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Abstract

New synthetic opioids are an increasing challenge for clinical and forensic toxicolo-

gists that developed over the recent years. Desmethylmoramide (DMM), a structural

analogue of methadone, is one of the most recent appearances on the drug market.

This study investigated its metabolic fate in rat and pooled human liver S9 fraction

(pHLS9) to allow the identification of suitable urinary screening targets beyond the

parent compound. The analysis of rat urine after the administration of DMM revealed

five metabolites, which were the result of pyrrolidine ring or morpholine ring hydrox-

ylation and combinations of them. Additionally, an N0,N-bisdesalkyl metabolite was

formed. Incubations of DMM using pHLS9 revealed a pyrrolidine hydroxy metabolite,

as well as an N-oxide. No Phase II metabolites were detected in either rat urine or

incubations using pHLS9. The metabolism of DMM did in part comply with that of its

archetype dextromoramide (DXM). Although morpholine ring hydroxylation and N-

oxidation were described for DXM and detected for DMM, phenyl ring hydroxylation

was not found for DMM but described for DXM. An analysis of 24 h pooled rat urine

samples after DMM administration identified the hydroxy and dihydroxy metabolite

as the most abundant excretion products, and they may, thus, serve as screening tar-

gets, as the parent compound was barely detectable.
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1 | INTRODUCTION

New synthetic opioids (NSO) are an increasing threat to public

health.1 During the last years, the European Monitoring Centre for

Drugs and Drug Addiction (EMCDDA) and United Nations Office on

Drugs and Crime (UNODC) registered an elevated share of NSO in

seized drugs of abuse.2,3 Substances that appeared on the drug mar-

ket were mainly fentanyl analogues, as well as novel entities such as

U-47700 and MT-45.1,4 However, methadone analogues such as

dipyanone and desmethylmoramide (DMM) are entering the market

as well.4 DMM is a structural analogue of dextromoramide (DXM) and

was developed by Janssen et al in 1957 in order to find new potent

analgesics, but was never marketed.5 Their chemical structures are

shown in Figure 1. The analgesic activity of DMM was described by

Janssen et al to be slightly lower than that of morphine in mice and

rats and about a third of methadone.5 Additionally, a recent study by
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Vandeputte et al. performed in vitro functional characterization at the

μ-opioid receptor and reported distinctive lower potency and efficacy

in comparison to morphine and methadone.4

So far, no studies have been published about the metabolism of

DMM, and little is known about the metabolism of its archetype

DXM. Caddy et al. discussed the hypothetic metabolism of DXM in

human and found that numerous metabolites might be formed.

Among them were hydroxylations of the morpholine and phenyl ring,

as well as N-oxide formation.6 However, they themselves merely

described the detection of a metabolite formed after the morpholine

ring hydroxylation in human urine and reported a personal communi-

cation with colleagues that detected an N-oxide.6 Another metabolite,

formed after the hydroxylation of one of the phenyl rings and served

as a screening target in human urine using gas chromatography mass

spectrometry (MS), was described by Maurer et al.7

Therefore, the aim of this study was to elucidate the metabolic

fate of DMM in rat, as well as in pooled human liver S9 fraction

(pHLS9) to allow DMM detection by high-performance liquid

chromatography–high resolution–tandem MS (HPLC–HRMS/MS) in

toxicological specimens.

2 | EXPERIMENTAL

2.1 | Chemicals and reagents

DMM was provided by Kaiserslautern University of Applied Sciences

from online vendors based in Germany who offer NPS. Nicotinamide

adenine dinucleotide phosphate (NADP+), acetonitrile (LC–MS

grade), diethyl ether, ethyl acetate, and methanol (LC–MS grade)

were obtained from VWR International (Darmstadt, Germany). 30-

phosphoadenosine-50-phosphosulphate (PAPS), S-adenosylmethionine

(SAM), dithiothreitol (DTT), reduced glutathione (GSH), acetylcarni-

tine transferase (AcT), acetylcarnitine, acetyl coenzyme A (AcCoA),

magnesium chloride (MgCl2), dipotassium phosphate (K2HPO4),

monopotassium phosphate (KH2PO4), superoxide dismutase, isoci-

trate dehydrogenase, isocitrate, tromethamine (Tris), ammonium for-

miate, and formic acid were purchased from Sigma (Taufkirchen,

Germany). Purified water was obtained by using a Millipore filtration

system (water resistance, 18.2 Ω � cm). Pooled human liver S9

(pHLS9), 20 mg protein/mL, from 30 individual donors; uridine

diphosphate (UDP)-glucuronosyltransferase (UGT) reaction mix

solution A (25mM UDP-glucuronic acid); and UGT reaction mix solu-

tion B (250mM Tris-hydrochloric acid [HCl], 40mM MgCl2, and

0.125 mg/mL alamethicin) were obtained from Corning (Amsterdam,

The Netherlands). Following the delivery, the pHLS9 were thawed at

37 �C, aliquoted, quick-frozen using liquid nitrogen, and stored at

�80 �C until usage.

