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Abstract: In this report we give an overview of the development of our new WALDMEISTER 
prover for equational theories. We elaborate a systematic stepwise design process, starting 
with the inference system for unfailing Knuth-Bendix completion and ending up with an 
implementation which avoids the main diseases today's provers suffer from: overindulgence 
in time and space. 

Our design process is based on a logical three-level system model consisting of basic 
operations for inference step execution, aggregated inference machine, and overall control 
strategy. Careful analysis of the inference system for unfailing completion has revealed the 
crucial points responsible for time and space consumption. For the low level of our model, 
we introduce specialized data structures and algorithms speeding up the running system and 
cutting it down in size - both by one order of magnitude compared with standard techniques. 
Flexible control of the mid-level aggregation inside the resulting prover is made possible by a 
corresponding set of parameters. Experimental analysis shows that this flexibility is a point 
of high importance. We go on with some implementation guidelines we have found valuable 
in the field of deduction. 

The resulting new prover shows that our design approach is promising. We compare our 
system's throughput with that of an established system and finally demonstrate how two 
very hard problems could be solved by WALDMEISTER. 
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1 Introduction 

A closer look at automated deduction systems reveals three levels: basic operations, 
aggregrated inference machine and overall control strategy. A lot of work is put into 
the development of sophisticated heuristics on the top level. Making provers learn 
from previous runs is employed in order to enable the programs to use their experi­
ence from the past ([Fuc96b]). Another successful approach is to take domain knowl­
edge into account and thus to adjust the prover to new problem classes independently 
([Sti84], [DS96]). Furthermore, distributing automated theorem proving on the high 
level ([AD93], [CMM90]), or parallelizing it on the low level ([BGK96]) is tried in order 
to reduce the wall-clock run time of provers. Apart from that, the development of 
data structures and algorithms for specialized high-speed operations like retrieval of 
generalizations and instances of terms has made good progress ([McC92], [Gra96]). In 
contrast, not enough attention is yet paid to the question how the single inference steps 
should be aggregated into an inference machine. 

If research focusses on one of the three levels, usually only standard techniques 
are applied on the other levels in order to build quickly a prototype - which then 
of course is not uniformly optimized. Establishing sophisticated selection strategies 
will never yield an extraordinary high performance if the underlying inference machine 
is not accordingly optimized on the levels both of aggregation and basic operations. 
Naturally, fast but stupid provers must be considered unsatisfactory as well. This 
focussing on just one level might be the reason why provers run out of bounds even 
before attacking challenging problems. For building successful provers, all approaches 
must be combined. 

In this report we describe the first part of this task for the field of equational de­
duction: We start with the inference system for unfailing Knuth-Bendix completion 
(Sect. 2). We introduce a logical three-level system model of saturation-based provers. 
Aiming at efficiency in terms of time and space, we propose the paradigm of an engi­
neering approach for design and implementation. Afterwards we outline the systematic, 
stepwise design process (Sect. 3) we followed in the making of WALDMEISTER. 

Vve derive a sketch of algorithm and name its crucial points in terms of time and 
space consumption. For the level of basic operations, we introduce specialized data 
structures and algorithms speeding up the running system and cutting it down in size 
- both by one order of magnitude compared to standard techniques (Sect. 4, 5, 6). 

For the mid level, we confirm an appropriate aggregration of the inference steps into 
an efficient inference machine by careful evaluation of our measurements on the open 
questions (Sect. 7). In Sect. 8 we describe how we realized an efficient implementation, 
following the paradigm of imperative programming. 

The resulting new prover WALDMEISTER1 shows that our design approach is promis­
ing (Sect. 9). Although we have not yet spent much effort on specialized heuristics we 
gain impressive results on standard problems. Furthermore, WALDMEISTER solves two 
problems from [LW92] never proved unaided with standard unfailing completion be­

1In German this means woodruff and is composed of forrest and master. 
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fore (Sect. 10). The completely machine generated proof of one of the problems can be 
found in App. A, whereas App. B contains the problem specifications we used for our 
experiments. 
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2 Dealing with Equational Reasoning 

What is the typical task of a deduction system? A fixed logic has been operationalized 
towards a calculus the application of which is steered by some control strategy. Before 
we will describe the design process that culminated in WALDMEISTER, we will state the 
starting point of the whole process, i.e. the inference syste~ for unfailing Knuth-Bendix 
completion. 

Unfailing completion 

In [KB70], Knuth and Bendix introduced the completion algorithm which tries to derive 
a set of convergent rules from a given set of equations. With the extension to unfailing 
completion in [BDP89], it has turned out to be a valuable means of proving theorems 
in equational theories (positive first-order unit equality clauses). 

The following nine inference rules form a variant of unfailing completion which 
is suitable for equational reasoning. It is based both on [BDP89j, which the nota­
tion is following, and [AD93]. The inference system works on triples E, R, G of sets of 
termpairs (equations, rules, and goals). The termpairs in E U R are positive unit equal­
ity clauses which are implicitely all-quantified. The goals are negated and skolemized 
all-quantified equations; hence, they contain ground expressions only. For convenience, 
they are also written with the equality symboL2 The symbol >- denotes an arbitrary 
redudion ordering which is total on equivalent ground terms and I> the specialization 
ordering (s I> t if and only if some subterm of s is an instance of t, but not vice versa). 

Orient 

EU{s==t},R,G 
if s >- t 

E,RU{s~t},G 

Generate 

E,R,G 
if s = tEeP (R, E)

E U {s = t}, R, G 

Simplify an equation 

E U {s == t}, R, G 
if S ~R U or s ~E>-,l=r U with s t> l 

Eu{u==t},R,G 

Delete an equation 

E U {s = s}, R, G
 

E,R,G
 

2WALDMEISTER is also able to deal with existentially quantified goals, which requires additional 
inference rules for narrowing. See [Den93] for more details. 
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Subsume an equation 

E U {s == t, u[a(s)] == u[a(t)]}, R, G
 
E U {s . t}, R, G
 

Simplify the right-hand side of a rule 

E,RU {s --+ t},G 
if t --+ RUE)-- U

E,RU {s --+ u},G 

Simplify the left-hand side of a rule 

E,RU{s--+t},G
 
E U {u = t}, R, G
 

Simplify a goal 

E, R, G U {s == t} 
E, R, G U {u == t} 

Success 

E,R,Gu{s=t} 
if s - t 

SUCCESS 

An informal illustration of the inference system is given in Fig. 1. The boxes repre­
sent sets in the mathematical sense and contain pairs of terms: namely rules, equations, 
goals, and critical pairs. Initially, E includes the axioms and G the hypotheses. The 
set C P (R, E) is a function of the current sets Rand E and holds the essence of all the 
local divergencies. These arise whenever on the same term two different rewrite steps 
are applicable. 

The arrows denote single inference steps, and each shifts a single termpair from one 
set to another. Along the simplify arrows, the terms alter according to the single-step 
rewrite relation induced by Rand E. An equation with identical sides may be deleted. 
The same applies to an equation that is subsumed by a more general one. As soon 
as one side is greater than the other with respect to a fixed reduction ordering, the 
equation may be oriented into a rule. If the left-hand side of a rule is simplified, this 
rule becomes an equation again. This does not happen when reducing the right-hand 
side. A new equation is generated by selecting a termpair from CP(R, E). As soon as 
left-hand side and right-hand side of a goal are identical, the corresponding hypothesis 
is successfully proved. 

Instantiating this inference system leads to proof procedures. To achieve semi­
completeness, a control constraint - the so-called fairness - has to be considered: 
From every critical pair the parents of which are persistent an equation must be gen­
erated some time. 
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simplify Ihs generate 
CP(R,E)

orient 

simplify rhs simplify 

c9J . 
simplify "'~ 

~ 

Figure 1: The inference system for unfailing completion 
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3 Design: Deduction Meets Software Engineering 

The main goal during the development of WALDMEISTER was overall efficiency. To 
achieve this goal, one has to follow the paradigm of an engineering approach: Analyz­
ing typical saturation-based provers, we recognize a logical three-level structure (see 
below). We will analyze each of these levels with respect to the critical points respon­
sible for the prover's overall performance. Wherever necessary, the question of how to 
tackle these critical points will have to be answered by extensive experimentation and 
statistical evaluation. In this context, an experiment is a fair, quantitative compari­
son of different realizations of the same functionality within the same system. Hence, 
modularity has to be a major principle in structuring the system. 

Now, what does that mean in practice? Imagine a certain functionality needed 
for constructing say an unfailing completion procedure, e.g. normalization of terms. 
Out of the infinitely many different realizations, one could choose an arbitrary one 
and forget about the rest. However, there is no justification for restricting a system 
to a single normalization strategy, since different strategies are in demand for different 
domains. Hence, the system should include numerous normalization routines (allowing 
easy addition of other realizations) and leave the choice between them up to the user. 
As this applies to many choice points, an open system architecture produces a set of 
system parameters for fixing open choice points in one of the supported ways, and thus 
allows an easy experimental comparison of the different solutions. It is not before now 
that an optimal one can be named - if there is one: in some cases different domains 
require different solutions. 

In this section we will depict the afore-mentioned three-level model, and describe 
the systematic stepwise design process we followed during the development of WALD­

MEISTER. The seven steps we have followed can be generalized towards applicability 
to arbitrary (synthetic) deduction systems. 

The three-level model 

We aim at automated deduction systems including a certain amount of control coping 
with many standard problems - in contrast to interactive provers. The basis for 
our development is the afore-mentioned logical three-level model of completion-based 
provers (see Fig. 2). As every calculus that is given as an inference system, unfailing 
completion has many inherent indeterminisms. When realizing completion procedures 
in provers, this leads to a large family of deterministic, but parameterized algorithms. 
Two main parameters are typical for such provers: the reduction ordering as well 
as the search heuristic for guiding the proof. Choosing them for a given proof task 
forms the top level in our model. The mid-level is that of the inference machine, 
which aggregates the inference rules of the proof calculus into the main completion 
loop. This loop is deterministic for any fixed choice of reduction ordering and selection 
heuristic. Since there is a large amount of freedom, many experiments are necessary to 
assess the differing aggregations before a generally useful one can be found. The lowest 
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level provides efficient algorithms and sophisticated data structures for the execution 
of the most frequently used basic operations, e.g. matching, unification, storage and 
retrieval of facts. These operations consume most of the time and space. 

Control
 
Strategy
 

Inference
 
Machine
 

r:. :A 

\J: 
tor~ge I>ff ct$ 

1lIlI~ ..L..,\\ DJ 

Basic 
c§ttChi~ c§!ficat§> Operations 

Figure 2: A three-level model for saturation-based deduction systems 

Seven steps for designing an efficient prover 

Trying to solve a given problem by application of an inference system, one has to 
proceed as follows: 

while the problem is not yet solved do 
(a) select an inference rule n 
(b) select a tuple of facts x 
(c) apply n to x
 

end
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Proceeding that way, one will usually be confronted with two different kinds of 
decisions to be made. The first one is (a) to select an inference rule, which we will call 
a "global choice point". If these selections are steered by some kind of control, their 
sequence already can be seen as an aggregation of the inference rules into an algorithm. 
Aiming at efficiency, this aggregation must base on deep understanding of the inference 
system. 

The second kind of decisions deals with what we call "local choice points" (b): 
Each inference rule is instantiated with a tuple of facts which has to be chosen from 
all the tuples to which it is applicable at the moment. 

With these notions, the seven steps in the design process are the following: 
(1) Identify the local choice points. 
(2) Name your experiences. 
(3) Group the inference rules into a sketch of algorithm. 
(4) Define a set of system parameters. 
(5) Reveal the crucial points and develop appropriate data structures & algorithms. 
(6) Implement carefully. 
(7) Find a default parameter setting. 

The first two steps are important for all the three levels. Steps 3 and 4 deal with 
the inference machine, step 5 concerns the basic operations level. Step 6 is obviously 
inevitable for all levels. Finally, step 7 refers to the upper two levels, and accomplishes 
the engineering approach. 

(1) Identify the local choice points 

The first step in our design process is to identify the local choice points. Let us have 
a look at the inference system for unfailing completion: 

•	 Orienting an equation into a rule is instantiated with an equation and the given 
reduction ordering that is fixed during the proof run. 

•	 The four simplifying inference rules each have to be instantiated with the object, 
namely the equation, rule or goal they are applied to, the position in the term to 
be simplified and the rule or equation used for simplification. 

•	 The decision which equation should be deleted from the set E due to triviality or 
due to subsumption obviously is of minor importance. Nevertheless, as subsump­
tion testing takes time, it should be possible to turn it off if the proof process 
does not benefit from it. 

•	 Finally, there is the generation of new equations which depends on the "parent" 
rules/equations and a term position, restricted by the existence of a unifier. 
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(2) Name your experiences 

~aming the experiences gathered either from prototyping, from the intention behind 
the inference system, or from manual computation of many examples should be done 
before further design decisions are met. Additional completeness constraints have to be 
taken into consideration as well. Statistical results gained from mechanical experiments 
with a prototypical implementation have to be correlated with the test environment. 

(3) Group the inference rules into a sketch of algorithm 

With these experiences in mind, a first draft of the system will arise from grouping the 
inference rules into a sketch of algorithm. Since we are following the imperative pro­
gramming paradigm, we use iteration, branching and sequencing as basic construction 
elements. At this design step, object classes and access points for a high-level control 
strategy should be identified as well. Only those global and local choice points should 
be fixed that could definitely be cleared by experience. 

Experience says 
fix it! don't know 

global choice points (sketch of) design challenge or 
algorithm interactive prototype 

restricted functionality parameter-dependentlocal choice points 
of inference steps behaviour 

Table 1: Characterization of choice points 

We will now derive such a sketch for the case of unfailing completion. Naturally, 
generation of a new equation will be followed by applying simplification, orientation or 
deletion to that very equation. For that reason, generation can be seen as the selection 
of the critical pair from CP(R, E) to be processed next. Of course only those critical 
pairs are of concern that have not yet been considered. 

Experience shows that - besides the choice of the reduction ordering - this 
selection is the most important choice point of all: It determines success or failure in 
the given space and time bounds. Although the fairness constraint restricts the select 
function there is still a large variety of different realizations. Providing select with 
as much profitable information as possible is a major requirement a good inference 
machine has to meet. This means especially that select should have access to all the 
critical pairs from CP(R, E) in order to assess them with respect to their value in the 
proof process. 

It is generally accepted that a valuable analysis of critical pairs relies on extracting 
information from their terms. As long as select only considers raw critical pairs, it will 
often be misled. Consequently, a kind of preprocessing should precede the selection. 
This preprocessing usually includes a certain amount of simplification with respect to 
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the current rewrite relation. On this occasion, joinable and subsumable critical pairs 
can be easily detected and hence removed. 

Doing preprocessing every time an equation is selected from CP(R, E) would be 
far too expensive. Hence, not only the critical pairs but also the information computed 
via preprocessing should be stored. This may include the already generated (and 
possibly simplified) terms as weH as information required for an easier selection, such 
as. the length or depth of the terms. In agreement with the inference system, we must 
consider this set as a subset of E because preprocessing may require the application 
of simplify. In contrast, all the other inference rules will not be applied to this special 
subset of E. We will call the resulting set SUE, the Set of Unselected Equations. 
Accordingly, Eselected = E \ SUE will be called the set of selected equations, and its 
members simply 'equations'. 

Since selection can be seen as the search for the "best" element in SUE, it is of 
the same complexity as a minimum-search. Taking a look at the changes that appear 
in SUE between two successive applications of select reveals that exactly one element 
has been removed whereas a few elements might have been added. As every selection 
strategy induces an ordering on this set, we can realize SUE as a priority queue. 

Storing all the unselected but preprocessed equations in such a manner induces 
serious space problems (cf. Sect. 5). Hence, we follow two approaches to keep this set 
small. On the one hand, the total number of generated equations should be minimized. 
As only critical pairs built with rules and equations from R U Eselected will be added to 
SUE, we must guarantee that RUEselected holds rules and equations which are minimal 
in the following sense: A rule or equation is minimal if each of the following conditions 
holds: 

• both sides cannot be simplified by any other minimal rule or equation, 
• it is not trivial and cannot be subsumed, 
• it has not been considered superfluous by subconnectedness criteria, 
• it has been assessed valuable and thus once been selected, and 
• it has been oriented into a rule if possible. 

On the other hand, unselected equations should be eliminated whenever possible 
- if they are trivial or subsumable or even joinable with respect to the current rewrite 
relation. This (combined with preprocessing) causes innumerable invocations of sim­
plify, although the application of these inference rules is restricted to rewriting with 
minimal rules and equations. Even more equations may be deleted from SUE as the 
fairness constraint only requires that all the critical pairs stemming from persistent 
rules/equations have to be built (and processed) some time. If a rule or equation has 
been removed from R U Eselected all the descending critical pairs that are stored as 
unselected equations in SUE can be removed ("orphan murder", see also [Ave95]). 

The minimality property guarantees the following: 
• simplified right-hand sides shorten simplification chains,
 
• orientation whenever possible saves calls of the reduction ordering,
 
• generated equations do not impose superfluous simplifications, and finally 
• no superfluous equations (descending from parents that can be 
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delete triviality 

removed via interreduction) will be generated. 

The minimality property can be guaranteed by executing interreduction on R U 

Eselected with every equation that has been selected from SUE and appeared to be 
minimal as well. Interreduction means that rules the left-hand sides of which could be 
simplified, and equations any side of which could be simplified will be shifted from R 
respectively Eselected to SUE.3 

Another common design decision is to repeat the application of simplify unless 
an irreducible successor of the given term is found. This results in a parameterized 
normalization procedure instead of the stepwise execution of simplify. 

generate s=t out of CP(R,E) 

[D)-~
subsume 

, 
simplifylhs simplify 

~~ 
normalize rhs 

Figure 3: Sketch of algorithm 

Having seperated E into minimal (thus selected) and yet unselected equations, 
hence E = EselecteiJSUE, and restricting both generation of new equations and sim­
plifying to minimal rules and equations, we come get a specialization of the infereI!ce 
system that is shown in Fig. 3. It still corresponds to the basic inference system from 
Fig. 1, since it only restricts generate and simplify to Rand Eselected' Fairness can be 
ensured as long as select fulfills certain properties. 

Now it is easy to derive a sketch of algorithm: A newly selected equation will first 
be normalized (applying simplify), then deleted or subsumed if possible. Then the new 
member of R U Eselected is used to modify the facts already in R U Eselected (interre­
duction), or the critical pairs in SUE. Afterwards, it will be added to R if it could 

3 An interesting point is that the distinction between selected and unselected equations is ali:lo 
obtained if one tries to direct the execution of the inference steps simplify in such a manner that no 
superfluous work is done: Rewriting is done with minimal rules/equations only. 
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Control 
Strategy 

Inference 
Machine 

Basic 
Operations· 

·· .......... \:..:.:..:.:..:.;.:._-=:::::.;;;;;;;;;;;;:::::::- -.J
 

Figure 4: The three-level model instantiated for unfailing Knuth-Bendix completion 

be oriented, otherwise it becomes a member of Eselected. Former rules or equations 
that have been removed during interreduction will be added to SUE again. Finally, 
all the critical pairs that can be built with the new rule or equation are generated, 
prepro~essed, and added to SUE which closes the cycle. From time to time, one must 
take a look at the goals and check whether they can already be joined. Furthermore, 
reprocessing the elements of SUE should be taken into consideration (intermediate re­
processing, IRP). In Fig. 4 we have instantiated the general three-level model according 
to this sketch of algorithm. 
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(4) Define a set of system parameters 

Having designed a sketch of algorithm, we now have to deal with those choice points 
which could not definitely be fixed by experience and thus - in the framework of an 
open system architecture as induced by the engineering approach - shall be left open 
to the user. More precisely, some of the system's functionality will have t9 be realized 
in different ways: A certain task will be fulfilled by several components; and the user 
(or the control strategy) must be able to select one of them at run time. This leads to a 
corresponding set of system parameters. As soon as the deduction system is completed, 
statistical evaluations of different parameter settings should result in a kind of default 
setting suitable for most problem classes. 

In the context of unfailing completion, we found three groups of remaining choice 
points. 

• High-level control parameters: 

the reduction ordering yielding oriented equality, and 

the select function guiding the selection of equations from SUE. 

• Treatment of unselected equations: 

the organization of intermediate reprocessing which includes simplification 
and/or re-classification of the yet unselected equations, 

the criteria that shall be applied immediately after new equations have been 
generated (e.g. subconnectedness criteria), and 

the amount of simplification preceeding the classification of newly generated 
equations (preprocessing). 

• Normalization of terms: 

- the term traversal strategy (e.g. leftmost-outermost, leftmost-innermost), 

- the way of combining Rand Eselected which may differ for the various situ­
ations normalization is applied, 

- the priority of rules when simplifying with respect to R U Eselected, 

- the question which of the possibly more than one applicable rules and/or 
equations shall be applied, and 

- the backtracking behaviour after the execution of a single rewrite-step. 

