
W8INDIS.I8SIODY £99/9-0
6V0OE YID

H
SO

d
W

8{NDISJOSIDN JR
H

SISAU
N

YHDW
LIOJU] Yolasaqydn

Dirk Fuchs
SEKI Report SR-97-07

a
o

Q
O

SE=AEES[<4]
>

=
a

s
.9

s
m

e
S

L
E

S
E

E
S

S
= 8

5
d

= h
ofue!

3
[8]

C
I

S
A

S
Z

0

R
IO

dT - D
IS

Coupling Saturation-Based Provers by
Exchanging Positive/Negative Infornlation

Dirk Fuchs*

Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, 67653 Kaiserslautern

Germany

E-mail: dfuchs@inforrnatik.uni-kl.de

Abstract

We examine different possibilities of coupling saturation-based theorem pro­
vers by exchanging positive/negative information. We discuss which positive or
negative information is well-suited for cooperative theorem proving and show in
an abstract way how this information can be used. Based on this study, we in­
troduce a basic model for cooperative theorem proving. We present theoretical
results regarding the exchange of positive/negative information as well as practi­
cal methods and heuristics that allow for a gain of efficiency in comparison with
sequential provers. Finally, we report on experimental studies conducted in the
areas condensed detachment, unfailing completion, and superposition.

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).

1

Coupling Saturation-Based Provers by
Exchanging Positive/Negative Information

Dirk Fuchs*
Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049, 67653 Kaiserslautern
Germany

E-mail: d fuchs@in format ik .un i -k l .de

Abstract

We examine different possibilities of coupling saturation-based theorem pro-
vers by exchanging positive/negative information. We discuss which positive or
negative information is well-suited for cooperative theorem proving and show in
an abstract way how this information can be used. Based on this study, we in-
troduce a basic model for cooperative theorem proving. We present theoretical
results regarding the exchange of positive/negative information as well as practi-
cal methods and heuristics that allow for a gain of efficiency in comparison with
sequential provers. Finally, we report on experimental studies conducted in the
areas condensed detachment, unfailing completion, and superposition.

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).

1

mailto:dfuchs@inforrnatik.uni-kl.de

2 1 INTRODUCTION

1 Introduction

In general, automated theorem proving is based on the solution of search problems
which usually comprise huge search spaces. Thus, it is on the one hand necessary to
develop fast algorithms and to use a lot of tricks in order to obtain a fast implementa­
tion (see, e.g., [HBF96]). On the other hand, however, a skillful control of the search
conducted by the prover is especially important to deal with hard search problems.
Therefore, for first order theorem proving a lot of different calculi, each of them con­
trollable by various heuristics, have been developed. However, it is problematic in this
context to decide which calculus and which heuristic should be employed when tack­
ling a given problem. As a matter of fact, the quality of calculi and heuristics usually
fluctuates very much depending on the concrete problem (see [SS96]). Also normally
no a priori knowledge which gives us hints on the appropriateness of a certain calculus
or heuristic for. a given problem is available.

Another main problem is that usually a lot of specialized theorem provers for sub-logics
of first order logic exist that are able to solve problems stemming from their special­
ized logic very efficiently, but cannot deal with problems specified in full first order
logic. E.g., the availability of high performance equational provers like WALDMEISTER

([HBF96]) or DISCOUNT ([ADF95]) is somewhat limited although many problems con­
tain a lot of formulae where equality is involved (cf. the well-known problem library
TPTP [SSY94]).

The first problem, the lack of knowledge about the quality of certain provers for certain
problems could indeed be solved by using competitive versions of different provers. But
such a system can at most be as good as the best of its provers. Thus, problems that
none of the provers can solve remain unsolved. Therefore, our approach for solving this
very problem is the development of cooperative theorem provers. We want to achieve
that on the one hand some provers using different calculi and heuristics work in parallel
and that on the other hand a further gain of efficiency-caused by synergetic effects­
is possible. Cooperation may also be the right way to deal with our second problem.
This is due to the ,fact that by cooperation specialized provers can support universal
provers.

In this report we want to examine how cooperation between several saturation-based
theorem provers could look like. Note that this is not a very grave restriction because
a lot of provers in first order logic with equality belong to this class (e.g., resolution
style provers). We deal with the cooperation of both homogeneous and heterogeneous
provers. In this context, we call a set of provers homogeneous if all provers employ
the same calculus and differ from each other only in the heuristic they employ. We
consider a set of provers to be heterogeneous if the provers employ different calculi and
work possibly in different (sub-)logics of first order predicate logic.

In literature one can find some approaches that try to couple homogeneous (see, e.g.,
[Den95], [FD97]) and heterogeneous provers ([Sut92]). All approaches, however, have
in common that the provers only exchange positive information, i.e. information that
give positive hints, e.g. on the applicability of heuristics or deduced facts for solving
the proof problem. Our extension to this is that we also use negative information, e.g.

2 1 INTRODUCTION

1 Introduction

In general, automated theorem proving is based on the solution of search problems
which usually comprise huge search spaces. Thus, i t is on the one hand necessary to
develop fast algorithms and to use a lot of tricks in order to obtain a fast implementa-
tion (see, e.g., [HBF96]). On the other hand, however, a skillful control of the search
conducted by the prover is especially important to deal with hard search problems.
Therefore, for first order theorem proving a lot of different calculi, each of them con-
trollable by various heuristics, have been developed. However, i t is problematic i n this
context to decide which calculus and which heuristic should be employed when tack-
l ing a given problem. As a matter of fact, the quality of calculi and heuristics usually
fluctuates very much depending on the concrete problem (see [SS96]). Also normally
no a priori knowledge which gives us hints on the appropriateness of a certain calculus
or heuristic for. a given problem is available.
Another main problem is that usually a lot of specialized theorem provers for sub-logics
of first order logic exist that are able to solve problems stemming from their special-
ized logic very efficiently, but cannot deal with problems specified in full first order
logic. E.g., the availability of high performance equational provers like WALDMEISTER
([HBF96]) or DISCOUNT ([ADF95]) is somewhat limited although many problems con-
tain a lot of formulae where equality is involved (cf. the well-known problem library
TPTP [SSY94)).
The first problem, the lack of knowledge about the quality of certain provers for certain
problems could indeed be solved by using competitive versions of different provers. But
such a system can at most be as good as the best of i ts provers. Thus, problems that
none of the provers can solve remain unsolved. Therefore, our approach for solving this
very problem is the development of cooperative theorem provers. We want to achieve
that on the one hand some provers using different calculi and heuristics work in parallel
and that on the other hand a further gain of efficiency—caused by synergetic effects—
is possible. Cooperation may also be the right way to deal with our second problem.
This is due to the fact that by cooperation specialized provers can support universal
provers.
In this report we want to examine how cooperation between several saturation-based
theorem provers could look like. Note that this is not a very grave restriction because
a lot of provers in first order logic with equality belong to this class (e.g., resolution
style provers). We deal with the cooperation of both homogeneous and heterogeneous
provers. In this context, we call a set of provers homogeneous if all provers employ
the same calculus and differ from each other only in the heuristic they employ. We
consider a set of provers to be heterogeneous i f the provers employ different calculi and
work possibly in different (sub-)logics of first order predicate logic.
In literature one can find some approaches that try to couple homogeneous (see, e.g.,
[Den95], [FD97]) and heterogeneous provers ([Sut92]). All approaches, however, have
in common that the provers only exchange positive information, i.e. information that
give positive hints, e.g. on the applicability of heuristics or deduced facts for solving
the proof problem. Our extension to this is that we also use negative information, e.g.

3

information on facts that do not appear to be needed for a proof. Techniques based
on negative information were so far only used in (sequential) tableau-based theorem
provers. But we present techniques how to use negative information for the cooperation
of saturation-based provers. As we will see, combining the exchange of positive and
negative information offers various possibilities for a change of experience between
different provers which often entails an obvious gain of efficiency.

The report is organized in the following way: At first we introduce the basics of
saturation-based theorem provers. In particular, we deal with the three application
domains condensed detachment ([Luk70J), unfailing completion ([BDP89J), and super­
position ([BG94J). After that, we discuss in section 3 which positive/negative infor­
mation is well-suited for cooperative proving and how this information can be used.
Furthermore, we introduce a basic model of cooperative provers. Section 4 deals in
more detail with the exchange of positive information. On the one hand, we discuss
theoretical aspects regarding the completeness of the provers. On the other hand we
point out some concrete practical techniques. Section 5 deals with the same aspects
when exchanging negative information. Results of our experimental studies are pre­
sented in section 6. We have experimented with both heterogeneous and homogeneous
provers, employing a lot of different calculi. Finally, some conclusions and an outlook
at possible future work conclude the report.

2 Basics of Automated Deduction

2.1 Fundamentals

The general problem in automated theorem proving is given as follows: Given a set of
facts Ax (axioms), is a further fact Ac (goal) a logical consequence of the axioms? A
fact may be a clause, equation, or a general first or higher-order formula. The definition
of "logical consequence" depends h~vily on the concrete domain one is interested in.

Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans­
form a goal into sub-goals that can finally be proven immediately with the axioms.
Generating calculi go the other way by continuously producing logic consequences from
Ax until a fact covering the goal appears (but there are also some saturation-based
calculi that use the goal in inferences). We shall here concentrate on saturation-based
calculi.

Typically a saturation-based calculus contains several inference rules of an inference
system I which can be applied to a set of facts (which represents a certain search
state). Expansion inference rules are able to generate new facts from known ones and
add these facts to the search state. Contraction inference rules allow for the deletion of
facts or replacing facts by other ones, thus contracting the fact base (see, e.g., [Der90]).
We write A rI A' if we can derive the set A' from A through the application of one
inference rule. A sequence of sets (Aik::a is called an I-derivation if Ai rI Ai+! for
all i. In order to solve proof problems by utilizing an inference system I-derivations
Ax = Aa I-I Al I-I ... have to be performed until a fact set An is derived which contains

information on facts that do not appear to be needed for a proof. Techniques based
on negative information were so far only used in (sequential) tableau-based theorem
provers. But we present techniques how to use negative information for the cooperation
of saturation-based provers. As we will see, combining the exchange of positive and
negative information offers various possibilities for a change of experience between
different provers which often entails an obvious gain of efficiency.
The report is organized in the following way: At first we introduce the basics of
saturation-based theorem provers. In particular, we deal with the three application
domains condensed detachment ([Luk70]), unfailing completion ([BDP89]), and super-
posit ion ([BG94]) . After tha t , we discuss i n section 3 which positive/negative infor-
mation is well-suited for cooperative proving and how this information can be used.
Furthermore, we introduce a basic model of cooperative provers. Section 4 deals in
more detail with the exchange of positive information. On the one hand, we discuss
theoretical aspects regarding the completeness of the provers. On the other hand we
point out some concrete practical techniques. Section 5 deals with the same aspects
when exchanging negative information. Results of our experimental studies are pre-
sented in section 6. We have experimented with both heterogeneous and homogeneous
provers, employing a lot of different calculi. Finally, some conclusions and an outlook
at possible future work conclude the report.

2 Basics o f Automated Deduction

2 .1 Fundamentals

The general problem in automated theorem proving is given as follows: Given a set of
facts Az (axioms), is a further fact Ag (goal) a logical consequence of the axioms? A
fact may be a clause, equation, or a general first or higher-order formula. The definition
of “logical consequence” depends heavily on the concrete domain one is interested in.
Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans-
form a goal into sub-goals that can finally be proven immediately wi th the axioms.
Generating calculi go the other way by continuously producing logic consequences from
Az until a fact covering the goal appears (but there are also some saturation-based
calculi that use the goal i n inferences). We shall here concentrate on saturation-based
calculi.
Typically a saturation-based calculus contains several inference rules of an inference
system Z which can be applied to a set of facts (which represents a certain search
state). Expansion inference rules are able to generate new facts from known ones and
add these facts to the search state. Contraction inference rules allow for the deletion of
facts or replacing facts by other ones, thus contracting the fact base (see, e.g., [Der90]) .
We write A Fz A’ if we can derive the set A’ from A through the application of one
inference rule. A sequence of sets (A;)i»o is called an Z-derivation i f A; Fz Ajzı for
all 7. In order to solve proof problems by utilizing an inference system Z-derivations
Az = Ag F r A ; k r . . . have to be performed until a fact set A , is derived which contains

4 2 BASICS OF AUTOMATED DEDUCTION

a fact subsuming the goal. An interesting property of such derivations is the fairness.
As we will see later, fairness is often necessary for the completeness of a prover:

Definition 2.1 (Persistent Facts, Fairness of an I-derivation)
Let I be an inference system) let le be the set 01 expanding inference rules. le(M)
denotes the set of all facts that can be derived from M by applying an inference from
le to some facts from M. Furthermore) let Ao r-I Al r-I ... be an I -derivation.

1. We define the set of persistent facts by A00 = Ui>O nj>i A j .

2. The I-derivation is called fair ijj le(AOO) ~ Ui~oAi'

As one can recognize a derivation is fair if all conclusions of generating inferences
with persistent facts have been computed. For all calculi described in the following
subsections fairness of derivations implies completeness, i.e. each valid proof goal can
be proven by performing fair derivations until the goal appears (see, e.g., [Fuc96a] for
condensed detachment, [Ave95] for unfailing completion, and [BG94] for superposition
based theorem proving).

A common principle to solve proof problems algorithmically with a saturation-based
calculus is employed by most systems (algorithm S P: sequential prover): Essentially, a
theorem prover maintains either implicitly or explicitly a set FP of so-called potential
or passive facts from which it selects and removes one fact >. at a time. After the ap­
plication of some contraction inference rules on >., it is put into the set :FA of activated
facts, or discarded if it was deleted by a contraction rule (forward subsumption). Acti­
vated facts are, unlike potential facts, allowed to produce new facts via the application
of expanding inference rules. The inferred new facts are put into :Fp. We assume the
expansion rules to be exhaustively applied on the elements of :FA. Initially,:FA = 0
and :FP = Ax. The indeterministic selection or activation step is realized by heuristic
means. To this end, a heuristic H associates a natural number H(>') E IN with each
>. E :Fp. Subsequently, that >. E :FP with the smallest weight H(>') is selected. In

I order to break ties between facts with the same heuristic weight it is possible to use
another heuristic. Due to efficiency reasons ties are usually broken according to the
FIFO-strategy ("first in-first out"). We call a heuristic fair if it guarantees that each
fact being passive at a certain moment is either activated or discarded after a finite
period of time. It is easy to recognize that the use of fair heuristics implies that the
algorithm conducts fair derivations.

