and is re-invoked later on, then the re-invocation
continues to work with the task tag created by the initial invocation.

If used in several not-terminated strategies, then one task can carry several tags. For instance,
when an execution of a PPLANNER strategy creates a task T, then T carries the tag of this execution.
Afterwards, the execution interrupts and a different strategy is applied to T. Then, this second
strategy execution creates a new tag, which is also pinned to T'. All actions introduced by this
second strategy execution inherit both tags of T. When the second strategy execution terminates
and its tag is removed, then the resulting tasks carry still the tag of the first strategy execution.
Thus, when the first strategy execution is re-invoked, it can continue to tackle these tasks.

Note that the task tags describe only which tasks can be tackled by a strategy execution.
This does not mean that the other tasks are “invisible” or temporarily removed. Control rules
evaluated by CPLANNER and PPLANNER can reason on all tasks of the current agenda.

Execution Messages

When a strategy execution stops, then its result and the reason why it stops are relevant infor-
mation for MULTI since MULTI treats different kinds of termination differently (see section 5.5).
Moreover, this information is important for the meta-reasoning with strategic control rules. There-
fore, each strategy execution in MULTI stops with a so-called ezecution message, which contains
the available termination information. So far, MULTI uses the following execution messages:

o A success message occurs when the strategy execution is successful on the given task.

e A failure message occurs when the strategy execution fails on the given task because of some
problems (e.g., a strategy of PPLANNER fails because there are no further applicable actions).

e An interruption message occurs when a strategy of CPLANNER or PPLANNER is interrupted.

The algorithms can attach further information to the execution messages, which can also be
used by the strategic control rules. For instance, an algorithm can attach information on what
kind of failure occurred to a failure message (see section 5.6.5).

Execution messages are stored in the history entries created by the strategy executions (see
section 5.4). When which algorithm terminates with which execution message is described in
detail in section 5.5. When a strategy execution terminates with a success message we also say
that the application of the strategy was successful.

Demands and Memory Entries

For the algorithms CPLANNER and PPLANNER a strategy execution can interrupt. If this is the
case, the strategy execution creates so-called demands and adds them to the demand repository
on the control blackboard. MULTI knows for the following demands:

o A demand S — ON — T, which specifies a strategy S and a task T, is called a strategy-task-
demand. This demand is satisfied by a successful application of the strategy S to the task
T.

e A demand S — ON-7, which specifies a strategy S but no task, is called a strategy-demand.
This demand is satisfied by a successful application of the strategy S to any task.

43

e A demand ? — ON — T, which specifies a task T but no strategy, is called a task-demand.
This demand is satisfied by a successful application of any strategy to the task T.

An interrupted strategy execution writes also an entry into the memory repository on the
control blackboard. A memory entry is a pair (@r,{Pp,,...,Pp,}) of a task tag @7 and a set
of pointers {Pp,, ..., Pp, } to the demands of the interrupted strategy execution in the demands
repository. MULTI uses the @7 to re-invoke the strategy execution later on (see section 5.5.2 for
details). Moreover, it makes use of the pointers to check whether the demands of the interrupted
strategy are satisfied such that the strategy execution can be re-invoked again (see section 5.5.1
for details).

5.2 Strategic Actions

PLAN computes and introduces actions into a proof plan. An action is an instantiation of a
method, which is a pattern of a proof step (see section 2.4). To extend this approach of action
computation and introduction to strategic proof planning there is a strategic pattern associated
with each algorithm in MULTI (except BACKTRACK). The application of a strategy computes an
instantiation of the pattern of its algorithm, a so-called strategic action, and introduces it into the
strategic proof plan.

In this section we shall describe the strategic actions created by the algorithms PPLANNER,
INSTMETA, EXP, ATP, and CPLANNER. The algorithm BACKTRACK does not create actions but deletes
actions of other algorithms. Note that, henceforth, we call instantiations of methods method
actions in order to distinguish them from the different strategic actions, which we call PPLANNER
actions, INSTMETA actions, EXP actions, ATP actions, and CPLANNER actions.

Technically, strategic actions are implemented as frame data structures. Each strategic action
has the slots strategy, task, and binding-store. The strategy of an action and the task of an action
are pointers to the strategy and the task with respect to which the action was computed. The
binding store of an action is a pointer to the binding store, which was the current binding store,
when the action was computed. Depending on the algorithm the different strategic actions have
also further slots.

PPLANNER and CPLANNER

The algorithms PPLANNER and CPLANNER successively introduce actions into a strategic proof
plan, PPLANNER with respect to a given set of methods and control rules, CPLANNER with respect
to a given plan or a given plan fragment. Thus, actions of PPLANNER and CPLANNER are essentially
abstractions of the sequence of actions introduced by the respective algorithm. The sequence of
introduced actions is stored in the slot action-sequence of a PPLANNER or CPLANNER action.

Executions of PPLANNER and CPLANNER strategies can interrupt and can be re-invoked later on.
Thus, one execution can consist of several periods. PPLANNER and CPLANNER create a strategic
action for each period of the same strategy execution. Each of these actions contains the initial
task to which the strategy was applied in the task slot. In its action-sequence slot each action
contains only those actions that were introduced during the corresponding execution period. Note
that the information stored in the strategic actions is not sufficient to identify actions that belong
to the same strategy execution. For that purpose also information stored in the corresponding
history entries is needed (see section 5.4 for details on the history entries).

PPLANNER Action
strategy NormalizeLineTask
task Lrhm. Lassy,Lass, F 32.(0 < z A F[z]) (open) 4 {Lass,, Lassy}
binding store [BS
action-sequence [AEI-B’ A/'\I-B’ .]

Figure 18: A strategic action of PPLANNER.

An example for an action of PPLANNER is given in Figure 18. The strategic action results from

44

the application of the strategy NormalizeLineTask to the line-task

Lrhm. LAsslyLAsm F 3z. (O <zA F[:ZI]) (open) < {LASSU LA582}'
First, PPLANNER applies the method 3I-B to the initial task. Then, it applies the method AI-B to
the resulting task with task-formula 0 < muvz AF[muv,]. If F[mu,] is again a complex formula, then
PPLANNER can perform further actions in order to decompose F[muv;]. The sequence of actions
performed by PPLANNER, [AEII-Bv AALB>- - -}, is stored in the slot action-sequence of the strategic
action.

ATP

The algorithm ATP employs external automated theorem provers to prove line-tasks. If the
automated theorem prover succeeds, then the ATP algorithm closes the goal of the line-task and
creates a strategic action and stores the output of the external system in the slot output.

An example for an action of ATP is given in Figure 19. The strategy CallTramp is applied to the
(trivial) problem to show that P = P holds. The problem is passed to TRAMP, which provides
as output the ND-proof given in the output slot of the action.

ATP Action

strategy CallTramp
task LOF P = P (open) €0
binding store [BS
Ly. L, FP (Hyp)
output L. ., FP (Weaken)
L. o FP=P (=1 L2)

Figure 19: A strategic action of ATP.

Exp

The algorithm EXP expands complex steps, i.e., method or tactic steps in the constructed PDS.
For a proof line L with justification (J P; ... P,), where J is a method or a tactic and Py, ..., P,
are the premises, EXP computes a proof segment that derives the conclusion L of the step from
its premises P, ..., P, at a lower level of abstraction. This proof segment is stored in the slot
expansion-segment of an action of EXP. Moreover, an EXP action contains the slot open-lines, which
contains the set of new open lines that are introduced in the expansion-segment.??

An example is given in Figure 20. This EXP action results from the expansion of the justification
(=Subst-B LThm' L ass,) of proof line Lty (compare with example 2.5 in section 2.4). When this
step is expanded, then the proof schema of the method =Subst-B (see section 2.3) is instantiated
in order to derive Lrpm from the premises Lrpm and Lass, as given in the expansion-segment in
Figure 20.

INSTMETA

The algorithm INSTMETA computes instantiations of meta-variables. An action of INSTMETA
stores the computed instantiation in the slot instantiation. An example for an action of INSTMETA
is given in Figure 21. This action results from the application of the strategy ComputelnstFromCS
to the task mus|’™st. INSTMETA computes the instantiation min(cs,,cs,) for mvs and stores it in
the instantiation slot.

5.3 Strategic Proof Plans

In this section, we shall extend the notions introduced in section 3.1 to strategic proof plans. We
start with the definitions of a strategic proof planning problem, an initial PDS of a strategic proof
planning problem (which is the same as the initial PDS of a proof planning problem), and an
initial agenda of a strategic proof planning problem (which is different from the initial agenda of
a proof planning problem since it may contains instantiation-tasks).

231f one of the premises Py, ..., P, is open, then it is not in this slot, since it was not changed by the expansion
(i.e., its open justification was not created by the expansion).

45

EXP Action

strategy Exp
task Lrhm- Lass,,Lass, F even(a+b) (=Subst-B Lram' L ass,)|F=P
binding store |BS

Lass;- Lass, Fa=c (Hyp)

Lrnm'- Lass; Lassy - €vEN(C+b) (Open)
expansion- Ly. Lasey-Lass, m VP P(c) = P(a) (SE Lass, (=)
segment La. Ly Ly ()\.’IJ- even(z H b))(C) = (Ve L1 (Azaeven(z+b)))

so1r T Ase2 (Az.even(z + b))(a) T

Ls. Lass Lass, - evEN(c+ b) = even(a +b) (A L2)

Lrhm. Lass Lass, Feven(a+b) (=5 Lz Lepn)
open-lines |{}

Figure 20: A strategic action of EXP.

INSTMETA Action
strategy ComputelnstFromCS
task mug|mst
binding store [BS
instantiation |min(cs,, cs,)

Figure 21: A strategic action of INSTMETA.

Definition 5.1 (Strategic Proof Planning Problem):

A strategic proof planning problem is a quadruple (Thm, {Assi,. .., Assn}, S, Cs), where Thm and
Assi, ..., Assy are formulas in QMEGA’s higher-order language, S is a set of strategies, and Cs is a
set of strategic control rules. Thm is also called the theorem of the strategic proof planning problem
whereas Assy, ..., Ass, are called the assumptions of the strategic proof planning problem. O

Definition 5.2 (Initial PDS, Initial Agenda):

Let (Thm,{Assy,...,Assn}, S, Cs) be a strategic proof planning problem. The initial PDS of this
problem is the PDS that consists of an open line Lp,, with formula Thm and the lines L 445, with
formula Ass; and the hypothesis justification Hyp, respectively. The initial agenda of the strategic
proof planning problem is the agenda that consists of the line-task Lrpm €4 {Lass;,---sLass,}
and an instantiation-task mle ™st for each meta-variable in LThm, Lass,,-- -, LAss, -]

Next, we extend the action applicability notion of PLAN. In MULTI, actions are applicable
with respect to a PDS and a binding store. In particular, an action is applicable only if the current
binding store equals? the binding store with respect to which the action was computed (i.e., the
binding store that is stored in the slot binding store of the action). This restriction is necessary since
the computation of actions can rely on given bindings in the current binding store. Moreover, we
extend the action introduction functions ® and & of PLAN (see definition 3.5 and definition 3.6)
to the strategic action introduction functions ®pycr and CfMULT,. ® My describes the operationat
semantics of an action in MULTI when it is applied to an agenda, a PDS, a sequence of actions,
and a sequence of bindings stores, i.e., ®ymym defines a transition relation between quadruples
of agendas, PDSs, sequences of actions, and sequences of binding stores. First, we give general
definitions of ®pyLm and 5Mum. Then, we define for each kind of action used in MULTI when it
is applicable and the results of its introduction by @pyym.

Definition 5.3 (Action Introduction Functions @y and <I3MULT,): The action introduc-
tion function ®Mmyum is a partial function that maps a sequence of actions, an agenda, a PDS, a
sequence of binding stores, and an applicable action into a sequence of actions, an agenda, a PDS,
and a sequence of binding stores, i.e.,

24Two binding stores are equal when they contain the same bindings.

46

@MULT,:ffox'PxESanddHE’xA’xP’xBE’.
The recursive action introduction function Spum is a partial function that maps a sequence of
actions, an agenda, a PDS, a sequence of binding stores, and a sequence of actions into a sequence
of actions, an agenda, a PDS, and a sequence of binding stores, i.e.,
&"MULTI.A‘XAXPXB-'SXA.addI—r/T’XA7X'P’XB-‘S’.
@Mum is recursively defined as follows:
Let A be a sequence of actions, A an agenda, P a PDS, BS a sequence of binding stores, and
Agga a sequence of actions.

1. If Aadd is empty, then L .
¢MULTI(A A P BS Aadd) (A, A,P,BS)

2. Otherwise let Aggq := f/rst(Aadd) and A'p4q == rest(/fadd) If Ayqq is applicable with respect
to P and the last bmdmg store of BS, and if A contains the task of Aqqa, then
CPMULTI(A’ A, P7 BS, Aadd) = ‘I‘MULrl(‘I)MULTl(A, A, P, BS, Aadd)7 add)-

Method Actions

A method action is applicable with respect to a PDS, if the given lines of the action are in the
PDS. Ppyun differs from @ in two points. First, ®ypyum creates not only new line-tasks but also
new instantiation-tasks (for each new meta-variable in the new outlines created by the method
action) and new expansion-tasks (for each conclusion of the method action). Second, MULTI allows
method actions that contain binding constraints in their constraints slot. These binding constraints
are labeled with Binding, which indicates that they are not passed to an external constraint solver
but to the binding store.2> When the action is introduced, a new binding store is created and added
to the sequence of binding stores. The new binding store results from the union of the bindings
of the last binding store and the new bindings. The instantiation-tasks whose meta-variables are
bound by the new bindings are then removed from the agenda.

