
Multiple Strategies

Andreas Meier and Erica Melis

SEKI Report SR—2004-04

humwSm‚mborPmU8.mnmPfoorP

\ uv .n - | qfl
. _nu .u .=

an \ \ „m
uu=

„33 .3

ä<
2m

m
u

zm
xoom

m
m

äm
G

oad
-

äääm
om

ä
m

oäm
m

m
m

ofi

n—

„E
.

5:
‚am

m
m

n
z<

ä
<

<
m

m
an

ääm
m

m
az :

„ to
9%_v_m

_
m

Proof Planning Limit Problems with Multiple Strategies

Andreas Meier and Erica Melis
Saarland University, FR Informatik

and DFKI
66041 Saarbrücken, Germany

email: ameier©ags.uni—sb.de, melis©dfki.de

Abstract

The development of proof planning in the OMEGA system was and is strongly influenced
by the still ongoing case study on limit problems. In this report we describe the application
of OMEGA’s recent proof planning approach, which is called proof planning with multiple
strategies, to problems from the limit domain. In particular, we point out how drawbacks
we encountered with the previous proof planner of OMEGA when applied to limit problems
motivated and influenced the development of proof planning with multiple strategies.

1 Introduction

Proof planning is an application of Artificial Intelligence planning techniques for automated theo-
rem proving at the abstract level of tactics. Proof planning was introduced by Bundy [10], in order
to avoid super-exponential search when proving theorems by induction. This proof planning for
inductive proofs is implemented in the proof planners CLAM [14] and ACEM [39] in Edinborough.

The research group developing the OMEGA proof development system in Saarbrücken extended
Bundy’s proof planning approach such that proof planning can use domain knowledge in order to
plan proofs in different mathematical domains. The resulting proof planning approach is called
knowledge—based proof planning [36]. The scientific research in the OMEGA group was and is
driven by case studies. These case studies are used to evaluate former approaches and their
implementation, and the analysis of the case studies gives insights for the extension of an approach
and the development of new approaches. In addition, more often than not new applications give
rise to new requirements which have to be integrated into the extended model.

The most influential case study for the development of proof planning in OMEGA is the case
study on proof planning limit problems. Theorems of the limit domain make statements about
the limit of functions and sequences as well as about continuity and the derivative of functions.
Early results about proof planning in the limit domain are reported in [31]. Following publications
point out the achieved progress in proof planning limit problems as well as the development of
OMEGA’s proof planning approach and their mutual influences and dependencies, for instance,
see [33, 32, 27, 36, 37, 35].

The recent proof planning approach in OMEGA is proof planning with multiple strategies [34].
The development of proof planning with multiple strategies was — among others — motivated
and strongly influenced by drawbacks we encountered with OMEGA previous proof planner, when
systematically tackling the limit problems from the analysis textbook [2] In this report, we
describe the application of proof planning with multiple strategies to problems from the limit
domain. In particular, we discuss limit problems that can be solved by the new multiple-strategy
proof planner MULTI, while the previous proof planner of OMEGA fails to solve them, and point
out the reasons for MULTI’s success.

The structure of the report is as follows: We first describe the basics of proof planning in
OMEGA in section 2. This section contains brief descriptions of MULTI and OMEGA’s previous
proof planner. In the subsequent section, we introduce the limit domain and explain how OMEGA’s

previous proof planner solves problems from the limit domain. The next two sections then discuss
the application of MULTI to limit problems: whereas section 4 gives a general account, section 5
is devoted to the realization of failure reasoning in MULTI to solve limit problems. The report
concludes in section 6 with the discussion of the results and related work.

2 Proof Planning

Proof planning was originally conceived as an extension of tactical theorem proving to enable
automated theorem proving at the abstract level of tactics. BUNDY’s key idea in [10] is to aug-
ment individual tactics with pre— and postconditions. This results in planning operators, so—called
methods. In the OMEGA [42] system the traditional proof planning approach is enriched by in-
corporating mathematical knowledge into the planning process (see [36]) and the introduction of
strategies (see [34]).

Domain-specific knowledge can be encoded in methods, in control rules, and in external systems
such as computer algebra systems or constraint solvers. Methods can encode not only general
proving steps but also steps particular to a mathematical domain. Control rules enable meta-level
reasoning about the current proof planning state as well as about the entire history of the proof
planning process in order to guide the search. The recent development of proof planning with
multiple-strategies introduces strategies and their heuristic control as another hierarchical level,
which provides the possibility to encode (mathematical) domain knowledge.

In the following, we briefly introduce the basics of proof planning in OMEGA and sketch the
two planners of the OMEGA system, the simple planner PLAN and the multiple-strategy planner
MULTI. A detailed description of the planners is given in [30].

2 .1 Basics of Proof Planning
Proof planning in OMEGA considers mathematical theorems as planning problems.1 The initial
state of a proof planning problem consists of the proof assumptions and the goal description consists
of the theorem. Methods are the operators of proof planning, where methods are tactics known
from tactical theorem proving augmented with pre— and postconditions i n order t o derive operators
for AI—planning. Proof planning searches for a solution plan, i.e., a sequence of instantiated
methods that transforms the initial state into a state in which the theorem holds. In order to find
a solution plan, it searches for applicable methods and applies the instantiated methods. Similar
to AI—planning we call the instantiation of a method (i.e., the instantiation of a proof planning
operator) an action.

The effects and the preconditions of actions as well as the initial proof planning problem in
QMEGA consist of proof lines as introduced in [l]. A proof line is of the form L. Al-F (R), where
L is a unique label, Al—F a sequent denoting that the formula F can be derived from the set of
hypotheses A , and (”R) is a justification expressing how the line was derived. Lines that are not
yet derived from other lines are called open lines and have an open justification. -A line that is
not open is called a closed line. During the proof planning process all constructed proof lines are
stored in a data-structure called PBS [15]. For instance, the initial PDS for the proof problem
with theorem T hm and assumptions Assl7 . . . , Assn is:

LAaa l - LA" , l- A581 (Hyp)

LA„„ . LA,” l -Assn (Hyp)
LThm- LA.” ----- LAM" l- Thm (Open)

When a new action is added, then the new lines derived by this action are added into the
'PDS . Moreover, all effect lines of the action are justified by an application of the method of the
action to the premises of the action. For instance, if an action of method M has the premise lines

1See {48, 40] for introductions to AI—planning.

L1 and L2 and the effect line L3, then L3 becomes justified in the PDS by (M L1 L2). Since
methods in OMEGA are also tactics, a closed 'PDS, i.e., a 'P'DS without open lines, also forms a
tactic-level proof. Expansions of the actions, which correspond to tactic applications, can result
in a proof in QMEGA’S underlying higher-order natural deduction (ND) calculus [19]. However, in
the remainder of the report we will focus on the creation of abstract proof objects at the planning
level and not on the expansion to the ND calculus.

Central during the proof planning process are so-called tasks, which express which proof
lines (closed and open) can be used to construct a subplan for an open line. A task is a pair
(Lopen,suP7>sLW) where L0,”;n is an open line and SLIP’PSLM" is a set of lines. The first
element of a task is called the task line or the goal of the task and the second element is called the
support lines or supports. The formula of the goal is also called task formula. A task with goal
Lope" and supports 81179738m i s written as Lop", < SUP'PSL„„. During the planning process
a list of all current tasks is stored in a so-called agenda. For a problem with theorem Thm and
assumptions Ass1 , . . . ,Ass„ the initial agenda consists of the task Ln". < {LA„„ . . . , LA„„} .

2 .2 Methods and Control Rules

Methods
Methods encode the knowledge of the relevant proof steps of mathematical domains. Techni-

cally, a method in QMEGA is a frame data structure with the slots premises, conclusions, application
conditions, and proof schema.

The premises and conclusions of a method specify the preconditions and the effects of the
method. The conclusions should be logically inferable from the premises. The union of conclusions
and premises is called the outline of a method. Declarative descriptions of the formulas of the
outline can be given in the proof schema, which also provides the schematic or procedural expansion
information.

Premises and conclusions may be annotated with EB and e . The annotations are needed to
indicate whether a method is used for forward or backward search. As opposed to AI-planning,
where operators typically can be applied for both forward search and backward search, a method in
OMEGA is either used in forward search or in backward search. This is because methods typically
comprise complex computations that are reasonable either in one direction or in the other direction.

Backward and forward methods are specified as follows: A backward method has 9 conclusions
and 69 premises as well as e premises and blank premises. To compute an action of the method,
one of the e conclusions is matched with the goal of a given task and both, the e premises and the
blank premises, are matched with supports of the task. When the resulting action is introduced
into the proof plan, then the goal is closed in the ’PDS and the @ premises are added to the 'P’DS
and become goals of new tasks. These new tasks inherit the supports of the initial task except
that the e premises are removed. The blank premises are not affected. A forward method has
69 conclusions as well as e premises and blank premises. To compute an action of the method,
the e premises and the blank premises are matched with the support lines of a given task. When
the resulting action is introduced into the proof plan, then the EB conclusions are added to the
PDS and become new support lines of the task. Moreover, the e premises are removed from the
supports of the task. Again, the blank premises are not affected.

Consider the method =Subst-B, given in Figure 1 , which can be used in all domains that
employ the equality = . Essentially, the method performs an equality substitution. It has two
preconditions L1 and L2, where the proof schema determines L1 to be an equation. The only
conclusion is L3. =Subst-B is a backward method. The introduction of an action of =Subst-B
closes a task line whose formula matches with the formula of L3 and introduces a new task whose
goal is the instantiation of L2. That is, the formula of the new goal results from the formula of the
initial goal by substitution with the equation, which is the formula of a support of the initial task
that matched with L1. For instance, =Subst-B applied to the task even(a +1) < {a = 1,. ..}2

2To simplify th i s example, we jus t wri te t he formulas of t he goal and the support l ine instead of the whole proof
lines.

Method: =Subst-B
premises EBLz, L1
conclusions 6L3

(1) valid-position-p (f ,pos)
appl. conds. (2) [term—at-position (f ,pos) = t V

term-at-position (f ,pos) = t’]
L1 . A l ' t= t l 0

L2. A i—f’ (Open)
. L4. A WPao.P(tf')=>P(tf) (EB =)Pf°°fs°h°ma L5. A l—(Af)(tf’)=>(Af)(tf) (VE “ m

Le . A i ‘ ffi f '] äffi f] (AH L5)
L3. A l—f (=>E L2 L6)

Figure 1 : The =Subst-B method.

introduces the new goal even(1 + 1).
The application conditions of a method are meta-level descriptions that restrict the applicability

of a method. The application conditions can consist of arbitrary LISP functions. The method
=Subst-B has two application conditions: (1) the position pas has to be a valid position in the
formula f and (2) the subterm in f at the position pos is t o r t’. Note that application conditions
reason only about whether the application of a method is valid in a certain situation; they do not
reason about whether the application is useful.

The proof schema of a method is a declarative description of the outline of a method. More-
over, i t describes the expansion of actions of the method, which corresponds to both tactic ex-
pansions and expansions of HTN-planning [45]. When an action of a method is expanded, then
for each conclusion a new subproof is introduced into the ’PDS . For instance, the proof schema
of =Subst-B specifies that the defined concept = in the premise is replaced by its definition (i.e.,
the Leibniz-Equality definition). Then, some calculus rules VE, AH, and =>E are applied to derive
the conclusion of the method.

Generally, proof construction may require to construct mathematical objects, for instance, if
a method has to instantiate existentially quantified variables by witness terms. A witness term
has to be a concrete term. However, if the method is applied at an early stage of the proof,
the plarmer generally has no knowledge of the true nature of the witness term. Therefore, the
actual instantiation of witnesses can be postponed; rather, methods can introduce so—called meta-
variables as temporary substitutes for the actual witness terms, which will be determined at a
later point in the planning process and subsequently instantiated.

Further methods relevant for proof planning limit problems are discussed in section 3.2.

Notation 2 .1 : In this report, we write mv for meta-variables. If several meta-variables occur,
we attach subscripts to mu in order to distinguish the meta-variables. We either use the variable
for whose instantiation the meta-variable is a substitute as subscript (e.g., we write mum if mv is
a substitute for the instantiation of the variable at) or we use numbers. If the decomposition of
a quantified formula results i n the introduction of a constant, then we write c for this constant.
Similar to the notation for meta-variables, we use either the initial variable or numbers as subscripts
to distinguish several occurring constants.

Notation 2.2: Methods are written in SMALL CAPITAL FONT (e.g., =Subst—B). The name of
backward methods ends with -B whereas the name o f forward methods ends with -F .

Control Rules
Control rules provide guidance of the proof planning process by declaratively representing

heuristical knowledge that corresponds to mathematical intuition about how to prove a goal in a

certain situation. In particular, these rules provide the basis for meta-level reasoning and a global
guidance since they can express conditions for a decision that depends on all available knowledge
about the proof planning process so far. The control rules used in QMEGA’s proof planning were
adopted from the control rule approach of the AI-planner PRODIGY [47],

In the planning process control rules guide decisions at choice points, e.g., which task to
tackle next or which method to apply next. They achieve this by reasoning about the heuristic
utility of different alternatives3 in order to promote the alternatives that seem to suit best in the
current situation, where ‘situation’ comprises all available information on the current status such
as the current tasks, their supports, the planning history, failed attempts etc. To manipulate an
alternative list control rules can remove elements, prefer certain elements, or add new elements.
This way, the ranking of alternatives i s dynamically changed. This can help to prune the search
space or to promote certain promising search paths.

Technically, control rules consist of an IF- and a THEN-part. The IF-part is a predicate on the
current proof planning ‘situation’, whereas in the THEN-part modifications of alternative lists are
stated. Moreover, each control rules specifies its kind, i.e., the choice point in the proof planning
process i t guides.

(con t ro l - ru l e prove—inequal i ty
(kind methods)
(IF (and (goal-matches (REL A B))

(in REL {<‚>‚S‚2})))
(THEN (prefer (TELLCS-B TELLCS-F AsS—B SIMPLIFY-B

SIMPLIFv-F SOLva*—B COMPLEXESTIMATE-B
FACTDRIALESTIMATE-B Sr—rrFocus—B))))

Figure 2: The control rule prove-inequal i ty .

Figure 2 gives as example the control rule prove-inequali ty, which is evaluated during the
selection of the next method to apply. In i ts lF-part prove- inequal i ty checks whether the
current goal is an inequality. If this is the case, it prefers the methods TELLCS-B, TELLCS-F,
ASKCS-B, SIMPLIFY—B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, FACTORIALESTIMATE—
B, and SETFOCUS—B in this order (these methods are explained in section 3.2). The prefer states
that the methods specified in the control rule are preferred before all other methods, i.e., the
specified methods are ordered in front of the resulting alternative list. Other possible modifications
of alternative lists are select, reject, defer, and order—tn-front. select states that all other methods
except those specified in the control rule are eliminated from the list of alternative methods.
reject removes all alternatives specified in the control rule from a given alternative list, the latter
two manipulations reorder the alternative list. defer orders all specified alternatives at the end
of the alternative list, and order-in-front orders specified alternatives in front of other specified
alternatives. Finally, there is the insert modification. It allows to introduce new elements in an
alternative list. A typical situation for using an insert control rule is when a general control rule
— which is applied first — removes some elements from the alternative list, which are needed in
a particular situation. Then a more specific insert control rule, which is applied later on, can
introduce the needed elements again.

Notation 2 .3 : Control rules are denoted in the typewri ter font (e.g., p rove- inequal i ty) .
Technically, control rules are frame data structures. Since they are considerably simpler as, for
instance, methods, we do not present them in the data structure fashion (as we do with methods)
rather we give their LISP encoding. That is, the content of Figure 2 is the specification of the
control rule prove- inequal i ty as i t is in QMEGA’s data base.

aAs opposed to application condit ions of methods , which reason about t he legal feasibility of applications of
methods (see last section).

2 .3 From PLAN to MULTI

PLAN is QMEGA’S simple proof planner. I t proceeds by successively computing and introducing
actions into a proof plan under construction. Table 1 shows the outline of PLAN ’s algorithm.
First, PLAN selects a task to work on. Then, i t computes actions for this task and selects one
action, which it introduces into the proof plan under construction. This results in new tasks on
which PLAN continues. If PLAN fails to compute an action for a selected task, then it performs
backtracking. Although actions can perform both, forward reasoning and backward reasoning, an
action is always chosen with respect to a task in order to close or to reduce the gap between the
goal and the supports of the task.

1. When the current agenda is empty and the current PDS is closed, then apply external
constraint solvers to compute variable instantiations consistent with the collected constraints
and terminate.

. Select a task T from the agenda.

. Compute and select an action A with respect to T .

If an action A could be computed for T , then introduce A . Goto step 1 .

9"
w

If no action A could be computed for T , then backtrack the action whose introduction created
the task T . Goto step 1 . '

Table 1 : Cycle of PLAN.

Some decisions in PLAN can be guided by control rules, for instance, the selection of the
next task and the selection of the next action. Other decisions, however, are hard-coded into the
system. For instance, PLAN employs backtracking if and only if i t tackles a task, for which i t fails
to compute an action. Moreover, it employs external constraint solvers to obtain instantiations
for meta-variables if and only if the agenda is empty and the ’PDS is closed.

When we extended the exploration of the limit domain and when we explored further domains
we encountered problems of the simple proof planning approach realized in PLAN (see section 3.4
for the discussion of several problems) that caused us to reconsider QMEGA’s proof planning
approach and gave rise to the development of multi—strategy proof planning, which we realized in
the MULTI system.

Proof planning with multiple strategies decomposes the previous monolithic proof planning
process and replaces i t by separated parameterized algorithms as well as different instances of these
algorithms, so-called strategies. The strategies, which specify different behaviors of the algorithms,
are the basic elements for proof construction in multiple-strategy proof planning. That is, the goal
of multiplestrategy proof planning is to compute a sequence of strategy applications that derives
a given theorem from a given set of assumptions. The decision on when to apply a strategy is not
encoded once and forever into the system but rather is determined by meta-level reasoning using
heuristic control knowledge of strategies and their combination.

Algorithms
MULTI enables the incorporation of heterogeneous, parameterized algorithms for different kinds

of proof plan refinements and modifications. Currently, MULTI employs the following algorithms:

PPLANNER refines a proof plan by introducing new actions.

INSTMETA refines a proof plan by instantiating meta-variables.

BACKTHACK modifies a proof plan by removing refinements of other algorithms.

EXP refines a proof plan by expanding complex steps.

ATP refines a proof plan by solving subproblems with traditional machine-oriented automated
theorem provers.

CPLANNER refines a proof plan by transferring steps from a source proof plan or fragment.

The decomposition of the previous monolithic proof planner of OMEGA allows to extend and
generalize the fimctionalities of i t s subcomponents. This results in the independent and param-
eterized algorithms PPLANNER, INSTMETA, and BACKTRACK for action introduction, meta-variable
instantiation, and backtracking. EXP, ATP, and CPLANNER integrate new refinements of the proof
plan.

Strategies
Instances of these algorithms can be specified in different strategies. Technically, a strategy is a

condition-action pair. The condition part states when the strategy is applicable. The action part
consists of a modification or refinement algorithm and an instantiation of its parameters. Similar
to the knowledge of the applicability of methods we separate the legal and heuristic knowledge of
the applicability of strategies. The condition part of a strategy states the legal conditions that
have to be satisfied in order for the strategy to be applicable, whereas strategic control rules reason
about the heuristic utility of the application of strategies.

To execute or t o apply a strategy means to apply its algorithm to the current proof planning
state with respect to the parameter instantiation specified by the strategy. For instance, the
parameters of PPLANNER are a set of methods, a list of control rules, and a termination condition.
When MULTI executes a PPLANNER strategy, the PPLANNEH algorithm introduces only actions that
use the methods specified in the strategy. PPLANNER evaluates the control rules specified by
the strategy during the computation and selection of actions. The application of the strategy
terminates, when its termination condition is satisfied. Hence, different strategies of PPLANNER
provide a means to structure the method and control rule knowledge. Both algorithms, INSTMETA
and BACKTHACK, have one parameter. The parameter of INSTMETA is a function that determines
how the instantiation for a meta-variable is computed. If MULTI applies a INSTMETA strategy with
respect to a meta-variable mo , and if the computation function of the strategy yields a term t
for me , then INSTMETA substitutes me by t in the proof plan. The parameter of BACKTRACK is
a function that computes a set of refinement steps of other algorithms that have to be deleted.
When MULTI applies a BACKTRACK strategy, then BACKTRACK removes all refinement steps that
are computed by the function of the strategy as well as all steps that depend from these steps.
Examples of strategies are introduced and discussed in section 4.1.

