
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t
Ka

is
er

sl
au

te
rn

D
-6

76
63

 K
ai

se
rs

la
ut

er
n

SE
KI

 -
R

EP
O

R
T

Cooperation in Theorem Proving by
Loosely Coupled Heuristics

Dirk Fuchs. Jörg Denzinger
SEKI Report SR-97-03

Cooperation in Theorem Proving by Loosely

Coupled Heuristics

Dirk Fuchs, Jorg Denzinger

Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, 67653 Kaiserslautern

Germany

E-mail: {dfuchs/denzinge}@informatik.uni-kl.de

Abstract

We present a cooperation concept for automated theorem provers that is
based on a periodical interchange of selected results between several incarnations
of a prover. These incarnations differ from each other in the search heuristic they
employ for guiding the search of the praver. Depending on the strengths' and
weaknesses of these heuristics different knowledge and different communication
structures are used for selecting the results to interchange.

Our concept is easy to implement and can easily be integrated into already
existing theorem pravers. Moreover, the resulting cooperation allows the dis­
tributed system to find proofs much faster than single heuristics working alone.
We substantiate these claims by two case studies: experiments with the DICoDE
system that is based on the condensed detachment rule and experiments with the
SPA.SS system, a prover for first order logic with equality based on the super­
position calculus. Both case studies show the improvements by our cooperation
concept.

1

Cooperation in Theorem Proving by Loosely
Coupled Heuristics

Dirk Fuchs, Jorg Denzinger
Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, 67653 Kaiserslautern
Germany

E-mail: {dfuchs|denzinge}@informatik.uni-k1.de

Abstract

We present a cooperation concept for automated theorem provers that is
based on a periodical interchange of selected results between several incarnations
of a prover. These incarnations differ from each other in the search heuristic they
employ for guiding the search of the prover. Depending on the strengths’ and
weaknesses of these heuristics different knowledge and different communication
structures are used for selecting the results to interchange.

Our concept is easy to implement and can easily be integrated into already
existing theorem provers. Moreover, the resulting cooperation allows the dis-
tributed system to find proofs much faster than single heuristics working alone.
We substantiate these claims by two case studies: experiments with the DICoDE
system that is based on the condensed detachment rule and experiments with the
SPASS system, a prover for first order logic with equality based on the super-
position calculus. Both case studies show the improvements by our cooperation
concept.

mailto:dfuchs/denzinge}@informatik.uni-kl.de

2 1 INTRODUCTION

1 Introduction

The most crucial step, with regard to performance, in a theorem prover that is based
on generating new formulas (a so-called generating prover) is the selection of the next
inference step typically out of an ever growing number of candidates. Even combining
several inference steps into one to avoid intermediate results (which is the idea of hyper­
resolution, for example) can slow down this growth only a little bit. Therefore, in a
theorem prover a good management of a large amount of data and a good control of
the extension process of this data is needed.

While indexing techniques (see [Gr96]) are well-suited in providing the good manage­
ment of large numbers of formulas (clauses, equations, terms) several different research
directions try to deal with the control of a theorem prover. Utilizing more restric­
tive inference rules can slow down the growth of the number of candidates but may
require longer inference chains. Higher inference rates (by faster implementations or
parallelization) may speed up finding proofs in many cases but they also speed up the
growth of the number of possible inferences. Therefore, hard problems may remain out
of reach even if a fast prover is utilized. An approach that has come into the focus of
attention quite recently is learning control heuristics from previous proof experiences
(see [Fu96], [DS96b]).

A problem that occurs within each of these research directions-especially in the area
of learning-is the fact that very often a heuristic is capable of finding most of the
steps necessary for proving a given problem rather quickly but there are a few steps
the heuristic is not able to select out of the large set of possible steps (or at least not
in an acceptable period of time). Usually it is even a problem to choose such a "not
quite good enough" heuristic out of the large number of heuristics a theorem prover
usually provides.

Cooperation of selection heuristics in form of different incarnations of a prover offers a
solution to these problems. If several selection heuristics work in parallel the probability
that a good heuristic is among them naturally is higher than the probability that one
certain heuristic performs well. Furthermore, if these several incarnations interchange
data, this data may contain information allowing one of the heuristics to conclude the
proof. Obviously, the success of such an approach depends heavily on the amount of
data to be interchanged (and when the interchange takes place). If many or even all
new results of an incarnation are sent to the other ones the same negative effects as in
case of higher inference rates occur (with additional cost for communication). If only
a few results are interchanged, then the necessary results may not be among them.

In literature one can find two different ways for interchanging data between theorem
provers: demand driven (as realized in the DARES system, see [CMM90J) and success
driven (as realized in the TEAMWORK method, see [De95]). Demand driven cooperation
means that a prover detects for itself that it misses a certain result and asks the other
provers if they were able to deduce it. Success driven cooperation means that a prover
has deduced a certain result that was very useful for it and therefore communicates
this result to the other provers. Obviously, demand driven cooperation is not easy
to achieve since it is fairly difficult to detect which results a prover needs to succeed

2 1 INTRODUCTION

1 Introduction

The most crucial step, with regard to performance, in a theorem prover that is based
on generating new formulas (a so-called generating prover) is the selection of the next
inference step typically out of an ever growing number of candidates. Even combining
several inference steps into one to avoid intermediate results (which is the idea of hyper-
resolution, for example) can slow down this growth only a little bit. Therefore, in a
theorem prover a good management of a large amount of data and a good control of
the extension process of this data is needed.

While indexing techniques (see [Gr96]) are well-suited in providing the good manage-
ment of large numbers of formulas (clauses, equations, terms) several different research
directions try to deal with the control of a theorem prover. Utilizing more restric-
tive inference rules can slow down the growth of the number of candidates but may
require longer inference chains. Higher inference rates (by faster implementations or
parallelization) may speed up finding proofs in many cases but they also speed up the
growth of the number of possible inferences. Therefore, hard problems may remain out
of reach even i f a fast prover is utilized. An approach that has come into the focus of
attention quite recently is learning control heuristics from previous proof experiences
(see [Fu96], [DS96b]).
A problem that occurs within each of these research directions—especially i n the area
of learning—is the fact that very often a heuristic is capable of finding most of the
steps necessary for proving a given problem rather quickly but there are a few steps
the heuristic is not able to select out of the large set of possible steps (or at least not
i n an acceptable period of time). Usually i t is even a problem to choose such a “not
quite good enough” heuristic out of the large number of heuristics a theorem prover
usually provides.
Cooperation of selection heuristics in form of different incarnations of a prover offers a
solution to these problems. I f several selection heuristics work i n parallel the probability
that a good heuristic is among them naturally is higher than the probability that one
certain heuristic performs well. Furthermore, i f these several incarnations interchange
data, this data may contain information allowing one of the heuristics to conclude the
proof. Obviously, the success of such an approach depends heavily on the amount of
data to be interchanged (and when the interchange takes place). If many or even all
new results of an incarnation are sent to the other ones the same negative effects as i n
case of higher inference rates occur (with additional cost for communication). If only
a few results are interchanged, then the necessary results may not be among them.
I n l i terature one can find two different ways for interchanging data between theorem
provers: demand driven (as realized i n the DARES system, see [CMM90]) and success
driven (as realized in the TEAMWORK method, see [De95]). Demand driven cooperation
means that a prover detects for itself that i t misses a certain result and asks the other
provers i f they were able to deduce i t . Success driven cooperation means that a prover
has deduced a certain result that was very useful for i t and therefore communicates
this result to the other provers. Obviously, demand dr iven cooperation is not easy
to achieve since i t is fairly difficult to detect which results a prover needs to succeed

3

(in fact, if we could solve this problem then in general a good control would be no
problem). '

In this paper we will examine success driven cooperation (with a slight. twist into the
direction of demands of other incarnations) by loosely coupled heuristics (the CLCH
approach). Similarly to the TEAMWORK method we use referees to determine the
results to be interchanged. This interchange takes place in regular intervals, but con­
trarily to TEAMWORK there is no central control of the system by a supervisor (hence
we only have a loosely coupled network of provers/heuristics). Furthermore, the re­
sults of each heuristic remain on its computer and are only augmented by the selected
results of the other computers. This is in contrast to TEAMWORK that replaces facts
of different heuristics by the facts of the "best" heuristic. Thus the interaction scheme
of CLCH is simpler and easier to implement (no broadcasting is necessary).

The referees play a vital role in the CLCH approach. Each very good, but difficult
to generate fact that is not communicated to another incarnation may be the fact
this incarnation needs to complete the proof. Each bad fact that is communicated
to another incarnation makes the work of this incarnation harder and may gravely
disturb its selection heuristic. Therefore the use of as much knowledge as possible in
referees is very important in order to meet the demands of receiving incarnations as
good as possible. In order to combine this with the necessity of a small amount of
communication, the CLCH approach uses two kinds of referees. Send-referees judge
facts by retrospective criteria and knowledge about the identity (i.e. the heuristic) of
the other incarnations and receive-referees judge the facts selected by the send-referees
with regard to the actual search state of its receiving incarnation.

We demonstrate the usefulness of our CLCH approach by means of two case studies.
On the one hand we employ CLCH for coupling different incarnations of the CODE

system (see [FF97]) which is based on the condensed detachment rule resulting in
the new system DICoDE. On the other hand we present experiments in coupling
different incarnations of the superposition based praver SPASS (see [WGR96]). Since
DICoDE is also able to employ th,e teamwork method we can give an experimental
comparison with this cooperation concept. The studies concerning SPASS show the
minimal implementational requirements for our method and offer some inform:ation on
the integration of our concept into existing, not self-implemented provers.

2 Basics of Automated Deduction

2.1 Fundamentals

The general problem in automated theorem proving is given as follows: Given a set of
facts Ax (axioms), is a further fact .Ac (goal) a logical consequence of the axioms? A
fact may be a clause, equation, or a general first or higher-order formula. The definition
of "logical consequence" depends heavily on the concrete domain one is interested in.

Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans­
form a goal into sub-goals that can .finally be proven immediately with the axioms.

(in fact, i f we could solve this problem then in general a good control would be no
problem). ;

In this paper we will examine success driven cooperation (with a slight. twist into the
direction of demands of other incarnations) by loosely coupled heuristics (the CLCH
approach). Similarly to the TEAMWORK method we use referees to determine the
results to be interchanged. This interchange takes place in regular intervals, but con-
trari ly to TEAMWORK there is no central control of the system by a supervisor (hence
we only have a loosely coupled network of provers/heuristics). Furthermore, the re-
sults of each heuristic remain on i ts computer and are only augmented by the selected
results of the other computers. This is in contrast to TEAMWORK that replaces facts
of different heuristics by the facts of the “best” heuristic. Thus the interaction scheme
of CLCH is simpler and easier to implement (no broadcasting is necessary).
The referees play a vital role in the CLCH approach. Each very good, but difficult
to generate fact that is not communicated to another incarnation may be the fact
this incarnation needs to complete the proof. Each bad fact that is communicated.
to another incarnation makes the work of this incarnation harder and may gravely
disturb its selection heuristic. Therefore the use of as much knowledge as possible in
referees is very important in order to meet the demands of receiving incarnations as
good as possible. In order to combine this with the necessity of a small amount of
communication, the CLCH approach uses two kinds of referees. Send-referees judge
facts by retrospective criteria and knowledge about the identity (i.e. the heuristic) of
the other incarnations and receive-referees judge the facts selected by the send-referees
with regard to the actual search s tate of i t s receiving incarnation.

We demonstrate the usefulness of our CLCH approach by means of two case studies.
On the one hand we employ CLCH for coupling different incarnations of the CODE
system (see [FF97]) which i s based on the condensed detachment rule result ing in
the new system DICODE. On the other hand we present experiments in coupling
different incarnations of the superposition based prover SPASS (see [WGR96)). Since
DICODE is also able to employ the teamwork method we can give an experimental
comparison with this cooperation concept. The studies concerning SPASS show the
minimal implementational requirements for our method and offer some information on
the integration of our concept into existing, not self-implemented provers.

2 Basics o f Automated Deduction

2 .1 Fundamentals

The general problem in automated theorem proving is given as follows: Given a set of
facts Az (axioms), is a further fact Ag (goal) a logical consequence of the axioms? A
fact may be a clause, equation, or a general first or higher-order formula. The definition
of “logical consequence” depends heavily on the concrete domain one is interested in.
Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans-
form a goal into sub-goals that can finally be proven immediately with the axioms.

4 2 BASICS OF AUTOMATED DEDUCTION

Generating calculi go the other way by continuously producing logic consequences from
Ax until a fact covering the goal appears (but there are also some generating calculi
that use the goal in inferences). We shall here concentrate on generating calculi.
Typically a generating calculus contains several inference rules which can be applied
to a subset of the given facts (that constitute the initial search state). Expansion
inference rules are able to generate new facts from known ones and add these facts to
the search state. Contraction inference rules allow for the deletion of facts or replacing
facts by other ones, thus contracting the fact base (see [De90]).

A common principle to solve proof problems algorithmically with a generating calculus
is employed by most systems: Essentially, a theorem prover maintains either implicitly
or explicitly a set :FP of so-called potential or passive facts from which it selects and
removes one fact A at a time. After the application of some contraction inference rules
on A, it is put into the set :FA of activated facts, or discarded if it was deleted by
a contraction rule (forward subsumption). Activated facts are, unlike potential facts,
allowed to produce new facts via the application of expanding inference rules. The
inferred new facts are put into :Fp. We assume the expansion rules to be exhaustively
applied on the elements of :FA. InitialIy,:FA = 0 and :FP = Ax (or Ax U {Aa}, as for
example in resolution). The indeterministic selection or activation step is realized by
heuristic means. To this end, a heuristic 'H associates a natural number 'H(A) E IN with
each A E :Fp. Subsequently, that A E :FP with the smallest weight 'HP) is selected.
In order to break ties between facts with the same heuristic weight it is possible to use
another heuristic. Due to efficiency reasons ties are usually broken according to the
FIFO-strategy ("first in-first out").

2.2 Condensed Detachment

A typical example for generating calculi is the inference system CV which contains the
inference rule condensed detachment (CondDet) (see [Ta56] and [Lu70] for motivation
and a theoretical background). Since CV contains only one expansion and one con­
traction inference rule it is very simple. But nevertheless resulting proof problems can
be very challenging. Therefore, condensed detachment was chosen as a test domain
by several researchers before I[[Pe76], [MW92], [S193], [W095]) and the choice of con­
densed detachment as our test domain surely is justified. The rules of the inference
system CV manipulate first-order terms. These terms are defined as usual, involving a
fini te set :F of function symbols and an enumerable set of variables V.
CondDet in its basic form is defined for a distinguished binary function symbol f E :F.
CondDet allows to deduce a(t) from two given facts f(s, t) and s' if a- is the most
general unifier from sand 5'. CV contains-besides the expanding rule CondDet-the
contracting rule Subsum. This rule allows for the deletion of a fact t if a fact s and a
substitution a- exists such that a-(s) == t. A proof problem A = (Ax, Aa) is solved if a
fact subsuming the goal can be deduced.

2.3 Superposition extended with Sorts

The theorem prover SPASS ([WGR96]) we chose to experiment with is an automatic
prover for first order logic with equality. It is based on the superposition calculus

4 2 BASICS OF AUTOMATED DEDUCTION

Generating calculi go the other way by continuously producing logic consequences from
Az until a fact covering the goal appears (but there are also some generating calculi
that use the goal i n inferences). We shall here concentrate on generating calculi.
Typically a generating calculus contains several inference rules which can be applied
to a subset of the given facts (that constitute the initial search state). Expansion
inference rules are able to generate new facts from known ones and add these facts to
the search state. Contraction inference rules allow for the deletion of facts or replacing
facts by other ones, thus contracting the fact base (see [De90]).
A common principle to solve proof problems algorithmically wi th a generating calculus
is employed by most systems: Essentially, a theorem prover maintains either implicit ly
or explicitly a set F ” of so-called potential or passive facts from which i t selects and
removes one fact A at a time. After the application of some contraction inference rules
on J, i t is put into the set F4 of activated facts, or discarded if i t was deleted by
a contraction rule (forward subsumption). Activated facts are, unlike potential facts,
allowed to produce new facts via the application of expanding inference rules. The
inferred new facts are put into A”, We assume the expansion rules to be exhaustively
applied on the elements of F4. Initially, FA = 0 and FF = Az (or Az U {Ag} , as for
example in resolution). The indeterministic selection or activation step is realized by
heuristic means. To this end, a heuristic H associates a natural number H(A) € N with
each A € FP. Subsequently, that A € FP with the smallest weight H(A) is selected.
In order to break ties between facts with the same heuristic weight it.is possible to use
another heuristic. Due to efficiency reasons ties are usually broken according to the
FIFO-strategy (“first in—first out”).

2 .2 Condensed Detachment

A typical example for generating calculi is the inference system CD which contains the
inference rule condensed detachment (CondDet) (see [Ta56] and [Lu70] for motivation
and a theoretical background). Since CD contains only one expansion and one con-
traction inference rule i t is very simple. But nevertheless resulting proof problems can
be very challenging. Therefore, condensed detachment was chosen as a test domain
by several researchers before ([Pe76], [MW92], [S193], [W095]) and the choice of con-
densed detachment as our test domain surely is justified. The rules of the inference
system CD manipulate first-order terms. These terms are defined as usual, involving a
finite set F of function symbols and an enumerable set of variables V.
CondDet i n i ts basic form is defined for a distinguished binary function symbol f € F.
CondDet al lows to deduce o(t) from two given facts f (s , t) and s ’ i f o i s the most
general unifier from s and s’. CD contains—besides the expanding rule CondDet—the
contracting rule Subsum. This rule allows for the deletion of a fact ¢ i f a fact s and a
substitution o exists such that o(s) = t . A proof problem A = (Az, Ag) is solved i f a
fact subsuming the goal can be deduced.