Although a few of these choice points might appear quite unimportant, all of them 
have proven valuable during our experimental analysis (see Sect. 7), or at least of 
significant influence on the prover's performance. 
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(5)	 Reveal the crucial points and 
develop appropriate data structures & algorithms 

Now, a closer look at the sketch of algorithm must reveal the crucial points where time 
or memory are consumed. It is the low level that holds responsible for the system's 
throughput (inference ::::teps per time unit) and how far the computation can be taken 
in the sp'ace limits given by the environment. If on this level appropriate data struc­
tures and algorithms are employed, the execution of the critical inference steps will be 
improved significantly. Consequently, the whole system will be sped up and cut down 
in size. 

What are the crucial points in the case of unfailing completion? Preprocessing the 
newly generated equaLions usually employs normalization. Since this causes most of the 
system's time consumption, data structures and algorithms for fast normalization are 
in demand - put in concrete terms, this means rewriting with high efficiency (Sect. 4). 
To avoid expensive recomputation, the information already generated should be kept, 
which basically concerns the critical pairs generated during a proof run. As millions of 
them may arise during such a run, the set of unselected equations must be represented 
in a space saving way (Sect. 5, 6). 

(6)	 Implement carefully 

Implementing transforms the design of efficient algorithms and data structures into a 
program that runs efficiently on real machines (Sect. 8). This must not be underes­
tim~ted: For example, efficient memory management can cut down the run times by 
half and thus should be done before brooding over sophisticated unification routines. 

(7)	 Find a default parameter setting 

Detailed statistical information should be available for the user, because precise analy­
sis of the system behaviour is the basis for a better understanding of the proof process. 
This is eased by the fine-grained influences on the inference machine. Statistical anal­
ysis of the open choice points should be done with the finished system in order to 
find a default parameter setting, or at least to name tendencies on how these parame­
ters affect the system's behaviour. For the case of unfailing completion as realized in 
WALDMEISTER see Sect. 7. 

(*)	 Let the system run 

The user running the system and getting fascinated by its (hopefully) ultimative per­
formance, it will not take too long until new desires arise. Our seven step design 
process yields an open architecture that not only allows but even encourages further 
enhancements and improvements. In our case, especially the representation of SUE 
was improved more and more during our work with the system. This was because the 
high performance retrieval operations led to a very large amount of facts computed 
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in quite a short time span - and hence we got in trouble with colleagues working on 
machines on which WALDMEISTER was running. 

To end with, let us make a few remarks on software development in the field of 
deduction. Usually, we have some constant top-level requirements - as in our case 
'build a good prover based on Knuth-Bendix completion', where 'good' means economic 
use of the resources time and space. .l?uring the design phase, developers and users 
coincide. The experience with the program and the knowledge about its behaviour 
increase, naturally leading to changing requirements on a lower level such as "Let us 
try this or that, or better both!" (cf. Sect. 7). Now, how can we deal with this kind of 
changing requirements? Here are a couple of hints we found valuable: 

•	 Flexibility: Leave as many influences to the user as possible. Even try to leave 
the "This point is absolutely clear, and everybody who says something different 
is a complete fool." -points open - and be it only to prove everybody a complete 
fool who says something different. 

•	 Rigidity: Fix only those points (and none else) that are 150% clear. Points that 
have been confirmed by measurements can be fixed later. 

•	 Interchangeability: Keep in mind that it may be necessary to exchange complete 
subsystems (open architecture). 

•	 Economicalness: Always keep in mind that time and space are valuable and 
should not be wasted to superfluous operations or data. 
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4 Data Structures for Fast Rewriting 

The rewriting task is the following: Given a set R of rules and E of equations, fur­
thermore a single term t and a reduction ordering >, derive a successor of t. Every 
derivation step is done by applying a suitable element l -+ r of R or Z":""r of E where a 
rule is suitable iff its left-hand side is more general than the actual term or one of its 
subterms; and the match of the left-hand side will be replaced by the right-hand side 
under the corresponding substitution. Equations may only be applied if additionally 
the former subterm is greater than its substitute. Employing different term traversal 
strategies, normalization routines are constructed via subsequent application of single 
rewrite steps. 

As during completion the set of rules grows larger and larger, the bottle-neck in 
the normalization procedure is the search for generalizations of a single query term in 
the whole set of rules. How this bottle-neck is tackled sets the starting-point for. the 
design of the fundamental data structures. Our solution consists of specialized indexing 
techniques (see [Gra96] for an overview) going hand in hand with an appropriate term 
representation. . 

4.1 Flatternrrs 

e e 

Figure 5: Flatterms vs. tree terms 

Flatterms as an alternative to tree-like recursive term representations were intro­
duced by Christian in [Chr89]. The function symbols and variables - represented by 
non-negative resp. negative integers - are collected in a doubly linked list just in the 
order of a preorder term traversal. For each list cell, there is an extra entry pointing 
to the last cell employed by the corresponding subterm. This allows skipping and fast 
traversal of subterms. As recursions are replaced by simple iterations, the use of flat­
terms speeds up fundamental operations like copying or equality testing. Furthermore, 
they correspond perfectly to discrimination trees because the latter base their retrieval 
operations on preorder term traversal, too. For his HIPER system, Christian states an 
"overall speedup... in the neighborhood of 30 percent." In our opinion, in rewriting it 
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is sufficient to use singly linked lists instead of doubly linked ones.4 

lJsing flatterms in combination with free-list based memory management has given 
us yet another advantage: Flatterms can be disposed of in constant time. To this end, 
the list of free term cells is just appended to the term to discard, now seen as list of term 
cells. This is done by changing one pointer in the last cell of the term. This technique 
does not only apply to the case of discarding joinable critical pairs: When applying 
a rewrite rule such as f(x, y, z) -+ g(y) with substitution CJ, the now unnecessary 
subterms (J (x) and (J (z) are disposed the same way. This kind of explicit memory 
management clearly outweighs implicit ones using garbage collection. 

4.2 Refined Perfect Discrimination Trees 

Indexing techniques have been used in automated theorem proving since the early 70ies. 
McCune published comparative experiences on this field in [McC92]. He suggested the 
use of special tries, the so-called standard discrimination trees. Every edge of such a 
tree is marked with a function symbol or a special wildcard symbol instead of variables. 
The leafs contain rules with left-hand sides identical but for the variables. Each path 
from the root to a leaf carries the corresponding term on the edges. Retrieval operations 
such as searching for generalizations are based on tree traversal using backtracking. 

A variant known as perfect discrimination tree distinguishes distinct variables in­
side the index. Indexed terms must be normalized with respect to their variables: Only 
Xl, X2, ... are allowed; and the numbering inside of a term must accord to the order 
of appearance in a left-to-right term traversal. However, when indexing rewrite rules, 
this is no restriction at all. 

The refinement we propose consists in shrinking all branches leading to a single 
leaf node. So only the information needed to discriminate the prefixes of the indexed 
terms is stored along the edges, and the remainder belongs to the leaf node. Have a 
look at Fig. 6 for an example, namely the Waldmeister discrimination tree (WDT) for 
the completed set of rewrite rules for the standard group axiomatization. 

To give an impression of the importance of shrinking, Table 2 shows the number 
of nodes needed to index different sets of rules with and without truncation. The sets 
are the final ones when running the proof or completion examples stated in the left 
column. In the average, shrinking linear branches to leaf nodes saves about 40% of 
all tree nodes. As a consequence, all retrieval operations are speeded up enormously, 
for there are much less backtracking points, and the index switches to term-to-term 
operations as soon as a given query has only one candidate in the current subtree. 

What are the functional requirements the indexing structure has to meet? Besides 
insertion and deletion of arbitrary termpairs, the index must support retrieval of 
• generalizations to find matching rules and equations for reduction, 
• subsuming equations for forward subsumption, 

4This holds also true if an innermost normalization strategy is employed. 



18 

xl 
x2 
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x2 

Figure 6: Waldmeister Discrimination Tree for completed group axiomatizatiorr 

IExample Nodes in R Sa~ings 
without with III 

Truncation Truncation % 

mv2.pr 1859 869 53.3 
mv4.pr 1571 747 52.5 
p9a.pr 1759 1379 21.6 
ra2.pr 213 131 38.5 
ra3.pr 284 179 3'i~O 

Lusk5.pr 852 464 45.5 
Lusk6.pr 1062 493 53.6 
sims2.cp 13 7 46.2 
Lukal0.pr 970 448 53.8 
Pl6lpo.cp 183 108 41.0 
jarl0.2.1.pr 25 11 56.0 

Table 2: Shrinking linear paths 

• instances for interreduction of the sets of rules and equations, and 
• unifiable entries for superpositions on top level.
 
Furthermore, the subterms of the indexed left-hand sides are retrieved for
 
• instances - just like above for interreduction, and 
• unifiable entries for superpositions into rules and equations. 

In the context of rewriting, the indexed sets are tremendously more often queried 
for generalizations than they are changed by insertion or deletion of elements. This is 
why the speed of insertion and deletion routines is not that important here, whereas the 
retrieval operations - first of all retrieval of generalizations, second of unifiable entries 
- have to be supported to a maximum. More precisely, precalculating and storing 
partial results (e.g. subterms starting at a given node, which is useful for variable 
bindings into an index when unifying) yields speedups at the expense of only few 
organization effort both in terms of time and space. (Remember that most of the 
system's memory consumption arises from storing unselected equations; the memory 
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requirements of the index are neglectable.) 

< xJL > xl xl 
'--.,.---' x2 

x3 

xl 
x2 

Figure 7: Matching with a WDT 

Fig. 7 illustrates how the retrieval of generalizations works: Starting at the root 
node, one always tries to descend to a child ,along an edge carrying the same symbol as 
the top-most one of the current part of the query term, which is traversed in leftmost­
outermost order. If such an edge does not exist, the variable edges have to be tried, 
which always succeeds in case of yet unbound variables, but may fail due to indirect 
clashes in the other case.5 Backtracking is invoked when no descent is possible. Having 
reached a leaf node, the attached remainder and the rest of the query term are processed 
just as single terms. 

Substitutions are represented as arrays mapping variables onto subterms of the 
query term so that bindings can be established and removed by one assignment each 
which is necessary for easy backtracking. Therefore, when unifying, the case x J: t, 
where x t/:. Var(t), has to be resolved without application of the substitution {x +-- t} 
to the remaining subterms. Instead, whenever a bound variable is encountered, its 
substitute is processed. 

5This information is passed to the backtracking routine, as is explained in Sect. 7.4.2. 
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4.3 Implementational Details 

As an efficient data structure for the nodes of standard discriLlination trees, Christian 
proposed an array-based hash table which maps each function symbol onto its cor­
responding successor node if such a node exists (cf. [Chr93]). There is an additional 
slot for the wildcard symbol * replacing variables. The hash table especially supports 
d~scending from a parent node to a child with respect to a given symbol - keeping 
the children in a list would require a list traversal. 

There are severals ways to apply this approach to perfect discrimination trees, 
which distinguish distinct variables. [Gra96] states that "since indexed terms are nor­
malized, either a linked list of variable slots must be maintained or the hash tables 
have to be extended such that there is a slot for all different indicator variables Xi 

occuring in the set of normalized indexed terms." Fortunately, this is not necessary, 
for the number of variables that may occur at a given node is fixed and independent of 
the number of variables in the whole set. There must be one slot for Xl inside the root 
node. For any arbitrary inner node, let us assume that its predecessor has variable 
slots for Xl, ... , X n . If the node was reached via an edge carrying X n , then - as the 
indexed terms are normalized - no other variables than Xl, ... ,Xn , Xn+l may appear. 
If the node was reached via any other edge, no more variables than in the predecessor 
may follow. 

As function symbols and variables are represented by integers (of different sign), we 
uniformly use an array for accessing the successor nodes. Moreover, for every array we 
keep the smallest and the largest symbol to which a successor exists. This saves lookup 
attempts to non-existing child nodes whenever each child node has to be considered. 

Every inner node also contains a so~called jump list holding the non-variable sub­
terms starting at it together with the nodes that are reached via corresponding descent. 
This is useful when binding variables into the index on occasion of unifying. The en­
tries of all those lists are collected in different subterm lists with respect to their top 
symbols. Without additional effort, we gain simple indexing of subterms. 

An interesting observation is that the retrieval operations are sped up if the stack 
that stores the backtracking information is integrated into the discrimination tree. We 
have measured accelarations of the whole WALDMEISTER system of about 9%, which 
should be due to improved memory locality of the index. 

Table 3 shows the speedups achieved by our indexing technique in comparison with 
top symbol hashing. We set WALDMEISTER against a program version where rules and 
equations are kept in a list which is hashed with respect to the top symbols. Special 
attention was paid to ensure that both versions execute exactly the same inference 
steps. The columns hold the following numbers: critical pairs generated; rules plus 
selected equations; calls of the matching routine (for both rules and equations); result­
ing reductions; timings for runs with resp. without using indices. The speedups range 
between 1.13 and 10.95. As one expects, they grow as the indexed sets become larger 
and more complex. 
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I Example It Crit. Pairs I R+E I Match queries I Reductions 11 T(hashed) I T(indexed) 

mv2.pr 404977 484 8516000 756992 1797.8 164.2 
mv4.pr 943607 851 23785000 1956268 6285.7 685.7 
pga.pr 60996 1026 4770000 99556 78.4 17.9 
ra2.pr 19195 119 966000 37913 36.4 27.7 
ra3.pr 111989 252 8047000 227063 1030.9 690.7 
Lusk5.pr 190904 337 9031000 345999 617.9 73.8 
Lusk6.pr 93587 521 5178000 291538 256.8 80.1 
sims2.cp 15999 338 1597000 57964 24.7 8.8 
LukalO.pr 53782 267 836000 85477 49.5 5.9 
P16lpo.cp 117106 3424 11058000 236149 28.7 21.2 
jarlO.2.1.pr 28496 193 1785000 29501 29.6 26.3 

Table 3: Comparison of top symbol hashing and WDT indexing 

Starting from our isolated WDT indexing ,routines, Fuchs has build a specialized 
prover DrCoDE (cf. [Fuc96a]) for problems in the domain of condensed detachement 
(see [Luk70]). Comparing a version with indexing to another version without, he 
measured substantial speedups as well. 

4.4 Comparison of Indexing Techniques 

In his PhD thesis [Gra96], Graf gave an overview of existing indexing techniques and 
also introduced some new ones. Now, what is his favourite technique for the purpose 
of retrieving generalizations? Graf compared the run-times of implementations taken 
from his ACID-toolbox (cf. [Gra94]) on average term sets, and the winner was the so­
called substitution tree. In its nodes, this tree collects pairs of variables and substituted 
terms. Via composition, every branch from the root node to ;:l, leaf yields a substitution 
{x ~ t} where t can be interpreted e.g. as indexed left-hand side. 

For the employment in rewriting we believe that our data structure is more appro­
priate. First, only perfect discrimination trees allow retrieval of subterms of indexed 
terms, which is useful both for the generation of critical pairs and for interreduction. 
Second, tree traversal is many times less costly, as descending from a parent node to 
a child is a quite simple operation: One has to examine the actual symbol from the 
query term, and the successor is found in an array indexed by function symbols ann 
variables. This is simplified even more by the use of fiatterms, which additionally sup­
port preorder term traversal. In the case of substitution trees, however, one has to 
consider a list of variable substitutes, which themselves are lists made up of symbols. 

To justify this estimation, we isolated the Waldmeister discrimination tree (WDT) 
indexing and compared it with two ACID structures: perfect discrimination tree (PDT) 
and substitution tree (ST). The results are depicted in Table 4. The names of the 
indexed sets are given in the leftmost column. The sets are the same Graf used for 
evaluation purposes; we added four sets taken from typical proof problems. 

The middle part of the table holds the number of nodes each tree needs for indexing 
the respective set. In comparison with PDTs, the WDTs need significantly fewer nodes 
(the relative savings are given in %), but without any additional expense with respect 
to retrieval operations. Not always do the STs contain fewer nodes than the WDTs. 
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Set Size 
of index 

Queries Passes 
PDT 

AVe 5001 5001 20 15581 
BO-l· + 6000 6000 44 19914 
BO+ - 6000 6000 61 19914 
BO- + 6000 6000 324 28436 
BO- ­ 6000 6000 64 28436 
CL+ + 1000 1000 54 18883 
CL+­ 1000 1000 127 18883 
CL + 1000 1000 2673 65766 
CL- ­ 1000 1000 71 65766 
DEEP 5001 5001 18 97192 
EC+ + 500 500 356 3262 
EC+­ 500 500 357 3262 
EC-+ 500 500 2500 16720 
EC- ­ 500 500 175 16720 
WIDE 5001 5001 26 210615 
Juxta 459 106 11300 595 
Luka10 88 50000 25 353 
Lusk6 50 50000 24 176 
Sims2 34 2:;000 75 371 

.Nodes 
WDT Say. 

6101 60.8 
12011 39.7 
12011 39.7 
14298 49.7 
14298 49.7 

4960 73.7 
4960 73.7 
8634 86.9 
8634 86.9 
7136 92.7 
1228 62.4 
1228 62.4 
1515 90.9 
1515 90.9 
8250 96.1 

539 9.6 
167 52.8 

97 45.2 
55 85.2 

Run-times 
ST STPDT I WDT 

6214 16.02 10.78 22.12 
9919 30.45 10.12 44.52 

54.86 10.139919 50.37 
10527 116.59 10.31 52.63 
10527 59.49 10.12 28.10 

10.111961 45.76 13.84 
1961 159.71 10.07 8.56 
1951 1125.52 10.31 37.31 

125.28 10.16 49.101951 
41.767371 10.98 25.42 
56.09 10.03 32.49944 

189.69 10.03 32.59944 
260.35 10.11 32.05993 

10.09 28.71993 110.92 
101.21 10.46 68.158760 

44.7712577.34 9.85519 
150 53.42 10.50 32.23 

68.15 10.56 34.4387 
267.14 10.28 59.3648 

Table 4: Using a toolbox 

However, the savings are diminishing in case of the four rewrite examples; and when 
retrieving, much more work has to be done at an ST node. 

The rightermost part of Table 4 shows the run-times for the retrieval of general­
izations. The ACID-Toolbox was instantiated with our linear term representation. All 
the indexing routines used free-list based memory management. The run-times are 
normalized: For every indexed set, we calculated a number of passes with the whole 
query set so that the WDT time would reach about ten seconds. Afterwards, these 
passes were executed within a single measurement. Otherwise, some of the run-times 
would have been too close to the granularity of the internal clock. 

Our implementation of WDTs does not only outperform the ACID-PDTs but also 
the ACID-STs. The misery of the PDT implementation is due to several facts. Every 
query term is transformed into an internal linear representation before retrieval instead 
of doing this transformation "on the fly". The node format is suboptimal: For accessing 
successor nodes, not array-based hash tables (see above) but unsorted lists are used. 
Whether a successor W.r.t. a given symbol exists can only be recognized by means of 
list traversal. In our opinion, such an implementation cannot form a solid basis for 
comparative studies of different indexing schemes. 

For ST indexing, conversion effort is necessary as well, but efficiently done on the 
fly. It is doubtful whether this effort alone is responsible for the weaker performance 
of STs. The more complex structure of the information kept in the nodes and edges 
must play an important role as well. 

Obviously, using indexing toolboxes is less efficient as soon as conversion effort has 
to be spent. However, they save implementation effort for low-level retrieval operations. 
Finally, one should not employ a toolbox without careful examination of its innards, 
especially when aiming at high efficiency. 
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5 Data Structures for Providing Large Term Sets 

As we have explained earlier, providing the complete set of unprocessed equations 
(SUE) causes most of the system's memory consumption while Rand Eselected grow. 
Before discussing data structures for a high density storage of this special set let us 
recall the statements we made in Sect. 3: 

•	 Deletion of unselected equations with non-persistent parents (orphan-murder) is 
necessary for keeping the set small. For this reason, information on the parents 
of each equation in SUE must be available in order to enable an easy detection 
of outdated ones. As we will see later, keeping SUE absolutely free of orphans 
will lead to increased management overhead - either in terms of time or space. 

•	 The selection strategy induces an ordering on the stored equations. Since every 
selection only retrieves the minimal element, the set should be realized as a 
priority queue. Only slight changes appear between two successive invocations of 
select, and thus pre-ordering should be maintained on the set. 

•	 Storing preprocessing information like the generated (and usually normalized) 
terms, their length or their depth, reduces the effort spent when comparing two 
elements. Involving the terms in each comparison would still be quite expensive, 
and hence a mapping should take place that replaces the comparison of equations 
by comparison of simple integer weights. 

Now let us state the resulting functional and non-functional requirements for the sys­
tem component that will realize the set SUE. The functional requirements are the 
following: 

• Store termpairs together with an integer weight entry and parent information. 
• If equal weights are encountered, employ a parameterized strategy. 
•	 Return termpairs with smallest weight and persistent parents. 
• Support "Walk-Throughs" for [RP (intermediate reprocessing). 