Definition 5.4 (Applicable Method Actions): Let P be a PDS, BS a binding store, and
Aqdq @ method action with the binding store BS4_,,. Moreover, let £ be the set of proof lines of P
and let ©Concs be the © conclusions, © Prems the © premises, and BPrems the blank premises
of Aggd. Agdq is applicable with respect to P and BS, if

1. (6Concs U ©Prems U BPrems) is a subset of L,

2. BSa,,, = BS.
0

Definition 5.5 (Ppyr; on Method Actions): Let BS be a sequence of bindings stores and
let BS be the last binding store of BS. Let Abe a sequence of actions and let A,qq be a method
action, which is applicable with respect to a PDS P and BS.

Moreover, let @Concs be the @ conclusions, 8Concs the © conclusions, @& Prems the & premises,
©Prems the © premises, and BPrems the blank premises of Agqq. Let T = Lopen 4« SUPPSL,,..
be the task of A,44 and let o be the binding constraints of Agq4q.

Prems:=@®Prems U ©&Prems U BPrems,

Concs:=®Concs U 6Concs

New-Lines:=®ConcsU &Prems

New-Supps:=(SUPPS.,,,,. UPConcs) — SPrems.

New-Line-Tasks:=[L €4 New-Supps | L € @Prems].

New-Inst-Tasks:=[mv|"™t | mv € New-Lines and not mv|™* in A).

25Internal binding constraints in method actions were first introduced by LASSAAD CHEIKHROUHOU in an extension
of PLAN for proof planning diagonalization proofs [11].

47

New-Ezp-Tasks:=[C|F*P | C in Concs].

New-Tasks:=New-Line-Tasks U New-Inst-Tasks U New-Ezp-Tasks.
Old-Inst-Tasks:=[mv|'™st | mv:=tt € g].

Asest:=A — ([T] U Old-Inst-Tasks)).

If A is an agenda that contains the task T" of A,q44, then the result (/Y’, AP, lfS’) of
®yuin (A, A, P, BS, Agqq) is defined by:

. fT’:= fTU [Aadd]-

o At New-Tasks U Arest if Lopen € 6Concs,
" [Lopen € New-Supps] U New-TasksU Arest else.

e P’ results from P by

1. adding the proof lines New-Lines, respectively, and

2. justifying the proof lines ©Cones and ®@Concs by the application of the method of Agq4q
to Prems, respectively.

e If o is empty, then BS":=BS. Otherwise, BS’:=BS U [BSpew] where
BSnew = {muv;:="t,0|(mv;:="t;) € BS} U o.%

INSTMETA Actions

An INSTMETA action is applicable with respect to a binding store and a PDS, if the proof lines
of the PDS contain occurrences of its meta-variable but there is no binding for the meta-variable
in the binding store. When applied to an action of INSTMETA, ®py.1; creates a new binding store,
which is added to the sequence of binding stores. The new binding store results from adding a
binding for the meta-variable of the instantiation-task of the action to the last binding store of
the sequence.

Definition 5.6 (Applicable INSTMETA Actions): Let P be a PDS with proof lines £, BS a
binding store, and A,q4q an INSTMETA action. Let Ta,,, = mv|'™** be the task of Agqq and BSa,,,
its binding store. Ag4q is applicable with respect to P and BS, if

1. there are occurrences of mv in the formulas of the proof lines £,
2. there is no binding for mv in BS,

3. BSa,,, = BS.
O

Definition 5.7 (Pmyrn on INSTMETA Actions): Let BSbea sequence of bindings stores and let
BS be the last binding store of BS. Let Abea sequence of actions and let A,qq be an INSTMETA
action, which is applicable with respect to a PDS P and BS.

Moreover, let T = mv|l nst be the task of Aqqq and let ¢ be the instantiation for mv in Agqg.
o:={muv:=Lt}.

If A is an agenda that contains the task T of A,qq, then the result (/T’, AP, B‘S’) of

®(A, A, P, BS, Agaa) is defined by:

® /T’:= /TU [Aadd]~
o A=A - [T]

2640 is the term that results from the application of the binding constraints in ¢ to the subterms of ¢;. That
is, each occurrence of a meta-variable mv’ in t; that is bound by a constraint mwv:="t in o is replaced by an
occurrence of t’.

48

o P:=7P.

- —

o BS:=BS U [BSpew] where BS, e 1= {muv;:="t,o|(muv;:="t;) € BS} Uo.
O

ATP Actions

An ATP action is applicable with respect to a PDS, if the proof lines of the line-task of the
action are in the PDS. When applied to an action of ATP with task Lopen < {S1,...,5n}, ®muim
closes Lopen in the PDS with an application of the tactic atp. The only resulting new task is an
expansion-task for Lopen.

Definition 5.8 (Applicable ATP Actions): Let P be a PDS with the proof lines £, BS a
binding store, and Aqqq an ATP action. Let Ta,,, = Lopen € {S1, ..., Sn} be the task of Azqq and
BSg4,,, its binding store. Agqq is applicable with respect to P and BS, if

1. Lopen € £ and SUPPSy,,., C L,

2. BSa,,, = BS.
O

Definition 5.9 (®yyr on ATP Actions): Let BSbea sequence of bindings stores and let BS
be the last binding store of BS. Let Abea sequence of actions and let Ag4q be an ATP action,
which is applicable with respect to a PDS P and BS.

Moreover, let T = Lopen 4« SUPPSL,,., be the task of Agqq and let Out be the content of the
slot output of Agqq.

If Ais an agenda that contains the task T of Agy44, then the result (/T’, AP B;'S’) of

®(A, A, P, BS, Agqq) is defined by:
o A= AU [Agdd]-
o A= (A —[T]) U [Lopen|E?).

e P’ results from P by justifying the proof line L,p., with an application of the tactic atp to
the supports SUPPSy,,., and the parameter Out.

< -

e BS:=RS.
]

ExP Actions

An EXP action is applicable with respect to a PDS, if the closed line in the expansion-task of
the action is in the PDS and if the premises of the justification of the closed line are in the PDS.
When applied to an action of EXP, ®py . introduces the new proof lines of the expansion-segment
slot into the PDS and adds all resulting new tasks to the agenda, namely new instantiation-tasks
for new meta-variables in the new proof lines, new line-tasks for open lines in the new proof lines,
and new expansion-tasks for all new proof lines, which have a tactic or a method justification.

Definition 5.10 (Applicable EXP Actions): Let P be a PDS with the proof lines £, BS a
binding store, and A,qq an EXP action with the binding store BS 4,,,. Moreover, let Ty4,,, = L|B=p
be the task of Ag,qq where L has the justification (J Py ... P,). Aadq is applicable with respect to
P and BS, if

1. LeLand {P, ... P} C L,
2. BSy,,, = BS.

49

Definition 5.11 (®pyur; on EXP Actions): Let BS be a sequence of bindings stores and let BS
be the last binding store of BS. Let A be a sequence of actions and let Ayqq be an EXP action,
which is applicable with respect to a PDS P and BS.

Moreover, let T = L|E=P be the task of Aggq and (J P; ... P,) the justification of L (before the

expansion).
SUPPS:={P,...,Pp}.
New-Lines:=expansion-segment of A,qq without L, Py,..., P,.

New-Open-Lines:=open-lines of Agqq-

New-Line-Tasks:=|L' « SUPPS | L' in New-Open-Lines].

New-Inst-Tasks:=[mv|I™ | mv € New-Lines and not mv|I™t in A.
New-Ezxp-Tasks:=[L'|F=P |(L’ € New-Lines or L' = L) andL’ closed by tactic or method).
New-Tasks:=New-Line-Tasks U New-Inst-Tasks U New-Exp-Tasks.

If A is an agenda that contains the task T of Agqq, then the result (/f’, AP, lfS’) of
®(A,A, P, BS, Agaq) is:

] A":= /TU [Aadd]-
e A= (A —[T]) U New-Tasks.
e P’ results from P by

1. adding the new justification specified in the expansion segment to L as the justification
of the lowest level of abstraction, and

2. adding the proof lines New-Lines.
o BS:=B8.

PPLANNER and CPLANNER Actions

A PPLANNER or CPLANNER action Ag is applicable, if all actions [A3, . . ., Ap] in its action-sequence
slot are applicable when introduced successively. When applied to Ag, ®pyum stepwise introduces
the actions from the sequence [Aj,..., An] using the function 5Mum- Afterwards, it replaces
[A1,...Ay] in the constructed action sequence by As. That is, the actions Aj,..., A, are not
explicitly mentioned in the constructed action sequence but only implicitly as part of the action
of PPLANNER or CPLANNER. This guarantees that @y and q_sMum create a sequence of strategic
actions.

Definition 5.12 (Applicable CPLANNER and PPLANNER Actions): Let P be a PDS, BS a
binding store, and A,q4q 2 PPLANNER or CPLANNER with the action sequence [4;, ..., A,]. Moreover,
let Ta,,, be the task of Agqq and BS,4,,, its binding store. Ayq4q4 is applicable with respect to P
and BS, if for each A;,i=1...nin [4;,...,A4,] holds:

e Let (A‘i,Ai,Pi,BqSi) = <f>Mum(ff, AP, BS, [A1,...,A;_1]) for an arbitrary sequence of ac-
tions A and an agenda A that contains the task T4,,,. Then, A; is applicable with respect
to P;, and BS; and A; contains the task of A;.

0

Definition 5.13 (®myur on PPLANNER or CPLANNER Actions): Let BSbea sequence of bindings
stores and let BS be the last binding store of BS. Let A be a sequence of actions and let A,q4q be
a PPLANNER or CPLANNER action, which is applicable with respect to a PDS P and BS.
Moreover, let [A1, ..., Ay] be the action-sequence of Agqq.

(Arees Avec, Pree: BSrec) = ®nmuin (4, A, P, BS, [A1, ..., 4,]). o 3

If A is an agenda that contains the task of A,44, then the result (4’, A’, P’, BS’) of
@(E,A,'P,ES, Agdd) is defined by:

50

-

A= (Arec — [A1, .., An]) U [Agad).

o A= A,ec.
o Pli=Prec.
o B5:=B5,.

o

With the function 5Mum we can define strategic proof plans and strategic solution proof plans.
Actually, we shall give three different notions of solution proof plans, which specify more and more
strict conditions for strategic proof plans.

Definition 5.14 (Strategic Proof Plans, Strategic Solution Proof Plans):

Let (Thm, {Assy, ..., Ass,},S,Cs) be a strategic proof planning problem, P;y,;; the initial PDS
of this problem, and Ami: its initial agenda.

A strategic proof plan to the strategic proof planning problem is a quadruple SPP = (A‘, AP, ES)
with a sequence of strategic actions A an agenda A, a PDS P, and a sequence of binding stores
BS such that:

1. each strategy of an action of Aisin S ,

2. ("I7 A’ Pa B-‘S) = (i;MULTl([L A’in‘itv Pinih []a A‘)7
O

With respect to this definition of a strategic proof plan we can also say that ®Myur maps a
strategic proof plan and an action into a strategic proof plan and that ®py.r, maps a strategic
proof plan and a sequence of strategic actions into a strategic proof plan.

Definition 5.15 (Strategic Solution Proof Plans):

Let (Thm, {Assi,...,Assn},S,Cs) be a strategic proof planning problem, P;,;; the initial PDS
of this problem, and Aim-t its initial agenda.

We distinguish the following three notions of a strategic solution proof plan:

® A method-level solution proof plan for the problem is a sequence of strategic actions A such
that ®myun ([J, Ainits Pinit, [, A) results in an agenda without line-tasks and a closed PDS.

o An instantiated method-level solution proof plan for the problem is a sequence of strategic
actions A such that ‘I;Mum([], Rinie; Pinits 1, ,/T) results in an agenda without line-tasks and
instantiation-tasks, a closed PDS, and a binding store sequence such that the last binding
store contains bindings for all meta-variables occurring in proof lines of the final PDS.

e A full solution proof plan for the problem is a sequence of strategic actions A such that
<f>Mum([], Kinits Pinits [, A) results in an empty agenda, a closed PDS in which all nodes are
justified by ND-rules, and a binding store sequence such that the last binding store contains
bindings for all meta-variables occurring in proof lines of the final PDS.

O

The first notion of solution proof plan is called method-level solution proof plan since a strategic
proof plan satisfying these conditions is reached by computing method actions whose introduction
satisfies all line-tasks and creates a closed PDS. Instantiation-tasks and expansion-tasks can be
ignored. The second notion of solution proof plan, instantiated method-level solution proof plan,
demands to tackle also instantiation-tasks. However, expansion-tasks can still be ignored. Finally,
in order to obtain a full solution proof plan the expansion-tasks have to be solved. We shall
describe in section 5.6.2 how a user can make MULTI search for a particular kind of solution proof

plan.

