
Joepqe-tun-sie-anns/id33q M
AM

AM

AN
VIN

H
ED

NAMONUEAUVVS 17099-A
MILVINHOJINI H

O
ITH

AG
H

O
VA

SHANVTHVVS SAA LY.LISH
AAIN

N

a
B

ei
=

"X

©

B
A

o
S

,
8

A
s

s
0

,9
S

S
2

o
O

8

A
r

a
g

5
a

2
n

©

=

3
°

a
E

Zvby-ZEFT N
SSI

Hoday IM
IS

i©A<&a5]a,
i:%£2]
ky.

Towards Extending Domain Representations

Andreas Meier, Erica Melis,Martin Pollet
Universität des Saarlandes, FR Informatik

66041 Saarbrücken, Germany
email: {ameier,melis,pollet }@ags.uni-sb.de

Abstract

Based on our experience in developing and employing a rich domain representation
for proof planning we compare the knowledge representation of the proof planner {MEGA
with PDDL and with some AI planners and explore the usefulness of some extensions
for Al-planning more generally. In particular, we investigate the more expressive syntax
and semantics of proof planning due to the introduction of functions, full quantifica-
tion, integration of constraint solving, powerful filters, and context-dependency as well as
knowledge implicit in integrated systems.

1 Introduct ion

The emphasis of the discussions about an extension of the knowledge representation in
planning has been on conditional effects, resources, as well as time representation and
on representations which trade expressiveness for speed. From our experience in proof
planning, we suggest other fundamental extensions of the domain representation.

The extensions that are needed for proof planning differ from other approaches, be-
cause proof planning is “simple” in the sense that it is planning in deterministic and
fully observable domains. Moreover, since proof planning operators represent (complex)
inference actions, there is (almost) no goal interaction because a sequence of inference
actions does not destroy any object-level preconditions. Nevertheless, a comparison with
the proof planning representations and mechanisms makes sense for the Al-planning com-
munity because many characteristics of proof planning domains are common to realistic
world domains as well. In this sense, proof planning is “difficult”.

This paper compares the knowledge representation of the proof planner MEGA with
PDDL (Planning Domain Definition Language) [7] and with planners that already have
extended representations. Some of the expressive features in proof planning are not spe-
cific for proof planning domains and could be adopted by PDDL extensions. The paper
focuses on the introduction of functions, full quantification, integration of constraint solv-
ing, powerful filters, and context-dependency as well as knowledge implicit in integrated
systems.

2 Proof Planning with QMEGA
Proof planning [1, 10] considers mathematical theorem proving as planning problem. In
proof planning, the initial state is specified by the proof assumptions, the goal is specified
by the theorem to be proved.

Domain Language As opposed to PDDL and the problem representations in almost
all planners, MEGA uses a typed higher-order logic for the problem representation [3].
This includes universal and existential quantification as well as functions and quantifica-
tion over functions and relations. The type system contains primitive types, e.g., type for
individuals, numbers, and truth values, as well as functional types. Thus, in QMEGA the
initial facts and the goal are given as higher-order formulas.

For instance, the problem LIM+ has the assumptions l im f (z) =1 , and l im g(x) = 12
and the goal l im (f(z) + g(z)) = Il; +12 (the limit of the sum of two functions equals the
sum of their limits) or in its expanded version:

assumption;: Ve; (0 < 1 = 36: {0 < 6; AVzy(z1 # aA
Iz1 — a] < 8; = |f(z1) — hh] < €1)))

assumptiony: Vea(0 < 2 = 362(0 < 62 A Vzo(z2 # aA
lz2 — al < 82 = |g(z2) — 12] < €2)))

goal: Ve(0 < € = 36(0 < 6 AVz(z # aA
lz — a] <4 = |(f(z) + g(z)) — (hh +12) <€)))

Operator Language Planning operators can encode general and domain specific
proof steps. For instance, operators for proof planning in the limit domain [8] encode
steps for the estimation of inequalities as well as steps decomposing logical formulas.