Notation 2.4:, Strategies are denoted in the sans serif font (e.g., NormalizeLineTask, UnwrapHyp).

Tasks
MULTI extends the task concept of PLAN. Since MULTI employs further kinds of tasks, the

tasks used in PLAN (i.e., a pair consisting of an open line and i ts supports) are called line—
tasks in MULTI. Relevant for the application t o limit problems are also instantiation-tasks. The
introduction of a meta-variable into the plan results in an instantiation-task, that is, the task to
instantiate this meta-variable. The instantiation task for meta-variable mo is written as mvl’m".

Different tasks can be tackled by different algorithms and strategies. For instance, since strate-
gies of INSTMETA introduce instantiations for meta-variables they can to tackle instantiation-tasks,
whereas strategies of PPLANNER or ATP can tackle line-tasks. A strategy checks in its condition
part whether i t is applicable to a particular task. That is, the condition of a strategy is a predicate
on tasks. To apply a strategy to a task means to execute the strategy with respect to the task.

MULTI
When we designed proof planning with multiple strategies, we aimed at a system that allows

for the flexible cooperation of independent components for proof plan refinement and modification,
guided by meta-reasoning. For the implementation we decided to use a blackboard architecture

because this is an established means to organize the cooperation of independent components for
solving a complex problem.

""""" " " " " " " " " " " " " " " ."""" Control
Blackboard

Job Offers

MetaReasoner
Demands

Memory

Proof
SolveLinearInequality Blackboard

NonnalizeTask

BackTrackActionToTask __) Strategic
Proof Plan:

— Sequence of Actions
— Agenda
— PDS
— Sequence of

binding stores

Scheduler E7
>

lnstlfDetennined < - - - - - - - -

ST
RA

TE
GI

ES

History

Figure 3: MULTI’s blackboard architecture.

MULTI’s architecture is displayed in Figure 3. In this figure dashed arrows indicate information
flow whereas solid arrows indicate that a knowledge source changes the content of the respective
blackboard. MULTI’s architecture is similar to the HEARSAY—III [18] and the BB1 [21] black-
board systems in that i t employs two blackboards, the so-called proof blackboard and the control
blackboard.

We decided for a two-blackboard architecture to emphasize the importance of both the solution
of the proof planning problem whose status is stored on the proof blackboard and the solution
of the control problem, that is, which possible strategy should the system perform next. The
proof blackboard contains the current strategic proof plan, which consists of a sequence of actions,
an agenda, a 'PDS , and a sequence of binding stores, which store the collected instantiations of
meta-variables, as well as the strategic history. The control blackboard contains three repositories
to store information relevant for the control problem: job offers, demands, and a memory.

Corresponding to the two blackboards, there are also two sets of knowledge sources shown in
Figure 3 that work on these blackboards. The strategies are the knowledge sources that work
on the proof blackboard. A strategy can change the proof blackboard by refining or modifying
the agenda, the ’PDS , the history of strategies, and bindings of the meta-variables. The strategy
component contains all the strategies that can be used. If a strategy’s condition part is satisfied
with respect to a certain task in the agenda, then the strategy posts its applicability with respect
to this task as a job offer onto the control blackboard. Technically, a job ofier is a pair (S, T)
with a strategy S and a task T , which signs that T satisfies the condition of S . That is, in
the terminology of blackboard systems, a task that satisfies the condition of a strategy is the
event that triggers the strategy. The Meta Reasoner is the knowledge source working on the control

blackboard. It evaluates strategic control knowledge represented by strategic control rules in order
to rank the job offers. The architecture contains a scheduler that checks the control blackboard,
for its highest ranked job offer. Then, it executes the strategy of the job offer with respect to the
task specified in the job offer. In a nutshell, MULTI operates according to the cycle in Figure 4,
which passes the following steps:

Job Offer Strategies whose condition is true put a job offer onto the control blackboard.

Guidance The Meta Reasoner evaluates the strategic control rules to order the job offers on the
control blackboard.

Invocation A scheduler invokes the strategy who posed the highest ranked job offer.

Execution The algorithm of the invoked strategy is executed with respect to the parameter
instantiation specified by the strategy.

Execution

Invocation

Figure 4: Cycle of MULTI.

The choice of a job offer can depend on particular demand information issued by strategies
onto the control blackboard and the content of the memory. An executed strategy can reason
on whether i t should interrupt. This can be sensible if the strategy is stuck or if i t turns out

' that it should not proceed before another strategy is executed. Then, the execution of a strategy
interrupts itself, places demands for other strategies onto the control blackboard, and stores a
pair consisting of its execution status and the demands it posed in the memory. Interrupted
executions of a strategy stored in the memory place job offers for their re—invocation onto the
control blackboard. A job offer from the memory consists just of a pointer to the memory entry
that posed this job offer. If such a job offer is scheduled, the interrupted strategy execution is
re—invoked from the memory.

By posing demands and interrupting strategies particularly desired cooperations between
strategies can be realized. For instance, in order to enable a flexible instantiation of meta-
variables during the proof planning process (as opposed to PLAN’s approach) PPLANNEH strategies
and INSTMETA strategies have to cooperate (see section 4.2). This cooperation works as follows:
The PPLANNEH strategy contains some control rules, which check whether instantiations of meta-
variables should be introduced before the execution of the PPLANNER strategy continues. If this
is the case, such a control rule causes the interruption of the PPLANNER strategy and poses the
demand that an INSTMETA strategy should be applied with respect to the instantiation-task of
the meta-variable. This is possible, since interruption is an explicit choice point in the PPLANNER
algorithm. The status of the interrupted PPLANNER strategy is stored in the memory from where
i t can be reinvoked as soon as the posed demand is satisfied by an application of an INSTMETA
strategy.

MULTI allows to reason on existing meta-variables and possible instantiations for them. An
equation of the form mva :=b t a where m'ua i s a meta-variable and to, i s a term o f the same type
a is called a binding. t is called the instantiation of the binding for mv. During the strategic
proof planning process the current set of bindings is stored in a so—called binding store. MULTI

constructs a sequence of binding stores in order to keep track of the dependencies between the
changing bindings and the introduced actions. The introduction of a new binding creates a new
binding store in the sequence. All following steps are performed with respect to this current binding
store. See [30] for the technical details how bindings are backtracked and how the backtracking of
bindings changes the strategic proof plan under construction.

Reasoning at the Strategy-Level
In the MULTI system, no order or combination of refinements or modifications on the proof

blackboard is pre-defined. The choice of strategy applications results from meta-reasoning at the
strategy-level that is conducted by the MetaReasoner, which evaluates the strategic control rules
on the job offers on the control blackboard. Strategic control rules are formulated in the same
control rule language as control rules on tasks, methods, supports and parameters, and actions
(see section 2.2). They can reason about all information stored on the control blackboard and the
proof blackboard (i.e., about the proof plan constructed so far and the plan process history) as
well as about the mathematical domain of the proof planning problem.

The advantage of this knowledge-based control approach is that the control of MULTI can
be easily extended and changed by modifying the strategic control rules. In contrast, when the
combination of integrated components of a system is hard-coded into a control procedure, then
each extension or change requires re—implementation of parts of the main control procedure.

The backbone of the strategic control in MULTI are the strategic control rules prefer-demand-
sa t i s fy ing-o f fe r s , prefer-memory-offers , defer-memory-offers , prefer-backtrack-if—
failure, and r e ject-applied—offers. The former three rules realize the use of demands and the
memory in MULTI for the goal-directed cooperation of strategies. prefer-demand-satisfying-
o f f e r s states that, if a job offer on the control blackboard satisfies a. demand on the control black—
board, then this job offer is preferred. Similarly, prefer—memory—offers states that, if there is a
job offer from an interrupted strategy execution in the memory and all demands of this strategy
execution are already satisfied, then this job offer should be preferred. defer-memory-offers
defers job offers from interrupted strategy executions, if they have still unsatisfied demands.

The rules p r e f e r -back t rack- i f - f ailure and r e ject—applied—of f e r s realize a basic failure
reasoning and the rejection of already applied strategies. The purpose of pref er-backtrack-i f -
f a i l u r e is to integrate backtracking with strategies of PPLANNER. When a PPLANNER strategy runs
into a failure, that is, it encounters a line—task for which it finds no applicable action, then i t inter-
rupts and stores the status of its execution in the memory. p re f er-backtrack—if - f ailure causes
backtracking by preferring a job offer of the a BACKTRACK strategy with the line-task on which the
execution of the PPLANNER strategy failed. Afterwards, the interrupted strategy execution can be
re—invoked on the changed proof blackboard. The idea behind r e j e c t - app l i ed -o f f e r s is that a
strategy that failed on a task should not be tried again on this task (although it is still applicable
to the task, and, thus, i t places a job offer onto the control blackboard). r e j ec t - app l i ed -o f f e r s
checks whether a job offer corresponds to a strategy execution that has already been tried but was
backtracked later on. In this case, r e j e c t—app l i ed -o f f e r s rejects the job offer.

The priority4 of these control rules increases in the following order: prefer-demand-sat is-
fy ing -o f f e r s , p r e f e r—memory—of fe r s , de fe r -memory -o f f e r s , r e j ec t - app l i ed—of fe r s ,
prefer-backtrack- i f - fa i lure . Although these control rules are the backbone of MULTI’s con-
trol, they realize only a default behavior and can be excluded by the user of MULTI or can be
overridden by other strategic control rules with higher priority. For instance, in section 5.1 we
shall see how more specific control rules enable an elaborate failure reasoning.

4The MetaReasoner evaluates first t he strategic control rules wi th lower priority. S ince they are evaluated later
on , t he strategic control ru les wi th higher priority cause the final changes of t he alternative l ist of j ob offers.

10

3 The Limit Domain

3 .1 Introduction

Theorems of the limit domain make statements about the limit lim f (z) of a function f at a point
2—"!

a , about the limit l imseqX of a sequence X , about the continuity of a function f at a point a ,
and about the derivative of a function f at a point a . Since the standard definitions of limit,
continuity, and derivative are

lim EAf.Aa./\l.\7’e.(0<e=>35.(0<6AV:c-(|:z:—a|>OAIw—al<5=>|f(a:)—l|<e)))
limseq: ÄX.Al.Ve.(0 < 6 = 3k.(k E IN AVn.(n € IN An > k => | (X n) —l| < e)))
cont =Af.Aa.Ve.(0<e=>EI6.(0<6AVz.(|z—a|<6=>|f(x)— f (a) |<e)))

‚\f.‚\a.‚\f'.1imfi?L:9£l.deriv =

The proofs of these theorems are so-called e—ö-pmofs, i..‚e proofs that postulate the existence
of a 6 such that a conjecture of the form IX | < e is proved under assumptions of the form
. . |Y| < 6.

Notation 3.1: Instead of the formula l im(f„„‚a„ , l „) we henceforth write themore common
equation expression lim f (z) = l . Analogously, we write l imseqX = 1 instead of limseq(X.,.,,l,,)

and derw(f, a)= f ’ instead of deriv(f„„‚ a.„, f’) .

An example theorem from the limit domain is LIM+ that states that the limit of the sum of
two functions f and g equals the sum of their limits; that is, if lug f (:::) = l l and gig g(m) = lg then
lim (f (x) + g(w)) = l1 + lg. When the definition of lim is expanded, the corresponding planning
m—va z—oa

problem consists of two assumptions

V61: (0 < 61 => 351. (0 < 61 AVz1.(|a :1 — a.| > 0 /\ '1‘1 — a | < 51 => | f (: c1)—11 | < 61)»
and

V52.(0 < 62 => 362.(0 < 52 A‘s/22.022 — a | > OA [.722 — al < 62 => |g(a:2) -12| < eg)».

And the theorem becomes

Ve.(0 < 6 => 35.(0 < 6AV$.(|a: — al > OA la: — al < 5 => | (f(z) +g(z)) — (11 +12) |< e))).

Similar theorems in this class are LIM- and LIM* for the difference and the product of limits
of functions. Moreover, there are corresponding theorems about continuity. Continuous+ states
that the sum of two continuous ftmctions is continuous, and Continuous- and Continuous* make
similar statements for the difference and product of continuous fimctions. We shall introduce some
further examples from the limit domain in the remainder of the report.

When proving a limit theorem like LIM+, a 6 has to be constructed that depends on an c
such that certain estimations hold. This is a non-trivial task for students as well as for tradi-
tional automated theorem provers.5 The typical way a mathematician discovers a suitable 6 is by
incrementally restricting the possible values of 5. When proof planning limit theorems, PLAN
adapts this approach by cooperating with the constraint solver C0818 [37], a constraint solver
for inequalities and equations over the field of real numbers: (in)equality tasks that are simple
enough for CoSIE (i.e.‚ tasks that are in the input language for 00818) are passed to (30818 and
CoSIS provides suitable instantiations for 6, when solutions for meta-variables are computed and
inserted into the final proof plan.

5BLEDSOE proposed in 1990 several versions of LIM+ as a challenge problem for automated theorem proving [6].
The simplest versions of LIM+ (problem 1 and 2 in [6]) are at the edge of the capabilities of traditional automated
theorem provers but LIM* i s certainly beyond their capabilities.

11

3 .2 Methods t o Prove Limit Problems

For finding e-ö-proofs, among others, the general methods Ell-B, 3E-F, VI-B, VE-F, /\I-B7 AE—F,
=>I-B, =>E—F, SETFOCUS-B, and =Subst-B and the domain-specific methods TELLCS—B,
TELLCS-F, ASKCS-B, SOLVE*-B, SIMPLIFY-B, SIMPLIFY-F, FACTORIALESTIMATE-B, and
COMPLEXESTIMATE—B are required. We start with a brief explanation of the general methods
and then discuss the domain-specific methods with more details. =Subst-B is explained already
in section 2.2.

Actions of the methods VI—B, SE-F , HI—B, VE-F, AI-B, AE—F, =>I-B, and =>E—F apply
certain natural deduction rules. Actions of VI-B perform backward applications of the ND-rule
VI by reducing a goal with formula Vz.P[z] to a new goal with formula P[c]‚ where the variable
a: is replaced by a constant c. Similarly, actions of VE-F perform a forward VE step and derive
a new support P[mv] with a new meta-variable mv from a given support Vm.P[a:]. Actions of
31-B perform a backward 31 step. They close a goal with formula 3x.P[z] and introduce a goal
with the formula P[mv] in which :1: is replaced by a new meta-variable mu. Actions of the 3E-F
method perform a forward step with the EIE rule. They introduce a new hypothesis P[c] for a.
support 3x.P[a:], where the variable ‚7: is replaced by a constant c, and thereby also reduce a goal
to a new goal with the new hypothesis. Actions of AI-B perform a backward A; step and reduce
a task whose goal has the formula A1 A A2 to new tasks whose goals have the formulas A1 and A2 .
Actions of AE-F perform the corresponding forward A E decompositions on conjunctive support
lines. Actions of =>I~B perform a backward =>; step and reduce a task with goal A => B to a
new task whose goal has the formula B and A as additional hypothesis. Moreover, A becomes the
formula of a new support for this task. Actions of :E—F perform an =>}; step. When applied to a
task with goal C and an support with formula A => B they introduce two new tasks: a task with
goal C, which contains also a new support with B as formula, and a task with goal A. Actions of
SETFOCUs-B highlight a subformula in a support.

Figure 5 and Figure 6 show the two methods COMPLEXESTIMATE—B and TELLCS-B whose
application conditions comprise calls to external systems, respectively. Both methods are central
for planning limit problems.

Method: COMPLEXESTIMATE-B
premises L1 , $L2 , $114, GL5, $L5 , GBI/7

conclusions eLg
appl. conds. linearextract(a, b, l , k, 0')

LI. A l— |a| < e’ ()
L2. A l 'C IU < 2:3") (Open)
La . A l— Iaa ' l < 2:72;” (< t rans L1 Lg)
L4. A l- |ka | 5 'rrw (Open)

proof schema L5. A l- Ila'l < 525 (Open)
Le . A l- 0 < mu (Open)
L7. A l- conjunct (Open)
Lg. A l- b0 = kcr * ao + l a (CAS)
Lg. A '— |b| < a (fix L3 L4 LS Le L7 Ls)

Figure 5: The COMPLEXESTIMATE-B method.

COMPLEXESTIMATE-B is a method for estimating the magnitude of the absolute value of com-
plex terms.6 COMPLEXESTIMATE—B is applicable to tasks whose goal has the formula |b| < c
(corresponding to line L9 in Figure 5) and that have supports with formula Ial < c’ (corre-
sponding to line L1 in Figure 5). In its application conditions COMPLEXESTIMATE-B uses the
function Iinearextract. When applied to a and b linearextract employs the computer algebra system

6COMPLEXESTIMATE-B essentially is a reconstruction (see [32]) of BLEDSOE’S limit heuristic that was used in a
special—purpose program [7]

12

MAPLE [38] to compute suitable terms k and I such that b = k * a+ l holds. linearextract also com-
putes a substitution a such that ba = ka * a0 + l a holds (where ba, 190,c result from b, k , l by the
application of the substitution 0 , respectively). Thereby, the substitution cr maps meta-variables
in a , b to terms. COMPLEXESTIMATE-B is applicable only, if MAPLE provides k and I such that
Iinearextract evaluates to true. If this is the case, the application of a corresponding action of the
method reduces the original task to five tasks whose goals correspond to the lines L2, L4, L5, Lg, L7
in Figure 5. L7 has the formula conjunct, which is computed from the substitution 0 by the func-
tion form-conjunction. This formula is the conjunction of the mappings of the substitution a . That
is, if 0' maps the meta—variables mv l , . . . ,m‘un to the terms t l , . . . , tn , respectively, then conjunct
has the form mm = t l A. . . / \mvn = tn . If a is empty, then conjunct is simply True, the primitive
truth. The justification f ix for L9 in the proof schema is only an abbreviation that stands for
a sequence of about 20 tactic steps that comprises, in particular, an application of the triangle
inequality. The application of MAPLE i s reflected in line L3 of the proof schema, which is justified
by the tactic CAS. When this tactic is expanded, it employs the SAPPER [43] system to obtain a
formal proof of the statement b0 = ka * an + la suggested by MAPLE.

For instance, when applied to a task with formula | (f (cm) -— g(c,)) — (11 —12)| < 6 and a support
with formula | f (max) — l 1 | < 6' with a meta—variable mvz, then linearextract succeeds and provides
k = 1 , l = g(c‚) —l2, and a substitution 0 that maps muz to cz. The application of a corresponding
action of COMPLEXESTIMATE-B reduces the given task to new tasks whose goals are |1 | 5 mv,
5’ < %, |g(c‚) — Lzl < %, 0 < mv, and 11w:c = c , .

Method: TELLCS-B
premises
conclusions 9L1
appl conds (1) metavar-in (a) V metavar-in(b)

' ' (2) test-CS(C0818,a rel b)
proof schema L,. A l- T'eloW (a„, b„) (ProcS)

Figure 6: The TELLCS-B method.

The method TELLCS-B realizes an interface to C0818. TELLCS-B is applicable to tasks
with formulas rel(a , b) where rel is a binary predicate. Examples of matching predicates are, for
instance, < , S - In its application conditions TELLCS-B first tests whether a or b contain some
meta-variables. If this is the case, re l (a , b) is interpreted as a constraint on these metarvariables.
TELLCS-B applies then the function test-CS that connects to C0818 to test (1) whether rel(a, b)
is a syntactically valid constraint for C0818 (in particular, rel has to be < , 5 , > , Z , = , or 76) and
(2) whether rel(a, b) is consistent with the current constraint store of C0818. If this is the case,
TELLCS-B is applicable and the corresponding action of TELLCS-B contains in its constraints slot
the constraint 'rel (a, b). The introduction of the action closes the goal without producing further
subtasks and passes rel(a, b) as new constraint to C0818.

C0818 can provide instantiations of the constrained meta-variables that are consistent with
the collected constraints. For instance, suppose during the proof planning process there are three
tasks whose goals have the formulas O < mw), mm;; < 61, mm) < 62, which all contain the meta-
variable v . All three goals are closed by actions of TELLCS-B. Moreover, suppose there are
also two supports with formulas 0 < 51 and 0 < 62, which are passed to C0818 by actions of the
method TELLCS—F, which is the analogous of TELLCS-B to pass constraints in supports to C0818.
Horn the resulting constraint store, C0818 can compute min(61, 62) as suitable instantiation for
m'up. Moreover, C0818 provides traces o f its computations, which can be used t o expand the
applications of the actions of TELLCS-B.