51

5.4 Strategic Manipulation Records

Similar to PLAN, MULTI constructs a history consisting of manipulation records. These manip-
ulation records contain information, which can be used by the control rules in order to perform
meta-reasoning.

Strategy-Application:
agenda
alternative-job-offers
introduced-action

new-tasks

execution-message

Figure 22: A strategy-application record.

A strategy execution of the algorithms EXP, ATP, and INSTMETA creates one so-called strategy-
application record (see Figure 22). The slots agenda and alternative-job-offers capture the con-
text in which the manipulation was done whereas the the slots introduced-action, new-tasks, and
execution-message store the result of the manipulation. The slot agenda captures the agenda before
the strategy is applied. The slot alternative-job-offers contains the list of alternative job offers,
when the strategy was applied. The first job offer in this list is the applied strategy and the task
to which the strategy was applied. The performed manipulation, namely the action introduced
by the execution of the strategy, is stored in the introduced-action slot. This slot is empty, if the
execution of a strategy failed. The new tasks created by the introduction of the action are stored
in the slot new-tasks. The slot execution-message contains the execution-message returned by the
strategy execution.

Strategy executions of the algorithms PPLANNER and CPLANNER create two manipulation records.
When they are invoked or re-invoked, they create a strategy-start record; when they terminate or
are interrupted, then they create a strategy-stop record. Figure 23 shows the skeletons of these
two manipulation records.

Strategy-Stop:

Strategy-Start:
BY task-tag
agenda - -
— introduced-action

alternative-job-offers
new-tasks

task-tag .
execution-message

Figure 23: Manipulation records created by PPLANNER and CPLANNER.

The strategy-start and strategy-stop records divide the information of a strategy-application
record into two parts: the information available when the strategy is invoked or re-invoked,
which is stored in a strategy-start record, and the information available when the strategy stops,
which is stored in a strategy-stop record. Hence, a strategy-start record has the slots agenda and
alternative-job-offers whereas a strategy-stop record has the slots introduced-action, new-tasks, and
execution-message. Additionally, both records have the slot task-tag, which contains the task-tag
that uniquely identifies the strategy execution.

Note that the manipulation records of the steps performed within a strategy execution of
PPLANNER or CPLANNER are themselves part of the history. They are not stored in a PPLANNER or
CPLANNER history element but only delimited by the strategy-start and strategy-stop records of the
strategy execution. This approach makes information available as early as possible. In particular,
the information on the situation when the strategy was invoked or re-invoked and the information
on all steps performed by a strategy execution so far are available for the control rules evaluated
within the strategy execution.

52

Strategies of the BACKTRACK algorithm create two manipulation records whose skeletons are
given in Figure 24. The backtrack-start record contains the information available when the back-
tracking is started (stored in the agenda and alternative-job-offers slots) as well as the information
which actions the strategy decided to delete. The backtrack-stop record contains the information
available when the BACKTRACK strategy stops. Since strategies of BACKTRACK do not create actions,
this record contains only a slot for the execution message.

BackTrack-Start:
agenda BackTrack-Stop:
alternative-job-offers execution-message |
actions-to-delete

Figure 24: Manipulation records created by BACKTRACK.

Similar to CPLANNER and PPLANNER, strategy executions of BACKTRACK successively perform
also a set of individual steps. When executed, a strategy of BACKTRACK computes first which
actions it has to delete. These actions are stored in the start record. However, in order to delete
these actions maybe other actions have to be deleted as well (see section 5.5.7 for details). All
single deletion steps are stored in action-deletion records as in PLAN (see section 3). Hence, a
start and stop record pair of a BACKTRACK strategy execution delimits the manipulation records of
all single deletion steps performed within this strategy execution.

5.5 The Algorithms

In this section, we shall describe the algorithms used in MULTI. First, we explain MULTI’s top-
level algorithm. Then, we describe the refinement and modification algorithms integrated so far,
namely PPLANNER, CPLANNER, EXP, ATP, INSTMETA, and BACKTRACK.

In the remainder of this section we assume that each function and algorithm used in MULTI
has access to the blackboards and the entries on them. Hence, when an algorithm or a function
accesses information from a blackboard we shall not mention the respective blackboard explicitly
as an argument of the function. The only exceptions are the functions write-onto-blackboard, which
sets the value of an entry on a blackboard, and take-from-blackboard, which returns the value of
an entry on a blackboard. Both functions obtain the blackboard on which they should work as
argument. In the following descriptions of the algorithms we use PB and CB as abbreviations for
the proof blackboard and the control-blackboard, respectively.

5.5.1 The MuLTI Algorithm

Figure 25 gives a pseudo-code description of the MULTI algorithm. MULTI is applied to a strate-
gic proof planning problem with a theorem Thm, a set of assumptions Assi, ..., Assn, a set of
strategies S, and a set of strategic control rules Cg. Its output is a strategic proof plan for the
given problem (Thm,{Assi,...,Assn},S,Cs). MULTI’s first step is to initialize the proof and
the control blackboard. It writes onto the proof blackboard an empty sequence of actions, the
initial agenda and the initial PDS of the given problem, and a sequence of binding stores whose
only entry consists of an empty binding store. Moreover, it writes onto the control blackboard an
empty set of memory entries, an empty set of demands, and an empty sequence of job offers.

The next four steps, steps 2—>5 in Figure 25, of MULTI perform the strategy selection and
invocation cycle that is sketched in Figure 13 in the previous section. Step 2 employs the functions
trigger-jobs-from-strategies and trigger-jobs-from-memory. trigger-jobs-from-strategies checks whether
the condition of an element of S is satisfied by some tasks of the current agenda on the proof
blackboard. A strategy S € S places a job offer onto the control blackboard for each task T for
which its condition is true. The function trigger-jobs-from-memory writes for each memory entry
a job offer onto the control blackboard. Afterwards, step 3 invokes the MetaReasoner, which
evaluates the strategic control rules Cs on the job offers.

53

Input: A strategic proof planning problem (Thm, {Ass;,..., Assn},S,Cs) with a theorem for-
mula Thm, a set of assumption formulas Assi, ..., Ass,, a list of strategies S, and a list
of strategic control rules Cg.

Output: A strategic proof plan SPP = (/T, A, P, B~S) with a sequence of strategic actions A, an
agenda A, a PDS P, and a sequence of binding stores BS.

Algorithm: MULTI(Thm, {A4ss1,...,Ass,},S,Cs)

1. Initialization
Let A:=initial-agenda (Thm, {Ass1,...,Assp}).
Let P:=initial-PDS (Thm, {Ass1, ..., Assn}).
write-onto-blackboard([], sequence-of-actions, PB).
write-onto-blackboard(A, agenda, PB).
write-onto-blackboard (P, pds, PB).
write-onto-blackboard([{ }], sequence-of-binding-stores, P B).
write-onto-blackboard([], history, PB).
write-onto-blackboard (@), memory, CB).
write-onto-blackboard (), demands, C B).
write-onto-blackboard([], job-offers, C B).

2. Job Offers
trigger-jobs-from-strategies(S).
trigger-jobs-from-memory ().

3. Guidance
invoke (MetaReasoner, Cg).

4. Invocation
Let J:=remove-free-jobs (take-from-blackboard(job-offers, CB)).
H7=0
then
terminate and return
(take-from-blackboard(sequence-of-actions, P B),
take-from-blackboard(agenda, PB),
take-from-blackboard(pds, PB),
take-from-blackboard(sequence-of-binding-stores, PB)).
else
Let J:=first(J).
If job-offer-from-strategy(J)
then (ie., J = (5,T))
invoke (algorithm-of-strategy (S), (S, T), J).
else (i.e., J = (@Qr, Demands))
invoke (algorithm-of-task-tag(Qr), @r, J).
5. Execution
Wait until strategy-ks-terminated ().

6. Administration
If strategy-ks-terminated-successful(), then delete-satisfied-demands().
Goto step 2.

Figure 25: The MULTI algorithm.

In step 4, MULTI first reads the resulting list of job offers and deletes the job offers whose
strategies have still uninstantiated free parameters. If the resulting list is empty, then MULTI

54

terminates and returns the strategic proof plan (i.e., the sequence of actions, the agenda, the
PDS, and the sequence of binding stores) on the proof blackboard. Otherwise MULTI picks the
first job offer and invokes the corresponding strategy. If the job offer was placed by a strategy S
with respect to a task T, which satisfies the condition of S, then MULTI invokes the algorithm of
S with the pair (S, T') as argument. If the job offer was placed from a memory entry with task tag
@r, then algorithm-of-task-tag computes the algorithm that created the tag @Qr using information
stored in the history and invokes this algorithm with @ as argument. In both cases the invoked
algorithm obtains the list of all job offers on the control blackboard as second argument.

The invoked algorithm refines or modifies the proof blackboard objects and maybe places
demands and a memory entry onto the control blackboard. MULTI waits until the execution
of the strategy terminates (see step 5). Then, step 6 checks whether the strategy terminated
successfully. This check is performed by the function strategy-ks-terminated-successful, which looks
up the execution message of the last history on the proof blackboard. If this execution message is
a success message, then MULTI employs the function delete-satisfied-demands to delete all demands
on the control blackboard that are satisfied by the terminated strategy execution as well as all
pointers in memory entries to those demands. Afterwards, MULTI restarts its cycle by proceeding
with step 2.

We conclude this section with two remarks on the described algorithm:

1. When employing the two functions trigger-jobs-from-memory (in step 2) and delete-satisfied-
demands (in step 6) MULTI changes the content of the control blackboard. This is a violation
of the blackboard principle, which states that the content of the blackboards should only be
changed by respective knowledge sources. For the sake of simplicity of MULTI’s blackboard
approach we implemented these minor blackboard changes as direct functionalities of the
MULTI algorithm. However, in order to avoid a violation of the blackboard principle, we
could understand these two functions as particular knowledge sources working on the control
blackboard, which are scheduled by MULTI in a pre-defined way.

2. PLAN terminates either with a solution proof plan or, after traversing the search space,
with a failure. MULTI terminates as soon as there is no further job offer to invoke (see
step 4). However, the lack of job offers states nothing about the status of the strategic proof
planning process. When there are no further tasks in the agenda, then there are no further
job offers since there is a strategic solution proof plan on the proof blackboard. But it is
possible that there are still tasks in the agenda although there are no further job offers. It
is possible that there are no strategies to tackle these tasks (i.e., there is no strategy whose
condition is satisfied by the task) or strategic control rules can remove all existing job offers.
If MULTI terminates and there are still tasks in the agenda, then it is up to the user to
analyze the situation. Is the strategic proof plan created so far a sufficient solution proof
plan (when the user is interested in a method-level solution proof plan then expansion-tasks
and instantiation-tasks can be ignored)? Are further strategies needed that can deal with
particular tasks? Are less restrictive strategic control rules needed that do not remove so
much job offers?

5.5.2 The PPLANNER Algorithm

Strategies of the algorithm PPLANNER refine a strategic proof plan by successively adding method
actions, which PPLANNER abstracts in one strategic action, when it terminates. A strategy of
PPLANNER specifies four parameters: a procedure for the computation of the next method action
to introduce, parameters for the set of usable methods and control rules, and a termination
condition. We discussed some strategies of PPLANNER already in section 4.1.

Figure 26 gives a pseudo-code description of the PPLANNER algorithm. PPLANNER obtains two
arguments. When a PPLANNER strategy S is initially invoked, then PPLANNER’s first input is a
pair (S,T) consisting of the strategy S and a line-task 7. When a strategy execution is re-
invoked, then the first argument is the task tag of the strategy execution. The second argument
for PPLANNER is the list of all alternative job offers on the control blackboard, when PPLANNER is

55

Input: (1) either a pair (S,T) where S is a PPLANNER strategy and T is a line-task or a task tag
@7, (2) the list of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: PPLANNER(arg1, Jrest))

1. Initialization
Let (@7, S, T):=extract-from-input(arg;).
Let (M, C, term-cond, action-proc):=parameters-of-strategy (S).
add-strategy-start-record-to-history (Jrest, Q).
Let /fadd:=liste.

2. Successful Termination Check
(see Figure 27)

w

. Interruption Check
(see Figure 27)

4. Task Selection:
Let current task Teyrr:= first(evalcrules-tasks (tasks-with-tag (Qr),C)).

5. Action Selection
Let (Aadd,A):=apply(action-proc, Teyrr, M,C) where Agqq is an action
and A is the set of computed alternative actions.

6. Action Introduction
If Agqq is given
then
PB:=‘I)MULT1(Aadd, PB)A
add-action-intro-record(Aq44,A).
Agagi=Agda U [Agad).
If extract-constraints (Aqdq) # 0
then
pass-constraints (extract-constraints (Aqdq))-
Goto step 2.