2.2 Condensed Detachment

A typical example for saturation-based calculi is the inference system CV which con­
tains the inference rule condensed detachment (CondDet) (see [Tar56] and [Luk70] for
motivation and a theoretical background). Since CV contains only one expansion and
one contraction inference rule it is very simple. But nevertheless resulting proof prob­
lems can be very challenging. Therefore, condensed detachment was chosen as a test
domain by several researchers before ([Pet76], [MW92], [Sla93], [Wos95], [Fuc96b]) and
the choice of condensed detachment as one test domain surely is justified. The rules

~
4 2 BASICS OF AUTOMATED DEDUCTION

a fact subsuming the goal. An interesting property of such derivations is the fairness.
As we will see later, fairness is often necessary for the completeness of a prover:

Definition 2.1 (Persistent Facts, Fairness of an Z-derivation)
Let T be an inference system, let I, be the set of expanding inference rules. I . (M)
denotes the set of all facts that can be derived from M by applying an inference from
I. to some facts from M . Furthermore, let Ag bz Ay F r . . . be an I-derivation.

1. We define the set of persistent facts by A ” = U;>o Nj>i Aj.

2. The I-derivation is called fair iff I.(A™) C UinoA.

As one can recognize a derivation is fair i f all conclusions of generating inferences
with persistent facts have been computed. For all calculi described in the following
subsections fairness of derivations implies completeness, i.e. each valid proof goal can
be proven by performing fair derivations until the goal appears (see, e.g., [Fuc96a] for
condensed detachment, [Ave95] for unfailing completion, and [BG94] for superposition
based theorem proving).
A common principle to solve proof problems algorithmically wi th a saturation-based
calculus is employed by most systems (algorithm SP: sequential prover): Essentially, a
theorem prover maintains either implicitly or explicitly a set FP of so-called potential
or passive facts from which i t selects and removes one fact A at a time. After the ap-
plication of some contraction inference rules on J , i t is put into the set F4 of activated
facts, or discarded i f i t was deleted by a contraction rule (forward subsumption). Acti-
vated facts are, unlike potential facts, allowed to produce new facts via the application
of expanding inference rules. The inferred new facts are put into AP, We assume the
expansion rules to be exhaustively applied on the elements of FA. Initially, FA = 0
and FP = Az. The indeterministic selection or activation step is realized by heuristic
means. To this end, a heuristic H associates a natural number H(A) € N with each
A € FF. Subsequently, that A € FP with the smallest weight H(}) is selected. In
order to break ties between facts with the same heuristic weight i t is possible to use
another heuristic. Due to efficiency reasons ties are usually broken according to the
FIFO-strategy (“first in—first out”). We call a heuristic fair i f i t guarantees that each
fact being passive at a certain moment is either activated or discarded after a finite
period of time. It is easy to recognize that the use of fair heuristics implies that the
algorithm conducts fair derivations.

2 .2 Condensed Detachment

A typical example for saturation-based calculi is the inference system CD which con-
tains the inference rule condensed detachment (CondDet) (see [Tar56] and [Luk70] for
motivation and a theoretical background). Since CD contains only one expansion and
one contraction inference rule i t is very simple. But nevertheless resulting proof prob-
lems can be very challenging. Therefore, condensed detachment was chosen as a test
domain by several researchers before ([Pet76], [MW92], [S1a93], [Wos95], [Fuc96b]) and
the choice of condensed detachment as one test domain surely is justified. The rules

2.3 Superposition extended with Sorts 5

of the inference system CV manipulate first-order terms. These terms are defined as
usual, involving a finite set F of function symbols and an enurrierable set of variables
V.

CondDet in its basic form is defined for a distinguished binary function symbol f E F.

CondDet allows to deduce a(t) from two given facts f(s, t) and Si if a is the most

general unifier from s and Si. CV contains-besides the expanding rule CondDet-the
contracting rule Subsum. This rule allows for the deletion of a fact t if a fact s and a
substitution a exist such that a(s) == t. A proof problem A = (Ax, Aa) is solved if a
fact subsuming the goal can be deduced.

For our experimental studies (see section 6) we have employed the theorem prover
CODE as described in [FF97].

2.3 Superposition extended with Sorts

The theorem prover SPASS ([WGR96]) we have chosen to experiment with is an
automatic prover for first order logic with equality. It is based on the superposition
calculus (see [BG94J). The inference rules of the superposition calculus can be divided
into expansion and contraction (also called reduction) rules as we have seen before. The
expansion rules (ordered inference rules) .contain the common rules of the superposition
calculus, i.e. superposition left and right, factoring, equality resolution, and equality
factoring. The reduction rules contain well-known rules like subsumption and rewriting.
Furthermore, SPASS utilizes additional reduction rules, like the deletion of tautologies
and the condensing rule which allows to replace a clause C by a(C) if a(C) cC. Since
SPASS recognizes unary predicates as sorts ([Wei93J) the inference system of SPASS
is extended by rules needed for processing sort information. These rules have to be
applied to facts before they can be involved in "normal" expansion and contraction
rules. Because of the fact that the rules can be regarded as expansion rules we do not
distinguish between ordered inference rules and rules that apply to some special sort
information in the following.

In this context proof problems are usually given in form of a clause set C that has to
be proven inconsistent. But since this has to be done by deriving the empty clause 0

this task is equivalent to the task of solving the proof problem (C, I:J). Thus, in the
following we will maintain our notion of a proof problem.

2.4 Completion without Failure

The unfailing completion procedure (see [BDP89]) offers possibilities to develop high
performance theorem provers (e.g., DISCOUNT [ADF95J) in pure equationallogic. In
this context the axioms are always universally quantified equations, the proof goal
is an arbitrarily quantified equation. The inference system underlying the unfailing
completion procedure is in main parts a restricted version of the superposition calculus.
It contains one expansion inference rule-the generation of so-called critical pairs­
that corresponds to the superposition rule. More exactly, if we assume that a special
(reduction) ordering> is given, this inference rule is defined as follows: H s = t, U = v
are equations, a = mgu(slp,u) exists, sip is not a variable, a(t);t a(s), a(v);t a(u),

2.3 Superposition extended with Sorts 5

of the inference system CD manipulate first-order terms. These terms are defined as
usual, involving a finite set F of function symbols and an enumerable set of variables
Vv.
CondDet i n i ts basic form is defined for a distinguished binary function symbol f € F .
CondDet allows to deduce o(t) from two given facts f (s , t) and s’ i f @ is the most
general unifier from s and s’. CD contains—besides the expanding rule CondDet—the
contracting rule Subsum. This rule allows for the deletion of a fact t i f a fact s and a
substitution o exist such that o(s) = ¢. A proof problem A = (Az, Ag) is solved i f a
fact subsuming the goal can be deduced.
For our experimental studies (see section 6) we have employed the theorem prover
CODE as described in [FF97).

2.3 Superposition extended with Sorts

The theorem prover SPASS ([WGR96]) we have chosen to experiment with is an
automatic prover for first order logic with equality. I t is based on the superposition
calculus (see [BG94]). The inference rules of the superposition calculus can be divided
into expansion and contraction (also called reduction) rules as we have seen before. The
expansion rules (ordered inference rules) contain the common rules of the superposition
calculus, i.e. superposition left and right, factoring, equality resolution, and equality
factoring. The reduction rules contain well-known rules like subsumption and rewriting.
Furthermore, SPASS utilizes additional reduction rules, like the deletion of tautologies
and the condensing rule which allows to replace a clause C by o(C) i f ¢(C) C C . Since
SPASS recognizes unary predicates as sorts ([Wei93]) the inference system of SPASS
is extended by rules needed for processing sort information. These rules have to be
applied to facts before they can be involved in “normal” expansion and contraction
rules. Because of the fact that the rules can be regarded as expansion rules we do not
distinguish between ordered inference rules and rules that apply to some special sort
information in the following.
In this context proof problems are usually given in form of a clause set C' that has to
be proven inconsistent. But since this has to be done by deriving the empty clause O
this task is equivalent to the task of solving the proof problem (C, 1) . Thus, in the
following we will maintain our notion of a proof problem.

2.4 Completion without Failure

The unfailing completion procedure (see [BDP89]) offers possibilities to develop high
performance theorem provers (e.g., DISCOUNT [ADF95]) in pure equational logic. In
this context the axioms are always universally quantified equations, the proof goal
is an arbitrarily quantified equation. The inference system underlying the unfailing
completion procedure is i n main parts a restricted version of the superposition calculus.
It contains one expansion inference rule—the generation of so-called critical pairs—
that corresponds to the superposition rule. More exactly, i f we assume that a special
(reduction) ordering > is given, this inference rule is defined as follows: If s =¢t, u =v
are equations, o = mgu(s|p,u) exists, s|p is not a variable, a(t) # o(s), o(v) # o(u),

6 3 COOPERATION IN GENERATING THEOREM PROVERS

then it is possible to derive the equation O"(t) = O"(s)[p +- O"(v)]. The contraction rules
of the unfailing completion procedure correspond to those of the prover SPASS: It is
possible to perform rewriting steps, subsume one equation by another, and to delete
tautologies.

3 Cooperation in Generating Theorem Provers

Now, we want to introduce general techniques in order to couple different theorem
provers by exchanging positive and negative information. Firstly, we deal with the
question which kind of positive information is well-suited in order to achieve cooper­
ation between different theorem provers. Furthermore, we show how this information
can be utilized. Because of the fact that in literature many different ways exist that de­
scribe methods for exchanging positive information we will only sketch this very issue.
Secondly, we deal in more detail with the same aspects when employing negative infor­
mation because the used techniques are novel: we show which negative knowledge may
be helpful for different theorem provers and give some hints on how to integrate this
knowledge into different provers. Finally, we introduce a basic model of cooperative
theorem proving employing positive/negative information.

3.1 Positive Information for Coupling Theorem Provers

As we have mentioned before positive information is everything that gives a prover
concrete (positive) hints on how to prove the goal, i.e. information that describe which
facts may be helpful or which strategy may be well-suited. Thus, positive information
one prover can exchange with others is a set of important lemmata it has generated
during the proof attempt so far. Moreover, control information, i.e. information on the
quality of certain heuristics, can be exchanged.

The latter kind of information does not seem to be appropriate for distributed coopera­
tive theorem proving. On the one hand it is very difficult to estimate whether a certain
heuristic is well-adapted to a certain proof task. Hence, there are only few cooperation
models that try to estimate quality of heuristics (see, e.g., [AD93], [Den95]) and this es­
timation is usually based on vague criteria. On the other hand exchange of information
on appropriate strategies requires that the coupled provers are quite homogeneous, i.e.
one prover has a strategy as suggested by others at its disposal. Since we are interested
in coupling also heterogeneous provers, particularly provers that fall back on different
heuristics, we do not cope with the exchange of control information any longer. Instead
of the use of control information, positive information that appears well-suited-even
when coupling heterogeneous provers-is a set of important facts (lemmata) a certain
prover has deduced during the proof attempt so far. Relevancy of these lemmata is
determined by the fact whether they seem to be contributing to a proof of the goal
or whether they may be helpful for a receiving prover in other ways (see section 4).
The importance of such lemmata is that the receiving prover can employ them with­
out proving them again, i.e. they can directly be integrated into the system of the

6 3 COOPERATION IN GENERATING THEOREM PROVERS

then i t is possible to derive the equation o(t) = o(s)[p — o(v)]. The contraction rules
of the unfailing completion procedure correspond to those of the prover SPASS: It is
possible to perform rewriting steps, subsume one equation by another, and to delete
tautologies.

3 Cooperation in Generating Theorem Provers

Now, we want to introduce general techniques i n order to couple different theorem
provers by exchanging positive and negative information. Firstly, we deal wi th the
question which kind of positive information is well-suited in order to achieve cooper-
ation between different theorem provers. Furthermore, we show how this information
can be utilized. Because of the fact that in literature many different ways exist that de-
scribe methods for exchanging positive information we wi l l only sketch this very issue.
Secondly, we deal in more detail wi th the same aspects when employing negative infor-
mation because the used techniques are novel: we show which negative knowledge may
be helpful for different theorem provers and give some hints on how to integrate this
knowledge into different provers. Finally, we introduce a basic model of cooperative
theorem proving employing positive/negative information.

. 3.1 Positive Information for Coupling Theorem Provers

As we have mentioned before positive information is everything that gives a prover
concrete (positive) hints on how to prove the goal, i.e. information that describe which
facts may be helpful or which strategy may be well-suited. Thus, positive information
one prover can exchange w i th others i s a set of important lemmata i t has generated
during the proof attempt so far. Moreover, control information, i.e. information on the
quality of certain heuristics, can be exchanged.
The latter kind of information does not seem to be appropriate for distributed coopera-
tive theorem proving. On the one hand i t is very difficult to estimate whether a certain
heuristic is well-adapted to a certain proof task. Hence, there are only few cooperation
models that try to estimate quality of heuristics (see, e.g., [AD93], [Den95]) and this es-
timation i s usually based on vague cr i ter ia. On the other hand exchange of information
on appropriate strategies requires that the coupled provers are quite homogeneous, i.e.
one prover has a strategy as suggested by others at its disposal. Since we are interested
in coupling also heterogeneous provers, particularly provers that fall back on different
heuristics, we do not cope with the exchange of control information any longer. Instead
of the use of control information, positive information that appears well-suited—even
when coupling heterogeneous provers—is a set of important facts (lemmata) a certain
prover has deduced during the proof attempt so far. Relevancy of these lemmata is
determined by the fact whether they seem to be contributing to a proof of the goal
or whether they may be helpful for a receiving prover in other ways (see section 4).
The importance of such lemmata is that the receiving prover can employ them with-
out proving them again, i.e. they can directly be integrated into the system of the

3.2 Negative Information for Coupling Theorem Provers 7

saturation-based prover. Particularly, if the proofs of such lemmata via the heuris­
tic of the receiving prover require a lot of inferences they might be important for it.
Because of the fact that lemmata can easily be integrated into the system of every
saturation-based prover and hence are well-suited for coupling heterogeneous provers
(see section 6) this kind of information was used in several systems before ([Sut92],
[Den95], [FD97]). Therefore, we will also use positive information represented by im­
portant lemmata. Essentially, we extend the techniques described in [FD97] so as to
couple also heterogeneous provers.