2.3 Superposit ion extended with Sorts

The theorem prover SPASS ([WGRY6]) we chose to experiment w i th i s an automatic
prover for first order logic wi th equality. I t is based on the superposition calculus

5

(see [BG94]). The inference rules of the superposition calculus can be divided into
expansion and contraction (also called reduction) rules as we have seen before. The
expansion rules (ordered inference rules) contain the common rules of the superposition
calculus, i.e. superposition left and right, factoring, equality resolution, and equality
factoring. The reduction rules contain well-known rules like subsumption and rewriting.
Furthermore, SPASS utilizes additional reduction rules, as the deletion of tautologies
and the condensing rule, that allows to replace a clause C by 0"(C) if 0"(C) cC. Since
SPASS recognizes unary predicates as sorts ([We93]) the inference system of SPASS
is extended by rules that apply to some special sort information. These rules have to
be applied to facts before they can be involved in "normal" expansion and contraction
rules. Because of the fact that the rules can be regarded as expansion rules we do not
distinguish between ordered inference rules and rules that apply to some special sort
information in the sequel.

3 The CLCH Approach

The general idea of the CLCH (Cooperation by Loosely Coupled Heuristics) approach
is to interchange selected facts between several incarnations of a theorem prover (that
use different heuristics for the activation step) in regular time intervals. The selection
of the facts is the task of so-called referees. In the following we will give a more precise
and detailed description of this general concept and we will examine the task of the
referees in more detail. Finally, we will instantiate the concept for the case of the
condensed detachment prover CODE and the superposition based prover SPASS.

3.1 The general concept

The CLCH approach requires several incarnations of a generating theorem prover (that
we will call agents in the following) running on different computing nodes and using
different selection heuristics for the next step to do. All incarnations of the prover
are simultaneously given the problem to solve, together with a schedule of cooperation
phases in which they interchange facts (and each incarnation is assigned one or more
referees, as described shortly).

Since we use incarnations of the same prover we can be sure that all of the agents in this
distributed system use the same internal representations. Furthermore, as generating
provers these agents are able to integrate new facts in their search state since this
is required by the inference rules. The new facts are provided regularly during the
cooperation phases by the other agents. So to say, the agents speak the same language
and can make use of messages from the other agents.

Obviously, an agent should not communicate all new facts it generated since the last
cooperation phase to all other provers. This would force a receiving agent to perform
the processing of all these facts (i.e performing all possible inferences involving them).
Then the cooperation of the provers would result in not much gain. In addition,
communication is much more expensive than computation. Hence, a general goal of
distributed systems is to limit the amount of information that has to be communicated.
Instead, only a few selected facts should be communicated between two agents, namely

(see [BG94]). The inference rules of the superposi t ion calculus can be divided into
expansion and contraction (also called reduction) rules as we have seen before. The
expansion rules (ordered inference rules) contain the common rules of the superposition
calculus, i.e. superposition left and right, factoring, equality resolution, and equality
factoring. The reduction rules contain well-known rules like subsumption and rewriting.
Furthermore, SPASS utilizes additional reduction rules, as the deletion of tautologies
and the condensing rule, that allows to replace a clause C by o(C) i f 6(C) C C. Since
SPASS recognizes unary predicates as sorts ([We93]) the inference system of SPASS
is extended by rules that apply to some special sort information. These rules have to
be applied to facts before they can be involved in “normal” expansion and contraction
rules. Because of the fact that the rules can be regarded as expansion rules we do not
distinguish between ordered inference rules and rules that apply t o some special sort
information in the sequel.

3 The CLCH Approach

The general idea of the CLCH (Cooperation by Loosely Coupled Heuristics) approach
is to interchange selected facts between several incarnations of a theorem prover (that
use different heuristics for the activation step) in regular time intervals. The selection
of the facts is the task of so-called referees. In the following we will give a more precise
and detailed description of this general concept and we will examine the task of the
referees in more detail. Finally, we will instantiate the concept for the case of the
condensed detachment prover CODE and the superposition based prover SPASS.

3.1 The general concept
The CLCH approach requires several incarnations of a generating theorem prover (that
we will call agents in the following) running on different computing nodes and using
different selection heuristics for the next step to do. All incarnations of the prover
are simultaneously given the problem to solve, together with a schedule of cooperation
phases in which they interchange facts (and each incarnation is assigned one or more
referees, as described shortly).
Since we use incarnations of the same prover we can be sure that all of the agents i n this
distributed system use the same internal representations. Furthermore, as generating
provers these agents are able to integrate new facts i n thei r search s ta te since this
is required by the inference rules. The new facts are provided regularly during the
cooperation phases by the other agents. So to say, the agents speak the same language
and can make use of messages from the other agents.
Obviously, an agent should not communicate al l new facts i t generated since the last
cooperation phase to all other provers. This would force a receiving agent to perform
the processing of all these facts (i.e performing all possible inferences involving them).
Then the cooperation of the provers would result i n not much gain. In addition,
communication is much more expensive than computation. Hence, a general goal of
distributed systems is to l imi t the amount of information that has to be communicated.
Instead, only a few selected facts should be communicated between two agents, namely

6 3 THE CLCH APPROACH

such facts that promise to be useful for the receiving agent. The selection of these facts
is the task of so-called referees.

During a proof attempt the provers repeat the following cycle: In the working phase
each proveI' applies the inference rules of the calculus, controlled by its heuristic, to the
data base of facts it started with. After a fixed period of time a cooperation phase takes
place: Referees determine for each prover facts that should be integrated into the data
bases of the receiving provers. These facts are integrated and then a new cycle (utilizing
this new data base) starts. In the sequel, we shall discuss at first· several possibilities
of utilizing different kinds of knowledge for selecting facts. Moreover, we introduce
an architecture that allows us to employ the different kinds of knowledge resulting in
a system that has both success driven and demand driven features. Eventually, we
sketch some implementational aspects.

3.1.1 Utilizing different kinds of knowledge for selecting facts

Both, behavior of a referee and architecture of our distributed system depend heavily
on the knowledge that the referees utilize for selecting outstanding facts. It is clear that
a referee responsible for the selection of outstanding facts of a prover (sender) must
have at least local knowledge, i.e. it must know the system of facts to choose from. It
is unclear, however, if and how knowledge about other provers, i.e. possible receivers
of facts, could be efficiently used. In general there is a wide spect:rum of knowledge
about the receivers of facts that ranges from local knowledge (only information on the
sender, no information on the receiver) to global knowledge (total information on both,
sender and receiver). Utilizing different kinds of knowledge in a referee entails different
behaviors of the referee and even different architectures of our distributed system as we
will see in the sequel. We discuss at first the two extremes, local and global knowledge.
Then we will show which changes of the behavior of a referee arid the architecture
of the system are necessary if we start from local knowledge and employ more and
more knowledge about the receivers of facts. We distinguish between three different
concepts to enrich local knowledge: Employing local knowledge and knowledge about
the heuristic of the receiver, local knowledge and knowledge about the current needs of
the receiver, and finally a combination of local knowledge and knowledge about both,
heuristic and current needs of the receiver.

Global knowledge means that a referee has, beyond the information on the system of
facts to choose from, also complete information on the receiver of facts at its disposal.
This information contains, e.g., information on the search strategy (heuristic), on the
search state (the current data base of facts) of each receiver and even information on
earlier search states (i.e. the history) of each incarnation of the prover. By utilizing
global knowledge, a referee can perform an optimal selection w.r.t. a sender 5 and a
receiver R. This is due to the fact that the referee is able to select such facts from
5 that seem to be most profitable for R considering its system of facts and its search
strategy. There are some practical deliberations, however, which make it very difficult
or even impossible to employ global knowledge for selecting facts. Since the referee
would need information on the system of the sender as well as on the receiver to realize
a selection as sketched before, a tremendous communication overhead is unavoidable.
In practice, global knowledge can only be utilized if sender and receiver work on a

6 3 THE CLCH APPROACH

such facts that promise to be useful for the receiving agent. The selection of these facts
is the task of so-called referees.
During a proof attempt the provers repeat the following cycle: In the working phase
each prover applies the inference rules of the calculus, controlled by i ts heuristic, to the
data base of facts i t started with. After a fixed period of t ime a cooperation phase takes
place: Referees determine for each prover facts that should be integrated into the data
bases of the receiving provers. These facts are integrated and then a new cycle (utilizing
this new data base) starts. In the sequel, we shall discuss at first several possibilities
of utilizing different kinds of knowledge for selecting facts. Moreover, we introduce
an architecture that allows us to employ the different kinds of knowledge resulting in
a system that has both success driven and demand driven features. Eventually, we
sketch some implementational aspects.

3.1.1 Utilizing different kinds of knowledge for selecting facts
Both, behavior of a referee and architecture of our distributed system depend heavily
on the knowledge that the referees utilize for selecting outstanding facts. I t is clear that
a referee responsible for the selection of outstanding facts of a prover (sender) must
have at least local knowledge, i.e. i t must know the system of facts to choose from. I t
is unclear, however, i f and how knowledge about other provers, i.e. possible receivers
of facts, could be efficiently used. In general there is a wide spectrum of knowledge
about the receivers of facts that ranges from local knowledge (only information on the
sender, no information on the receiver) to global knowledge (total information on both,
sender and receiver). Utilizing different kinds of knowledge in a referee entails different
behaviors of the referee and even different architectures of our distributed system as we
will see in the sequel. We discuss at first the two extremes, local and global knowledge.
Then we will show which changes of the behavior of a referee and the architecture
of the system are necessary i f we start from local knowledge and employ more and
more knowledge about the receivers of facts. We distinguish between three different
concepts to enrich local knowledge: Employing local knowledge and knowledge about
the heuristic of the receiver, local knowledge and knowledge about the current needs of
the receiver, and finally a combination of local knowledge and knowledge about both,
heuristic and current needs of the receiver.
Global knowledge means that a referee has, beyond the information on the system of
facts to choose from, also complete information on the receiver of facts at i ts disposal.
This information contains, e.g., information on the search strategy (heuristic), on the
search state (t he current data base of facts) o f each receiver and even information on
earlier search states (i.e. the history) of each incarnation of the prover. By utilizing
global knowledge, a referee can perform an optimal selection w.r.t. a sender S and a
receiver R. This is due to the fact that the referee is able to select such facts from
S that seem to be most profitable for R considering its system of facts and its search
strategy. There are some practical deliberations, however, which make i t very difficult
or even impossible to employ global knowledge for selecting facts. Since the referee
would need information on the system of the sender as well as on the receiver to realize
a selection as sketched before, a tremendous communication overhead is unavoidable.
I n practice, global knowledge can only be utilized i f sender and receiver work on a

3.1 The general concept 7

common blackboard memory, e.g. on a multiprocessor machine. Since we are interested
in developing cooperating heuristics working on different computers, e.g. in a network
of computers, employing global knowledge is impossible due to the high communication
amount.

The other extreme is to select facts without knowledge about the receivers (using only
local knowledge). Thus, criteria have to be developed to decide-without any hints
on the prover that receives it-whether a fact is useful in general. In [DF96] such
kinds of referees that mainly use retrospective views on the results to choose from are
introduced. Considering the results mentioned in [DF96] it is possible to gain efficiency
with this technique in spite of the fact that only vague criteria are employed. Moreover,
a main advantage is that only one selection of facts of a sender is necessary to determine
the facts that should be sent to all other provers. Therefore, for each prover only one
referee has to be employed and hence the overhead caused by the cooperation phases
is rather small. Furthermore, the amount of time for the selection does not depend
on the number of agents in the cooperating system. Thus, increasing the number of
cooperating agents does not decrease the efficiency. As we will see later, however, this
technique is sometimes too primitive. Especially if the receiving proversneed only a
few facts to conclude the proof, an individual selection for each receiver is sensible.

The easiest method to extend local knowledge is to employ at least knowledge about
the search strategy of each receiving prover. In the area of generating provers that
means its heuristic. In [DF96] a referee is introduced which selects facts for a receiving
prover considering its heuristic. As we will see later, the knowledge about the heuristic
of the receiver enables a referee to estimate which consequences the integration of /
a fact into the system of the receiver might have. Thus, the quality of facts could
sometimes be better estimated in comparison to the restriction of local knowledge.
But note that employing knowledge about the heuristic of the receiver requires n - 1
selection processes (if we have n provers), whereas only one selection was necessary
before. Hence, we need n - 1 referees for each prover and the number of selections of
each agent increases linearly with the number of receiving agents.

The second possibility to extend local knowledge is to utilize knowledge about the
current needs of each receiver thus adding a demand driven touch to the system. If
a referee is able to utilize such kind of knowledge its task of selecting facts could be
strongly simplified. But as we have already discussed the problem occurs that the
referee must on the one hand know the system of the sender to select facts from it.
On the other hand he must know the system of the receiver in order to recognize the
current needs of it. Because of the fact that it is impossible to evaluate the complete
systems of sender and receiver at a central point (due to the communication overhead)
the following change of the architecture might be sensible to overcome the problem:
At first, a send-referee could select some facts that seem to be important in general.
(Note that local knowledge about the quality of facts is always available.) Thus, the
probability is rather high that important facts are among them. After the transmission
of this usually quite small set of facts (in comparison to a complete system of facts of
a prover) to the receiver, the work of an individual receive-referee starts. This referee
selects from the facts chosen from the send-referee those that seem to be useful w.r.t.
the receiving prover's system. Thus, only one receive- and one send-referee is needed

'I

3.1 The general concept 7

common blackboard memory, e.g. on a multiprocessor machine. Since we are interested
in developing cooperating heuristics working on different computers, e.g. in a network
of computers, employing global knowledge is impossible due to the high communication
amount.

The other extreme is to select facts without knowledge about the receivers (using only
local knowledge). Thus, criteria have to be developed to decide—without any hints
on the prover that receives it—whether a fact i s useful i n general. I n [DF96] such
kinds of referees that mainly use retrospective views on the results to choose from are
introduced. Considering the results mentioned in [DF96] i t is possible to gain efficiency
with this technique in spite of the fact that only vague criteria are employed. Moreover,
a main advantage is that only one selection of facts of a sender is necessary to determine
the facts that should be sent to all other provers. Therefore, for each prover only one
referee has to be employed and hence the overhead caused by the cooperation phases
is rather small. Furthermore, the amount of t ime for the selection does not depend
on the number of agents in the cooperating system. Thus, increasing the number of
cooperating agents does not decrease the efficiency. As we will see later, however, this
technique is sometimes too primitive. Especially i f the receiving provers need only a
few facts to conclude the proof, an individual selection for each receiver is sensible.
The easiest method to extend local knowledge is to employ at least knowledge about
the search strategy of each receiving prover. In the area of generating provers that
means its heuristic. In [DF96] a referee is introduced which selects facts for a receiving
prover considering its heuristic. As we will see later, the knowledge about the heuristic
of the receiver enables a referee to estimate which consequences the integration of
a fact into the system of the receiver might have. Thus, the quality of facts could
sometimes be better estimated in comparison to the restriction of local knowledge.
But note that employing knowledge about the heuristic of the receiver requires n — 1
selection processes (i f we have n provers), whereas only one selection was necessary
before. Hence, we need n — 1 referees for each prover and the number of selections of
each agent increases linearly with the number of receiving agents.
The second possibility to extend local knowledge is to utilize knowledge about the
current needs of each receiver thus adding a demand driven touch to the system. If
a referee is able to utilize such kind of knowledge its task of selecting facts could be
strongly simplified. But as we have already discussed the problem occurs that the
referee must on the one hand know the system of the sender to select facts from it.
On the other hand he must know the system of the receiver in order to recognize the
current needs of i t . Because of the fact that i t is impossible to evaluate the complete
systems of sender and receiver at a central point (due to the communication overhead)
the following change of the architecture might be sensible to overcome the problem:
At first, a send-referee could select some facts that seem to be important in general.
(Note that local knowledge about the quality of facts is always available.) Thus, the
probability is rather high that important facts are among them. After the transmission
of this usually quite small set of facts (in comparison to a complete system of facts of
a prover) to the receiver, the work of an individual receive-referee starts. This referee
selects from the facts chosen from the send-referee those that seem to be useful w.r.t.
the receiving prover’s system. Thus, only one receive- and one send-referee is needed

8 3 THE CLCH APPROACH

for each agent, i.e. the number of referees of each prover does not depend linearly from
the number of agents. Moreover, the integration of knowledge about the individual
needs of a prover is not paid for by a high amount of communication. This is due to

the fact that not a complete system of facts is send to the receivers but only some facts
selected from the send-referee. Nevertheless, the costs for selecting facts are higher
in comparison to the costs necessary when employing local knowledge: We need two
selection processes whereas we only needed one before.

Finally, it is possible to combine the two methods described previously and to employ
beyond local knowledge, both, knowledge about the heuristic and the curtent needs of
a receiver. In analogy to before we have to split the selection process into two ones
and employ send-referees as well as receive-referees. Each send-referee is responsible
to select some facts that are to be transmitted to a receive-referee. Since we want to
employ knowledge about the heuristic of the receiver, we need n - 1 send-referees for
each prover. The output of send-referee i is then: input of the receive-referee of prover i.
The set of facts selected by each send-referee contains a common subset of facts selected
due to local knowledge extended with facts selected individually for each receiver. The
receive-referee of each prover selects-as we have seen before-from the facts received
from all send-referees such facts that seem to be useful w.r.t. the current system of
facts of the receiver. In order to accomplish its task it employs knowledge about the
current needs of the receiver. This kind of selection entails the highest costs: we have
to employ n - 1 send-referees for each prover, i.e. the number of selections depends on
the number of provers. Moreover, we need two selections until facts can be integrated
into the systems of the receivers. But note that by utilizing this technique very much
knowledge about the receiving provers can be incorporated into the selection process,
without much amount of communication. So, this is also a combination of· success
driven and demand driven cooperation.