An operator in IMEGA has the slots parameters, declarations, premises, conclusions,
application conditions, outline computations, and proof schema. The premises and con-
clusions specify the object-level preconditions and the object-level effects of the operator.
The conclusions should be logically inferable from the preconditions. The proof schema
provides the schematic or procedural expansion functionality of HTN-operators and par-
tially describes the involved formulas.

Premises and conclusions may be annotated with © and © . The annotations are
needed to indicate whether an operator is used in forward or backward search. They do
not matter anymore in the final plan and its execution. © conclusions are goals that
will be deleted (in backward planning), & conclusions are introduced as new assumptions
into the planning state (in forward planning), © premises indicate new subgoals that are
introduced by the operator, © premises are assumptions that have to be in the current
planning state and are deleted by the operator, and finally blank premises are assumptions
that (just) have to be in the current planning state.

Consider the operator =SUBST-B given in Figure 1. It has two preconditions L ; and
L , , where the proof schema determines L ; to be an equation. =SUBST-B is a backward
planning operator which will close the goal L3, and introduce the new goal Ly. The new
goal will be the formula f ’ which results from f by substitution with the equation of L ; .
This equation has to be an assumption in the planning state, i.e., an initial assumption
or an inferred assumption. For instance, =SUBST-B applied to the goal even(a + 1) with
the assumption a = 1 would introduce even(1 + 1) as a new goal.

declarations introduces the variables of the operator and their types. All object-
variables are typed. The type o is the type of formulas; objects with type position specify
subterms of formulas.

parameters are specific variables that influence the behavior, when the operator is
introduced into the plan. The =SuBST-B operator has the parameter pos which is of type
position. The operator can be applied to different positions, e.g., for the goal even(a + a)
and the assumption a = 1 at the first or the second occurrence of a. The choice of pos
determines which a should be replaced.

The application conditions are meta-level conditions that further restrict the applica-
bility of an operator. The application conditions can be arbitrary LISP functions. The

Operator: =SUBST-B
type-variables: a

declarations |object-variables: f : o , f ' : o , t : a ,
t " a , pos:position

parameters [pos
(1) (valid-position-p f pos)

appl. conds. |(2) [(term-at-position f pos) = t V
(term-at-position f pos) = t]

premises Lo, Ly
conclusions |©L3
outl ine

. |F' + (replace-at-position f tft’ pos)
computations

L i : A F t=?
proof schema |L2: A + f ' (Open)

Ly: A F f (=subst pos Ly Ls)

Figure1: The =SuBST-B operator.

operator =SUBST-B has two application conditions: (1) the position pos has to be a valid
- position in the formula f and (2) the subterm in f at the position pos is t or t ' .

The outline computations allow to apply arbitrary LISP functions to compute the new
formulas generated by the operator. The outline computation of =SUBST-B specifies that
the new formula f ’ is computed from f by replacing t by t ' or t ' by t at the position pos
depending on whether the subterm in f at position pos is t or t ' .

The applicability of an operator is checked as follows: First, the formulas of the
conclusions and premises are unified with formulas in goals and assumptions. If this
succeeds then the application conditions are evaluated. If they evaluate to true, the
operator is applicable. The outline computations are performed when the operator is
introduced into the plan.

Planning Algorithm QMEGA performs state-based forward and backward planning
with a goal agenda. The planning state consists of assumptions and (sub)goals. The plan-
ner searches for a solution, i.e., for a sequence of instantiated operators whose application
infers the goal from the initial state. Similar to HTN planning [15], planning operators
can be expanded. The recursive expansion of a plan yields a calculus-level natural deduc-
tion proof [5] that can be executed which means can be checked for logical correctness.
That is, the plan execution corresponds to a soundness check which is performed at the
calculus-level.