7. Failure
(see Figure 27)

Figure 26: The PPLANNER algorithm.

invoked. PPLANNER returns no specific output but updates the content of the proof blackboard by
introducing successively method actions. Essentially, PPLANNER performs a cycle of task selection,
action selection, and action introduction, which is similar to the cycle of PLAN. This core cycle is
completed by an initialization step and different events that stop the PPLANNER algorithm, namely
successful termination, interruption, and failure.

In the initialization step (step 1 in Figure 26) PPLANNER extracts the information of the strategy
and the initial task with respect to which it runs. First, it employs the function extract-from-input,
which computes the current task tag @r, the current strategy S, and the initial task T. If the
first input of PPLANNER is a pair (S,T) (i.e., initial call of S on T, then the information on S
and T is directly accessible and extract-from-input creates a new task tag @Qr, which it attaches
to T. If the first input of PPLANNER is a task tag @r (i.e., re-invocation of interrupted strategy
execution), then extract-from-input employs information from the history to compute the strategy

56

S and the initial task T" that correspond to the given task tag. Next, PPLANNER uses the function
parameters-of-strategy to obtain the parameters of the strategy S, which are a list of methods
M, a list of control rules C, the termination condition, and the action computation and selection
procedure. So far, we have implemented two action computation and selection procedures, namely
CHOOSEACTION (see section 3.4) and CHOOSEACTIONALL (see appendix A).2” Afterwards, PPLANNER
adds a strategy-start record to the history and sets the algorithm variable A,q44 to the empty list.
In this variable PPLANNER stores the method actions, which it introduces successively.

Step 2 and step 3 in Figure 26 check whether PPLANNER terminates successfully or interrupts.
We postpone the detailed discussion of these two steps until the discussion of step 7 in order to
discuss together all three steps that stop PPLANNER and the differences among them. The next
three steps — step 4, step 5, and step 6 — are the core cycle of selecting the next task, computing
and selecting the next method action, and introducing the selected action. Essentially, these steps
correspond to step 2, step 3, and step 4 of PLAN in Figure 8 in section 3.2, they are only slightly
adapted to MULTI. When PPLANNER selects the next task to tackle in step 4, then it evaluates
the control rules of kind ‘Task’ not on the whole agenda of the proof blackboard, but only on the
tasks that carry the current task tag @z (the restricted initial alternative list is computed by the
function tasks-with-tag). Whereas in PLAN the application of the algorithm CHOOSEACTION is fix,
PPLANNER applies the action computation procedure specified as parameter of the current strategy
in step 5. When an action is found, then PPLANNER applies this action in step 6 with the function
dypuun to the action sequence, the agenda, the PDS, and the sequence of binding stores on the
proof blackboard. We write this as “PB:=®wyur(Agdd, PB)” and do not refer to the changed
elements of the proof blackboard explicitly. Similar to PLAN, PPLANNER adds a history entry for
the introduced action and passes new constraints to external constraint solvers. Additionally, the
introduced action is added to A,q4. Afterwards, PPLANNER continues with step 2.

PPLANNER can stop at three different places, namely step 2, step 3 and step 7, which are given
in detail in Figure 27. Step 2 checks whether the application of the strategy of PPLANNER was
successful such that PPLANNER should stop. This is the case either when the termination condition
of the strategy is satisfied or when there are no further tasks which carry the task tag of the
strategy execution. Step 3 employs the function evalcrules-interrupt to evaluate the control rules
of kind ‘Interrupt’ on the alternative list [False,True], where False causes no interrupt whereas
True causes an interrupt. The control rules of kind ‘Interrupt’ can also compute demands and
attach the demands to the True element of the alternative list. Finally, step 7 is performed, when
step 5 does not provide a method action to introduce, that is, step 7 deals with a failure situation
in PPLANNER.

Some computations are the same in all three steps. They all compute an execution message
message and employ the function create-strategic-action to compute a strategic action A5, from
the collected sequence of method actions A,44. Moreover, they all replace the sequence of method
actions by a new strategic action in the action sequence on the proof blackboard (this is done
by the function replace-actions). Finally, they all add a strategy-stop entry to the history before
they terminate. The three steps differ in the created execution message and in whether and
which memory entries and demands they create. When the strategy knowledge source terminates
successfully, then PPLANNER creates a success message and does not write memory entries or
demands onto the control blackboard. Rather, it applies the function remove-tag, which removes
its task tag from all tasks in the agenda on the proof blackboard. If the execution of the strategy
interrupts, then it creates an interruption message and places a memory entry and demands onto
the control blackboard. The demands stem from the evaluated control rules of kind ‘Interrupt’
and the memory entry consists of the task tag and pointers to the added demands. If PPLANNER
has to deal with a failure occurring with respect to the task T, .-, then it creates a failure message.
Moreover, it writes a task-demand ? — ON — Ty, and a memory entry consisting of the task tag

27Note that parts of these algorithms work slightly differently when used in MULTI as opposed to the functionality
described in section 3.4 and appendix A. All functions used within these algorithms that match proof lines of a
method with proof lines of a task (e.g., match-task-line, match-s+p see section 3.4) apply first the bindings of
the current binding store to the proof lines of the task. Then, they perform the respective matchings with respect
to this “up-to-date” proof lines instead of the original ones.

o7

2. Termination Check
If no-tasks-with-tag(@r) or apply (term-cond) = true
then

Let message:=create-success-message (S, T).
Let AS,,:=create-strategic-action (ffadd)
replace-actions (Aqqa, AS.).
remove-tag (Qr).
add-strategy-stop-record-to-history(@r, AS,,, message).
Terminate.

3. Interruption Check
Let I:=first(evalcrules-interrupt([Nil, True], C)).
If I = True
then

Let message:=create-interrupt-message(S, T').
Let AS,,:=create-strategic-action(Aqqq).
replace-actions (Agqd, AS,).
write-to-demands (demands (I)).
write-to-memory (@, demands(I)).
add-strategy-stop-record-to-history(@Qr, A3, ,, message).
Terminate.

7. Failure
IF Agqq is not given
then
Let message:=create-failure-message(S, T).
Let AS,,:=create-strategic-action(Aqqq).
replace-actions (Aqaq, AS,,).
write-to-demands ({? — ON — T'}).
write-to-memory (@r,{? — ON — T}).
add-strategy-stop-record-to-history(@r, AS,,, message).
Terminate.

Figure 27: Leaving the PPLANNER algorithm.

and a pointer to this task-demand onto the control blackboard. Since a failure creates a memory
entry and a demand, we can understand it as a special kind of interrupt — the difference with
respect to the origin of the interruption is recorded in the execution messages.

The further interpretation of and reaction to the termination is left to MULTI and meta-
reasoning at the strategy-level (this holds also for all other refinement and modification algorithms
employed by MULTI, which can terminate in different ways). If the last strategy execution ter-
minated with a success message, then MULTI deletes all demands on the control blackboard that
are satisfied by this strategy execution (see previous section). Moreover, strategic control rules
can make use of the information contained in the execution messages. For instance, the strategic
control rule prefer-backtrack-if-failure (see section 4.3) analyzes the execution messages and
prefers to perform some backtracking if the last strategy was a PPLANNER strategy and terminated
with a failure message. This control rule (which can be overwritten by more specific control rules)
forces a systematic traversal of the search space given by a PPLANNER strategy.

58

5.5.3 The CPLANNER Algorithm

Strategies of the algorithm CPLANNER refine a strategic proof plan by successively transferring
actions from a source proof plan into the proof plan under construction. A strategy of CPLANNER
specifies three parameters: a list of action transfer procedures, a list of control rules, and a
termination condition. We discussed an example strategy of CPLANNER already in section 4.4.
More examples are discussed in [55].

Figure 28 gives a pseudo-code description of CPLANNER. CPLANNER obtains two arguments.
When a CPLANNER strategy S is initially invoked, then CPLANNER’s first input is a pair (S, T') con-
sisting of the strategy S and a line-task T. When a strategy execution is re-invoked, then the first
argument is the task tag of the strategy execution. The second argument for CPLANNER is the list of
all alternative job offers on the control blackboard, when CPLANNER is invoked. CPLANNER returns
no specific output but updates the content of the proof blackboard by introducing successively
method actions.

Several parts of the CPLANNER algorithm are equal or similar to the PPLANNER algorithm. As
PPLANNER CPLANNER starts with the extraction of the strategy information and the initial task in
step 1. In particular, step 1 extracts the action transfer procedures 7P and sets the algorithm
variable Agq4q to the empty list. In this variable CPLANNER stores the actions, which it introduces
successively. Afterwards, step 2 and step 3 check whether CPLANNER terminates successfully or
interrupts. These two steps equal step 2 and step 3 of PPLANNER, respectively, given in Figure 27.

Step 4 first evaluates the control rules of kind ‘TransferProcedure’ on the alternative action
transfer procedures 7P. This results in a changed and re-ordered alternative list 7 Pyest. Then,
step 4 evaluates the action transfer procedures in the order of this list until either one procedure
provides an action or a demand, which is stored in the algorithm variable Obj, or all procedures
have been tried. That is, at the end of step 4 Obj is either bound to an action Asq4q or to a
demand D44 or it is unbound. These three cases are covered by the following steps, respectively.
Step 5 describes the processing of an action Agqq. In this case, CPLANNER introduces Agq4q4 into the
proof plan under construction employing the function ®yyur. Moreover, it adds a history entry
for the introduced action and passes new constraints to external constraint solvers. Additionally,
the introduced action is added to Agqq. Then, CPLANNER continues with step 2. Step 6 processes
a demand Dgg4q. It writes the demand onto the control blackboard and terminates then with an
interrupt message. If the evaluation of the action transfer procedure provides neither an action
nor a demand, then CPLANNER terminates in step 7 with a failure message. This step equals step 7

of PPLANNER in Figure 27.

5.5.4 The INSTMETA Algorithm

Strategies of the algorithm INSTMETA tackle an instantiation-task and compute a binding for the
meta-variable of the instantiation-task. With this new binding a new binding store is created,
which is added to the sequence of binding stores on the proof blackboard. A strategy of INSTMETA
specifies one parameter, namely a function that determines how the instantiation for a meta-
variable is computed. We discussed some strategies of INSTMETA in section 4.1.

Figure 29 contains a pseudo-code description of INSTMETA. INSTMETA has two arguments. First,
a pair (S, T'), which consists of an INSTMETA strategy S and an instantiation-task T'. Second, the
list of all alternative job offers on the control blackboard, when the INSTMETA strategy was invoked.
INSTMETA returns no specific output but updates the content of the proof blackboard.

Step 1 in Figure 29 applies the instantiation computation function of the strategy S to the
task T. This function application can either succeed or fail. If the function application succeeds,
then the algorithm variable inst is bound to the returned value. Otherwise inst stays unbound.
Step 2 computes an instantiation action when inst is bound and applies this action with ®yyn
to the strategic proof plan elements on the proof blackboard. Finally, step 3 adds a new strategy-
application record to the history on the proof blackboard. The execution message of this record
entry depends on whether inst is bound or not. When inst is bound INSTMETA creates a success
message, otherwise INSTMETA creates a failure message.

59

Input: (1) either a pair (S, T) where S is a CPLANNER strategy and T is a task or a task tag @Qr,
(2) the list of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: CPLANNER(arg1, Jrest))

1. Initialization
Let (Qr, S, T'):=extract-from-input(argy).
Let (TP, C,term-cond):=parameters-of-strategy (S).
add-strategy-start-record-to-history (Jrest, @r).
Let Aadd?=[]-

2. Successful Termination Check
(see PPLANNER Figure 27)

3. Interruption Check
(see PPLANNER Figure 27)

4. Select and Evaluate Transfer Procedures
Let T Prest:=evalcrules-transferprocs (T P).
Until (Obj is action or demand) or (7 Prest = [])
Let T Peyry:=first(T Prest)-
Let Obj:=evaluate (T Peyrr).
TPrest :=reSt(TPrest)-

5. Action Introduction
If Obj is action Agzq4
then
PB:=¢MULTX(Aadd7 PB)-
add-action-intro-record(Agqd,A).
Apadi=Agaq U [Agdd)-
If extract-constraints (Aqqq) # 0
then
pass-constraints (extract-constraints (Aqdqd))-
Goto step 2.

6. Demand Interruption
If Obj is demand D, 44
then
Let message:=create-interrupt-message (S, T).
Let AS, :=create-strategic-action(Aqaq).
replace-actions (Aqqg, AS;;).
write-to-demands (D gqq4).
write-to-memory (Qr, Dyq44).
add-strategy-stop-record-to-history (@Qr, A3, message).
Terminate.

7. Failure
(see PPLANNER Figure 27)

Figure 28: The CPLANNER algorithm.

60

Input: (1) a pair (S, T) where S is a INSTMETA strategy and T is an instantiation-task, (2) the list
of all alternative job offers 7.

Output: No output, only changes of the blackboards.

Algorithm: INSTMETA((S,T),J)

1. Compute Instantiation
Let inst:=apply (compute-inst-function(S), T).

2. Compute and Apply Action
If bound(inst)
then
Let A,qq:=new-instmeta-action(S, T, inst).
PB:=®myiri(Aedd, PB).

3. Update History
If bound(inst)
than
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history(J , Asdd, 0, message).
else
Let message:=create-failure-message (S, T).
add-strategy-application-record-to-history (7, 0, 0, message).
Terminate.