3.1.2 System architecture

Figure 1 depicts the architecture of a system employing CLCH (for the case of three
cooperating provers). The figure presents the most general architecture, i.e. the archi­
tecture where the most knowledge can be integrated in. As one can recognize we have
at each sender individual send-referees for each receiver. These referees select on the
one hand for each receiver facts w.r.t. its heuristic. On the other hand they can send
common facts selected according to local knowledge to the receiving provers. Each
prover is associated with a receive-referee which filters facts from the data received
from the send-referees of the other provers.

The dotted lines in figure 1 suggest that the architecture can be simplified if the referees
fall back on less knowledge: On the one hand it is possible to constrict different send­
referees horizontally (from the point of view of one prover). Thus, we employ only one
send-referee instead of n - 1 ones (in the case of n provers) and can only select facts
according· to local knowledge. In such a case the output of the send-referee is sent to
all other provers in the system. A vertical constriction is possible, too. (Constriction
of receive- and send-referee.) As we have discussed before, however, it is only possible
to constrict different referees to one that is working at the sender site: Due to the high
communication amount it is unwise to send the whole system of facts of the sender to

8 3 THE CLCH APPROACH

for each agent, i.e. the number of referees of each prover does not depend linearly from
the number of agents. Moreover, the integration of knowledge about the individual
needs o f a prover i s not paid for by a high amount o f communication. Th i s i s due t o
the fact that not a complete system of facts is send to the receivers but only some facts
selected from the send-referee. Nevertheless, the costs for selecting facts are higher
in comparison to the costs necessary when employing local knowledge: We need two
selection processes whereas we only needed one before.
Finally, i t is possible to combine the two methods described previously and to employ
beyond local knowledge, both, knowledge about the heuristic and the current needs of
a receiver. In analogy to before we have t o split the selection process into two ones
and employ send-referees as well as receive-referees. Each send-referee is responsible
to select some facts that are to be transmitted to a receive-referee. Since we want to
employ knowledge about the heuristic of the receiver, we need n — 1 send-referees for
each prover. The output of send-referee 7 is then input of the receive-referee of prover 2.
The set of facts selected by each send-referee contains a common subset of facts selected
due to local knowledge extended with facts selected individually for each receiver. The
receive-referee of each prover selects—as we have seen before—from the facts received
from all send-referees such facts that seem to be useful w.r.t. the current system of
facts of the receiver. In order to accomplish its task i t employs knowledge about the
current needs of the receiver. This kind of selection entails the highest costs: we have
to employ n — 1 send-referees for each prover, i.e. the number of selections depends on
the number of provers. Moreover, we need two selections until facts can be integrated
into the systems of the receivers. But note that by utilizing this technique very much
knowledge about the receiving provers can be incorporated into the selection process,
without much amount of communication. So, this is also a combination of success
driven and demand driven cooperation.

3.1.2 System architecture

Figure 1 depicts the architecture of a system employing CLCH (for the case of three
cooperating provers). The figure presents the most general architecture, i.e. the archi-
tecture where the most knowledge can be integrated in. As one can recognize we have
at each sender individual send-referees for each receiver. These referees select on the
one hand for each receiver facts w.r.t. its heuristic. On the other hand they can send
common facts selected according to local knowledge to the receiving provers. Each
prover is associated with a receive-referee which filters facts from the data received
from the send-referees of the other provers.
The dotted lines in figure 1 suggest that the architecture can be simplified i f the referees
fall back on less knowledge: On the one hand it is possible to constrict different send-
referees horizontally (from the point of view of one prover). Thus, we employ only one
send-referee instead of n — 1 ones (in the case of n provers) and can only select facts
according: to local knowledge. I n such a case the output of the send-referee is sent to
all other provers i n the system. A vertical constriction is possible, too. (Constriction
of receive- and send-referee.) As we have discussed before, however, i t is only possible
to constrict different referees to one that is working at the sender site: Due to the high
communication amount i t is unwise to send the whole system of facts of the sender to

3.1 The general concept 9

Figure 1: Coupling three heuristics with the CLCH-approach

the receive-referee. Furthermore, the selection functions of receive-referees are quite
time-consuming because of the fact that they consider the needs of their associated
provers (see below). Therefore, receive-referees should not be applied to a large set of
facts. If we want to perform a vertical constriction we must hence resign the receive­
referees.

Since different architecture models exist the question arises which architecture is the
most suitable in a certain situation. Obviously, the question cannot be answered in
general. Nevertheless, we want to give a few hints on this issue: If very good heuristics
work in the network of cooperating provers-e.g. heuristics which fall back on learned
knowledge-it is very probable that they already generate a lot of facts that contribute
to a proof and need only a few additional facts to conclude it. This way, the referees can
select from a set of facts that contains many facts well-suited for the problem. Hence,
in such a situation it might be the right way to take the heuristic of the receiver into
account and to select such facts that the receiver will not activate by itself due to its
search strategy. Because it is sensible to employ only local knowledge and knowledge
about the strategy of the receiver, we can resign the receive-referees and hence select
facts more efficiently.

It is often the case, however, that only heuristics cooperate with each other that employ
very simple syntactic criteria. In such a situation each prover usuallY generates.a lot
of facts that do not contribute to a proof. Hence, we have to choose from a set of

3.1 The general concept 9

H ı

Hs

Figure 1: Coupling three heuristics with the CLCH-approach

t he receive-referee. Furthermore, the select ion functions of receive-referees are quite
time-consuming because of the fact that they consider the needs of their associated
provers (see below). Therefore, receive-referees should not be applied to a large set of
facts. If we want to perform a vertical constriction we must hence resign the receive-
referees.

Since different architecture models exist the question arises which architecture is the
most suitable i n a certain situation. Obviously, the question cannot be answered i n
general. Nevertheless, we want to give a few hints on this issue: If very good heuristics
work in the network of cooperating provers—e.g. heuristics which fall back on learned
knowledge—it is very probable that they already generate a lot of facts that contribute
t o a proof and need only a few additional facts to conclude i t . This way, the referees can
select from a set of facts that contains many facts well-suited for the problem. Hence,
i n such a situation i t might be the right way to take the heuristic of the receiver into
account and to select such facts that the receiver wi l l not activate by itself due to i ts
search strategy. Because i t is sensible to employ only local knowledge and knowledge
about the strategy of the receiver, we can resign the receive-referees and hence select
facts more efficiently.

I t is often the case, however, that only heuristics cooperate wi th each other that employ
very simple syntactic criteria. In such a situation each prover usually generates.a lot
of facts that do not contribute to a proof. Hence, we have to choose from a set of

10 3 THE CLCH APPROACH

facts that contains a lot of unnecessary facts. Thus, it is reasonable to employ as
much knowledge as possible in the selection process, even if we have to spend more
time for the selection of good facts. Therefore we must employ both, send- and receive­
referees. Send-referees are necessary in order to employ local knowledge and knowledge
about the heuristic of the receivers. The use of receive-referees is sensible because they
consider the current needs of their associated provers. All in all we can say that the
quality of heuristics has to decide which kinds of knowledge we have to integrate into
the referees.

3.1.3 Implementational aspects

In order to implement a system based on the CLCH approach two design decisions
have to be made, namely how to couple referees and pravers and how to organize
communication between the provers. For both decisions there are two alternatives.

Referees can be integrated into the proveI' thus creating an agent with different roles or
they can be realized as external referees which means as separate processes. Applying
the role concept, proveI' and referee are not separated physically but both are part of
the same process and operate on shared memory (internal referee). Since the process is
only allowed to play one role at a time access conflicts cannot occur. Such an approach
facilitates the development of referees because it is possible to have access to internal
data of the prover. If the selection process is split into two different ones, i.e. we use
both receive-referee and send-referee for each agent, at least the receive-referee must be
implemented as an internal one: This referee has to access internal data of the proveI'
because it selects facts w.r.t. the current system of facts.

External referees are of interest if the CLCH approach should be integrated into al­
ready existing provers without much implementation effort. Realizing the referees as
separate processes, possibly using the standard output of the proveI' as input, does not
require many changes within the prover (which would be the case when choosing the
other alternative). But note that this limits the amount of internal data of the proveI'
the referees have access to. Therefore, external referees should only be employed if we
implement send-referees. Since we have developed theorem proveI' and referees simul­
taneously or integrated program code into an available proveI' we have chosen the first
alternative.

There are two different realizations of communication, namely asynchronous and syn­
chronous communication. When employing asynchronous communication each process
(or proveI' in our case) is allowed to initiate communication at any time by interrupting
the receiving process. Synchronous communication is only possible if all communicat­
ing processes have reached an internal status in which they are willing to communicate.
Since the CLCH approach favors communication at fixed moments (i.e. during the co­
operation phases) one should choose synchronous communication.

3.2 Criteria for Referees

The quality of the referees influences heavily whether cooperation between the provers
really takes place or not. Bad referees, i.e. referees that select only facts that will not

10 3 THE CLCH APPROACH

facts that contains a lot of unnecessary facts. Thus, i t is reasonable to employ as
much knowledge as possible in the selection process, even i f we have to spend more
time for the selection of good facts. Therefore we must employ both, send- and receive-
referees. Send-referees are necessary in order to employ local knowledge and knowledge
about the heuristic of the receivers. The use of receive-referees is sensible because they
consider the current needs of their associated provers. Al l in all we can say that the
quality of heuristics has to decide which kinds of knowledge we have to integrate into
the referees.

3.1.3 Implementational aspects

In order to implement a system based on the CLCH approach two design decisions
have to be made, namely how to couple referees and provers and how to organize
communication between the provers. For both decisions there are two alternatives.
Referees can be integrated into the prover thus creating an agent with different roles or
they can be realized as external referees which means as separate processes. Applying
the role concept, prover and referee are not separated physically but both are part of
the same process and operate on shared memory (internal referee). Since the process is
only allowed to play one role at a time access conflicts cannot occur. Such an approach
facilitates the development of referees because i t is possible to have access to internal
data of the prover. I f the selection process is split into two different ones, i.e. we use
both receive-referee and send-referee for each agent, at least the receive-referee must be
implemented as an internal one: This referee has to access internal data of the prover
because i t selects facts w.r.t. the current system of facts.
External referees are of interest i f the CLCH approach should be integrated into al-
ready existing provers without much implementation effort. Realizing the referees as
separate processes, possibly using the standard output of the prover as input, does not
require many changes within the prover (which would be the case when choosing the
other alternative). But note that this limits the amount of internal data of the prover
the referees have access to. Therefore, external referees should only be employed i f we
implement send-referees. Since we have developed theorem prover and referees simul-
taneously or integrated program code into an available prover we have chosen the first
alternative.
There are two different realizations of communication, namely asynchronous and syn-
chronous communication. When employing asynchronous communication each process
(or prover i n our case) is allowed to initiate communication at any time by interrupting
the receiving process. Synchronous communication is only possible i f all communicat-
ing processes have reached an internal status i n which they are willing to communicate.
Since t he CLCH approach favors communication at fixed moments (i .e . dur ing the co-
operation phases) one should choose synchronous communication.

3 .2 Criteria for Referees

The. quality of the referees influences heavily whether cooperation between the provers
really takes place or not. Bad referees, i.e. referees that select only facts that wi l l not

3.2 Criteria for Referees 11

contribute to a proof of a given problem, are only an additional obstacle for the provers
that receive their selected facts. This is due to the fact that all the received facts have
to be integrated into the data base of a prover (which requires some computational
effort) and then these facts can cause additional efforts in many further computations.
Additionally, unnecessary facts produce more unnecessary facts.

On the other side good referees will select at least some facts that contribute to a
proof of a given problem. If these facts are not already in the data base of a receiving
prover then the search process of this prover may lead to a success faster. Especially, if
received facts would be generated very late by the heuristic of a receiving prover, then
a substantial speed-up of the search is achieved.

All kinds of referees employ a selection function <p for the selection of facts. <p can
employ several judgement functions VJl,' .. ,VJn in order to select facts. These functions
VJi associate, a natural number with each fact A which is considered in such a way that
a fact is the better the higher the value ~i(A) is. <p selects eventually the facts with
the best judgement. There are several possibilities how the judgements of n judgement
functions VJl' ... ,~n can be combined. It is possible, e.g., to construe one judgement
function VJ employing the functions VJll' .. ,VJn. In our experiments, however, we used
either only one of the functions or selected via each function ~i a certain percentage Pi
of facts.

In the sequel we present different concepts of referees. The main topic that we inves­
tigate is how to develop judgement functions, i.e. how to measure the quality of facts
deduced from a prover. To this end, we demonstrate different ways in order to define
the term "quality" if different kinds of knowledge are utilized. In order to describe
different concepts of referees we distinguish between send- and receive-referees: Send­
referees employ either local knowledge or knowledge about the heuristic of the receiver
(its identity) and select facts from the system of the sender immediately. These facts
are either filtered again (by receive-referees) or directly integrated into the systems
of the receiving provers. Receive-referees use knowledge about the current needs of
their associated prover that uses the current search state of the prover. The input of a
receive-referee are facts filtered by send-referees of all sending provers.

3.2.1 Send-Referees

As we have discussed before each sender is assigned either one send-referee whose output
is send to all other provers (if we employ local knowledge) or individual referees for each
receiving prover (if we employ additionally knowledge about the receiver's heuristic).
Independently from the knowledge integrated into the send-referee its selection follows
certain fixed principles: A send-referee in a system based on the CLCH approach
consists of a pair (S, <p) of a filter predicate S and a selection function <po The prover
that receives the results of the send-referee will get those facts in the cooperation
phases that pass through the filter and that are among the m selected facts (so, m is
a parameter limiting the amount of facts that can be passed between the provers).

The filter predicate S, that is typically a conjunction of several conditions, is used to
limit the set of facts that are eligible for transmission to other provers. Only facts A
with S(A) = true pass through this filter (so, no numerical evaluation is involved).

3.2 Criteria for Referees 11

contribute to a proof of a given problem, are only an additional obstacle for the provers
that receive their selected facts. This is due to the fact that all the received facts have
to be integrated into the data base of a prover (which requires some computational
effort) and then these facts can cause additional efforts in many further computations.
Additionally, unnecessary facts produce more unnecessary facts.
On the other side good referees will select at least some facts that contribute to a
proof of a given problem. If these facts are not already in the data base of a receiving
prover then the search process of th is prover may lead to a success faster. Especially, i f
received facts would be generated very late by the heuristic of a receiving prover, then
a substantial speed-up of the searchi s achieved.
Al l kinds of referees employ a selection function ¢ for the selection of facts. ¢ can
employ several judgement functions t , . . . , ¥ , in order to select facts. These functions
1; associatea natural number with each fact A which is considered in such a way that
a fact is the better the higher the value (A) is. ¢ selects eventually the facts with
the best judgement. There are several possibilities how the judgements of n judgement
functions t , . . . ,% , can be combined. I t is possible, e.g., to construe one judgement
function ¢¥ employing the functions 4 , . . . ,% , . In our experiments, however, we used
either only one of the functions or selected via each function 3 ; a certain percentage p;
of facts.
In the sequel we present different concepts of referees. The main topic that we inves-
tigate is how to develop judgement functions, i.e. how to measure the quality of facts
deduced from a prover. To this end, we demonstrate different ways in order to define
the term “quality” i f different kinds of knowledge are utilized. In order to describe
different concepts of referees we distinguish between send- and receive-referees: Send-
referees employ either local knowledge or knowledge about the heuristic of the receiver
(its identity) and select facts from the system of the sender immediately. These facts
are either filtered again (by receive-referees) or directly integrated into the systems
of the receiving provers. Receive-referees use knowledge about the current needs of
their associated prover that uses the current search state of the prover. The input of a
receive-referee are facts filtered by send-referees of all sending provers.

3 .2 .1 Send-Referees

As we have discussed before each sender is assigned either one send-referee whose output
is send to al l other provers (i f we employ local knowledge) or individual referees for each
receiving prover (i f we employ additionally knowledge about the receiver’s heuristic).
Independently from the knowledge integrated into the send-referee its selection follows
certain fixed principles: A send-referee in a system based on the CLCH approach
consists of a pair (S,w) of a filter predicate S and a selection function . The prover
that receives the results of the send-referee wi l l get those facts i n the cooperation
phases that pass through the filter and that are among the m selected facts (so, m is
a parameter l imi t ing the amount of facts that can be passed between the provers).
The filter predicate 5 , that is typically a conjunction of several conditions, is used t o
limit the set of facts that are eligible for transmission to other provers. Only facts A
wi th S(A) = t rue pass through this filter (so, no numerical evaluation is involved).