Why is proof planning difficult?
e The objects in proof planning domains are (mathematical) objects such as numbers,

sets, or morphisms. In many domains, infinitely many mathematical objects exist,
e.g., infinitely many real numbers.

e The objects can be represented by functional terms and such objects can be gener-
ated during planning, i.e., objects that are constructed from other objects.

e Objects may be constrained by domain properties different from (in)equalities.
e Actions change the planning state that consists of formulas (rather than just literals)

describing objects and their relations and functions.

e Since the formulas can be higher-order, higher-order-unification with goals is re-
quired in the planning algorithm. General higher-order-unification is undecidable.

e Forward and backward planning is usually required in proof planning in order to infer
new mathematical facts from already known facts and to reduce goals to subgoals.

3 Expressivity o f the Language
In this section, we compare some features of {{MEGA’s rich domain and operator language
with PDDL and some Al-planners and explore the usefulness of our extensions for Al-
planning more generally.

3 .1 Functions

PDDL excludes functions explicitly. PDDL 2.1 level 2 [7] allows restricted functors for
assignments of numerical values, e.g. (change (age ?person) (+ (age 7persomn) 1)),
and arithmetic relations for functors in the precondition. The Task Formalism of O-Plan
[12] allows to form assignments <pattern>=<value> where ‘value’ may be a numerical
value, a constant, or even a l ist of values, and ‘pattern’ is a functional expression, e.g.
{ co lo r car}=blue.

The role of functions in proof planning problems is twofold: (1) functions assign values
to functional expressions.! (2) Functions allow the construction of new terms from already
introduced terms. Terms represent objects, for instance, with the function + and a
constant n denoting a positive natural number a term n + n can be constructed. This
term denotes a natural number; it is new in the sense that without further information
we do not know which object of the problem domain “natural numbers” it denotes. The
term itself becomes an object with properties that cannot be found in the subparts, e.g.
n +n has a property that is independent from its subterm n : i t is an even number.

Associated with functions is a notion of well-definedness of terms. Functions have
a specified number of arguments and restrictions on the types of the arguments. Thus
ill-defined terms in specifications can be detected and rejected.

Although functions can be circumscribed by relations, the relational representation is
rather inefficient and unintuitive. It is always possible to encode a functional expression
f (z1 , . . . , z ,) by a relation R f , where R/ (y ,z1 , . . . ,2 ,) stands for y = f(z1,...,%n).
For instance, a relational expression of the formula |g(z) — I] < £ would be R ! (y ı , x) ,
R- (ya , y ı ,0), R" (ys, yo), R<(ys,e) with relations RY, R-, R I , R< corresponding to the
functions g, —,|.|, < . The situation becomes even more complicated, when higher-order
terms have to be considered. Suppose we want to express the term f + g, which is the
function that is the sum of the functions f and g, and apply this function to a constant c,
i.e., (f + g)(c). In this case, we have to encode the application of a function as a relation.

We think that in many Al-domains functional representations could be beneficial.
For instance, in a scenario in which objects are composed of many subparts. Suppose
a planning scenario where the processes of a service station for car repair are modeled.
A car could be represented explicitly by a (nested) functional term car (wheel-1, . . . ,
wheel -4 , mo to r (cy l i nde rs -1 , . . . , carburator-1), . . .) with functions car and
motor. Planning the repair of the car could result in exchanging cyl inders-1 with
cy l inders-2 in the term that represents the car. Although i t is possible to express these
facts by function-free relations, the functional representation allows a compact represen-
tation of the composed objects in which the subparts of an object are directly accessible.
Furthermore, a functional representation is often more intuitive and can be handled by
external reasoners such as Computer Algebra Systems and constraint solvers.

!Note that an assignment is not an additional primitive of the domain language but expressible in the
object language of MEGA.

3 .2 Meta-Variables

In Al-planning, variables may occur in the operator representation and all variables men-
tioned in the effects of an operator have to be included in the preconditions of an operator
[16]. The initial state must not contain variables. An operator can introduce placeholders
for unbound variables that have to be instantiated during the planning process.

In proof planning a placeholder mechanism exists, too. The placeholder, called meta-
variable, can be introduced by operator applications into the proof plan and does not have
to be instantiated immediately. Simplified speaking, a meta-variable can either originate
from existentially quantified goals, universally quantified assumptions, or from an operator
that introduces auxiliary variables.?