Another method that establishes a connection to C0818 is ASKCS—B. Similar to TELLCS—B,
this method is applicable to tasks whose goal formulas are of the form rel(a, b). But whereas
TELLCS—B demands that a or b contain some meta-variables, ASKCS-B covers the case that a
and b contain no meta-variables. An application condition of ASKCS-B passes the formula to

13

C0818 and asks 00818 whether the formula holds with respect to the constraints collected so
far. If this is the case, then ASKCS-B closes the goal. Since 60818 can also handle formulas on
concrete real numbers, for instance, 1 < 2 or 0 g 0 , ASKCS-B can also close goals whose formulas
are expressions on concrete real numbers.

Note that besides TELLCS—B and TELLCS-F also the methods VI-B and ElE-F pass constraints
to C0818. Actions of VI—B perform backward applications of the ND-rule V; by reducing a task
with task formula Vw.P[x] to a new task with task formula P[c], where the variable 1: is replaced
by a constant c. For each meta-variable mv in PM an action of VI-B also passes the Eigenvariable
constraint cl¢mv to 60818 that states that the instantiation for mu is not allowed to contain c.
This constraint guarantees the adherence with the Eigenvariable conditions of the V; rule of the
ND—calculus. Actions of the EE-F method perform a forward step with the SIE rule. Similar to
action of VI—B they pass Eigenvariable constraints to C0818 that demand the adherence of the
Eigenvariable conditions of the 35 rule.

Applications of the SOLVE*-B method exploit transitivity of < , > , 5 , 2 and reduce a goal
with formula a l < b ; to a new task with formula bza $ b la in case a support 02 < b2 exists
and 01 ,02 can be unified by the substitution 0 . Then, also a further new task is created whose
formula is the conjunction of all mappings of the substitution 0 (compare description of method
COMPLEXESTIMATE-B).

SIMPLIFY-B passes the formula of a given goal to the computer algebra system MAPLE and
asks MAPLE to simplify i t . If MAPLE succeeds, then the given goal is reduced to a new goal
with the simplified formula. The analogous method SIMPLIFY—F derives a support with a simpler
formula from a given support by calling MAPLE. The method FACTORJALESTIMATE—B deals with
fractions in inequalities. It reduces a goal of the form |:—,| < t” to the three subgoals 0 < mvp,
m'vp < lt'l, and It] < t” * mvp, where 7711)}? is a new meta-variable.

3 .3 Proof Planning Limit Problems with PLAN
When applied to an e—ö—problem, PLAN first decomposes the initial task with a complex formula
into subtasks whose formulas are (in)equalities. This is done by actions that decompose formulas
in tasks, e.g., actions of the methods AI-B, VI-B, 31—B etc.

When faced with an inequality goal, PLAN first tries to apply the methods TELLCS—B and
ASKCS-B, which both employ 60818 . TELLCS-B passes the goal to 60818, whereas ASKCS-B
asks C0818 whether the goal is entailed by its current constraints. If an inequality is too complex
to be handled by 00818, then PLAN tries to apply methods that reduce an inequality to simpler
inequalities. So, PLAN successively produces simpler inequalities, until i t reaches inequalities
that are accepted by 00818 . This approach — handle with 60818 or simplify — is guided by the
control rule prove-inequality given in Figure 2 in section 2.2, which is the central control rule to
accomplish e-6—proofs with PLAN. In its IF-part prove-inequality checks whether the current
goal is an inequality. If this is the case, i t prefers the methods TELLCS-B, TELLCS—F, ASKCS—B,
SIMPLIFY—B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, FACTORIALESTIMATE-B, and
SETFOCUS-B in this order.

In order to apply methods such as COMPLEXESTIMATE-B and SOLVE*-B unwrapping of
(in)equality supports from the initial assumptions is necessary. This is realized as follows: First,
PLAN applies SETFOCUS—B to highlight a promising subformula in a support (the application
of SETFOCUS-B is suggested by prove-inequality if no other method is applicable, promising
subformulas are chosen by another control rule guiding the supports and parameters choice point).
Next, the highlighted subformula is unwrapped by actions that decompose supports, e.g.‚ actions
of the methods AE-F, VE-F, EE-F etc.

Finally, when no task is left and PLAN invokes the function employ-CS, 60818 computes
instantiations for the meta-variables that are consistent with the collected constraints.

Next, we briefly discuss the application of PLAN to the LIM+ problem.7 PLAN first decom-
poses the initial theorem to tasks with the formulas 0 < mug and |(f (cm) + g(c=)) — (11 + l2)| < cE

7A detailed descript ion on how MULTI solves th is problem i s given in section 4 .

14

where mug is a meta-variable introduced for 5 and cm and c6 are constants that replace a: and 5,
respectively. Moreover, the assumptions 0 < ce, [cz — al > 0, and IQ: — al < mvö are created
during the decomposition of the initial theorem and become supports of the new tasks. 0 < mug
can be passed directly to C0818 by an action of TELLCS-B.](f(c,„) + g(cz)) — (Z1 + l2)| < cE
cannot be passed to C0818 directly. This triggers the decomposition of one of the two initial
assumptions. If the initial assumption on f is decomposed, then PLAN obtains as new sup-
ports 0 < cs, and | f (mom) —— M < q . Now PLAN can compute and introduce an action of
COMPLEXESTIMATE—B using the latter new support line. During the evaluation of the application
conditions of COMPLEXESTIMATE-B the substitution muzl H cz i s created and the computer alge-
bra system MAPLE computes a decomposition (f (cz)+g(c‚))—(l1 +12) = 1*(f (cz)—ll)+(g(cz)+lz)
(that is, the variables k and I of COMPLEXESTIMATE—B are bound to 1 and g(cz)—l2, respectively).
Thus, the action of COMPLEXESTIMATE-B introduces new tasks with formulas mv61 < Fifi,
|1| 5 m'u, 0 < mv, |g(c1) — l2] < %, and mvz, = 01. The formulas of the former three tasks and
of the last one can all be passed directly to C0818 by actions of TELLCS—B. To deal with the
remaining task with formula |g(c1) — lzl < % PLAN decomposes the second initial assumption
(on g) and derives new support lines with formulas O < 05, and |g(mv„) — l2] < mm,. An action
of SOLVE*-B reduces the goal with respect to the second new support to two new tasks with .
formulas m'u£2 5 % and mm;, = ca. Both tasks are closed by actions of TELLCS-B and their
formulas are passed to C0818.

The decomposition of the initial assumptions results not only in the used support lines but
also in tasks with the formulas 0 < mi)“, lm'u:cl — a | > 0, [mu21 — al < ca, from the assumption
on f and the analogue tasks from the assumption on 9 . The task 0 < muEl is closed by the
introduction of an action of TELLCS-B, which passes the formula to C0818. To close the other
tasks PLAN introduces actions of the method SOLVE*—B that use the supports with formulas
|cI — al < mvä and lex — al > 0 (from the decomposition of the initial goal). The application of
SOLVE*-B to the task Imvz1 - a | < cal and the support Icz — al < mvö results in two new tasks
with formulas mvg S 061 and m'uJul = cz. The application of SOLVE*—B to the task Imvx1 — al > 0
and the support Icac — al > 0 results also in two new tasks with formulas 0 S 0 and muß1 = c , .
Whereas O S 0 is closed by an actions of ASKCS-B the other three tasks are closed by actions of
TELLCS—B, which pass their formulas to 60818. The corresponding tasks from the assumption
on g are handled in the same way. Thereby the constraints mu; g 052, m'ux2 = cz, and m’ux2 = ca,
are passed to C0818. Moreover, some actions of the TELLCS-F method during the planning
process pass constraints in support lines to C0818: 0 < 05,, 0 < 652, 0 < ce.

After propagating constraints, C0818 has the final constraint store in Figure 7. When asked for
suitable instantiations for the meta-variables, C0818 provides the bindings mm,.1 H c„„mvzu H
c1, mu H 1, q H 5‘ mve2 H 5‘ and mm; H min(05,, 0.52). These instantiations computed by2 , 2 7

C0818 are exactly the solutions that standard textbooks use for 6, 61, and 62 for LIM+.

mu,1 = cz
m‘uz2 = c1
0 < cg, < +oo
0 < 652 < +00
0 < (:€ < +00
0 < m'u£1 _<_ €;, 2—3;

0 < mv£2 5 52‘

0 < mug S 651 , C52
1 3 mi) 5 W35:

Figure 7: The final constraint store of C0818 for L IM+.

PLAN can successfully plan all the challenge problems of BLEDSOE [6], i.e., the limit theorems
LIM+, LIM-, LIM*, the theorems Continuous+, Continuous—, Continuous*, lim :: = (1, lim c = c,

:::—va z—m

15

and the theorem that the composition of continuous functions is again continuous. Moreover, we
tried to apply PLAN to tackle systematically the limit problems recorded in the textbook of
BARTLE and SHERBERT “Introduction to Real Analysis” [2]. A summary of these experiments
can be found in the master thesis of Jürgen Zimmer [50].

3 .4 Drawbacks of PLAN

It turned out that PLAN failed to plan several theorems from [2]. This is not due to missing
or inappropriate methods but due to PLAN’s inadequate algorithm. This observation (among
others) motivated the development of the MULTI system. We illustrate the drawbacks of PLAN
with the discussion of two examples.

3 .4 .1 Flexible Meta-Variable Instantiation

PLAN instantiates meta-variables only if all tasks are closed. This restriction causes that PLAN
fails on some problems since i t cannot flexibly instantiate meta-variables during the planning
process whenever needed or beneficial (even if there are still tasks) guided by meta-reasoning.

For instance, consider exercise 4.1.3 in the analysis textbook [2].

Exercise 4.1.3 Let f : IR —> IR and let c e IR. Show that lim f(:c1) = I if and only if
an-ac

lim f (x+c)= l . '
1-40

Two implications have to be proof planned for solving this exercise:

ggrgcflmlw =>]af(w+c)=l (1)
and

lim f (: r+c)= l => lim f (: r1)= l (2)
:::-+0 11—”:

With respect to the definition of limit given in section 3.1 for (1) we need to show that

Ve . (0<e=>36 . (0<6 / \V : r . (a :—0 |>0 / \ | z—0 |<5=> | f (a :+c)—l |<e)))

holds under the assumption that

11:1 — e] > OA [11:1 — C] < 51 =>] f ($1) - l l < 61») .VE1.(0 < 61 => 351. (0 < 51 /\ Vm1. (

PLAN first decomposes the task formula. This results in new tasks with formulas 0 < mw
and | f(cat + c) — I] < c6 and new supports with formulas [cz — 0| < mu; and |cI — 0] > 0 where
mcg i s a meta-variable and cm and c€ are constants. The new task with formula 0 < mvö can
be directly closed with an action of TELLCS-B. The formula] f (cm + c) — l | < cE of the other
task is too complex to be sent to 60815 directly. Hence PLAN unwraps the assumption which
results in a new support with formula |f(mv11)—l| < q as well as two new tasks with formulas
|mv$1 — c| < ca and lm'uz1 — c] > 0. Now the task with formula |f(c¢ + c) — l | < c€ can be
closed by an action of SOLVE*-B that uses the new support. This action yields new tasks with
the formulas mvE1 £ cE and mu21 = cz + c, which both can be closed and passed to 00818 by
actions of TELLCS-B.

The tasks with formulas |mvm1 — cl < C51 and lmfum1 -— c| > 0 should be closed by the method
SOLVE*-B using the supports [cz—0] < mw and c—O] > 0. However, SOLVE*-B is not applicable
and hence proof planning is blocked because (mut1 — c) and (cz - O) cannot be unified. If PLAN
could use the information that cm + 0 is the (only) suitable instantiation for mvx1 available in
the constraint store, then an eager instantiation of murn by c; + c would unblock the planning
because the formulas of the task would be instantiated to Ic: + c — a] < 651 and [cz + c — c] > 0.
Then, the tasks could be reduced to tasks with the simplified formulas] l < 651 and [c,] > 0 to
which SOLVE*-B would be applicable using the simplified supports lczl < mvö and low] > 0 that
are implied by | c I —— 0 | < m1); and lcz — 0] > 0.

16

3.4.2 Flexible Backtracking and Reasoning on Failures

If a task occurs for which PLAN fails to compute an applicable action (we call this situation a
failure), then PLAN’s only remedy is dependency directed backtracking by deleting the action
that introduced this task. Moreover, failures are the only events that trigger backtracking in
PLAN. These restrictions cause that PLAN fails on some limit problems and that it cannot make
use of knowledge of how to deal and productively make use of failures.

For instance, IRELAND and BUNDY describe in [24, 25] how to patch failed proof attempts of
the proof planner CHM by exploiting information on failures. We encountered situations in the
limit domain where failures can be productively used. The Cont-If—Deriv theorem states that a
function f is continuous at point a if it has a derivative f ’ at point a . In the proof planning process
the definition of continuous and derivative in both, the task and the assumption, is replaced first
by its e—6—definition. Further decomposition of the task formula results in a task with formula
| f (c,) — f (a)| < c€ where c€ and c== are constants. The decomposition of the assumption results
in a new support with formula [%) — f ’ l < mug: where mom: and mver are new meta-
variables. Indeed, the task can be prdved under this assumption. This results — among others
— in a task with the formula mum; = cz , which i s closed by an action of the method TELLCS-B
that passes the formula to 00818 . Unfortunately, another task with formula [may — al > 0 is
also created during the decomposition of the assumption. This task can be reduced to a task
with the formula mvx: 75 (1. Suppose, we use the information mvzf = c;c by eager instantiation of
meta-variables such that this tasks results in cm aé (1. Nevertheless, proof planning reaches a dead
end at this task since there is no support available to close it. How can we deal with this failure?
The analysis of this and similar situations indicates that a case-split is needed on c, # a V c1 = a ,
which has to be introduced before the task | f (cz) — f (a)| < c€ is tackled. Then, this task has to
be proved for two cases: In the first case, c: # a is assumed and the task | f (cz) —— f (a)| < cE can
be proved from the assumption as described above. Obviously the problematic subtask cz # a can
now be closed directly by the assumption cm 76 a of the case-split. In the second case, c, = a is
assumed and the task follows since | f (c,) — f (a)| < cE can be simplified to I f (a) — f (a)| = 0 < cc
by an action of =Subst—B. The resulting task is satisfied by a support with the same formula that
resulted from the decomposition of the original task. When should the case—split be introduced?
By mathematical intuition it should be introduced when the task c,; 75 a is created and cannot be
closed. This demands reasoning about this failure, to backtrack to a certain point in the search
space, and to introduce the case-split. An a prion' introduction of a case-split is not possible since
neither the need for a case-split nor the elements for the cases are given.

Another situation where we could make use of failures in a productive way arises in examples
like exercise 4.1.3 (see last section). We have to show that

VE1-(O < 61 => 351.0) < 51 AV$1 . (.'E1 _ Cl > 0 / \ 1x1 — c | < 51 =>|f(.’£1)—l|< £1»)

holds under the assumption that

Ve.(0 < e=> 36.(0 < 6AVx.(I:r—0| > OAIz—OI < 6 # |f(.'z:+c) —l| < e))).

The decomposition of the task formula results — among others — in a task with formula
| f (03,) — ll < cn. Unwrapping the assumption yields a new support line with formula | f (mu, +
c) — l | < mve. Actually, SOLVE*-B should be applied to this task. However the computation of a
corresponding action o f this method fails since cz1 and mm! + c cannot be unified. How can we
deal with this failure? We analyzed this situation and similar ones and found that the application
of methods is sometimes blocked because unifications of terms do not succeed but have a residue
t l = t2. For some examples this residue t l = t2 i s consistent with CoSIE ’s current constraint store.
The analysis of these examples indicates that, if (1) a method application is blocked because of a
failed unification with a residue t l = t2 and (2) 60818 states that this residue t1 = tz is consistent
with its current constraint store, then we can speculate the lemma t l = t2 as new open task and
rewrite the task on which the planner failed with this equation. Afterwards the speculated lemma
can be closed by an action of TELLCS-B and the rewritten task can be solved since the unification

l7

becomes unblockeda In our example we would speculate the lemma mvz + c = c$1 and would
reduce the task with respect to this equation to a new task with formula | f (cn) — ll < mos. Then,
SOLVE*-B is applicable with respect to the rewritten task and the support I f (cm) — ll < ce].
Similar to the introduction of a case-split, the lemma t l = t2 cannot be speculated a pn'om'. First ,
the application of methods such as SOLVE*-B has to fail. Then, the analysis of this failure can
provide suitable t l and t2 such that t 1 = t z can be speculated.

4 e—6-Proof Plans with MULTI

In this section, we describe the general approach to tackle limit problems with MULTI. First, we
introduce the employed strategies and their cooperation in section 4.1 and section 4.2. Then, we
discuss the application of MULTI to the LIM+ problem in section 4.3. Finally, we explain how
MULTI solves problems such as exercise 4.1.3 (on which PLAN fails, see section 3.4) by enabling
eager instantiation. When illustrating the application of MULTI with examples, we try to avoid
the tedious details. In particular, we skip the technical details of the constructed strategic proof
plans. Rather, we use the ’PDS as a means to display and discuss the constructed proof plans.

4 .1 The Strategies

PPLANNEH Strategies
The methods and control rules for 6-6-proofs are structured into the three PPLANNER strategies

NormalizeLineTask, UnwrapHyp, and Solvelnequality.
The strategy Solvelnequality, see Table 2, is central for accomplishing e-ö-proofs with MULTI.

It is applicable to prove line-tasks whose formulas are inequalities or whose formulas can be
reduced to inequalities. A formula is reducible to inequalities if i t contains defined terms whose
unfolding will result in inequalities, for instance, l im, l imseq, cont, and deriv. Solvelnequality
mainly comprises methods that deal with inequalities such as COMPLEXESTIMATE-B, TELLCS-B,
TELLCS-F, ASKCS-B, and SOLVE*-B. To unfold occurrences of defined concepts it employs the
methods DEFNUNFOLD-B and DEFNUNFOLD-F. DEFNUNFOLD—B is the method for unfolding
defined concepts in goals, whereas DEFNUNFOLD-F unfolds defined concepts in supports. The list
of control rules of Solvelnequality contains the rules prove- inequal i ty and eager- ins tant ia te .
The strategy terminates, when there are no further line-tasks whose formulas are inequalities or
whose formulas can be reduced to inequalities.

Strategy: Solvelnequality
Condition inequality—task

Algorithm PPLANNER
Methods COMPLEXESTIMATE—B, TELLCS-B,

TELLCS-F, SOLVE*-B, AsS-B , DEFNUNFOLD-F,
Action DEFNUNFOLD-B

C-Rules p rove- inequa l i ty , eager- ins tant ia te ,

Termination no-inequalities

Table 2: The Solvelnequality strategy.

The central idea of Solvelnequality t o tackle inequality goals is similar to the approach of PLAN
when accomplishing e-6—proofs (see section 3.3): pass to C0515 or simplify. Hence, also similar to
PLAN’s approach, the control rule prove- inequal i ty given in Figure 2 in section 2.2 is central
in Solvelnequality.

8In general, t he in t roduc t ion of unification residues as new tasks opens a Pandora’s box: whenever we deal wi th
a res idue we in t roduce some new residues, which i n t u rn must be dealt w i th . How we res t r ic t t he in t roduc t ion of
residues in tasks in order t o avoid th i s problem i s descr ibed in sect ion 5.2.

18

Solvelnequality comprises the knowledge of how to deal with inequalities and with problems
that can be reduced to inequalities. As opposed thereto, the strategies NormalizeLineTask and
UnwrapHyp comprise the domain-independent, general knowledge of how to decompose complex
formulas with logical connectives and quantifiers.

NormalizeLineTask (see Table 3) is used to decompose line-tasks whose goals are complex formu-
las with logical connectives and quantifiers. Typical methods in NormalizeLineTask are AI-B and
VI-B (see section 3.2). NormalizeLineTask terminates, when all complex line-tasks are decomposed
to literal line-tasks.

t ra
-Iine-task

Table 3: The NormalizeLineTask strategy.