12 3 THE CLCH APPROACH

Typically, facts are filtered out that are (thought of as) redundant (with respect to the
receiving provers). Redundant facts are all axioms and all facts that were selected in
previous cooperation phases. But S can also be used to reduce the set of facts <.p can
select from even more, e.g. by filtering out all facts that were not generated since the
last cooperation phase. Computing S (,\) for a fact ,\ should be easy and fast in order
to allow more complex (and time consuming) computations for rp.
The selection function rp is used to choose among the facts that passed S. As we have
mentioned before, <.p can employ several judgement functions 7/Jl, . .. ,7/Jn in order to
select facts. The different kinds of knowledge a send-referee utilizes are determined
by the judgement functions. If we have only judgement functions that fall back on
local knowledge also the selection is only performed due to local knowledge. Hence
we need only one send-referee. If only judgement functions are available that employ
knowledge about the heuristic of the receiver we need n - 1 send-referees (if we have n

provers) and each of the referees uses individual judgement functions. Usually we will
have both, judgement functions employing local knowledge and judgement functions
using knowledge about the receiving prover's heuristic. In such a case we need n - 1 I'

send-referees, too, but have to perform the judgement according to local knowledge
only once for all referees.
Finally, we have to deal with the question how to realize judgement functions, i.e. how
to measure the quality of facts. We distinguish between functions founding on different
kinds of knowledge:
If we select facts according to local knowledge the principle consideration is to define
the quality of a fact according to the success of this fact recorded by the prover that
generated it. Then, the quality of a fact is determined by its history during the proof
attempt so far. This means that all inferences the fact was part of should he considered
when developing a measure for the quality of a fact. Note that by means of such a ret­
rospective view on the performed inferences it is possible to use a posteriori knowledge
whereas typical search-guiding heuristics are only able to utilize a priori knowledge.
Nevertheless, often some syntactical properties determine the quality a fact has had
during the deduction process (see below).
We have developed two types of judgement functions considering this definition of
quality, namely functions 7/Js and 7/Ja. Judgement functions of the type 7/Js (statistical
referee) use only retrospective criteria for measuring a fact, namely a weighted sum
of the numbers of inferences a fact was involved in. The general idea is that facts
that are good in one prover (according to this statistical data) will also be good in
other provers and therefore should be transmitted to them. 7/Js counts the performed
inferences during the inference process.
Functions of type 7/Ja, however, try to estimate whether a fact will behave well or
badly with the help of syntactical criteria. More exactly, they try to estimate how
often a fact will be involved in "good" inferences, like subsumption of other facts, and
"bad" inferences. Therefore, they measure mainly the generality of a fact because
general facts are possibly often involved in good inferences and seldom involved in bad
inferences.
If we fall back on knowledge about the heuristic of the receiver "quality" has to be
defined in another way: From the point of view of a prover that receives facts the

12 3 THE CLCH APPROACH

Typically, facts are filtered out that are (thought of as) redundant (wi th respect to the
receiving provers). Redundant facts are all axioms and all facts that were selected in
previous cooperation phases. But S can also be used to reduce the set of facts ¢ can
select from even more, e.g. by filtering out all facts that were not generated since the
last cooperation phase. Computing S(A) for a fact A should be easy and fast in order
to allow more complex (and time consuming) computations for ¢ .

The select ion funct ion ¢ i s used to choose among the facts that passed S . As we have
mentioned before, ¢ can employ several judgement functions # , . . . ,% , i n order to
select facts. The different kinds of knowledge a send-referee utilizes are determined
by the judgement functions. If we have only judgement functions that fall back on
local knowledge also the selection is only performed due to local knowledge. Hence
we need only one send-referee. If only judgement functions are available that employ
knowledge about the heuristic of the receiver we need n — 1 send-referees (i f we have n
provers) and each of the referees uses individual judgement functions. Usually we will
have both, judgement functions employing local knowledge and judgement functions
using knowledge about the receiving prover’s heuristic. In such a case we need n — 1
send-referees, too , bu t have to perform the judgement according to local knowledge
only once for all referees.
Finally, we have to deal with the question how to realize judgement functions, i.e. how
to measure the quality of facts. We distinguish between functions founding on different
kinds of knowledge:
If we select facts according to local knowledge the principle consideration is to define
the quality of a fact according to the success of this fact recorded by the prover that
generated i t . Then, the quality of a fact is determined by its history during the proof
attempt so far. This means that all inferences the fact was part of should be considered
when developing a measure for the quality of a fact. Note that by means of such a ret-
rospective view on the performed inferences i t is possible to use a posteriori knowledge
whereas typical search-guiding heuristics are only able to utilize a priori knowledge.
Nevertheless, often some syntact ical propert ies determine the quality a fact has had
during the deduction process (see below).
We have developed two types of judgement functions considering this definition of
quality, namely functions ws and wg. Judgement functions of the type ws (statistical
referee) use only retrospective criteria for measuring a fact, namely a weighted sum
of the numbers of inferences a fact was involved i n . The general idea i s that facts
that are good in one prover (according to this statistical data) will also be good in
other provers and therefore should be transmitted to them. ws counts the performed
inferences during the inference process.
Functions of type wc, however, t ry to estimate whether a fact wi l l behave well or
badly with the help of syntactical criteria. More exactly, they try to estimate how
often a fact will be involved i n “good” inferences, like subsumption of other facts, and
“bad” inferences. Therefore, they measure mainly the generality of a fact because
general facts are possibly often involved in good inferences and seldom involved in bad
inferences.
I f we fall back on knowledge about the heuristic of the receiver “quality” has to be
defined in another way: From the point of view of a prover that receives facts the

3.2 Criteria for Referees 13

quality of a fact is determined by the effects this fact will have on the future search
process. Therefore, it is at first important that the receiver has not activated the fact
itself which would render the information useless. Moreover, if descendents of this
fact are never activated and if also no other facts are subsumed by it, this fact is
also definitely useless. Therefore, it is sensible to choose facts whose descendants are
possibly activated by the receiver.

The knowledge about the heuristic of the receiver can be helpful in order to estimate
this. We have developed the type of functions 'l/JH ("heuristic") considering this defini­
tion of quality. The idea of 'l/JH is to use the selection heuristic of the receiving praver
(that also computes a measure of a fact) as main part of the judgement functions.
Facts that are preferred by the receiving prover will also be preferred by the judgement
function. If the heuristics of the receiving prover and the prover generating the facts
differ very much the receiving prover has often not already generated the selected facts
on its own.

But in general functions of type 'l/JH have the problem that many selected facts were
already generated by the receiving prover. One way to overcome this problem is a
retrospective view, again, by looking at the ancestors of a fact. If the fact is fairly well­
suited with respect to the heuristic of the receiving prover but there are ancestors of it
that are not, then it is not very likely that the fact has already been generated by the
receiving prover. Consider for example the fact A that is inferred by the sender using a
certain inference chain T. Let the facts involved in this chain be AI, ... ,An == A. Since
the sender was able to perform this inference chain we can assume that all of these facts
have a small weight according to the sender heuristic. If A has also a small weight w.r.t.
the heuristic of the receiver (HR) it is possibly well-suited for it. If the heuristics of the
sender and the receiver differ from each other the following phenomenon can occur: If
there are facts Ai, 1 :::; i < n, that have a high weight according to HR, these facts are
not preferred by HR and the receiver is hence not able to perform the inference chain
by itself. Therefore it is possible that the fact A is really new for it, although A has a
small weight according to HR.
It is to be emphasized that such a criterion can only be employed by a send-referee
that has access to internal data of a sending prover. It is impossible for a referee
that is working at the receiver site to select facts with this criterion: In order to
employ it, it would be necessary to know not only the facts to choose from but also the
inference chains the facts were derived with. But sending of the information on both,
facts and inference chains, is practicably impossible due to the enormous amount of
communication involved.

3.2.2 Receive-Referees

Knowledge about the possible needs of the receiving provers can be integrated into
receive-referees. They select from the facts they receive from the send-referees of
the other provers some facts that are then immediately integrated into the system
of their associated prover. The main advantage of receive-referees in' comparison to
send-referees is that they have access to internal data of the receiver, more exactly to
the system of active and passive facts. Furthermore, they must only select facts from

3.2 Criteria for Referees 13

quality of a fact is determined by the effects this fact will have on the future search
process. Therefore, i t is at first important that the receiver has not activated the fact
itself which would render the information useless. Moreover, i f descendents of this
fact are never activated and i f also no other facts are subsumed by i t , this fact is
also definitely useless. Therefore, i t i s sensible t o choose facts whose descendants are
possibly activated by the receiver.
The knowledge about the heuristic of the receiver can be helpful in order to estimate
this. We have developedthe type of functions j r (“heuristic”) considering this defini-
tion of quality. The idea of 1g is to use the selection heuristic of the receiving prover
(that also computes a measure of a fact) as main part of the judgement functions.
Facts that are preferred by the receiving prover will also be preferred by the judgement
function. If the heuristics of the receiving prover and the prover generating the facts
differ very much the receiving prover has often not already generated the selected facts
on i ts own.
But in general functions of type %y have the problem that many selected facts were
already generated by the receiving prover. One way to overcome this problem is a
retrospective view, again, by looking at the ancestors of a fact. If the fact is fairly well-
suited with respect to the heuristic of the receiving prover but there are ancestors of i t
that are not, then i t is not very likely that the fact has already been generated by the
receiving prover. Consider for example the fact A that is inferred by the sender using a
certain inference chain Z. Let the facts involved i n this chain be A1,. . . , An = A. Since
the sender was able to perform this inference chain we can assume that all of these facts
have a small weight according to the sender heuristic. I f A has also a small weight w.r.t.
the heuristic of the receiver (Hg) i t is possibly well-suited for i t . If the heuristics of the
sender and the receiver differ from each other the following phenomenon can occur: If

‘there are facts A;, 1 <1 < n , that have a high weight according to Hp, these facts are
not preferred by Hg and the receiver is hence not able to perform the inference chain
by itself. Therefore i t is possible that the fact A is really new for i t , although A has a
small weight according to Hp.
I t is to be emphasized that such a criterion can only be employed by a send-referee
that has access to internal data of a sending prover. I t is impossible for a referee
that is working at the receiver site to select facts with this criterion: In order to
employ i t , i t would be necessary to know not only the facts to choose from but also the
inference chains the facts were derived with. But sending of the information on both,
facts and inference chains, is practicably impossible due to the enormous amount of
communication involved.

3 .2 .2 Recelve-Referees

Knowledge about the possible needs of the receiving provers can be integrated into
receive-referees. They select from the facts they receive from the send-referees of
the other provers some facts that are then immediately integrated into the system
of the i r associated prover. The main advantage of receive-referees i n ‘ comparison t o
send-referees is that they have access to internal data of the receiver, more exactly to
the system of active and passive facts. Furthermore, they must only select facts from

14 3 THE CLCH APPROACH

the set of facts they have received from the send-referees of other provers. Thus, they
have to choose from a small set of facts and can therefore employ more sophisticated
(and time-consuming) criteria than a send-referee. Nevertheless, the knowledge about
the system of the receiver is somewhat limited and can only facilitate the selection a
little bit. (In order to go beyond the limitation for each fact the whole future proof
and the role of the fact ~n it has to be computed, which is not feasible.) Since the
receive-referee is only able to estimate which consequences the integration of certain
facts will have we must employ heuristic criteria again. Therefore, even the selection
of a receive-referee might be insufficient in some cases.

In general there are two main principles how receive-referees could be designed leading
to t'wo kinds of judgement functions. We will only sketch their functionality here and
describe them in more detail in section 3.4.2. Functions belonging to the first class 'l/JSG
(subgoal referee) judge facts with respect to their ability to contribute to the solution
of certain (sub-) goals. Functions belonging to the second class 'l/Ju (usefulness referee)
measure the usefulness of facts w.r.t. the inference process starting from the current
system of facts of the receiver. The first principle means that a receive-referee should
select facts that are in such a way similar to certain (sub-)goals that they are necessary
to solve them. Since it is not the task of a receive-referee to perform inferences by itself
simple criteria have to be found, how it can be estimated a priori if a fact contributes
to the solution of a certain (sub-)goal. Facts which are judged with a positive value
according to the second class of judgement functions should have positive influences on
the inference process starting from the current system of facts. Such positive influences
could be, e.g., that such facts are in future often used for subsuming other ones.

In order to select facts functions of both kinds could be used to construe one judgement
function. The receive-referee could then employ this function for the selection of facts.
In our experiments, however, we let one function from each kind select a certain number
of facts. The result of the receive-referee then was the union of both sets.

In the following section we will compare the CLCH approach with the TEAMWORK

method that is also a success driven cooperation concept. Then we will instantiate our
CLCH approach in two different areas: On the one hand we instantiate CLCH for the
case of a condensed detachment prover. The resulting prover DICoDE can also work
in a TEAMWORK modus and allows us to compare the two concepts empirically. In
order to show that existing provers can easily be coupled with the CLCH approach we
employ it on the other hand to couple different incarnations of the superposition based
theorem prover SPASS, that was neither developed nor implemented in our group.

3.3 The TEAMWORK method

There are several similarities between the CLCH approach and the TEAMWORK method
([De95]), but also several differences that result in a different behavior of systems based
on these cooperation (and distribution) concepts. In the following we will give a short
introduction to the TEAMWORK method guided by the similarities and differences to
the CLCH approach.

The TEAMWORK method is also a multi-agent approach but in addition to the two
types of agents of the CLCH approach (provers and referees) there are two more types,

14 3 THE CLCH APPROACH

the set of facts they have received from the send-referees of other provers. Thus, they
have to choose from a small set of facts and can therefore employ more sophisticated
(and time-consuming) criteria than a send-referee. Nevertheless, the knowledge about
the system of the receiver is somewhat l imited and can only facilitate the selection a
l i t t le b i t . (In order to go beyond the l imitation for each fact the whole future proof
and the role of the fact in i t has to be computed, which is not feasible.) Since the
receive-referee is only able to estimate which consequences the integration of certain
facts wil l have we must employ heuristic criteria again. Therefore, even the selection
of a receive-referee might be insufficient in some cases.
I n general there are two main principles how receive-referees could be designed leading
to two kinds of judgement functions. We will only sketch their functionality here and
describe them i n more detail i n section 3.4.2. Functions belonging to the first class sg
(subgoal referee) judge facts with respect to their ability to contribute to the solution
of certain (sub-)goals. Functions belonging to the second class py (usefulness referee)
measure the usefulness of facts w.r.t. the inference process starting from the current
system of facts of the receiver. The first principle means that a receive-referee should
select facts that are in such a way similar to certain (sub-)goals that they are necessary
to solve them. Since i t is not the task of a receive-referee to perform inferences by itself
simple criteria have to be found, how i t can be estimated a priori i f a fact contributes
to the solution of a certain (sub-)goal. Facts which are judged with a positive value
according to the second class of judgement functions should have positive influences on
the inference process starting from the current system of facts. Such positive influences
could be, e.g., that such facts are in future often used for subsuming other ones.
In order to select facts functions of both kinds could be used to construe one judgement
function. The receive-referee could then employ this function for the selection of facts.
In our experiments, however, we let one function from each kind select a certain number
of facts. The result of the receive-referee then was the union of both sets.
I n the following section we will compare the CLCH approach wi th the TEAMWORK
method that is also a success driven cooperation concept. Then we will instantiate our
CLCH approach in two different areas: On the one hand we instantiate CLCH for the
case of a condensed detachment prover. The resulting prover DICODE can also work
in a TEAMWORK modus and allows us to compare the two concepts empirically. In
order to show that existing provers can easily be coupled with the CLCH approach we
employ i t on the other hand to couple different incarnations of the superposition based
theorem prover SPASS, that was neither developed nor implemented in our group.

3 .3 The TEAMWORK method

There are several similarities between the CLCH approach and the TEAMWORK method
([De95]), but also several differences that result in a different behavior of systems based
on these cooperation (and distribution) concepts. In the following we will give a short
introduction to the TEAMWORK method guided by the similarities and differences to
the CLCH approach.
The TEAMWORK method is also a multi-agent approach but i n addition to the two
types of agents of the CLCH approach (provers and referees) there are two more types,

3.3 The TEAMWORK method 15

namely a supervisor and specialists. Provers (that are called experts in TEAMWORK)
and specialists work independently from each other for certain periods of time, each
agent on its own computing node (similar to the CLCH approach). Experts use the
same calculus but different selection heuristics while specialists may employ any (cor­
rect) means to generate new facts and can perform administrative tasks for the super­
visor (which is the central control of a TEAMwORK-based system), too. One supervisor'
and several experts and specialists, each of them associated with a referee, form a team.

Similarly to the CLCH approach there is a cooperation phase at the end of each working
phase that is called a team meeting. At the beginning of a team meeting each expert
and specialist is judged by a referee that computes a measure of success indicating
how good the work of its expert/specialist during the last working phase was and that
selects outstanding facts. Only the second task is similar to the tasks of a referee in
the CLCH approach.

In the second part of a team meeting the supervisor is active. It controls and plans
the whole search process of the team of agents. It generates out of the data base
of the expert with the best measure of success and the selected facts of the other
experts/specialists a new start data base that is broadcast to all other computing
nodes. The supervisor also selects the members of the team of the next working phase
using a long-term memory about agents and domains of interest, with plan skeletons
for good t~ams, and a short-term memory with data about the actual proof attempt.
The detection of the domain of an example is done by specialists (see [DK96]). By
exchanging experts/specialists with bad performance for other ones the supervisor is
able to adapt the whole team to the given proof problem. Finally, the supervisor
determines the length of the next working phase.

The main differences between the TEAMWORK method and the CLCH approach are
as follows: TEAMWORK employs a flexible but centralized control by the supervisor
whereas in the CLCH approach fixed teams without central control are used. Further­
more, the referee tasks differ: In TEAMWORK they are oriented on the "survival of the
fittest" principle whereas in CLCH the judgement orients on the individual receivers
(adding demand driven features) and thus is very flexible.

The centralized control with the competition of the experts and the adaptation of the
team to the given problem is an advantage of TEAMWORK (over the CLCH approach).
Since all agents start each working phase with the same (hopefully most advanced)
data base it is possible in a TEAMWORK-based system to use very specialized selection
heuristics that usually cannot find a proof in a bottom up manner but can lead to
a proof very fast if they can start with an appropriate data base provided by other
experts (see [DS96a] for an analysis of the synergetic effects of TEAMWORK). Due to
the referees the useless results of these heuristics are forgotten. But in spite of these
advantages there still are some disadvantages resulting from complex implementations
that require a secure broadcast, the realization of the components as roles of an agent,
and many additional configuration and data files for the planning process. In contrast,
the CLCH approach is easy to implement and does not require many changes of an
a.lready existing generating theorem prover. Additionally, a system using the CLCH
approach is guaranteed to be able to withstand the loss of a computing node (by using

3.3 The TEAMWORK method 15

namely a supervisor and specialists. Provers (that are called ezperts in TEAMWORK)
and specialists work independently from each other for certain periods of time, each
agent on its own computing node (similar to the CLCH approach). Experts use the
same calculus but different selection heuristics while specialists may employ any (cor-
rect) means to generate new facts and can perform administrative tasks for the super-
visor (which is the central control of a TEAMWORK-based system), too. One supervisor’
and several experts and specialists, each of them associated with a referee, form a team.