Figure 29: The INSTMETA algorithm.

Currently, the computation function of an INSTMETA strategy is provides either one (success) or
no (failure) solution. This was sufficient for the case studies conducted so far. When it turns out
that a set of alternative instantiations and reasoning on the selection of one alternative is needed,
then INSTMETA can easily be extended to cover this functionality: The variable inst has to store
a list of alternatives. Moreover, between step 1 and step 2 an additional step is needed, which
evaluates control rules on the alternative instantiations and selects one. The control rules would
become an additional parameter of INSTMETA.

5.5.5 The ATP Algorithm

Strategies of the algorithm ATP refine a strategic proof plan by solving a line-task with an ATP
action. They apply external automated theorem provers and check whether their output is a proof.
A strategy of ATP specifies two parameters for these two functionalities, namely an application
function and an output check function. We discussed a strategy of ATP in section 4.4.

Figure 30 contains a pseudo-code description of the ATP algorithm. ATP has two arguments.
First, a pair (S, T), which consists of an ATP strategy S and an instantiation-task T'. Second, the
list of all alternative job offers on the control blackboard, when the ATP strategy was invoked.
ATP returns no specific output but updates the content of the proof blackboard.

Step 1 applies the application function of the strategy S to the task T". This function application
provides an output, which is stored in the algorithm variable out. Step 2 applies the output check
function to out, which returns either true or nil. If the result, which is stored in the algorithm
variable check, is true, then out is accepted as proof. In this case, ATP computes an action and
applies this action with @y to the strategic proof plan elements on the proof blackboard (see
step 3 in Figure 30). Finally, step 4 adds a new strategy-application record to the history on the
proof blackboard. The execution message of this record entry depends on whether check is true.
If check is true, then ATP creates a success message, otherwise it creates a failure message.

61

Input: (1) a pair (S,T) where S is an ATP and T is a line-task, (2) the list of all alternative job
offers J.

Output: No output, only changes of the blackboards.

Algorithm: ATP((S,T),J)

1. Apply Provers
Let out:=apply (atp-apply-function(S), T).

2. Check Output
Let check:=apply (atp-output-check-function(S), out, T).

3. Compute and Apply Action
If check = true
then
Let Aqqq:=new-atp-action(S, T, out).
PB:'—"(I)MULTI(Aadd’ PB)-

4. Update History
If check = true
then
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history (J , Agda, 9, message).
else
Let message:=create-failure-message(S, T).
add-strategy-application-record-to-history (7, 0, §, message).
Terminate.

Figure 30: The ATP algorithm.

5.5.6 The ExP Algorithm

The algorithm EXP refines a strategic proof plan by expanding complex steps. When applied to
a closed proof line L whose justification is (J P, ... Pn), then EXP computes a proof segment
that derives L from Py, ..., P, at a lower level of abstraction. EXP has no parameters. The only
strategy of EXP is ExpS.

Figure 31 contains a pseudo-code description of the EXP algorithm. EXP obtains two arguments.
First, a pair (S, T'), which consists of a EXP strategy S (i.e., ExpS) and an expansion-task T'. Second,
the list of all alternative job offers on the control blackboard, when the EXP strategy was invoked.
EXP returns no specific output but updates the content of the proof blackboard.

Step 1 tests whether the justification EXP should expand is a tactic application or a method
application. Depending on what kind of step it finds EXP employs either the function expand-tactic
or the function expand-method to compute the expansion proof segment. expand-tactic evaluates
the expansion procedure of the found tactic whereas expand-method instantiates the proof schema
of the found method. When these function applications succeed, then the algorithm variable
exp-segment is bound to the computed proof segment. Otherwise exp-segment stays unbound.
When exp-segment is bound, Step 2 creates an expansion action and applies the action with @ yy.m
to the elements of the strategic proof plan on the proof blackboard. Afterwards, step 3 adds a
new strategy-application record to the history on the proof blackboard. The execution message of
this record entry depends on whether exp-segment is bound or not. When ezp-segment is bound
EXP creates a success message, otherwise EXP creates a failure message.

62

Input: (1) a pair (S,T) where S is an Exp strategy and T = L|E*P is an expansion-task, (2) the
list of all alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: Exp((S,T),J)

1. Compute Expansion-Segment
Let (J P, ... P,) be the justification of L.
If is-tactic (J)
then
Let exp-segment:=expand-tactic(L).
else
Let exp-segment:=expand-method(L).

2. Compute and Apply Action
If bound(exp-segment)
then
Let Aqq4:=new-expansion-action(S, T, exp-segment).
PB:=®muyin(Aedd, PB).

3. Update History
If boundezp-segment
then
Let message:=create-success-message (S, T).
add-strategy-application-record-to-history (J , Agda, 8, message).
else
Let message:=create-failure-message (S, T').
add-strategy-application-record-to-history (7, 0, , message).
Terminate.

Figure 31: The EXP algorithm.

5.5.7 The BACKTRACK Algorithm

BACKTRACK is an algorithm that removes the actions introduced by other algorithms of MULTI
from a strategic proof plan. BACKTRACK adds no own actions but only history entries. When to
backtrack and which actions to backtrack is not hard-wired in the MULTI algorithm but is subject
of the different strategies of BACKTRACK and the guidance by reasoning at the strategy-level. A
strategy of BACKTRACK specifies a function that selects the set of actions in the current strategic
proof plan that should be deleted. When MULTI invokes a BACKTRACK strategy, then BACKTRACK
removes all actions explicitly selected by this function as well as all actions that depend from
these actions. Thus, the backtracking in MULTI is dependency-directed in the sense discussed in
section 3. We described a strategy of BACKTRACK in section 4.1.

Before we give a pseudo-code description of the BACKTRACK algorithm we shall introduce the
notion of dependency among actions and when an action is deletable. Both notions are extensions
of the concepts introduced for PLAN in section 3.3. When an action is introduced into a strategic
proof plan, then it modifies the elements of the strategic proof plan. Other actions introduced
later on may depend on these modifications. For instance, when a method action introduces a new
proof line, which is used later on by another action, then the second action is not possible without
the first action. In the following definition, we shall define for the different kinds of strategic
actions and for method actions which other actions in an action sequence depend on them.

63

Definition 5.16 (Dependent Actions): Let A be a sequence of actions with

. A:[Alv'"aA’i—lvAivAi+17'-'7An]'
The set of actions in A, which depend on A; is defined for the different kinds of actions in MULTI
as follows.

Method Action: Let A; be a method action with the © conclusions ©Concs, the & conclu-
sions ®Concs, and the & premises &Prems. If A; contains some binding constraints, then
{Ai41,...,An} depend on A;. Otherwise, A; € {Ai+1,...,An} depends on A4; if:

1. A; is a method action whose sets of conclusions or premises contains a proof line of
@Concs or ®Prems (which are the new proof lines introduced by A;),

2. A; is an INSTMETA action, which tackles an instantiation-task whose meta-variable is
introduced by A;,

3. Aj; is an EXP action, which tackles an expansion-task whose proof line is in ©Concs or
®Concs (the proof lines closed by A;),

4. A; is an ATP action, which tackles a line-task that contains either as support or as
conclusion a proof line of &Concs or ®Prems,

5. A; is a PPLANNER or CPLANNER action, which contains an action that depends on A;.
INSTMETA Action: Let A; be an INSTMETA action. Then {A;41,..., An} depend on A;.

ATP Action: Let A; be an ATP action. A; € {Ai41,...,A,} depends on A; if A; is an EXP action,
which tackles the expansion-task with the proof line closed by A;.

EXP Action: Let A; be an EXP action with the set L£,.,, of new proof lines in the proof-segment.
Let T = L|®*P be the task of A;. Then A; € {A;+1,...,An} depends on A; if

1. A; is a method action, which contains either as conclusion or as premise a proof line of
Lnew, or which contains L as & conclusion,?8

2. Aj; is an INSTMETA action, which tackles an instantiation-task whose meta-variable is
introduced by A;,

3. A; is an EXP action, which tackles an expansion-task whose proof line is in Ly,

4. A; is an ATP action, which tackles a line-task that contains a proof line of Ly, either
as support or as goal, or which tackles a line-task whose goal is L,?8

5. Aj; is a PPLANNER or CPLANNER action, which contains an actions that depends on A4;.

CPLANNER or PPLANNER Action: Let A; be a CPLANNER or a PPLANNER action whose sequence of
actions is [A},..., Al]. Then A; € {Ai+1,..., An} depends on A; if there is an action A}, €
[A],...,AL,] such that A; depends on A}.

Finally, we have to define which actions of an action sequence depend on an action that is con-
tained within a CPLANNER or PPLANNER action:
Let A; be a CPLANNER or PPLANNER action whose action sequence is [A}, ..., A]_;, A], Aj,1,..., AL].
Then the set of actions that depend on A} with respect to A is the set of actions that depend
on Aj with respect to the action sequence [Ai,...,Ai—1] U [A},...,A]_, Al Al ,,...,AL] U
[Ai+l’~--7An]- 0
Note that with this definition all actions succeeding an action that introduces new bindings
(i.e., method actions with bindings and INSTMETA actions) depend on this action. We use now the
notion of dependency of actions to define when an action is deletable with respect to an action
sequence.

28 If A; opens L again, then L can be closed again later on by another method action.

64

Definition 5.17 (Deletable Actions): Let A be a sequence of actions with
. _‘A:[Alvﬂ'7A’i~17AdEl,A’L'+11"~xA'n]'
Ager is deletable with respect to A if the set of actions in A that depend on Age; is empty. O

o
Next, we define the functions @y, ., and ®y,.5,, which delete actions.?® We give first the

~—1
general outline of ;1 .. and define the recursive ®y;, ;. Afterwards, we define @5, ., for the
different kinds of actions.

Definition 5.18 (Action Deletion Functions @;Atm and <I>M:,LT,~1): The action deletion
function @{dtm is a partial function that maps a sequence of actions, an agenda, a PDS, a
sequence of binding stores and an action into a sequence of actions, an agenda, a PDS, and a
sequence of binding stores, i.e.,
Syl AXAXPXBIX Ager — A x A x P’ x BS.

The recursive action deletion function 5;,;,“, is a partial function that maps a sequence of actions,
an agenda, a PDS, a sequence of binding stores, and a sequence of actions into a sequence of
actions, an agenda, a PDS, and a sequence of binding stores, i.e.,

‘iiflluumigXAXPXB-SXEdezHfT’XA’xP’XES’.
fﬁl;t,m is recursively defined as follows.

Let Abea sequence of actions, A an agenda, P a PDS, BSa sequence of binding stores, and z‘fdez
a sequence of actions.

1. If /Idel is empty, then
-1 T g - . -
Pyoum (A, A, P, BS, Aget) := (4, A, P, BS).

2. Otherwise let Age; := first(./fdd) and ff’dez i= reSt(x‘—l‘dgl)- If Ages isin Aor part of a CPLANNER
or PPLANNER action in A and Age is deletable with respect to A, then

—-—1 - A - - —-—1 — A — -
q)MULTl (A, A, P,BS, Adel) = (PMULTI(@{/I]I:ILTI(Av A,P,BS, Adel)a A’del)'
O

In the single definitions of the function @ﬁtm for the different kinds of actions we describe the
modifications of the sequence of actions, the agenda, the PDS, and the sequence of binding stores
caused by the deletion of a respective action. Although the notion of deletability of an action is
only defined with respect to a sequence of actions, we assume that the agenda, the PDS, and the
sequence of binding stores are not arbitrary, but created by this sequence of actions (in particular,
by the action that should be deleted).

We start with the definition of @;Atm for method actions. Since in MULTI the action sequences
consist only of strategic actions, a method action can occur only within a PPLANNER or CPLANNER
action. Hence, the following definition describes the deletion of a method action within a PPLANNER
or CPLANNER action.

Definition 5.19 (®3} . on Method Actions): Let A be a sequence of actions and let

MuLTi
Agdet be a method action, which is in an PPLANNER or CPLANNER action Apignner in A’, ie.,
/f:[Al, oy Aic1, Aplanners Ait1, - - -, An]. Let BS be a sequence of bindings stores, P a PDS,
and A an agenda. Moreover, let ®@Concs be the @ conclusions, ©Concs the & conclusions,
@ Prems the @ premises, ©Prems the © premises, and BPrems the blank premises of Age;. Let
T =L 4« SUPPS be the task of Az, and let o be the binding constraints of Age;.
Prems:=@®PremsUSPremsU BPrems,
Concs:=®Concs U 6Concs
Lines-To-Remove:=®Concs U &Prems
Old-Line-Tasks:=[L' 4« SUPPSL: | L' € @Prems].

29Since action deletion is conceptually the inverse operation of action introduction we call these functions q’ltfllum

-1 " g 5 -
and @)y r although technically they are not the inverse functions of @)y m and Pynyryy-

65

Old-Inst-Tasks:=[mv|™* | mv € New-Lines and nowhere else in P).

Old-Ezp-Tasks:=[C|E=P | C in Concs).