3.2 Negative Information for Coupling Theorem Provers

The usage of negative information in order to achieve cooperation between several
(saturation-based) theorem provers is much more difficult. Thus, to our knowledge
no approaches exist so far that fall back on such kind of information. Contrarily to
positive information we consider an information to be negative if it describes which
facts ("bad" facts) or which strategy may not be suitable in order to conclude a proof.
Therefore, we discuss in the sequel whether and how information on bad facts or bad
heuristics can be utilized.

In contrast to saturation-based provers information on bad facts can easily be used
in analytic theorem provers. Note that analytic provers divide a problem into sub­
problems (subgoals) that share common variables. Generally, the idea is to perform
a so-called failure caching (see [MIL+97]) that provides information that certain sub­
problems cannot be solved with certain substitutions, i.e. that certain instances of facts
do not contribute to a proof of the initial problem. Due to efficiency reasons usually
a so-called local failure caching is employed which does not provide negative informa­
tion suitable for other provers (cp. [AS92]). In principle, however, also a global failure
caching is imaginable that is able to support other theorem provers. Thus, an exchange
of negative information is at least possible although it is normally not sensible due to
efficiency reasons.

Because of the fact that a saturation-based theorem prover does not divide the proof
problem into various others and works all the time exclusively on the original proof
task, such kind of failure caching is impossible. As a matter of fact, if we want to
determine in a saturation-based prover whether a certain fact is a bad fact, i.e. is not
needed to prove the goal, the proof must already be known. All in all we can say that
a semantic classification of facts into good or bad regarding their ability to contribute
to solutions of the proof problem does not seem to be sensible in our context. Since
we are not able to classify facts into good or bad in a semantic way we ch90se in the
sequel a more pragmatic approach: Instead of calling facts good or bad for the proof
of the goal we classify facts as good or bad w.r.t. their usefulness for the search for a
proof of the goal. Thus, we try to estimate whether facts may be more or less useful for
the process of finding a proof instead of estimating whether they are part of a proof.

We make these ideas more precise: Often there is not only one proof of a goal but a
lot of different proofs exist that usually contain different sets of facts needed in them.
A proof can be considered to be better than another proof W.r. t. the process of finding

3.2 Negative Information for Coupling Theorem Provers 7

saturation-based prover. Particularly, i f the proofs of such lemmata via the heuris-
tic of the receiving prover require a lot of inferences they might be important for it.
Because of the fact that lemmata can easily be integrated into the system of every
saturation-based prover and hence are well-suited for coupling heterogeneous provers
(see section 6) th is kind of information was used i n several systems before ([Sut92],
[Den95], [FD97]). Therefore, we will also use positive information represented by im-
portant lemmata. Essentially, we extend the techniques described in [FD97] so as to
couple also heterogeneous provers.

3.2 Negative Information for Coupling Theorem Provers

The usage of negative information in order to achieve cooperation between several
(saturation-based) theorem provers is much more difficult. Thus, to our knowledge
no approaches exist so far that fall back on such kind of information. Contrarily to
positive information we consider an information to be negative i f i t describes which
facts (“bad” facts) or which strategy may not be suitable in order to conclude a proof.
Therefore, we discuss in the sequel whether and how information on bad facts or bad
heuristics can be utilized.
In contrast to saturation-based provers information on bad facts can easily be used
in analytic theorem provers. Note that analytic provers divide a problem into sub-
problems (subgoals) that share common variables. Generally, the idea is to perform
a so-called failure caching (see [MIL*97]) that provides information that certain sub-
problems cannot be solved with certain substitutions, i.e. that certain instances of facts
do not contribute to a proof of the init ial problem. Due to efficiency reasons usually
a so-called local failure caching is employed which does not provide negative informa-
tion suitable for other provers (cp. [AS92]). In principle, however, also a global failure
caching is imaginable that is able to support other theorem provers. Thus, an exchange
of negative information is at least possible although i t is normally not sensible due to
efficiency reasons.
Because of the fact that a saturation-based theorem prover does not divide the proof
problem into various others and works all the time exclusively on the original proof
task, such kind of failure caching is impossible. As a matter of fact, i f we want to
determine in a saturation-based prover whether a certain fact is a bad fact, i.e. is not
needed to prove the goal, the proof must already be known. All in all we can say that
a semantic classification of facts into good or bad regarding their ability t o contr ibute
to solutions of the proof problem does not seem to be sensible in our context. Since
we are not able to classify facts into good or bad in a semantic way we choose in the
sequel a more pragmatic approach: Instead of calling facts good or bad for the proof
of the goal we classify facts as good or bad w.r.t. their usefulness for the search for a
proof of the goal. Thus, we try to estimate whether facts may be more or less useful for
the process of finding a proof instead of estimating whether they are part of a proof.
We make these ideas more precise: Often there is not only one proof of a goal but a
lot of different proofs exist that usually contain different sets of facts needed in them.
A proof can be considered to be better than another proof w.r.t. the process of finding

8 3 COOPERATION IN GENERATING THEOREM PROVERS

it with a given prover if not so many unnecessary inferences are performed and not so
many unnecessary facts are generated during the search. Our aim is to find "good"
proofs in this sense, i.e. proofs that can be found in a short proof run. From this
point of view facts are bad, i.e. not so useful for proving the goal, if they entail a lot
of unnecessary inferences and hence possibly a long proof run. As we will describe
in section 5 it is possible to design criteria that are rather well-suited for estimating
whether facts are bad regarding this concept. Thus, such a pragmatic estimation if a
fact is bad is-in contrast to a semantic estimation-a v,iable approach.

Until now we have given a short description of the way bad facts might be identified.
It is unclear, however, how a prover can utilize information on bad facts it has received
from other provers.

On the one hand, if such received bad facts are already in the system of active facts of
the prover, a restructuring of the search state might be the right way. Through such
a restructuring it should be achieved that the prover does not work with bad facts in
future. Hence our aim is-similarly to the idea of dynamic programming-that paths
in the search space whose exploration would lead to high costs are postponed or even
neglected. With the help of this technique possibly short proof runs occur if the bad
facts are really not needed and a proof can be found quickly when exploring a proof
path not employing the bad facts. Nevertheless, it must be guaranteed that eventually
all proof paths are explored so as to preserve the completeness of the proving system if a
bad fact is really necessary. As described in section 5 even in such a case a restructuring
might be sensible: Parts of a proof that are "parallel" to a certain bad fact, i.e. are
not based on this fact, can possibly be exploited faster without using the bad fact and
then the remaining parts of the proof can be searched for. Thus, a gain of efficiency is
also possible in this case. So to say conventional search-guiding heuristics try to find
out which facts are needed for a proof, the additional use of restructuring techniques
aims furthermore at finding the optimal order in that these facts should be processed.

On the other hand, information on bad facts of other provers can even have a control
aspect: These information offer the possibility to tune the search-guiding heuristic in
such a way that the activation of bad facts is postponed. Thus, a posteriori knowl­
edge of other provers (detected bad facts) can be transformed into a priori knowledge
(construction of a heuristic). Hence, even the exchange of control information via bad
facts is possible. Moreover, it appears to be a more viable approach than the explicit
exchange of control information (in form of heuristics) as discussed before.

3.3 Basic Model of Cooperative Theorem Proving

Architecture: Our basic model of cooperating theorem provers that exchange posi­
tive/negative information can be described as follows: On each processor in a network
of cooperating provers a theorem prover conducts a search for the common proof goal.
Either we let only different incarnations of the same prover cooperate-differing from
each other only in the search-guiding heuristic they employ for traversing the search
space-and hence have a network of homogeneous provers, or we employ different
provers (heterogeneous network) which all tackle the same problem. Note that because

8 ; 3 COOPERATION IN GENERATING THEOREM PROVERS

i t with a given prover i f not so many unnecessary inferences are performed and not so
many unnecessary facts are generated during the search. Our aim i s t o find “good”
proofs i n this sense, i.e. proofs that can be found in a short proof run. From this
point of view facts are bad, i.e. not so useful for proving the goal, i f they entail a lot
of unnecessary inferences and hence possibly a long proof run. As we will describe
in section 5 i t is possible to design criteria that are rather well-suited for estimating
whether facts are bad regarding this concept. Thus, such a pragmatic estimation i f a
fact is bad is—in contrast to a semantic estimation—a viable approach.
Until now we have given a short description of the way bad facts might be identified.
I t is unclear, however, how a prover can utilize information on bad facts i t has received
from other provers.
On the one hand, i f such received bad facts are already in the system of active facts of
the prover, a restructuring of the search state might be the right way. Through such
a restructuring i t should be achieved that the prover does not work with bad facts in
future. Hence our aim is—similarly to the idea of dynamic programming—that paths
i n the search space whose exploration would lead to high costs are postponed or even
neglected. With the help of this technique possibly short proof runs occur i f the bad
facts are really not needed and a proof can be found quickly when exploring a proof
path not employing the bad facts. Nevertheless, i t must be guaranteed that eventually
all proof paths are explored so as to preserve the completeness of the proving system i f a
bad fact is really necessary. As described in section 5 even in such a case a restructuring
might be sensible: Parts of a proof that are “parallel” to a certain bad fact, i.e. are
not based on this fact, can possibly be exploited faster without using the bad fact and
then the remaining parts of the proof can be searched for. Thus, a gain of efficiency is
also possible in this case. So to say conventional search-guiding heuristics try to find
out which facts are needed for a proof, the additional use of restructuring techniques
aims furthermore at finding the optimal order in that these facts should be processed.
On the other hand, information on bad facts of other provers can even have a control
aspect: These information offer the possibility to tune the search-guiding heuristic in
such a way that the activation of bad facts is postponed. Thus, a posteriori knowl-
edge of other provers (detected bad facts) can be transformed into a priori knowledge
(construction of a heuristic). Hence, even the exchange of control information via bad
facts is possible. Moreover, i t appears to be a more viable approach than the explicit
exchange of control information (in form of heuristics) as discussed before.

3.3 Basic Model o f Cooperative Theorem Proving

Architecture: Our basic model of cooperating theorem provers that exchange posi-
tive/negative information can be described as follows: On each processor in a network
of cooperating provers a theorem prover conducts a search for the common proof goal.
Either we let only different incarnations of the same prover cooperate—differing from
each other only in the search-guiding heuristic they employ for traversing the search
space—and hence have a network of homogeneous provers, or we employ different
provers (heterogeneous network) which all tackle the same problem. Note that because

3.3 Basic Model of Cooperative Theorem Proving 9

of the fact that not all provers can deal with problems specified in the same logic (e.g.
DISCOUNT's inference mechanism is restricted to equations), we must sometimes trans­
form the input of different provers so as to let the provers work only with facts given in
the logic the provers can deal with. For technical details we refer the reader to section
6. We assume that our network of cooperating provers is completely intermeshed, i.e.
each prover communicates its good facts (lemmata) and bad facts individually to all
other provers.

Proof Process: Since proof problems are usually search problems of tremendous
difficulty it is important that each prover has enough time to perform inferences in­
dependently and to tackle the problem without permanent interruption by others.
Thus, we decided to let the provers work independently for a while and only coop­
erate periodically. Basically the working scheme of the provers is characterized by
certain phases which are similar to the working phases of the TEAMWORK approach
(see [Den95]). While the provers try to solve the same problem independently during
so called working phases Pw , cooperation takes place during cooperation phases Pe.
Working phases and cooperation phases alternate each other. Thus, the sequence of
phases is P~, PeD, P~, Pe!,' ...
As we will see in section 4 it is important that each praver performs at least one
activation step during a working phase. During a cooperation phase Pi each prover
performs the following activities:

• transmission of a set of positive lemmata Pi to each receiving prover i

• transmission of a set of bad facts Ni to each receiving praver i

• processing of the facts A E puN received from other provers

Thus, in the sequel we have to deal with the following aspects for both good and bad
facts:

Firstly, we have to cope with the question how we can recognize that certain facts
belong to the sets Pi or Ni. As we will discuss later in more detail, we employ selection
functions !.pPi and !.pNi that determine sets Pi and Ni, respectively. Each function !.pPi

(!.pNJ employs certain criteria that give evidences whether a fact A should belong to Pi
(Ni) or not. Usually we consider a fact A to be an element of Pi (Ni) if it is very evident
that it belongs to Pi (Ni) (its evidence exceeds a certain threshold) and it belongs to
the (limited) set of facts with the highest evidences. Note that these evidence criteria
only give hints that a fact belongs to a certain set Pi (Ni), but no hints that it is an
el~ment of the set Ni (PJ If we assume, e.g., that it is not very evident that a fact
A is member of Pi, it is not a hint that it is an element of Ni. In order to answer
the question whether the fact A is an element of Ni we have to employ criteria that
give us evidences for this. As we will see in the following sections we usually employ
different criteria for determining whether a fact is an element of Pi or Ni. We decided
to choose such an approach similar to evidence theory (see [Dem68], [Sha76]) because
our definitions of being a lemma or a bad fact are not contrary: If, e.g., a fact is not
considered to be a bad fact because it is not recognizable that it has complicated the
search for the proof goal, we cannot consider it to be a lemma because it does not need

3.3 Basic Model of Cooperative Theorem Proving 9

of the fact that not all provers can deal with problems specified in the same logic (e.g.
DISCOUNT’s inference mechanism is restricted to equations), we must sometimes trans-
form the input of different provers so as to let the provers work only with facts given in
the logic the provers can deal with. For technical details we refer the reader to section
6 . We assume that our network of cooperating provers i s completely intermeshed, i.e.
each prover communicates its good facts (lemmata) and bad facts individually to all
other provers.
Proof Process: Since proof problems are usually search problems of tremendous
difficulty i t is important that each prover has enough time to perform inferences in-
dependently and to tackle the problem without permanent interruption by others.
Thus, we decided to let the provers work independently for a while and only coop-
erate periodically. Basically the working scheme of the provers is characterized by
certain phases which are similar to the working phases of the TEAMWORK approach
(see [Den95]). While the provers try to solve the same problem independently during
so called working phases P,, cooperation takes place during cooperation phases P..
Working phases and cooperation phases alternate each other. Thus, the sequence of
phases is PO, P ° PL P} . . .
As we will see in section 4 i t is important that each prover performs at least one
activation step during a working phase. During a cooperation phase P! each prover
performs the following activities:

e transmission of a set of positive lemmata P; to each receiving prover ¢

e transmission of a set of bad facts N; to each receiving prover :

e processing of the facts A € PUN received from other provers

Thus, in the sequel we have to deal with the following aspects for both good and bad
facts:
Firstly, we have to cope with the question how we can recognize that certain facts
belong to the sets P; or N;. As we will discuss later in more detail, we emplov selection
functions @p, and gy; that determine sets P ; and N;, respectively. Each function ¢p,
(ww;) employs certain criteria that give evidences whether a fact A should belong to P;
(Ni) or not. Usually we consider a fact A to be an element of P; (N;) i f i t is very evident
that i t belongs to P; (N;) (its evidence exceeds a certain threshold) and it belongs to
the (limited) set of facts with the highest evidences. Note that these evidence criteria
only give hints that a fact belongs to a certain set P; (Ni), but no h ints that i t i s an
element of the set NM; (P;). If we assume, e.g., that i t is not very evident that a fact
A is member of P;, i t is not a hint that i t is an element of N;. In order to answer
the question whether the fact A is an element of N; we have to employ criteria that
give us evidences for this. As we will see in the following sections we usually employ
different criteria for determining whether a fact is an element of P; or N;. We decided
to choose such an approach similar to evidence theory (see [Dem68|, [Sha76]) because
our definitions of being a lemma or a bad fact are not contrary: If, e.g., a fact is not
considered to be a bad fact because i t is not recognizable that i t has complicated the
search for the proof goal, we cannot consider i t to be a lemma because i t does not need

10 4 COOPERATION BY EXCHANGING POSITIVE FACTS

to be very important for other provers. Correspondingly, if a fact is not considered
to be a lemma we should not classify this fact as a bad fact because it nevertheless
may be needed in the proof and the use of the fact may not be very costly. Thus, the
concepts of being a lemma or a bad fact are not necessarily contrary. However, it is
reasonable that the concepts are at least disjunct (as described shortly in more detail).