Similarly to the CLCH approach there is a cooperation phase at the end of each working
phase that is called a team meeting. At the beginning of a team meeting each expert
and specialist is judged by a referee that computes a measure of success indicating
how good the work of its expert/specialist during the last working phase was and that
selects outstanding facts. Only the second task is similar to the tasks of a referee in
the CLCH approach.

In the second part of a team meeting the supervisor i s act ive. I t controls and plans
the whole search process of the team of agents. I t generates out of the data base
of the expert with the best measure of success and the selected facts of the other
experts/specialists a new start data base that is broadcast to all other computing
nodes. The supervisor also selects the members of the team of the next working phase
using a long-term memory about agents and domains of interest, w i th plan skeletons
for good teams, and a short-term memory with data about the actual proof attempt.
The detection of the domain of an example is done by specialists (see [DK96]). By
exchanging experts/specialists with bad performance for other ones the supervisor is
able to adapt the whole team to the given proof problem. Finally, the supervisor
determines the length of the next working phase.
The main differences between the TEAMWORK method and the CLCH approach are
as follows: TEAMWORK employs a flexible but centralized control by the supervisor
whereas in the CLCH approach fixed teams without central control are used. Further-
more, the referee tasks differ: In TEAMWORK they are oriented on the "survival of the
fittest” principle whereas in CLCH the judgement orients on the individual receivers
(adding demand driven features) and thus is very flexible.
The centralized control with the competition of the experts and the adaptation of the
team to the given problem is an advantage of TEAMWORK (over the CLCH approach).
Since all agents start each working phase with the same (hopefully most advanced)
data base i t is possible i n a TEAMWORK-based system to use very specialized selection
heuristics that usually cannot find a proof i n a bottom up manner but can lead to
a proof very fast i f they can start wi th an appropriate data base provided by other
experts (see [DS96a] for an analysis of the synergetic effects of TEAMWORK). Due to
the referees the useless resul ts of these heuristics are forgotten. But i n spi te of these
advantages there still are some disadvantages resulting from complex implementations
that require a secure broadcast, the realization of the components as roles of an agent,
and many additional configuration and data files for the planning process. In contrast,
the CLCH approach is easy to implement and does not require many changes of an
already ex is t ing generat ing theorem prover . Additionally, a system using the CLCH
approach is guaranteed to be able to withstand the loss of a computing node (by using

16	 3 THE CLCH APPROACH

timeouts). Contrarily, a TEAMWORK-based system that loses the computing node of
the supervisor has to be terminated.

Although the referee idea originates from TEAMWORK it is in a TEAMwORK-based
system somewhat limited since the selected facts are integrated into one data base
(that of the best expert). This requires either the use of criteria that are mostly
retrospective or the communication structure has to be made even more complex in
order to inform all referees of the heuristic of the winner (see [DF96]). The needs of
other non-winning team members are not considered by the referees. The referees in
the CLCH approach, as we have seen, do not have this limitation.

Since in TEAMWORK only the complete data base of the best expert survives the
timing of the team meetings is fairly important. If there is not enough evidence that a
certain heuristic performs well and will lead to a proof another heuristic may become
the winner. But this means that the not-winning heuristic has to repeat its (possibly)
important steps and improve on them until it becomes the winner in a later meeting.
Therefore, it is possible that a proof is unnecessarily delayed. Although the adaptatioIJ­
process takes care of this general problem it does not exist at all in the CLCH approach.
If the CLCH approach can be used on a prover that has some very good heuristics that
only need a few additional facts generated by other heuristics to prove many examples
(which can be provided using learning heuristics, see [Fu96] or [DS96b]), then the
CLCH approach is sufficient to provide the necessary cooperation.

3.4	 The CLCH approach for Condensed Detachment: The
DrCoDE System

The DICoDE system is based on a re-implementation of the CODE system (see [Fu96])
that has had as main goal the improvement of the basic inference machine by using
indexing techniques. Additionally, DICoDE features two distribution concepts, namely
the CLCH approach and the TEAMWORK method. In the sequel, we will describe the
different control heuristics that can be used in DICoDE, instantiate the referee concepts
of section 3.1, and concentrate briefly on the completeness of DICoDE when using the
CLCH approach as distribution concept.

3.4.1	 The Control Heuristics

DICoDE features all the heuristics of the CODE system and some additional ones
that were developed considering the two cooperation concepts. The basic heuristic of
DICoDE-which is called LevW-computes the weight of a fact A as the weighted sum
of A'S level and term weight. The level <5(A) of A is 0 if A is an axiom. Otherwise,
<5(A) = max({8(Ai), <5(Aj)}) + 1, if A was derived from Ai and Aj via CondDet. The
term weight of a fact A is two times the number of function symbols plus the number
of variables occurring in A. The heuristic LevFW-an extension of LevW-facilitates
the prover to focus on certain function symbols. In order to calculate the term weight
function symbols are not weighted with the value 2 any longer but each function symbol
is associated with a special value given by the user.

16 3 THE CLCH APPROACH

timeouts). Contrarily, a TEAMWORK-based system that loses the computing node of
the supervisor has to be terminated.
Although the referee idea originates from TEAMWORK i t is i n a TEAMWORK-based
system somewhat limited since the selected facts are integrated into one data base
(that of the best expert). This requires either the use of criteria that are mostly
retrospective or the communication structure has to be made even more complex in
order to inform all referees of the heuristic of the winner (see [DF96]). The needs of
other non-winning team members are not considered by the referees. The referees in
the CLCH approach, as we have seen, do not have this limitation.
Since in TEAMWORK only the complete data base of the best expert survives the
timing of the team meetings is fairly important. If there is not enough evidence that a
certain heuristic performs well and will lead to a proof another heuristic may become
the winner. But this means that the not-winning heuristic has to repeat its (possibly)
important steps and improve on them until i t becomes the winner i n a later meeting.
Therefore, i t is possible that a proof is unnecessarily delayed. Although the adaptation
process takes care of this general problem i t does not exist at all in the CLCH approach.
If the CLCH approach can be used on a prover that has some very good heuristics that
only need a few additional facts generated by other heuristics to prove many examples
(which can be provided using learning heuristics, see [Fu96] or [DS96b]), then the
CLCH approach is sufficient to provide the necessary cooperation.

3.4 The CLCH approach for Condensed Detachment: The
DiCoDE System -

The DICODE system is based on a re-implementation of the CODE system (see [Fu96])
that has had as main goal the improvement of the basic inference machine by using
indexing techniques. Additionally, DICODE features two distribution concepts, namely
the CLCH approach and the TEAMWORK method. In the sequel, we will describe the
different control heuristics that can be used i n DICODE, instantiate the referee concepts
of section 3.1, and concentrate briefly on the completeness of DICODE when using the
CLCH approach as distribution concept.

3 .4 .1 The Cont ro l Heur is t i cs

DiCoDE features all the heuristics of the CODE system and some additional ones
that were developed considering the two cooperation concepts. The basic heuristic of
Di1CoDE—which is called LevW—computes the weight of a fact A as the weighted sum
of X's level and term weight. The level ö(A) of A is 0 i f A is an axiom. Otherwise,
(1) = max({6(X;),6(2;)}) + 1, i f XA was derived from A; and A; via CondDet. The
te rm weight of a fact A is two t imes the number of function symbols plus the number
of variables occurring in A. The heuristic LevFW—an extension of LevW—facilitates
the prover to focus on certain function symbols. In order to calculate the term weight
function symbols are not weighted wi th the value 2 any longer but each function symbol
is associated wi th a special value given by the user.

3.4 The CLCH approach for Condensed Detachment: The DICoDE System 17

The learning heuristics of [Fu96] use these heuristics as a basis and improve them by re­

enacting a source proof or by learning important feature values for terms. We utilized
the heuristic FeatW which employs the second alternative.

Since it is necessary for distributed theorem proving that the provers generate many
different facts we developed some new heuristics following other ideas. One idea is
to take the goal of the proof attempt into account by choosing either facts that are
"similar" to the goal or facts whose tail is similar to the goal. The tail of a fact A is
defined in analogy to [W090], i.e. the tail of A is the second argument of the left most
occurrence of the function f in A. Several ideas for computing a measure for similarity
are presented in [DF94]. For the CLCH approach we found structural similarity quite
useful. It is measured by comparing occurrences and nesting of function symbols of two
terms. The use of structural similarity results in two good heuristics (called on fact and
Ontail). We recognized that the other heuristics of [DF94] were useful in TEAMWORK

runs but not for CLCH due to their high specialization.

3.4.2 The Referees

In section 3.1 we have already mentioned that a lot of possibilities exist how selection
processes can be organized. On the one hand it is possible to use only local knowledge
for selecting of facts, on the other hand local knowledge can be extended with further
knowledge. Such further knowledge can concern the heuristic or the current needs of
the receivers, or even both. As we have discussed before, utilizing knowledge about
the current needs of a receiver is only necessary if the quality of the used heuristics is
rather low. Then, we need very sophisticated (and time-consuming) criteria in order
to determine facts well-suited for the receiving provers. Since we are able to employ
very powerful heuristics in the DICoDE system which fall back on learning techniques
we can be sure that they activate a lot of facts possibly well-suited for a receiving
heuristic. Therefore we can resign the use of knowledge about the current needs of the
receivers and select facts more efficiently. Thus, we do not employ receive-referees but
only send-referees. In the send-referees we used local knowledge as well as knowledge
about the heuristic of the receivers.

As already stated such a referee in the CLCH approach consists of a pair (5, e.p). In
the experiments of section 4 we used only one realization of 5, namely 5 (A) = true iff
A was generated in the last working phase. So we limited the eligible facts to the same
facts that referees for TEAMWORK can choose from.

In order to select facts e.p falls back on certain judgement functions as previously de­
scribed. There are two judgement functions for referees in DICoDE. One is of type
4'5 and is simply called 'IjJ~D. The other one is of type 'ljJH and therefore called 'ljJc;p.
e.p employed only one function for the selection, i.e. it either utilized 'IjJ~D or 'ljJc;p and
selected such facts judged with the highest value w.r.t. 'IjJ~D or 'ljJc;p, respectively.

Definition 3.1 The judgement function 7/J~D
Let>. be a fact generated by a prover, del(A) the number of facts that could be subsumed
by A (using SUbsum) and gen(A) the number of applications of CondDet >. was involved

3.4 The CLCH approach for Condensed Detachment: The DICODE System 17

The learning heuristics of [Fu96] use these heuristics as a basis and improve them by re-
enacting a source proof or by learning important feature values for terms. We utilized
the heuristic FeatW which employs the second alternative.

Since i t is necessary for distributed theorem proving that the provers generate many
different facts we developed some new heuristics following other ideas. One idea is
to take the goal of the proof attempt into account by choosing either facts that are
“similar” t o the goal or facts whose tail i s similar t o the goal. The tail o f a fact A i s
defined in analogy to [W090], i.e. the tail of A is the second argument of the left most
occurrence of the function f in A. Several ideas for computing a measure for similarity
are presented in [DF94]. For the CLCH approach we found structural similarity quite
useful. It is measured by comparing occurrences and nesting of function symbols of two
terms. The use of structural similarity results in two good heuristics (called on s,.; and
Onza:1). We recognized that the other heuristics of [DF94] were useful in TEAMWORK
runs but not for CLCH due to their high specialization.

3 .4 .2 The Referees

In section 3.1 we have already mentioned that a lot of possibilities exist how selection
processes can be organized. On the one hand i t i s possible t o use only local knowledge
for selecting of facts, on the other hand local knowledge can be extended with further
knowledge. Such further knowledge can concern the heuristic or the current needs of
the receivers, or even both. As we have discussed before, utilizing knowledge about
the current needs of a receiver is only necessary i f the quality of the used heuristics is
rather low. Then, we need very sophist icated (and t ime-consuming) cr i ter ia i n order
to determine facts well-suited for the receiving provers. Since we are able to employ
very powerful heuristics in the DICODE system which fall back on learning techniques
we can be sure that they activate a lot of facts possibly well-suited for a receiving
heuristic. Therefore we can resign the use of knowledge about the current needs of the
receivers and select facts more efficiently. Thus, we do not employ receive-referees bu t
only send-referees. In the send-referees we used local knowledge as well as knowledge
about the heuristic of the receivers.
As already stated such a referee in the CLCH approach consists of a pair (5, p). In
the experiments of section 4 we used only one realization of S, namely S ()) = true iff
A was generated i n the last working phase. So we limited the eligible facts to the same
facts that referees for TEAMWORK can choose from.
In order to select facts ¢ falls back on certain judgement functions as previously de-
scribed. There are two judgement functions for referees i n DICODE. One is of type
ps and is simply called SP. The other one is of type m and therefore called GP .
¢ employed only one function for the selection, i.e. i t either utilized $$? or SP and
selected such facts judged with the highest value w.r.t. $$P or CP, respectively.

Definition 3.1 The judgement function 6?
Let X be a fact generated by a prover, del(A) the number of facts that could be subsumed
by A (using Subsum) and gen(A) the number of applications of CondDet A was involved

18 3 THE CLCH APPROACH

in. Let further be fgen and !del real parameters. Then the value of A according to the
judgement function 'ljJ~v is

'ljJ~Vp) = fgen . gen(A) + !del' del(A)

Since subsumption obviously reduces the branching factor of the search for a proof while
applications of CondDet result in more potential facts fgen should have a negative value
and fdel a positive one (remember that facts with highest value are selected).

Definition 3.2 The judgement function 'ljJ11
Let Ap be the set of facts generated by a prover P (during a working phase) and R
the receiver of the facts to be selected (with activation heuristic HR)' Let further be
Rmax = max({HR(A)IA E Ap }) and Rmin = min({HRP)IA E Ap }). For a fact A let
Ranc be the maximal value HR of all ancestors of A from Ap , i.e. of the A' E Ap that
were needed to infer A. Then tne value of A according to the judgement function 'ljJ1P
zs

;Rmax #- Rmin

; otherwise

SO, 'ljJ1P prefers those facts that have a small weight with respect to the selection
heuristic of the receiving prover (first part of the sum) and that have additionally at
least one ancestor with a high weight (second part of the sum). As already stated this
last part is necessary in order to have a high probability that a selected fact was not
already generated by the receiving prover.

There are as many instantiations of 'ljJ1P as selection heuristics exist in DICoDE.
Obviously, the results of an instantiation are only used for one receiving prover. We
have chosen to normalize the values of 'ljJC;P (both parts of the sum compute always a
value between 0 and 1) in order to compare values of several working phases in later
evaluations.

3.4.3 Completeness of DICoDE using CLCH

Although cooperation and distribution offer substantial improvements for automated
theorem provers they can also cause some theoretical problems concerning completeness
of the resulting systems. As pointed out in [AD93] a generating prover employing fair
selection strategies may become incomplete if it receives new facts that are handled with
priority thus contributing new facts to the set of potential facts. A stronger condition
than fairness is needed that in [AD93] was called team-fairness but that more generally
can be called fairness despite disturbances. Fortunately, most fair selection strategies
are also fair despite disturbances.

In [AD93] it is shown that a system based on the TEAMWORK method is complete
if a team-fair expert is infinitely often judged best expert of a working phase. Since
the CLCH approach does not force the provers to a common start state after each
cooperation phase completeness can be assured by using at least one prover with a
heuristic that is fair despite disturbances.

18 3 THE CLCH APPROACH

in. Let further be fen and fie real parameters. Then the value of A according to the
judgement function PSP is

Ys”(A) = foen gen(A) + fuel - de l ()

Since subsumpt ion obviously reduces the branching factor o f t he search for a proof while
applications of CondDet result in more potential facts fgen should have a negative value
and fie a positive one (remember that facts with highest value are selected).

Definition 3.2 The judgement function 1%”
Let Ap be the set of facts generated by a prover P (during a working phase) and R
the receiver of the facts to be selected (with activation heuristic Hr). Let further be
R™® = max({Hg(A)|\ € Ap}) and R = min({Hr()) | \ € Ap}). For a fact X let
RC be the maximal value H r of al l ancestors o f \ from Ap, i.e. of the N € Ap that
were needed to infer A. Then the value o f A according to the judgement function vP
i s

Rmaz_pmin Rmeazx__ pman
H

Di) _ { Rmaz _Hp()) + (1 _ AAO) : Rmos + Rmin

0 ; otherwise

So, EP prefers those facts that have a small weight with respect to the selection
heuristic of the receiving prover (first part of the sum) and that have additionally at
least one ancestor with a high weight (second part of the sum). As already stated this
last part is necessary in order to have a high probability that a selected fact was not
already generated by the receiving prover.
There are as many instantiations of SP as selection heuristics exist in DICODE.
Obviously, the results of an instantiation are only used for one receiving prover. We
have chosen to normalize the values of SP (both parts of the sum compute always a
value between 0 and 1) in order to compare values of several working phases in later
evaluations. :

3.4.3 Completeness of DICODE using CLCH

Although cooperation and distribution offer substantial improvements for automated
theorem provers they can also cause some theoretical problems concerning completeness
of the resulting systems. As pointed out in [AD93] a generating prover employing fair
selection strategies may become incomplete i f i t receives new facts that are handled wi th
priority thus contributing new facts to the set of potential facts. A stronger condition
than fairness is needed that in [AD93] was called team-fairness but that more generally
can be called fairness despite disturbances. Fortunately, most fair selection strategies
are also fair despite disturbances.
In [AD93] i t i s shown that a system based on the TEAMWORK method i s complete
i f a team-fair expert is infinitely often judged best expert of a working phase. Since
the CLCH approach does not force the provers to a common start state after each
cooperation phase completeness can be assured by using at least one prover wi th a
heuristic that is fair despite disturbances.