2.2 | In vitro drug metabolism studies using pHLS9

The pHLS9 incubations were executed in accordance with previously

published papers.8,9 The total volume of the final incubation mixture

was 150 μL. These incubations, containing a final concentration of

proteins of 2 mg/mL, were executed after a preincubation of 10 min

at 37 �C using 25 μg/mL alamethicin (UGT reaction mix solution B),

90mM phosphate buffer (pH 7.4), 2.5mM Mg2+, 2.5mM isocitrate,

0.6mM NADP+, 0.8 U/mL isocitrate dehydrogenase, 100 U/mL

superoxide dismutase, 0.1mM AcCoA, 2.3mM acetylcarnitine, and

8 U/mL AcT. Afterwards, 2.5mM UDP-glucuronic acid (UGT reaction

mix solution A), 40 μM aqueous PAPS, 1.2mM SAM, 1mM DTT,

10mM GSH, and 25 μM substrate in phosphate buffer (pH 7.4) were

added. All concentrations are final concentrations. The addition of the

substrate initiated the reaction. Subsequently, the mixture was set to

incubate for a total of 480 min. After an incubation time of 60 min,

60 μL were transferred into a test tube, where the reactions

were terminated by adding 20 μL of ice-cold acetonitrile. The rest of

the mixture was continuously incubated for the remaining 7 h, and

the reactions were again stopped by adding 30 μL of ice-cold

acetonitrile. After allowing to precipitate for 30 min at �18 �C, the

samples were centrifuged for 2 min at 18,407 � g, and 60 μL of the

upper phase were transferred into an MS vial. A 1-μL aliquot was

finally injected into the high-resolution tandem mass spectrometer

coupled to HPLC–HRMS/MS system. To assure the absence of

interfering compounds as well as to identify compounds that did

not originate from the metabolism of DMM, blank incubations

without substrate and control samples without pHLS9 were prepared

and analyzed.

2.3 | Rat urine samples for toxicological
detectability

Male Wistar rats (Charles River, Sulzfeld, Germany) were used

for detectability studies in accordance with the German law for

animal protection. This study has been approved by an ethics

committee (Landesamt für Verbraucherschutz, Saarbrücken,

Germany). DMM was orally administered to the rat in a dose of

2 mg/kg body mass. Rats had water ad libitum during the collec-

tion of urine over a period of 24 h. Urine was caught separately

from the feces. Before the compound administration, blank urine

was collected to confirm the absence of distracting compounds.

Creatinine was determined using a P.I.A2 immunoassay (Protzek,

Lörrach).

F IGURE 1 Chemical structures of (a) desmethylmoramide and
(b) dextromoramide.
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2.4 | Urine sample preparation

Sample preparation was performed according to a previous study.10

First, 0.1 mL urine was mixed with 0.5 mL acetonitrile and shaken on

a rotary shaker for 2 min at 2000 rpm. After centrifugation for 2 min

at 18,407 � g, 0.5 mL of the supernatant was transferred into a glass

vial and evaporated to dryness under a gentle stream of nitrogen at

70 �C. The residue was reconstituted in 50 μL of a mixture of eluent

A and eluent B (1:1; v/v). Finally, 10 μL were injected into the HPLC–

HRMS/MS system.

2.5 | HPLC–HRMS/MS apparatus

Apparatus conditions were set according to previously published stud-

ies.11,12 Details can be found in the Supporting Information (Data S1).

3 | RESULTS AND DISCUSSION

3.1 | Tentative identification of DMM metabolites

The spectra of each detected DMM metabolite can be found in

Figure S1 in the supplementary data. All m/z in this section are theo-

retical (exact) ones.