Tasks-To-Remove:= Old-Line-Tasks U Old-Inst-Tasks U Old-Ezp-Tasks.
New-Inst-Tasks:=[mv|'"st | mv bound ing).

New-Tasks:=[T| U New-Inst-Tasks.

If Ager is deletable with respect to A and if A, P, and BS resulted from the introduction of
A (to some agenda, PDS, and sequence of binding stores), then the result (4°,A’, P, BS’) of

O (A, A, P, BS, Ager) is defined by:

o A= [A1,..., Aic1, Abjgnners Ait1, - -, An]

where Aplmmer results from Apianner by removing Age from the sequence of actions of

planner-

e A= New-Tasks U (A — Tasks-To-Remove).
e P’ results from P by

1. removing the lines Lines-To-Remove and
2. justifying the proof lines 6Concs with Open, respectively.

e If o is empty, then BS":=BS, otherwise BS’:=BS — last(BS).%°
D

Definition 5.20 (®;;. ., on INSTMETA Actions): Let A be a sequence of actions and let Az

be an INSTMETA action in A. Let BS be a sequence of bindings stores, P a PDS, and A an agenda.
If Ager is deletable with respect to A and if A P, and BS resulted from the mtroduct;lon of
A (to some agenda, PDS, and sequence of binding stores), then the result (4°,A’, P, BS’) of

QMULTI(A7 A’ P? BS, Adel) is defined by

(] A"Z=A‘ - Adel-
o A=A U [T] where T is the task of Age;.
o P:=P.

o B5:=BS — last(BS).
O

Definition 5.21 (<I>MUm on ATP Actions): Let A be a sequence of actions and let Ages be
an ATP action in A. Let BS be a sequence of bindings stores, P a PDS, and A an agenda. Let

T =L €« SUPPS; be the task of Adel
If Ager is deletable with respect to A and if A, P, and BS resulted from the mtroductlon of
A (to some agenda, PDS, and sequence of binding stores), then the result (A”,A’, P, BS’) of

&5k (A, A, P, BS, Ager) is defined by:
o A=A - Aga.
o Ai=(A u[T]) - L|FeP.
e P’ results from P by opening the line L.
o BS:=858
O

30If ¢ is not empty, then the last binding store in B8 has to be the binding store resulting from the introduction
of Age; since otherwise Age; would not be deletable. Thus, when Ay, is deleted, then the last binding store has to
be removed.

66

Definition 5.22 (@Mum on EXP Actions): Let A be a sequence of actions and let Age; be an
EXP action in A. Let S be a sequence of bindings stores, P a PDS, and A an agenda. Moreover,
let T = L|®2P be the task of Age; and (J Py ... Pn) the justification of L at the next higher level
of abstraction (i.e., the justification of L before Ager was performed).
Lines-To-Remove:={L’'|L’ € expansion-segment of Age;} — {L,P,..., Pn}.
New-Tasks:=[T].
Old-Open-Lines:={L’'|L' € open-lines of Azqq}.
Old-Line-Tasks:=|L' 4« SUPPSL | L' in Old-Open-Lines].
Old-Inst-Tasks:=[mv|'™st | mv € Lines-To-Remove and nowhere else in PDS).
Old-Ezp-Tasks:=

[L'|B2P |(L' € Lines-To-Remove or L' = L) and L' closed by tactic).
Tasks-To-Remove:= Old-Line-Tasks U Old-Inst-Tasks U Old-Ezxp-Tasks.
If Ager is deletable with respect to A and if A, P, and BS resulted from the introduction of
A (to some agenda, PDS, and sequence of binding stores), then the result (A’,A’,P’, BS’) of

Ot (A, A, P, BS, Agar) is defined by:
o A=A — Aga.
o A= New-Tasks U (A — Tasks-To-Remove).
e P’ results from P by
1. removing the current justification from L and setting (J Py ...Pn) as the current one,
and
2. removing the proof lines in New-Lines.
o BS:=B8.
O

Definition 5.23 (®;.,,,, on CPLANNER or PPLANNER Actions): Let A be a sequence of actions
and let Ager be a CPLANNER or a PPLANNER action in A Let BSbea sequence of bindings stores,
P a PDS, and A an agenda. Moreover let [A;, ..., A,] be the action-sequence of Agg.

(Arec, Arem P‘rem Bs’rec) - q)Muurl (A A P BS [An7 s 1])

If Age; is deletable with respect to A and if A, P, and BS resulted from the introduction of
A (to some agenda, PDS, and sequence of binding stores), then the result (A, A’, P, BS’) of

q’;l%)un (A‘v A, P, B-s, Adgl) is defined by:
o A= Arec — [Ager)

o A= Anc.
e P:=7P,..
° li-'S’:=l§S,ec

O

With these definitions at our disposal, we can now describe the BACKTRACK algorithm. Figure 32
contains a pseudo-code description of BACKTRACK. BACKTRACK obtains two arguments. First, a pair
(S, T), which consists of a BACKTRACK strategy S and a task T. Second, the list of all alternative job
offers on the control blackboard, when the BACKTRACK strategy was invoked. BACKTRACK returns
no specific output but updates the content of the proof blackboard.

Step 1 applies the computation function of the strategy S to the task T. This returns a sequence
of actions that BACKTRACK should delete, and BACKTRACK binds the algorithm variable /i‘del to this

31When all actions in Age; are deleted, then Age; remains with an empty action sequence. Here Ag,; itself is
deleted from the action sequence.

67

Input: (1) a pair (S,T) where S is a BACKTRACK strategy and T is a task, (2) the list of all

alternative job offers J.

Output: No output, only changes of the blackboards.

Algorithm: BACKTRACK((S,T),.J)

1.

Com_‘pute Actions To Be Deleted
Let Ager:=apply (compute-del-actions-function(S), T).
add-backtrack-start-record-to-history(J , Agei).

. Terminate

If Ager=0
then
Let message:=create-success-message (S, T).
add-backtrack-stop-record-to-history (message).
Terminate.

Select Action .
Let Ager:=first (Ager)-

. Extend Actions

If Ager is not deletable wrt. the sequence of actions on PB
then~
Age1:=dependend-actions(Age;) U Al
Goto step 3.

If Ager is CPLANNER or PPLANNER action, whose action-sequence is not

empty
then
Edez :=action-sequence (Ager) U A‘de, .
Goto step 3.

. Delete Action

PB:=®. (Adet, PB).
add-action-del-record(Age;)-
Let Ager:=Ager — [Adel]-
If action-of-terminated-strategy(Age:)
then
write-to-memory (get-tasktag (Ager), 0).
Goto step 2.

Figure 32: The BACKTRACK algorithm.

action sequence. Moreover, BACKTRACK writes a backtrack-start entry with this information to the

The steps 2-5 are essentially a while-loop, which is passed through until /Tde, is empty. First,
Step 2 checks whether Age is empty. If this is the case, it creates a success message,3? writes a
backtrack-stop entry with this message to the history, and terminates. Otherwise, step 3 picks the
first action from Age and stores it in the algorithm variable Age;. Ager is then either deleted in
step 5 or step 4 extends Age; depending on Age;. Step 4 first checks whether A4, is deletable with
respect to the sequence of actions on the proof blackboard. If this is not the case, then there are
actions which depend on Ag; and step 4 adds these actions, which are computed by the function

32Note that BACKTRACK is not supposed to fail (except of hopefully not occurring programming errors).

68

dependend-actions, in front of Ay If Ager is deletable, then step 4 checks next whether it is an
action of PPLANNER or CPLANNER whose action-sequence is not empty. If this holds, then it adds
the action sequence of Age; in front of f-fdez- Otherwise, step 5 is reached, which uses @{Atm to
delete Age; and to update the action sequence, the agenda, the PDS, and the sequence of binding
stores on the proof blackboard. Moreover, it adds an action-deletion entry to the history and
removes Age; from Age;.

If the deleted action Age; belongs to a terminated PPLANNER or CPLANNER strategy execution
(this is checked by the function action-of-terminated-strategy), then a re-invocation of this strategy
execution should be enabled again. BACKTRACK re-activates the strategy execution by writing an
entry to the memory consisting of the task tag of the strategy execution (which is computed by the
function get-tasktag from the history) and an empty set of demand pointers. From this memory
entry the terminated strategy execution can be re-invoked.

Note that BACKTRACK could apply @31, directly to actions of PPLANNER and CPLANNER that are
not empty (since we did define q);dtm for such actions in definition 5.23). However, BACKTRACK first
successively deletes the action sequence of an action of PPLANNER and CPLANNER before it deletes
the “empty” PPLANNER or CPLANNER action. This guarantees that detailed history information for
each deleted action is created (i.e, for each action, which is in the action-sequence of an action of
PPLANNER or CPLANNER as well as for the PPLANNER or CPLANNER action itself).

5.6 Remarks
5.6.1 Representing the Search with Trees

The check for dependency among actions as well as the changes caused by backtracking of an action
are complex operations as described in the previous section. The problem is that the PDS, which
is the central data structure in the current implementation of QMEGA and MULTI, is a complex
data structure difficult to maintain. In the ongoing re-implementation of the {JMEGA system on
top of the CORE system [4] we suggest an agenda as the (only) central data structure. Moreover,
we suggest additional data structures to considerably simplify the backtracking of actions.

The introduction of an action into a strategic proof plan reduces a task to a set of tasks, which
can be empty. The introduced actions and the resulting tasks could be stored in a tree, a so-called
task-action-tree, whose nodes are labeled with the tasks and whose edges are labeled with the
actions.3® Figure 33 depicts such a task-action-tree. The root node of the tree is labeled with
the initial task. If this tree is constructed during the strategic proof planning process, then the
current agenda consists always of the tasks of the leave nodes of the tree.

With a task-action-tree the dependency among actions could be formulated as follows: An
action A; depends on another action A; if the path from the root node to A; contains A;. The
changes caused by the backtracking of an action could also be stated simpler than currently: If
a deletable action A is backtracked, then the children tasks of the action A are removed and the
parent task is introduced again into the agenda.

5.6.2 Creating Different Kinds of Solution Proof Plans

In section 5.3, we defined three different notions of strategic solution proof plans, namely method-
level solution proof plans, instantiated method-level solution proof plans, and full solution proof
plans. In order to produce a method-level solution proof plan MULTI can ignore the instantiation
tasks and the expansion-tasks; to produce an instantiated method-level solution proof plans MULTI
can ignore only the expansion-tasks; to create a full solution proof plan MULTI has to tackle all
kinds of tasks. :

The simplest possibility to make MULTI search for a particular kind of solution proof plan is
to prohibit some strategies. For instance, if there are no strategies of EXP, then expansion-tasks
will be ignored and MULTI will search for an instantiated method-level solution proof plan. In the
case studies it turned out that this approach has the drawback that expansion-tasks are created

33 Actually, we use multi-edges that connect one parent node with several children nodes.

69

@

T, T, Tyre T3 Tye Ts

Figure 33: A task-action-tree.

although they are ignored later on. Therefore, we avoid the creation of not desired expansion-tasks.
The user can declare methods or tactics whose applications he wants to be expanded by MULTI
as not-reliable. MULTI creates expansion-tasks only for such proof lines L whose justification
(J Py ...Py) uses a not-reliable method or tactic J.

5.6.3 Cooperation with Constraint Solvers

So far, the only constraint solver connected with MULTI is CoSZE. MULTI communicates directly
with CoSZE by interfaces in methods and strategies. When a method action is introduced that
contains constraints for CoSZE, then these constraints are passed to CoSZE. Moreover, the two
strategies InstlfDetermined and ComputelnstFromCS employ CoSZE to obtain new bindings. If
several constraint solvers should be connected with MULTI, then a direct communication is not
sufficient anymore. First, constraints should be passed to all connected constraint solvers for which
they are relevant. Second, several constraint solvers should be able to directly exchange results
without involving MULTI.

As possible solution we suggest a constraint solver coordination module, which handles all
communication and which stores all constraints and results. Each constraint solver that should
be connected has to register by the coordination module. MULTI passes new constraints to this
module. Then, the module asks the connected constraints solvers whether this constraint is
relevant for them and passes it to the relevant constraint solvers. The module performs the
same distribution, if a constraint solver produces an intermediate result (i.e., when CoSZE detects
that the instantiation of meta-variable mu is already determined by its current constraints). When
MuLTI backtracks and deletes some method actions with constraints, then the coordination module
has also to organize the deletion of the constraints in the affected constraint solvers and the deletion
of intermediate that depend on these constraints.

The module handles and distributes also queries of MULTI. MULTI passes queries (e.g., is the
instantiation of meta-variable mv already determined?) only to the coordination module. Either
the coordination module can answer the query directly (e.g., if an result passed by a connected

70

constraint solver was already a unique instantiation for muv) or it distributes the query to the
connected constraint solvers and passes the answer back to MULTI.

5.6.4 Dependencies in Backtracking

When the BACKTRACK algorithm removes an action, then it also removes all actions that depend
on this action (see section 5.5.7). The notion of dependency for actions used by BACKTRACK (see
definition 5.16) is strict and therefore BACKTRACK may removes more actions than necessary. In
particular, the deletion of an INSTMETA action causes the deletion of all actions following this action
in the current action sequence. We decided for this approach since a more detailed analysis of
which following actions actually depend on a new binding is difficult and is still open.