Secondly, we have to determine how to process the information received from the other
provers. Whereas the positive facts can easily be processed by integrating them into
the system of active facts, it is unclear how the processing of bad facts as discussed
before-restructuring of the search state and modification of the heuristic-should look
like in detail.

Finally, we have to analyze whether our two cooperation concepts are compatible. So
it would not be sensible if P n N =1= 0, i.e. facts are considered to be lemmata as well
as bad facts. Therefore, we will discuss whether our selection functions 'PP and 'PN of
good and bad facts, respectively, have this consistency property.

4 Cooperation by Exchanging Positive Facts

As we have mentioned before we want to deal in more detail with the concrete real­
ization of the exchange of important lemmata. As already described, to this end it
is necessary to identify important lemmata, to transmit them from one prover to all
other provers which are part of the network, and to process the information on good
facts received from other provers. We start with the description of the selection and
transmission techniques. Note that the methods presented in the following are essen­
tially an extension of the techniques described in [FD97] to the case of heterogeneous
provers. After that we describe the processing of the received lemmata. Since we can
handle received good facts simply as selected potential facts the processing of facts is
no practical problem. Nevertheless, we have to examine theoretically whether com­
pleteness of a prover can be lost by the periodical "disturbance" of a prover by the
others.

4.1 Selection and Transmission of Lemmata

The detection of important lemmata for a receiving prover is the task of so-called
referees. Such a referee is a pair (Pp, 'Pp) of a filter predicate Pp and a selection
function 'PP that are described in the sequel. When employing a referee the selection
of facts during a cooperation phase takes place in the following manner: At first the
active facts of the sender are filtered by the filter predicate. Only facts>' for that Pp (>.)
holds are allowed to pass through the filter and are candidates for a selection. After
that, important lemmata are selected from the remaining facts with the help of 'PP.

4.1.1 Filtering of Facts

The realization of a filter predicate Pp is the main difference to [FD97]. Since we
possibly couple heterogeneous provers only such facts should pass through the filter

10 4 COOPERATION BY EXCHANGING POSITIVE FACTS

to be very important for other provers. Correspondingly, i f a fact is not considered
to be a lemma we should not classify this fact as a bad fact because i t nevertheless
may be needed i n the proof and the use of the fact may not be very costly. Thus, the
concepts of being a lemma or a bad fact are not necessarily contrary. However, i t is
reasonable that the concepts are at least disjunct (as described shortly in more detail).
Secondly, we have to determine how to process the information received from the other
provers. Whereas the positive facts can easily be processed by integrating them into
the system of active facts, i t is unclear how the processing of bad facts as discussed
before—restructuring of the search state and modification of the heuristic—should look
like in detail.
Finally, we have to analyze whether our two cooperation concepts are compatible. So
i t would not be sensible i f P NAN # 0, i.e. facts are considered to be lemmata as well
as bad facts. Therefore, we will discuss whether our selection functions ¢p and vw of
good and bad facts, respectively, have this consistency property.

4 Cooperation by Exchanging Positive Facts
As we have mentioned before we want to deal i n more detail with the concrete real-
ization of the exchange of important lemmata. As already described, to this end it
is necessary to identify important lemmata, to transmit them from one prover to all
other provers which are part of the network, and to process the information on good
facts received from other provers. We start with the description of the selection and
transmission techniques. Note that the methods presented in the following are essen-
tially an extension of the techniques described in [FD97] to the case of heterogeneous
provers. After that we describe the processing of the received lemmata. Since we can
handle received good facts simply as selected potential facts the processing of facts is
no practical problem. Nevertheless, we have to examine theoretically whether com-
pleteness of a prover can be lost by the periodical “disturbance” of a prover by the
others.

4 .1 Select ion and Transmission o f Lemmata

The detection of important lemmata for a receiving prover is the task of so-called
referees. Such a referee is a pair (Pp,pp) of a filter predicate Pp and a selection
function pp that are described in the sequel. When employing a referee the selection
of facts during a cooperation phase takes place in the following manner: At first the
active facts of the sender are filtered by the filter predicate. Only facts A for that Pp(A)
holds are allowed to pass through the filter and are candidates for a selection. After
that, important lemmata are selected from the remaining facts with the help of wp.

4.1.1 Fil tering of Facts

The realization of a filter predicate Pp is the main difference to [FD97]. Since we
possibly couple heterogeneous provers only such facts should pass through the filter

4.1 Selection and Transmission of Lemmata 11

which the receiving prover can integrate into its set of facts. Consider, e.g., that we
try to solve a problem in first order-logic with equality employing cooperative versions
of SPASS and DISCOUNT. Then it is on the one hand unnecessary to filter facts
generated from DISCOUNT because SPASS is able to work with equations. But on the
other hand, from the clauses generated by SPASS only unit equations and inequations
should pass through the filter because DISCOUNT can only handle equations as new
facts and inequations as new goals. Hence, the task of the filter predicate is to prevent
facts of a certain logic from being transmitted to other provers which are only able to
deduce facts from another logic.
Moreover, the filter predicate Pp can be utilized to additionally limit the set of facts
tpp can select from. Typically facts are filtered out that are (thought of as) redundant
for the receiving prover. Redundant are all axioms and facts selected in an earlier
cooperation phase. Furthermore, heuristic criteria can be used to reduce the number
of facts passing through the filter. Thus, it is possible to gain efficiency because the
number of facts that have to be judged by tpp is reduced.

4.1.2 Selection of important Lemmata

When selecting good facts two main problems occur: At first we have to determine
our system architecture, i.e. we have to decide where the selection of facts should take
place and who should be receiver of the facts. Secondly, we must choose criteria for
the selection of facts. .

As described in [FD97] the following three alternatives for a system architecture are
imaginable: The first alternative is to select facts at the sender site (employing a so­
called send-referee) and to send the set of facts to all other provers. Thus, only one
referee is needed. The second possibility is to use send-referees and to select facts at
the sender site, too, but to select facts individually for each receiver and to transmit
hence to each receiver a different set of facts. In order to do this we need for each
receiving prover i an own referee. Finally, it is possible to select facts at the receiver
site. Thus, the filtered facts of one prover are sent to all receiving provers and the
selection is performed by each receiver (employing a so-called receive-referee).

The second main problem we have to solve is to choose criteria for the selection of
facts. As we have sketched in section 3 each selection function tpp used for selecting
a lemma set P employs one or more judgment functions which give evidences that a
fact is element of P. Such judgment functions 'ljJj map the facts to natural numbers.
A fact A is considered to be the better the higher the value 'ljJj(A) is. The selection by
tpp then takes place in such a manner that a certain number nj of facts is selected via
each function 'ljJj.
In general, the different kinds of knowledge that are incorporated into the judgment
functions determine both the system architecture and their concrete realization. In
general, it is possible to integrate only local knowledge into the judgment functions,
i.e. knowledge about the sender. Moreover, also knowledge about the receiver can be
integrated into the judgment functions. Knowledge about the receiver can be divided
into two different classes: Firstly, the minimum of knowledge one can have is knowledge
about the identity of the receiver, i.e. knowledge about its calculus and underlying logic.

4.1 Selection and Transmission of Lemmata 11

which the receiving prover can integrate into its set of facts. Consider, e.g., that we
try to solve a problem in first order-logic with equality employing cooperative versions
of SPASS and DISCOUNT. Then i t is on the one hand unnecessary to filter facts
generated from DISCOUNT because SPASS is able to work with equations. But on the
other hand, from the clauses generated by SPASS only unit equations and inequations
should pass through the filter because DISCOUNT can only handle equations as new
facts and inequations as new goals. Hence, the task of the filter predicate is to prevent
facts of a certain logic from being transmitted to other provers which are only able to
deduce facts from another logic.
Moreover, the filter predicate Pp can be utilized to additionally l imit the set of facts
wp can select from. Typically facts are filtered out that are (thought of as) redundant
for the receiving prover. Redundant are all axioms and facts selected in an earlier
cooperation phase. Furthermore, heuristic criteria can be used to reduce the number
of facts passing through the filter. Thus, i t is possible to gain efficiency because the
number of facts that have to be judged by yp is reduced.

4.1.2 Selection of important Lemmata

When selecting good facts two main problems occur: At first we have to determine
our system architecture, i.e. we have to decide where the selection of facts should take
place and who should be receiver of the facts. Secondly, we must choose criteria for
the selection of facts.
As described in [FD97] the following three alternatives for a system architecture are
imaginable: The first alternative is to select facts at the sender site (employing a so-
called send-referee) and to send the set of facts to all other provers. Thus, only one
referee is needed. The second possibility is to use send-referees and to select facts at
the sender site, too, but to select facts individually for each receiver and to transmit
hence to each receiver a different set of facts. In order to do this we need for each
receiving prover ¢ an own referee. Finally, i t is possible to select facts at the receiver
site. Thus, the filtered facts of one prover are sent to all receiving provers and the
selection is performed by each receiver (employing a so-called receive-referee).
The second main problem we have to solve is to choose criteria for the selection of
facts. As we have sketched in section 3 each selection function pp used for selecting
a lemma set P employs one or more judgment functions which give evidences that a
fact is element of P . Such judgment functions 1; map the facts to natural numbers.
A fact A is considered to be the better the higher the value ; (A) is. The selection by
wp then takes place in such a manner that a certain number n; of facts is selected via
each function ¥;.
In general, the different kinds of knowledge that are incorporated into the judgment
functions determine both the system architecture and their concrete realization. In
general, i t is possible to integrate only local knowledge into the judgment functions,
i.e. knowledge about the sender. Moreover, also knowledge about the receiver can be
integrated into the judgment functions. Knowledge about the receiver can be divided
into two different classes: Firstly, the minimum of knowledge one can have is knowledge
about the identity of the receiver, i.e. knowledge about its calculus and underlying logic.

12 4 COOPERATION BY EXCHANGING POSITIVE FACTS

Secondly, one can have further knowledge about the concrete status of the prover at
a certain point in time: This kind of knowledge can again be divided into knowledge
about the current search state of the prover (i.e. its active and passive facts) and
knowledge about its method to change the search state in future (i.e. its heuristic).
Note, that the two kinds of knowledge about the receiver are not strictly separated
from each other. So, knowledge about the concrete setting of the receiving prover can
only be employed in a reasonable way if also the identity of the receiver is known: If we
want to estimate whether a lemma is useful for a prover in a certain situation we must
be able to estimate which kinds of inferences the receiver can perform with the lemma
and its system of facts. Thus, we must also know the calculus the receiver employs.
Now, if we want to integrate only local knowledge into the judgment functions the
selection must take place at the sender site because this kind of knowledge is only
available there. Furthermore, it is sufficient to employ only one selection function 'PP
and to send the selected facts P to all receivers. The judgment function 'l/Js ("statistical
judgment")-introduced in [DF96]-judges facts w.r.t. local knowledge. This function
counts for each fact .\ and for each inference type, the inferences .\ was involved in so
far. If we assume that .\ was involved Ni times in inference i the fact is judged by
'l/Js(.\) = I:i D:i . Ni. The D:i rate the inferences in such a way that "good" inferences,
i.e. inferences that contract the system of facts, are weighted positive, "bad" inferences
(application of expansion rules) are weighted negative.
As we have already mentioned a second kind of knowledge that can be employed is
knowledge about the heuristic of the receiver. Selection of facts employing such kind of
knowledge is performed at the sender site, too, but we have to select facts individually
for each receiver i. This is due to the fact that the heuristics of the receivers differ
from each other. Judgment function 'l/JH ("heuristical judgment"), described in [FD97],
employs knowledge about the heuristic of the receiver. Basically it favors facts that
have a small heuristic weight regarding the heuristic of the receiver, but have at least
one ancestor with a high heuristic weight. -Thus, it is probable that these facts are
novel for the receiver.
Finally, it is possible to judge facts regarding the current search state of the receiver
which reflects in a certain way its current needs. In order to do that facts have to be
selected at the receiver site, i.e. we have to employ our third system architecture. The
judgment functions 'l/Ju and 'l/JSG utilize knowledge about current needs of a receiver.
'l/Ju judges quality of facts w.r.t. their possible usejulnessfor reducing future search
effort. To this end the function counts for each fact). how many contraction inferences
can be applied to .\ and facts from the current system of active facts of the receiver.
'l/JSG measures the quality of facts w.r.t. their ability to contribute to the solution of
certain (sub-)goals. For a concrete definition of these functions see [FD97].
The different kinds of knowledge can easily be combined so as to realize more intelligent
selection functions. So one can employ both local knowledge and knowledge about the
heuristic of the receiver, by employing judgment functions 'l/Js and 'l/JH for one selection.
It is even possible to use additionally knowledge about the current needs of the receivers.
Thus, some facts are selected via 'l/Js and 'l/JH, transmitted to each receiver, and then an
additional selection via 'l/Ju and 'l/JSG takes place. As discussed in [FD97] it is sufficient
to employ only functions 'l/Js and' 'l/JfI if good heuristics are at the provers' disposal