The parent compound (no. 1 in Figure S1) was detected at a

retention time of 5.92 min and a respective precursor ion at m/z

379.2380 (C24H31O2N2). The precursor ion underwent an elimination

of the morpholine ring resulting in the fragment ion at m/z 292.1701

(C20H22ON) that represented the base peak. Subsequently, a benzylic

scission led to the fragment ion at m/z 264.1388 (C18H18NO), and a

rather unusual elimination of CO resulted in the fragment ion at m/z

248.1439 (C17H18N). Such concerted eliminations have already been

described by Demarque et al. for cyclic carbonyl compounds, and its

occurrence is also observable in the electrospray mass spectra for

DXM.13,14 It is likely that the formation of this ion was favored

because of the positive mesomeric effect of the pyrrolidine ring that

further stabilized the phenylic carbenium ion, whereas the presence

of a carbonyl group destabilized it because of its negative mesomeric

effect. At last, the elimination of the pyrrolidine ring led to the forma-

tion of a fragment ion at m/z 167.0861 (C13H11). The lowest detected

m/z was the fragment ion at m/z 98.0606 (C5H8NO), representing the

amide moiety after an α-elimination. In general, the fragmentation of

DMM corresponded well to that of DXM.14

The hydroxy metabolite (no. 3 in Figure S1) was identified because

of its characteristic shifts of fragments of the MS2. The parent ion was

detected with m/z 395.2335 (C24H31O3N2) and the base peak was

again formed after morpholine elimination, resulting in the fragment ion

at m/z 308.1637 (C20H22O2N). The introduction of the hydroxy group

was assumed to have occurred in the ortho position of the pyrrolidine

nitrogen for two reasons. First, Vickers et al. investigated the biotrans-

formation of nitrogen-containing xenobiotics and found that most

hydroxylations occur in the ortho position of the nitrogen.15

Additionally, only pyrrolidine ring-containing fragments displayed a

characteristic shift of m/z 15.9949 such as the fragment ion at m/z

308.1637 (C20H22O2N), m/z 252.1388 (C17H18ON), and m/z 114.0555

(C5H8O2N) that were formed after the elimination of the morpholine

ring, subsequent CO elimination, or the α-cleavage of the amide moiety,

respectively. However, an elimination of water by a shift of m/z

18.0106 was not detected, although this fragmentation step is highly

characteristic for aliphatic hydroxylations. It is quite likely that the elimi-

nation of water was prevented by the delocalization of the electrons

over the carbonyl group, the amine moiety, and the hydroxy group.

Contributing structures are displayed in Figure 2.

The N-oxide metabolite (no. 4 in Figure S1) was detected at a

retention time of 5.96 min, and the precursor ion at m/z 395.2335

(C24H31O3N2). Although the m/z of the parent ion indicated that

oxygen was introduced into this metabolite, the fragmentation of

this metabolite corresponded to that of the parent compound.

Therefore, the site of the oxidation was likely to be at the morpho-

line ring. Additionally, the retention time of this metabolite was

higher than that of the parent compound, which indicated that this

metabolite was in fact an N-oxide. Several studies made similar

observations with retention times of N-oxides being higher than

that of the parent compound after analysis using reversed-phase

columns.12,16,17 All other metabolites were identified accordingly.

3.2 | Proposed metabolic pathways of DMM in rat
and pHLS9

Metabolic pathways of DMM in rat and pHLS9 are displayed in

Figure 3. The blank urine resulted in 73 mg/dL, and the urine after

DMM administration resulted in 95 mg/dL creatinine. Five metabo-

lites were detected after the analysis of rat urine. The main metabolic

pathway was hydroxylation of the pyrrolidine (no. 3 in Figure 3) or

the morpholine ring (no. 6 and 7 in Figure 3), which occurred once or

twice and in combination with each other (no. 5, 6, and 7 in

Figure 3). The metabolite formed after pyrrolidine ring hydroxylation

and N,N0-bisdesalkylation (no. 2 in Figure 3) might have been formed

in two ways. One way might have been a double retro-hemiaminal

addition of the metabolite formed after two hydroxylations in

ortho position of the nitrogen (no. 7 in Figure 3); the other way might

be a further oxidation of metabolite no. 7 in Figure 3 to lactams and

subsequent hydrolyzation. No Phase II metabolites were detected.

N
C
+

O OH

N
+

OH O

F IGURE 2 Contributing structures to the fragment ions with m/z
98.0606 (C5H8NO) detected for metabolites after pyrrolidine ring
hydroxylation.
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Incubations using pHLS9 revealed the formation of two metabo-

lites. One metabolite was formed after pyrrolidine ring hydroxylation

and another one after N-oxidation. Neither glucuronides, nor sulfates

were detected.

The metabolites detected in this study merely comply with the

metabolites that were described for DXM to some extent.6,7

No phenylic hydroxylation was found for DMM, and although

morpholine hydroxylation was found, the main metabolic pathway

appeared to be the hydroxylation of the pyrrolidine ring. However,

the N-oxidation that was described for DXM was also detected for

DMM in incubations using pHLS9. It is notable that no Phase II

metabolites were detected within this study. This may be because

glucuronidation und sulfation are usually observed for compounds

forming aromatic hydroxy groups which were not observed

for DMM.18,19

4 | CONCLUSION

This study investigated the metabolic fate of DMM in rat, as well as

in incubations using pHLS9. In total, six Phase I metabolites were

detected, but not Phase II metabolites. Metabolic pathways con-

sisted of hydroxylation of the pyrrolidine ring and the morpholine

ring, as well as combinations of them. Additionally, an N,N0-

bisdesalkyl metabolite and an N-oxide were detected. The metabolic

pathways that were detected within this study do merely comply

with that of DXM to some extent. Although phenyl ring hydroxyl-

ation was not found, the hydroxylation of the morpholine ring did

occur, but is apparently not the main metabolic pathway of DMM.

However, N-oxidation was described for DXM and detected within

this study. Finally, the hydroxy and dihydroxy might be recom-

mended as LC–HRMS/MS screening target, as they were the most

F IGURE 3 Metabolic
pathways of desmethylmoramide
in vivo and in vitro. Metabolites
are numbered according to
Figure S1. R, rat urine; pHLS9,
pooled human liver S9 fraction.
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abundant in rat urine and pHLS9 incubations, especially because the

parent compound was scarcely detectable in rat urine.
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