Because of the potential infinity of many mathematical domains, a delay of the instan-
tiation of meta-variables in proof planning is indispensable rather than just more efficient
than an immediate commitment. The reason is simply that a potentially infinite branch-
ing cannot be handled in (proof) planning and therefore the decision for branching has
to be delayed.

The following differences between typical Al-planning and proof planning are impor-
tant.

e As opposed to PDDL, in proof planning a (meta-)variable can be a placeholder for
an object from a possibly infinite domain and the object can be a complex term.

se In OMEGA, the variables do not have to occur in what corresponds to preconditions.
Rather an operator can introduce arbitrary auxiliary meta-variables, but this appli-
cation of the operator is only valid (and hence the whole proof plan is only valid) if
consistent instantiations for the meta-variables can be found.

e In proof planning the constraints upon the meta-variables can be more complex
than simple equalities or negations of equalities. Moreover, there is no guarantee
for a unique binding of these variables when planning is finished. For instance, the
constraint 1 < d can be satisfied by many real numbers d including 1,1.5,2.2, . . .

Since constraints in proof planning are not just equational, constraint solvers with an
elaborate theory-reasoning had to be adapted and integrated into proof planning. Since
there is no guarantee for a unique instantiation, the external constraint solving includes a
search for instantiations consistent with all constraints [11]. This is common for constraint
solvers. During proof planning the constraints in meta-variables are sent to an adapted
off-the-shelf external constraint solver. This external system can indicate an inconsistency
which causes backtracking. Eventually, the constraint solver computes instantiations of
the meta-variables that are consistent with all constraints. The realization of an interface
to a constraint solver via operators is described in Section 3.4.

Currently very few Al-planner exist that can handle even simple linear constraints.
Thus we think that an integration of constraint solving via meta-variables as in MEGA
could be beneficial. The integration of off-the-shelf external constraint solvers into the
planning process allows to use their knowledge about a constraint domain. For instance,
constraint solvers for equations and inequations over the natural numbers or over the
reals comprise knowledge such as x < z + 1 that could be beneficial when dealing with
resources such as fuel etc.

2More accurate: meta-variables originate from positively occurring existentially quantified and negatively
occurring universally quantified subformulas in goals as well as from negatively occurring existentially quanti-
fied and positive occurring universally quantified subformulas in assumptions, see [4]; all other quantifications
result in the introduction of new constants.

3.3 Quantification
Al-planning assumes each planning domain to have a finite set of objects. Therefore,
a universally and existentially quantified formula can be replaced by a conjunction or
disjunction for all elements such that quantified variables do not have to occur in planning
states explicitly.

Existentially quantified effects are not included into PDDL. Why? There are different
answers depending on what is taken as the semantics of existentially quantified effects.
We found different interpretations of what existentially quantified effects should mean,
e.g,

e Classical planning deals with finite domains, so existential quantification would just
be a shorthand for a disjunction. This would model a non-deterministic effect which
classical planning does not allow and thus PDDL does not include existentially
quantified effects.3

o Essentially, all variables in operators are implicitly existentially quantified. An
effect add (p x) with variables can either mean an implicit but eliminated 3-
quantification of 3x(p x) when (p x) unifies with a goal (p A). Or the existen-
tial quantification can be used to restrict the unifiers, hence the instantiation, of
variables.

e The right understanding of variables in operators is that they are universally quan-
tified. Their apparent existential force arised because of how they are used. They
seem to me to be used in a way that reflects the natural deduction inference rule
“existential elimination” [14].

(MEGA’s operators may have an existentially quantified effect as this is just another
formula and the quantified formulas are not restricted to a finite domain interpretations.

Full quantification is one of the obvious differences between the PDDL and proof
planning languages. In scenarios where large sets of objects occur or potentially infinitely
many objects can be constructed, the usual techniques interpreting quantifications as
conjunction or disjunction over a finite domain is inadequate. Then, techniques from
proof planning that allow full quantification could be more adequate.