The aim of UnwrapHyp (see Table 4) is to unwrap a focused subformula of an assumption in
order to make it available for proving a line-task. The list of its methods includes, for instance,
VE-F and AE-F. The control rule tackle-focus determines that, if UnwrapHyp is applied, then
the actions of the available methods can be used only if they use a support in their premises that
carries a focus and when their conclusions do not tackle the focused subformula. For instance, if a
line—task has the supports B1 A 32 and A1 /\ (A2 A focus(A3 A A4)), then only actions of AE-F that
use the second support with the focus are allowed. The introduction of two actions of AE-F derive
the new support focus (A3 A A4) to which no further action of AE-F can be applied since it would
decompose the focused subformula. Similar to NormalizeLineTask and Solvelnequality, UnwrapHyp
terminates as soon as all focused formulas are unwrapped.

nwra

facus-in-subformula

! 7

t a ck l e - focus
focus-at

Table 4: The UnwrapHyp strategy.

INSTMETA Strategies
In order to instantiate meta-variables that occur in constraints collected by CoSIE , we im-

plemented the two INSTMETA strategies lnstlfDetermined and ComputelnstFromCS (see Table 5).
lnstlfDetermined is applicable only, if COSIE states that a meta-variable is already determined by
the constraints collected so far. Then, the computation function connects t o C0818 and receives
this unique instantiation for the meta-variable. ComputelnstFromCS is applicable to all meta-
variables for which constraints are stored in 00818 . The computation function of this strategy
requests from (30818 to compute an instantiation for a meta-variable that is consistent with all
constraints collected so far.

BACKTRACK Strategies
Simple backtracking of one action as in PLAN is realized by the BACKTRACK strategy Back-

TrackActionToTask (see Table 6). BackTrackActionToTask instantiates the BACKTRAOK algorithm
with the function step-to-line-task, which computes the action that introduced a line-task. Back-
TrackActionToTask is applicable to each line-task. We will introduce further BACKTRACK strategies

19

Stratey: lnstlfDetermined
Condition determined—in-cs

. Algorithm INSTMETA
ActionFunction get—delermlned-lnstantlatlon

Strategy: ComputelnstFromCS
Condition mv-in—cs

. Algorithm INSTMETA
ActionFunction compute-conSIstent—Instantlatlon

Table 5: The INSTMETA strategies lnstlfDetermined and ComputelnstFromCS.

as we go along.

Strategy: BackTrackActionToTask
Condition line-task
Action Algorithm BACKTRACK

Function step-to-line-task

Table 6: The BackTrackActionToTask strategy.

4.2 Cooperation of the Strategies
As stated above, Solvelnequality is the central strategy to accomplish e—6—proofs. NormalizeLine-
Task or UnwrapHyp are employed when complex formulas have to be decomposed. Technically, the
cooperation between Solvelnequality and NormalizeLineTask and UnwrapHyp works as follows. For
line-tasks whose goals are complex formulas that contain inequality subformulas (e.g., goals that
arise from unfolding l im, limseq, cont, or deriv) Solvelnequality interrupts and places a demand for
the strategy NormalizeLineTask on the control blackboard. Guided by this demand, MULTI invokes
NormalizeLineTask, which decomposes the complex goal. When re—invoked by MULTI, Solvelnequal-
ity can tackle the inequalities in the resulting goals. The switch from Solvelnequality to UnwrapHyp
is driven by missing support inequalities, which are needed for the application of the methods
COMPLEXESTIMATE-B and SOLVE*—B. If the other methods preferred by prove- inequal i ty
fail, then the application of SETFOCUS-B highlights a subformula in an existing support. After-
wards, Solvelnequality interrupts and places a demand for the invocation of UnwrapHyp to unwrap
the highlighted subformula. When the subformula is unwrapped, Solvelnequality can continue with
a new support that may enable further steps. The application of SETFOCUS-B (i.e., the selection of
the support and the subformula to highlight) is guided by the control rule choose-unwrap-support
for the supports and parameters choice point. choose—unwrap—support analyzes the supports of
the task on which the other methods are not applicable. It searches for inequality subformulas in
the supports that are similar to the goal of the task. The idea is that similar formulas are likely
to unify with the goal such that COMPLEXESTIMATE—B and SOLVE*-B become applicable.

The invocation of Com putelnstFromCS is delayed by the strategic control rule delay-Compute—
Ins tCos i e until all line-tasks are closed. This delay of the computation of instantiations for
meta—variables is sensible, since the instantiations should not be computed before all constraints
are collected, that is, not before all line-tasks are Closed (see discussion in section 3.4.1). How-
ever, when the current constraints already determine a meta-variable, then a further delay of
the corresponding instantiation is not necessary. Rather, immediate instantiations of determined
meta-variables can simplify a problem as we shall see in section 4.4 (see also the discussion of
PLAN’s drawbacks in section 3.4.1).

To enable the flexible instantiation of determined meta-variables Solvelnequality cooperates
with the strategy lnstlfDetermined. Technically, this works as follows. When CoSIE signals that a

20

meta-variable is determined, then the control rule eager-instantiate in Solvelnequality fires. It
interrupts Solvelnequality and places a demand for lnstlfDetermined with respect to the determined
meta-variable. After the introduction of a binding for the meta-variable by InstlfDetermined MULTI
re-invokes Solvelnequality.

The cooperation with the BACKTRACK strategy BackTrackActionToTask is guided by the gen-
eral strategic control rule prefer-backtrack-if—failure (see section 2.3). Further BACKTRACK
strategies and their guidance by failure reasoning are explained in section 5.

4 .3 The LIM+ Example
In this section, we shall discuss the application of MULTI to the LIM+ problem with the strategies
described in the previous section. The LIM+ problem states that the limit of the sum of two
functions f and g equals the sum of their limits. That is, the problem states that

LIM+: 31_rr}1(f(w) +g(x)) = lf + lg
follows from Limf: lim f(x) = If

Z—PG

and Limg: lim g(.7:) =19.
1—‘11

Figure 8 and Figure 9 show the interesting parts, i.e., the parts created by Solvelnequality, of the
resulting 'P'DS . We indicate the contributions of NormalizeLineTask and UnwrapHyp by justifi-
cations in the ’PDS such as (UnwrapHyp L3) (in line L4g) and (NormalizeLineTask L8 Lu) (in
line L1), which abbreviate the proof segments created by these strategies. The complete 'P'DS is
given in appendix A. Note that we describe the proof planning process in progress. Hence, we
introduce meta-variables, when they arise. When there is a binding for a meta-variable during the
proof planning process, then the proof lines created after the introduction of the binding use the
instantiation of the meta-variable in order to clarify the following computations.

The proof planning process starts with the invocation of Solvelnequality on the initial task
LIM + < {Limf,Limg}. Solvelnequality first unfolds the occurrences of lim. Afterwards, it
switches to NormalizeLineTask, which decomposes the resulting complex goal in line L1 into the
goals |(f(c1)+g(c¢))— (lf+lg)l < c‘ in L12 and 0 < m‘uö in L8 where c€ and c, are constants intro—
duced for the universally quantified variables 6 and a: in L1 and mu; is a meta-variable introduced
for the existentially quantified variable 6.

Both new goals are inequalities and Solvelnequality tackles them guided by the control rule
prove- inequal i ty . It closes 0 < mw directly by an application of TELLCS-B, which passes
the formula to CoSIE . |(f (cz) + g(c‚;)) - (l,- + lg)| < c€ is not accepted by C0818 and therefore
TELLCS-B is not applicable. Solvelnequality simplifies this goal to |((f(cz)+g(cz))—lf)—lg| < c€ in
line L16 but then fails to solve this goal with the given supports. choose-unwrap—support detects
the subformula |f(:c1) — l f l < 61 of L2 as a promising support and guides the application of the
method SETFOCUS—B to highlight the subformula. This triggers the interruption of Solvelnequality
and the invocation of UnwrapHyp for this subformula. The application of UnwrapHyp yields the
new support |f(mv11) — l f l < mv£1 in line L28, but also the three new goals 0 < mi)61 in line L13,
|mv$1 ——a| < 651 in L29, and lm'ua,1 —a| > 0 in L30. Here UnwrapHyp introduces the constant C5, for
the existentially quantified variable 61 and the meta-variables mv£1 and my351 for the universally
quantified variables 61 and ml in L2.

When Solvelnequality is re-invoked, it can apply COMPLEXESTIMATE-B to the goal
|((f(c¢) +g(cx)) — If) — lgl < c£ and the new support |f(mvz,) — lfl < men. This results in
the five new goals [1| 5 mv in L31, mus, S 276727; in L32, |g(c‚„) - lgl < % in L33, 0 < me in L34,
and mu;1 = c, in L35. Except L33 all goals are closed by applications of TELLCS-B, which pass
the respective formulas as constraints t o CoSIE . Since my:E1 = cz determines mu,1 in 00518 the
control rule eager- instant iate fires and interrupts Solvelnequality. Its demand causes MULTI to
invoke lnstIfDetermined on the instantiation-task of mu l l . lnstlfDetermined introduces the binding
mvz12=b cz into the strategic proof plan.

The re—invoked Solvelnequality simplifies |g(cz) — lg| < 9-2!- to |_q(c1) — lg| < % * c€ in L37 but
then fails on this goal with the existing supports. choose—unwrap—support detects the subfor-

21

Limf- um, r 33a = l , (Hyp)
Limg. Limg Filiinlgkc) = lg (Hyp)
L2. um, i—Vel.(0 < e1 => 35140 < 61 /\ (DEFNUNFOLD-F um,)

Verl-(lm — a] < 61 A 12:1 - a | > 0
=» If(z1) — m < el»)

L3. Limy I—V52.(0 < 52 => 36240 < 62 A (DEFNUNFOLD-F Limg)
V12.(|zz —— al < 62 A [$2 —— al > 0

=> |9($2) _ lg l < e2)))

L21. L21 i‘O < 651 AVM- (Im —a| < 651 A|11 —a‚| > 0 (Hyp)
=>lf(I1)—lf|< "WEN

L42. Lu l-O < 652 AVz2.(|a:2 —a| < ch A lm — al > 0 (Hyp)
=> 19(22) — lgl < mm)

Lu L11 *— IC: ' “i > OA IC: ' “ | < mug (HW-")
L5. L5 !— o < cc (Hyp)
L52 ‘Hz l- m‘uw2 = c ; (TELLCS-B)
L53 H, l-m'vez 5 % * ce (TELLCS-B)
L49 H2 l- |g(mv,_-2) — lgl < mu£2 (UnwrapHyp La)
L48 'Hz |_ Ig (c :) — lgl < l * c; (SOLVE*—B L49 L52 L53)
L37 H; l—]g(c;„—) — [9| < 5 * c€ (UnwrapHyp

L3 L48 L39 L50 L51)

L31 ’H; l- | 1 | S m‘u (TELLCS-B)
L32 H1 i-mve1 S 2—3,: (TELLCS-B)
L33 7-11 I- |g(c;) — lgl < 22f- (SIMPLIFY—B L37)
L34 H1 I— 0 < mu (TELLCS—B)
L35 H1 " mvzl = o; (TELLCS-B)
L23 H1 ?- | f (mv=l) — l f l < m‘ug1 (UnwrapHyp L2)
L27 H1 +- | ((f(c1) + g(cx)) — I f) — lg| < cE (COMPLEXESTIMATE-B

L28 L31 L32 L33 L34 L35)

L16 ‘Ha l‘ |((f(cz) + g(c1))——lf)-—lgl < c€ (UnwrapHyp
- L2 L27 L15 L29 L30)

Lu . H3 I-](f(c‚;) + g(c4)) - (l , + lg)| < c€ (SIMPLIFY—B L16)
Ls. H4 I'- 0 < m'uö (TELLCS—B)
L1. hm„ Limgl-Vc.(0 < 5 © 36.(0 < 6 A (NormalizeLineTask L3 L12)

Vz. ([1 -a | <6 / \ | : c—a | >0
=> we) + gm) — (I; + ml < e)»

LIM+. Limf,L-imgl"gi_lgl(f($) + g(.’c)) = If + lg (DEFNUNFOLD—B L1)
H; = {L in t} , Limg , L5 , Lu , Lgl} , H2 = {L im„ Limg , L5 , LI} , L22 , L42}
H3 = {Lim, , Limg , L5 , Lu} , H4 = {Mm} , Limg, Lg,}

Figure 8: e-6-proof for LIM+ (part I).

mula [9 (a) — lgl < 62 of L3 as a promising support and guides the corresponding application
of the method SETFOCUS—B to highlight this subformula. Afterwards, Solvelnequality interrupts
and MULTI switches to UnwrapHyp, which unwraps the subformula and yields the new support
lg(mv,2) —lg| < mu62 in line L49. The unwrapping yields also the three new goals 0 < mm, in line
L39, Imv,2 —a| < C52 in L50, and Imvzz —a| > 0 in L51. UnwrapHyp introduces the constant ca, for
the existentially quantified variable 62 and the meta-variables q and m1)$2 for the universally
quantified variables 62 and 2:2 in L3.

When re-invoked, Solvelnequality applies SOLVE*-B to the goal |g(c„) — lgl < %,; c6 and the new
support |g(m'u32) — lg| < mom. This results in the new goals mvz2 = c , in L52 and mus, S % * c€
in L53, which Solvelnequality closes by TELLCS—B. mu“ = 6:: determines the meta-variable mu:2
in C0518 . Thus, the control rule eager- ins tant ia te suggests a switch from Solvelnequality to
InstlfDetermined, which introduces the binding mvrzz=b cz into the strategic proof plan.

Afterwards, Solvelnequality has to deal with the remaining goals L18, L29, L30, and L39, L50,
L51, which resulted from the applications of the UnwrapHyp strategy. Figure 9 gives the ’PDS
segment created by Solvelnequality for these goals. It closes L18 and L39 directly by TELLCS—B.
The inequalities in the other goals cannot be passed to C0818 directly because TELLCS-B is
not applicable to them. Instead, Solvelnequality applies SOLVE*-B to these goals with supports
that stem from the decomposition of the initial goal by NormalizeLineTask. The applications

22

L15. 7-13 F0 < mug, (TELLCS-B)
L39. u s I- 0 < mug, (TELLCS-B)
L11. Ln 1- |c1 —— al > 0 A Ic; —- a | < mvö (Hyp)
L14. Lu l’ IC; - a l > 0 (AE-F L11)
L13 . Lu l- [cz — a l < mug (AE-F L11)
L61. H1 1 ' 0 S 0 (ASKCS-B)
L59. H1 1- m‘U5 S 651 (TELLCS—B)
L57. 7-12 l-O S o (AsS-B)
L55. H2 | “v 5 C52 (TELLCS-B)
L29. H1 l- Irn‘ug;l -— a l < 0,51 (SOLVE*—B L13 L59)
L30. H1 l' [mu-:1 - a l > 0 (SOLVE*-B L14 L51)
L50 . H2 |- [mum — a l < 852 (SOLVE*-B L13 L55)
L51 . 'Hz 1' I'm/Um: — a l > 0 (SOLVE*-B L14 L57)

H1 = {Lint-f , L img , L5 , Lu , L21} , H2 = {Dim} , L img , L5 , Lu , L21 , L42}
'Ha = {Limb L img , L5 , Lu} , H4 = {Limb Limgv L5}

Figure 9: 6-6-proof for LIM+ (part II).

of SOLVE*-B result in inequality goals, which Solvelnequality closes either with TELLCS-B or
AsS—B.

After closing all line—tasks, Solvelnequality terminates. Next, MULTI invokes Computelnst-
FromCS on the instantiation-tasks and 00818 provides instantiations for the meta-variables that
are consistent with the collected constraints (see Figure 7 in section 3.1). ComputelnstFromCS
inserts these instantiations as the bindings

bmv2=b 1, qz=b %, mvE,:=b %, and mm;:= min(cäl,c5‚)

into the strategic proof plan.

4.4 Eager Instantiation
We discussed already in section 3.4.1 that PLAN fails to solve some limit problems that require
the eager instantiation of meta-variables. In the following, we shall see how MULTI solves those
problems since i t performs eager instantiation guided by the control rule eager—instantiate.

We illustrate MULTI’s eager meta-variable instantiation with the first part of exercise 4.1.3 in
the analysis textbook [2], which states that

Thm: lir%f(x + c) = l follows from Ass: z l imcf (:c l) = l,
3“ . 1—4

Figure 10 and Figure 11 show the 'PDS segments created by Solvelnequality for this problem. As
in the previous section, we indicate and abbreviate the proof parts generated by NormalizeLineTask
and UnwrapHyp by justifications in the 'P'DS.

When invoked on the initial task Thm < {Ass}, Solvelnequality unfolds the occurrences of
l im in the goal and the supports and then switches to NormalizeLineTask, which decomposes the
resulting complex goal. This results in the two goals 0 < mug in L7 and I f (c; + c) — ll < c€ in
L11 where c€ and C; are constants introduced for the universally quantified variables 6 and z i n
L1 and mw is a meta-variable introduced for the existentially quantified variable ö.

Solvelnequality closes 0 < mu; by TELLCS-B but fails to tackle I f(01 + c) — ll < c€ with
the current supports. A promising support is the subformula | f (11) — ll < e l of L2. Thus,
after highlighting the subformula with SETFOCUS-B, Solvelnequality switches to UnwrapHyp. The
application of UnwrapHyp yields the new support | f (mvz1) — l | < mu61 in L25 and the new goals
0 < mu61 in L16, Imp“ — c| < C51 in L27, and [mum] — cl > 0 in L23. UnwrapHyp introduces the
constant c‘s1 for the existentially quantified variable 61 and the meta—variables mv£1 and mu:1 for
the universally quantified variables e l and 21 in L2.

When re-invoked, Solvelnequality applies SOLVE*-B to I f (cm + c) — l | < c€ and the new support
|f(mv1,) — l | < mvel. This results in the new goals mvm1 = c„ + c in L29 and mu61 5 c£ in

23

Ass Ass llia f(:t1) = l (Hyp)
L2 Ass Hin-(0 < £1 = 36140 < 61 A (DEFNUNFOLD—F Ass)

Va l - (l n — cl < 61 /\ [1:1 — cl > 0
= mm — ll < el»)

L19 L19 I—O < 651 AVm-(lm _ c[< 051 A [11 — cl > O (Hyp)
=> wm) — ll < m..)

L4. L4 i-O < Cg (Hyp)
L29 H; l- 1m;$1 = C1 + c (TELLCS—B)
L30 H1 I -mm1 S c; (TELLCS-B)
L26 H1 i- |f(mv11) — ll < muel (UnwrapHyp L2)
L25 H1 " ” (62 + C) _ l l < c ; (SOLVE*-B L26 L29 L30)
Lu 7-12 F- | f (c2 + c) — l | < ce (UnwrapHyp

L2 L25 L16 L27 Las)

L7. Ass , L4 FO < mw; (TELLCS-B)
L1. Ass I-Vc. (0 < 5 => 36. (0 < 6 A (NormalizeLineTask L7 Lu)

Vz.(|a:—0| <6A l z -O I >0
=> |f($+ c) '- 1l < €)))

Thm. Ass kmh—.“tm‘ + c) = l (DEFNUNFOLD—B L1)
H1 = (Ass , L4 , L10 , L19} , H2 = {445.9, L ‘ , L10}

Figure 10: e-6-proof for first part of exercise 4.1.3 (part I).

L30, which Solvelnequality both closes by TELLCS—B. Since m'uIl = c;; + c determines the meta-
variable mvz1 in C0818, Solvelnequality switches to lnstlfDetermined, which introduces the binding
mvzlz=b cm + c into the strategic proof plan.

L10. L10 i- lcz - OI > 0 /\ Ic: — 0] < mu; (Hyp)
L13. L10 I’ I31 — DI > 0 (AE-F L10)
L12 . L10 }- I c ; - 0 | < m'u‘; (AE-F L10)
L36. L10 I— ICII > 0 (SIMPLIFY—F L13)
L32. L10 i— |c2| < mu; (SlMPLIFY-F L12)
L34. H1 i -mvä S C51 (TELLCS-B)
L31. H1 }- [czl < C51 (SOLVE*-B L32 L34)
L35. “H1 I- ICzl > 0 (WEAKEN-B Las)
L27. H1)- lmv£1 — cl < 651 (SIMPLIFY-B L31)
L28. 711 i- |mv‚.‚1 — cl > 0 (SIMPLIFY-B L35)
L16. H2 I- 0 < q (TELLCS-B)

H1 = {Ass ‚ L4 , L10 , L19} , H2 = {ABS, L4 , L1o}

Figure 11: e—ö-proof for first part of exercise 4.1.3 (part II).