We have to minimize memory consumption, and hence we focus on this aspect as 
the major non-functional requirement and thus reduce 

•	 the number of termpairs with non-persistent parents ("orphans") held in the set, 
•	 the size of the given termpairs, and 
•	 the memory consumed by the set management itself for organization purposes. 

Considering all that we find that a newly generated and already preprocessed equa­
tion - given as two flatterms and additional information like parent rules/equations, 
position - will pass the following stages: 

1.	 Classification: Maps the valuableness of the equation (given as a pair of flat terms 
<lnd its parents) to a weight entry. This entry should suffice for comparing two 
stored equations according to the search strategy. 
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2.	 Transformation: Transforms the flatterms into a termpair in a certain represen­
tation. This termpair must suffice for restoring the flat terms from the parent 
rules!equations and the pair itself, since only the parents must be stored along 
with the unselected equations any time. 

3.	 Storage: Stores the termpair along with its parents and the weight, and holds 
responsible for "orphan-murder". In order to minimize the time for retrieval of 
the lightest entry the storage should maintain a (partial) ordering on the entries. 

In the following we introduce data structures for the latter two stages which are re­
sponsible for the space consumption of SUE. 

5.1 Termpair Representation 

Reducing the size of the given termpairs by changing their representation from fiatterms 
to one of higher density has to be paid with transformation effort whenever equations 
are stored respectively retrieved from the storage. This effort obviously increases even 
more when an intermediate normalization ,of all the unselected equations is invoked 
(intermediate re-processing, IRP) as it requires restoring the flatterm representation, 
processing, and transformation into the high density representation again. Additional 
effort that would arise whenever the comparison of two equations involves the fiatterms 
has been avoided by mapping the valuableness of equations to integer weight entries 
before inserting them into the set of unselected equations. 

We employ termpair representations of higher density mainly for problems that 
would run out of memory when storing fiatterms. Surprisingly we even gain speedups 
for smaller problems due to less memory allocation effort - and also due to increased 
locality. 

Changing the representation of termpairs from flatterms to stringterms where 
every symbol takes only one byte cuts down the size of termpairs to about 10%. Of 
course we store left and right hand side of termpairs in a single string in order to reduce 
the amount of memory wasted due to alignment. 

Furthermore, we evolved a minimal representation of constant size storing no terms 
at all but superposition information to recompute them (implicit representation). 
For this kind of representation only one single integer number for each unselected equa­
tion must be stored. (Remember that the parent information is stored anyway). This 
number corresponds to the position in the rule/equation the superposition was found 
inside. As no terms will be stored, this representation requires re-doing all simplifica­
tion steps so far executed on the terms. For that reason, problems requiring IRP should 
be tackled with stringterms as they save that additional amount of normalization. Rep­
resenting unselected equations implicitly comes close to a single stepping procedure as 
only the superposition itself will be stored. The difference to single stepping is that 
the termpairs will be generated as soon as possible, processed (i.e. normalized to a 
certain amount), and analyzed by the weighting function before they are stored as 
superpositions only. 
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Fig. 8 illustrates the three different ways terms may be represented by WALDMEIS­

TER. For the equation j(Xl' j(e, X2)) = j(Xl' X2), the flatterm representation requires 
8 . 3 = 24 words = 96 bytes, the corresponding stringterm takes 8 bytes, and the im­
plicit representation is restricted to 1 word = 4 bytes only. This is independent of the 
length of the terms! 

-­
Position pos 

(Ihs of) RULE A 

(lhs of) RULE B 

RHS of ep 

III
 

nonnalized RHS 

f( 

as flattenns 

as stringtenns 

in implicit representation 

5.2 Storage: Priority Queue 

An ideal data structure for realizing the priority queue would 
• contain no orphans, 
• cause no additional management overhead, 
• hold - for deleted equations - no left-behind management overhead, 
• consume no time for organizing, and 

• allow easy reweighting of stored elements, especially during fRP. 
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In the following, we introduce three different data structures and compare them 
with respect to these five aspects. The figures we present show the status of the data 
structures after the insertion of seven critical pairs 6 (generated with the rules 1,2,3,4) 
and after the deletion of rule 3. The pairs are (1,1), (2,1), (2,2), (3,1), (3,2), (4,1), and 
(4,3), where (x,y) means that the critical pair has been generated with a new rule x 
and rule y. Deletion of rule 3 makes the critical pairs (3,1), (3,2) and (4,3) orphans 
which will be marked with +. 

5.2.1 Binary Heap 

Arbitrary insertion and retrieval of the minimal element is provided by the binary 
heap structure (cf. Fig. 9), heap for short. Representing it as an array (as in heapsort) 
holding the weight, the termpair and its parents obviously minimizes the management 
overhead but induces major problems: orphan equations cannot be deleted easily unless 
they have reached the heap's top position. Unfortunately this implies either large 
quantities of orphans held in the set or time-consuming search for and deletion of 
orphans, followed by an even more time-consuming reorganization of the whole heap. 
Another problem when storing unselected equations in a heap arises when the set grows 
larger and larger: the array-based heap requires a large consecutive area of memory 
(cf. Sect. 6). 

Fig. 9 shows that the critical pair (3,2) is the only orphan that can be deleted 
immediately as it is on the top position. The orphans (3,1) and (4,3) will remain in 
the heap. 

The Array represents the heap 

(3,2) 

(1,1) 

(2,1) 

(2,2) 

(3,1) 

(4,1) 

(4,3) 

Figure 9: An array-based heap 

6From now on, the term "critical pair" shall be applied to equations from the stage of generation 
until the very moment they are turned into a member of R U Eseleceted. 
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5.2.2 Pairing-Heap 

In a first approach, the reduction of reorganization effort caused by orphan murder 
led us to a related dynamic data structure, the so-called pairing-heap (cf. Fig. 10) 
which was introduced in [FSST86] (see [SV87] for an evalutation). Double-chaining 
its entries allows arbitrary deletion and reweighting of elements in constant time. For 
the purpose of immediate orphan murder, the unpl'Ocessed equations are additionally 
double-chained in two lists each with respect to their parents. Whenever a rule or 
equation is invalidated, the descending equations are deleted in linear time. Clearly, 
this approach reduces the number of orphans held in the set to the absolute minimum 
of zero. 

Fig. 10 illustrates how the additional double-chaining allows to delete all the three 
orphans from the set as soon as rule 3 has been removed. Note the overhead for double­
chaining both in the heap itself and twice with respect to the parent rules/equations­
which is at least six pointers for each unselected equation. This is not significant if 
termpairs are stored as fiat terms, but quite annoying if they are stored as stringterms 
(70% management overhead for each termpair in the average). A pairing-heap be­
haves even worse if implicit termpairs must be stored: The relation between stored 
information and management overhead in this case is 1:3. 

(3,2) 

(l, J) -(' .. (4,1) Pairing 

/ ~ 
(2,2)~3,1)~2,1) (4,3) 

Heap 

containing 

Rule 1 

(2,2) ~:~,-,:B 
" /,/'. additionally 

, , . double-chained" 

(3 . elements - -~ ,,' 
" 

Bl.•....._.(~.l~ ..........•...;;~~.~~' ~ :-jEI
 
Figure 10: Extended pairing heap 

r------L-..., ;'-,~::~,-,~" 



28 

5.2.3 Heap of Heaps 

Having developed data structures suitable for lazy (heap) &:ld immediate (pairing­
heap) orphan murder, we evolved a two-level data structure, the heap of heaps (cf. Fig. 11) 
as a compromise. Its lower level consists of array-based heaps. Each of them holds 
the initial critical pairs of a new rule or equation, that are all the superpositions with 
itself and with the elder rules and equations that could not be erased due to triviality, 
joinability, subsumption, or criteria. The upper level is an array-based heap again 
and contains references to the subheaps, each of them weighted via its top element. 
The minimal equation is found at the top of the lightest subheap. As soon as a rule 
or equation has been invalidated its initial critical pairs can be deleted easily. Mea­
surements show that between 70% and 80% of all possible deletions are executed ­
almost without any additional management effort: Compared to a pairing-heap, we 
hqNe some orphans left in the set, but in the end save a lot more space due to the 
minimized management overhead. 

Set reduction on this structure will cause reorganization effort, but measurements 
show that only very few yet unprocessed equations will be deleted or reweighted during 
walk-throughs, and thus this effort should be neglectable. On the occasion of such an 
IRP walk-through even the remaining orphans can be erased. 

The heap of heaps gives yet another advantage compared with the simple array­
based heap: it does not require large, consecutive areas of memory. If combined with 
a specialized memory management (Memory Beams, cf. Sect. 6), WALDMEISTER 

processes do no longer grow monotonously but get smaller whenever subheaps are 
erased. 

Fig. 11 shows that the initial critical pairs of Rule 3, (3,2) and (3,1), could be 
erased immediately. Only (4,3) will remain in the set until it has reached the top 
position. The overhead entry of Rule 3 will be removed from the top-level heap as 
soon as the next selection operation takes place. Note that a critical pair (x, y) can be 
represented as (y) only for it is located in the subheap belonging to rule x. This saves 
even more space. 

5.2.4 Results 

Table 5 shows for the three problems (Lusk6, ra3, and mv4; see App. B) how the 
different data structures we employ for storing the SUE behave on different sizes of 
SUE. All runs employ stringterms rather than fiatterms, and special attention was 
paid to ensure that all three runs execute the same inference steps. The table shows a 
snapshot of the moment the proof was found. 

In the first part of the table one will find information on the run: the number of 
critical pairs generated, the number of rules and equations ~ncountered, the number of 
match queries and resulting reductions. Apart from that, we find the average number 
of critical pairs computed with a new rule resp. equation (during the whole run), and 
the total number of unselected equations that have become orphans as their parents 
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Array-based 

top heap 

referencing 

array-based
 
sub heaps
 

Figure 11: Heap of heaps 

were removed from R or Eselected. 

The following parts of the table state for each of the three structures the information 
characterizing their behaviour: This is the maximum size of SUE, the size of SUE when 
the proof was found, the percentage of orphans in the current set, the percentage of 
orphans removed during the run, and the total amount of memory consumed during 
the run. Furthermore, for heap and heap of heaps, there is &ome information on the 
behaviour of the underlying memory beams (see Sect. 6). This information is not stated 
for the pairing-heap as this is a dynamic structure and hence does not use memory 
beams. 

The table confirms our considerations from above. We find that the pairing-heap 
wastes too much memory for management purposes - although it holds no orphans 
at all. The regular heap keeps the system smaller than the heap of heaps for Lusk6. 
The reason for this is the wasted memory at the end of each subheap (cf. Sect. 6) and 
the quite small number of elements in each single subheap. However, the larger the 
examples grow, the better works the partial orphan murder as applied by the heap of 
heaps: about 75 % of all orphans have been removed! 

Table 6 gives an overview of the advantages and disadvantages of the three data 
structures. The best technique is marked by ++, the worst one by --. Cooq, bad 
and average performance are denoted by +, -, and 0, respectively. We have added the 
standard heap with additional orphan murder (executed every time a removed rule or 
equation would leave orphans in the set). Summing up, we believe that the standard 
heap will suffice for small runs, whereas the heap of heaps clearly outperforms the other 
data structures as the runs grow larger. 
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Example Lusk6 ra3 mv4 
Crit. pairs 79306 114313 2024100 
Rules + equs. 426 ;,:68 1264 
Match queries 4495438 7942487 53815644 
Reduuions 231028 214272 4483077 
Avg. initial cps (R) 107 223 408 
Avg. initial cps (E) 288 736 1194 
Total number of orphans 20763 35466 310129 
Heap 
Max. set size 50789 92418 483777 
Final set size 50789 92415 483424 
Orphans in % 39.5 37.9 56.1 
Orphan hit rate in % 3.6 1.2 12.5 
Tutal mapped memory (KB) 1024 1884 9708 
Max. mapped memory (KB) 1024 1884 9708 
Total memory consumption (KB) 5926 8202 24724 
Pairing heap 
Max. set size 42925 76209 303341 
Final set size 30765 57365 212027 
Orphans in % 0.0 0.0 0.0 
Orphan hit rate in % 100.0 100.0 100.0 
Total memory consumption (KB) 6950 10038 27291 

Heap of heaps 
Max. set size 44461 76611 303934 
Final set size 35848 65012 284837 
Orphans in % 14.2 17.7 25.6 
Orphan hit rate in % 75.5 78.4 76.5 
Total mapped memory (KB) 1966 2171 11387 
Max. mapped memory (KB) 1356 1757 6754 
Total memory consumption (KB) 6094 7831 19172 

Table 5: Comparison of the three data structures 

Data structure Heap with 
orphan m. 

Heap without 
orphan m. 

Pairing heap Heap of heaps 

Management overhd. ++ ++ -­ ++ 
. Orphans held ++ -­ ++ + 
left-behind overhead 
for deleted parents ++ + ++ + 
Time spent for 
orphan murder -­ 0 ++ 

Table 6: Summary of the different data structures for SUE 
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6	 Data Structures for Efficient Memory Manage­
ment 

Deduction systems heavily rely on dynamic data structures since they permanently cre-:: 
ate new facts and discard unnecessary ones. Consequently, dynamic memory allocation 
is necessary. In a UNIX environment, using an imperative programming language such 
as C, this can be left up to the run-time system employing malIoe, realloc and free, 
or supported by data structures that fit better for the given task. In the following we 
describe the well known free-list based memory management, and introduce memory 
beams for efficient handling of large, growing arrays. 

6.1 Memory Management Based on Free-Lists 

Given an arbitrary deduction system, most of its memory resources will be consumed 
for enormous numbers of tiny objects, most of them having equal size. For every 
dynamic object such as a single term cell, one could allocate memory by a separate 
call of the run-time system via malloe. A more efficient and well-known technique is 
based on free-lists (cf. [Gra96]): For every object size, a memory block for e.g. thousaI?-d 
objects is allocated and inscribed a singly~linked list of elements of that size. Creating 
and discarding objects thereby is reduced to simple list operations. 

[Example 11 Time(malIoe) I Time (free-lists) 11 Size (malIoe) I Size (free-lists) 

mv2.pr 296.9 59.8 % 38188 53.4 % 
Lusk6.pr 113.7 58.6 % 24126 52.6 % 
Luka10.pr 20.7 58.5 % 2994 71.9 % 
jarlO.2.1.pr 23.5 39.6 % 5114 56.7 % 
mv4.pr 3001.2 18.9 % 99366 52.4 % 
sims2.cp 68.2 59.1 % 15550 54.5 % 
ra3.pr 160.2 45.5 % 19418 53.9 % 

Table 7: Memory management: malloe vs. free-lists 

As an open architecture allows to exchange software components, we are able to 
name the savings earned using this kind of management. The run-times are cut by half. 
The same applies to the memory consumption, as the run-time system stores a header 
entry for every piece of memory dynamically allocated. Table 7 states the timings and 
process sizes of runs with and without the free-list based memory management. The 
process sizes are given in memory pages (4,096 bytes for SUNOS). 

6.2 A Closer Look: Locality Increased 

For a precise analysis of the distribution of memory references over the employed ad­
dress space in the course of time, the following experiment was performed - once with 
free-list based memory management and once with a malloe-based one. 

Instead of continuos real time, discrete time slices of 500 milliseconds were con­
sidered. For each time slice, the number of memory pages referenced during that slice 
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(i.e. the size of the working-set) was measured while WALDMEISTER was solving the 
problems Lusk6.pr respectively mv2.pr (cf. App. B). Fig. 12 contains the graphs of 
both experiments, but with relative timings for easier comparison. (Remember that 
the application of malloe does not only consume more space but also more time.) 

2600 Working set size in pages: Lusk6.pr 2600 Working set size in pages; mv2.pr 

2400 2400 

2200 2200 

2000 2000 

1800 1800 malloc 
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400 400 

200 n) 200 

0 
relative time in percent 

0+----.,----,------,----,-------,-­
relative time in percent 

0 20 40 60 80 lOO 0 20 40 60 80 100 

Figure 12: Experiment: comparison of size of working-sets 

The peaks occuring in the graphs are due to removing lots of orphans from SUE at 
once alter some rules and equations have been removed during interreduction.7 This 
"up and down" behaviour is typical for most proof tasks. 

Apparently, the use of free-list based memory management reduces the size of the 
working-set by more than one half, that is, the locality of the system is increased 
significantly. The difference of the run-times is partially due to this phenomenom. 
Another interesting observation is that the larger the proof tasks grow, the more the 
difference in locality increases: The malloe version starts paging much earlier. 

7We used page protection mechanisms for these measurements, and for that reason we had to 
employ a pairing heap for the SUE as the other data structures require the same protection mechanism 
for the underlying memory beams. 
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6.3 Memory Beams 

We have outlined in Sect. 5 that the system component which by far consumes the 
most amount of memory is the set of unselected equations. For an efficient realization 
of heaps - which is necessary both for the binary heap and also for the heap of heaps 
- expandable dynamic arrays are in demand. They may hold hundreds of thousands 
of entries. As for the heap of heaps, some of the arrays will have to be discarded 
completely. 

In a conventional solution, each array would be allocated via a call to malloc, and 
its actual size kept in some variable n. For a write attempt at position i, it has to 
be checked whether this fits into the actual array range, which i and n are compared 
for. If i > n, the array is expanded calling realloc. This routine will look for a free, 
consecutive area of memory of the required size and copy the contents of the formerly 
used memory to the beginning of the new, larger one.8 The now unnecessary memory is 
only marked free, but not returned to the operating system; it remains with the process. 
The longer the system is running, the harder it gets to find appropriate memory areas, 
whereas the formerly used pieces - scattered all over the address space - cannot be 
re-employed, since they are too small. Thus, a deplorable memory fragmentation is 
produced. 

Memory beams (cf. Fig. 13) avoid both the range checking and the copying opera­
tion. This is achieved by modifying the virtual address mapping. Even more, the need 
for large consecutive areas of memory is reduced to consecutive areas in the virtual 
address space. This is why no fragmentation is encountered. 

start I address space 
address --~-----..:.-----------------

"beam" 

protected 

~_IU ______1, 1,-_ 
subheap 1 subheap 2 subheap 3 subheap 4 

Figure 13: Memory beam before deletion of subheap 

Now, how does it work? First of all, one has to choose an area from the virtual 
address space that will not be used by malloc. This start address marks the beginning 
of a new beam. The following e.g. 32 Kbytes of the address space will be connected to 
e.g. 8 pages of real machine memory, each holding 4 K (SUNOS system page size), by' 
an mmap system call. The last page is read- and write-protected. Consequently, every 

SIn our case, the overall requests for dynamic memory are too frequent and the arrays usually too 
large to allow expanding them in the same place. 
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RjW-operation to an address in the protected area will cause the operating system 
to send a special signal (segmentation violation, SIGSEGV) to the running process. 
A corresponding signal handler unprotects that page, maps another 8 pages to the 
following 32 K of addresses, protects the last of the new pages, and returns to the 
running process. 

Another striking advantage of beams becomes obvious when a heap of heaps is used 
to store the unselected equations. As only the last of all the array-based subheaps is 
subject to insertion, all of them can be stored in a single beam (cf. Fig. 13). Since every 
subheap might become a victim of orphan murder, we let the corresponding arrays start 
at page addresses only. This causes some wasted memory at the end of each array, but 
allows to delete that very subheap simply by unmapping its memory pages (cf. Fig. 14).9 
These pages are returned to the operating system and can be mapped to the end of the 
beam again, or used for something completely different: Orphan murder has reduced 
the process size! Summing up, memory beams consume consecutive address space only, 
whereas malloe consumes consecutive memory. 

start I address space 
address ------=.:..:..:.:....:..!:..;:.:.:..=------------------..-. 

, page 1 I page 2) page 3[~~~~·:::.·.~~~~L.-.~~:.~~~~~·.J_~~~~~·~;.:.~~~J page 7 • 

\, \\ \\ pwtected 

_IU ~~"'1 I 
<Ubheap I ,ubheap 2 ~~ '\bheap 4 

I pa~. 41 pa~~ 5\ pa~. 61 

'I ~ ~ 
returned to the OS 

Figure 14: Beam memory after deletion of subheap 

9As stated in Sect. 5, subheaps usually employ several pages of memory, and thus the wasted part 
is neglectable. See also Table 5. 
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7 Looking for an Appropriate Parameter Setting 

Our design approach has produced an open system architecture, and thus a set of 
parameters corresponding to the choice points intentionally left open. What we now 
have to do is to evaluate the different possible settings for the single choice points in 
order to identify the best one - or at least to name tendencies if a general statement 
cannot be made. 