The semantics of quantification is described already in footnote 2. The instantiations of
the meta-variables are subject of constraint solving following a least commitment strategy
(see Section 3.2). Meta-variables may depend on constants. The constants represent what
is circumscribed in mathematics by “arbitrary but fix” which avoids an explicit disjunctive
or conjunctive interpretation over all objects of the corresponding quantifications.

Interestingly, certain extensions of the PDDL language correspond to the introduc-
tion of meta-variables in proof planning that originate from quantified goals or assump-
tions. In particular, the meta-variable approach in {IMEGA’s language corresponds to the
Skolem terms approach in [14]. Steel suggests the extension of preconditions and effects
of planning operators to full quantification by using Skolemization. Then, quantifiers are
removed via the introduction of Skolem functions and Skolem constants. His example
operator hold-compet i t ion expresses that after holding a sports competition, all the
trophies have a winner. This corresponds to the situation calculus axiom:

VS : S ta te .VT .trophy(T, S) =
IW.isWinnerOf(W,T, holdCompetition(S))

which can be skolemized to the formula
trophy(X, S) —

isWinnerOf(8(X,S), X , holdCompetition(S))
with the Skolem term $(x). The deletion of the state variables results in the (precondi-
tions, effects) pair (t rophy(x) , is-winner-of ($ (x) , x)) . Here, Steel de facto extends

3Personal communication
4Personal communication

quantification in operators to existential quantification of the effects by allowing Skolem
functions in the effect-part of the (preconditions, effects) pairs.

3.4 Employing External Systems
PDDL does not provide a connection to external systems. Some Al-planning systems
make use of “experts” [20]. RAX-PS [6] uses experts in the development of plan fragments.
Moreover, Nonlin [15] employed so-called compute conditions which were also used in an
extended way as the interface to rich external systems in O-Plan [12].

In MEGA, the application conditions and the outline computations can establish
interfaces to external “expert” systems. Various “expert” systems exist for mathematical
problem solving which have their specific data structures and very efficient algorithms,
e.g., Computer Algebra Systems and constraint solvers. They can support the proof
planning process by suggesting instances of variables or parameters, solving subproblems,
or detecting inconsistencies.

Let us consider the application conditions of the operators COMPLEXESTIMATE-B and
TELLCS-B. Both operators are central for planning limit problems. COMPLEXESTIMATE-
B can be applied to inequality goals of the form |b] < ce. It contains the application
condition cas -ex t rac t (a ,b) . On polynomials a and b the function cas-extract calls
the Computer Algebra System MAPLE [13] to compute the coefficient terms k , l for a
decomposition b = k xa + I . If MAPLE succeeds, the condition evaluates to true and
returns k , l as bindings which can be used in the outline computations to compute the
new subgoals. If MAPLE fails, the condition evaluates to false and the operator is not
applicable. TELLCS-B establishes the connection to CoSTE [11], an external constraint
solver. TELLCS-B tackles inequality goals a < b. It contains the application conditions
(va l id-cs a < b) and (t es t - cs a < bb). va l id-cs asks CoSZE to check whether a < b
is a valid input constraint. t es t - cs calls CoSZE to test whether a < b is consistent with
its current constraint store, i.e., the constraints collected so far. Only if this is the case,
the operator is applicable.

3.5 Filtering
Filtering is widely used in practical planners. The idea is to constrain the applicability
of operators by additional conditions that filter out certain unintended applications of an
operator. As opposed to preconditions, filters are conditions a planner wants to be true
but will not make true in form of new subgoals. For instance, in a blocksworld scenario
a Move operator that moves a block B from another block B i to a third block B2 could
have a filter condition that requires B; and B2 to be different. This condition prohibits
unintended applications of the Move operator but a planner will not establish B; # Bj as
new subgoal.