Nevertheless, there are also dependencies between actions that are not covered by the depen-
dency notion in definition 5.16. In particular, there can be various dependencies between actions
that involve cooperation with constraint solvers (e.g., CoSZE). For instance, if the current con-
straints (e.g., mv <t and mv > t) in CoSTE determine the instantiation ¢ for a meta-variable muv,
then the strategy InstlfDetermined is applicable with respect to mv and introduces the binding
mv:=t into the strategic proof plan. Other actions can rely on this binding. When a method
action that contains constraints for CoSZE is backtracked, then mv may is not longer determined
with respect to the resulting constraint store (e.g., if the constraint mv < t is removed). In this
case, the action of InstlfDetermined, which binds muv to t, has to be removed. Since this is not a
problem of strategies of INSTMETA in general but of ComputelnstFromCS in particular, we did not
implement such a dependency analysis into the BACKTRACK algorithm (i.e., it is not contained in
the dependency notion introduced in definition 5.16). Rather we suggest to check such particular
dependencies in strategic control rules that cause further backtracking.

The described problematic situation is handled by the strategic control rule check-det-insts.
check-det-insts checks whether the last strategy execution was a BACKTRACK step and whether
it removed some method actions with constraints for CoSZE. If this is the case, it checks whether
all actions of InstlfDetermined in the current sequence of actions are still valid in the sense that
the meta-variables that they bind are still determined in CoSZE. Then, check-det-insts prefers
backtracking for each action of InstlfDetermined that is no longer valid.

5.6.5 Failure Information in Execution Messages

When a strategy execution fails, then its algorithm creates a failure message. If possible the
algorithm can attach information to a failure message, which can also be used by the control rules.
For instance, PPLANNER can create and attach information why no applicable action could be found.
This functionality affects many single steps in PPLANNER and in the procedures CHOOSEACTION and
CHOOSEACTIONALL, which compute and select the next action to be applied. Hence, for the sake of
simplicity and clarity, we did not describe this functionality in the algorithms themselves but give
an informal description here.

That the procedures CHOOSEACTION and CHOOSEACTIONALL fail to to provide an action for a
line-task T and a method M can be caused by three reasons:

Failed matching of proof lines The © conclusions of M do not match with the task line of T
or the blank and & premises of M do not match with the supports of T

Failed application conditions The evaluation of the application conditions of M can fail with
respect to the substitution resulting from a successful matching of the proof lines of M with
the task line and the supports of T.

Rejected actions Actions can be rejected by control rules or because they were already applied
and then backtracked later on.

These tests are performed successively in CHOOSEACTION and CHOOSEACTIONALL in this order.
Each time such a test fails, the function that performs the test creates an information record. For

71

instance, when the function eval-app/-conds finds that the application condition App. of method
M fails with respect to the incomplete action A (which resulted from the successful matching of
the proof lines of M with the proof lines of the given task), then eval-appl/-conds creates the in-
formation record applcondfailure(App., M, A). CHOOSEACTION and CHOOSEACTIONALL collect these
information records and return them to PPLANNER. If there is no applicable action, then PPLANNER
attaches the set of information records to the created failure message. Sample applications of
MuLTI that make use of such failure information are given in [35].

6 Conclusion

We presented the technical concepts underlying proof planning in the IMEGA system and gave
detailed descriptions of the two proof planners in 2MEGA, the simple proof planner PLAN and
the multi-strategy proof planner MULTI. As sample application we discussed the application of
both planners to the LIM+ example from the limit domain.

Since the LIM+ example can be solved by both planners it does not point out the advantages
of proof planning with multiple-strategies as opposed to simple proof planning. We refer the
interested reader to [34, 35] for a discussion of problems of the limit domain that cannot be solved
by PLAN but by MULTI. The reason is that MULTI enables the flexible combination of different
proof plan refinements (in particular flexible backtracking and meta-variable instantiation) guided
by meta-reasoning. For further discussion of the application of PLAN to the limit domain see in
the master thesis of Jiirgen Zimmer [65] as well as in [42, 41, 45].

Further case studies performed with MULTI include applications to residue class problems [39,
36, 37, 38, to permutation group problems [13], and to the \/2-is-irrational problem and similar
problem [57]. A recent application of MULTI is its incorporation into the tutor system ACTIVE-
MATH [43] where it serves as the module to teach mathematical theorem proving [40]. In this
application MULTI is not used as automated component (as in the other listed applications) but
as mixed-initiative component that communicates with the user and incorporates the user to take
decisions, i.e., which proof plan refinement to perform next.

72

A ChooseActionAll Algorithm

Input: (1) a task T, (2) a history H, (3) a list of methods M, (4) a list of control rules C.

Output: Either a pair of an action and a list of actions or fail.

Algorithm: ChooseActionAll(T,ﬁ M, C)
Let T=Lopen « SUPPSL,,..,-

1. Order Methods
Methods:= evalcrules-methods (M,C,T).
Let Methods = [My, ..., My].
When Methods empty then terminate and return fail.
Actions; :=initial-action-set(T, M,).

Actionsy,:=initial-action-set(T, My,).

2. Handle Task, Supports, Parameters, and Appl. Conditions
Fori=1ton:

(a) Match Task Line
Let ©6Concs; the © conclusions of M;.
Actions;:=match-task-line (L open,&Concs;,Actions;).

(b) Select and Match Supports and Parameters
Let ©Prems; and BPrems; the © premises and blank premises of
M;. Let Params; the parameter variables of M;.
Supps+ Params;:=evalcrules-s+p(SUPPSL,,.,.C,T,M;,Actions;).
Actions;:= match-s+p (Supps+Params;,©Prems; U BPrems;,
Params;,Actions;).

(c) Evaluate Application Conditions
Actions;:=eval-appl-conds(Actions;,M;).

Actions:=Actions; U ... U Actions,,.
When Actions empty then terminate and return fail.

3. Outline Computations
eval-outline-computations(Actions).
complete-outline (Actions).

4. Choose Action
Actions:=remove-backtracked(Actions,H).
Actions:=evalcrules-actions (Actions,C).

If Actions =0
then
Terminate and return fail.
else
Terminate and return first (Actions).

Figure 34: The CHOOSEACTIONALL algorithm.

73

B Lim+ Example

Limy. Limg l-zli_x’na flz) =1y (Hyp)
Limg. Lim, Flim g(e) =l (Hyp)
La. Limg FVera (0 < €1 = 3614 (0 < 61 A (DEFNUNFOLD-F Limy)
Vzi.(jz1 —a| < é1 Alz1 —a| >0
= 1f(1) - Iy] < 1))
L3. Limg FVe2. (0 < €2 = 3624 (0 < d2 A (DEFNUNFOLD-F Limyg)
Vzau(|z2 —a| < d2 Alzz —a| >0
= l9(z2) — lg| < €2)))
Li7 Limg FO < mue; = 361.(0 < 81 A (VE-F Ls)
Vziu.(|z1 —a| <81 Alz1 —a| >0
= |f(z1) = lf| < mve,))
Lig. Hs F0 < mue, (TELLCS-B)
Lao H3a F361.(0 < 61 AVz1a(|z1 — a| < 81 (=g Lis L17)
Alx1 —a| > 0= |f(z1) — If| < mve,)
Loy L FO0 < cs, AVZ1a(|T1 —a| < c5; Alz1—a| >0 (Hyp)
= 1f(z1) = Ly| < mvey)
Lo3 Lo F0<cs, (AE-F La1)
Log Loy f‘VIl.(|1’1 - a[<cg A]Il - a| >0 (/\E—F L21)
= |f(z1) — If| < mug,)
Los Loy F|mvz, —a| < ¢s; A|mvz; —a| >0 (VE-F Layg)
= |f(77wx1) - lfl < qu))
L3g Limg 0 < mue, = 3624 (0<d2 A (VE-F L3)
Vzo.(|z2 — CLI <& Alrg—a|>0
= |g(z2) — lg| < mwe,))
L3g. Hs F0 < mue, (TELLCS-B)
L4 H3 F3624(0 < 02 AVz2a(|z2 — a] < 82 (=g L3g L3s)
Alzz —a| > 0= |g(z2) — lg| < mve,))
Lya Ly2 FO< s, AVz2.(|z2 —a] < cs, A |z2 —a| >0 (Hyp)
= |g(z2) — lg| < mue,)
L4y Ly2 FO< Coy (AE-F Lj2)
Las L4o FVzo.(lz2 —a| <csy Alze —a| >0 (AE-F Ly2)
= J9(z2) — Lg) < mvey)
Ly4g L2 + |mv12 —-a| < csy A]mvxz —a|>0 (VE-F Lgs)
= |g(muz,) — lg| < mue,)
Ly L1y Flez —a|l > 0A |ez — a| < mus (Hyp)
Lig L1 Flez —a] >0 (AE-F L11)
Li3 L = [cz - al < mug (/\E-F Lu)
Ls. Ls FO<ece (Hyp)
Le1 Ha FO<LO0 (ASKCS-B)
Lsg Ha Fmug < cs, (TELLCS-B)
Ls7 Ho F0<O0 (AskCS-B)
Lss Ho2 Fmus < Cs, (TELLCS-B)
Lso Ho Fmuz, = ¢z (TELLCS-B)

74

Lss. M2 Fmue, < 5 *ce (TELLCS-B)
Lsp. Ha F |mvz2 - al < ¢, (SOLVE*-B L3 L55)
Lsi. Ha F 'm’UIz —al>0 (SoLvE*-B L14 Ls7)
Ly7. H2 F |mv12 = a.| < cg, A |mv12 = a| >0 (/\I-B Lso L51)
Lgg. Ho Flg(muz,) — lg| < mue, (=g La7 Lss)
L4g. Ha2 Flg(cz) — lg] < Lxee (SoLvE*-B Lag Ls2 Ls3)
Liz. Hz Flglez) — lg] < 5 *ce (=E-F L47 L4e Las)
Lso. Hy Flglez) —lg] < 5 *ce (JE-F L41 L43)
L3z. ™ Flg(ez) —lgl < 5 *ce (=E-F L3g L3g L4o)
L3;. Ha Fi1] < mo (TeLLCS-B)
L3, ™, Fmue, < 555 (TELLCS-B)
L3s. ™ Flglez) —lg| < & (SIMPLIFY-B L37)
Lzy. ™ FO0 < muv (TeLLCS-B)
L3zs. ™ Fmug, =cz (TELLCS-B)
Log. H, F|muz, — al < Cé, (SoLveE*-B Li3 Lsg)
L3p. ™H: F|mvz, —a|l >0 (SoLvE*-B Li14 Le1)
Log. Ha F|mvz, —a| < c5; A|lmvz;, —a| >0 (AI-B Lag L3o)
L2g. H: F|f(mvz,) = lg| < mue, (=E L26 Las)
La7. ™a FI((f(ez) +glez)) —lf) — lg] < ce (CoMPLEXESTIMATE-B
Lag L3y Laz L33z Lag L3s)

Ly, ™y F1((f(cz) +g(cz)) —1f) = lg| < ce (=E-F Lge¢ L2s L27)
Lig. Hs FI((f(ez) +g(ez)) —1f) = lg] < ce (3E-F Lgo L23)
Lis. Hs FI((flez) +g(ez)) — 1f) — lg] < ce (=E-F Lig Li7 L19g)
Li2. ™Hs FI(f(cz) + g(ez)) — Iy +1g)| < ce (SIMPLIFY-B Lj¢)
Lip. Hs Flez —a|l <muvs Alez —a|l >0 (=I-B L12)

= |(f(cz) +9(cz)) = (Iy +)| < ce
Lg. Ha FVz.(|lz —a| < mvs A|lz —a| >0 (VI-B Lip)

= |(f(z) + 9(z)) — (y +1g)| < ce)
Lg. Ha F0 < mus (TELLCS-B)
L. Ha FO0 < mus AVza(|Jz — a| < mus Alz—a| >0 (AI-B Lg Lg)
= |(f(z) + 9(x)) — (I +1g)] < ce)

Lg. Ha F35.(0<6AVz.(z—a|<6A|z—a| >0 (31-B L)

= |(f(z) +g(x)) — Iy +1g)| < cc))
Ly. Limg, Limgh 0 < ce = 36 0<én (=1I-B Lg)

Vau(jz —a| < dA|z—a| >0

= |(f(z) +9(z)) — (U5 +1g)| < ce))
L. Limy, LimgF Ve (0 < e =36.(0 < d A (VI-B Ly)

Vzu(lz—a| <SA|z—a| >0
= |(f(z) + 9(2)) - (Iy + o)l < ¢)))

LIM+. Limy, Limg"}i_rgz(f(m) +g(z)) =1l +14

(DEFNUNFOLD-B L)

Hi = {Limy, Limg, Ls, L11, L21}, Hz = {Limy, Limg, Ls, L11, L21, L2}
Hz = {Limy, Limg, Ls, L11}, Ha = {Limy, Limg, L5}

75

References

1]
2]

[4]

[5]

6

[7]
(8]
[9]

[10]

(11]

(12]

(13]

(14]

A.J. Aho, J. Hopcroft, and J. Ullman, editors. Data Structures and Algorithms. Addison-
Wesley, 1983.