3.5 The CLCH approach for Superposition 19

3.5 The eLCH approach for Superposition

In the following section we want to show how CLCH can also be applied to already
existing provers that were not especially developed for the use in a network of cooper­
ating provers. Therefore, we applied CLCH to the superposition based theorem proveI'
SPASS (see [WGR96]). This choice is motivated by the fact that-in opposite to
the condensed detachment proveI' DICoDE-SPASS employs a very general calculus
enabling it to solve proof problems in full first order logic with equality. Furthermore,
the sources of SPASS are easily available (see [WGR96]) and we could henc~ integrate
code into this program. Thus, it is possible to implement internal referees instead of
external ones which increases the efficiency and allows for the use ofmore knowledge.

Because of the fact that the implementation of the TEAMWORK cooperation scheme
would in fact require a re-implementation we only integrated the CLCH scheme into
SPASS.

3.5.1 The Control Heuristics

SPASS does not offer different control heuristics to a user but activates facts with the
help of a fixed control heuristic W. W computes a weight of a clause as the sum of the
weights of its literals. The weight of a literal L is two times the number of function
and predicate symbols plus the number of variables occurring in L. Since we need
different heuristics which have to be coupled in a network we added the heuristic FW to
SPASS. FW-an extension of W-facilitates the proveI' to focus on certain function or
predicate symbols. In analogy to heuristic LevFW-developed for DICoDE-function
or predicate symbols are not weighted with the value 2 any more but with a special
value the user can assign to each symbol.

All in all we can say that in comparison to DICoDE the implemented heuristics are
quite primitive. Note, that no sophisticated heuristics, e.g. employing learning, are at
SPASS' disposal.

3.5.2 The Referees

Because of the fact that we are not able to employ heuristics that are as good as in
the area of condensed detachment it is even more important as in the previous section
to design good referees that are able to select facts that are needed by the receivers.
Therefore, the selection of facts employing a maximum of knowledge seems to be the
right way to cope with this issue: A send-referee of each agent could select a rather
high number of facts utilizing local knowledge as well as knowledge about the heuristics
of the receivers. Thus, the probability increases that necessary facts are among them.
Then, an individual receive-referee of each agent selects out of the facts-received from
the send-referees of the other agents-facts that are considered to be important w.r.t.
the current search state of its prover. In the sequel, we will describe how send- and
receive-referees can be designed for superposition based theorem provers.

Send-Referees: As we have mentioned before a send-referee consists of a pair (5, rp).
In our experiments we employed a predicate 5 realized as follows: 5(A) holds if A is

3.5 The CLCH approach for Superposition ; 19

3.5 The CLCH approach for Superposition

In the following section we want to show how CLCH can also be applied to already
existing provers that were not especially developed for the use in a network of cooper-
ating provers. Therefore, we applied CLCH to the superposition based theorem prover
SPASS (see [WGR96]) . This choice is motivated by the fact that—in opposite t o
the condensed detachment prover DICODE—SPASS employs a very general calculus
enabling i t to solve proof problems in full first order logic with equality. Furthermore,
the sources of SPASS are easily available (see [WGR96]) and we could hence integrate
code into this program. Thus, i t is possible to implement internal referees instead of
external ones which increases the efficiency and allows for the useof more knowledge.
Because of the fact that the implementation of the TEAMWORK cooperation scheme
would in fact require a re-implementation we only integrated the CLCH scheme into
SPASS.

3.5.1 The Contro l Heuristics

SPASS does not offer different control heuristics to a user but activates facts wi th the
help of a fixed control heuristic W. W computes a weight of a clause as the sum of the
weights of its literals. The weight of a literal L is two times the number of function
and predicate symbols plus the number of variables occurring in L . Since we need
different heuristics which have to be coupled in a network we added the heuristic FW to
SPASS. FW—an extension of W—facilitates the prover to focus on certain function or
predicate symbols. In analogy to heuristic LevF\WW—developed for D1ICODE—function
or predicate symbols are not weighted wi th the value 2 any more but wi th a special
value the user can assign to each symbol.
All in all we can say that in comparison to DICODE the implemented heuristics are
quite primitive. Note, that no sophisticated heuristics, e.g. employing learning, are at
SPASS’ disposal.

3 .5 .2 The Referees

Because of the fact that we are not able to employ heuristics that are as good as in
the area of condensed detachment i t is even more important as in the previous section
to design good referees that are able to select facts that are needed by the receivers.
Therefore, the selection of facts employing a maximum of knowledge seems to be the
right way to cope with this issue: A send-referee of each agent could select a rather
h igh number of facts utilizing local knowledge as well as knowledge about the heuristics
of the receivers. Thus, the probability increases that necessary facts are among them.
Then, an individual receive-referee of each agent selects out of the facts—received from
the send-referees of the other agents—facts that are considered to be important w.r.t.
the current search state of i ts prover. In the sequel, we wi l l describe how send- and
receive-referees can be designed for superposition based theorem provers.

Send-Referees: As we have mentioned before a send-referee consists of a pair (5, ¢).
In our experiments we employed a predicate S realized as follows: S ()) holds i f A is

20 3 THE CLCH APPROACH

not an axiom, was not selected from e.p in an earlier cooperation phase, and was not

received from the prover in an earlier phase. Thus, we avoid at least that facts are sent

to another prover that are obviously in its system.

The selection function e.p selects facts that are judged with a high value by certain

judgement functions. We describe three judgement functions well-suited for the selec­

tion of facts. For each of the types ~s, ~G, and ~H we have developed one function.

In order to select facts and to realize e.p we employed each function for determining a

certain percentage of good facts w.r.t. their judgement.

The function ~~p is of type ~s and counts-in analogy to section 3.4-inferences

a fact was involved in to measure its success during the proof attempt so far. We

restrict ourselves to the inference types superposition, general resolution, rewriting,

and subsumption in order to reduce the number of parameters. ~~p is then defined in

analogy to section 3.4:

Definition 3.3 The judgement function ~~p

Let A be a fact generated by a plOver, del(.\) the number of facts that could be subsumed
by A, rew(.\) the number of facts that could be rewritten with A, res(A) the number of
general resolution steps A was involved in, and sup(A) the number of applications of
superposition steps A was involved in. Let further be !del, frew, fres, and fsup real
parameters. Then the value of A according to the judgement function ~~p is

~~P(A) = fsup' SUp(A) + fgen' gen(.\) + frew' rew(.\) + !del' del(A)

We consider contraction inferences (subsumption and rewriting) as positive inferences
and weight these with a positive factor, expansion inferences are considered to be
negative.

The judgement function ~tl tries to estimate the success of a fact with the help of
syntactic criteria. If a fact A is quite general and has a "flat" structure it is possibly
well-suited to subsume a lot of other ones. Furthermore, it is possibly not often involved
in many applications of the superposition rule because there are not so many positions
one can overlap in. ~gP prefers therefore facts that are quite small and have a flat
structure: If a clause C = {L1,... ,Ln } is to be judged, ~gP (C) = - 2:~1 ,(L i , 0). ,
is defined as:

;t is a variable (t d) = { 1 +d
, , 2 + d +2:::1,(ti, d + 1) ;t == f(t 1 , •.. ,tm)

One can see that occurrences at deeper positions are penalized more than occurrences
at higher positions.

Function ~f1 tries to select facts that are especially of need of the receiver. The
judgement function ~f1 is defined analogously to the function ~~1) we have presented
in section 3.4. The only difference is that the set Ap is given as the set of facts of a
prover P that pass the filter S.
Receive-Referees: We consider two judgement functions f~r a receive-referee, func­
tions ~~~ and ~tP of types ~SG and ~u, respectively. In analogy to the send-referees,

20 3 THE CLCH APPROACH

not an axiom, was not selected from ¢ in an earlier cooperation phase, and was not
received from the prover in an earlier phase. Thus, we avoid at least that facts are sent
to another prover that are obviously i n its system.
The selection function ¢ selects facts that are judged with a high value by certain
judgement functions. We describe three judgement functions well-suited for the selec-
tion of facts. For each of the types ws, oc, and ¥g we have developed one function.
In order to select facts and to realize ¢ we employed each function for determining a
certain percentage of good facts w.r.t. their judgement.
The function 9%” is of type ws and counts—in analogy to section 3.4—inferences
a fact was involved i n to measure its success during the proof attempt so far. We
restrict ourselves to the inference types superposition, general resolution, rewriting,
and subsumption in order to reduce the number of parameters. 13” is then defined in
analogy to section 3.4:

Definition 8 .3 The judgement function %$”
Let X be a fact generated by a prover, del(\) the number of facts that could be subsumed
by A, r ew()) the number of facts tha t could be rewri t ten with A, r es (\) the number o f
general resolution steps A was involved in, and sup()) the number of applications of
superposition steps A was involved in. Let further be fier, frew, fres, and fsup real
parameters. Then the value of A according to the judgement function HE” is

PET(A) = foup * 5uP(N) + f ren - gen(A) + f rew - rew(A) + faa - del(A)

We consider contraction inferences (subsumption and rewriting) as positive inferences
and weight these wi th a positive factor, expansion inferences are considered to be
negative.
The judgement function #8” tries to estimate the success of a fact wi th the help of
syntactic criteria. If a fact A is quite general and has a “flat” structure i t is possibly
well-suited to subsume a lot of other ones. Furthermore, i t is possibly not often involved
in many applications of the superposition rule because there are not so many positions
one can overlap in. 2 ” prefers therefore facts that are quite small and have a flat
structure: If a clause C = {Ly , . . . , L , } is to be judged, 27 (C) = — Tr, v(L;,0). 7
is defined as:

(t,d) = 1+d ; t is a variable
THY ZT 24d + Th y td +1) t = f t . tm)

One can see that occurrences at deeper positions are penalized more than occurrences
at higher positions.
Function ¢3F tries to select facts that are especially of need of the receiver. The
judgement function 4 is defined analogously to the function SP we have presented
i n section 3.4. The only difference is that the set Ap is given as the set of facts of a
prover P that pass the filter S.
Receive-Referees: We consider two judgement funct ions for a receive-referee, func-
tions 155 and $P of types sa and uy , respectively. In analogy to the send-referees,

3.5 The CLCH approach for Superposition 21

each of this functions is responsible for the selection of a certain percentage of the facts
received from the send-referees.

Function 'lj;~~ tries to estimate if a clause can contribute to the sol~tion of a certain
(sub-)goal. Since we employ the superposition calculus we do not attempt to break a
goal into different (sub-)goals. But each generated fact can be considered to be a new
goal that has to be refuted. Therefore, 'lj;~~ estimates if a fact A possibly contributes
to the refutation of an active fact A' in the system of the receiver. Because of the fact
that a receive-referee does not perform inferences by itself simple criteria have to be
used in order to perform such an estimation. We assume that a fact A contributes
to the refutation of an active fact A' if we can perform a resolution step with A and
A'. However, a resolution step does not necessarily lead to a derivation of the empty
clause but the clause length of the resulting clause can even increase. Hence, we assume
that A only contributes to a refutation of A' if at least one resolvent of A and A' exists
which length is shorter than the length of A or A'. In order to reduce the amount of
computation needed to check this we use, more exactly, the following heuristic: If A is
a unit and resolves with A' we assume it to be contributing to the refutation of A'. If A
is not a unit clause we consider it to be only contributing to a proof ofA' if this clause
is a unit and has a resolvent with A. Furthermore, it is possible to take the length
of the non-unit clauses into account: If we resolve a short clause it could be easier to
derive the empty clause as if we resolve new clauses with very long ones.

The definition of 'lj;~~ can be given as follows. Let the clause A to be judged be a
unit clause. Let A' be an element of the active facts of the receiver, let r(A, A') be the
number of different resolvents from A and A'. Thel, we define

, {
; IA'I = 1, r(A, A') > 0

00v()., A) = r(A,A') ; otherwise IA' I

Otherwise, if A is not a unit clause, we define

; A' is not a unit clause
v()., A') = { r(2A') ;otherwise IAI

Let A be the set of active facts of the receiver. By utilizing v we define

'lj;~~(A) = L I/(A, A')
A' EA

The judgement function 'lj;~P judges a fact Aw.r.t. its usefulness in the inference process
starting with the current system of active facts of the receiver. A simple method in
order to do this would be to perform some inferences and observe if A takes often part
in contracting but not in expanding inferences. This kind of judgement, however, is
very time-consuming. Hence, we simplify this method and only count how often A will
be involved immediately in the subsumption rule if we integrate it, i.e. we count how
many active facts can be subsumed by utilizing A.

3.5 The CLCH approach for Superposition 21

each of this functions is responsible for the selection of a certain percentage of the facts
received from the send-referees.
Function 435 tr ies to estimate if a clause can contr ibute to the solut ion of a certain
(sub-)goal. Since we employ the superposition calculus we do not attempt to break a
goal into different (sub-)goals. But each generated fact can be considered to be a new
goal that has t o be refuted. Therefore, YSZ estimates if a fact A possibly contributes
to the refutation of an active fact A’ in the system of the receiver. Because of the fact
that a receive-referee does not perform inferences by itself simple criteria have to be
used i n order to perform such an estimation. We assume that a fact A contributes
to the refutation of an active fact A’ i f we can perform a resolution step with A and
X’. However, a resolution step does not necessarily lead to a derivation of the empty
clause but the clause length of the resulting clause can even increase. Hence, we assume
that A only contributes to a refutation of A’ i f at least one resolvent of A and N’ exists
which length is shorter than the length of A or X. In order to reduce the amount of
computation needed to check this we use, more exactly, the following heuristic: If A is
a unit and resolves with A’ we assume i t to be contributing to the refutation of A’. If A
is not a uni t clause we consider i t to be only contributing to a proof of X ’ i f this clause
is a un i t and has a resolvent w i th A. Furthermore, i t i s possible to take the length
of the non-unit clauses into account: I f we resolve a short clause i t could be easier to
derive the empty clause as i f we resolve new clauses with very long ones.
The definition of 32 can be given as follows. Let the clause A to be judged be a
unit clause. Let X’ be an element of the active facts of the receiver, let r(A, A’) be the
number of different resolvents from A and X’. Then we define

oo IN =1 , r (AA)>0
VAN) = 10,2) ; otherwise

Otherwise, i f X is not a uni t clause, we define

N 0 ; X’ is not a unit clause
VON) = er) ; otherwise

Let A be the set of active facts of the receiver. By utilizing v we define

se) = > v(A X)
AEA

The judgement function 1§” judges a fact A w.r.t. its usefulness in the inference process
starting with the current system of active facts of the receiver. A simple method in
order to do this would be to perform some inferences and observe i f A takes often part
i n contracting but not i n expanding inferences. This kind of judgement, however, is
very time-consuming. Hence, we simplify this method and only count how often A will
be involved immediately i n the subsumption rule i f we integrate i t , i.e. we count how
many active facts can be subsumed by utilizing A.

22 4 EXPERIMENTS

4 Experiments

In the sequel, we describe some experiments with the CLCH approach that we have per­
formed with the condensed detachment prover DICoDE and the superposition prover
SPASS. Since DICoDE is able to employ beyond CLCH also the TEAMWORK method
our main interest here is to compare both cooperation schemes. We are especially inter­
ested in the question whether the simple scheme of CLCH provides enough cooperation
among different provers.

Because of the fact that we are not able to let SPASS work in a TEAMWORK modus
we investigated other topics in these experiments. In this area we investigate by some
experiments whether CLCH is able to improve the standard setting of a prover that is
not developed considering the idea of cooperation. Especially, we introduce a method
to generate different cooperating heuristics automatically that are able to clearly out­
perform the standard setting of SPASS.

4.1 Experiments with Condensed Detachment

In this section we will analyze the performance of the CLCH approach in the area of
condensed detachment. In particular, we will provide an experimental comparison of
our CLCH approach with the TEAMWORK method, our best sequential heuristics, and
the renowned theorem prover OTTER (see [Mc94]). The test problems this comparison
is based on stem from experiments by McCune and Wos (see [MW92]) with OTTER.

The problems can also be found in the TPTP library (see [SS94]), version 1.2.1, namely
in the LCL domain. We use the names the problems have been assigned in the TPTP.

The prover CODE and therefore also DICoDE were developed to solve exclusively
problems that can be tackled using the condensed detachment calculus. Since OTTER

has to use first-oder axiomatizations (but employs hyper-resolution, which results in less
intermediate results) one might argue that DICoDE has a small advantage (now that
DICoDE uses indexing techniques). But since we are mainly interested in comparing
CLCH with TEAMWORK and the best heuristics the results of OTTER are included to
emphasis that we are not dealing with small and easy to solve problems here.

As already stated DICoDE contains very strong heuristics based on concepts for learn­
ing from previous proof experiences. Therefore, there is always at least one heuristic
capable of solving one of our test problems and, as table 1 demonstrates, these heuris­
tics are quite efficient. This means that the potential for improvement by cooperation
is not very high if the best heuristic for a problem is provided. But note that finding
this best heuristic (or at least a good one) may involve several proof attempts which
more than outweighs the use of several computers by DICoDE either using CLCH or
TEAMWORK.