We have evaluated these open points via measurements on a set of problems that 
can be found in App. B. vVe ran our experiments on Sun SPARCstations 20/712, 
196 Mbytes main memory and 670 Mbytes swap space, with Solaris 2.4 as operating 
system. The timings we state throughout this report are the minimum of at least six 
identical runs on the same machine. The meaning of the columns in all the tables we 
present in this section can be found in Table 8. 

Crit. Pairs Total number of critical pairs generated 
R+E Number of rules and (selected) equations produced during the run 
Match Queries Number of calls to the matching routine with both 

the sets of rules and selected equations 
Reductions Number of resulting reductions 
Time Total process plus system time in seconds. 

Runs were usually stopped after 1000 seconds. In these cases, the 
tables state '> 1000'. If the system ran out of memory, this is 
stated without the time that elapsed up to then. 

Table 8: Structure of the tables 

As a starting point, we fixed the relevant parameters of the system following what 
we consider common sense: 

• reduction of critical pairs on generation (preprocessing)	 and selection with rules 
and equations plus subsumption, 

• application of the subconnectedness-criterion with rules and equations, 
• weighting of critical pairs by the add-weight heuristic (weight(l, r) = length(l) 

+length(r)) with additional preference for older critical pairs when identical 
weights are met, 

•	 computation of normal forms with the leftmost-outermost strategy, 
• no additional reduction of the SUE during the run (IRP) , and 
• no early orphan murder. 

The data-structure used to hold the critical pair set is an ordinary heap, the 
terms will be stored as flatterms. This parameter setting is what we expected to be 
appropriate for most problems, as every effort (apart from early orphan murder) is 
made to keep the sets R, Eselected and SUE small. 

Please keep in mind that the results of our experiments are strongly connected with 
the selection-strategy for unselected equations (add-weight, in our case). Using other 



36 

1 

strategies may lead to different results but we believe that the relationship between the 
various parameters will remain worth an examination if another strategy is employed. 
Table 9 illustrates the performance of this parameter setting on the set of examples. 

I Example 11 Crit pairs 1 R + E I Match Queries I Reductions 11 Time 

P16kbo.cp 215540 3796 18446415 401632 33.3 
P16lpo.cp 82639 2306 9826527 100579 16.2 
sims2.cp 55065 576 7146127 250496 46.7 
z22.cp 3005 166 131766 6451 0.7 
mv2.pr 1077750 750 22201391 1993321 417.0 
mv4.pr 1597746 1045 38053337 3141228 > 1000 
p9a.pr 34771 684 2262609 54883 10.3 
ra2.pr 12094 93 610731 22342 18.3 
ra3.pr 125966 260 9415150 234242 758.1 
Lusk4.pr 1659 68 52589 3742 0.3 
Lusk5.pr 14912 101 662764 27375 5.5 
Lusk6.pr 80274 430 4604075 238648 85.5 
LukalO.pr 137709 394 2118209 238826 16.1 
jarlO.2.l.pr 143147 349 8330082 140210 303.8 
jarlO.3.1a.pr 5610 104 208200 4242 2.3 
jar10.3.7b.pr 863 33 21097 675 0.3 

Table 9: Performance of the common sense defaults 

7.1 Sensitive Heuristics 

A search strategy realized as a weighting function on critical pairs in most cases is not 
an injective one, and thus will compute identical weights for different critical pairs, and 
so does the one we chose for our experiments. For that reason it usually is left up to the 
implementation which one out of the equally weighted equations will be treated first. 
Strategies like add-weight or max-weight can be heavily disturbed by manipulating 
the order of treatment of critical pairs with identical weight as Table 10 will show. 

element 
-a­

(2) 

left son right son 

-b­ (1) -c-

Figure 15: Sinking in elements into a heap 

Employing a binary heap as the priority queue for storing the unselected equations 
requires comparison of elements each time an element sink in. Take a look at Fig. 15 
where element a sinks in. On this occasion, the successors of a, namely band c, will 
be compared (1), and afterwards the greater one will be compared with a (2). Hence 
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two comparisons take place at each invocation of the "sinking" procedure, and both 
can encounter equally weighted entries. If b = c holds true either b or ccan be selected 
(w.1.o.g. b), and if a = b holds true, either a or b can be selected. Combined, we get 
four different realizations induced by the data structure (e-1, ... , e-4) , where each 
prefers either the left or the right son if comparison (1) reveals equal weights, and each 
prefers either. a or its lightest son if comparison (2) does so. Furthermore, we have 
employed two extended weightings discriminating older or younger elements. Finally, 
WALDMEISTER supports random preference for equally weighted entries. 

I Strategy 11 Crit. pairs I R+E I Match Queries I Reductions 11 Time I 

mv2.pr 
e-1 673800 631 13093451 1246328 255.9 
e-2 599420 584 11158288 1109691 202.0 
e-3 771513 667 15568479 1417899 ~97.3 

e-4 922572 708 18394158 1691035 353.2 
random 651077 608 12275159 1203072 283.1 
random 1017794 750 20831304 1881970 404.6 
older 874723 698 16536665 1619330 315.9 
younger 1077750 750 22201391 1993321 428.9 

mv4.pr 
e-l 1310 181 1055 31994110 2817654 > 1000 
e-2 1619661 1021 37200593 3096066 > 1000 
e-3 1297528 851 28874996 2374808 566.0 
e-4 1659366 1069 39102156 3257928 > 1000 
random 1178202 808 25153545 2174911 505.4 
random 1521019 1058 36132266 2991955 953.2 
random 1658261 1078 39651348 3288453 > 1000 
older 1676224 1095 39521850 3311 045 > 1000 
younger 1594274 1044 37955293 3128657 > 1000 

p9a.pr 
e-l 74263 1127 5928210 122747 26.7 
e-2 40022 813 2911509 55110 12.1 
e-3 69475 1059 5018683 113587 24.7 
e-4 66658 1038 5027034 10',' 701 23.1 
random 31148 684 2212833 52045 9.7 
random 89001 1191 7039649 154353 37.2 
older 85058 1269 7343201 144024 26.3 
younger 34771 684 2262609 54883 10.7 

ra2.pr 
e-1 21929 110 1168321 43772 61.8 
e-2 14471 104 824489 32788 30.5 
e-3 16855 104 899317 32962 36.2 
e-4 17618 112 947835 35061 30.1 
random 12690 100 644857 24198 19.7 
random 23671 126 1314962 50467 68.6 
older 11319 96 536789 22188 18.0 
younger 12094 93 610731 22342 18.6 

ra3.pr 
e-1 105025 251 7203359 201 038 721.6 
e-2 124182 267 8588019 240669 802.0 
e-3 99647 239 6857153 185457 674.6 
e-4 94204 231 6297949 174701 651.8 
random 97290 242 6624028 188598 666.6 
random 153858 295 11424882 313028 948.6 
older 127120 298 10352681 297005 926.3 
younger 125966 260 9415150 234242 763.2 

Lusk6.pr 
e-1 73466 447 4127077 223408 73.8 
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I Strategy Crit. pairs R+E Match-Queries Reductions 11 Time 1 

e-2 142942 574 8188478 476236 162.8 
e-3 80243 465 4628095 258104 81.1 
e-4 169991 594 9822669 627422 183.7 
random 82171 518 4478900 252505 74.3 
random 186316 616 11445532 634950 256.5 
older 151766 674 8527915 531696 121.5 
younger 80274 430 4604075 238648 87.0 

Luka1C' pr 
e-1 415246 713 6689689 660586 54.0 
e-2 28254 178 378013 44707 2.7 
e-3 33087. 210 455981 51492 3.1 
e-4 319240 656 5136898 514031 39.8 

f-random 16436 147 213302 24284 1.7 
random 386868 720 6314472 625949 50.4 
older 177115 488 2987170 299892 22.4 
younger 137709 394 2118209 238826 16.1 

P16kbo.cp 
e--1 14247 1388 2638320 26373 4.0 
e-2 14200 1381 2797239 26230 4.2 
e-3 14175 1382 2505578 26906 3.8 
e-4 12357 1336 2631623 22319 4.1 
random 11444 1322 2472901 20555 3.8 
random 24688 1582 3452806 47540 5.5 
older 6731 1202 2155067 11095 3.1 
younger 215540 3796 18446415 401632 33.4 

P161po.cp 
e-1 14560 1399 2620447 29629 4.0 
e-2 12360 1340 2544128 22048 3.8 
e-3 8013 1236 2159648 13630 3.2 
e-4 14189 1391 2753364 26369 4.2 
random 11974 1334 2480486 22751 3.8 
random 22783 1571 3319154 45690 5.7 
older 80667 2753 6823046 186789 12.3 
younger 82639 2306 9826527 100579 16.2 

jar10.2.1.pr I 

e-1 219841 322 13286077 265661 > 1000 
e-2 208353 297 12749373 237268 > 1000 
e-3 221331 318 13517635 263526 > 1000 
e-4 93178 309 5283153 87643 151.6 
random 117836 331 7048228 118606 216.3 
random 220858 317 13611061 266785 > 1000 
older 106308 322 6314557 103820 185.8 
younger 143147 349 8330082 I 140210 304.7 

jar10.3.1a.pr 
e-1 10486 158 372918 13016 5.0 
e-2 16189 206 583104 20437 8.0 
e-3 5907 105 219462 5174 2.6 
e-4 5687 104 207823 5034 2.4 
random 5965 115 221867 5217 2.4 
random 16191 208 587238 20985 8.2 
older 16767 210 613801 22184 8.1 
younger 5610 I 104 208200 4242 2.4 

Table 10: Variations of the add-weight heuristic 

Table 10 shows the unexpected influence of these parameters on the runs. The 
times differ by factors between 2 (mv2), 10 (P16kbo), 32 (Luka10) and even can decide 
between success and timeout (mv4). The reason for this is that the weight distribution 
of add-weight produces a concentration of thousands of critical pairs on only few 
different values. Fig. 16 shows the distribution of weights produced by the add-weight 
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heuristic at the end of the run of problem Lusk6. The x-axis holds the weights, the 
y-axis the number of cps with the given weight. The total number of cps here was 
98,128, the maximum number of cps with the same weight was 12,498 (with weight 
24). 
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Figure 16: A weight distribution of add-weight 

Result: Heuristics like add-weight which produce a large number of critical pairs with 
the same weight hold indeterminisms that can completely blur the effects gained by 
changing other system parameters. This is an inherent problem of rough granularity 
heuristics and should not be left up to the implementation but avoided on the level of 
the heuristics. For that reason we ran all the other experiments in this report with an 
extended add-weight heuristic prefering the older ones among the unselected equations. 

7.2 Treatment of Critical Pairs 

In this part we will try to figure out how the treatment of critical pairs should be 
realized. Critical pairs will be preprocessed after their generation and normalized 
again on selection. Furthermore they might be treated additionally at any time the 
power of the rewrite relation has been increased by introducing new rules or equations. 
Now the question is not only when the critical pairs should be treated but also how. 
This means that the computation of normal forms might not take place at all, use 
only rules, or both rules and equations. Furthermore subsumption might be invoked 
or not. The tables in this part hold a strategy column that describes the treatment of 
equations: the letters er' and 'e' indicate the application of rules resp. equations by the 
normalization procedure. An additional's' indicates that (forward) subsumption was 
applied in order to delete more equations. As an example consider 'rs' which means 
Ithat normalization is done with rules only followed by subsumption testing. 
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7.2.1 Preprocessing after Generation 

Table 11 shows how the system behavior is affected when the preprocessing varies. We 
assess any combination of applying or not R-normalization, E-normalization, and sub­
sumption. The problems LukalO, P16lpo, and P16kbo do not produce any equations, 
and hence only preprocessing with resp. without rules is measured. 

I Preprocessing 11 Crit. pairs 1 R+E , Match Queries I Reductions 11 Time 1 

mv2.pr 
- 2220043 1148 15113015 1674006 386.6 
e 2214353 1147 51715849 1704092 529.3 
r 1287680 820 20016905 2362485 429.5 
s 2220043 1148 15113015 1674006 392.4 

es 2214353 1147 51715849 1704092 532.4 
re 1077 750 750 22204135 1993321 416.7 
rs 1287680 820 20014086 2362481 441.3 

res 1077750 750 22201391 1993321 417.0 

mv4.pr 
- 3870135 1485 26765773 2964743 MEMORY 
e 3831327 1480 89716571 2979924 MEMORY 
r 1909108 1186 34089618 3838661 > 1000 
s 3846668 1482 26596741 2943439 MEMORY 

es 3855730 1483 90253837 3000648 MEMORY 
re 1512758 991 35395057 2916572 > 1000 
rs 1878341 1171 33275308 3751068 > 1000 

res 1597746 1045 38053337 3141228 > 1000 

p9a.pr 
- 18233 418 683120 10033 2.8 
e 17347 412 841667 13819 5.3 
r 34168 668 1923981 43151 7.0 
s 18233 418 681935 9875 2.9 

es 17347 412 841323 13819 5.4 
re 34771 684 2267845 54883 10.2 
rs 34168 668 1920901 43134 7.1 

res 34771 684 2262609 54883 10.3 

ra2.pr 
- 507034 495 2120018 17536 355.3 
e 129350 234 4550984 44750 > 1000 
r 16419 106 511237 23763 6.7 
s 507034 495 1950509 17488 330.1 

es 145390 253 5524134 63448 > 1000 
re 11613 91 615211 22091 18.4 
rs 16419 106 493149 23749 6.3 

res 12094 93 610 731 22342 18.3 

ra3.pr 
- 586183 403 1493421 13067 > 1000 
e 187628 292 7917176 131297 > 1000 
r 119071 259 4567068 164601 112.2 
s 480735 383 1231504 12973 > 1000 

es 124876 221 4443866 56160 > 1000 
re 124858 258 9595978 233924 783.1 
rs 120559 262 4374332 166408 88.5 

res 125966 260 9415150 234242 758.1 

Lusk6.pr 
- 1720858 1319 9069793 114755 MEMORY 
e 254630 493 8488458 133232 > 1000 
r 161775 566 6319008 470993 79.2 

- s 1713674 1317 8770171 114346 MEMORY 
es 260075 499 8680887 135420 > 1000 
re 80274 430 4655965 238650 85.1 
rs 161775 566 6227684 470816 80.3 
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Preprocessing 11 Crit. pairs I R+E I Match Queries I Reductions I1 Time I 

res 11 80274 I 430 I 4604075 I 238648 11 85.5 I 

LukalO.pr 
- 11 272616 541 2286563 203416 27.1 
r 11 137709 394 2118209 238826 16.1 

P16kbo.cp 
- I1 839205 8261 132183029 720231 11 295.2 
r 11 215540 3796 18446415 401632 11 33.3 

Pl6lpo.cp 
- 11 1988947 12821 268197582 1217227 632.6 
r 11 82639 2306 9826527 100579 16.2 

jar10.2.1.pr 
- 76809 233 286277 3174 63.7 
e 36671 186 1332060 19791 62.5 
r 31210 219 1066266 19822 15.3 
s 88100 242 238396 2009 77.2 

es 57939 219. 1806971 37784 142.0 
re 18944 175 1204249 19813 20.5 
rs 130317 341 4004926 63103 93.9 

res 143147 349 8330082 140210 303.8 

jarl0.3.1a.pr 
- 5383 104 30694 548 0.9 
e 8559 149 237503 4544 3.6 
r 2710 70 69908 989 0.6 
s 9954 147 48418 951 1.8 

es 28920 263 713992 23949 17.6 
re 5437 105 217478 4157 2.3 
rs 6086 104 126416 2653 1.4 

res 5610 104 208200 4242 2.3 

Table 11: Preprocessing critical pairs 

The table shows that in some cases the lazy waylO is the fastest combination that 
can be found (pga, mv2). On the other hand it can fail completely due to lack of 
memory (mv4, Lusk6) or it takes much longer than other combinations (ra2). Overall 
we can say that not too much work should be done after generation of critical pairs as 
only few of them will ever be processed. The reason for this behavior is that selection 
strategies based on nothing but the terms can completely go bananas when normal 
forms and original terms differ significantly. 

Run-times use to grow when additionally normalizing with equations because of 
the very small percentage of matches found with the set of equations that finally lead 
to a reduction. To be more precise, in contrast to the application ,of rules, rewriting 
with equations from Eselected guarantees Noetherian only if the resulting term is smaller 
with respect to the reduction ordering >. Obviously this requires a >-test every time 
a matching equation could be found. Experiments have shown that one match query 
with the set of equations usually causes between two and ten refused matches due to 
failing >-test. On average, less than 1% of all matches found in Eselected lead to a 
reduction, compared with at least twice as much successful match queries with rules 
- that cause no additional >-testing. 

Result: We suggest to reduce critical pairs after generation only with rules as a 
compromise between keeping the selection strategy in focus, not wasting too much 
time in the treatment of critical pairs on generation and keeping SUE small. 

lOi.e. not processing the critical pairs on generation at all 
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7.2.2 Treatment after Selection 

According to the minimality property we proposed for R U Eselected equations selected 
from SUE will be tackled with full diminishing strength before they join R or ESelected. 

As the open architecture of WALDMEISTER allows us to check even this we did so anJ 
found our proposal confirmed as Table 12 shows. 

I Treatment 11 Crit pairs I R+E I Match Queries I Reductions Time I 
mv2.pr 

- 2299611 1872 40753845 4242532 > 1000 
e 2835961 2102 50414515 5266972 > 1000 
r 1083607 752 22119740 1989192 417.4 
s 2614890 1985 45968969 4792924 > 1000 

es 2264465 1887 40385411 4181590 > 1000 
re 1077 750 750 22201391 1993321 418.1 
rs 1083607 752 22119740 1989192 414.1 

res 1077 750 750 22201391 1993321 417.0 

mv4.pr 
- 2887159 2088 50939817 5351533 > 1000 
e 2898884 2125 51727804 5392380 > 1000 
r 1619071 1078 38423300 3184614 > 1000 
s 2918602 2100 51556928 5415102 > 1000 

es 2841271 2104 50526427 5276861 > 1000 
re 1600604 1047 38148399 3149579 > 1000 
rs 1623368 1080 38565443 3194700 > 1000 

res 1597746 1045 38053337 3141228 > 1000 

p9a.pr 
- 72261 1093 4197482 112141 25.1 
e 72406 1056 4182026 113392 25.9 
r 35487 694 2313553 55372 10.5 
s 72261 1093 4197482 112141 25.3 

es 72406 1056 4182026 113392 25.8 
re 34771 684 2262609 54883 10.8 
rs 35487 694 2313553 55372 12.0 

res 34771 684 2262609 54883 10.3 

ra2.pr 
- 55593 294 2618807 121132 126.3 
e 55507 294 2622639 120755 127.1 
r 12248 94 612803 22707 18.3 
s 55593 294 2618807 121 132 127.0 

es 55507 294 2622639 120755 127.2 
re 12094 93 610 731 22342 18.4 
rs 12248 94 612803 22707 18.4 

res 12094 93 610731 22342 18.3 

ra3.pr 
- 141295 455 12294661 330426 > 1000 
e 143117 458 12524959 336414 > 1000 
r 125973 264 9350490 234109 740.1 
s 143108 458 12453012 336392 > 1000 

es 143207 459 12534888 336734 > 1000 
re 125966 260 9415150 234242 759.3 
rs 125973 264 9350490 234109 740.1 

res 125966 260 9415150 234242 758.1 

Lusk6.pr 
- 235857 1206 13399159 820864 238.6 
e 229804 1185 13070957 796747 232.5 
r 97468 458 5481926 298434 104.4 
s 235857 1206 13399159 820864 239.4 

es 229804 1185 13070957 796747 231.9 
re 80274 430 4604075 238648 85.0 
rs 97468 458 5481926 298434 106.3 
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I Treatment Crit. pairs I R+E I Match Queries I Reductions 11 Time I
 
I res 80274 I 430 I 4604075 238648 11 855 I
 

Luka10.pr 
- 551343 1260 8460836 963399 64.0 
r 137709 394 2118209 238826 16.1 

P16kbo.cp 
- 178316 4460 21999658 333713 11 35.7 
r 215540 I 3796 18446415 401632 11 33.3 

P161po.cp 
- 125636 2836 11998 ;49 301745 11 21.1 
r 82639 I 2306 9826527 100579 11 16.2 

jarlO.2.1.pr 
- 381 144 759 20788622 561121 > 1000 
e 387163 787 21219161 571874 > 1000 
r 143468 349 8321452 140162 300.1 
s 221489 574 11870061 302462 > 1000 

es 221032 573 11961813 298159 > 1000 
re 143147 349 8330082 140210 302.0 
rs 143468 349 8321452 140162 299.3 

res 143147 349 8330082 140210 303.8 

jar10.3.1a.pr 
- 10439 205 348530 9492 4.1 
e 10292 201 346189 9350 4.1 
r 5689 105 210264 4268 2.3 
s 10439 205 348530 9492 4.1 

cs 10292 201 346189 9350 4.1 
re 5610 104 208200 4242 2.3 
rs 5689 105 210 264 4268 2.3 

res 5610 104 208200 4242 2.3 

Table 12: Treatment of critical pairs after selection 

Result: According to the minimality property proposed during the design phase crit­
ical pairs should be treated with the full diminishing strength after they have been 
selected from SUE. 