Afterwards, Solvelnequality has to deal with the remaining goals L16, L27, and L25, which
resulted from the application of UnwrapHyp. Figure 11 gives the 'PDS segment created by
Solvelnequality for these goals . I t closes L16 by TELLCS-B. The goals i n L27 and L23 become
[(c; +c) — cl < 651 and |(cI + c) — c| > 0 with respect to the binding muIl :=b cm +c in the strategic
proof plan. Applications of SIMPLIFY-B reduce these two goals to the Iczl < 651 in L31 and |Cz| > 0
in L35. Solvelnequality closes these new goals with the supports Iczl > 0 and | c < mug that are
derived from L10, which was introduced during the application of NormalizeLineTask.

C0518 has the final constraint store depicted in Figure 12. It computes instantiations for
the meta-variables that are consistent with these constraints. ComputelnstFromCS inserts these
instantiations as the bindings mvazzb c,;1 and mve lz=b cE into the strategic proof plan.

Responsible for the success of Solvelnequality on L27 and L28 is the eager introduction of the
binding mvz l z=bc1 + c . This binding changes the formulas o f L27 and L28 and so SIMPLIFY-B
becomes applicable.9

Another problem from the limit domain that requires eager meta-variable instantiation is
exercise 4.1.12 in [2], which states that

9PLAN, which does no t allows for eager meta-variable instantiation, would fail on the goals L27 and L23 s ince
it cannot close Im'un — c] < 861 and [mi/21 — cl > 0 from [61' < mug and lot] > 0 derivable from L10.

24

m'uflcl = c„„ + c
0 < 651 < +oo
0 < c€ < +00
0 < mv£1 $ c£
0 < m’uö S 0.5,

Figure 12: The final constraint store of (30818 for the first part of exercise 4.1.3.

Thm: lirn)f(a * a:) = l follows from Ass: limof (x1) =l for a > 0
11—4)

First, MULTI reduces the initial goal liin) f (a * :::) = 1 to | f (a * cz) — ll < ce. Then, it unwraps the
x—t

support [f (m’u$1) —l| < mi)“. The application of SOLVE*-B to this goal and this support results in
the goal mom = a,* C„ which i s passed to 60818 . Since this formula determines mum, the binding
mum, :=” am: is introduced into the strategic proof plan. The remaining goals Imvm1 —0| < 051 and
[m'uml —0| > 0 that result from the unwrapping of the support become |a*cx| < (:5, and |a=o=cz| > 0
with respect to this binding. They are then solved by applications of COMPLEXESTIMATE-B with
the supports c l > 0 and Iczl < mw.” See also section 5.2 for further examples that require
eager meta-variable instantiation.

5 Failure Reasoning in the Limit Domain
In this section, we shall discuss three types of situations we encountered when tackling limit
problems whose solution requires meta-reasoning on failures. In two situations the failures can
be exploited to guide the introduction of case-splits and the speculation of lemmas, two eureka
steps whose necessity is difficult to spot and whose introduction is difficult to guide in general. In
the third situation we guide backtracking by meta-reasoning on desirable but blocked strategies.
All three types of situations have in common that failures in the proof planning process can be
productively used and hold the key to discover a solution proof plan.

5 .1 Guiding Case-Splits
A well-known technique from mathematics to deal with complex problems is to split the problem
into cases and to solve the cases separately.11 But how should the eureka step case-split be
controlled? That i s , when should MULTI decide for a case-split and which cases should i t consider?
We found a type of situations in which the need for a case-split and i ts construction can be spotted
by failure reasoning.

As example consider the Cont-If-Deriv problem. This problem states that a function f is
continuous at point a if it has a derivative f ’ at point a . That is,

Thm: cont(f , a) follows from Ass: de'ri'v(f, a) =

We give the 'PDS segment created by Solvelnequality before the failure occurs in Figure 13. As in
the previous sections we abbreviate the proof parts generated by NormalizeLineTask and UnwrapHyp
by strategic justifications in the P’DS

10PLAN would fail on these goals since without eager meta-variable instantiation i t cannot apply
COMPLEXESTIMATE—B to solve 17711111] < C51 and [mu-„| > 0 with [or] > 0 and lczl < 717/05, respectively. Rather, it
would apply SOLVE*—B t o these goals and supports . This results in the subgoal m'uz1 = C1, which COSIE rejects
s ince i t is no t consistent wi th the already collected constraint mum] = a * cm. Thus, TELLCS-B is not applicable
and PLAN fails.

“SCHOENFELD mentions this technique as a frequently used heuristic: “Decompose the domain of the problem
and work on it case by case.” ([41] p. 109)

25

!— deriv-(f, a) = f ’Ass Ass (Hyp)
L2 Ass i-mlima W = f’ (DEFNUNFOLD-F Au)

1——

L3 Ass l—Ve1.(0 < q = 361.“) < 61 /\ (DEFNUNFOLD-F Lz)
Vz1.(|:z:1 — a.] < 61 /\ [2:1 — al > D

= | 21; ° — f’l < :1»)
L15 Lu l-O < Cal AVM- (l n — al < cgl A |:c1 - (:| > O (Hyp)

= 1333549 —f'l < man
Lu . Ln i- |c‚ — al < mu; (Hyp)
L7. L7 r— o < ce (Hun)

L27 H1 l- I-rrw:l — a | > 0 (Open)
L44 H1 Fmvg $ CJ , (TELLCS—B)
L25 H1 |" Im‘vg;1 — a l < 1:51 (SOLVE*—B L11 L44)
L13 H, l—O < mpg, (Twas-B)
_ _ _ _ .. _ _ ._ .. E: ______________________________

L42. 'Hl l" 0 < 2 (ASKCS—B)
L37 H1 l— | f ’ l S mv’ (TELLCS-B)

C

Las 7-11 6 -v 5 _m (TELLCS-B)

L39. H; '- IOI < 2 (SIMPLIFY-B L42)
L40 'H, H) < mv’ (TELLCS-B)
Las . 'Hl Firm; 5 mv (TELLCS-B)
L23. H1 |- l : - a] S mu (SOLVE*-B L11 Laß)
L29 . H1 qu S TEL; (TELLCS-B)
Lso 71: l- lf’ * C:: — 'n a| < % (COMPLEXESTIMATE-B

Lu L37 Las L39 L40)

Im H1 !- 0 < mv (TELLCS-B)
L32 'Hl l-mvm1 = c1 (TELLCS-B)
Las . H1 " | “T:;) : im _ f ' l < "Wu (UnwrapHyp La)

L24. H1 i- | f (c :) — f (a) | < c . (COMPLEXESTIMATE-B
L25 Las L29 L30 L31 L32)

Lu . H2 l- | f (c=) — f (a .) | < c; (UnwrapHyp
L3 L24 L18 L26 L27)

L9. Ass, L7 I-O < mu; (TsuCS-B)
L1 . Au l-Va. (0 < e = 36. (0 < 6 A (NormalizeLineTask L9 Lu)

V’s-(I1: - al < 6
=> |f($) - f(a)| < €»)

Thin. Ass i-cont(f , a) (DEFNUNFOLD-B L1)
H1 = {As-5. L7, Lu , L15}, 7": = {AS-S, L7‚ L11}

Figure 13: e-6-proof for CONT-IF-DERIV (part I).

As usual, Solvelnequality unfolds the defined concepts and then switches to NormalizeLine-
Task for the decomposition of the complex goal. The resulting main goal is] f (C:) — f (a)| < ce.
Solvelnequality fails to tackle this goal with the current supports. Since the control rule
choose-unwrap-support detects the subformula lfiz—gEGf—(fil - f’ | < 61 in L3 as a promising support
Solvelnequality switches to UnwrapHyp whose application yields the new support
|W -— f ’ | < muel in line L25 and the three new goals 0 < muel in L13, Im'ugBl — al < c,;1
in L26, and Imvacl — al > 0 in L27. With the new support Solvelnequality closes the main goal
| f (cz) — f (a)! < cE in several steps as described in Figure 13 (in between Solvelnequality interrupts
once and switches to lnstlfDetermined to introduce the binding muIl :=” c1). Then, i t tackles the
new goals from the application of UnwrapHyp (see the region between the dashed lines in Fig-
ure 13). I t succeeds to solve L18 and L26 but fails to solve L27 whose formula becomes Ic;c — a | > 0
with respect to the binding mvz12=b cz meanwhile introduced.

MULTI succeeded to solve the goal | f (cz) — f (a)] < c€ with the derived support
If (11:13:51!) -— f ’ | < m'uq. However, i t failed to prove lo, — al > 0, one of the conditions of the

support If (""1”)—f(a) -— f ’ I' < q . The partial success, i.e., the solution of the initial goal, gives'rn'u,l1 _ :

26

rise to consider to patch the proof attempt by introducing a case-split |c1 -—a| > OV-I(|c: — al > 0)
on the failing condition.

In general, the failure and i ts solution follow this pattern: there is a goal G, which MULTI can
solve with a support G’ that has some conditions Cands. When MULTI uses G’, then i t introduces
the conditions Conds as new goals. Afterwards, i t fails to prove some of these new goals. We
call such a goal a failing condition, whereas we call the initial goal G the main goal. The failure
“failing condition while main goal is solved” can be productively used by introducing a case-split
on the failing condition. Then, the main goal G has to be proved several times under different
case-split hypotheses.

We shall elaborate this idea with our example. If Solvelnequality fails to prove a. condition
of a support that was used to prove the main goal, then a strategic control rule triggers the
backtracking of the unwrapping and the use of the support. In our example, this control rule guides
the backtracking of the application of UnwrapHyp and all actions that depend on i t such that the
resulting proof plan consists only of the unfolding of the defined concepts and the application of
NormalizeLineTask. In particular, L12 becomes open again. When MULTI re—invokes Solvelnequality,
then a control rule in Solvelnequality fires that checks whether the last step was backtracking
triggered by a failing condition. This control rule then suggests the application of the method
CASESPLIT-B on the re-opened main goal Lu with respect to the failing condition [cm — a l > 0
and its negation —1(|c‚ — al > 0). This results in the ”PDS in Figure 14.

Ass. Ass l-de'r‘i'u(f‚ a) = f ' ' (Hyp)
L2. Au l-zlima flat—{<21 = f’ (DEFNUNFOLD-F Asa)

1—0

L3 . Ass Mfg-(0 < 51 ==> 361.(0 < 61 A (DEFNUNFOLD-F L2)
Val-(kn - a | < 61 /\ I11 - al > 0

=> IM _ f ' l < 61)))
11—0

L11- L11 l— lcz _ “ | < mu; (HZ/P)
Lv . L7 F0 < C: (Hyp)
L45. L.“, }- Ic; — al > O V -n([cI — a | > 0) (TERTIUMNONDATUR)
L43. he | " ‘ (lcz _ a | > 0) (Hi/P)
L49- “H4 *— lf(Cz) - f(a)l < C: (Open)
L46. L45 l-]c: — al > 0 (Hyp)L47. Hs F wax) — f(a)| < c. (Open)
Lu . H2 1— | f (cx) - f (a) | < ce (CASESPLIT-B L45 L47 L49)
Lg . Ass , L7 l 'O < mu; (TELLCS-B)
L1 . Ass l -Ve.(0 < 6 => 36. (0 < 6 A (NormalizeLineTask L9 Lu)

Vaz.(l:z: — al < 6
=> |f(w) — f(a)l < €)))

Thm. Ass l-cont(f, a.) (DEFNUNFOLD—B L1)
H3 = {ABS , L7 , Lu , L45 , LAG}, H2 = {Ass ‚ L7 , Lu}

H4 = (Ass , L7 , L11 ,L45 , L46}

Figure 14: e-ö-proof for CONT-IF—DERIV (part II).

Afterwards, Solvelnequality has to prove | f (0:) — f (a)| < c£ twice: once in L47 with hypothesis
Ic, — al > 0 and once in L49 with hypothesis -I(|c:c — al > 0). To tackle L47 Solvelnequality does not
again perform proof search from the scratch. Rather, triggered by a control rule, i t switches to
the CPLANNER strategy TaskDirectedAnalogy, which transfers the backtracked proof segment to a
proof plan for L47. The failing condition Io: —— al > 0 now follows from the hypothesis of the case.
The second case in L49 is solved differently by Solvelnequality. First, it simplifies the hypothesis
-(|cz—a| > 0) to ca, = a. Afterwards, it applies this equation with =Subst-B to | f (cz) — f (a)| < c€
in L4g. The resulting goal | f (a) — f (a)| < c€ can be simplified with SIMPLIFY-B to 0 < ce, which
follows from L7. '

Cont-lf-Lim=f and Lim—If-Both-Sides-Lim are other problems that require this kind of failure
reasoning. Cont-If-Lirn=f states that a function f is continuous at point a if the limit at point
a is f (a). The unfolding of the definitions and the application of NormalizeLineTask result in the
main goal | f (c1) — f (a) | < c€ that can be solved by unwrapping | f (mum) — f (a) | < musl from the
assumption. However, the subgoal IC; — a! > O that is created by UnwrapHyp cannot be solved.

27

This failing condition triggers the same case-split and the same solution of the resulting two cases
as in the Cont—If-Deriv problem. The Lim-If-Both—Sides-Lim problem states that a function f has
a limit I at point a , if both the right-hand and the left-hand limit of f at a are 1.12 Unfolding of
the definitions and the application of NormalizeLineTask result in the main goal | f (cz) — ll < c‚.
A support to solve the main goal can be unwrapped either from the right-hand limit assumption
or from the left-hand limit assumption. However, in both cases the application of UnwrapHyp
yields an condition that cannot be closed. For instance, when UnwrapHyp unwraps the right-hand
limit assumption, then there is the failing condition cz — a > 0. This failing condition triggers
the case-split into the cases cx — a > 0 and —1(cz — a > 0) for the main goal | f (cz) — ll < cc.
Whereas the first case can be solved by unwrapping the right-hand limit assumption, the second
case requires to unwrap the left-hand limit.

5.2 Lemma Speculation
It is common mathematical practice to speculate lemmas during a proof attempt and to prove
the lemmas separately. Since technically arbitrary formulas can be introduced, lemma speculation
introduces an infinite branching point into the search space that is difficult to control in automated
theorem proving. We found a type of situations in which suitable (and necessary) lemmas can be
speculated by failure reasoning. ‘

As example consider the second part of exercise 4.1.3 from the analysis textbook [2]. This
problem states that

Thm: lim f(:1;1) = l follows from Ass: lin})f(:z + c) = l.
z l—oc :|:—o

Figure 15 depicts the 'PDS segment created by Solvelnequality until the failure occurs. As in the
previous section, we indicate and abbreviate the proof parts generated by NormalizeLineTask and
UnwrapHyp by strategic justifications.

Ass. Asa !— ‚Eine f (a: + c) = l (Hyp)
L2. Ass i—Vc.(0 < e ==» 36. (0 < 6 A (DEFNUNFOLD—F Au)

Vz.(| :c-O| <6AI2—0l >0
|f(1 + C) — 1 | < €»)

L19. L19 | " 0<06 / \V$- (l1_0 |<36A |1_o l>0 , (Hyp)
= | f (z+c) —l| < mm)

L... L4 |- o < cel (Hyp)
Lm Lm l- lea;1 — cl > 0 A lea1 —- cl < mu; (Hyp)
L27 'Hl !- Imvz — cl < 661 (Open)
Las H1 l- |mu1 — c | > 0 (Open)
L16 ’Ha l -O < mug (Open)
Lzs. ‘H; I- |f(m‘u= + c) — ll < mu; (UnwrapHyp Lg)L25 m F Wen) — ll < cc. (open)
Lu . H ; !- l f (cn) -— ll < cn (UnwrapHyp

L2 L25 L16 L27 L25)

L7 . Ass , L4 F0 < mug1 (TELLCS-B)
L1. Asa l-Vel. (0 < 61 # 361-(0 < 61 A (NormalizeLineTask L7 L11)

Van-(In — cl < 61 A |1:1 - cl > O
=1f(11)- l |< €1)))

Thm. Ass Ptllirgc f (z l) = l (DEFNUNI-‘OLD—B L1)

H1 = {A88 , L4 , L10 , L19} , H2 = {A88 , L4 , L10}

Figure 15: e-6—proof for second part of exercise 4.1.3 (part I).

Solvelnequality unfolds the defined concepts and then switches to NormalizeLineTask, which
decomposes the complex goal. This results in the goal | f (c„)—l| < c(1 in L11, which Solvelnequality

12Righ t -hand and left-hand limit are defined as follows:
AfumAaWMwVEV. (0 < s =>

Edy-(0 < 6AVz„. (z — a > OAz— a < 6 => [f (x) — ll < :)))
‚\f„.‚.‚\a„.Al„.vs.‚.(o < e =>

36„.(0 < 6AVz„.(a-—z > OAa—a: < 6=> | f (1 :)—l |< e)))

l imR(uu)uuo E

“mL(uu)uuo

28

cannot tackle with the given supports. Hence, it switches to UnwrapHyp in order to decompose
the subformula | f (1 + c) — l | < e in L2. The application of UnwrapHyp yields the new support
| f (m1)z + c) — ll < m'u€ in line L25 and the three additional goals 0 < mu€ in L16, Imvx — 0 | < C5
in L27, and |mvz — 0 | > 0 in L28.

Next, Solvelnequality should apply SOLVE*-B to tackle | f (cm) —— l | < c61 with the new support
| f (mi;z + c) — l| < mug. However, this fails since the application condition unify of SOLVE*-B
is not satisfied, that is, the unification algorithm fails to unify | f (mvz + c) — ll and | f (c,!) —— l|.
Since no other method is applicable and there is also no further promising subformula to unwrap,
MULTI would backtrack next. The analysis that If (m'uz + c) — ll and | f (ch) — II are quite similar
and that the unification is blocked only because of the residue mum + c = cEl give rise to consider
to patch the proof attempt by speculating the residue mvm + c = c,;1 as lemma.

In general, the failure and its solution follow this pattern: A method tests in its application
conditions for a unifier or a matching of two terms t and t’. The unification or matching of t and
t’ fails because of some residues. If these residues look promising to be provable in the current
context, then they are speculated as lemmas. The lemmas are used to rewrite the initial terms
such that afterwards the unification or matching succeeds and the method becomes applicable.

The question is, when is a residue promising to be provable in the current context? In the
limit domain, we exploit the constraint solver CoSIE to decide whether residues are promising
lemmas. Whereas the employed unification and matching are decidable procedures that depend
on no domain-specific knowledge, C0818 employs domain knowledge of inequalities and equations
over the field of real numbers. To exploit this domain knowledge as well as the context information
passed to C0815 so far we query C0818 whether it accepts the residues before we speculate them
as lemmas. In this way, we combine the domain-independent unification and matching with the
domain knowledge contained in 60818.13

Technically, the described productive use of failing unifications and matchings for lemma spec-
ulation is encoded in the control rule choose—equat ion-res idues in Solvelnequality. This control
rule analyzes the residues of blocked unifications and matchings and queries (30818 whether i t
accepts the residues. If this is the case, choose-equat ion-res idues fires and suggests the appli-
cation of the method =Subst*-B. This method rewrites a goal by simultaneously applying a set
of equations. The equations are given as parameters to =Subst*-B and become new goals, i.e.,
are speculated as lemmas.

We shall elaborate this approach with our example. When Solvelnequality fails to tackle
[f (cm) — ll < c£1 with the new support | f (muz + c) — l | < mve, then MULTI creates the fail-
ure record ~

applcondfa'ilure(unify(|f(m'uz + c) — ll, |f(c._‚1) — ll), SOLVE*—B, A')

for the method SOLVE*-B. This failure record states that the evaluation of the application condi-
tion unify of the method SOLVE*-B failed for I f (m1), + c) — l | and | f (cn) — l|. The analysis of the
failure record by choose—equat ion- res idues yields the residue muI + c = ch , which is accepted
by (30818 . Hence, the control rule choose-equat ion—res idues fires and guides the application
of =Subst*—B with mvI + c = cx1 as new lemma.

Lac. H , +- mm; + c = c11 (TELLCS-B)
L31. H1 r- mug $ c£1 (TELLCS-B)
L26. 'H] !- |f(m'u: + c) -— ll < mu€ (UnwrapHyp Lg)
L29 . H ; l" [f (mvz + c) — l l < CC] (SOLVE*-B L26 L :“)
L25. ’ H; |- |f(c_-;l) — ll < 361 (=Subst*-B L29 Leo)

Figure 16: e-ö-proof for second part of exercise 4.1.3 (part II).