12 4 COOPERATION BY EXCHANGING POSITIVE FACTS

Secondly, one can have further knowledge about the concrete status of the prover at
a certain point in time: This kind of knowledge can again be divided into knowledge
about the current search s ta te of the prover (i.e. i t s active and passive facts) and
knowledge about its method to change the search state in future (i.e. its heuristic).
Note, that the two kinds of knowledge about the receiver are not strictly separated
from each other. So, knowledge about the concrete setting of the receiving prover can
only be employed in a reasonable way i f also the identity of the receiver is known: If we
want to estimate whether a lemma is useful for a prover i n a certain situation we must
be able to estimate which kinds of inferences the receiver can perform with the lemma
and i ts system of facts. Thus, we must also know the calculus the receiver employs.
Now, if we want to integrate only local knowledge into the judgment functions the
selection must take place at the sender site because this kind of knowledge is only
available there. Furthermore, i t is sufficient to employ only one selection function ¢p
and to send the selected facts P to all receivers. The judgment function ws (“s tat is t ica l
judgment”)—introduced in [DF96]—judges facts w.r.t. local knowledge. This function
counts for each fact A and for each inference type, the inferences A was involved in so
far. If we assume that A was involved N; times in inference i the fact is judged by
¥Ys(A) = Xo; 0 ; Ni. The az; rate the inferences in such a way that “good” inferences,
i.e. inferences that contract the system of facts, are weighted positive, “bad” inferences
(application of expansion rules) are weighted negative.
As we have already mentioned a second kind of knowledge that can be employed is
knowledge about the heuristic of the receiver. Selection of facts employing such kind of
knowledge is performed at the sender site, too, but we have to select facts individually
for each receiver i . This is due to the fact that the heuristics of the receivers differ
from each other. Judgment function 1g (“heuristical judgment”), described in [FD97],
employs knowledge about the heuristic of the receiver. Basically i t favors facts that
have a small heuristic weight regarding the heuristic of the receiver, but have at least
one ancestor with a high heuristic weight. “Thus, i t is probable that these facts are
novel for the receiver.
Finally, i t is possible to judge facts regarding the current search state of the receiver
which reflects in a certain way its current needs. In order to do that facts have to be
selected at the receiver site, i.e. we have to employ our third system architecture. The
judgment functions ¢y and se utilize knowledge about current needs of a receiver.
%u judges quality of facts w.r.t. their possible usefulness for reducing future search
effort. To this end the function counts for each fact A how many contraction inferences
can be applied to A and facts from the current system of active facts of the receiver.
sc measures .the quality of facts w.r.t. their ability to contribute to the solution of
certain (sub-)goals. For a concrete definition of these functions see [FD97].
The different kinds of knowledge can easily be combined so as to realize more intelligent
selection functions. So one can employ both local knowledge and knowledge about the
heuristic of the receiver, by employing judgment functions 1s and yg for one selection.
I t is even possible to use additionally knowledge about the current needs of the receivers.
Thus, some facts are selected via 1s and ıy , transmitted to each receiver, and then an
additional selection via ¥y and sc takes place. As discussed in [FD97] i t is sufficient
to employ only functions 1s and 1g i f good heuristics are at the provers’ disposal

4.2 Processing of received Lemmata 13

which generate alot of important lemmata. However, if the heuristics use only simple
syntactic criteria it is wise to employ all kinds of knowledge for selecting facts. Such
a selection, however, is more inefficient because a lot of judgment functions have to be
applied to the facts.

4.2 Processing of received Lemmata

In this section we will examine theoretical aspects of the processing of lemmata re­
ceived in a cooperation phase. In the following, we consider a prover whose underlying
calculus is complete in a certain logic (e.g. an unfailing completion based prover in pure
equationallogic or a superposition based prover in full first oder logic with equality).
As we have mentioned in section 2 each valid proof goal can be proven by performing
a fair derivation until a fact subsuming the goal appears. As we have also seen, our
algorithm SP produces fair derivations if it employs a fair heuristic.

If we couple our prover with others by exchanging lemmata its internal algorithm S P
must be slightly modified in order to process the received lemmata: It is necessary
to activate facts not only from the set of potential facts during the working phases,
but also periodically lemmata received from other provers must be activated during
the cooperation phases. We assume that all received lemmata are activated during a
cooperation phase in an arbitrary order. We call this modified algorithm from now
on GP (cooperative prover). Now, the question arises whether the prover remains
complete. More exactly, we are interested in the question whether it is sufficient to
activate facts from the potential facts with a fair heuristic in order to be able to prove
every valid goal or whether it is possible that completeness is lost because of the
periodical "disturbance" through other provers.

We make this precise: First, it is necessary to extend our notion of I-derivations to
IDisrderivations.

Definition 4.1 (Inference System with Disturbance I Dist)

Let I be an inference system, let I be the set of inference rules of I. Let Aa be an
initial set of facts. If M is a set of facts and A a fact, M 1= A denotes that A is a
logic consequence of M. Then the inference system with disturbance I Dist contains the
inference rules I Dist = I U {Dist}, with

(Dist) A f- A U {A}; Aa 1= A

This describes exactly what happens during a cooperation phase: Facts derived from
other provers, i.e. logic consequences from the initial system of facts, can be integrated
into the system of facts without an additional proof.
IDist-derivations must be carefully defined in order to allow for derivations that preserve
completeness. If a moment exists after that only the rule Dist is applied it is possible
that valid proof goals cannot be proven. Consider for example the situation that at a
certain moment the goal is not yet proven and that after this moment only tautologies
are added to the set of facts by the rule Dist. If, e.g., the goal is not a tautology then
definitely no fact subsuming the goal will appear. Thus, the following definition of a
IDisrderivation is sensible:

4.2 Processing of received Lemmata 13

which generate a lot of important lemmata. However, i f the heuristics use only simple
syntactic criteria i t is wise to employ all kinds of knowledge for selecting facts. Such
a selection, however, is more inefficient because a lot of judgment functions have to be
applied to the facts.

4.2 Processing o f received Lemmata

In this section we wil l examine theoretical aspects of the processing of lemmata re-
ceived in a cooperation phase. In the following, we consider a prover whose underlying
calculus is complete in a certain logic (e.g. an unfailing completion based prover in pure
equational logic or a superposition based prover in full first oder logic with equality).
As we have mentioned i n section 2 each valid proof goal can be proven by performing
a fair derivation until a fact subsuming the goal appears. As we have also seen, our
algorithm SP produces fair derivations i f i t employs a fair heuristic.
If we couple our prover with others by exchanging lemmata its internal algorithm SP
must be slightly modified i n order to process the received lemmata: I t is necessary
to activate facts not only from the set of potential facts during the working phases,
but also periodically lemmata received from other provers must be activated during
the cooperation phases. We assume that all received lemmata are activated during a
cooperation phase in an arbitrary order. We call this modified algorithm from now
on CP (cooperative prover). Now, the question arises whether the prover remains
complete. More exactly, we are interested in the question whether i t is sufficient to
activate facts from the potential facts with a fair heuristic in order to be able to prove
every valid goal or whether i t is possible that completeness is lost because of the
periodical “disturbance” through other provers.
We make this precise: First, i t is necessary to extend our notion of Z-derivations to
Ipist-derivations.

Definition 4 .1 (Inference System wi th Disturbance Zp,)
Let T be an inference system, let I be the set of inference rules of I . Let Ag be an
init ial set of facts. If M is a set of facts and A a fact, M } A denotes that A is a
logie consequence of M . Then the inference system with disturbance Zp; contains the.
inference rules Ipisı = IU {D i s t } , with

(Dist) AFAU{A} AEA

This describes exactly what happens during a cooperation phase: Facts derived from
other provers, i.e. logic consequences from the initial system of facts, can be integrated
into the system of facts without an additional proof.
Ipist-derivations must be carefully defined in order to allow for derivations that preserve
completeness. If a moment exists after that only the rule Dis t is applied i t is possible
that valid proof goals cannot be proven. Consider for example the situation that at a
certain moment the goal is not yet proven and that after this moment only tautologies
are added to the set of facts by the rule D i s t . If, e.g., the goal is not a tautology then

- definitely no fact subsuming the goal wi l l appear. Thus, the following definition of a
TZpist-derivation is sensible:

- -

14	 4 COOPERATION BY EXCHANGING POSITIVE FACTS

Definition 4.2 (IDist-derivation)
Let IDist be an inference system with disturbance, I Dist be the set of its inference rules.
We call a (infinite) sequence of fact sets (Aik:::o an IDist-derivationiff

2.	 If A k f-IDi8t Ak+l by an application of Dist, then there is a j > k: Aj f-IDi8t Aj +1

byan application of an inference Inf E I Dist \ {Dist}.

In analogy to section 2 we call an IDisrderivation (Ai)i>O fair iff IDist,e(AOO) ~ Ui>oA i .

Again, regarding our calculi each valid goal can be proven by performing a fair I Disr
derivation until the goal appears. Note that our algorithm GP produces IDisrderiva­
tions because we required in section 3 that during a working phase at least one fact
must be activated. Thus, no infinite sequence of Dist-applications exists. We call the
heuristic that GP employs fair despite disturbance if it guarantees that each fact being
passive at a certain moment is either activated or discarded after a finite period of
time. If GP employs a heuristic which is fair despite disturbance it produces only fair
IDisrderivations.

Now we want to examine whether the notions of fairness and fairness despite distur­
bance are the same. If this were true then each prover which performs fair I-derivations
with a fair heuristic would also remain complete if it is coupled with others via the
exchange of lemmata. Unfortunately, this is not the case:

Theorem 4.1
Let I be an inference system, IDist be the respective inference system with disturbance.
Then it holds:

1.	 Each heuristic which is fair despite disturbance is fair.

2.	 There are heuristics which are fair but not fair despite disturbance.

Proof:

1.	 This is trivial because I and SP are restricted versions ofIDist and GP, respec­
tively.

2.	 We consider the area of superposition based theorem proving. If a fact A has been
derived, Anc*(A) denotes the set of all facts needed to infer A.. IAI denotes the
number of symbols in A. Then, consider the following heuristic H with

, 3A' E Anc*(A) : A' is introduced by an inference of type Dist
H(A) = { I~I otherwise

If we perform algorithm SP no disturbance takes place, i.e. H(A) = IAI. Thus,
H is a fair heuristic. However, 1{ is not fair despite disturbance: Let >= 0
be the ordering used for superposition, let the initial set of potential facts be

Ax == {f (a) = a; f (x) = a ----+ j (f (x)) = a; f (a) = a, f (f (a)) = a ----+ f (c) =

14 4 COOPERATION BY EXCHANGING POSITIVE FACTS

Definition 4.2 (Zp:sı-derivation)
Let Tpist be an inference system with disturbance, Ipis ı be the set of its inference rules.
We cal l a (infinite) sequence of fact sets (Ai) izo an Ips -derivation iff

1. Ar bzo A i r , V i>0

2. If A i Fz, Ak+ı by an application of D is t , then there is a j > k : Aj Fz,, Ajtı
by an application of an inference Inf € I p ; \ {Dist}.

In analogy to section 2 we call an Zpise-derivation (A;)i>o fair iff Ipist,e(A®) € UisoAi.
Again, regarding our calculi each valid goal can be proven by performing a fair Zpist-

derivation until the goal appears. Note that our algorithm CP produces Zp;s-deriva-
tions because we required in section 3 that during a working phase at least one fact
must be activated. Thus, no infinite sequence of Dist-applications exists. We call the
heuristic that CP employs fair despite disturbance i f i t guarantees that each fact being
passive at a certain moment is either activated or discarded after a finite period of
time. If CP employs a heuristic which is fair despite disturbance i t produces only fair
Ipisi-derivations.
Now we want to examine whether the notions of fairness and fairness despite distur-
bance are the same. If this were true then each prover which performs fair Z-derivations
with a fair heuristic would also remain complete i f i t is coupled with others via the
exchange of lemmata. Unfortunately, this is not the case:

Theorem 4 .1
Let T be an inference system, Tpis: be the respective inference system with disturbance.
Then i t holds:

1. Each heuristic which is fair despite disturbance is fair.

2. There are heuristics which are fair but not fair despite disturbance.

Proof:

1. This is trivial because T and SP are restricted versions of Ip;ss and CP, respec-
tively.

2. We consider the area of superposition based theorem proving. If a fact X has been
derived, Anc*()) denotes the set of all facts needed to infer A. |A| denotes the
number of symbols in A. Then, consider the following heuristic H with

HO) = 0 , IN € Anc*()) : X is introduced by an inference of type D i s t
“ 1 IA] , otherwise

If we perform algorithm SP no disturbance takes place, i.e. H(A) = |A|. Thus,
H is a fair heuristic. However, H is not fair despite disturbance: Let >= {
be the ordering used for superposition, let the initial set of potential facts be
Az = { f (a) = a; f (z) = a = £(f (2)) = a; f (a) = a, f (f (a)) = a — f le) =

15

d}.If we first activate f(a) = a and f(x) = a ---+ f(J(x)) = a (according
the heuristic weight) and then a disturbance takes place that adds f(J(a)) = a
(a logic consequence from Ax) to the active facts, the infinite sequence of facts
ji+2(a) = a, i ~ 0, is generated and activated. Thus, the fact f(a) = a,f(J(a)) =
a ---+ f(c) = d remains passive infinitely long. 0

As we can see it might be the case that a fair heuristic for S P is not fair for C P,
i.e. coupling a prover with others can cause incompleteness. Fortunately, the above
example is somewhat pathological and contrived, and most heuristics that are fair are
also fair despite disturbance. E.g., all heuristics where the set M z = {,\ :1iP)= z} is
finite are fair and also fair despite disturbance. Nearly all heuristics we employed for
CODE, SPASS, and DISCOUNT have this very property (called strong fair in [AD93]).