7.2.3 Periodically Reprocessing the Set of Critical Pairs 

Although we have found out that it is sufficient to use only R when preprocessing 
critical pairs, it is still not clear whether intermediate reprocessing of the preprocessed 
but yet unselected equations (intermediate re-processing, IRP) leads to a better system 
performance. The most important reasons to believe in this are 

1.	 that the weight of the unselected equations is computed only once after the 
preprocessing that follows the generation, and thus might change if the stronger 
rewrite relation is applied to the terms, and 

2.	 that many unselected equations might have become joinable by now and thus the 
number of equations that have to be held in the set can be reduced significantly 
inducing less memory consumption. 

Have a look at Table 13 where the letters in the leftmost column correspond to 
Table 11, whereas the numbers state the interval: res 50 means that IRP was executed 
by the system every 50 insertions of elements into R U Eselected, where normalization 
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was done W.r.t. rules and equations and where subsumption was applied as well. The 
additional columns state the numbers of critical pairs touched, reduced, removed, and 
re-weighted, respectively. 

Strat 11 Crit Pairs I R+E 1 Match Queries Reductions CPs tcd red rem rew Time I 
mv2.pr 

r 1 959875 692 631647000 1766556 34373000 10161 9861 289 901.5 
r 10 903167 670 71 765 000 1668269 3028000 8556 8456 95 > 1000 
r 50 1079634 747 35589000 2002864 749000 7904 7771 128 531.4 

r 100 1077 750 750 29546000 1999042 415000 7198 7084 109 487.6 
res 1 959875 692 631656000 1766580 34373000 10163 9909 242 904.4 

res 10 620871 560 70080000 1148496 1684000 6915 6902 13 > 1000 
res 50 961781 709 45322000 1768498 738000 8248 8089 157 698.8 

res 100 960008 712 33355000 1764724 404000 7211 7146 60 548.0 
- 1077 750 750 22 201391 1993321 417.0 

mv4.pr 
r 1 1006131 706 681771000 1851290 37013000 10 215 9915 289 > 1000 

r 10 903167 670 72415000 1668272 3064000 8590 8485 100 > 1000 
r 50 1487146 968 58770000 2894816 1328000 21682 13124 4627 > 1000 

r 100 1537530 1009 50255000 3020152 768000 18761 12951 3293 > 1000 
res 1 1013117 709 690859000 1864211 37495000 10232 9978 242 > 1000 

res 10 641662 570 73111 000 1185955 1759000 7037 7024 13 > 1000 
res 50 1220752 800 63817000 2246683 1036000 9022 8863 157 > 1000 

res 100 1349799 900 55264000 2557791 679000 12083 9512 1459 > 1000 
- 1597746 1045 38053337 3141228 > 1000 

p9a.pr 
r 1 30092 635 22319000 50298 1504000 1288 801 345 27.2 

r 10 30139 637 4027000 50158 . 151000 627 556 70 18.0 
r 50 30299 640 2383000 50236 28000 556 485 70 10.9 

r 100 30278 640 2215000 50232 16000 494 423 70 10.2 
res 1 30092 635 22321000 50309 1503000 1288 872 275 27.1 

res 10 30139 637 6044000 50243 150000 745 679 20 44.1 
res 50 30299 640 2763000 50295 28000 638 572 16 15.6 

res 100 30278 640 2428000 50303 16000 582 531 16 12.8 
- 34771 684 2262609 54883 10.3 

ra2.pr 
r 1 8682 81 3236000 17893 138000 1840 672 1166 15.1 

r 10 11165 90 967000 22507 19000 1043 398 645 19.0 
r 50 11154 89 629000 20371 3000 60 48 12 17.3 

res 1 8682 81 3235000 18220 137000 1924 1105 817 16.0 
res 10 10877 88 1357000 21694 18000 1103 763 440 49.4 
res 50 11154 89 701000 20375 3000 62 54 7 22.7 

- 12094 93 610731 22342 18.3 

ra3.pr 
r 1 95118 233 198533000 220855 7050000 24567 2964 21573 965.0 

r 10 103088 241 29610 000 206783 805000 6446 1248 5198 729.6 
r 50 107021 242 11819000 201119 143000 753 205 548 679.1 

r 100 107021 242 10409000 201119 91000 719 174 545 675.3 
res 1 81794 206 159810 000 197818 5595000 17333 3113 14202 > 1000 

res 10 52477 128 8747000 79306 110000 183 2399 0 > 1000 
res 50 61255 150 7072000 96213 62000 160 817 0 > 1000 

res 100 85838 200 9350000 164237 48000 215 795 48 > 1000 
- 125966 260 9415150 234242 758.1 

Lusk6.pr 
r 1 78754 416 117836000 246286 4831000 6566 3192 2729 179.0 

rlO 79302 419 15672000 243989 474000 3798 2078 1678 145.8 
r 50 82054 437 6870000 252147 92000 2600 1151 1411 99.9 

r 100 82116 437 6115000 251985 58000 2302 945 1327 96.1 
res 1 78754 416 117424000 248040 4806000 6527 4444 1481 181.0 

res 10 79302 419 26594000 244404 470000 3850 3075 951 564.3 
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Strat 11 Crit Pairs I R+E I Match Queries Reductions CPs tcd red rem I rew Time 

res 50 82054 437 8967000 252496 92000 2642 1970 828 182.3 
res 100 82116 437 7469000 252279 58000 2342 1592 824 148.5 

- 80274 430 4604075 238648 85.5 

Luka10.pr 
r 1 132602 382 40174000 220000 2623000 2193 2180 13 49.4 

r 10 132602 382 5969000 220000 274000 . 1859 1847 12 37.2 
r 50 89337 315 1720000 151000 29000 733 724 9 11.8 

r 100 137558 393 2362000 239000 17000 576 568 8 17.3 
- 137709 394 2118209 238826 16.1 

P16kbo.cp 
r 1 140278 3273 241778000 295000 28551000 I 37993 12544 12465 255.4 

r 10 146831 3313 43407000 290000 3179000 .21465 3942 14225 113.5 
r 50 150666 3317 25376000 304000 720000 21559 1807 17330 51.6 

r 100 156053 3375 22689000 315000 361000 17397 1330 14297 42.2 
- 215540 3796 18446415 401632 I 33.3 

P16\po.cp 
r 1 80539 2276 122024000 143000 14469000 25183 2307 11935 128.7 

rlO 81064 2276 21022000 102000 1447000 4393 1182 1868 51.6 
r 50 81687 2290 12008000 99000 283000 1332 780 461 22.9 

r 100 82639 2306 la 861 000 102000 133000 1244 799 354 19.1 
- 82639 2306 9826527 100579 16.2 

jar10.2.1.pr 
r 1 107283 312 87093000 227164 2665000 53377 10 140 42947 391.4 

r 10 190412 277 31500000 234013 711 000 5470 1276 4194 > 1000 
r 50 96387 303 7325000 94623 56000 2019 575 1444 154.9 

r 100 96484 303 6237000 94808 19000 1636 450 1186 150.6 
res 1 \66968 298 168314000 248021 5337000 28282 18792 9489 > 1000 

res 10 136085 290 28439000 150039 347000 8656 6025 3728 > 1000 
res 50 153848 250 14371 000 168640 95000 5043 4989 952 > 1000 

res 100 142577 348 12231000 150152 67000 7708 1688 6131 455.9 
- 143147 349 8330082 140210 303.8 

jar10.3.1a.pr 
\ 

r 1 2191 56 400000 2382 11 000 1143 124 1010 1.4 
r 10 2678 64 157000 1485 1000 108 38 70 1.3 
r 50 3391 79 137000 1672 414 68 34 34 1.4 

r 100 . 5608 104 208000 3792 44 22 16 6 2.4 
res 1 2191 56 414000 2397 11 000 1135 308 824 1.6 

res 10 2678 64 202000 1530 1000 136 82 72 1.8 
res 50 3391 79 143000 1673 414 68 57 14 1.4 

res 100 5608 104 208000 3792 44 22 31 3 2.4 
- 5610 104 208200 4242 2.3 

Table 13: Reducing the set of critical pairs 

The table shows that the additional effort spent on reducing all the unselected 
equations held by the system does in general not lead to a significant speedup. As the 
times use to get smaller when the intervals grow we believe that the small number of 
critical pairs that could be reduced, reweighteded or removed does not justify the effort. 
However, there are situations when this approach can result in significant speedups: 
sometimes the system produces a rule or equation that diminishes the set of rules and 
equations heavily via interreduction. In these cases the rewrite relation has gathered 
so much additional strength that many critical pairs can be reduced, reweighted, and 
thus a significant reordering is enforced. For example, ra3 was solved faster in the 
settings "r 50" resp. "r 100". 

Another result that can be drawn from Table 13 is that applying IRP in order to 
save memory by deleting critical pairs whenever they can be joined will not lead to 
a significantly smaller size of the proof process. Compared with the huge number of 
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critical pairs touched, only few of them could be removed during IRP. More space can
 
be saved by appropriate data structures for representing SUE.
 

Result: Intermediate re-processing and re-weighting of SUE in general has negative
 
influence on run times but can lead to faster proofs in some cases (see also Sect. 10).
 
The sets of rules and equations, Rand Eselected, do not get much smaller either, thus
 
for the add-weight heuristic in general the lazy variant that executes no IRP at all
 
performs best.
 

7.3 A Subconnectedness Criterion 

Kapur et al. [KMN88] introduced a simple criterion that detects superpositiulls which 
can be ignored without losing completeness: If an inner subterm of the current su­
perposition can be reduced W.r.t. the current rewrite relation the prover can ignore 
the resulting critical pair. This criterion requires an efficient matching algorithm as 
supported by WALDMEISTER. Although the number of critical pairs generated by the 
system can be reduced significantly the additional time spent in the matching routine 
makes the runs a little slower (Table 14)11. Nevertheless we found that the application 
of the criterion with maximum strength is absolutely necessary for proving jarlO.2.1 in 
a reasonable amount of time. 

Result: Application of the criterion generally saves critical pairs but should be re­
stricted to additional runs on problems that could not be solved otherwise. A reason 
for this behavior might be that proof runs do not rely on the success of the completion 
process and thus on the generation of the most general facts. Proofs might be found 
as well by applying more special results that would be rejected when applying the 
criterion. 

7.4 Strategies for the Computation of Normal Forms 

The task of a normalization procedure is to compute an irreducible successor of the 
given term. As at an arbitrary stage of the proof process the sets of rules and equations 
are usually not convergent, different realizations will result in different normal forms. 
Looking at normalization algorithms one will find three fields where differences may 
appear: 

• the term traversal strategy, 
• the way rules and equations are combined, and 
• the organization of backtracking. 

11 The columns stating the number of calls to the matching algorithm do not include the calls 
required by the criterion 
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Criterion It Crit. pairs R +E I Match Queries I Reductions 11 Time 

mv2.pr 
- 1169725 750 22956309 2091877 225.7 
r 1108523 750 22359204 2012990 278.4 
re 1077750 750 22201391 1993321 422.4 

mv4.pr 
- 2164334 1236 53572074 4589631 > 1000 
r 1998683 1222 50679609 4266704 > 1000 
re 1605932 1050 38319210 3166792 > 1000 

p9a.pr
f---'---'-- ... 

- 43200 693 2403964 67260 9.3 
r 36872 684 2279295 56640 9.3 
re 34771 684 2262609 54883 10.3 

ra2.pr 
- 12753 92 628461 24125 17.2 
r 12131 92 611197 22480 17.1 
re 12094 93 610731 22342 18.4 

ra3.pr 
- 127758 260 9510124 240468 720.2 
r 126365 260 9430200 235111 724.7 
re 125966 260 9415150 234242 758.0 

Lusk6.pr 
- 111878 460 6096733 391980 96.0 
r 80529 430 4610917 239329 75.8 
re 80274 430 4604075 238648 85.9 

Luka10.pr 
- 146281 394 2196103 260502 12.1 
r 137709 394 2118209 238826 16.3 
re 137709 394 2118209 238826 16.2 

P16kbo.cp 
- 217196 3796 18459354 405342 33.5 
r 215540 3796 18446415 401632 34.8 
re 215540 3796 18446415 401632 33.9 

Pl61po.cp 
- 84290 2306 9839451 104344 16.4 
r 82639 2306 9826527 100579 16.7 
re 82639 2306 9826527 100579 16.5 

jarl0.2.l.pr 
- 230347 281 14181991 266046 > 1000 
r 226089 279 13939999 260139 > 1000 
re 143147 349 8330082 140210 303.5 

jarl0.3.1a.pr 
- 6558 106 227142 5579 1.9 
r 5880 104 214502 4654 1.9 
re 5610 104 208200 4242 2.3 

Table 14: Application of the subconnectedness criterion 
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704.1 Term Traversal and Discrimination of Equations 

Different term traversal strategies are top-down which applies a breadth-first term 
traversal, leftmost-innermost that follows the post-ordering of the terms, and leftmost­
outermost which follows the pre-ordering. 

From a certain point of view those different strategies lead to similiar normaliza­
tion procedures (cf. Fig. 17): all positions in the given term will be visited following 
that very traversal strategy. If the subterm at the current position could be reduced, 
backtracking is invoked. Otherwise the traversal continues until the next reducible 
subterm is encountered, or the traversal is finished. 

R -Normalize(term) 

position= top-position (term); 
repeat 

if (position is reducible w.r.t. rules) 
execute one rewrite step w.r.t. rules; 
position = next(position, backtrack); 

else 
position = next(position, continue); 

fi 
until traversal is finished 

Figure 17: Normalization w.r.t. rules 

Bringing equations into the game raises the question how rules and equations should 
be combined. Different solutions at this point discriminate equations as far as possible, 
treat them equally, or prefer them. In the case of top-down and leftmost-inermost we 
only realized the first variant following Fig. 18: After computation of the normal form. 
w.r.t. rules the search for a position reducible with equations starts. If such a position 
can be found, the reduction takes place and the term is normalized with rules before the 
treatment with equations starts again. In order to evaluate the different approaches, 
we implemented three different versions of the leftmost-outermost strategy: leftmost­
outermost which behaves according to Fig. 18 as well, leftmost-outermost-RE behaving 
according to Fig. 19, and leftmost-outermost-ER following the same algorithm but 
applying equations first. 

The effort we spent on realizing backtracking for the various traversal strategies 
differs as leftmost-outermost showed the most promising behaviour. For that reason, 
we did not employ marking of irreducible subterms for leftmost-innermost. Further­
more,leftmost-innermost and top-down apply R-Normalize on the top position of 
the given term each time an E-reduction took place. In contrast, leftmost-outermost 
applies the R-Normalization on the affected subterm only. 
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N ormalize(term) 

R- Normalize(term); 
while (term is reducible with equations) 

execute one rewrite step w.r.t. equations; 
R-normalize(term); 

Figure 18: Normalization w.r.t. rules and equations 

N ormalize-RE(term) 

position= top-position(term); 
repeat 

if (position is reducible w.r.t. rules)
 
execute one rewrite step w.r.t. rules;
 
position = next(position, backtrack);
 

else if (position is reducible W.r.t. equations)
 
execute one rewrite step W.r.t. equations;
 
position = next(position, backtrack);
 

else
 
position = next(position, continue);
 

fi 
until traversal is finished 

Figure 19: The algorithm for normalization leftmost-outermost-RE 

Result: Table 15 shows how the choice of the normal form strategy affects the behavior 
of the runs. 

•	 Top-down in general behaves similar to leftmost-outermost but performs worse 
due to higher effort managing term traversal and backtracking. 

•	 Leftmost-innermost: as the term structure used by the system does not support 
marking of irreducible subterms every reduction leads to a restart of the procedure 
on the actual subterm. This is not the only reason for the poor performance of 
the innermost strategy: it usually produces larger sets R, Eselected, and SUE. 
However, this strategy is clearly the best one in one case (jar10.2.1). 

•	 The strategies outermost-RE and outermost-ER do not discriminate equations 
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Strategy Crit. Pairs Rules Equs CoM R RR CoM E I RE Time I 
mv2.pr 
top-down 1077750 744 6 14927678 1915401 5877106 65992 448.3 
innermost 4156 86492249 2628878 108690423065407 1 2601 > 1000 

. 66013outermost 1077750 744 16337174 1927308 5864217 420.2 
outermost-ER 

6 
1077750 744 15290240 1873520 12736612 609272 646.1 

outermost-RE 
6 

1077750 744 15440228 19184326 10358945 105388 510.1 

mv4.pr
 
top-down
 211574360 1010 25020880 2914077 10341976 145221 > 1000 
innermost 4174 87293086 2640042 10948212 26123089467 1 > 1000 

21 27845732 10587282 149874outermost 1610781 1032 3029833 > 1000 
outermost-ER 1404616 881 78767119 21131897 2424673 17856025 > 1000 
outermost-RE 1478279 947 21 22867463 2658905 15917688 211 732 > 1000 

p9a.pr 
top-down 1234771 672 1972681 45213 294515 9603 11.4 
innermost 1015 47 3857286 59582 496262 12847 18.4 
outermost 

53933 
45270 293395 961334771 672 12 1969214 10.3 

outermost-ER 32982 655 12 1819746 40207 338703 9289 11.8 
outermost-RE 10.6 

ra2.pr
 
top-down
 

34745 671 12 1912375 44819 312591 10337 

12094 244173 20.6 
innermost 

72 21 386960 16519 5782 
273504 1044 182 8961292 214697 3161933 38810 571.5 

outermost 21 236788 580612094 72 373943 16536 18.8 
outermost-ER 327832 8451 26.2 
outermost-RE 

12469 16 348801 1589377 
7852 24.6 

I ra3.pr 
top-down 

16 356424 17371 30966312461 77 

76 802.7 
innermost 

125966 184 5958052 173610 3901486 59644 
2022965 116679 1703491 30154678 306 134 > 1000 

184 76 5664008 173 638 3751142 60604 756.7 
outermost-ER 
outermost 125966 

102181 68 3948864 138978 3900416 46963136 > 1000 
68 4234616 150449 3974375 46260outermost-RE 107530 142 > 1000 

Lusk6.pr 
top~down 17724 96.9 
innermost 

79664 381 217836 158493147 3000421 
2083767 22093184903208 231978266298 6600 46 > 1000 
1572011 1804780274 47 3032064 220601 84.3 

outermost-ER 
outermost 383 

2226150 77531 129.0 
outermost-RE 

79009 41 2728536 184890379 
2070277 124.0 

Lukal0.pr
 
top-down
 

45 2852775 214008 3526981914 381 

236054 17.6 
innermost 

137709 394 1977188 
251169 18.1 

outermost 
394 3330096137709 

2118209 238826 16.3 
P16kbo.cp 
top-down 

137709 394 

39.4 
innermost 

215540 3796 18444914 401632 
417420215540 3796 19921844 36.4 

outermost 18446415 401632 33.9 
P161po.cp 
top-down 

215540 3796 

82639 2306 9827228 100579 17.0 
innermost 16.9 
outermost 

10084710 10049282639 2306 
100579 16.5 

jar10.2.l.pr 
top-down 

82639 2306 9826527 

143147 164 185 4847225 76195 3747288 346.363893 
257 28 208232 4089 64138~ermost 13954 494 4.9 

outermost 4614037 76248 3716045 306.8 
outermost-ER 

143147 164 185 63962 
3900019 75200 4002174 72324 314.1 

outermost-RE 
143423 165 I 185 

3971554 75322165 185 3926352 71858 315.6 

jar10.3.1a.pr
 
5610 81
 

143423 

top-down 
innermost 
outermost 
outermost-ER 
outermost-RE 

91284 3.1 
12059 246 

23 124339 2448 1792 
6073733 166978 5608 1487 3.1 

5610 81 23 118148 90052 2.3 
5610 81 

2450 1792 
23 106172 2369 97076 2402 2.3 

5610 81 23 107333 2433 2.393493 2142 

Table 15: Strategies for computing normal forms 
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during normalization as leftmost-outermost does. In agreement with the results 
from above we find similar runs but significantly higher time consumption. 

• The strategy corresponding best with flatterms is (leftmost-)outermost. 

Another important result to be taken from this table is that shifting the priority towards 
the application of equations usually slows down the runs significantly. The reasons for 
this have been mentioned earlier and correspond with Tables 11 and 12. 

7.4.2 Organizing Backtracking 

Having identified leftmost-outermost as the one normalization strategy corresponding 
best with flatterms, we will now analyze the choice points remaining after the traversal 
strategy has been fixed. In the first part of this section we will name the candidates 
for follow-up reductions and introduce different realizations of the backtracking man­
agement. Afterwards we demonstrate the influence of different backtracking directions 
on the behavior of the prover. 