13An alternative t o t h i s combination is theory unification, which incorporates domain—specific equations in to t he
unification procedures. However, t he decidabil i ty of theory unificat ion i s difficult t o determine and depends on the
concrete set of domain equations (e.g., see [5]). We prefer decidable unification and matching procedure in order
to avoid undecidable application condi t ions whose evaluation can block the complete proof planning process.

29

Figure 16 displays the application of =Subst*-B and the following 'PDS segment computed by
Solvelnequality for our example. The application of =Subst*-B to the goal | f (cn) — ll < c61 in L25
results in the new goals |f(m'u_.„ + c) — l| < CE, in L29 and mu: + c = c,1 in L30. Solvelnequality
closes mu, +c = cz} with TELLCS—B, which passes the constraint to (30818 . | f (m'u,+c) —l| < cel
is closed by SOLVE*-B with respect to the support | f (m1)z + c) -— l | < m1;E in Las. This is now
possible since the unification became unblocked. The resulting goal in L31 is closed by TELLCS-B.

„ CoSIE derives my, = cm1 — c from the given formula mum + c = cm. This determines mvz, so
that Solvelnequality switches to lnst l fDetermined, which introduces the binding mv12=b c:1 — c into
the strategic proof plan. With respect to this binding the remaining goals in L27 and L28 become
“cm, — c) — 0| < C; and |(c‚;_1 — c) — 0| > 0. Applications of SIMPLIFY-B reduce these goals to
|c$1 —- cl < C5 and |c1_1 — c | > 0, which Solvelnequality closes with supports derived from line L10.

Another problem from the limit domain, which requires a similar speculation of lemmas is the
reverse of exercise 4.1.12 from [2], which states that

Thm : lim0f(z1) = 1 follows from Ass : lirr5f(a * a:) = l and a > 0.
a l a ;—

Unfolding of lim and normalization result in the goal | f (cn) — l | < cn . The Unwrapping of the
assumption yields | f (a * mom) —- ll < mus. The application of SOLVE*-B with respect to these
two terms is blocked since the unification has the residue a * mvz = cm,. Since CoSIE accepts
the constraint a * mom = c:1 Solvelnequality can unblock the unification and can apply SOLVE*-B.
C0818 yields £??— as instantiation for max.14

5 .3 Goal-Directed Backtracking
Goal-directed reasoning selects and applies steps in order to achieve some given goals. That is, a
step is either chosen since it directly achieves some of the current goals or since i ts effects enable
some other desirable steps that are likely to help to achieve given goals. Typically, in search
procedures backtracking is not a goal-directed operation in i ts own right but only a necessary
Operation to traverse the search space. MULTI provides the freedom to backtrack any actions in
the proof plan under construction. This allows for goal-directed backtracking, that is, backtracking
that is not just part of the traversal of the search space but that aims to work towards the
current goals by enabling desirable steps. In this section, we shall discuss a type of situation in
which goal-directed backtracking is suggested by meta-reasoning on a highly desirable but blocked
strategy.

As example problem consider the problem LIM-DIV-l-X, which states that

. - 1__1Thm. ; e i c ;—; fo rc>0 .

Figure 17 depicts the ’PDS that is created for this problem before the highly desirable but blocked
strategy occurs.

The unfolding of the defined symbol l im and the normalization of the resulting complex goal
results in the two goals 0 < mm; in L6 and [ä — i] < c€ in Lg. Solvelnequality closes the first
goal by an application of TELLCS—B whereas it simplifies the second goal to lac—:3] < c€ in L12.
An application of FACTORJALESTIMATE-B to this goal results in the three goals 0 < mvf in L13,
lax * c| > mvf in L14, and |c — cz] < mvf * C6 in L15. Solvelnequality closes these three goals with
TELLCS-B.

Since then all line-tasks are closed CoSIS is supposed to provide instantiations for the meta-
variables 717/05 and mvf that are consistent with the collected constraints . That i s , t he strategy
ComputelnstFromCS, which asks 00815 to compute the instantiations, becomes a highly desirable

14Th i s is another example that needs eager meta—variable instantiation. S ince a. * my: = 011 determines mug,
the b inding muzz=b 52—1— i s in t roduced into t he proof plan. The unwrapping of t he support also yields the two
goals Imuz — 0| < c5 and |m'uar — 0] > O, which are simplified with respect to the binding to li?!“ < cö and
]C—ZL] > 0. Whereas MULTI can solve these two goals from the supports I ch ! > O /\ [c111 < m‘uö by applications of
COMPLEXESTIMATE-B, PLAN fails to prove the goals wi thout t he eager instant ia t ion.

30

Ass. Ass I-O < c ‚ (Hyp)
L3. L3 l- lc ; — c | < mug A Ic: — cl > O (Hyp)
L4. L7 I- 0 < c. (Hup)
L10 . Lg '— I c ; — c l < mvö (AE-F L3)
Lu . Lg l— I c ; — 61 > 0 (AE-F L3)
L13. H1 1- 0 < m'uf (TELLCS-B)
L14. H1 F Ic, * cl > mvf (TELLCS-B)
L15. 7-11 !— Ic — cz] < mu, * ce (TELLCS-B)
L12. H , I— l-Cc—ffl < cE (FACTORIALESTIMATBB

L13 Lu L15)

Lg. H1 I— l é — %I < c‘ (SIMPLIFY—B L12)
Ls . Ass , L7 l- 0 < m'vä (TELLCS—B)
L1. Ass l-Ve. (0 < 6 => 36.(0 < 6 A (NormalizeLineTask Le L9)

Vas.(|:c—cl <¢5/\|:1:—c1>0:l
=>l- - ; ! < 6)»

Thm. An I- lim § = % (DEFNUNFOLD-B L1)
I—UC

'HI = {Ass , L4 , L5}

Figure 17: e—J-proof for LIM—DIV—l-X before failure.

strategy. However, 60818 fails to compute instantiations in this situation and ComputelnstFromCS
does not succeed. What is the problem? So far, 00818 did collect the constraints

19:11 <mvf , 0<mvf , m'vf < [cz*c | , O<mvg , 0<c ‚ and0< cc.

The critical constraints are the constraints on mvf that state that Jog—‘4 has to be less than mvf,
which has to be less than c * cl. These constraints are consistent, but a solution for my; exists
only, if 1%1 < Icz * c | holds. This, however, does not follow from the constraints collected so far.
In particular, the constraints collected so far are not sufficient for an e—6—proof since they do not
establish a connection between the 6 and the 6 .

A possibility to overcome this problem is to refine the existing constraints in order to obtain an
extended set of refined constraints for which a solution exists. That is, applications of TELLCS-B
have to be backtracked in a goal—directed manner in order to enable further refinement of some
constraints.

We encoded the described idea in the strategic control rule backtrack-to— unblock-cos ie .
When all line-tasks are closed, but ComputelnstFrom CS is not applicable since C0815 fails to com-
pute instantiations, then this control rule analyzes the constraints passed to (30818 by TELLCS-B.
It triggers the backtracking of actions of TELLCS-B that pass complex inequalities to C0818 that
can be further refined.15 When Solvelnequality tackles the re-opened proof lines, i t cannot close
them again with TELLCS-B but has to refine them. Afterwards, i t can pass the refined goals to
C0818.

We shall elaborate this idea with our example. Triggered by the strategic control rule
backt rack- to -unblock-cos ie MULTI backtracks the application o f TELLCS-B that closes L15.
Solvelnequality reduces the re—opened goal L15 with COMPLEXESTIMATE-B. Afterwards, i t passes
the resulting inequality goals by applications of TELLCS-B to C0815. Since C0818 also fails
on this extended constraint set MULTI backtracks the application of TELLCS—B that closes L14.
Again, Solvelnequality reduces the re—opened goal with COMPLEXESTIMATE-B and passes the re-
sulting inequalities to C0818. The new 'PDS segments for L14 and L15 are shown in Figure 18.
This results in the following constraint store:

cE>O c>0 mvmv’a rmvg m'u ’>c
mvf>0 mv>1 E%-£>O mv5>0
muse—52%!- WWI-#2302

15Cur ren t ly , t he cr i t ical constraints are chosen by some heuris t ics encoded in backtrack-1:o-unblock-cosie . I t
would be more convenient, if C0818 would di rect ly po in t out what t he critical constraints are. However, this k ind
of information is not provided by the current C0818 system.

31

L10. L5 l- | c : — c] < mu; (AE—F Ls)
Lu. L5 #— Ic; — cl > 0 (AE—F L5)
L22 . H1 l— 0 < mv’ (TELLCS--B)
L23. ’H; |— |c| < mv’ (TELLCS-B)
L24. 711 l- [c* c[__> mmvf * 2 (TELLCS- B)
L25. 'H] l -mv6 < —-; (TELLCS-B)
L14. H; +- lcI * c_I > mvf (COMPLEXESTIMATE—B

L10 L22 L23 L24 L25)

L17. 7-11 l- | — 1 |_< mv (TELLCS—B)
L13. m |_v <5—%£ (TELLCS-B)
L19. n , r— |o| < “* ‘ (TELLCS-B)
L20. H1 l- 0 < mu (TELLCS-B)
L15. "H; r- |c —- Czl < mu, * c£ (COMPLEXESTIMA’I‘E—B

L10 L17 L15 L19 L20)

Figure 18: Extended e—6-proof for LIM-DIV—l-X.

Bindings that are consistent with these constraints are: mm:" 2, mv’:=b c+ 1 , mvfz=b 5;, and
mvöz=b min(£‘E—°—2, %) . Unfortunately, the solution of the above constraint system is not in
the scope of the current 00818 system. That is, CoSIE fails to provide instantiations although
a solution that is consistent with all constraints exists and establishes a connection between the
5 and the 5 of our e-ö-proof.16 Since backtrack- to—unblock-cosie detects no further inequality
goals that probably can be further refined MULTI terminates without bindings for the meta-
variables. Despite the successful failure analysis that triggered goal-directed backtracking, the
problem cannot be solved completely because of drawbacks of the current 60818 system.

All problems of the limit domain that result in absolute values of fractions that are tackled with
FACTORJALESTIMATE—B need the described failure reasoning. For instance, exercises 4.1.10(a) —
(d) in [2]:

' L___ ' _x- ._ l ' #1:}.11m2 — 1 ,11m —2‚hr%|—z—2[=O‚ lim ::.—+1 2 ,
z—»1

and problems on the derivative of functions such as theorem 6.1.3(a) and (b) in [2]:

deriv(f‚ a) f ’ => der iv(a * f,) _ a * f ’ ,
de r i ' u (f , a)= f ’ /\ derw(g, a) = g’ :> de r i ' u (f+g , a)=)" +g ' .

Note that the current C0818 system fails for all these problems to compute suitable instantiations.

6 Results and Discuss ion

This report presents the application of MULTI to the limit domain. MULTI can solve all problems
that PLAN can solve17 and it successfully plans various problems that are beyond the capabilities
of PLAN. In particular, MULTI can solve problems that require eager meta-variable instantiations
as well as problems that require meta-reasoning on failures to introduce case-splits, t o speculate
lemmas, and to guide goal-directed backtracking.

The discussed speculation of lemmas is not possible in PLAN since i t does not create and
maintain suitable information on failures such as the failure records of MULTI. All other problems
are beyond the capabilities of PLAN since i t cannot flexibly combine planning, backtracking, and
meta-variable instantiation based on meta—reasoning.

We conclude the report with a discussion of related work and an evaluation of the realized
proof planning approach.

16The reason for C0515 fai l ing t o find th i s so lu t ion is t he mutual dependency of t he variables m1); and mug .
mu! occurs in an upper bound of mus , and in t u rn mug occurs i n a lower bound of m’vf. The search procedure of
the current CoSIE system is not complete in a sense that i t can not resolve a l l dependencies of t h i s k ind.

” In part icular , al l challenge problems that BLEDSOE proposed in 1990 [6], among them the l imi t theorems LIM+,
LIM-, LIM'“, the theorems Continuous+, Continuous-, Continuous*, ggnaz = a , and zlrma c = c (see [36]).

32

6 .1 Related Work

Related Work on Proving Limit Theorems
Some of the knowledge encoded in the methods of the Solvelnequality strategy is similar

to ideas implemented in the theorem prover IMPLY [7] developed by BLEDSOE. For instance,
COMPLEXESTIMATE-B is inspired by BLEDsoa’s limit heuristic. BLEDSOE and HINES developed
a resolution-based prover for inequalities [9], which can prove, for instance, the Continuous+ prob-
lem. BEESON worked on e-ö-proofs automatically created by the systems MATHPERT and WEIER-
STRASS [3]. All these systems rely on special—purpose routines that are implemented into the
systems. As opposed thereto, only the strategies, methods, and control rules are domain-specific
in QMEGA’S knowledge-based proof planning, the representational techniques and reasoning pro-
cedures are general-purpose.

With a particular control setting the automated theorem prover OTTER [29] can solve a simple
version of LIM+. However, this setting is tailored to LIM+ and does not work for LIM* or
other limit theorems. In auto-mode OTTER is not able to prove the simple version of LIM+. In
contrast, our strategies, methods, and control rules cover the mathematical knowledge in a form
that is general enough to solve all limit problems in Appendix B and many similar theorems that
could be formulated.

The LIM+ problem was also proved in CM [46] with a special heuristic called colored rippling.
But LIM* and other theorems of the limit domain turned out to be too difficult for OEM.

Related Work on Failure Reasoning
Failure reasoning in the proof planner CM is closely related to the lemma speculation and

the introduction of case-splits i n MULTI. Since a detailed comparison of the failure reasonings
requires some technical details of CIAM we shall discuss it in the subsequent section 6.2.

The speculation of residue lemmas has something in common with HUETS constrained resolu-
tion [22]. Since unification is undecidable in higher-order logics constrained resolution intertwines
resolution steps with unification. Instead of solving the unification problem it = t ’ as a precondi-
tion of a resolution step, the resolution step is performed and t = t ’ becomes part of the resolution
problem. This process is difficult to control since the introduced unification residue t = t ’ can be
as difficult to solve as the rest of the proof. We also intertwine unification with the main proof
process by speculating unification residues as lemmas. But, as opposed to constrained unification,
we strictly control the speculation of the lemmas since we allow only for such lemmas that are
directly accepted by C0818.

Related to goal-directed backtracking in MULTI is the goal-directed reasoning in elaborate
blackboard systems such as HEARSAY-III and BB1 (e.g., see [16, 26]). One approach to integrate
goal-directed reasoning in blackboard systems is the construction (and modification) of meta-plans
of highly desirable knowledge source applications that guide the following solution process [17].
When a highly desirable knowledge source is not applicable, then reasoning on the failure can
suggest the invocation of knowledge sources that unblock the desired knowledge source. When
performing goal-directed backtracking, we do not construct meta-plans of strategy applications
but we also exploit knowledge of when the application of particular strategies is highly desirable
and how to unblock a highly desirable but blocked strategy.

6 .2 Failure Reasoning in CM
In the following, we shall first describe the use of critics in CM and then compare failure reasoning
with critics with our failure reasoning encoded in control rules.

Cri t ics i n CM
BUNDY and IRELAND propose critics as a means to patch failed proof attempts by exploiting

information on failures in [24] and [25]. The motivation for the introduction of critics is similar to
our motivation for failure reasoning: failures in the proof planning process, in particular, failures
occurring after partially successful operations, often hold the key to discover a solution proof plan.

33

Critics in CLAM extend the hierarchy of inference rules, tactics, and methods. They are intro-
duced in order to complement proof methods. A critic is associated with one method and captures
patchable exceptions to the application of the method. Since the application of a method can fail
in various ways, each method may be associated with a number of critics. Critics are expressed in
terms of preconditions and patches. The preconditions analyze the reasons why the method has
failed to apply. The proposed patch suggests a change to the proof plan. This change can be a
manipulation of the whole proof plan or the change can be a local manipulation of goals.

To describe the failure reasoning in CLAM we have to consider the construction of inductive
proofs in CLAM in some detail. Proof construction in CM relies on the domain-independent
rippling heuristic [13, 23]. The rippling heuristic is based upon the observation that the induction
hypothesis is syntactically similar to the induction conclusion. In order to derive the induction
conclusion from the induction hypothesis the r ipp le method tries to rewrite the induction con-
clusion, such that the induction hypothesis can be used. The r ipp le method iterates over the
wave method, which applies conditional rewrite rules of the form Conds —> (LH S => RH S) , where
LHS is the left hand side, RH S is the right hand side, and Conds are the conditions of the rewrite
rule. When H yps and Conc denote the current hypotheses and the conclusion, respectively, then
the preconditions of the wave method are:18

1 . There is a subterm Sub of the conclusion Canc, which should be rewritten.

2. There is a conditional rewrite rule Conds —-> (LHS => RH S) such that LHS matches with
Sub.

3. The conditions Conds are satisfied by the hypotheses H yps (i.e., H yps I- Conds is a tautol-
ogy).

The application of the wave method fails, when one of its preconditions is not satisfied. BUNDY
and IRELAND realized two patches for the method, which are implemented as critics associated
with the method:

1 . A failure of precondition 2, i.e., there is no rewrite rule that can be applied, triggers the
lemma—discovery critic. The preconditions for the application of this critic are: (1) precon-
dition 1 of the wave method holds and (2) preconditions 2 and 3 fail. The patch of the critic
involves the speculation and proof of a rewrite rule to unblock this situation. This process
may involve backtracking, when a speculated rewrite rule cannot be proved.

2. A failure of precondition 3, i.e., the condition of a matching rewrite rule is not satisfied
in the current context, triggers the mis s ing -cond i t ion critic. The preconditions for the
application of this critic are: (1) precondition l of the wave method holds, (2) precondition 2
of the wave method holds with respect to a rewrite rule Conds ——> (LHS => RH S'), and (3)
precondition 3 fails for Conds. The patch of the critic is to perform a case analysis based
upon the unprovable conditions Conds.

These two critics are tailored t o the possible failures of the application of the wave method.
The general ideas behind the critics are:

Lemma Speculat ion: When no methods are applicable with respect to the current context,
the controlled speculation (and the proof) of new lemmas can unblock the proof planning
process.

Case Analysis: Splitting a problem into different cases can unblock the proof planning process,
when no methods are applicable.

18Ac tua l ly , there are different wave methods for different kinds of r ippl ing (e.g., longitudinal-r ippl ing and
transverse-rippling), which have some more preconditions that differ s l ight ly among the different wave me thods ,
see [13, 25] for details. For the sake of simplicity we discuss here only the relevant preconditions.

34

Bundy and Ireland describe also critics of other methods that patch the selection of the induc-
tion schemata and generalize conjectures in order for an inductive proof to succeed (see [25]).

Comparison with Failure Reasoning in MULTI
The situations that trigger lemma speculation and case-splits in CM and MULTI are very

similar: missing premises in the current context (i.e., missing rewrite rules in CW or missing
supports in MULTI) trigger lemma speculation; unprovable premises of conditional facts from the
context (i.e., conditional rewrite rules in CM or conditional supports in MULTI) cause case-splits.
However, the critics mechanism in OEM and failure reasoning in MULTI considerably differ not
only in minor technical issues but also in their conceptual design.

Critics in OEM are an extra concept introduced for failure reasoning. A critic reasons on
failures of the one method it is directly associated with, i.e., it reasons on failing preconditions of
the method. Part of a critic is a patch of the failure. Technically, this patch is a special procedure
that can change the complete proof plan.

In contrast, failure reasoning in MULTI is conducted by control rules. The control rules are not
associated with a particular method but rather test for particular situations that can occur during
the proof planning process (independent from which strategy or method caused the situation).
The control rules reason on the current proof plan and on all other available information such as
the history. The patch of a failure is not implemented into special procedures but is carried out
by methods and strategies whose application is suggested by the control rules.

The advantage of the MULTI approach is that control rules allow for method— and strategy-
independent reasoning on failures. For instance, the control rule choose-equat ion-residues,
which guides the lemma speculation can deal with failing unify and matching application conditions
of any employed method. It is domain-independent since it could be employed in cooperation with
other constraint solvers similar to the cooperation with C0818 described in section 5.2.