The PDDL syntax allows to specify so-called filter preconditions. The syntax of these
filters is restricted to the language of PDDL preconditions. That is, only filters formalized
at the object-level can be realized; to formalize filters at a meta-level is not possible.
Sipe/Sipe-2 [18, 19] have the same kind of filters as PDDL. Sipe’s operator language
distinguishes between preconditionsand goals, where the preconditions correspond to
the filter preconditions in PDDL and the goals correspond to achievable preconditions
in PDDL. Again the language of the preconditions is restricted to the object language.
The check of meta-level conditions is not provided. Prodigy’s [2] operator language has
non-achievable preconditions. These preconditions can include arbitrary LISP functions.
O-Plan [12] allows to filter matchings. It is even possible to call arbitrary LISP functions
with a filter ?{has functionname arguments result}. This filter matches with every object
obj for which the LISP expression (functionname obj arguments) evaluates to result.

In OMEGA the application conditions are meta-level conditions, i.e., they can restrict
the formulas involved in the inference action beyond matching or unification with goals
and assumptions in the planning state. Consider the =SuBST-B operator in Figure 1. Its
application conditions relate to meta-properties of the formula f (Is pos a valid position
in f? Is the subterm of f at position pos t or t' ?) that cannot be specified within the
object-level language.

Syntactically, calls of arbitrary LISP functions are allowed in the application condi-
tions. Thus the application conditions can even call tests performed by procedures or
stand-alone systems (see Section 3.4 for examples).

3.6 Context Dependency
In order to have as abstract as possible operators and to reduce the number of operators
in a domain description, several syntactical extensions have been used to make operators
context dependent such that one general operator can represent a set of operators.

For this purpose, PDDL includes conditional effects. For instance, in the blocksworld,
the effects of moving a block B may depend where B is moved. If B is moved on top
of another block B ' , then an effect of the action is that B ' is not clear anymore. But if
B is moved to the table, then the table remains clear. Without conditional effects two
operators were needed to express this difference. Context dependency is also important for
practical planners (see, e.g., [17]). For instance, Sipe/Sipe-2 [18, 19] use so-called deductive
operators to represent context dependency. Different deductive operators provide a way
to distinguish side effects and to realize conditional effects.

Among others, the parameters in {MEGA’s operators make the operators dependent
on the context. More detailed, application conditions and outline computations allow to
call LISP functions which can be applied to parameters. The result of these function calls
depends on the parameter instantiations.

A simple example for the context dependency in IMEGA is given in the operator
=SuBST-B in Figure 1. The instantiation of pos determines which subterm of the goal
formula is substituted by the operator. The application conditions use the two LISP
functions valid-position-p and term-at-position to test properties of the formula
f depending on the parameter pos and the equation subterms t and t . The outline
computations return the new goal f ’ by the LISP function replace-at-posit ion from
f , t , t ’ , and pos. A more complicated example is the operator INDUCTION-B that reduces
a universally quantified goal VzP(z) to the base case goal, P(zero), and the step case goal,
P(c) = P(s(c)), of an induction. INDUCTION-B has the parameters zero and s, where
the instantiation of zero specifies the base element of the induction and the instantiation
of s specifies the successor-function used in the induction. Note that parameters are
not bound during the matching of an operator with the planning state. Rather, the
“right” choice of parameter instantiations, e.g., the choice of the suitable base case and
the successor-function for an application of INDUCTION-B, is subject to the control of the
proof planner.

In the proof planning domains context dependency is a very important feature since
often the set of corresponding non-parameterized operators can be potentially infinite.
For instance, without context dependency infinitely many =SuBsT-B operators for all
possible subterm positions and infinitely many possible assumptions would have to replace
the parameterized =SUBST-B operator. Thus {!MEGA’s context dependency goes beyond
the approaches used in other systems and in PDDL. In particular, as opposed to PDDL
and most Al-planners which give the effects of an operator explicitly the effects of an
IMEGA operator can be given implicitly by LISP functions. These functions allow to
compute the effects of an operator completely by procedures.

4 Conclusions

We presented the domain representation of proof planning domains and discussed some
domain-independent features that go beyond the PDDL standard. These features include:
functions and full quantification in the problem and operator language, powerful filters re-
stricting the choice of instances of operators, context dependent parameterized operators,
meta-variables and their constraints, and knowledge implicitly represented in integrated
external systems.