Limitation of backtracking. Avoiding superfluous reduction attempts ought to be 
a primary goal of any normal form algorithm. After the execution of a rewrite step 
some previously irreducible positions in the term might have become reducible. Given 
a traversal strategy these positions can be identified. 

In the case of leftmost-outermost one has to test only the path from the currently 
reduced position up to the root. Only those positions up to the level given by the 
maximum depth of a left hand side (dashed line in Fig. 20) have to be tested one by 
one. Above, only reduction attempts have to be repeated which failed due to indirect 
clashes or >-test (cf. Fig. 20). 

As an example, consider the term t = f(a, b) and the rewrite rules rl : f(a, c) -+ c, 
T2 : f(x, x) -+ x, where x is a variable, f a function symbol, and a,b,c are constants. 
Trying to apply Tl to t fails as a direct clash appears in the second argument (c :f b), 
whereas the application of T2 fails because x has already been bound to a when it 
should be bound to b (indirect clash). 

When realizing a backtracking mechanism for the leftmost-outermost reduction 
procedure we can limit backtracking to the current branch of the term and do not 
have to traverse the whole term again. Direct clashes make reductions possible up 
to a certain position above the current one which depends on the maximum depth 
of a left hand rule side (dashed line in Fig. 20). Indirect clashes encountered with 
nonlinear rules on certain positions above make further examination necessary. Vve 
have compared three different solutions of this problem: 

FLAGS manages indirect clashes by flags. Backtracking touches all positions but 
calls the matching algorithm only if the flag is set. 
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POINTERS manages indirect clashes by flags and pointers that indicate the next 
position of an indirect clash in the direction of backtracking. Thus backtracking 
simply has to follow the pointers. 

NONE does not manage indirect clashes at all. Backtracking invokes the matching 
algorithm everywhere. 

Current path 

Indirect 

Clash 

..-... 

Possible 

Direct 

Clashes 

..... .... -- .. . Position of Reduction.... ­..
 

Figure 20: Indirect and direct clahes 

All the three variations touch every position in the given term up to the one that can 
be derived from the maximum depth of the left-hand sides of the rewrite rules. As one 
should expect the number of reductions done are identical in the three versions whereas 
the numbers of calls to the matching-routine differ enormously (comparing FLAGS and 
POINTERS with NONE) - or not at all (comparing FLAGS and POINTERS). The 
following table shows how the way the limitation is realized affects the overall run time. 
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1 Strategy 11 Rules I Match Queries 1 Reductions 11 Time 1 

dtl.rd 
FLAGS 11 98543228 205429 252.5 
POINTERS 11 98543228 205429 260.5 
NONE 11 122682087 205429 276.9 

fac8.rd 
FLAGS 6 254909 58078 135.3 
POINTERS 6 254909 58078 1.1 
NONE 6 932382091 58078 1322.8 

braid4.cf 
FLAGS 862 2415586 657396 9.6 
POINTERS 862 2415586 657396 9.7 
NONE 862 5336071 657396 15.2 

Table 16: Limitation of backtracking 

Result: Our experiments have shown that in general the NONE version performs 
worst as it spends too much time in the superfluous calls of the matching routine 
(e.g. 30% superfluous match queries and thus more time on dtl.pr). The POINTERS 
version usually performs a little worse than the FLAGS version because of its additional 
overhead. When the terms become very deep the number of calls of the matching 
routine increases: 30% more match queries and thus 13% more time on dt1.pr. During 
the computation of jac(8) in peano arithmetics which produces the term 840320(0) the 
management overhead of the POINTER version is clearly outweighed by the saved 
flag-lookups. Backtracking recognizes the last position of an indirect clash and hence 
stops much earlier than if on every position the flag was tested. Nevertheless, in general 
one should choose the flag version. 

Varying backtracking. Table 17 shows how even the different backtracking strate­
gies can affect the performance if the comparison of equally weighted critical pairs is left 
open (and not fixed by age as in the default configuration). The table shows variations 
in two aspects: first, a reduction can be followed by further reduction attempts until 
the current position in the term has become irreducible (repeat), or backtracking starts 
immediately (backtrack). Second, backtracking may start with the highest candidate 
and descent stepwise (down), or ascend stepwise until the highest candidate has been 
reached (up). la resp. li mean leftmost-outermost resp. leftmost-innermost. 

I Strategy 11 erit. pairs R + E I Match Queries I Reductions Time I 
Lusk6.pr 
ID - repeat - up 
10 - repeat - down 

11 

11 

73466 
84197 

1 

j 
447 
471 

1 

1 

4126077 
4813307 

I 
I 

223408 
262885 

11 
11 

72.2 
89.1 

juxta.rd 
li - repeat - up 
li ­ backtrack - up 

11 

11 

459 
459 

1 

1 

459 
459 

1 

1 

21453 
14728963 

1 

1 

21447 
141425 

11 

11 

MEMORY 
69.0 

braid4.cf 
10 - repeat - up 
10 - repeat - down 

11 
11 

20813 
20813 

1 

I 
862 
862 

1 

I 
2008452 
2415586 

1 

I 
657396 
657396 

11 

11 

8.2 
9.6 

Table 17: Variations of fixed strategies 
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Proving Lusk6 took 14.6% more critical pairs and 23.5% more time changing the 
direction of backtracking from upwards to downwards. 12 This effect is induced by the 
rough granularity of the add-weight selection strategy. 

The example juxta runs out of memory when attempting recently reduced posi­
tions in the term again instead of starting backtracking immediately. This is because 
termination holds only under a certain normalization strategy (innermost combined 
with a special backtracking mechanism; cf. [vVZ95]). 

Result: The parameter setting of the backtracking behavior is worthwhile although 
we could not recognize a tendency. Once again it turns out that even slight changes of 
the inference machine can influence the behavior of the prover. 

7.5 Changing the Default Parameter Setting 

The previous evaluations suggest that the system's parameter setting used for the test 
runs can be significantly improved by turning off the subconnectedness criterion and 
simplifying critical pairs only with rules on generation. Table 18 shows that the new 
parameter setting manages to prove even mv4 in less than 1000 seconds which failed 
when only changing one of the two parameters. The other problems could be solved 
quicker than before. This suggests that combining the results of different experiments 
does not suffer from unpredictable overlay-effects in this case - if blurring phenomena 
like the comparison of equally weighted critical pairs and the backtracking mechanism 
are recognized and hence suppressed. 

[Example 11 Crit pairs 1 R+E I Match Queries I Reductions new Time 11 old Time I 

P16kbo.cp 217196 3796 18459354 405342 32.2 33.3 
P161po.cp 84290 2306 9839451 104344 16.0 16.2 
sims2.cp 55065 576 7146127 250496 40.4 46.7 
z22.cp 3005 166 131766 6451 0.6 0.7 
mv2.pr 1433662 829 21279744 2555459 176.9 417.0 
mv4.pr 2817911 1467 55226948 6311862 560.8 > 1000 
p9a.pr 42523 677 2030489 54326 5.5 10.3 
ra2.pr 16997 106 522896 25232 4.6 18.3 
ra3.pr 118627 256 4556491 166146 72.4 758.1 
Lusk4.pr 1956 68 44204 4754 0.2 0.3 
Lusk5.pr 14068 89 349957 27693 2.5 5.5 
Lusk6.pr 215556 595 8271919 767548 66.7 85.5 
LukalO.pr 146281 394 2196103 260502 12.1 16.1 
jar10.2.1.pr 35856 222 1208744 24798 9.4 303.8 
jarlO.3.1a.pr 2956 70 73026 1293 0.4 2.3 
jarlO.3.7b.pr 938 33 15192 746 0.1 0.3 

Table 18: Performance of the new parameter setting 

Result: The new default parameter setting outperforms the old one significantly. 

12Remember that the selection among equally weighted critical pairs was left open to the priority 
queue here. 
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8 Towards an Efficient Impleinentation 

Now we have designed suitable data structures and algorithms. The next step is to 
transfer efficient algorithms into an efficient program. 

First of all, why do we consider the imperative programming paradigm appropri­
ate? Our notion of "appropriate" is to use the underlying hardware as profitable as 
possible in order to get a high performance deduction system. As a matter of fact, 
only controlling the processor explicitly allows taking best advantage of the machine 
power. Consequently, the programming language should be an imperative one with its 
concepts close to the machine but yet offering means of abstraction. This leads to the 
C family and arises the question: C or C++? 

, 

Object-oriented concepts are a useful tool for achieving well-structured designs. 
However, implementing them does not necessarily require an object-oriented program­
ming language. In our case, one cannot benefit by strict encapsulation. Let u~ take the 
fiat term structure as an example: Gaining efficiency in copying, memory management 
(deletion in constant time), or generalization retrieval (discrimination tree traversal) 
bases on knowledge of the low-level data structure. For these reasons, we decided 
to use pure ANSI C, knowing that this choice imposes humble work such as memory 
management, elimination of recursions, which is needed at special points for efficiency, 
but C compilers are not able to do automatically, and explicit construction of generic 
types such as lists, stacks, and trees. In comparison with higher-level languages or 
libraries, the resulting data structures are not overspecified13 but specialized for our 
application. 

From our implementation experience, we can state a few guidelines that fit for 
programming in C in the deduction area. First of all, one should strive for as much 
genericity as possible. At the open choice points we have mentioned above, the use of 
function variables simplifies altering or enlarging the specific functionality. Macros can 
be employed to create generic types and functions. They also allow to force inlining of 
tiny functional units that are used very frequently, which is valuable even on SPARC 
stations. For appropriate evaluation of settings for open choice points, doing careful 
measurements is inevitable. The more detailed thesf' statistics are, the more our picture 
of the deduction process becomes precise - and the more effort has to be spent on 
counting, comJ;>aring, etc. Using conditional compilation allows to derive - from that 
very source code - executables with different focusses: on efficiency, on statistics, on 
testing. 

The last of these three items should not be underestimated, as the algorithms in the 
deduction domain are not the simplest ones. We recommend that developing complex 
data structures - Waldmeister discrimination trees for example - should go hand in 
hand with the design of both visualization routines and internal consistency predicates. 
In statistics mode, our free-list based memory management logs the number of allocate 
and free calls for each storage class. This shows up exactly where the system's memory 
consumption arises from. Tidying up after a program run reveals whether objects have 

13Por example attractive but expensive operations on lists or boundary-checked arrays. 
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been "lost" intermediately or not. For the case of term cells, this is even possible 
at run-time. Additionally, special marking operations are able to detect if any cell 
erroneously is employed by several terms. This is an excellent debugging aid for a 
low-level language such as C. 

Following these guidelines does not automatically result in efficient programs, but 
we believe that they do help anyone who wants to implement a system with focus 
on efficiency. Admittedly, many of them have become obvious to us not before the 
moment when we wished we had followed them. 

Examples 

Macros forcing inlining and for executables with different focusses 

The following lines of code show the declaration of the dynamic memory allocation 
macro S_Alloc realizing free-list based memory management (parameterized with an 
organization structure, of which there is one for each object class). The first element 
of the free-list is returned if the list is non-empty. Otherwise, a new block of memory 
is fetched, inscribed a singly-linked list, and the first element returned. 

Working with dynamic data structures, one has to pay attention that they are not 
corrupted by erroneous use of the allocation and freeing routines (e.g. freeing a termcell 
that has already been freed) which causes failures that are very hard to trace back to 
their origin. In such a case, memory test routines are included setting the 3EST-MODE 
flag; and they attempt to determine whether there are inconsistencies in the memory 
management. 

On a higher level, there is another source of displeasure: As the management is 
done without garbage collection, every object that is no longer used has to be freed 
explicitly. If this is forgotten for one or another case somewhere deep in the system, 
a considerable amount of memory may be wasted without notice. Having introduced 
optional statistics of allocating and freeing calls separately for each object class, which 
is triggered by the _STATISTICS_MODE, we are able to determine whether objects have 
been lost during a system run, and if so which object they belong to. 

All in all, there are four different realizations of S_Alloc that are derived from the 
very same source code. Moreover, calls of S_Alloc are always inlined at the location 
of calling, which saves a function call whenever a new object is created. 

#ifdef _TEST_MODE 
#define if_Test(Action) (Action, 0) 

#else 
#define if_Test(Action) 0 

#endif 

#ifdef _STATISTICS_MODE 
#define if_Stat(Action) (Action,O) 
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#else 
#define if_Stat(Action) 0 

#endif 

#define I*void **1 S_Alloc(/*S_MemoryManagerT*1 mbm) \ 
( \ 

if_Test(malloc_verify(», \ 
if_Stat(MaximizeLong(&mbm.MaxUsedElements, \ 

++mbm.Requests-mbm.Free», \ 
mbm.next_free ? ( 1* Are there cells left in free-list? *1\ 

ReturnValue ~ (void*) mbm.next_free, \ 
if_Test(check_address(&mbm,ReturnValue», \ 
mbm.next_free = mbm.next_free->next_free, \ 
ReturnValue \ 

) : ( 1* else function call for allocation *1\ 
(void*) S_AllocWithNewBlock(&mbm); \ 

) \ 
) 

1* Usage:	 NewTermcell = S_Alloc(TermcellManager); 
NewTermcell->Symbol = ... ; 

Macros for genericity 

Aiming at code readability, macros are inevitable if many similiar functions are re­
quired. In our case we need a set of functions computing weight tupels from termpairs. 
The first component returned is a weight that stems from the maximum or the sum of 
the weights of the two terms. These single weights may be computed via TermWeighLA 
or TermWeighLB. Furthermore, the weights computed may be collected by some record­
ing function. Additionally the second component sometimes may hold an age entry. All 
this functionality must be realized within separate functions for performance reasons, 
as a one function realization would cause interpreting overhead. A pattern of these 
functions can be found at the end of the code. 

Now, the question is how to generate these 2 . 2 . 2 . 3 = 24 functions in a piece 
of code that is readable, changeable, and as short as possible. In situations like this, 
we employ generic macros both on the encoding and the meta level. The first block of 
those macros employs the needed functionality: For each variant, there is one macro (or 
function in the case of TermWeight.A resp. TermWeight.B) that is named according 
to its behaviour. 

The second block of macros does the construction of the functions. First, we find 
the declaration of a single one of these functions. This is done via SINGLE_DECLARATION, 
which is given the primary (sum, or max) and secondary (elder, younger, none) iden­
tifier, an identifier for the computation of term weights (A or B), and finally an 
identifier that establishes the weight recording function. The following macros each 
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vary one or two of these identifiers, and finally via BLOCK_DECLARATION (Max) and 
BLOCLDECLARATION(Sum) we declare all the 24 functions at once. 

/*	 ------------- Functionality --------------------------------------*/ 

#define WeightIs_Stat(_weight) RecordWeight(_weight); 
#define WeightIs_NoStat(_weight) 

#define PreferElder_BODY(ComputationBody, /*{Stat, NoStat}*/ STAT) \ 
{	 ComputationBody; \ 

(wt->w2) = ++CPNumber; \ 
WeightIs_ ## STAT (wt->wl);} 

#define PreferYounger_BODY(ComputationBody, /*{Stat, NoStat}*/ STAT) \ 
{	 ComputationBody; \ 

(wt->w2) = --CPNumber; \ 
WeightIs_ ## STAT (wt->wl);} 

#define PreferNone_BODY(ComputationBody, /*{Stat, NoStat}*/ STAT) \ 
{ ComputationBody; WeightIs_ ## STAT (wt->wl);} 

#define Max_BODY(LHS, RHS, /*{A,B}*/ WEIGHT)	 \ 
{	 long int weight2 = 0; \ 

wt->wl = TermWeight_## WEIGHT(LHS); \ 
weight2 = TermWeight_## WEIGHT(RHS); \ 
wt->wl = (wt->wl>weight2)? (wt->wl) : weight2;} 

#define Sum_BODY (LHS, RHS, /*{A,B}*! WEIGHT) \ 
{ wt->wl = TermWeight_## WEIGHT(LHS); \ 

wt->wl += TermWeight_## WEIGHT(RHS);} 

1*	 ------------- Declarations ---------------------------------------*/ 

#define SINGLE_DECLARATION(_PRIM_, _SEC_, _WEIGHT_, _STAT_) \ 
void _PRIM_##_SEC_##_WEIGHT_##_STAT_ \ 

(WeightEntryT *wt, TermT ihs, TermT rhs) \ 
Prefer##_SEC_##_BODY(_PRIM_##_BODY(lhs,rhs,_WEIGHT_) ,_STAT_) 

#define DECLARATION(_PRIM_, _SEC_) \ 
SINGLE_DECLARATION(_PRIM_, _SEC_, A, Stat) \ 
SINGLE_DECLARATION(_PRIM_, _SEC_, A, NoStat) \ 
SINGLE_DECLARATION(_PRIM_, _SEC_, B, Stat) \ 
SINGLE_DECLARATION(_PRIM_, _SEC_, B, NoStat) 

\
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DECLARATION(_PRIM_, None) \ 
DECLARATION(_PRIM_, Elder) \ 
DECLARATION(_PRIM_, Younger) 

BLOCK_DECLARATION (Max) 

BLOCK_DECLARATION (Sum) 

/* ------------- Function Pattern ---------------------------------- */ 
/* */ 
/* void MaxElderAStat(WeightEntryT *wt, TermT lhs, TerroT rhs) *1 
/* { *1 
/* long int weight2 = 0; */ 
/* wt->wl = TermWeight_A(LHS); */ 
/* weight2 = TermWeight_B(RHS); *1 
/* wt->wl = (wt->wl>weight2)? (wt->wl):weight2; *1 
/* wt->w2 = ++CPNr; *1 
/* RecordWeight(wt->wl); */ 
/* } *1 
/* *1 
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9 Comparison with the DISCOUNT Inference Ma­
chine 

The main goal during the development of WALDMEISTER was to build a high perfor­
mance inference machine later to be topped by sophisticated selection strategies. With 
the data structures and algorithms we introduced earlier in this report, furthermore 
with the flexible control in the mid level, we believe to have reached this goal: Ta­
ble 19 compares the throughputs of the DISCOUNT inference machine and of the one 
of WALDMEISTER (it does not compare the whole systems in general, since DISCOUNT 
follows different research goals). 

Problem TPTP or WALDMEIsTER/Inf. Mach. DISCouNT/Inf. Mach. 
Reference Time Space Red/sec Time Space Red/sec 

Lukal0.pr [Tar56] 15.2 5.5 1773 127.6 31.5 1629 
Lusk3.pr RNG008-7 0.2 2.4 3040 4.4 1.2 678 
Lusk4.pr GRP002-4 0.4 2.7 2750 2.7 3.5 3487 
Lusk5.pr BOOO02-1 3.3 2.9 1807 31.2 10.6 983 
Lusk6.pr RNG009-7 89.7 8.1 1772 1713.2 no 178 
Pl61po.cp [Chr93] 23.1 8.1 1661 58.1 42.1 1721 

gt4.3.pr GRPOI4-1 0.7 2.4 3623 6.5 4.2 196 
jarl0.2.1.pr GRP051-1 47.3 3.1 1140 >6000 161.0 3 
mv2.pr LCL111-2 225.8 16.5 1487 >6000 136.5 274 
p9a.pr GRP178-1 7.3 7.1 2253 90.2 25.9 807 
ra2.pr ROB023-1 6.3 2.8 2356 >6000 118.0 21 
ra3.pr ROB005-14 96.1 5.6 1174 >6000 100.4 16 
sims2.cp [Sim91] 50.8 3.8 807 365.5 61.6 443 
z22.cp [Den93] 0.9 2.5 2726 3.7 3.9 1743 

Table 19: Comparison of Inference Machines 

To that purpose, both provers were run with the same primitive search strategy. 
In this table, one can find not only a huge span between the timings (given in seconds 
of wall-clock-time) but also in the space needed (stated in MBytes). The column 
'Red/sec' holds the number of reductions that have been performed per second. 
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10 Cracking Hard Nuts 

In the previous sections, we have outlined how to achieve highly efficient deduction 
sybtems realizing a given inference system, which was demonstrated using unfailing 
Knuth-Bendix completion as an example. Our work has yielded a new prover for 
equational theories. Although the inference machine is not topped by intricate search 
strategies yet, we are already able to succeed in areas unconquered before. In [LW92], 
Lusk and Wos propose a set of "Benchmark Problems in Which Equality· Plays the 
Major Role". Two of them characterized as never proved completely in single runs 
unaided will be tackled now. 

10.1 A Problem from the Group Theory Domain 

As a consequence of the chase for shorter and shorter single axioms for groups, the 
inverse problem of deriving the standard group axioms from a single equation arises. 
Problem gt6 is the single axiom 

-(-(-(x + y) + (y + x)) + (-(z + u) + (z - ((v - w) - u)))) + w = v 

which even implies Abelian. 