5 Cooperation by Exchanging Negative Facts

The topic of this section is to describe how to couple different theorem provers by
exchanging negative information, i.e. information on bad facts. As described previously
we discuss the following two aspects: On the one hand we describe a method for
detecting facts that behave badly w.r.t. the principles introduced in section 3. On the
other hand we present possibilities in which way a theorem prover can employ received
bad facts in order to improve its search.

5.1 Determination of Bad Facts

Analogously to section 4 two steps must be executed: At first the active facts of a
prover are filtered by a filter predicate PN and then some facts are selected from the
remaining ones by a selection function cPN·

5.1.1 Filtering of Facts

Filtering of facts is again necessary due to the heterogeneity of the cooperating provers.
So, it is convenient to let only such facts pass through the filter that the receiving prover
can use in further inferences. If we want, e.g., to couple SPASS and DISCOUNT we
have to filter the non-unit clauses generated from SPASS because DISCOUNT cannot
cope with information on clauses C, ICI > 1. Moreover, such a filter predicate is used
to avoid that a certain fact is sent twice to receiving proverB.

Finally, in addition to this further (heuristic) criteria might be useful to limit the
number of facts that pass through the filter. Hence the number of facts that have to
be judged by time-consuming selection criteria can be reduced. For our experiments it
was sufficient to resign further filtering criteria. However, it might be the case, e.g. if
a lot of facts are generated by a prover in a working phase, that a further filtering of
facts is reasonable.

15

d} . I f we first activate f (a) = a and f (z) = a — f (f (z)) = a (according
the heuristic weight) and then a disturbance takes place that adds f (f (a)) = a
(a logic consequence from Az) to the active facts, the infinite sequence of facts
f+2(a) = a,1 > 0, is generated and activated. Thus, the fact f (a) = a, f (f (a)) =
a — f (c) = d remains passive infinitely long. O

As we can see i t might be the case that a fair heuristic for SP is not fair for CP,
i.e. coupling a prover with others can cause incompleteness. Fortunately, the above
example is somewhat pathological and contrived, and most heuristics that are fair are
also fair desp i te disturbance. E.g., all heur ist ics where the set M, = {A : H(A) = z} i s
finite are fair and also fair despite disturbance. Nearly all heuristics we employed for
CODE, SPASS, and DISCOUNT have this very property (called strong fair in [AD93]).

5 Cooperation by Exchanging Negative Facts

The topic of this section is to describe how to couple different theorem provers by
exchanging negative information, i.e. information on bad facts. As described previously
we discuss. the following two aspects: On the one hand we describe a method for
detecting facts that behave badly w.r.t. the principles introduced in section 3. On the
other hand we present possibilities in which way a theorem prover can employ received
bad facts in order to improve i ts search.

5 .1 Determination o f Bad Facts

Analogously to section 4 two steps must be executed: At first the active facts of a
prover are filtered by a filter predicate Pır and then some facts are selected from the
remaining ones by a selection function yr .

5.1.1 Fi l ter ing of Facts

Filtering of facts is again necessary due to the heterogeneity of the cooperating provers.
So, i t is convenient to let only such facts pass through the filter that the receiving prover
can use in further inferences. If we want, e.g., to couple SPASS and DISCOUNT we
have to filter the non-unit clauses generated from SPASS because DISCOUNT cannot
cope with information on clauses C , |C| > 1. Moreover, such a filter predicate is used
to avoid that a certain fact is sent twice to receiving provers.
Finally, in addition to this further (heuristic) criteria might be useful to limit the
number of facts that pass through the filter. Hence the number of facts that have to
be judged by time-consuming selection criteria can be reduced. For our experiments i t
was sufficient to resign further filtering criteria. However, i t might be the case, e.g. i f
a lot of facts are generated by a prover in a working phase, that a further filtering of
facts is reasonable.

16 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

5.1.2 Selection of Bad Facts

Whereas the process of filtering facts is very similar to section 4, the selection via
function 'PN differs from the selection via 'PP. Principally the selection appears to be
analogous to before: So, again three architecture models are imaginable: Selecting facts
for all receivers at the sender site, selecting facts individually for each receiver at the
sender site (hence we need for each receiver i an individual selection function 'PNJ, and
selecting facts-from the set of facts of the sender that pass through the filter-at the
receiver site. Moreover, each selection function 'PN employs certain judgment functions
'ljJj that give evidences whether a fact may be a bad fact. Again, a fact ,X is considered
to be the worse the higher the value 'ljJj('x) is.

But, in contrast to before only two different kinds of knowledge can reasonably be
employed for selecting facts: As we will discuss in the sequel, local knowledge can as
before be used for selecting bad facts. Integration of knowledge about the receiver into
the selection process, however, does not appear to be very sensible. Only knowledge
about the heuristic of the receiver might be useful for selecting bad facts whereas
knowledge about the current search state 6f the receiver cannot be used efficiently.
Thus, we employed only the first two architecture models, i.e. we determined bad facts
only at the sender site. We discuss the question whether different kinds of knowledge
are useful for selecting bad facts in more detail:

First, we can recognize that mainly local knowledge, i.e. knowledge about the sender, is
useful for detecting bad facts. Whereas it was possible to take the individual situation
of the receiver into account beyond local knowledge when selecting positive lemmata!,
it does not seem to be sensible to do so when selecting bad facts. This is due to the
fact that our definition of being a bad fact is a local definition from the point of view of
the prover that has generated the fact: As defined, a fact is a bad fact if it complicates
the search for the proof of the goal. As a matter of fact, this can only be estimated
by performing a retrospective view on the past and to check whether a fact was often
involved in time-consuming expanding inferences. Thus, bad facts have to be detected
employing local knowledge and must hence be determined at the sender site because
the needed information is only available there. Furthermore, it is sensible to send to
all other provers the same selected ·facts.

From a more pragmatic point of view, however, it is possible to employ-in addition
to local knowledge-knowledge about the heuristic of the receiver. The idea behind
this is that an information on a bad fact is definitely useless if the receiving provers
traverse the search space in directions completely different from that of the sender. In
such a case it is not very probable that the receivers will use the information on bad
facts because they will never activate or even generate such facts. When employing
knowledge about the heuristic of the receiver it is possible to estimate whether the
receiver is possibly able to activate such detected bad facts and should therefore be
informed on them. With the help of this knowledge we can hence better distinguish
between a lot of bad facts: If a lot of bad facts have .the same quality according to local
criteria it is wise to choose such facts the receiver will possibly activate. A selection

1Note that an important quality criterion of a lemma was its estimated usefulness for the receivers.

16 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

5 .1 .2 Se lec t ion o f Bad Facts

Whereas the process of filtering facts is very s imi lar t o sect ion 4, the select ion v ia
function ww differs from the selection via vp . Principally the selection appears to be
analogous to before: So, again three architecture models are imaginable: Selecting facts
for all receivers at the sender site, selecting facts individually for each receiver at the
sender site (hence we need for each receiver : an individual selection function ¢y;), and
selecting facts—from the set of facts o f the sender that pass through the filter—at the
receiver site. Moreover, each selection function ¢ employs certain judgment functions
¥; that give evidences whether a fact may be a bad fact. Again, a fact A i ss considered
to be the worse the higher the value 1 ; (}) is.

But, i n contrast to before only two different kinds of knowledge can reasonably be
employed for selecting facts: As we will discuss in the sequel, local knowledge can as
before be used for selecting bad facts. Integration of knowledge about the receiver into
the selection process, however, does not appear to be very sensible. Only knowledge
about the heuristic of the receiver might be useful for selecting bad facts whereas
knowledge about the current search state of the receiver cannot be used efficiently.
Thus, we employed only the first two architecture models, i.e. we determined bad facts
only at the sender site. We discuss the question whether different kinds of knowledge
are useful for selecting bad facts in more detail:
First, we can recognize that mainly local knowledge, i.e. knowledge about the sender, is
useful for detecting bad facts. Whereas i t was possible to take the individual situation
of the receiver into account beyond local knowledge when selecting positive lemmatal,
i t does not seem to be sensible to do so when selecting bad facts. This is due to the
fact that our definition of being a bad fact is a local definition from the point of view of
the prover that has generated the fact: As defined, a fact is a bad fact i f i t complicates
the search for the proof of the goal. As a matter of fact, this can only be estimated
by performing a retrospective view on the past and to check whether a fact was often
involved in time-consuming expanding inferences. Thus, bad facts have to be detected
employing local knowledge and must hence be determined at the sender site because
the needed information is only available there. Furthermore, i t is sensible to send to
all other provers the same selected facts.
From a more pragmatic point of v iew, however, i t i s possible to employ—in addit ion
to local knowledge—knowledge about the heuristic of the receiver. The idea behind
this is that an information on a bad fact is definitely useless i f the receiving provers
traverse the search space in directions completely different from that of the sender. In
such a case i t is not very probable that the receivers wi l l use the information on bad
facts because they will never activate or even generate such facts. When employing
knowledge about the heuristic of the receiver i t is possible to estimate whether the
receiver is possibly able to activate such detected bad facts and should therefore be
informed on them. With the help of this knowledge we can hence better distinguish
between a lot of bad facts: If a lot of bad facts have the same quality according to local
criteria i t is wise to choose such facts the receiver will possibly activate. A selection

!Note that an important quality criterion of a lemma was its estimated usefulness for the receivers.
&

5.1 Determination of Bad Facts 17

as described that falls back on knowledge about the heuristic of the receivers can take
place at the sender site, too, but it has to be performed individually for each receiving
prover.
Employing knowledge on the concrete system of facts of a receiving prover is not
reasonable in our context. Regarding only the system of facts of a prover it is not
possible to determine whether bad facts might be activated in future. Indeed one can
decide-employing knowledge about the system of the receiver and knowledge about
its heuristic-if a bad fact will be activated within a fixed number of steps of the prover.
But this is very inefficient since we have to perform deduction steps in order to decide
this. Because of this inefficiency and because of the fact that it is not so dramatic to
send a receiver a little information it is not able to use we decided to resign this kind
of knowledge.
In our concrete realization we decided to employ only one kind of judgment functions
'l/JB for judging facts and integrated both kinds of knowledge in it local knowledge and
knowledge about the heuristic of the receiver. Thus we selected bad facts at the sender
site individually for each receiver. The concrete realization of 'l/JB is as follows: We split
'l/JB in a part Pc based on local knowledge and a part PH based on knowledge about
the heuristic of the receiver. Thus, we obtain 'l/JB()..) = Pc(>.) + PH(>.).
At first we consider local knowledge in order to estimate if a fact contributes with
a high probability only to long proof runs, i.e. proof runs where a lot of unnecessary
facts are generated and a lot of unnecessary inferences are performed. Naturally, we can
only decide this if we have found the proof of the goal. Nevertheless, there is a simple
criterion we can already utilize during the search for the proof: Facts being involved
in a lot of expanding inferences but only in a few contracting inferences contribute
with a high probability to long proof runs. This is mainly because of the fact that they
generate a lot of offspring. Since usually a lot of this offspring is not needed for the proof
(but often used for inferences) the prover is forced to waste a lot of computation time
for handling such facts. Hence, facts that possibly contribute to long proof runs can
be detected by counting the inferences they were involved in. The concrete realization
of Pi:- is as follows:

Definition 5.1 (Local part Pd
Let I l , ... , In be the kinds of inferences a theorem prover can perform, let II, ... , I k
be the expanding, I k+l , , In be the contracting inferences. For each fact>. and each
inference typej E {l, ,n} let IIj(>')1 be the number of inferences oftypej the fact
>. took part in so far. Moreover, let 0'1, ... , O'n be real numbers, O'i 2': O. Then

k n

Pc(>.) = L O'i ·IIi(>.)I- L O'i' IIi (>')I
i=l i=k+l

Obviously, facts are judged the better the higher their number of contracting inferences
and the lower their number of expanding inferences is.

The second part PH is simply given as P'li = -HR, HR is the heuristic of the receiving
prover. Hence, facts that have a high weight regarding the heuristic of a receiver are
considered to be less negative because it is quite improbable that the receiver has
activated them or will activate them in future.

5.1 Determination of Bad Facts 17

as described that. falls back on knowledge about the heuristic of the receivers can take
place at the sender site, too, but i t has to be performed individually for each receiving
prover.
Employing knowledge on the concrete system of facts of a receiving prover is not
reasonable i n our context. Regarding only the system of facts of a prover i t is not
possible to determine whether bad facts might be activated in future. Indeed one can
decide—employing knowledge about the system of the receiver and knowledge about
i ts heuristic—if a bad fact wi l l be activated within a fixed number of steps of the prover.
But this is very inefficient since we have to perform deduction steps i n order to decide
this. Because of this inefficiency and because of the fact that i t is not so dramatic to
send a receiver a little information i t is not able to use we decided to resign this kind
of knowledge.
In our concrete realization we decided to employ only one kind of judgment functions
yp for judging facts and integrated both kinds of knowledge in i t local knowledge and
knowledge about the heuristic of the receiver. Thus we selected bad facts at the sender
site individually for each receiver. The concrete realization of vp is as follows: We split
¥p in a part Pr based on local knowledge and a part P j based on knowledge about
the heuristic of the receiver. Thus, we obtain p (X) = P(I) + Pu).
At first we consider local knowledge i n order to estimate i f a fact contributes wi th
a high probability only to long proof runs, i.e. proof runs where a lot of unnecessary
facts are generated anda lot of unnecessary inferences are performed. Naturally, we can
only decide this if we have found the proof of the goal. Nevertheless, there is a simple
criterion we can already utilize during the search for the proof: Facts being involved
in a lot of expanding inferences but only in a few contracting inferences contribute
with a high probability to long proof runs. This is mainly because of the fact that they
generate a lot of offspring. Since usually a lot of this offspring is not needed for the proof
(but often used for inferences) the prover is forced to waste a lot of computation time
for handling such facts. Hence, facts that possibly contribute to long proof runs can
be detected by counting the inferences they were involved in. The concrete realization
of Pr is as follows:

Definition 5.1 (Local part Pc)
Let I ; , . . . , I , be the kinds of inferences a theorem prover can perform, let I,,..., I ;
be the expanding, Zre+1,..., Zn be the contracting inferences. For each fact A and each
inference typej € {1 , . . . ,n } let |Z;(A)| be the number of inferences of typej the fact
A took part i n so far. Moreover, let ay, ..., a , be real numbers, a; > 0. Then

nk

Ped) = oi [Z I 3 a i [ZA
i =1 i=k+1

Obviously, facts are judged the better the higher their number of contracting inferences
and the lower their number of expanding inferences is.
The second part Py is simply given as Py; = —Hg, Hg is the heuristic of the receiving
prover. Hence, facts that have a high weight regarding the heuristic of a receiver are
considered to be less negative because i t is quite improbable that the receiver has
activated them or will activate them in future.