We decided to realize patches in MULTI by control rules that guide the application of existing
strategies and methods since procedural patches are difficult to maintain. Both the introduction
and the deletion of a patch for a desired manipulation requires the implementation of special pro-
cedures. For complex proof plan manipulations the cooperation of several methods and strategies
can be necessary and has to be guided by several control rules. For instance, when performing
case analysis, MULTI has to backtrack the application of the conditional support. Afterwards, it
has to introduce the case-split and finally i t has to replay the backtracked parts again (in order to
avoid to prove again from the scratch). The necessary failure reasoning and the knowledge of how
to patch this failure is distributed among three control rules: one strategic control rule that guides
the backtracking, one control rule that guides the case split, and one control rule that guides the
replay of the backtracked parts. Although the failure reasoning is distributed we see the three
involved control rules as one meta-reasoning entity that is distributed for technical reasons.

6 .3 Evaluation of the Proof Planning Approach
Knowledge-based proof planning relies on the acquisition, formalization, and use of domain-specific
knowledge in methods, control rules, and strategies. However, there is the constant danger to
acquire over-specific knowledge as BUNDY points out:

A new method or critic may originally be inspired by only a handful of examples.
There is a constant danger of producing methods and critics that are too find
tuned to these initial examples. This can arise both from a lack of imagination
in generalizing from the specific situation and from the temptation to get quick
results in automation. Such over-specificity leads to a proliferation of methods
and critics with limited applicability.

Bundy, [12]

BUNDY suggests in [12] and [11] the criteria generality and parsimony to evaluate the appropri-
ateness of proof planning methods and critics. Generality means that each method or critic should

35

apply successfully in a wide range of situations, whereas parsimony means that a few methods
should generate a large number of proofs.

These criteria of BUNDY do not consider mathematical content, which is an important issue
in knowledge-based proof planning. The methods, control rules, and strategies in knowledge-
based proof planning should be rich in mathematical content. Thus, the art of knowledge-based
proof planning is to acquire domain knowledge that, on the one hand, comprises meaningful
mathematical techniques and powerful heuristic guidance, and, on the other hand, is general
enough to tackle a broad class of problems.

In the following, we shall evaluate proof planning limit theorems with MULTI. We discuss the
amount of mathematical and domain-specific knowledge in strategies, methods, and control rules
and discuss how general they are. We discuss generality not only in the sense of BUNDY, that
is, to how many problem classes a concrete strategy, method, or control rule applies. Rather, we
discuss also how general the encoded principle is and how it can be transfered to other domains.

Solvelnequality
The approach to tackle inequality problems with the Solvelnequality strategy fits into a much

more general heuristic strategy described by SCHOENFELD:

In a problem ‘to find’ or ‘to construct’, it may be useful t o assume that you have
the solution to the given problem. With the solution (hypothetically) in hand,
determine the properties it must have. Once you know what those properties
are, you can find the object you seek.

Schoenfeld, [41] p. 23

When tackling inequality problems, Solvelnequality assumes that solutions for existentially
quantified variables exist (e.g., for the 5 in e—ö-proofs) and substitutes the existentially quantified
variables by meta-variables. Afterwards, it collects constraints on the introduced meta-variables
in CoSIE, which at the end computes instantiations for the meta-variables.

Now that we know that Solvelnequality fi ts into the general strategy “assume, collect properties,
then compute”, could we encode a general version of this strategy that can tackle various domains
and subsumes Solvelnequality? Probably not, since, as SCHOENFELD points out , such a general
heuristic strategy alone provides no adequate information on how to use this strategy in a concrete
case.

[...] that a typical heuristic strategy is very broadly defined — too broadly,
in fact, for the description of the strategy to serve as a useful guide to its
implementation. .

Schoenfeld,[41] pp. 70 and 72

Rather, such general strategies have to be filled with domain-specific knowledge such that the
general strategy is only a summary label for a class of substrategies for different domains:

[. . .] the successful implementation of heuristic strategies in any particular do-
main often depends heavily on the possession of specific subject matter knowl-
edge. ’
[. . .} More often than not, a capsule description of a strategy is a summary la-
bel that includes under it a class of more precise substrategies that may be only
superficially related.

Schoenfeld,[41] pp. 92 and 95

Thus, in the sense of SCHOENFELD, Solvelnequality is a substrategy of the general strategy
“assume, collect properties, then compute”. It instantiates this general principle with the specific
knowledge on how to apply i t to inequalities over the reals.

The main control rule of Solvelnequality, p rove- inequa l i ty , encodes the essential idea of
how Solvelnequality implements the general principle for inequalities over the reals: reduce com-
plex inequalities t o simple inequalities and pass simple inequalities to the connected constraint

36

solver. To tackle complex inequalities prove—inequal i ty suggests domain-specific methods such
as SIMPLIFY-B, SOLVE*-B, COMPLEXESTIMATE—B, and FACTORIALESTIMATE-B. These meth-
ods encode mathematical knowledge of inequalities, real numbers, and the operations + , —, * , /
on real numbers. This knowledge is partially contained in the computer algebra system MAPLE
that is employed within COMPLEXESTIMATE-B and SIMPLIFY-B. Moreover, prove- inequal i ty
suggests the methods TELLCS-B, TELLCS-F, and ASKCS-B that interface the constraint solver
60818. These methods do not contain domain-specific mathematical knowledge but provide a
domain-independent interface to constraint solvers.

The domain-specific methods of Solvelnequality are hardly reusable in another substrategy of
“assume, collect properties, then compute” for other domains. However, they could be useful for
other problem classes dealing with inequalities over the reals. Currently, the methods TELLCS—B,
TELLCS-F, and ASKCS—B interface only C081'8 . However, they provide general functionalities,
namely adding constraints and asking whether a constraint is entailed, that are independent of a
concrete constraint solver. Thus, they can be used also in other domains with other constraint
solvers (e.g., problems on sets with a constraint solver on sets).

The essence of the control rule prove- inequal i ty could be reused in other substrategies of
the “assume, collect properties, then compute” strategy for other domains with constraint solvers.
In such a domain, the adaption of prove-inequali ty would suggest domain-specific methods to
tackle complex expressions of this domain until TELLCS—B, TELLCS-F, and ASKCS—B involve a
constraint solver of the domain to handle the simple expressions.

Solvelnequality also contains some logic-level methods, for instance, CONTRA-B to perform in-
direct proofs and DEFNUNFOLD-B and DEFNUNFOLD-F for unfolding of defined concepts. These
methods are domain-independent and contain no particular mathematical knowledge. The deci-
sion when to perform an indirect proof and which definitions to unfold and which not are difficult
problems in theorem proving in general (e.g., see [8, 49, 20] for discussions on unfolding of defined
concepts). Their application within Solvelnequality is guided by control rules that encode math-
ematical heuristics. For instance, since the purpose of Solvelnequality is to tackle inequalities i t
only unfolds defined concepts that result in inequalities. This knowledge is encoded in the con-
trol rule se lec t—unfold-def ined-concept , which guides the application of DEFNUNFOLD-B and
DEFNUNFOLD-F. The meta—reasoning to guide indirect proofs in the limit domain is discussed
in [35].

Solvelnequality employs some further control rules that do not encode mathematically mean-
ingful heuristics but deal with technical peculiarities that occur during the search process. As
example for such a control rule consider b lock - s imp l i fy , which restricts applications of the
methods SIMPLIFY-F and SIMPLIFY—B. Both methods employ MAPLE to simplify arithmetic
terms. Unfortunately, i t turned out that sometimes the application of MAPLE results in more
complex terms. To avoid unnecessary complexity and non-terminating cycles of simplification and
complication b lock- s impl i fy rejects all applications of SIMPLIFY-F and SIMPLIFY-B that do not
simplify the terms.

Altogether, Solvelnequality is not restricted to limit problems. Rather, i ts approach is general
enough to tackle also other inequality problems over the reals. However, since we did focus on limit
problems so far, the methods of Solvelnequality are focused on inequalities with absolute values.
To extend the solvability horizon of the strategy some methods are needed that tackle complex
inequalities without absolute values, for instance, methods similar to COMPLEXESTIMATE—B or
methods that isolate subterms in complex inequalities (isolating z in (c — a:) + a < 6 results in
x > (c+ a) — €).“)

NormalizeLineTask and UnwrapHyp
The PPLANNER strategies NormalizeLineTask and UnwrapHyp contain only logic-level methods

to decompose complex formulas in goals and supports. Thus, they are very general in the sense of
BUNDY, but they do not encode any specific mathematical knowledge. However, they implement

19An example theorem that requires t he handl ing o f complex inequalities without absolute values is t he Squeeze-
Theorem. Al though we employ th i s theorem when proving problems wi th the ReduceToSpecial strategy i t current ly
cannot be proved by MULTI.

37

operations that are important in mathematical problem solving in general since the decomposition
of complex goals and the unwrapping of subformulas of complex assumptions is necessary in all
mathematical domains where complex statements are composed from primitive ones by logical
connectives and quantifiers.

INSTMETA Strategies
Similar to the methods TELLCS-B, TELLCS-F, and ASKCS-B the INSTMETA strategies Ins-

tlfDetermined and ComputelnstFromCS encode no particular mathematical knowledge but provide
interface functions to constraint solvers. Although, currently they interface only COSIE, they
provide functionalities, namely retrieving particular entailed constraints and computation of in-
stantiations, that are independent of a concrete constraint solver. Thus, they could be employed
also in other domains.

Failure Reasoning
The described mathematical knowledge to speculate lemmas and to introduce case—Splits are

general meta-reasoning patterns, promising also for other domains. As evidence for this statement
consider that the corresponding critics in CM exploit very similar failures in a completely different
domain to guide similar proof modifications.

The domain-specific part of the lemma speculation described in section 5.2 is the decision of
which lemmas are promising and which not. To avoid the speculation of arbitrary lemmas that
cannot be proved in the current context, Solvelnequality asks C0516 whether it accepts a potential
lemma. This exploits the domain-specific information encoded in C0815 as well as the context
information passed to CoSIE so far. The same approach could be performed in other domains
with constraint solvers that contain particular domain knowledge. Other domains maybe provide
different kinds of guidance to decide whether lemmas are promising.

The domain-specific part of the case-split introduction discussed in section 5.1 is the decision
of which cases to consider. In the limit domain, the general case—split C V —»C was sufiicient so
far to deal with a failing condition C’. The case-split C V -C is domain-independent since i t relies
only on the tertium-non-datur axiom of QMEGA’s underlying logic. However, i t can be necessary
to construct domain-specific case-splits. For instance, when C equals a < b, then the case-split
a < b V a = b V a > b could be considered. Different domains maybe provide different kinds of
domain-specific case-splits.

The goal—directed backtracking discussed in section 5.3 is just one particular example of goal—
directed reasoning on failures. More generally stated the principle works as follows: Suppose there
is a meta-plan (either explicitly constructed somewhere or implicitly encoded in control rules) of
the desired solution process, and suppose that a step S of this meta-plan fails. Then, the failure
can be analyzed and further steps can be considered in order t o unblock S . The concrete pattern
(unblock ComputelnstFromCS if there are no further goals) is restricted to the limit domain (and
maybe some other domains with constraint solvers). The general principle, however, is a domain-
independent, promising meta-reasoning pattern for any domain for which a kind of meta-plan of
the desired solution process exists.

Summary
Typical questions of referees of our papers on proof planning are, for instance:

. How many new methods are typically needed when a new chapter in a book is considered?

0 How many of the methods can typically be reused, when a new chapter in a book is consid-
ered?

A general answer to those questions is not possible. When extending the domain of proof
planning, the crucial question is whether the knowledge acquired so far is sufficient to tackle the
new problems.

To illustrate this subtle point consider the following experiences in the limit domain. We
started to develop proof planning in the limit domain with examples from chapter 4 and chapter
5 in [2] on the limit of functions and the continuity of functions. On the one hand, we found that

38

the acquired knowledge was not sufficient to deal with several problems in chapter 4 and chapter
5. These problems need additional knowledge about particular functions involved. Currently,
MULTI cannot solve, for instance, problems involving the square-root function since the methods
and theorems do not contain appropriate knowledge of this function. On the other hand, we
found that with the knowledge acquired for chapter 4 and chapter 5 MULTI can solve problems
on the derivative of functions without any extensions in form of further methods, control rules, or
theorems although this is a new chapter (chapter 6) in [2].

These experiences demonstrate the success and the limitation of the current proof planning for
limit problems realized in MULTI:

1 . The implemented methods, control rules, and strategies are not too fine tuned to our initial
examples. In particular, the control rules contain the necessary control knowledge in a form
that is general enough to deal also with new problems for which the domain knowledge in
the methods and strategies is sufficient.

2. The implemented methods, control rules, and strategies are not sufficient to deal with any
limit problems. They are mainly restricted to terms composed of + , —‚ *, / , | | . To deal with
further expressions such as square-root requires further specific knowledge.

39

A Lim+ Example
Liml . Lim! l'zlilnufü) = l] (Hyp)

Limy. Lim, |- 3112905) = lg (Hyp)
Lg. Lim., I—Ve1.(0 < e1 = 36140 < 61 A (DEFNUNFOLD-F Limf)

VIH-“21 — a) < 51 /\ [21 _ a.| > 0
=> |f(11) — l f l < e1)))

La . L im, I-Vez.(o < e ; => 36240 < 62 A (DEFNUNFOLD-F Limg)
Van-(Img -— al < 62 A I32 - al > 0

=> |9($2) - M < €2D)

L17. L im, F0 < m'ug1 => Elfi-(0 < 61 A (VE-F L2)
Van-(Im — al < 61 A [11 — al > 0

=>|f<z1>—lf|< mal))
Lu, H3 i- 0 < ‘m‘vg1 (TELLCS-B)
L20. ’Hg " 351-(0 < 61 AVau- (I z l — al < 61 (=53 L13 L17)A In — al > o=>|f<=1)—z‚|< mac,»
L21. L21 l-O < c,;1 AVm-(lz; —a| < ca, A In —a| > 0 (Hyp)

=> | f (11)—- l j l< muq)
Las. L31 F0 < €51 (AE-F L21)
L24. Lg; FVn- (I z l — al < 0:51 A I11 - a | > 0 (AE—F L21)

=> |f(11) _ l f l < "mal)
L25 lm l- lm'uz1 — a] < 061 A Irrwz1 — al > 0 (VB-F L24)

=> ”(Win) _ l f l < "Wal))
L38- Lim, |- 0 < mug, => 362- (0 < 52 A (VE-F L3)

Wag-([32 — al < 62 A Img — a] > 0
=> |9($2) _ l g l < ”Wen”

L39. ‘Ha |“ 0 < mug, (TELLCS—B)
L41. H3 #36240 < 62 AV22.(|12 — a] < 62 (=>E L39 Las)

A Im — al > o=> Mm) —t„| < man)
L42. L“ l-O < es, AVM- (l ag —a| < c52 A In -—a| > 0 (Hyp)

=> |g<zz> — M < mm,)
L44 L“ |- 0 < 652 (AE-F L42)
L45. Lu Fs - (l z ‘ z — al < 652 A Iwz - a] > 0 (AE-F L42)

=> 19m) — lgl < mun)
L“ L4; I— [mug2 — al < (15, A Imvz, — al > 0 (VE-F L45)

= |9(m”zz) ~19] < mug,»
Lu Lu *“ Ic: ' “ | > 0 A Icz " “ | < "W5 (HU?)
L14. Ln }- Ic; - a] > 0 (AE-F L11)
L13. Ln |— l e : — a.| < mug (AE-F L11)
L5. L5 l- 0 < ce (H yp)
L61 H1 l‘ 0 S 0 (ASKCS-B)
L59 H1 l -mv; S 6,51 (TELLCS-B)
L57 ‘Ha |- 0 $ O (ASKCS-B)
L55 Ha |“ mug S C52 (TELLCS-B)
L52 ’Ha }- muß2 = c; (TELLCS-B)

40

L53 H3 l-mve2 S % * c; (TELLCS-B)
L50 H: |- Ifn‘u;a — a] < 652 (SOLVE*-B L13 L55)
L51 H2 |" I'm/113, - al > 0 (SOLV'E*-B L14 L57)
L47 ‘Hz " IWW-'n: — al < C52 A IWW-Ta - al > 0 (AI -B L50 L51)
L49 “Ha " |g(mvza) '- lg l < "We: (=>E L47 L“)
L43 ‘Hz " |g(cx) - [9' < % * cg (SOLVE*-B L49 L52 L53)
L43. H2 }- |g(cz) — lgl < ? Ill c; (==—EF L47 L45 L“)
L40. 'H; ’- Ig(c;-) — lgl < - * c; (BE-F L41 L43)
L37 H1 " |9(C:) - l y l < '2- * ce (=>E-F L39 L38 L40)

L31 'H1 " | 1 | _< mu (TELLCS-B)
L32 H1 Fmv¢1< _ 2f (TELLCS-B)
L33. 7-11 I- |g(cz) — lg ("< 5;- (SIMPLIFY-B L37)
L34. 'H; I-O < mv (TELLCS-B)
Las. H1 !- m’uzl = c; (TELLCS-B)
L29. H1 F lin/un — al < C51 (SOLVE*-B L13 L59)
L30. H1 !- |"!s - al > 0 (SOLVE*-B L14 L31)
L26. 1-11 I- [mum1 - al < c.;1 A Imvac1 — al > 0 (AI-B L29 L30)
Lzs- H1 l- | f (mv„) -— l" < mm, (=}; L26 L25)

L27. H1 1- | ((f (c ‚) + g(c;„-)) — l ,) — l , | < c((COMPLEXESTIMATE—B
Lzs L31 L32 L33 Lu L35)

L22 'H: " |((f(cz) + 9(C==)) - l !) " lgl < Ce (=>E-F L26 L25 L27)
149- ‘Ha " I((f(°:) + 9(6z)) - 11) - lgl < & (EIB-F L20 Lu)
L16 'Ha " I((f(6=) + 9(Cz)) - l !) - 19! < c. (=E-F L18 L17 L19)

L12. 'Ha |“ |(_f(c=) +g(c=)) — (If +19” < ce (SIMPLlFY-B L16)
L10 H4 " Ic; - a l < mu; A le: — a l > 0 (91-3 L12)

=> |(f(°=) +9(cz)) ' (l! + l,)| < Ce

L9. H4 FW:-(I:: — al < mu; A |: — al > 0 (VI-B Lm)
=> |(f(1) + 9(1)) - (If + ‘g)| < ce)

L3. 11; I- 0 < mu; (TELLCS—B)
L7. 11; I-O < mu; AVz-(Iz — al < mu; A la: — al > 0 (AI-B Ls Lg)

=> l(f(2) + gm) - (t; + lg)! < ce)
Ls. m I -35 . (o< äAVz-(Iz—al <6Alz—al > o (SI-B L7)

=> um) + gm) — (l! + lg)! < c.»
L4. um„ um," 0 < c. = 36.(0 < 6 A (=I -B L5)

Vz.(|:c—al <6A l z—a l >0
=> |(f(1) + 9($)) - (l! + l,)l < cc))

L1. Lim„Lém‚FV&(0<£äBö- (0< 6A (VI-B L4)
Vx.(|::—a| < öAlx—al >0
=> |(f(-'€) +905» _ (1! +19)! < €)»

LIM+. um, . Lim‚l-gig1°(f(z) + g(::)) = If +19 (DEFNUNFOLD-B L1)
‘H; = {Limb Lim, , Lg, L11, L21}, ‘Ha = {L in} , Lima, Lg„ L11, L21, Lu)
“s = {Um} . Dim-9 ,145 , L u } , H4 = {Lim„Lim„‚ L5}

41

B Limit Theorems

The following theorems from the limit domain can be proved by MULTI so far. We tested mainly
conjectures from [2]. Many similar theorems could be formulated. In the following, X , Y denote
sequences over the reals, f and 9 denote functions over the reals, and a , b denote arbitrary but fix
reals. For problems marked with (*) COSIS fails to compute instantiations for meta-variables for
the reasons discussed in section 5.3.

Limits of sequences

1.

10.