P.B. Andrews. Transforming Matings into Natural Deduction Proofs. In W. Bibel and
R.A. Kowalski, editors, Proceedings of the 5th Conference on Automated Deduction (CADE-
5), volume 87 of LNCS, pages 281-292, Les Arcs, France, June 7-9 1980. Springer Verlag,
Germany.

P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A Theorem
Proving System for Classical Type Theory. Journal of Automated Reasoning, 16(3):321-353,
1996.

S. Autexier. Hierarchical Contextual Rewriting. PhD thesis, Fachbereich Informatik, Univer-
sitat des Saarlandes, Saarbriicken, 2003. To appear.

P. Baumgartner and U. Furbach. PROTEIN, A PROver with a Theory INterface. In
A. Bundy, editor, Proceedings of the 12th International Conference on Automated Deduc-
tion (CADE-12), volume 814 of LNAI pages 769-773, Nancy, France, June 26-July 1 1994.
Springer Verlag, Germany.

C. Benzmiiller, M. Bishop, and V. Sorge. Integrating TPS and OMEGA. Journal of Universal
Computer Science, 5:188-207, 1999.

W.W. Bledsoe. Challenge Problems in Elementary Analysis. Journal of Automated Reasoning,
6:341-359, 1990.

W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer Proofs of Limit Theorems.
Artificial Intelligence, 3(1):27-60, 1972. -

A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E.L. Lusk and R.A.
Overbeek, editors, Proceedings of the 9th International Conference on Automated Deduction
(CADE-9), volume 310 of LNCS, pages 111-120, Argonne, Illinois, USA, 1988. Springer
Verlag, Germany.

J.G. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem Solving and
Expertise Acquisition. In R.S. Michalsky, J.G. Carbonell, and T.M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, pages 371-392. Morgan Kaufmann Publ., Los
Altos, 1986.

L. Cheikhrouhou and J. Siekmann. Planning Diagonalization Proofs. In F. Giunchiglia,
editor, Artificial Intelligence: Methodology, Systems and Applications, Proceedings of the of
the 8th International Conference (AIMSA’98), volume 1480 of LNAI, pages 167-180, Sozopol,
Bulgaria, September 21-23 1998. Springer Verlag, Germany.

L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for Proof
Plans. In Proceedings of the International Conference on Artificial and Computational In-
telligence for Decision, Control and Automation in Engineering and Industrial Applications
(ACIDCA’2000), Monastir, Tunisia, March 22-24 2000.

A. Cohen, S. Murray, M. Pollet, and V. Sorge. Certifying solutions to permutation group
problems. In F. Baader, editor, Proceedings of the 19th International Conference on Auto-
mated Deduction (CADE-19), number 2741 in LNAI, Miami Beach, F1, USA, 2003. Springer

Verlag, Germany.

R.L. Constable, S.F. Allen, H.M. Bromley, R. Cleaveland, J.F. Cremer, R.W. Harper, D.J.
Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, and S.F. Smith. Imple-
menting Mathematics with the NUPRL Proof Development System. Prentice Hall, Englewood
Cliffs, NJ, USA, 1986.

76

[15] Coq Development Team. The Cogq Proof Assistant Reference Manual. INRIA.

[16] H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Plank-Institut, Im Stadt-
wald, Saarbriicken, Germany, October 1999. Available fromhttp://www.mpi-sb.mpg.de/
“bliksem/manual.ps.

[17] M. Drummond. On precondition achievement and the computational economics of automatic
planning. In C. Backstrom and E. Sandwall, editors, Current Trends in AI Planning. 10S
Press, 1994.

(18] R. Engelmore and T. Morgan, editors. Blackboard Systems. Addison-Wesley, 1988.

[19] L.D. Erman, P. London, and S. Fickas. The Design and an Example Use of HEARSAY-IIL
In B. Buchanan, editor, Proceedings of the 6th International Joint Conference on Artificial
Intelligence (ICJAI), pages 409-415, Tokyo, Japan, August 20-23 1979. Morgan Kaufmann.

[20] R.E. Fikes, P.E. Hart, and N.J. Nilsson. Some New Directions in Robot Problem Solving.
Machine Intelligence, 7, 1971.

[21] R.E. Fikes and N.J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 2:189-208, 1971.

[22] H. Ganzinger, editor. Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), volume 1632 of LNAI, Trento, Italy, July 7-10, 1999. Springer Verlag,

Germany.

[23] G. Gentzen. Untersuchungen iiber das Logische Schlieflen I und II. Mathematische Zeitschrift,
39:176-210, 405431, 1935.

[24] M.L. Ginsberg. Dynamic Backtracking. Journal of Artificial Intelligence Research, 1:25—486,
1993.

[25] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University Press, Cam-
bridge, UK, 1993.

[26] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 25:251-321,
1985.

[27] T. Hillenbrand, A. Jaeger, and B. Lochner. System Description: WALDMEISTER, Improve-
ments in Performance and Ease of Use. In Ganzinger [22], pages 232 — 236.

(28] S. Kambhampati. Formalizing Dependency Directed Backtracking and Explanation-based
Learning in Refinement Search. In W.J. Clancey and D. Weld, editors, Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96) and Eighth Innovative
Applications of Artificial Intelligence Conference (IAAI-96), pages 757-762, Portland, Ore-
gon, USA, August 4-8 1996. AAAI Press, Menlo Park, CA, USA.

[29] H. Kirchner and C. Ringeissen, editors. Proceedings of Third International Workshop on
Frontiers of Combining Systems (FROCOS 2000), volume 1794 of LNCS, Nancy, France,
March 22-24 2000. Springer Verlag, Germany.

[30] U. Kiihler. A Tactic-Based Inductive Theorem Prover for Data Types with Partial Operations.
PhD thesis, Sankt Augustin, 2000.

[31] W. McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL-94-6, Argonne
National Laboratory, Argonne, Illinois 60439, USA, 1994.

[32] W. McCune. Solution of the Robbins Problem. Journal of Automated Reasoning, 19(3):263~
276, 1997.

77

(33]

(34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction Proofs
at the Assertion Level. In D. McAllester, editor, Proceedings of the 17th International Confer-
ence on Automated Deduction (CADE-17), volume 1831 of LNAI, pages 460-464, Pittsburgh,
PA, USA, June 17-20 2000. Springer Verlag, Germany.

A. Meier. MULTI - Proof Planning with Multiple Strategies. PhD thesis, Fachbereich Infor-
matik, Universitdt des Saarlandes, Saarbriicken, 2004.

A. Meier and E. Melis. Proof planning limit problems with multiple strategies. Seki Re-
port SR-2004-04, Fachbereich Informatik, Universitéit des Saarlandes, Saarbriicken, Germany,
2004.

A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphic Residue Classes. In R. Moreno-
Diaz, B. Buchberger, and J.L. Freire, editors, Proceedings of the 8th International Workshop
on Computer Aided Systems Theory (EuroCAST 2001), volume 2178 of LNCS, pages 494-508,
Las Palmas de Gran Canaria, Spain, February 19-23 2001. Springer Verlag, Germany.

A. Meier, M. Pollet, and V. Sorge. Classifying Residue Classes — Results of a Case Study. Seki
Report SR-01-01, Fachbereich Informatik, Universitat des Saarlandes, Saarbriicken, Germany,
2001.

A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to Explore the Domain of Residue
Classes. Journal of Symbolic Computation, Special Issue on the Integration of Automated
Reasoning and Computer Algebra Systems, 34(4):287-306, 2002. S. Linton and R. Sebastiani,
eds.

A. Meier and V. Sorge. Exploring Properties of Residue Classes. In M. Ker-
ber and M. Kohlhase, editors, Symbolic Computation and Automated Reasoning — The
CALCULEMUS-2000 Symposium, pages 175-190, St. Andrews, UK , August 6-7, 2000
2001. AK Peters, Natick, MA, USA.

Andreas Meier, Erica Melis, and Martin Pollet. Adaptable mixed-initiative proof planning for
educational interaction. Electronic Notes in Theoretical Computer Science, 2004. To appear.

E. Melis. Al-Techniques in Proof Planning. In H. Prade, editor, Proceedings of of the 13th
European Conference on Artifical Intelligence, pages 494-498, Brighton, UK , August 23-28
1998. John Wiley & Sons, Chichester, UK .

E. Melis. The “Limit” Domain. In R. Simmons, M. Veloso, and S. Smith, editors, Proceedings
of the Fourth International Conference on Artificial Intelligence Planning Systems (AIPS-98),
pages 199-206, Pittsburgh, PEN, USA, June 7-10 1998. AAAI Press, Menlo Park, CA, USA.

E. Melis, J. Buedenbender, E. Andres, A. Frischauf, G. Goguadse, P. Libbrecht, M. Pollet,
and C. Ullrich. ACTIVEMATH: A generic and adaptive web-based learning environment.
Artificial Intelligence and Education, 12(4):385-407, 2001.

E. Melis and A. Meier. Proof Planning with Multiple Strategies. In J. Loyd, V. Dahl,
U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L.M. Pereira, and Y. Sagivand P. Stuckey,
editors, First International Conference on Computational Logic (CL-2000), volume 1861 of
LNAI pages 644-659, London, UK, 2000. Springer-Verlag.

E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,
115(1):65-105, 1999.

E. Melis and C. Ullrich. Flexibly Interleaving Processes. In K.-D. Althoff and R. Bergmann,
editors, International Conference on Case-Based Reasoning, volume 1650 of LNAI pages
263-275. Springer Verlag, Germany, 1999.

78

[47] E. Melis, J. Zimmer, and T. Miiller. Integrating Constraint Solving into Proof Planning. In
Kirchner and Ringeissen [29], pages 32-46.

[48] R. Milner. The use of machines to assist in rigorous proof. In C.A.R. Hoare and J.C. Shepherd-
son, editors, Mathematical Logic and Programming Languages, pages 77-88. Prentice-Hall,
1984.

[49] S. Minton. Explanation-Based Learning: A Problem Solving Perspective. Artificial Intelli-
gence, 40:63-118, 1989.

[50] A. Newell and H.A. Simon. GPS: a Program that Simulates Human Thought. In E.A.
Feigenbaum and J. Feldmann, editors, Computers and Thought. McGraw-Hill, 1963.

[51] L. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer Verlag,
Germany, 1994.

[52] D. Redfern. The Maple Handbook: Maple V Release 5. Springer Verlag, Germany, 1999.
[63] E. Rich and K. Knight, editors. Artificial Intelligence. McGraw-Hill, 1991.

[54] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall, Engle-
wood Cliffs, 1995.

[65] S. Scholl. Hierarchische Analogie im Beweisplanen. Master’s thesis, Fachbereich Informatik,
Universitat des Saarlandes, Saarbiicken, 2003.

[56] J. Siekmann, C. Benzmiiller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke, H. Ho-
racek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge,
C. Ullrich, C.P. Wirth, and J. Zimmer. Proof Development with OMEGA. In A. Voronkov,
editor, Proceedings of the 18th International Conference on Automated Deduction (CADE-
18), number 2392 in LNAI, pages 144-149, Kopenhagen, Denmark, 2002. Springer Verlag,
Germany.

[57] J. Siekmann, C. Benzmiiller, A. Fiedler, A. Meier, I. Normann, and M. Pollet. Proof De-
velopment in OMEGA: The Irrationality of Square Root of 2. In Fairouz Kamareddine,
editor, Thirty Five Years of Automating Mathematics, Kluwer Applied Logic series. Kluwer
Academic Publishers, 2003. In Print.

[58] V. Sorge. Non-Trivial Symbolic Computations in Proof Planning. In Kirchner and Ringeissen
[29], pages 121-135.

[59] R.M. Stallmann and G.J. Sussmann. Forward reasoning and dependency-directed backtrack-
ing in a system for computer-aided circuit analysis. Artificial Intelligence, 9(2), 1977.

[60] A. Tate. Generating Project Networks. In R. Reddy, editor, Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence (ICJAI), pages 888-893, Cambridge, MA,
USA, August 22-25 1977. Morgan Kaufmann, San Mateo, CA, USA.

[61] C. Ullrich. Analogie im Beweisplanen. Master’s thesis, Fachbereich Informatik, Universitét
des Saarlandes, Saarbiicken, 2000.

[62] M.M. Veloso, J. Carbonell, M.A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating
Planning and Learning: The Prodigy Architecture. Journal of Ezperimental and Theoretical
Artificial Intelligence, 7(1):81-120, 1995.

[63] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, Th. Engel, E. Keen, C. Theobalt, and
D. Topic. System Description: Spass Version 1.0.0. In Ganzinger [22], pages 378-382.

[64] D.S. Weld. An Introduction to Least Commitment Planning. AI Magazine, 15(4):27-61,
1994.

79

[65] J. Zimmer. Constraintlosen fiir Beweisplanung. Master’s thesis, Fachbereich Informatik,
Universitat des Saarlandes, Saarbriicken, 2000.

80