The described extensions are not domain-specific for mathematical domains. Therefore
we think that they could be useful extensions for other AI-planners as well. For instance,
we think that in many AI-domains functional representations could be beneficial. More-
over, an integration of constraint solving like that in QMEGA could be adopted where
existing external service systems communicate with the planner and solve constraints. In
scenarios where large sets of objects occur or potentially infinitely many objects can be
constructed, the usual techniques interpreting quantifications as conjunction or disjunc-
tion over a finite domainis inadequate. Then, techniques that allow to deal with full
quantification via meta-variables as in proof planning could be more adequate.

In addition to its expressive domain and operator language {MEGA employs also con-
trol rules and strategies to formalize domain knowledge. Control rules encode heuristic
knowledge about when and how mathematical inferences (operators) should be applied.
Furthermore, strategies reflect the knowledge about different proof techniques for a class
of problems [9].

References

[1] A. Bundy, ‘The use of explicit plans to guide inductive proofs’, in Proc. of CADE-9,
LNCS 310, pp. 111-120. Springer, (1988).

[2] J.G. Carbonell, Jim Blythe, Oren Etzoni, Yolanda Gil, R. Joseph, D. Kahn,
C. KNoblock, S. Minton, A. Perez, S. Reilly, M . Veloso, and X. Wang, Prodigy
4.0: The Manual and Tutorial, cmu-cs-92-150 edn., 1992.

[3] A. Church, ‘A Formulation of the Simple Theory of Types’, JSL, 5, 56-68, (1940).
[4] M . Fitting, First-Order Logic and Automated Theorem Proving, Graduate Texts in

‘Computer Science, Springer, second edn., 1996.
- [6] G. Gentzen, ‘Untersuchungen über das Logische Schließen I und I I ’ , Mathematische

Zeitschrift, 39, 176-210, 405-431, (1935).
[6] Ari K . Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Rajan, and Ben Smith,

‘Planning in interplanetary space: Theory and practice’, in Proc. of AIPS 2000,
(2000).

[7] D . Long M . Fox, ‘PDDL2.1: An extension to PDDL for expressing temporal planning
domains’. 2001.

[8] E. Melis, ‘The “limit” domain’, in Proc. of AIPS 1998, pp. 199-206, (1998).
[9] E. Melis and A. Meier, ‘Proof planning with multiple strategies’, in Proc. of the

First International Conference on Computational Logic, LNAI 1861, pp. 644-659.
Springer, (2000).

[10] E. Melis and J. Siekmann, ‘Knowledge-based proof planning’, Artificial Intelligence,
(1999).

[11] E. Melis, J. Zimmer, and T. Müller, ‘Integrating constraint solving into proof plan-
ning’, in Proc. of FroCoS’2000, LNAI 1794, pp. 32-46. Springer, (2000).

[12] O-Plan-Team, O-Plan Task Formalism (TF) Manual, AI Applications Institute, Uni-
versity of Edinburgh, 1995.

[13] Darren Redfern, The Maple Handbook: Maple V Release 5, Springer, 1998.
[14] S. Steel, ‘Full quantification in partial order plans by using skolem constants’, in

Proc. of 19th Workshop, UK Planning and Scheduling Special Interest Group, pp.
215-228, (2000).

[15] A. Tate, ‘Generating project networks’, in Proc. of IJCAI-77, pp. 888-893. Morgan
Kaufmann, (1977).

[16] D.S. Weld, ‘An introduction to least committment planning’, A I magazine, 15(4),
27-61, (1994).

[17] David E. Wilkins, ‘Domain-independent planning: Representation and plan genera-
tion’, Artificial Intelligence, 22, 269 — 301, (1984).

[18] David E. Wilkins, Practical Planning, Morgan Kaufmann, San Mateo, 1988.
[19] David E. Wilkins, ‘Using the sipe-2 planning systems (a manual for sipe-2, version

6.1)’, Technical report, SRI, (2000).
[20] David E. Wilkins and Marie desJardins, ‘A call for knowledge-based planning’, Ar-

tificial Intelligence, 22, (2001).

10