We started a first run using a standard selection strategy, namely picking that 
unselected equation with shortest left- and right-hand side. If stringterms had not 
been activated, the system performance would have decayed rapidly due to enormous 
memory consumption. We noticed that our prover found three of the group axioms, 
right inverse, Abelian and right identity, which caused the system of rules and equations 
to collapse. However, those sets grew steadily and aimlessly afterwards again; and the 
associativity law was not in sight. 

Therefore we decided to derive profit from the collapse of Rand E. In fact, invoking 
normalization of the whole set of unselected equations with respect to the now much 
stronger rewrite relation and subsequent reweighting - thus updating the selection 
strategy's assessment - helped to complete the proof immediately. 

A careful analysis revealed that the last piece in the puzzle had been produced 
quite early in the run. Due to the length of the terms involved it was kind of hidden in 
the set SUE. The reduction procedure shortened the fact a lot and forced the selection 
strategy to pick it out. 

10.2 A Problem from the Robbins Algebra Domain 

A Robbins algebra is made up of an associative-commutative function + ("or") and 
a unary one -=- ("not") satisfying x + y + x + Y = Y for every x and y. The algebra is 
a Boolean one as soon as one of the Boolean axioms is added. The problem ra4 is to 
prove this property for the addition of ::lx, y : x + y = y. 
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Problem 
TPTP or Reference 

gt6.pr 
GRP084-1 

ra4.pr 
ROB006-1 

CPs generated 1182208 1089411 
Rules + Equations 604 1542 
Maximum Size of CP Set 986741 969858 
Total MatchQueries 57069361 318843055 
Total Reductions 175423 5551423 

Time (wall clock in sec) 255 3062 
Process-Size (Mbytes) 20.5 34.2 
Generated CPs/sec 4641 356 
Reductions/sec 689 1813 
Match Queries/sec 224055 104119 

Table 20: Cracking hard nuts (on SPARC-Ultra 1, 167 MHz) 

Jlist like above, we did a first run with standard selection strategy and packing. 
Because of the AC-property of +, all the corresponding equivalence classes are enu­
merated, arbitrarily mixed up with negation symbols. Consequently it is worthwhile 
discriminating unselccted equations the more disjunction symbols they contain. 

The next proof run periodically produced a few rules and equations that simplified 
some elder ones. We expected these simplifying equalities to contribute to the proof 
problem. However, it was not before 1500 rules and equations had been produced that 
the IRP led to a success. All in all, the proof was found in a little more than one hour 
of computation time. See App. A for a complete proof-extract. 
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11 Concluding Remarks and Future Prospects 

We described the design process of a completion-based prover for equational theo­
ries. Starting from a logical three-level model for saturation-based provers, we have 
followed an engineering approach throughout this design. Beginning with the infer­
ence system for unfailing Knuth-Bendix completion, we crystalized experiences into 
a sketch of algorithm and revealed the crucial points responsible for overall efficiency. 
"Ve introduced sophisticated data structures and algorithms that avoid overindulgence 
in time and space. \Ve determined an approriate aggregation of the inference steps 
into an inference machine. To that purpose we evaluated different parameter settings 
influencing this aggregation. Finally, we demonstrated the power of WALDMEISTER by 
a comparison with the DISCOUNT inference machine, and showed how two very hard 
problems have been solved by WALDMEISTER. 

Our results suggest that the yet neglected level of the inference machine can in­
fluence the performance of the prover so far that comparisons between different search 
strategies or improved low-level operations can be completely blurred by unrecognized 
effects on the mid level (remember e.g. the comparison of equally weighted critical pairs 
or the realization of the normalization routine). Therefore one should never assess re­
sults without having these effects under strict control! 

Having built a prover that is equivalently optimized on the two lower levels, i.e. ba­
sic operations and inference machine, we now can look for promising approaches on 
the top level. WALDMEISTER is able to do an increased number of derivations in given 
space and time bounds. Less effort has to be spent on focussing on those parts of 
the search space that are absolutely necessary for finding the proof. Hence, more gen­
eral strategies can be employed, and hereby less adjusting has to be done by the user. 
Learning from past proof experience, and taking domain knowledge into account remain 
promising approaches. In the future, we want to provide automatic generation of ap­
propriate reduction orderings at runtime. Furthermore, the treatment of goals (which 
are currently only reduced "on the fly") will be improved. Distributing automated 
theorem proving on a high level (e.g. employing the TEAMWORK method [Den93}) is 
equally encouraging, whereas parallelizing inference step execution on the lowest level 
will hardly outperform specialized indexing routines like those used in WALDMEISTER 

- for it requires adaption of the basic algorithms, and a lot of communication effort 
between processes. 

As the normalization of critical pairs after generation has the main purpose to put 
the selection strategy in focus, we are currently working on strategies which base on the 
sets of different irreducible successors of each term. This will even lead to a stronger 
notion of 'joinable'. 

Analyzing machine proofs by hand often suffers from the way these proofs are 
presented. Especially proofs found via completion can be very spacious and unwieldy. 
Schulz and Denzinger introduced a protocol language, along with methods and tools for 
extracting and presenting proofs from those protocols (cf. [DS93]). We a::-e currently 
adapting this method for WALDMEISTER and are working on space saving protocol 
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rr.echanisms since the original language produces protocol files that exhaust even large 
hard disk capacities. ' 

Summing up, our system WALDMEISTER, which was designed according to a sys­
tematic stepwise design process, does not only show an outstanding performance. Dis­
tinguishing three levels in the system's open architecture leaves a broad variety of 
additional choice points up to the user. By this means, the statistically ascertained 
default parameterization is adjustable to special proof tasks. Combined with the high 
performance on the level of inference step execution, even standard selection strategies 
succeed in problems known as very hard. 

WALDMEISTER and further publications will soon be available via internet at: 
http://www.uni-kl.de/AG-AvenhausMadlener/waldmeister.html 
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A Proof of RA4 

Axioms 

Axiom 1:	 X2+ XI=XI+X2 
Axiom 2: c+d= d 

Axiom 3: (X3 + X2) + Xl = X3 + (X2 + Xl) 

Axiom 4: X2 + Xl + X2 + Xl = X2 

Theorem 

Theorem:	 a + b + a + b = a 

Proof: 

Lemma	 1: d + c = d
 

d+c
 
'-v-" 

= by Axiom 1 RL with {Xl *- d, X2 ~ c},.....-.......
 
c+d 
'-v-"
 

= by Axiom 2 LR with {}

,.--.. 

d 

Lemma	 2: d + c + Xl = d + Xl 

d + C+XI 
'-v-" 

= by Lemma 1 LR with {},.--.. 
d +XI 

Lemma 3: z+u+u+z=u 
z+u+u+z 
'-v-' 

by Axiom 1 RL with {Xl *- Z,X2 *- u} 
~ - ­u+z+u+z 
~ 

= by Axiom 4 LRwith {Xl *- Z,X2 *- u},.--.. 
u 

Lemma 4: Z + Xl + Xl + Z = Z 

Z + Xl +	 Xl + Z 
~ 

by Axiom 1 RL with {Xl *- XI,X2 *- z} 
--~ 
Z + Xl + Z + Xl 
"'- ~ ... 
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by Axiom 4 LR with {Xl +- Xl,X2 +- Z} 
"..........,
 

Z 

Lemma 5: z+v+z+v=v 

z+v+z+v 
"-v-" 

by Axiom 1 RL with {Xl +- Z, X2 +- V} 
-- ~ Z+V+V+Z 
'--v-" 

by Lemma 3 LR with {u +- V,Z +- z} 
"..........,
 

v 

Lemma 6: u + Z + Xl = Z + u + Xl 

U + Z+Xl 
"-v-" 

by Axiom 1 LR with {Xl +- Z,X2 +- U} 
~ 

Z + U+Xl 

Lemma 7: c + d = c + d+ d + c 

c+d 
"'-v-" 

by Lemma 4 RL with {Xl +- d, Z +- c + d} 

c+d+d+ d +c+d 
'-.;-' 

by Lemma 1 RL with {} 

- ~ ­
c+d+d+d+c+c+d 

'---'" 
by Lemma 3 LR with {u +- c, Z +- d} 

c+d+d+""?' 

Lemma 8: v + U + Z = Z + u + v 

v+U+Z 
~ 

by Axiom 1 LR with {Xl +- Z,X2 +- v + U} 
,-"---..
Z+V+U 
~ 

= by Axiom 1 LR with {Xl +- U,X2 +- v} 
~ 

Z+U+V 

Lemma 9: w + U+ Y+ U+ w + U+Y = w 

W+U+Y+U+W+U+Y 
, v ~ 

by Lemma 8 RL with {z +- y + u, U +- w, v+- U + y} 
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by Axiom 1 RL with {Xl +- W+ U, X2 +- U+ Y+ w + Y+ U} 

r '" , 

W+Y+U+U+Y+W+Y+U+U+y, '.. 
by Axiom 4 LR with {Xl f- Y + U + U + y, X2 f- W} 

,............
 
W 

Lemma 10: d+c+d=d 

d+c+d 
'----' 

by Lemma 5 RL with {v f- d + c + d, Z f- c + d} 

c+d+d+c+d+c+d+d+c+d 
'----' 

by Lemma 2 RL with {Xl f- c + d} 
~ 

c+d+d+c+d+c+d+d+c+c+d 
"-.,---' 

= by Lemma 6 RL with {Xl f- c + d, Z f- d, U f- C} 

~ 

c+d+d+c+d+c+d+c+d+~+d ' , '" 

by Axiom 1 RL with {Xl +- c + d, X2 +- C + d + c + d} 
, 

c+d+d+c+d+c+d+c+d+c+d 
"-.r-' 

by Lemma 7 LR with {} 
~ 

c+d+d+c+d+c+d+c+d+c+d+d+c 
"----.....--' 

by Axiom 1 LR with {Xl f- c, X2 +- C + d + d} 

------===------. 
c+d+d+c+d+c+d+c+~c+c+d+d 

'----' 
by Axiom 1 LR with {Xl f- d, X2 f- c + d} 

..--"----, 

c+d+d+c+d+c+d+c+d+c+d+c+d , ' 

by Axiom 4 LR with {Xl f- d + c + d, X2 +- c} 
- - ,............

c+d+d+c+d+ c , r 
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by Axiom 1 LR with {Xl f- C, X2 f- c + d + d + c + d} 

c+c+d+d+c+d 
, j 

by Lemma 6 RL with {Xl f- d + c + d, Z f- c, U f- d} 

c+ d +c+d+c+d..............,
 

by Lemma 1 RL with {}
 

~ ­
c +d + c + c + d+ c + d..............,
 

by Lemma 3 RL with {u f- c, Z f- d}
 
~ 

d+c+c+d+d+c+c+d+c+d 
, 'v' .I 

by Axiom 1 RL with {Xl f- d+C + c + d, X2 f- d + c + c + d + c + d} 

d+c+c+d+c+d+d+c+c+d 
'--' 

= by Lemma 7 LR with {} 
~ 

d+c+c+d+c+d+d+c+c+d+d+c 
~==--

by Axiom 1 LR with {Xl f- C, X2 f- C + d + d} 
~ 

d+c+c+d+c+d+d+c+c+c+d+d 
~ 

by Axiom 1 LR with {Xl f- d, X2 f- c +d} 

~ 

d+c+c+d+c+d+d+c+c+d+c+d 
'- V" " 

by Axiom 4 LR with {Xl f- c + d + c + d, X2 f- d + C} 
~ 

d+c 
'--' 

by Lemma 1 LR with {} 
.--.. 

d 

Lemma 11: d = d+ d + d+ d + d+ d 
d--.-­

= by Axiom 4 RL with {Xl f- d + c + d+ d+ c + d, X2 f- d} 

d+ d+ c + d+ d+ c + d+ d +d + c + d+ d+ c + d..............,
 

= by Axiom 4 RL with {Xl f- C + d, X2 f- d} 

d+d+c+d+d+c+d+d+c+d+d+c+d+d+c+d+d+c+d'" 
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= by Axiom 4 LR with {Xl r d+ c + d, Xz r d+ c + d} 
~ 

d+d+c+d+d+c+d+d+c+d 
, J 

v 

by Axiom 1 LR with {Xl r d+ c + d, X2 r d+ d+ c + d+ d+ c + d} 
, 

d+c+d+d+d+c+d+d+c+d 
"--v----' 

by Axiom 1 LR with {Xl re + d, X2 r d} 
~ 

d+c+d+d+c+d+d+d+c+d 
~ 

by Lemma 10 LR with {} 

d+c+d+d+c+d+d+ 
~ 

d 
"--v----' 

by Lemma 2 LR with {Xl f- d} 
~ 

d+d+d+c+d+d+d 
~ ­

by Axiom 1 LR with {Xl r d, X2 r c + d + d}
 
~ 

d+d+d+d+c+d+d 
~ 

= by Lemma 8 LR with {z r d,u r d,v r c} 

-~ 

d+d+d+d+d+d+c 
"--v-' 

= by Axiom 1 RL with {Xl r d, X2 r c} 

- .....--.... 
d+d+d+d+d+c+d 

"--v----' 

by Lemma 2 LR with {Xl r d} 

- ~ 

d+d+d+d+d+d 

Lemma 12: d = d+ d+ d + d+ d + d+ d 
d

'-v-' _ 

= by Lemma 9 RL with {y r d + d, U r d + d, W f- d} 
r 

d + d+ d+d + d+ d+ d+ d + d+ d+ d + d 
'----..,---" 

by Axiom 1 RL with {Xl r d, X2 r d + d} 
~ 

d+d+d+d+d+d+d+d+d+d+d+d 
~ 

by Lemma 2 RL with {Xl r d} 
~ 

d+c+d+ d +d+d+d+d+d+d+d+d+d 
'-.r' 
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by Lemma 10 RL with {} 

d+c+d+d+c+d+d+d+d+d+d+d+d+d+d , " 
by Axiom 4 LR with {Xl +- c + d, X2 ~ d} 

~- ---­
d +d + d + d+ d + d+ d + d + d + d 

, v ' 

by LelI'ma 6 LR with {Xl ~ d + d + d + d, z ~ d, u ~ d + d+ d+ d} 

d+d+d+d+d+d+d+d+d+d 
'-...--' 

by Lemma 4 LR with {Xl ~ d, z ~ d} 
- - - ~ 

d+p+d+d+d+d+ d 
V' 

by Lemma 8 LR with {z ~ d, u ~ d + d + d +d, v ~ d} 

d+d+d+d+d+d+d 
, J 

by Axiom 1 LR with {Xl ~ d, X2 ~ d + d + d + d} 

d+d+d+d+d+d+d 
"'---v-----" 

by Lemma 6 LR with {Xl ~ d +d, z ~ d, u ~ d} 
~ 

d+d+d+d+d+d+d 

Lemma 13: c + z + c + z + d+ c + c +- d = z 

c+z+c+z+d+c+c+d 
'-v-" 

by Lemma 6 RL with {Xl ~ c,z ~ c,u ~ z} 
~ 

,z+c+c+z+d+c+c+d, 

by Axiom 1 RL with {Xl ~ z + c + C, X2 ~ z + d + c + c + d} 

z+d+c+c+d+z+c+c 
"--.,,-." 

by Lemma 3 RL with {u ~ c + c, z ~ d}
 

z+d+c+c+d+z+d+c+c+c+c+d
 
'-v-" 

by Lemma 2 LR with {Xl ~ c} 

,...-"'--.. 

z+d+c+c+d+z+d+c+c+c+d 
by Lemma 1 LR with 

~ 

{} 

~ 

z+d+c+c+d+z+ d +c+c+d 
, .f 

by Axiom 4 LR with {Xl ~ d + c + c + d, X2 ~ z} 
~ z 
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Lemma 14: c+ d+ d = d + c+ d+d +d +d 
c+d+d 
~ ­

= by Lemma 4 RL with {Xl t- d+ d, z t- c + d + d} 

c+d+d+d+d+d+d+c+d+d 
, v # 

by Lemma 8 LR with {z t- d, u t- d, v t- c + d + d} 
, 

d+d+c+d+d+d+d+c+d+d 
"-v-' 

= by Axiom 1 RL with {Xl t- d,X2 t- c} 

~ -- =-==----­
d+c+d+d+d+d+d+c+d+d 
'----' ­

by Lemma 2 LR with {Xl t- d} 
~ -- -==----­
d+d+d+d+d+d+c+d+d 

, 1 

V 

= by Lemma 6 LR with {Xl t- d + d, z t- C, u t- d+ d} 
, 

d+d+d+d+c+d+d+d+d 
~ 

by Lemma 5 RL with {v t- d+ d + d+ d, z t- d+ d} 
, 

d+ d+ d+ d + d+d+d +d +d +d+ d+ d+c+ d + d+ d+ d 
~ I 

by Lemma 11 RL with {} 

- - -,..-... - ­
,d+d+d+d+d+d+ d ,+c+d+d+d+d 

v 

by Axiom 1 LR with {Xl t- d, X2 t- d+ d + d+ d + d+ d} 

d+d+d+d+d+d+d+c+d+d+d+d 
" V' .I' 

by Lemma 12 RL with {}
 
,..-... ­
d +c + d + d+ d+ d 

Lemma 15: p+ d+ d = p+ d+ d+ P + d+ d 

p+d+d 
"-v--' 

by Lemma 5 RL with {v t- p + d + d, z t- d} 

d+p+d+d+d+p+d+d 
~ 

= by Lemma 6 LR with {Xl t- d + d, z t- p, Ut- d} 
~ 

p+d+d+d+d+p+d+d
"-v--' 
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by Lemma 2 RL with {Xl +- d + d} 
~ 

p+d+c+d+d+d+p+d+d 
~ 

by Lemma 14 LR with {} 

p+d+d+c+d+d+d+d+d+p+d+d
'----v----" __ 

by Axiom 1 LR with {Xl +- d + d,X2 +- d + d} 

~ 

p+d+d+c+d+d+d+d+d+p+d+d
"""-v--" 

by Axiom 1 LR with {Xl +- d, X2 +- d} 

~ 

p+d+Cl+c+d+d+d+d+d+p+d+d
"-v-' 

by Lemma 1 RL with {} 

~ - = - ­
p+d+d+c+c+d+d+d+d+d+p+d+d 

, v -..,==-I 

by Axiom 1 RL with {Xl +- d"""+C, X2 +- C+ d + d + d + d} 
r 

p + d + c + d + d + d + d + d +c + d + P + d + d 
"-v-' 

by Axiom 4 RL with {Xl +- d, X2 +- d} 

~ 

p+d+c+d+d+d+d+d+d+d+d+c+d+p+d+d
, V' -I 

-
by Lemma 4 LR with {Xl +- d + d + d + d, Z +- c} 

p+d+~+d+p+d+d 
'--v----' 
by Lemma 1 LR with {} 
,....r-.. _ _ 

p+ d +d+p+d+d 

Lemma 16: p+d+d=p 

p+d+d 
~ 

by Lemma 15 LR with {p +- p} 

p+d+d+p+d+d
"""-v--" 

= by Lemma 2 RL with {Xl +- d}
 

r---"'-- ­


p+d+d+p+d+c+d
"'-v-' 

by Axiom 1 LR with {Xl +- d, X2 +- c} 

~ 

p+d+d+p+d+d+c 
~ 
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by Lemma 8 RL with {z +- d, U +- d, v+- c} 

......----.... 
p+d+d+p+c+d+d

" ' 

by Lemma 8 RL with {z +- d, U +- p, v +- c + d + d} 
, 

p+d+c+d+d+p+ d 
'-v-" 

by Lemma 10 RL with {} 

p+d+c+d+d+p+d+c+d 
" ~ I 

by Lemma 9 LR with {y +- c + d, U +- d, W +- p} 
~ 

p 

Lemma 17: u = u 
U 

'-v-" 
by Lemma 16 RL with {p +- u} 
~ 

u+d+d 
'-v--' 

by Lemma 5 RL with {v +- U+ d +d, Z +- d + d + u} 

by Lemma 4 LR with {Xl +- U, z +- d +d} 
..--""-.. 