Since there are several differences between CLCH and TEAMWORK choosing appropri­
ate settings for our experiments was not easy. It was our goal to make the settings in
CLCH mode and in TEAMWORK mode as comparable as possible. Therefore, the same
heuristics (experts) are used and also the same referees. Unfortunately, this means
that the flexibility provided by the set of (5, 'P)-pairs in CLCH is not given anymore

22 4 EXPERIMENTS

4 Experiments

In the sequel, we describe some experiments wi th the CLCH approach that we have per-
formed with the condensed detachment prover DICODE and the superposition prover
SPASS. Since DICODE is able to employ beyond CLCH also the TEAMWORK method
our main interest here is to compare both cooperation schemes. We are especially inter-
ested in the question whether the simple scheme of CLCH provides enough cooperation
among different provers.
Because of the fact that we are not able to let SPASS work in a TEAMWORK modus
we investigated other topics i n these experiments. In this area we investigate by some
experiments whether CLCH is able to improve the standard setting of a prover that is
not developed considering the idea of cooperation. Especially, we introduce a method
to generate different cooperating heuristics automatically that are able to clearly out-
perform the standard setting of SPASS.

4.1 Experiments with Condensed Detachment

In this section we will analyze the performance of the CLCH approach in the area of
condensed detachment. In particular, we wil l provide an experimental comparison of
our CLCH approach with the TEAMWORK method, our best sequential heuristics, and
the renowned theorem prover OTTER (see [Mc94]). The test problems this comparison
is based on stem from experiments by McCune and Wos (see [MW92]) with OTTER.
The problems can also be found in the TPTP library (see [SS94]), version 1.2.1, namely
i n the LCL domain. We use the names the problems have been assigned i n the TPTP.
The prover CODE and therefore also DICODE were developed to solve exclusively
problems that can be tackled using the condensed detachment calculus. S ince OTTER
has to use first-oder axiomatizations (but employs hyper-resolution, which results i n less
intermediate results) one might argue that DICODE has a small advantage (now that
DICODE uses indexing techniques). But since we are mainly interested in comparing
CLCH with TEAMWORK and the best heuristics the results of OTTER are included to
emphasis that we are not dealing wi th small and easy to solve problems here.
As already stated DICODE contains very strong heuristics based on concepts for learn-
ing from previous proof experiences. Therefore, there is always at least one heuristic
capable of solving one of our test problems and, as table 1 demonstrates, these heuris-
tics are quite efficient. This means that the potential for improvement by cooperation
is not very high if the best heuristic for a problem is provided. But note that finding
this best heuristic (or at least a good one) may involve several proof attempts which
more than outweighs the use of several computers by DICODE either using CLCH or
TEAMWORK.

Since there are several differences between CLCH and TEAMWORK choosing appropri-
ate settings for our experiments was not easy. I t was our goal to make the settings i n
CLCH mode and in TEAMWORK mode as comparable as possible. Therefore, the same
heuristics (experts) are used and also the same referees. Unfortunately, this means
that the flexibility provided by the set of (S,¢)-pairs i n CLCH is not given anymore

4.1 Experiments with Condensed Detachment 23

I problem I used heuristics I referees I CLCH I TEAMWORK I best expert I LevW I OTTER I
LCLOO2-1 onfact , ontail 1/J'jf 21.7 24.9 58.5 - 516
LCLOO3-1 onfact , FeatW 1/J~"V 55.5 91.9 91.4 - 449
LCL017-1 on fact , FeatW 1/J'jf 42.7 51.8 51.3 51.3 281
LCL040-1 LevW , LevFW 1/J'ft 8.0 9.8 14.2 - 16
LGL054-1 on fact , Onti>il 1/J'ft 19.3 29.1 34.7 - Fail
LCL058-1 LevW , LevFW 1/J'jf 17.6 33.6 52.9 52.9 423
LCL060-1 LevW , LevFW 1}'ft 6.5 29.7 36.9 56.1 447
LCL061-1 FeatW , FeatW 1/J'fF 283.2 448.3 446.6 - Fail
LGL071-1 FeatW , FeatW 1jJ'j/ 4.8 6.5 29.1 - 511
LGL085-1 onfact , on fact 1jJ'iF 110.6 90.3 110.3 1200.5 2172
LCL097-1 onfact , Ontail 1jJ'jl 8.8 9.3 40.5 44.0 2
LCL114-1 FeatW , FeatW 1jJ'j/ 8.4 9.5 25.1 357.1 2035
LCLl16-1 FeatW , FeatW 1jJ'jf 20.8 24.8 32.8 - 2041
LCL119-1 on fact , FeatW 1/J'jf 100.7 67.8 128.9 - 362

Table 1: CLCH vs. TEAMWORK vs best heuristic in LCL domain

(and the number of computers has to be limited to two in order to allow referees of
type 'l/J1l that can also be employ~d in TEAMWORK, using the heuristic of the winner).
On the other hand using the same heuristics means that the adaptation capabilities of
TEAMWORK cannot come into play since each expert is always active.

This way, the main criteria influencing the results of our experiments are the overhead
caused by the two cooperation concepts and the utility of employing a survival-of-the­
fittest strategy (as realized in TEAMWORK) or not (as in CLCH). We used for the
experiments two SPARCstation ELC running Sun OS 4.1. The runtimes for OTTER

stem from [MW92] and were obtained on a SPARCstation 1+, a machine comparable
to ours. "Fail" denotes that OTTER was not able to solve the problem within four
hours. Note that OTTER was not used in its auto-mode but we list here the results
of the best of up to six different heuristics. The entry "-" denotes that the respective
heuristic was not able to solve the problem within 2000 seconds. All runtimes in table
1 are given in seconds.

Table 1 shows that both cooperation concepts can improve the performance of DI­

CODE. For 12 of the 14 problems the CLCH approach resulted in better runtimes than
the TEAMWORK method, for some of the problems (for problem LCL061-1, LCL003-1
or LCL058-1) the improvements are quite substantial. But, as expected, there are prob­
lems (LCL085-1 1 LCL119-1) for which TEAMWORK results in a better performance. An
analysis of these problems revealed that the better performance of TEAMWORK is due
to the common start state after each team meeting. In both problems one expert uses
the state of the other winning expert to find a proof "more quickly. But DICoDE

was also able to solve these problems in CLCH mode although the runtime is nearly
equivalent to the runtime of the best heuristic for these problems. Note that there
are also some problems for which the TEAMWORK modus only produced a run nearly
equivalent to the best expert.

The analysis of the problems for which the runtimes of CLCH and TEAMWORK are

4.1 Experiments with Condensed Detachment 23

[problem | used heur ist ics | referees | CLCH | TEAMWORK[| best expert | LevWv OTTER —

LCLO02-1 | ONyaet , Mai l | YH 21.7 24.9 58.5 516
LCLO03-1 | onface , FeatW | EP 55.5 91.9 91.4 - 449
LCLO17-1 | onfacs , FeatW | YET 42.7 51.8 51.3 | 51.3 281
LCLO40-1 | LevW ‚, LevFW | 9% 8.0 9.8 14.2 - 16
LCLOS4-1 | ONfac t , ONuail cP 19.3 29.1 34.7 - Fail
LCLO58-1 | LevW | LevFW | LP 17.6 33.6 52.9 52.9 423
LCLO60-1 | LevW ‚, LevFW | 4 6.5 29.7 36.9 56.1 447
LCLO61-1 | FeatW |, FeatW | ¢4P 283.2 448.3 446.6 - Fail
LCLO71-1 | FeatW , FeatW | 9%° 4.8 6.5 29.1 - 511
LCLO85-1 | Onfact , ONfact | Var 110.6 90.3 110.3 | 1200.5 | 2172
LCLO97-1 | Onfact , ONyail 5 8.8 9.3 40.5 | 44.0 2
LCL114-1 | FeatW , FeatW | 4%" 8.4 9.5 25.1 | 357.1 2035
LCL116-1 | FeatW , FeatW | E r 20.8 24.8 32.8 - 2041
LCL119-1 | onfacı , FeatW | of” 100.7 67.8 128.9 - 362

Table 1: CLCH vs. TEAMWORK vs best heuristic in LCL domain

(and the number of computers has to be limited to two in order to allow referees of
type u that can also be employed in TEAMWORK, using the heuristic of the winner).
On the other hand using the same heuristics means that the adaptation capabilities of
TEAMWORK cannot come into play since each expert i s always active.

This way, the main criteria influencing the results of our experiments are the overhead
caused by the two cooperation concepts and the utility of employing a survival-of-the-
fittest strategy (as realized in TEAMWORK) or not (as i n CLCH). We used for the
experiments two SPARCstation ELC running Sun OS 4.1. The runtimes for OTTER
stem from [MW92] and were obtained on a SPARCstation 1+, a machine comparable
to ours . “Fail” denotes that OTTER was not able to solve the problem wi th in four
hours. Note that OTTER was not used in i ts auto-mode but we list here the results
of the best of up to six different heuristics. The entry “~” denotes that the respective
heuristic was not able to solve the problem within 2000 seconds. All runtimes in table
1 are given in seconds.
Table 1 shows that both cooperation concepts can improve the performance of D i -
CoDE. For 12 of the 14 problems the CLCH approach resulted i n better runtimes than
the TEAMWORK method, for some of the problems (for problem LCL061-1, LCL003-1
or LCL058-1) the improvements are qui te substantial. Bu t , as expected, there are prob-
lems (LCLO85-1, LCL119-1) for which TEAMWORK results in a better performance. An
analysis of these problems revealed that the better performance of TEAMWORK is due
to the common start state after each team meeting. In both problems one expert uses
the state of the other winning expert to find a proof more quickly. But D iCoDE
was also able to solve these problems i n CLCH mode although the runtime is nearly
equivalent to the runtime of the best heuristic for these problems. Note that there
are also some problems for which the TEAMWORK modus only produced a run nearly
equivalent to the best expert.
The analysis of the problems for which the runtimes of CLCH and TEAMWORK are

24 4 EXPERIMENTS

nearly equal showed that DICoDE generated for both modi the same proofs and nearly
the same runs. Due to the lesser overhead, however, CLCH was faster. In case of the
substantial improvements by CLCH, TEAMWORK chooses the wrong winner which re­
sulted in the already described additional computation until this mistake was corrected.
But note that TEAMWORK nevertheless often outperforms the best heuristic working
alone.

If we compare the results of DICoDE in CLCH mode with the best sequential heuristics
(note that "best heuristic" means that they are the best we found; but the comparison
with OTTER shows that these heuristics that very often use learned knowledge from
previous proof attempts are quite good), then we can observe that for 12 problems
there are sometimes quite substantial improvements due to the cooperation of the
heuristics. We have an improvement of a factor of 6.1 and a factor 5.7 when solving
problems LCL071-1 and LCL060-1, respectively. Furthermore, the improvement factors
are greater than 2 for six problems.

Note that using CLCH different learning heuristics (using either different source proofs
or different aspects of the same source proof) can cooperate allowing to find proofs
faster (problems LCL061-1, LCL071-1, LCL114-1, LCL116-1). Thus our goal, to im­
prove already good but not quite good enough heuristics by cooperation with other
good ones, is fulfilled.

Finally, the experiments show that if very good heuristics are available it is sufficient
to employ only one send-referee in order to select facts: There are enough facts among
the selected ones which really allows the receiver to find the proof considerably faster.
Moreover, the overhead caused by the cooperation phases is very small.

4.2 Experiments with Superposition

In the previous section we particularly considered the differences between CLCH and
TEAMWORK by means of a prover which was developed for realizing such cooperation
schemes. In this section we want to show that CLCH is able to couple incarnations of a
prov~r-the superposition based prover SPASS-which was not developed considering
the idea of cooperation.

We had to choose again challenging problems for accomplishing this task. To this
end, we tackled with SPASS problems stemming from the CADE-13 ATP. system
competition ([SS96]). Among these problems we selected those from the categories
"unit equality" and "mixed" that SPASS was only able to solve running at least 8
seconds on a SPARCstation-20 (medium and hard problems).

As described in section 3.5, SPASS offers only a few different heuristics. Moreover,
there is not much experience about the appropriateness of heuristics for certain prob­
lems. Since it is not our task to search for heuristics that are suitable for cooperation
but we want to show that by means of CLCH speed-ups can easily be achieved, we
decided to generate heuristics automatically. In analogy to before we let two heuristics
cooperate, each running on a SPARCstation-20. One of the heuristics was the SPASS
"standard heuristic" W (see section 3.5), the other was a heuristic of type FW generated
in the following manner: Function symbols occurring in the axiorriatization but not in

24 4 EXPERIMENTS

nearly equal showed that DICODE generated for both modi the same proofs and nearly
the same runs. Due to the lesser overhead, however, CLCH was faster. In case of the
substantial improvements by CLCH, TEAMWORK chooses the wrong winner which re-
sulted in the already described additional computation until this mistake was corrected.
But note that TEAMWORK nevertheless often outperforms the best heuristic working
alone.
If we compare the results of DICODE in CLCH mode with the best sequential heuristics
(note that “best heuristic” means that they are the best we found; but the comparison
with OTTER shows that these heuristics that very often use learned knowledge from
previous proof attempts are quite good), then we can observe that for 12 problems
there are sometimes quite substantial improvements due to the cooperation of the
heuristics. We have an improvement of a factor of 6.1 and a factor 5.7 when solving
problems LCL071~-1 and LCLO60-1, respectively. Furthermore, the improvement factors
are greater than 2 for six problems.
Note that using CLCH different learning heuristics (using e i ther different source proofs
or different aspects of the same source proof) can cooperate allowing to find proofs
faster (problems LCLO61-1, LCLO71-1, LCL114-1, LCL116-1). Thus our goal, to im-
prove already good but not quite good enough heuristics by cooperation with other
good ones, is fulfilled.
Finally, the experiments show that i f very good heuristics are availableit is sufficient
to employ only one send-referee i n order to select facts: There are enough facts among
the selected ones which really allows the receiver to find the proof considerably faster.
Moreover, the overhead caused by the cooperation phases is very small.

4.2 Experiments wi th Superposit ion

In the previous section we particularly considered the differences between CLCH and
TEAMWORK by means of a prover which was developed for realizing such cooperation
schemes. In this section we want to show that CLCH is able to couple incarnations of a
prover—the superposition based prover SPASS—which was not developed considering
the idea of cooperation.
We had to choose again challenging problems for accomplishing this task. To this
end, we tackled with SPASS problems stemming from the CADE-13 ATP. system
competition ([SS96]). Among these problems we selected those from the categories
“unit equality” and “mixed” that SPASS was only able to solve running at least 8
seconds on a SPARCstation-20 (medium and hard problems).
As described in section 3.5, SPASS offers only a few different heuristics. Moreover,
there is not much experience about the appropriateness of heuristics for certain prob-
lems. Since i t is not our task to search for heuristics that are suitable for cooperation
but we want to show that by means of CLCH speed-ups can easily be achieved, we
decided to generate heuristics automatically. In analogy to before we let two heuristics
cooperate, each running on a SPARCstation-20. One of the heuristics was the SPASS
“standard heuristic” W (see section 3.5), the other was a heuristic of type FW generated
i n the following manner: Function symbols occurring in the axiomatization but not in

4.2 Experiments with Superposition 25

I problem SPASS I HI I H z I CLCH ~ Sbest [&JI

LCL196-1 292.4 292.4 311.7 83.8 3.5 3.5 3.6
LCL163-1 10.0 10.0 11.9 7.5 1.3 1.3 1.4
GRP048-2 23.3 23.3 17.4 8.7 2.5 2.0 2.2
GRP148-1 951.2 307.9 253.1 184.7 5.1 1.4 1.5
GRP16.9-1 80.1 15.7 29.2 13.7 5.8 1.2 1.6
GRP169-2 56.1 56.1 26.2 9.7 5.8 2.7 4.2
GRP174-1 8.0 8.0 8.3 5.8 1.4 1.4 1.4
RNG018-6 639.9 639.9 199.7 152.3 4.2 1.3 2.8
NUMOO9-1 8.1 8.1 6.3 2.6 3.1 2.4 2.8

Table 2: CLCH for superposition theorem proving

the goal clauses were weighted with the value 5, the other symbols with the value 2.
Only at examples GRP169-1 and GRP148-1 we deviated from this method. Because of
the fact that the standard heuristic has only a very weak performance we employed
another heuristic of type FW.

In each of our experiments we chose the same fixed parameterization of the judgement
functions needed by the receive- and send-referees. As we have mentioned in the
previous chapter we let each judgement function of a referee select a certain percentage
of facts. Each of the three judgement functions of a send-referee selected 33% of the
facts to be sent to the other agents. The receive-referee eventually integrated 60% of
these facts into the system of its associated theorem prover. Each of the judgement
functions 'I/J~~ and 'l/Jfl selected 30% of the facts received from the send-referees.

It is to be emphasized that we employed a very simple implementation in order to
exchange facts: We used the standard file mechanism of UNIX for the exchange of
facts, i.e. the send-referees wrote good faCts into a file that was later read by the
receive-referees. Thus, we chose a rather inefficient but very simple scheme to let the
referees communicate. We used files instead of UNIX sockets in order to show the
minimal requirements (in terms of changes to the program: each prover has procedures
to write facts into files) of the CLCH approach. Even with such a simple and inefficient
implementation rather high speed-ups are possible as described shortly.

Table 2 shows the results we obtained when tackling the proof problems. We compare
the runtimes of the standard setting of SPASS (column marked with SPASS), the
runtimes each of the coupled heuristics needs when solving the problem alone (columns
3 and 4), and the time needed when coupling the heuristics via CLCH. The remaining
three columns present speed-ups in comparison to the standard setting of SPASS, the
best of the coupled heuristics, and the average of the coupled heuristics. It shows
that we can achieve rather high speed-ups when we utilize CLCH instead of working
with SPASS in its default setting. In almost all cases the speed-up is greater than 2,
we achieve even super linear values of .s.8. This is very satisfactory, especially if we
remember that the overhead caused by the simple implementation of CLCH is quite
high. Sbest shows the gain of efficiency compared with the best of the coupled heuristics.