18 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

5.2 Processing of Bad Facts

In general we process the set of bad facts received from other theorem pravers in two
different manners: On the one hand we try to modify the search-guiding heuristic of
the receiving prover so as to postpone or even avoid the activation of such bad facts (if
they are not already activated). On the other hand we try to perform a restructuring
of the search state so as to delay the investigation of certain proof paths.

5.2.1 Modification of Heuristics

A modification of the search-guiding heuristic H of a prover regarding a set N j of bad
facts received in cooperation phase Pj is only sensible if some facts Nt ~ .Ni are not
already activated. The aim of such a modification is then to postpone or avoid the
activation of facts A ENt. Thus, it is possible to convert a posteriori knowledge of
the sender (detected bad facts) into a priori knowledge (search-guiding heuristic) of
the receiver.

In order to realize such a modification a simple memory based approach is imaginable:

Definition 5.2 (Modified Search Guiding Heuristic it)
Let I be a real-valued parameter, H be a heuristic of a prover, N j be the set of all bad
facts the prover has obtained in cooperation phase Pj. Then the modified search-guiding
heuristic it equals in each working phase 'p~ the following heuristic Hi: If i = 0 then
Hi = H. Ifi > 0 then

,A E M-I
, otherwise

The parameter I determines whether the activation of bad facts is completely impos­
sible during the next working phase (strong penalty) or whether the activation is only
delayed (moderate penalty). We utilized the setting I = 2, i.e. quite a strong penalty.

Finally, we want to answer the question which influence the modification of the heuristic
has on the completeness of theorem provers. In particular, we want to examine if a
prover that originally uses a fair heuristic or a heuristic which is fair despite disturbance
might become incomplete when modifying this heuristic as described. Under certain
restrictions on the original heuristic of a prover this is impossible:

Theorem 5.1
Let H be a strong fair heuristic, it the respective modified heuristic. Then it is fair
despite disturbance.
Proof: Now, recall that by the modification of the heuristic in cooperation phase pi the
weight of a bad fact A E FP is changed only for the next working phase p~+l. Moreover,
no prover sends a bad fact A twice to a receiver. This way and because of the fact that
only finitely many provers .work in our network the heuristic weight of a bad fact is
only changed in finitely many working periods. Hence, there is an index k such that the
heuristic weight of A remains unchanged in all working phases P~, j ~ k. Because of
the fact that in each phase at least one fact is activated and that only a finite number

18 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

5.2 Processing of Bad Facts

In general we process the set of bad facts received from other theorem provers in two
different manners: On the one hand we try to modify the search-guiding heuristic of
the receiving prover so as to postpone or even avoid the activation of such bad facts (i f
they are not already activated). On the other hand we try to perform a restructuring
of the search state so as to delay the investigation of certain proof paths.

5 .2 .1 Modification o f Heur ist ics

A modification of the search-guiding heuristic H of a prover regarding a set N; of bad
facts received in cooperation phase P! is only sensible i f some facts N } C N; are not
already activated. The aim of such a modification is then to postpone or avoid the
activation of facts A € N}. Thus, i t is possible to convert a posteriori knowledge of
the sender (detected bad facts) into a priori knowledge (search-guiding heuristic) of
the receiver.

In order to realize such a modification a simple memory based approach is imaginable:

Definition 5.2 (Modified Search Guiding Heuristic 7)
Let y be a real-valued parameter, H be a heuristic of a prover, N; be the set of all bad
facts the prover has obtained in cooperation phase Pi. Then the modified search-guiding
heuristic H equals in each working phase P : the following heuristic H ; : If i = 0 then
H; =H . Ifi > 0 then

on JHA) IE NM
H(A) = { HA) , otherwise

The parameter y determines whether the activation of bad facts is completely impos-
sible during the next working phase (strong penalty) or whether the activation is only
delayed {moderate penalty). We utilized the setting y = 2, i.e. quite a strong penalty.
Finally, we want to answer the question which influence the modification of the heuristic
has on the completeness of theorem provers. In particular, we want to examine if a
prover that originally uses a fair heuristic or a heuristic which is fair despite disturbance
might become incomplete when modifying this heuristic as described. Under certain
restr ict ions on the original heurist ic of a prover th is i s impossible:

Theorem 5 .1
Let H be a strong fair heuristic, H the respective modified heuristic. Then H is fair
despite disturbance.
Proof: Now, recall that by the modification of the heuristic in cooperation phase P: the
weight of a bad fact A € F ” is changed only for the next working phase P:*1. Moreover,
no prover sends a bad fact A twice to a receiver. This way and because of the fact that
only finitely many provers work i n our network the heuristic weight of a bad fact is
only changed in finitely many working periods. Hence, there is an index k such that the
heuristic weight of \ remains unchanged in all working phases PJ, j > k . Because of
the fact that in each phase at least one fact is activated and that only a finite number

5.2 Processing of Bad Facts 19

of facts exist whose heuristic weight is lower than H(A), A will be selected by'R in a
certain working phase. Therefore, the prover conducts still derivations which are fair
(despite disturbance) and remains complete. 0

Thus, a prover cannot become incomplete if it starts with a strong fair heuristic.

5.2.2 Restructuring of the Search State

By restructuring the search state we want to achievethat a prover does not work with
already activated bad facts or at least postpone inferences where bad facts take part
in. Hence we try to correct a' posteriori a wrong decision we made due to our low a
priori knowledge (poorly performing heuristic guiding).

Generally, such a kind of restructuring is-as already mentioned-only reasonable if
bad facts are already in the system of active facts of the receiver. (Note, that the
modification of the heuristic prevents at least temporary that the receiver works with
bad facts that are still passive.) However, such a kind of restricted application of
the restructuring technique would entail some problems: Remember that we want to
combine the exchange of positive and negative information among homogeneous and
heterogeneous provers. Now, it is well-known (see, e.g., [DF96]) that methods based on
the exchange of important lemmata between homogeneous provers require the heuristics
of the cooperating provers to be quite different. Therefore, in our context we have to
employ different heuristics, too. But this entails that different provers do not have so
many active facts in common. Moreover, this is also true when coupling heterogeneous
provers. Thus, restructuring of the search state could not be employed very often
because in the most cases bad facts as suggested by the sender are not in the system of
active facts of the receiver. Nevertheless, surely a lot of other unnecessary facts are in
the systems of active facts of the receivers. Thus, it would be desirable for a prover to
derive from the badness of certain facts of other provers that also some of its activated
facts are possibly unnecessary.

The solution of this problem is to consider a kind of "analogy": According to our
definition of badness a fact is bad if it complicates the search for the proof goal.
Since this often depends on certain syntactical properties of a fact we could infer from
the syntactical similarity between a fact ~ and a bad fact A that also j is a bad
fact. Regarding our definition of the judgment function 'ljJB one can see that facts A
and ~ that are syntactically very similar would have with a high probability similar
judgments 'ljJ(A) and 'ljJ(~) (if the facts were activated at the same time). Thus, it is
surely justified to generalize the information on bad facts to syntactically similar facts
S. So, A represents a scheme S of bad facts.

There are different ways to express a scheme of facts that are all in a way similar
regarding their syntactic properties. It is possible, e.g., to use as a scheme of facts the
set of all facts that share the same feature values (see, e.g., [Fuc96b]). Features describe
syntactical properties of facts by means of natural numbers. Another possibility is to
represent fact schemes via so-called term arity trees (see [DS96]). All these alternatives
abstract strongly from concrete facts. We, however, want to orient ourselves on the
concrete facts received from the other provers. Therefore, we chose a different way to

5.2 Processing of Bad Facts . 19

of facts exist whose heuristic weight is lower than H(A), X will be selected by H in a
certain working phase. Therefore, the prover conducts sti l l derivations which are fair
(despite disturbance) and remains complete. O

Thus, a prover cannot become incomplete i f i t starts wi th a strong fair heuristic.

5.2.2 Restructuring of the Search State

By restructuring the search state we want to achieve that a prover does not work with
already activated bad facts or at least postpone inferences where bad facts take part
in . Hence we try to correct a posteriori a wrong decision we made due to our low a
priori knowledge (poorly performing heuristic guiding).
Generally, such a kind of restructuring is—as already mentioned—only reasonable i f
bad facts are already in the system of active facts of the receiver. (Note, that the
modification of the heuristic prevents at least temporary that the receiver works wi th
bad facts that are st i l l passive.) However, such a kind of restricted application of
the restructuring technique would entail some problems: Remember that we want to
combine the exchange of positive and negative information among homogeneous and
heterogeneous provers. Now, i t is well-known (see, e.g., [DF96]) that methods based on
the exchange of important lemmatabetween homogeneous provers require the heuristics
of the cooperating provers to be quite different. Therefore, in our context we have t o
employ different heuristics, too. But this entails that different provers do not have so
many active facts in common. Moreover, this is also true when coupling heterogeneous
provers. Thus, restructuring of the search state could not be employed very often
because in the most cases bad facts as suggested by the sender are not in the system of
active facts of the receiver. Nevertheless, surely a lot of other unnecessary facts are i n
the systems of active facts of the receivers. Thus, i t would be desirable for a prover to
derive from the badness of certain facts of other provers that also some of its activated
facts are possibly unnecessary.
The solution of this problem is to consider a kind of “analogy”: According to our
definition of badness a fact is bad if i t complicates the search for the proof goal.
Since this often depends on certain syntactical properties of a fact we could infer from
the syntactical similarity between a fact A and a bad fact A that also Ä i s a bad
fact. Regarding our definition of the judgment function wg one can see that facts A
and X that are syntactically very similar would have with a high probability similar
judgments (A) and (X) (i f the facts were activated at the same time). Thus, i t is
surely justified to generalize the information on bad facts to syntactically similar facts
S. So, A represents a scheme S of bad facts.
There are different ways to express a scheme of facts that are all in a way similar
regarding their syntactic properties. I t is possible, e.g., to use as a scheme of facts the
set of all facts that share the same feature values (see, e.g., [Fuc96b]). Features describe
syntactical properties of facts by means of natural numbers. Another possibility is to
represent fact schemes v i a so-cal led term ar i ty trees (see [DS96]) . All these alternatives
abstract strongly from concrete facts. We, however, want to orient ourselves on the
concrete facts received from the other provers. Therefore, we chose a different way to

20 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

generalize facts to fact schemes by using an explicit measure for similarity defined on
.terms. In our approach a scheme SA of facts w.r.t. a certain fact A and a set Ffi of
active facts of a receiver R is given as

SA = {A' E Ffi :sim(A, A') 2: minsim}

Usually, we restrict the size of SA to a fixed number nmax ' The function sim regulates
the similarity of facts and hence the degree of generalization. Thus, the degree of
abstraction can be controlled very flexibly.
Surely, a lot of different realizations of the function sim are imaginable. Our approach
is to allow for small deviations from the syntactical structure of a fact. More exactly,
we consider two facts to be similar if one differs from the other only in some variable
positions (see below). Furthermore, we allow for exchanging function symbols for
others provided that they have the same arity. Thus, we can expect that facts which
are similar in such a manner are probably involved in the same kinds of inferences.
Hence, we can expect that they probably would have corresponding values w.r.t. 'lfJB
if they were activated at the same time. 'In order to give an exact definition of our
function sim we need a few preliminary definitions. Note that we only try to generalize
·unit clauses because in our experiments we restricted us to this case. (Non units as
bad facts can anyhow only occur if we couple two instantiations of SPASS: CODE and
DISCOUNT only work with units, thus non units can either not occur or are filtered
out.) Furthermore, we consider only unit clauses to be possibly similar to other units.
Now, we write for two terms t ';:;;,EQ t' if t differs from t' only at variable positions, i.e.

t';:;;, t'iff { t = f(tt,···, tn), t' = f(SI"'" sn), ti ';:;;,EQ Si
EQ t x E V, t' =y E V

#EQ(t, t') counts the different variable positions if t ';:;;,EQ t', otherwise it is equal to
Itl. Because of the fact that bounded variables can be renamed, #EQ(t, t') counts the
minimum orall respective numbers for t and 0"(t'), 0" is a renaming of bounded variables
in t'.
The relation ';:;;,strEQ is defined as follows:

t"-' t'iff {t=f(tl, ... ,tn),t'=g(Sl, ... ,sn),ti';:;;,strEQSi
"-'strEQ t=xEV,t'=yEV .

Again, #strEQ(t, t f
) counts the minimum of different function symbols and variables

w.r.t. certain renamings of variables if t ';:;;,strEQ t'. For terms t and t f not being'in
';:;;,strEQ-relation #strEQ(t, t') = Itl. Our similarity measure sim employs the relations
';:;;,EQ and ';:;;,strEQ in order to measure the structural difference offacts. For literals (that
do not contain the equality predicate) t and t' (which one can consider to be terms) it
holds

sim(t, t') = max(pl' ~P2)

where PI is given as PI = (Itl-#~r(t,t/)). P2 is defined analogously to PI, employing

';:;;,strEQ and #strEQ(t, t') instead of ';:;;,EQ and #EQ(t, t'), respectively. As one can see

20 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

generalize facts to fact schemes by using an explicit measure for similarity defined on
‚terms. In our approach a scheme Sy of facts w.r.t. a certain fact A and a set F% of
active facts of a receiver R is given as

Sy=1 {Ne F i : s im(A ,X’) > mingin}

Usually, we restrict the size of Sy to a fixed number nmaz. The function s im regulates
the similarity of facts and hence the degree of generalization. Thus, the degree of
abstraction can be controlled very flexibly.
Surely, a lot of different realizations of the function s im are imaginable. Qur approach
is to allow for small deviations from the syntactical structure of a fact. More exactly,
we consider two facts to be similar i f one differs from the other only in some variable
positions (see below). Furthermore, we allow for exchanging function symbols for
others provided that they have the same arity. Thus, we can expect that facts which
are similar in such a manner are probably involved in the same kinds of inferences.
Hence, we can expect that they probably would have corresponding values w.r.t. ¢¥p
if they were activated at the same time. In order to give an exact definition of our
function stm we need a few preliminary definitions. Note that we only try to generalize
‘unit clauses because in our experiments we restricted us to this case. (Non units as
bad facts can anyhow only occur i f we couple two instantiations of SPASS: CODE and
DISCOUNT only work with units, thus non units can either not occur or are filtered
out.) Furthermore, we consider only unit clauses to be possibly similar to other units.
Now, we write for two terms ¢ gq t ' i f t differs from t’ only at variable positions, i.e.

t = f (t , - . . t a) , € = f (s1 , ees Sn) ; t i REQ S i
Ewa i t {ZZ

#Eq(t,t ') counts the different variable positions if t ~gg t/, otherwise i t is equal to
|t|. Because of the fact that bounded variables can be renamed, #gq(t,t') counts the
minimum of al l respective numbers for £ and o (f ') , o is a renaming of bounded variables
i n t .
The relation X; -gQ i s defined as follows:

, t = f(t1,-- sta), U’ = g l81 , - . . , Sn), ti RsirEQ Sit x t i f f 2 1 vn j y 1 yn j y v i Ss
strEQ Ul 1 SE .