,d+d+u+u+d+d+d+d,
 

by Lemma 16 LR with {p +- d + d + u + u+ d + d}
 .. 

by Axiom 1 RL with {Xl +- d + d, X2 +- u + u+ d + d} 

by Lemma 16 LR with {p +- u + u+ d + d} 

u+u+d+d---...--... 
= by Lemma 16 LR with {p +- u} 

~ 

u+ u 
'-v-" 
by Lemma 16 RL with {p +- u} 
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by Lemma 16 RL with {p +--- u} 
,----A---... 

u+d+d+u+d+d , ' 

by Lemma 16 RL with {p +--- u + d +d+u + d +d} 

, u+d+d+u+d+d+d+d 
' 

by Axiom 1 LR with {Xl +--- d +d, X2 +--- U + d +d +u + d +d} 

d+d+u+d+d+u+d+d 
"'--v--' 

by Lemma 5 RL with {v +- d +d,z +- u} 

y+d+d+u+d+d+u+d+d+u+d+~ 

by Axiom 4 LR with {Xl +--- U + d + d, X2 +--- u + d +d} 
,----A---... 

u+d+d 
"-.---' 

by Lemma 16 LR with {p +--- u} 
,-"-.. 

u 

Lemma 18: y = y 

Y 
'-v-' 

by Lemma 13 RL with {z +- y}
 

c+y+c+y+d+c+c+d
 
, v ' 

by Lemma 17 RL with {u +- c + y + c + Y + d + c + c + d} 

c+y+c+y+d+c+c+d 
, 'V' ' 

by Lemma 13 LR with {z +- y} 
,-"-.. 

y 



------

7 

Theorem: a+ b+ a+ b= a 

a+b+a+b-....­
by Axiom 1 LR with {Xl ~ b, X2 ~ a} 
~ ­
b+a+a+b-....­

by Axiom 1 LR with {Xl ~ b, x2 +- a} 
~ 

b+a+b+a

by Lemma 18 LR with {y +- b + a + b+ a} 
~ 

b+a+b+a------.....­
by Lemma 5 LR with {v +- a, Z +- b} 

~ a 
~ 

by Lemma 18 RL with {y +- a} 
~ a 

The proof-extract was generated from a WALDMEISTER protocol using the PCL tools of 
J. Denzinger and S. Schulz (cf. [DS93]). 
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B Examples 

The specification format is straightforward. 

foo•	 NAME
 
A (hopefully meaningful) name for the subsequent specification.
 

•	 MODE (COMPLETION I CONFLUENCE I PROOF I REDUCTION) 

What is the system expected to do with this specification? 
- COMPLETION: Derive a convergent set of rules and equations. 

- CONFLUENCE: Is the given set of equations (oriented from left to right) 
convergent? 

-	 PROOF: Do the given conclusions hold in the specified equational theory? 

- REDUCTION: Normalize the given conclusions with the set of equations 
(oriented from left to right). 

•	 SORTS Sortl, Sort2
 

Declares the sorts the operators are expected to work on.
 

•	 SIGNATURE Opl, Op2: Sortl Sort2 -> Sort2
 
Const: -> Sort2
 

States the signature of the operators (which also includes constants). 

•	 ORDERING «LPO
 
Const > Op2
 
Const > Opl)
 

(KBO 
Opl = 3, Op2 = 2, Const = 1 
Const > Op2 
Const > Op!) 

For modes COMPLETION and PROOF, a reduction ordering has to be speci­

fied: either linear path ordering, based on an operator precedence, or extended
 
Knuth-Bendix ordering with a weight for each operator and an additional oper­

ator precedence for the comparison of equally weighted terms.
 
For mode PROOF, the reduction ordering has to be complete on ground terms;
 
henceforth, a total precedence is required.
 

•	 VARIABLES x, y: Sortl 
z: Sort2 

Declares the variables along with their sorts. There is one common name space 
for all sorts. 

•	 EQUATIONS Opl(x,Opl(y,Op2(y,z») = Opl(x,Op2(x,Const» 

Set of equations defining the equational theory. The equations are considered as 
implicitely all-quantified. 
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•	 CONCLUSION Opl(x,Const) = Op2(x,Const) 
- For mode REDUCTION, a set of equations to be normalized. 

-	 For mode PROOF, a set of hypotheses to be proved. Variables are im­
plicitely existentially quantified. All-quantification is expressed via Skolem 
constants. 

braid4.cf [Art47], for the equations see [Ch048] 
NAME Braid4 
MODE CONFLUENCE 
SORTS ANY 
SIGNATURE p,q,r,s,t,u,P,Q,R,S,T,U: ANY -> ANY 

305,306,307,308,315,316,317,318,325: ANY -> ANY 
326,327,328,405,406,407,408,415,416: ANY -> ANY 
417,418,425,426,427,428: ANY -> ANY 
a: -> ANY 

VARIABLES x: ANY 
EQUATIONS 305(x) = x %The complete set contains 862 equations. 

P(p(x» = x
 
p(P(x» = x
 
Q(q(x» = x
 
q(Q(x» = x
 

426(p(x» = S(t(s(426(x»»
 
307(p(x») = t(307(x»
 
407(p(x» = T(u(t(407(x»»
 
317(p(x» = s(317(x»
 

307(Q(x» = R(T(U(t(u(307(x»»»
 
407(Q(x» = R(T(U(T(u(t(t(407(x»»»»
 
317(Q(x» = Q(S(U(s(u(317(x»»»
 

316(U(x» = R(P(Q(p(q(S(T(s(U(S(t(s(u(316(x»»»»»»»
 
326(U(x» = P(S(T(S(t(s(s(326(x»»»»
 
426(U(x» = P(Q(p(S(T(U(t(S(T(u(t(s(s(426(x»»»)))))
 
307(U(x» = Q(S(U(s(u(307(x»»»
 
407(U(x» = P(S(T(s(t(407(x»»»
 

dtl.rd [OKW] 
NAME Fibonacci 
MODE REDUCTION 
SORTS ANY 
SIGNATURE 0: -> ANY 

s,	 p: ANY -> ANY 
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VARIABLES
 
EQUATIONS
 

CONCLUSION
 

fib, dfib: ANY -> ANY
 
+, -: ANY ANY -> ANY
 
x,y: ANY
 
fib(O) = s(O)
 
fib(s(O)) = s(O)
 
fib(s(s(x))) = +(fib(s(x)),fib(x))
 
dfib(O) = s(O)
 
dfib(s(O)) = s(O)
 
dfib(s(s(x))) = +(dfib(s(x)) ,+(dfib(x) ,dfib(x)))
 
+(x,s(y)) = s(+(x,y))
 
+(x,O) = x
 
-(s(x),s(y)) = -(x,y)
 
-(x,O) = x
 
p(x) = -(x, s(O))
 
-(-(fib(p(dfib(dfib(s(s(s(O))))))),
 
dfib(s(fib(s(dfib(s(s(s(O))))))))),
 
dfib(dfib(s(s(s(O)))))) = s(s(O))
 

fac8.rd (Peano arithmetics) 
NAME 
MODE 
SORTS 
SIGNATURE 

VARIABLES 
EQUATIONS 

CONCLUSION 

gt4.3.pr 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 

faculty_of_8 
REDUCTION 
NAT 
o 
s 
+ : 

* 
fac 
x,y 

-> NAT 
NAT -> NAT 
NAT NAT -> NAT 
NAT NAT -> NAT 
: NAT -> NAT 
: NAT 

+(x,O) = x
 
+(x,s(y)) = s(+(x,y))
 
*(x,O) = 0
 
*(x,s(y)) = +(*(x,y),x)
 
fac(O) = s(O)
 
fac(s(x)) = *(s(x),fac(x))
 
fac(s(s(s(s(p(s(s(s(O))))))))) = 0
 

[LW92] 
gt4-3
 
PROOF
 
ANY
 
g: ANY -> ANY 
f: ANY ANY -> ANY
 
a, b, c: -> ANY
 
LPO
 
g > f > a > b > C
 

x,y,z,u: ANY
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EQUATIONS f(x,g(f(y,f(f(f(z,g(z)),g(f(u,y))),x)))) = u 
CONCLUSION f(f(a,b),c) = f(a,f(b,c)) 

gt6.pr [LW92] 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 

CONCLUSION 

gt6 
PROOF 
ANY 
i: ANY -> ANY 
f: ANY ANY -> ANY 
a, b, c: -> ANY 
LPO 
i > f > a > b > C 

x,y,z,u,v,w: ANY 
f(i(f(i(f(i(f(x,y)),f(y,x))), 

f(i(f(z,u)) ,f(z,i(f(f(v,i(w)) ,i(u))))))), 
w) = v 

f(f(a,b),c) = f(a,f(b,c)) 
f(a,f(a,i(a))) = a 
f(a,i(a)) = f(b,i(b)) 
f(a,b) = f(b,a) 

jarlO.2.l.pr [McC93]
 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 
CONCLUSION 

jarl0-2-1 
PROOF 
ANY 
i: ANY -> ANY 
f: ANY ANY -> ANY 
a, b, c: -> ANY 
LPO 
i ) f > a > b > c 
x,y,z: ANY 
f(f(i(f(x,i(f(y,z)))),f(x,i(z))),i(f(i(z),z))) = y 
f(f(a,b),c) = f(a,f(b,c)) 

jarlO.3.1a.pr [McC93]
 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 

jarl0-3-1a 
PROOF 
ANY 
i: ANY -> ANY 
f: ANY ANY -) ANY 
a, b, c: ->' ANY 
LPO 
i > f > a > b > C 

x,y,z,u: ANY 
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Ef)UATIONS f(x,i(f(y,f(f(f(z,i(z»,i(f(u,y»),x»» = u 
CONCLUSION f(f(a,b),c) = f(a,f(b,c» 

juxta.rd [WZ95] 
NAME JuxtaPositionlntegers 
MODE REDUCTION 
SORTS INT 
SIGNATURE INT INT -> INT %Juxtaposition operator 

0,1,2,3, 
4,5,6,7, 
8,9: -> INT %digits 
+, -, *: INT INT -> INT %arithmetic function 
neg: INT -> INT %negative inverse 
zfac: INT INT -> INT %auxiliary function for fac 
fac: INT -> INT %factorial 

VARIABLES	 x,y,z INT 
EQUATIONS	 %All in all, more than 500 equations are needed. 

_(O,x) = x 
_(x,_(y,z» = _(+(x,y),z) 
+(O,x) = x 
+(x,O) = x 
_(x,neg(_(y,z») = neg(_(-(y,x),z» 
_(neg(x),y) = neg(_(x,neg(y») 
neg(neg(x» = x 
neg(O) = 0 
+(x,_(y,z» _(y,+(x,z» 
+(_(x,y),z) _(x,+(y,z» 
+(x,neg(y» -(x,y) 
+(neg(x),y) -(y,x) 
-(O,x) = neg(x) 
-(x,O) = x 
-C(x,y) ,z) = _(x,-(y,z» 
-(x,_(y,z» = neg(_(y,-(z,x») 
-(x,neg(y» = +(x,y) 
-(neg(x),y) = neg(+(x,y» 
*(O,x) = ° 
*(x,O) = ° 
*(x,_(y,z» = ~(*(x,y),*(x,z» 

*(_(x,y),z) = _(*(x,z),*(y,z» 
*(x,neg(y» = neg(*(x,y» 
*(neg(x),y) = neg(*(x,y» 

%From each of the following schemata, all ground 
%equations with d and e replaced with any of the 
%digits from 1 to 9 has to be build. 

_(d,neg(e» = _(d~,e-) 

_(_(x,O),neg(d» = _(_(x,neg(1»,d-) 
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_(_(x,d),neg(e)) = _(_(x,d-),e-)
 
+(d,e) = ++(d,e)
 
-(d,e) = --(d,e)
 
*(d,e) = **(d,e)
 

zfac(O,z) = z 

zfac(9,z) = zfac(8,*(9,z)) 

%fac(_(x,y» = *(_(x,y),fac(-(_(x,y),l») 
zfac(_(x,O),z) = zfac(_(-(x,1),9),*(_(x,O),z) 
zfac(_(x,9),z) = zfac(_(x,8),*(_(x,9),z») 

fac(x) = zfac(x,l) 

CONCLUSION %calculate 119! 

LukalO.pr [Tar56] 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 

CONCLUSION 

Lusk5.pr 
NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

Lukal0
 
PROOF
 
ANY
 
C: ANY ANY -> ANY 
N: ANY -> ANY 
T, Ap, Aq: ->ANY 
LPO 
C > N > T > Ap > Aq 
p,q,r: ANY 
C(T,p) = p 
C(p,C(q,p) = T 
C(C(p,C(q,r)),C(C(p,q),C(p,r))) = T 
C(C(p,C(q,r»),C(q,C(p,r») = T 
C(C(p,q),C(N(q),N(p») = T 
C(N(N(p»),p) = T 
C(p,N(N(p») = T 
C(N(Ap),C(Ap,Aq» = T 

[L085] 
Lusk5 
PROOF 
ANY 
f: ANY ANY ANY -> ANY 
g: ANY -> ANY
 
a, b: ->ANY
 
LPO
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g > f > b > a 
VARIABLES	 v,w,x,y,.z: ANY 
EQUATIONS	 f(f(v,w,x),y,f(v,w,z)) = f(v,w,f(x,y,z)) 

f(y,x,x) = x 
f(x,x,y) = x 
f(g(y),y,x) = x 

CONCLUSION	 f(a,g(a),b) = b 

Lusk6.pr [L085] 
NAME Lusk6 
MODE PROOF 
SORTS ANY 
SIGNATURE *, +: ANY ANY -> ANY 

ANY -> ANY 
0: -> ANY 
a, b: -> ANY 

ORDERING KBO 
* = 5, + = 4, -	 = 3, 0 = 1, a = 1, b = 1 
* > + > - > 0 > a > b 

VARIABLES x,y,z: ANY 
EQUATIONS +(o,x) = x 

+(x,O) = x
 
+(-(x),x) = 0
 
+(x,-(x)) = 0
 
+(+(x,y),z) = +(x,+(y,z))
 
+(x,y) = +(y,x)
 
*(*(x,y),z) = *(x,*(y,z))
 
*(x,+(y,z)) = +(*(x,y),*(x,z))
 
*(+(x,y),z) = +(*(x,z),*(y,z))
 
*(*(x,x),x) = x
 

CONCLUSION	 +(+(+(a,a),a),+(+(a,a),a)) = 0 
*(a,b) = *(b,a) 

mv2.pr [LW92] 
NAME mv2 
MODE PROOF 
SORTS ANY 
SIGNATURE i: ANY ANY -> ANY 

n: ANY -> ANY 
a, b, c, T: -> ANY 

ORDERING LPO 
i > n > T > a > b > c 

VARIABLES x,y,z: ANY 
EQUATIONS HT,x) = x 

i(i(x,y),y) = i(i(y,x),x) 
i(i(n(x),n(y)),i(y,x)) = T 
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i(i(x,y),i(i(y,z),i(x,z») = T 
CONCLUSION i(i(a,b),i(i(c,a),i(c,b») = T 

mv4.pr [LW92] 
NAME mv4 

MODE PROOF 
SORTS ANY 
SIGNATURE i: ANY ANY -> ANY 

n: ANY -> ANY 
a, b, T: -> ANY 

ORDERING LPO 
i > n > T > a > b 

VARIABLES x,y,z: ANY 
EQUATIONS iCT,x) = x 

i(i(x,y),y) = i(i(y,x),x) 
i(i(n(x),n(y»,i(y,x» = T 
i(i(x,y),i(i(y,z),i(x,z») = T 

CONCLUSION i(i(i(a,b),i(b,a»,i(b,a» = T 

p9a.pr '[Fuc94] 
NAME p9a 
MODE PROOF 
SORTS ANY 
SIGNATURE i: ANY -> ANY 

f, n, u: ANY ANY -> ANY 
1, a, b, c: -> ANY 

ORDERING LPO 
i > f > n > u > 1 > a > b > c 

VARIABLES x,y,z: ANY 
EQUATIONS u(x,x) = x 

n(x,x) = x 
f(1,x) = x 

n(x,y) = n(y,x)
 
u(x,y) = u(y,x)
 
u(x,n(x,y» = x
 
n(x,u(x,y» = x
 
f(i(x),x) = 1
 
uC! ,a) = a
 
u(1,b) = b
 
u(1,c) = C
 

n(a,b) = 1
 
n(x,n(y,z» = n(n(x,y),z)
 
u(x,u(y,z» = u(u(x,y),z)
 
f(x,f(y,z» = f(f(x,y),z)
 
f(x,u(y,z» = u(f(x,y),f(x,z»
 
f(x,n(y,z» = n(f(x,y),f(x,z»
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f(u(x,y),z) = u(f(x,z),f(y,z» 
f(n(x,y),z) = n(f(x,z),f(y,z» 

CONCLUSION	 n(a,f(b,c)) = n(a,c) 

P161po.cp [Chr93] 

NAME	 P161po 
MODE	 COMPLETION 
SORTS	 ANY 
SIGNATURE	 e32, e31, , e1: -> ANY 

i32, i31, , i1: ANY -> ANY 
f: ANY,ANY -> ANY 

ORDERING	 LPO 
i32> i31 > ... > i1 > f > 
e32 > e31 > '" > e1 

VARIABLES x, y, z : ANY 
EQUATIONS f(f(x,y),z) = f(x,f(y,z» 

f(e1,x) = x 

f(e32,x) = x 
f (x, i1(x» = e1 

f(x, i32 (x) ) = e32 

P16kbo.cp [Chr93] 

NAME	 P16kbo 
MODE	 COMPLETION 
SORTS	 ANY 
SIGNATURE	 e32, e31, , e1: -> ANY 

i32, i31, , i1: ANY -> ANY 
f: ANY,ANY -> ANY 

ORDERING	 KBO 
f=O, 
i32=0, i31=2, i30=4, , i1=62, 
e32=2, e31=1, e30=1, , e1=! 
i32 > i31 > > i1 > f > 
e32> e31 > > e1 

VARIABLES x, y, z : ANY 
EQUATIONS f(f{x,y),z) = f(x,f(y,z» 

f(e1,x) = x 

f(e32,x) = x 
f(x,il (x» = e1 

fCx,i32(x»	 = e32 
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ra2.pr [LW92] 
NAME 
MODE 
SORrs 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 

CONCLUSION 

NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 

CONCLUSION 

NAME 
MODE 
SORTS 
SIGNATURE 

ORDERING 

VARIABLES 
EQUATIONS 

ra2 
PROOF 
ANY 
n: 
0: 

a, 
LPO 

ANY -> ANY 
ANY ANY -> ANY 
b: 

n > 0 

x,y,z: 
o(x,x) 
o(x,y) 

-> ANY 

> a > b 

ANY 
= x 
= o(y,x) 

o(o(x,y),z) = o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) = x 
o(n(o(n(a),b)),n(o(n(a),n(b)))) = a 

ra3.pr [LW92] 
ra3 
PROOF 
ANY 
n: ANY -> ANY 
0: ANY ANY -> ANY 
a, b, c: -> ANY 
KBO 
c = 1, n = 1, 0 = 1, a = 1, b = 1 
c > n > 0 > a > b 
x,y,z: ANY 
o(x,y) = o(y,x) 
o(c,c) = C 

o(o(x,y),z) = o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) = x 
o(n(o(n(a),b)),n(o(n(a),n(b)))) = a 

ra4.pr [LW92]
 
ra4 
PROOF 
ANY 
n: ANY -> ANY 
0: ANY ANY -> ANY 
a, b, c, d: -> ANY 
KBO 
C = 1, d = 1, n = 1, 0 1, a = 1, b = 1 
c > d > n > 0 > a > b 

x,y,z: ANY 
o(x,y) = o(y,x) 
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o(o(x,y),z) = o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) = x 
o(c,d) = d 

CONCLUSION	 o(n(o(n(a),b)),n(o(n(a),n(b)))) = a 
# Huntington's Axiom 

sims2.cp [Sim91] 
NAME sims2 
MODE COMPLETION 
SORTS ANY 
SIGNATURE T: ANY -> ANY 

t: ANY -> ANY 
S: ANY -> ANY 
s: ANY -> ANY 
R: ANY -> ANY 
r: ANY -> ANY 

ORDERING	 KBO 
T = i, t = i, S = i, s = i, R = i, r = i 
T > t > S > s > R > r 

VARIABLES	 x : ANY 
EQUATIONS	 % Definition of inverses 

T(t(x)) = x 

t(T(x)) = x 
S(s(x)) = x 

s(S(x)) = x 
R(r(x)) = x 
r(R(x)) = x 
%Definition of the group 
t(t(S(T(s(T(r(t(R(R(S(t(s( 

T(T(r(r(T(R(t(r(r(T(R(t(x)) ... ) = x 
r(r(T(R(t(R(s(r(S(S(T(r(t( 

R(R(s(s(R(S(r(s(s(R(S(r(x)) ... ) = x 
s(s(R(S(r(S(t(s(T(T(R(s(r( 

S(S(t(t(S(T(s(t(t(S(T(s(x)) ... ) = x 

z22.cp [AD93] 
NAME Z22 
MODE COMPLETION 
SORTS ANY 
SIGNATURE a, ai, b, hi, e, ei, d, di, e, ei: ANY -> ANY 
ORDERING LPO 

ei > e > di > d > ei > c > bi > b > ai > a 
VARIABLES x: ANY 
EQUATIONS a(b(e(x))) = d(x) 

b(c(d(x)) ) = e(x) 
c(d(e (x))) = a(x) 
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d(e(a(x))) = b(x)
 

e(a(b(x))) = c(x)
 

a(a1(x)) = x
 

b1(b(x)) = x
 

c1(c(x)) = x
 

a1(a(x)) = x
 

b(b1(x)) = x
 

c(c1(x)) = x
 

d(d1(x)) = x
 

d1(d(x)) = x
 
e(e1(x)) = x
 

e1(e(x)) = x
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