(Exercise 3.1.7 first part in [2])
If the sequence IX] = |(z„)| has the limit 0, then the sequence X = (x") has also the limit
0:
limseq |X | = 0 => l imseq X = 0

. (Theorem 3.2.2 in [2])
If the sequence X = (1,.) has an limit I, then the sequence X is bounded:
l imseq X = l => 3771.0 < mAlxn l < m

(Theorem 3.2.3.a first part in [2])
If the sequence X = (x“) has the limit la: and the sequence Y = (yn) has the limit ly, then
the sequence X + Y = (ren + y,.) has the limit l,; + ly:
limseq X = I I A l imseq Y = ly => limseq X + Y = Z; + ly

. (Theorem 3.2.3.a second part in [2])
If the sequence X = (x") has the limit 1, and the sequence Y = (11,.) has the limit ly, then
the sequence X — Y = (x„ — y") has the limit l$ — ly:
l imseq X = l ; /\ l imseq Y = 1., => l imseq X — Y = Im -- ly

(Theorem 3.2.3.a third part in [2])
If the sequence X = (zn) has the limit lm and the sequence Y = (yn) has the limit ly, then
the sequence X * Y = (:2:7. * y") has the limit lz * ly:
limseq X = Im /\ l imseq Y = lg => l imseq X * Y = la: * ly

. (Theorem 3.2.3.a fourth part in [2])
If the sequence X = (zn) has the limit l„ then the sequence a * X = (a * x") has the limit
a * Z::
l imseq X = l,; => l imseq a * X = a * l ,

. (*)(Theorem 3.2.3.b in [2])
If the sequence X = (zn) has the limit lz and the sequence Y = (11,.) has the limit ly # 0
and yn 74 0 for all n , then the sequence % = (i f) has the limit is:
limseq X =12 /\ l imseq Y = ly /\‘\7’n.yn # 0 => l imseq % = L‘—

l v

. (Theorem 3.2.4 in [2])
If the sequence X = (z„) has a limit I and zn ?. 0 for all n , then I Z O:
l2'm.seqX=l/\\7’n.xn 20=>lZO

. (Theorem 3.2.5 in [2])
If the sequence X = (112,.) has a limit lac and the sequence Y = (yn) has a limit ly and In 5 y"
for all n , then l I 5 ly:
limseq X = l ; /\ l imseq Y = ly /\Vn.:vn 5 y„ => Z,; S ly

(Theorem 3.2.6 in [2])
If the sequence X = (sun) has a limit I and a S :511 5 b for all n , then a 3 l S b:
l imseqX=lAVmaSmnSb=>aS lgb

42

Limits of functions

1.

10.

11.

12.

13.

14.

(LIMC: Example 4.1.7.9, in [2])
The function f (x) = b has the limit b at a:
lim b = b

5—00-

. (LIMV: Example 4.1.7.b in [2])
The function f(x) = x has the limit a at a:
lim x = a
z—m

(Example 4.1.7.c in [2])
The function f(x) = a:2 has the limit a2 at a:
lim 22 = a2

Ida.

. (*) (LIM—DIV-l-X: Example 4.1.7.d in [2])
The function f(x) = % has the limit % at a, if a > 0:

. 1__
a>0=>l im; -—a

...

. (*) (Eaxample 4.1.7.e in [2])
- z—4__4Binge!“ ‘5

. (Exercise 4.1.2 first part in [2])
If f has limit l at a., then the functieirlflx) — ll has the limit 0 at a:531%) = z =» 313%) —l| = o

. (Exercise 4.1.2 second part in [2])
If the fimction | f (x) — II has the limit 0 at a , then f has the limit l at a:
gin; mx) — z! = 0 => 1i_r}1f(av)=l

. (Exercise 4.1.3 first part in [2]) ‘
If the function f(x) has the limit l at a, then the function f (x + a) has the limit l at 0:
lim f (x) =l=> l i nä f (x+a)= l

—oa :::—>

. (Exercise 4.1.3 second part in [2])
If the function f (x + a) has the limit I at 0, then the function f(x) has the limit [at a:
l i r%f(z+a) =l=>zlinäf(x) = l
z— —4

(Exercise 4.1.7 in [2])
I fk>0a .nd | f (x)—l |Sk* |x—al fo ra l l x , t hen fhas the l imi t l a t a :
k>OAVx. | f (x)—l |5k* |x—a |=> l imf (x)= l

(Exercise 4.1.8 in [2])
lim x3 = a3

1—H!

(*) (Exercise 4.1.10.a in [2])
l im _1- = _

z_21—$

(*) (Exercise 4.1.10.b in [2]). 1 __
}‚LmIHz—z

(*) (Exercise 4.1.10.c in [2])
lim 11-2; = 0
=—.o

43

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

(*) (Exercise 4.1.10.d in [2])
- 2— i 1 _ 1

3211111 I :::-fl _ 2

(Exercise 4.1.12 in [2])
If f (x) has limit l at 0 and a > 0, then f (a * a:) has the limit I at O:
lirräf(:c) = lAa>O=> linäf(a*ac) = l
z—v :::—>

(Reverse of exercise 4.1.12)
If f (a * 3) has the limit l at 0 and a > 0, then f (x) has limit l at 0:
lirräf(a*.7:) = lAa>O= lirn)f(a:)=l

(Theorem 4.2.2 in [2])
If f has a limit at a , then f is bounded in a neighborhood of a :
a l imf (z)= l

=3m,ö .m>0A6>0AVa: . (| $—al<öA |z—a |>0)= | f (a :) |<m

(LIM+: Theorem 4.2.4.a first part in [2])
If f has limit lf at a and g has limit lg at (1, then f+g has limit l ; + lg at a:
gig; f(x) = „ Ammx) =19 => gig; f(x) + g(x) = I. + I.
(LIM-: Theorem 4.2.4.a second part in [2])
I f fhas limit If a t a andghasl imit lg at a, t hen f—ghas limit l f - l g at a:gr; f(x) = l; A garage) = I. =>$11331f(x)— g(x) = If - 1.

(LIM*: Theorem 4.2.4.a third part in [2])
If f has limit l , at a and g has limit lg at a , then f* 9 has limit If * lg at a :
llfiflz) = lf Aalci_mI_q(x) = lg => gflflz) *g(a:) = lf *lg

(Theorem 4.2.4.a fourth part in [2])
I f f has limit lf at a, then a* f has limit a* l f at a:
lim f (x) =l f => lirräa*f(z) =a* l f

I—‘a I a

(*) (Theorem 4.2.4.b in [2])
HfhwhmüüatamflghaflmMIg#Oatamflg@)#0brähnflmnähßhmn%
at a :. _ . _ . flx__agggflx) — lf Amnx) — lg AVw-gt't) # 0 => gig; EG) — ‚„
(Example 4.2.5.b in [2])
li1112(.'r2 + 1) * (:::3 - 4) = 20
:::—°

(Example 4.2.8.b in [2])
lim sin(x) = 0
z—~0

(Example 4.2.8.c in [2])
lim cos(:c) = 1
z—oo

(Example 4.2.8.f in [2])
mju; * s ing) = o

(Exercise 4.2.1 in [2])
l iml (x+l)* (2*a :+3) =10

1—5

(Theorem 4.3.3 first part in [2])
If f has limit l at (1, then f has the left—hand limit l at a :
lim f (x) = l => l imLI„„f(x) : l
z—va

44

30.

31.

(Theorem 4.3.3 second part in [2])
If f has limit l at a , then f has the right-hand limit I at a :
lim f (x) = l = l imqaflz) = l

(Lim-If-Both-Sides—Lim: Theorem 4.3.3 third part in [2])
If f has the left—hand limit l and the right-hand limit I at a , then f has the limit I at a :
limL‚„_‚af(x) = l A l imRIEaflx) = 1 =>' ligizflz) = l

Continuity of functions

1.

10.

11.

(Example 5.1.5.a in [2])
The function f (x) = b is continuous at a:
cont(b, a)

(Example 5.1.5.b in [2])
The fimction f (a:) = z is continuous at a:
cont (a:, a)

. (Example 5.1.5.b in [2])
The function f (x) = x2 is continuous at a:
cont(:c2,a)

. (Exercise 5.1.6 in [2])
If f is continuous at a , then for any e > 0 there exists a 6-neighborhood of a such that if
@, y in this 6-neighborhood then | f (sc) —— f (y)| < e:
cont(f , a) =>

Ve.(?\> 0 => 36.(6 > OA
Way- (I I - a l < 5/\ Iy — a l < 5 => [f(x) - f(y)| < €»)

(Exercise 5.1.11 in [2])
If !=: > 0 and lf(x) — f(y) | S k * lm — y! for all x‚y, then f is continuous at a:
k > OAVx‚y- | f (w) - f(y)| S 16* ll“ — yl => comma)

. (Continuous+: Theorem 5.2.1.a first part in [2])
If f is continuous at a and 9 is continuous at a , then f + 9 is continuous at a :
cont(f‚ a) A config, a) => cont(f + g, a)

. (Continuous-2 Theorem 5.2.1.a second part in [2])
If f is continuous at a and g is continuous at a , then f — g is continuous at a :
cont(f‚ a.) A ccmt(g, a) = cont(f —— g,a)

. (Continuous*: Theorem 5.2.1.3. third part in [2])
If f is continuous at a and 9 is continuous at a , then f * 9 is continuous at a :
cont(f, a) /\ cont(g, 0) => cont(f * g, a)

(Theorem 5.2.1.a fourth part in [2])
If f is continuous at a , then a * f is continuous at a :
cont(f‚ a) => cont(a * f , a)

(*) (Theorem 5.2.1.b in [2]) ‘
If f is continuous at a and g is continuous at a and g(z) # 0 for all x , then é is continuous
at a :
cont(f‚ a) /\ cont(g‚ a) A Vx.g(:r) aé 0 = config—, a)

(Theorem 5.2.7 in [2])
If f is continuous at a and g is continuous at f (a), then the composition g o f„ is continuous
at a :
cont(f , a) /\ cont(g, f (a)) => cont(g o f , a)

45

12. (Exercise 5.2.6 in [2])
If f has the limit 1 at a and 9 is continuous at 1, then the composition g o f has the limit
g(l) at a:
gig; f(x) = 1A canto, 1) => game» = g(l)

13. (Cont—If-Lim=f)
If f has the limit f (a) at a, then f is continuous at a.:gig; f(x) = f(a) => come, a)

Derivatives of functions

1. (*) (Theorem 6.1.3.a in [2])
If f has the derivative f ’ at a, then a * f has the derivative 0, * f ’ at a:
deri'u(f, a) = f ’ => deriv(a * f, a) = a t f’

2. (*) (Theorem 6.1.3.b in [2])
If f has the derivative f ’ at a and g has the derivative g ' at a , then f +9 has the derivative
f ’ + g ' at a:
deriv(f‚ a) = f ’ A deriv(g,a) = 9’ => der'iv(f + g, a.) = f’ + g’

3. (*) (Theorem 6.1.3.c in [2])
If f has the derivative f ’ at a and 9 has the derivative g’ at a , then f * g has the derivative
f’ * g(a) + f(a) *g’ at a:
deriv(f‚ a) = f ’ A deriv(g, a) = 9’ => deriv(f * g, a) = f ' * g(a) + f(a) * g'

4. (*) (Cont-If-Deriv: Theorem 6.1.2 in [2]) ‚ j /
If f has a derivative at a , then f is continuous at a :
derz'u(f, a) = f ’ => cont(f, a)

46

References

[1] RB. Andrews. Transforming Matings into Natural Deduction Proofs. In Bibel and Kowalski
[4], pages 281—292.

[2] R.G. Battle and D.R. Sherbert. Introduction to Real Analysis. John Wiley& Sons, New York,
1982.

[3] M. Beeson. Automatic generation of epsilon—delta proofs of continuity. In J . Calment and
J . Plaza, editors, Artificial Intelligence and Symbolic Computation, pages 67—83. Springer
Verlag, Germany, 1998.

[4] W. Bibel and R.A. Kowalski, editors. Proceedings of the 5th Conference on Automated De-
duction (CADE—5), volume 87 of LNCS, Les Arcs, Fiance, June 7—9 1980. Springer Verlag,
Germany.

[5] K.H. Bläsius and HJ . Biirckert, editors. Deduktionssysteme. Oldenbourg, 1992.

[6] W.W. Bledsoe. Challenge Problems in Elementary Analysis. Journal of Automated Reasoning,
6:341—359, 1990.

[7] W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer Proofs of Limit Theorems.
Artificial Intelligence, 3(1):27—60, 1972.

[8] W.W. Bledsoe and P. Bruell. A Man-Machine Theorem Proving System. Artificial Intelli-
gence, 5(1):51—72, 1974.

[9] W.W. Bledsoe and L. Hines. Variable Elimination and Chaining in a Resolution-Based Prover
for Inequalities. In Bibel and Kowalski [4], pages 70 — 87.

[10] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E.L. Lusk and R.A.
Overbeek, editors, Proceedings of the 9th International Conference on Automated Deduction
(CADE—9), volume 310 of LNCS, pages 111—120, Argonne, Illinois, USA, 1988. Springer
Verlag, Germany.

[11] A. Bundy. A science of reasoning. In Computational Logic: Essays in Honor of Alan Robinson.
1991. '

[12] A. Bundy. A Critique of Proof Planning. In Festschrift in Honour of Robort Kowalski. 2002.

[13] A. Bundy, A . Stevens, F . van Hermelen, A. Ireland, and A. Smaill. Rippling: A heuristic for
guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993.

[14] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System. In Stickel
[44], pages 647—648.

[15] L. Cheikhrouhou and V. Sorge. 'PDS — A Three-Dimensional Data Structure for Proof
Plans. In Proceedings of the International Conference on Artificial and Computational In-
telligence for Decision, Control and Automation in Engineering and Industrial Applications
(A CIDCA ’2000), Monastir, Tunisia, March 22—24 2000.

[16] DD. Corkill, V.R. Lesser, and E. Hudlicka. Unifying Data-Directed and Goal-Directed Con-
trol. In D . Waltz, editor, Proceedings of the Second National Conference on Artificial Intel-
ligence (AAAI-82), pages 143 - 147, Carnegie-Mellon University / University of Pittsburgh,
Pittsburgh, Pennsylvania, USA, August 18—20 1982. AAAI Press, Menlo Park, CA, USA.

[17] EH. Durfee and V.R. Lesser. Incremental Planning to Control a Blackboard—Based Problem
Solver. In T . Kehler and S. Rosenschein, editors, Proceedings of the Fifth National Conference
on Artificial Intelligence (AAAI-86), pages 58 —— 64, Philadelphia, Pennsylvania, USA, August
11—15 1986. AAAI Press, Menlo Park, CA, USA.

47

[18] L.D. Erman, P. London, and S. Fickas. The Design and an Example Use of HEARSAY-III.
In B . Buchanan, editor, Proceedings of the 6th International Joint Conference on Artificial
Intelligence (ICJAI), pages 409—415, Tokyo, Japan, August 20—23 1979. Morgan Kaufmann.

[19] G. Gentzen. Untersuchungen über das Logische Schließen I und II. Mathematische Zeitschrift,
39:176—210, 405—431, 1935.

[20] F. Giunchiglia and T . Walsh. Theorem Proving with Definition. In Proceedings of AISB 89,
Society for the Study of Artificial Intelligence and Simulation of Behaviour, 1989.

[21] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 25:251—321,
1985.

[22] G.P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic. PhD thesis,
Case Western Reverse University, 1972.

[23] D. Hutter. Guiding inductive proofs. In Stickel [44].

[24] A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs. In A. Voronkov,
editor, Proceedings of the 3rd International Conference on Logic Programming and Automated
Reasoning (LPAR’92), volume 624 of LNAI, pages 178 — 189, S t . Petersburg, Russia, July
1992. Springer Verlag, Germany.

\
[25] A. Ireland and A. Bundy. Productive Use of Failure in Inductive Proof. Journal of Automated

Reasoning, 16(1-2):79—111, 1996.

[26] M.V. Johnson Jr. and B. Hayes-Roth. Integrating Diverse Reasoning Methods in the BB1
Blackboard Control Architecture. In K . Forbus and H. Shrobe, editors, Proceedings of the
Sixth National Conference on Artificial Intelligence (AAAI—87}, pages 30 — 35, Seattle, Wash-
ington, USA, July 13—17 1987. AAAI Press, Menlo Park, CA, USA.

[27] M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra Into Proof Planning.
Journal of Automated Reasoning, 21(3):327—355, 1998.

[28] H. Kirchner and C. Ringeissen, editors. Proceedings of Third International Workshop on
Frontiers of Combining Systems (FROCOS 2000), volume 1794 of LNCS, Nancy, Rance,
March 22—24 2000. Springer Verlag, Germany.

[29] W. McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL—94-6, Argonne
National Laboratory, Argonne, Illinois 60439, USA, 1994.

[30] A. Meier. The proof planners of OMEGA: A technical description. Seki Report SR-2004—03,
Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, 2004.

[31] E . Melis. Progress in proof planning: Planning limit theorems automatically. Seki Report
SR-97—08, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, 1997.

[32] E. Melis. AI-Techniques in Proof Planning. In H. Prade, editor, Proceedings of of the 13th
European Conference on Artifical Intelligence, pages 494—498, Brighton, UK , August 23—28
1998. John Wiley & Sons, Chichester, UK .

[33] E. Melis. The “Limit” Domain. In R. Simmons, M. Veloso, and S. Smith, editors, Proceedings
of the Fourth International Conference on Artificial Intelligence Planning Systems MIPS-98),
pages 199—206, Pittsburgh, PEN, USA, June 7—10 1998. AAAI Press, Menlo Park, CA, USA.

[34] E . Melis and A. Meier. Proof Planning with Multiple Strategies. In J . Loyd, V . Dahl,
U. Furbach, M. Kerber, K . Lau, C. Palamidessi, L.M. Pereira, and Y . Sagivand P. Stuckey,
editors, First International Conference on Computational Logic (CL-2000}, volume 1861 of
LNAI, pages 644—659, London, UK, 2000. Springer-Verlag.

48

[35] E. Melis and M. Pollet. Domain Knowledge for Search Heuristics in Proof Planning. In
Proceedings of AIRS-2000 Workshop: Analyzing and Exploiting Domain Knowledge, pages
12—15, 2000.

[36] E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,
115(1):65-105, 1999.

[37] E. Melis, J. Zimmer, and T. Müller. Integrating Constraint Solving into Proof Planning. In
Kirchner and Ringeissen [28], pages 32—46.

[38] D. Redfern. The Maple Handbook: Maple V Release 5. Springer Verlag, Germany, 1999.

[39] J ‚D .C . Richardson, A. Smaill, and I.M. Green. System description: Proof planning in higher-
order logic with AClam. In C. Kirchner and H. Kirchner, editors, Proceedings of the 15th
International Conference on Automated Deduction (CADE—15), volume 1421 of LNAI, pages
129—133, Lindau, Germany, July 5—10 1998. Springer Verlag, Germany.

[40] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall, Engle-
wood Cliffs, 1995.

[41] A.H. Schoenfeld. Mathematical Problem Solving. Academic Press, New York, 1985.

[42] J. Siekmann, C. Benzmiiller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke, H. Ho-
racek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge,
C. Ullrich, C.P. Wirth, and J. Zimmer. Proof Development with OMEGA. In A. Voronkov,
editor, Proceedings of the 18th International Conference on Automated Deduction (CADE—
18), number 2392 in LNAI, pages 144—149, Kopenhagen, Denmark, 2002. Springer Verlag,
Germany.

[43] V. Sorge. Non-Trivial Symbolic Computations in Proof Planning. In Kirchner and Ringeissen
[28], pages 121—135.

[44] M. Stickel, editor. Proceedings of the 10th International Conference on Automated Deduction
(CADE—10), volume 449 of LNAI, Kaiserslautern, Germany, 1990.

[45] A. Tate. Generating Project Networks. In R. Raddy, editor, Proceedings of the 5th Intema-
tional Joint Conference on Artificial Intelligence (ICJAI) , pages 888—893, Cambridge, MA,
USA, August 22—25 1977. Morgan Kaufmann, San Mateo, CA, USA.

[46] Y. Tetsuya, A. Bundy, I. Green, T . Walsh, and D. Basin. Coloured rippling: An extension
of a theorem proving heuristic. In A.G. Cohn, editor, Proceedings of of the 11th European
Conference on Artifical Intelligence, pages 85 — 89. John Wiley & Sons, Chichester, UK ,
1994.

[47] M.M. Veloso, J. Carbonell, M.A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating
Planning and Learning: The Prodigy Architecture. Journal of Experimental and Theoretical
Artificial Intelligence, 7(1):81—120, 1995.

[48] D.S. Weld. An Introduction to Least Commitment Planning. AI Magazine, 15(4):27—61,
1994.

[49] L. Wos. The Problem of Definition Expansion and Contraction. Journal of Automated
Reasoning, 32433—435, 1987.

[50] J. Zimmer. Constraintlosen für Beweisplanung. Master’s thesis, Fachbereich Informatik,
Universität des Saarlandes, Saarbrücken, 2000.

49