4.2 Experiments with Superposition ; 25

| problem | SPASS | Hy | Ha | CLCH | Sst| Stest | Sav|
LCL196-1 | 292.4 | 292.4 | 311.7 83 .8135 | 3,5 | 3.6
LCL163-1 10.0 | 10.0 | 11.9 75113 1.3 | 14
GRP048-2 23.3 233 | 174 8.7 | 2.5 | 2.0 | 2.2
GRP148-1 951.2 | 307.9 | 253.1 | 184.7 | 5.1 1.4 | 1.5
GRP169-1 80.1 | 15.7 | 29.2 13.71 5.8] 12} 1.6
GRP169-2 56.1 | 56.1 | 26.2 9.7 | 5.8 | 2.7 | 4.2
GRP174-1 8.0 8.0 8.3 | 58|1.4| 1.4 | 1.4
RNGO18-6 639.9 | 639.9 | 199.7 | 152.3] 4.2 | 1.3 | 2.8
NUMOO9-1 8.1 8.1 6.3 2613.1) 2.4 | 28

Table 2: CLCH for superposition theorem proving

the goal clauses were weighted with the value 5, the other symbols with the value 2.
Only at examples GRP169-1 and GRP148-1 we deviated from this method. Because of
the fact that the standard heuristic has only a very weak performance we employed
another heuristic of type FW.
In each of our experiments we chose the same fixed parameterization of the judgement
functions needed by the receive- and send-referees. As we have mentioned i n the
previous chapter we let each judgement function of a referee select a certain percentage
of facts. Each of the three judgement functions of a send-referee selected 33% of the
facts to be sent to the other agents. The receive-referee eventually integrated 60% of
these facts into the system of its associated theorem prover. Each of the judgement
functions SS and 4 selected 30% of the facts received from the send-referees.
I t is t o be emphasized that we employed a very simple implementation i n order to
exchange facts: We used the standard file mechanism of UNIX for the exchange of
facts, i.e. the send-referees wrote good facts into a file that was later read by the
receive-referees. Thus, we chose a rather inefficient but very simple scheme to let the
referees communicate. We used files instead of UNIX sockets in order to show the
minimal requirements (in terms of changes to the program: each prover has procedures
to write facts into files) of the CLCH approach. Even with such a simple and inefficient
implementation rather high speed-ups are possible as described shortly.
Table 2 shows the results we obtained when tackling the proof problems. We compare
the runtimes of the standard setting of SPASS (column marked with SPASS), the
runtimes each of the coupled heuristics needs when solving the problem alone (columns
3 and 4), and the time needed when coupling the heuristics via CLCH. The remaining
three columns present speed-ups i n comparison to the standard setting of SPASS, the
best of the coupled heuristics, and the average of the coupled heuristics. It shows
that we can achieve rather high speed-ups when we utilize CLCH instead of working
wi th SPASS in its default setting. In almost all cases the speed-up is greater than 2,
we achieve even super linear values of 5.8. This is very satisfactory, especially i f we
remember that the overhead caused by the simple implementation of CLCH is quite
high. Spes: shows the gain of efficiency compared with the best of the coupled heuristics.

26 5 CONCLUSION AND FUTURE WORK

This shows the potential of CLCH to improve even good heuristics when coupling them
with worse ones. Naturally the speed-ups are not as high as before. Nevertheless, they
are satisfactory. Sav is the speed-up in comparison to the arithmetical middle of the
runtimes needed by 'HI and 'H2 • This gives a hint about the gain of efficiency in
comparison to an arbitrary choice of the automatic generated heuristics. As one can
see in the table these speed-ups range from the value 1.4 to the value 4.2. Hence,
CLCH clearly outperforms an arbitrary choice of automatic generated heuristics.

All in all we can say that the results are quite satisfactory. Nevertheless, they are not
as good as in the area of condensed detachment. There are three reasons for this: On
the one hand the learning heuristics employed in DICoDE need often only a few results
to conclude the proof that can be submitted from the other provers. Since this is not
the case for SPASS the results are worse. Moreover, to deal with this problem we had
to develop more sophisticated referees and had to use both send- and receive-referees.
But this, on the other hand, causes more overhead by the cooperation. Finally, com­
munication through files is an inefficient method and causes a lot of overhead. Utilizing
a faster communication technique, e.g. UNIX sockets, instead of files is therefore an
easy way to improve the performance.

5 Conclusion and Future Work

We have presented an approach for coupling several incarnations of a generating the­
orem prover that use different search-guiding heuristics. The cooperation of these in­
carnations is achieved by periodically interchanging generated results that are selected
by so-called referees. We presented a lot of different kinds of referees utilizing different
knowledge for the selection of facts. Furthermore, we introduced an architecture that
is able to integrate all these kinds of referees efficiently into the selection process.

This concept is far easier to implement than the TEAMWORK method and also offers
some new possibilities with respect to judging results. Also the lack of a central control
results in a more fault tolerant system. This is paid for by loosing the survival-of-the­
fittest principle of TEAMWORK and the adaptation to the given problem by reactive
planning.

However, our experiments with a condensed detachment prover showed that our ap­
proach achieves cooperation between control heuristics resulting in much shorter run­
times. Especially, if some of the used heuristics utilize learned (and therefore often not
sufficiently complete) knowledge the profits of the cooperation are very high. More­
over, the results in coupling different incarnations of the superposition based prover
SPASS showed that CLCH is even well-suited for simple heuristics that are based on
syntactical criteria.

Future research will be concerned with two directions. One direction is to develop a
cooperation concept combining the advantages of CLCH and TEAMWORK. Although
we cannot expect that such a concept will be as easy to implement as CLCH it can
offer some interesting possibilities. These are the survival of several good search states
after a team meeting and the use of referees that are more concerned with the receiving

26 5 CONCLUSION AND FUTURE WORK

This shows the potential of CLCH to improve even good heuristics when coupling them
with worse ones. Naturally the speed-ups are not as high as before. Nevertheless, they
are satisfactory. Say is the speed-up in comparison to the ari thmetical middle of the
runtimes needed by H ı and H; . This gives a hint about the gain of efficiency in
comparison to an arbitrary choice of the automatic generated heuristics. As one can
see in the table these speed-ups range from the value 1.4 to the value 4.2. Hence,
CLCH clearly outperforms an arbitrary choice of automatic generated heuristics.

All in all we can say that the results are quite satisfactory. Nevertheless, they are not
as good as in the area of condensed detachment. There are three reasons for this: On
the one hand the learning heuristics employed in DICODE need often only a few results
to conclude the proof that can be submitted from the other provers. Since this is not
the case for SPASS the results are worse. Moreover, to deal with this problem we had
to develop more sophisticated referees and had to use both send- and receive-referees.
But this, on the other hand, causes more overhead by the cooperation. Finally, com-
munication through files is an inefficient method and causes a lot of overhead. Utilizing
a faster communication technique, e.g. UNIX sockets, instead of files is therefore an
easy way to improve the performance.

5 Conclusion and Future Work

We have presented an approach for coupling several incarnations of a generating the-
orem prover that use different search-guiding heuristics. The cooperation of these in-
carnations is achieved by periodically interchanging generated results that are selected
by so-called referees. We presented a lot of different kinds of referees utilizing different
knowledge for the selection of facts. Furthermore, we introduced an architecture that
is able to integrate all these kinds of referees efficiently into the selection process.
This concept is far easier to implement than the TEAMWORK method and also offers
some new possibilities with respect to judging results. Also the lack of a central control
results i n a more fault tolerant system. This is paid for by loosing the survival-of-the-
fittest principle of TEAMWORK and the adaptation to the given problem by reactive
planning.
However, our experiments with a condensed detachment prover showed that our ap-
proach achieves cooperation between control heuristics resulting in much shorter run-
times. Especially, i f some of the used heuristics utilize learned (and therefore often not
sufficiently complete) knowledge the profits of the cooperation are very high. More-
over, the results in coupling different incarnations of the superposition based prover
SPASS showed that CLCH is even well-suited for simple heurist ics that are based on
syntactical criteria.
Future research wi l l be concerned with two directions. One direction is to develop a
cooperation concept combining the advantages of CLCH and TEAMWORK. Although
we cannot expect that such a concept wi l l be as easy to implement as CLCH i t can
offer some interesting possibilities. These are the survival of several good search states
after a team meeting and the use ofreferees that are more concerned with the receiving

27

experts. Furthermore it should be possible to employ the reactive planning capabilities
of TEAMWORK.

But the CLCH approach offers also the possibility to use different theorem provers
using different calculi as long as they produce facts that can be interchanged. While
TEAMWORK has to prefer one kind of prover with one calculus CLCH can handle all
these provers as equals. The more flexible referee concept allows for meeting the needs
of quite different provers within one proof attempt.

27

experts. Furthermore i t should be possible t o employ the reactive planning capabilities
of TEAMWORK.

But the CLCH approach offers also the possibility to use different theorem provers
using different calculi as long as they produce facts that can be interchanged. While
TEAMWORK has to prefer one kind of prover with one calculus CLCH can handle all
these provers as equals. The more flexible referee concept allows for meeting the needs
of quite different provers within one proof attempt.

28 REFERENCES

References

[AD93] Avenhaus, J.; Denzinger, J.: Distributing equational theorem proving,
Proe. 5th RTA, Montreal, LNCS 690, 1993, pp. 62-76.

[BG94] Bachmair, L.; Ganzinger, H.: Rewrite-based equational theorem proving
with selection and simplification, Journal of Logic and Computation, 4(3),
1994, pp. 217-247.

[CMM90]	 Conry, S.E.; MacIntosh, D.J.; Meyer, R.A.: DARES: A Distributed
Automated Reasoning System, In Proe. AAAI-90, 1990, pp. 78-85.

[De90]	 Dershowitz, N.: A maximal-Literal Unit Strategy for Horn Clauses, Proe.
2nd CTRS, Montreal, LNCS 516, 1990, pp. 14-25.

[De95]	 Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork,
Proe. ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[DF94]	 Denzinger, J.; Fuchs, M.: Goal-oriented equational theorem proving using
teamwork, Proc. 18th KI-94, Saarbriicken, LNAI 861, 1994, pp. 343-354.

[DF96]	 Denzinger, J.; Fuchs, D.: Referees for Teamwork, Proc. FLAIRS '96,
Key West, FL, USA, 1996, pp. 454-458.

[DK96]	 Denzinger, J.; Kronenburg, M.: Planning for Distributed Theorem
Proving: The Teamwork Approach, Proe. KI-96 (German annual conference
on AI), Dresden, GER, LNAI 1137, 1996, pp. 43-56.

[DS96a]	 Denzinger, J.; Schulz, S.: Recording and Analyzing Knowledge-Based
Distributed Deduction Processes, JSC 21, 1996, pp. 523-541.

[DS96b]	 Denzinger, J.; Schulz, S.: Learning Domain Knowledge to Improve The­
orem Proving, Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104,1996,
pp. 62-76.

[Fu96]	 Fuchs, M.: Experiments in the Heuristic Use of Past Proof Experience,
Proe. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp. 523-537.

[FF97]	 Fuchs, D.; Fuchs, M.: CODE: A Powerful Prover for Problems of Con­
densed Detachment, Proc. CADE-14, Townsville, Australia, 1997, to appear.

[Gr96]	 Graf, P.: Term Indexing, LNAI 1053, 1996.

[Lu70]	 Lukasiewicz, J.: Selected Works, 1. Borkowski (ed.), North-Holland, 1970.

[Mc94]	 McCune, W.W.: OTTER 8.0 Reference manual and Guide, Tech. rep.
ANL-94/6, Argonne National Laboratory, 1994.

[MW92]	 McCune, W.; Wos, L.: Experiments in Automated Deduction with Con­
densed Detachment, Proe. CADE-11, Saratoga Springs, NY, USA, 1992,
LNAI 607, pp. 209-223.

28 REFERENCES

References

[AD93] Avenhaus, J . ; Denzinger, J . : Distributing equational theorem proving,

[BG94]

[CMM90]

[De90]

[Des]

[DF94]

[DF96]

[DK96]

[DS96a]

[DS96b]

[Fu96]

[FF97]

[Gr96]

[Lu70]

[Mc94]

[MW92]

Proc. 5” RTA, Montreal, LNCS 690, 1993, pp. 62-76.

Bachmair, L . ; Ganzinger, H . : Rewrite-based equational theorem proving
with selection and simplification, Journal of Logic and Computation, 4(3),
1994, pp. 217-247.

Conry, S.E.; MacIntosh, D.J.; Meyer, R.A. : DARES: A Distributed
Automated Reasoning System, In Proc. AAAI-90, 1990, pp. 78-85.

Dershowitz, N . : A mazimal-Literal Unit Strategy for Horn Clauses, Proc.
2nd CTRS, Montreal, LNCS 516, 1990, pp. 14-25.

Denzinger, J. : Knowledge-Based Distributed Search Using Teamwork,
Proc. ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

Denzinger, J . ; Fuchs, M . : Goal-oriented equational theorem proving using
teamwork, Proc. 18 * KI-94, Saarbrücken, LNAI 861, 1994, pp . 343-354.

Denzinger, J. ; Fuchs, D . : Referees for Teamwork, Proc. FLAIRS ’96,
Key West, FL , USA, 1996, pp. 454-458.

Denzinger, J. ; Kronenburg, M . : Planning for Distributed Theorem
Proving: The Teamwork Approach, Proc. KI-96 (German annual conference
on Al), Dresden, GER, LNAI 1137, 1996, pp. 43-56.

Denzinger, J . ; Schulz, S.: Recording and Analyzing Knowledge-Based
Distributed Deduction Processes, JSC 21, 1996, pp. 523-541.

Denzinger, J.; Schulz, S.: Learning Domain Knowledge to Improve The-
orem Proving, Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996,
pp. 62-76. .

Fuchs, M . : Ezperiments in the Heuristic Use of Past Proof Experience,
Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp. 523-537.

Fuchs, D . ; Fuchs, M . : CoDE: A Powerful Prover for Problems of Con-
densed Detachment, Proc. CADE-14, Townsville, Australia, 1997, to appear.

Graf, P. : Term Indexing, LNAI 1053, 1996.

Lukasiewicz, J . : Selected Works, L . Borkowski (ed.), North-Holland, 1970.

McCune, W.W. : OTTER 3.0 Reference manual and Guide, Tech. rep.
ANL-94/6, Argonne Nat ional Laboratory, 1994.

McCune, W. ; Wos, L . : Ezperiments in Automated Deduction with Con-
densed Detachment, Proc. CADE-11, Saratoga Springs, NY, USA, 1992,
LNAI 607, pp . 209-223.

29 REFERENCES

[Pe76] Peterson, G.J.: An automatic theorem prover for substitution and detach­
ment systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1,
January 1976, pp. 119-122.

[S193] Slaney, J.: SCOTT: A Model-Guided Theorem Prover, Proc. lJCAl '93,
Chambery, FRA, 1993, pp. 109-114.

[SS96] Sutcliffe, G.; Suttner, C.: ATP System Competition held on August 1 in
conjunction with CADE-13, New Brunswick, NJ, USA, 1996; Competition
results available via WWW at the URL
http://wwwjessen.informatik.tu-muenchen.de/-tptp/CASC-13.

[SS94] Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library,
Proc. CADE-12, Nancy, FRA, 1994, LNAl 814, pp. 252-266.

[Ta56] Tarski, A.: Logic, Semantics, Metamathematics, Oxford University Press,
1956.

[We93] Weidenbach, C.: Extending the resolution method with sorts, Proc. IJ­
CAl '93, Chambery, FRA, 1993, pp. 60-65.

[WGR96]	 Weidenbach, C.; Gaede, B.; Rock, G.: SPASS & FLOTTER Version
0.42, Proc. CADE-13, New Brunswick, NJ, USA, LNAl 1104, 1996, pp.
141-145.

[Wo90]	 Wos, L.: Meeting the Challenge of Fifty Years of Logic, Journal of Auto­
mated Reasoning 6, 1990, pp. 213-232.

[W(J95]	 Wos, L.: Searching for Circles of Pure Proofs, JAR 15, 1995, pp. 279-315.

REFERENCES 29

[Pe76]

[S193]

[SS96]

[S594]

[Ta56]

[We93]

[WGR96]

[Wo90]

(Wo95]

Peterson, G .J . : An automatic theorem prover for substitution and detach-
ment systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1,
January 1976, pp. 119-122.

Slaney, J . : SCOTT: A Model-Guided Theorem Prover, Proc. IJCAI ’93,
Chambery, FRA, 1993, pp. 109-114.

Sutcliffe, G.; Suttner, C.: ATP System Competition held on August 1 in
conjunction with CADE-13, New Brunswick, NJ, USA, 1996; Competition
results available via WWW at the URL
http://wwwjessen.informatik.tu-muenchen.de/ tptp/CASC-13.

Sutcliffe, G . ; Sut tner , C . ; Yemenis, T . : The TPTP Problem Library,
Proc. CADE-12, Nancy, FRA, 1994, LNAT 814, pp. 252-266.

Tarski, A . : Logic, Semantics, Metamathematics, Oxford University Press,
1956.

Weidenbach, C.: Fztending the resolution method with sorts, Proc. 1J-
CAI 93, Chambery, FRA, 1993, pp. 60-65.

Weidenbach, C.; Gaede, B . ; Rock, G. : SPASS & FLOTTER Version
0.42, Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp.
141-145.

Wos, L . : Meeting the Challenge of Fifty Years of Logic, Journal of Auto-
mated Reasoning 6, 1990, pp. 213-232.

Wos, L . : Searching for Circles of Pure Proofs, JAR 15, 1995, pp. 279-315.

	UR_0006.jpg