Again, # . zq (t , t) counts the minimum of different function symbols and variables
w.r.t. certain renamings of variables i f £ ~,,gg €. For terms { and t ' not being in
Rstrpg-relation #4,p0(t,t ') = [t|. Our similarity measure sim employs the relations
~ pg and R,Eo in order to measure the structural difference of facts. For literals (that
do not contain the equality predicate) ¢ and #' (which one can consider to be terms) i t
holds

. 1
sim(t,t") = max(pı, 5P2)

where p, is given as p ı = (Klee), Pz is defined analogously to p ; , employing
RsreQ and F#urpq(t,t') instead of xpg and #gg(t, t ') , respectively. As one can see

5.2 Processing of Bad Facts 21

the similarity between two literals is the higher the smaller their syntactical deviations
are. If we try to generalize equations we use a slightly modified notion of similarity.
The similarity between a literal A and an equation A' _ s = t is measured by

Isim(A, A') = max(sim(A, s = t), sim(A, t = s)) I

The similarity between two equations A =s = t and A' =u = v is given by

sim(A, A') = max (~(sim(s,u) +sim(t, v)), ~(sim(s, v) + sim(t, u)))

Note that our similarity measure is rather restrictive, i.e. for most different facts A and
A' we have sim(A, A') = O. For our experimental evaluation sim was sufficient. But
there might be the situation where the measure should be refined.

Since we are now able to generalize information on bad facts we do not try to restructure
our search state w.r.t. the received bad facts Ni but we use the set NS,i = UAEAf;SA .

Ndte that we limited in our experiments the size of each SA to the value 1. It is to be
emphasized that all facts A E NS,i are in the system of active facts of the receiver.

A restructuring of the search state employing the set NS,i should now guarantee that
the examination of search paths is postponed where facts A E NS,i are involved in.
In order to do this one can use the so-called inference rights as described in [Fuc97].
Inference rights are essentially annotations to facts that describe rights to take part
in certain inferences. Then, we do not employ any longer algorithm SP (if we do not
employ information on lemmata) or algorithm CP (if we exchange lemmata) using
the conventional inference systems I or I Dist , respectively, but we employ algorithms
S pn or C p n employing inference systems In or I'§ist working on facts with rights
(A, R). Such a right R is a set of inference types A can be involved in. The inference
system In (I'§ist) contains the rules of I (IDist) but considers the rights in such a
way that an inference can only performed if all facts involved in it have the respective
inference right. Additionally, In (I'§ist) contains a rule for detracting rights. Then,
by utilizing inference rights such a postponing as suggested is realized in S p n (Cp n):
Expanding inferences with facts A ~ NS,i are forbidden for a while by detracting the
.inference rights for all expanding inferences ("deactivation") in the cooperation phase.
Thus, the examination of proof paths where such facts are involved in is postponed.
Moreover, we do not need to perform so many time-consuming expanding inferences
and are able to investigate other proof paths with less computation effort. Note that by
utilizing such a fine-grained control via inference rights we do not loose simplification
power because contraction inferences are still allowed. Thus, we can indeed find proofs
very quickly if the "deactivated" facts are really not needed for any proof. Nevertheless,
it might be the case that such a detected bad fact is necessary for the proof. Thus, we
employ a recover mechanism for inference rights, (by using an additional recover rule
in In (I'§ist)) that can give inference rights back to a fact and performs all inferences
that were postponed by deactivation. Also in this case it is possible that we gain
efficiency: Parts of the proof that are "parallel" to the bad fact, i.e. the facts in this
part do not have the bad fact as an ancestor, can possibly be found faster if the bad

5.2 Processing of Bad Facts 21

the similarity between two literals is the higher the smaller their syntactical deviations
are. If we try to generalize equations we use a slightly modified notion of similarity.
The similarity between a literal A and an equation X’ = s = t is measured by

sim{A, A) = max(sim(),s = t), sim(A,t = s))

The similarity between two equations A = s = t and X = u = v is given by

sim(A, X’) = max (5 (s ims u) + sim(t,v)), (s ims v) + sim(t, u)))

Note that our similarity measure is rather restrictive, i.e. for most different facts A and
N’ we have s im() , X) = 0 . For our experimental evaluation s im was sufficient. Bu t
there might be the situation where the measure should be refined.
Since we are now able to generalize information on bad facts we do not try to restructure
our search state w.r.t. the received bad facts N; but we use the set Ns; = UrenSh .
Note that we l imited in our experiments the size of each S) t o the value 1. I t i s to be
emphasized that all facts A € Ns; are in the system of active facts of the receiver.
A restructuring of the search state employing the set Ns; should now guarantee that
the examination of search paths is postponed where facts A € Ns; are involved in.
In order t o do this one can use the so-called inference rights as described in [Fuc97].
Inference rights are essentially annotations to facts that describe rights to take part
in certain inferences. Then, we do not employ any longer algorithm SP (i f we do not
employ information on lemmata) or algorithm CP (if we exchange lemmata) using
the conventional inference systems 7 or Zp;s, respectively, but we employ algorithms
SPR or CPR employing inference systems IZ? or ZB; working on facts with rights
(A, R) . Such a right R is a set of inference types A can be involved in. The inference
system Z ” (IB...) contains the rules of Z (Zpis) but considers the rights in such a
way that an inference can only performed if all facts involved in i t have the respective
inference right. Additionally, Z” (TS...) contains a rule for detracting rights. Then,
by utilizing inference rights such a postponing as suggested is realized in SPP” (CPR):
Expanding inferences with facts A € Ns; are forbidden for a while by detracting the
inference rights for all expanding inferences (“deactivation”) in the cooperation phase.
Thus, the examination of proof paths where such facts are involved in is postponed.
Moreover, we do not need to perform so many time-consuming expanding inferences
and are able to investigate other proof paths wi th less computation effort. Note that by
utilizing such a fine-grained control via inference rights we do not loose simplification
power because contraction inferences are st i l l allowed. Thus, we can indeed find proofs
very quickly i f the “deactivated” facts are really not needed for any proof. Nevertheless,
i t might be the case that such a detected bad fact is necessary for the proof. Thus, we
employ a recover mechanism for inference rights (by using an additional recover rule
i n I® (IF) that can give inference rights back to a fact and performs all inferences
that were postponed by deactivation. Also i n this case i t is possible that we gain
efficiency: Parts of the proof that are “parallel” to the bad fact, i.e. the facts in this
part do not have the bad fact as an ancestor, can possibly be found faster i f the bad

22 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

fact is deactivated. The remaining parts of the proof can be found after the recovery
.of rights. Thus, the restructuring of the 13earch state can entail a rearrangement of the
proof parts found by the prover and thus a gain of efficiency. Such a recovery of rights
is performed by SpR (CpR) periodically in the cooperation phases.

Finally, we want to examine if a prover that performs fair I-derivations (with a fair
heuristic) or fair IDiscderivations (with a heuristic which is fair despite disturbance)
might become incomplete when considering the received information on bad facts for
restructuring the search state. First, we define fairness of I R _ (IJ5ist-)derivations anal­
ogously to section 2, i.e. all expansion inferences must be performed to persistent facts
without considering the inference right. Again, fairness implies in our context the
completeness of the provers. Then following theorem holds true:

Theorem 5.2
Let I (IDist) be an inference system (with disturbance). Let H be a heuristic which is
fair (despite disturbance). Furthermore, let S pR (CPR) be realized in such a way that
it uses H, that each deactivated fact can recover all inference rights after a finite period
of time, and that no facts are deactivated infinitely often. Then S pR (CpR) produces
only LR-- (IJ5ist-)derivations which are fair (despite disturbance).
Proof: We have to show that by performing inferences with S pR (CpR) and inference
system I R (IJ5ist) finally all expanding inferences are performed to persistent facts.
Let A be an arbitrary persistent fact. At first we show that there is a certain moment 7

where A is either activated or recovers its inference rights and for all moments 7' 2:: 7

holds: A remains active with all rights. Because of the fact that we employ a heuristic
which is fair (despite disturbance) we know that A will be activated at a certain moment.
If A will never be deactivated it persists throughout the search with all inference rights.
Otherwise, A will be deactivated at some moments. Because of our precondition we
know that there is a moment where A recovers all inference rights and does not loose
there rights any longer.
Now, we can prove our theorem: Let A be again an arbitrary persistent fact, let 7

be the moment where A is either activated or recovers its inference rights so that for
all moments 7' 2:: 7 holds: A remains active with all rights. Because of the fact that
all expanding inferences are performed to A and active facts at the moment 7 and
because of the fact that expanding inferences are exhaustively applied to active facts at
each activation or recover step, all expanding inferences employing A and any other
persistent facts will finally be performed. 0

Hence, weak and easily realizable conditions on the heuristic and the algorithm can
guarantee completeness.

5.3 Consistency of our Cooperation Concepts

As we have mentioned before we call the combination of our two cooperation concepts
- consistent if P n N = 0, i.e. a receiver does not obtain contradictory information on

the quality of facts. This property is important in practice: If we assume that a fact
A E P n N exists, then the lemma A would not be used by the receiver because the

22 5 COOPERATION BY EXCHANGING NEGATIVE FACTS

fact is deactivated. The remaining parts of the proof can be found after the recovery
of rights. Thus, the restructuring of the search state can entail a rearrangement of the
proof parts found by the prover and thus a gain of efficiency. Such a recovery of r ights
is performed by SP? (CPR) periodically in the cooperation phases.
Finally, we want to examine i f a prover that performs fair Z-derivations (wi th a fair
heuristic) or fair Zp;s-derivations (with a heuristic which is fair despite disturbance)
might become incomplete when considering the received information on bad facts for
restructuring the search state. First, we define fairness of Z?- (ZE,,,-)derivations anal-
ogously to section 2, i.e. all expansion inferences must be performed to persistent facts
without considering the inference right. Again, fairness implies in our context the
completeness of the provers. Then following theorem holds true:

Theorem 5.2
Let T (Ipisi) be an inference system (with disturbance). Let H be a heuristic which is
fair (despite disturbance). Furthermore, let SP" (CPP) be realized in such a way that
i t uses H , that each deactivated fact can recover al l inference rights after a finite period
of time, and that no facts are deactivated infinitely often. Then SP® (CPR) produces
only I®- (IE..-)derivations which are fair (despite disturbance).
Proof: We have to show that by performing inferences with SP” (CP™) and inference
system IR (IB...) finally all expanding inferences are performed to persistent facts.
Let X be an arbitrary persistent fact. A t first we show that there is a certain moment T
where A is either activated or recovers its inference rights and for all moments 7 ' > 7

holds: A remains active with all rights. Because of the fact that we employ a heuristic
which is fair (despite disturbance) we know that A will be activated at a certain moment.
If X will never be deactivated i t persists throughout the search with all inference rights.
Otherwise, X will be deactivated at some moments. Because of our precondition we
know that there is a moment where A recovers all inference rights and does not loose
there rights any longer.
Now, we can prove our theorem: Let \ be again an arbitrary persistent fact, let T

be the moment where X) is either activated or recovers its inference rights so that for
all moments 7 ' > 1 holds: A remains active with al l rights. Because of the fact that
al l expanding inferences are performed to A and active facts at the moment T and
because of the fact that expanding inferences are exhaustively applied to active facts at
each activation or recover step, al l expanding inferences employing \ and any other
persistent facts will finally be performed. DO

Hence, weak and easily realizable conditions on the heuristic and the algorithm can
guarantee completeness.

5.3 Consistency of our Cooperation Concepts

As we have mentioned before we call the combination of our two cooperation concepts
. consistent if P NA = 0, i.e. a receiver does not obtain contradictory information on

the quality of facts. This property is important in practice: If we assume that a fact
A € PN N exists, then the lemma A would not be used by the receiver because the

23

processing of bad facts avoids this. Thus, a lemma would be sent to the receiver that
it will not be able to use (at least for a long period of time). Hence, we would waste
communication amount and computation time for the processing of the fact without
any gam.

Technically, this problem can be solved by discarding all facts A E P nN. This would
anyhow reduce the computation time for the processing. More desirable, however, is
that consistency is given without discarding, i.e. P n N = 0 holds every time. This is
not only desirable due to efficiency reasons but also regarding our judgment functions:
It would not be sensible to assume that a fact is on the one hand a good lemma for
other provers and on the other hand a fact one should not work with. Therefore, we will
now briefly examine whether our judgment functions have this consistency property.

Because of the fact that we have only one judgment function 'l/JB for bad facts we
must investigate if the judgments of 'l/JB and the judgments of the functions 'l/Js and
7./JH are different. 2 At first we compare 7./Js and 7./JB: As one can see these functions
are rather contrarily defined, i.e. facts that are judged with a high value w.r.t. 7./Js are
judged with a small value w.r.t. 7./JB, and vice versa. 7./Js and 7./JB will therefore with
a high probability not select the same facts. More problematic is that both 7./JH and
7./JB, prefer facts having a small weight according to the heuristic of the receiver. But
note that the numerical bigger part of 7./JB is (usually) not the heuristic part PH but
the local part PLo Moreover, 7./JH takes into account whether a fact A has an ancestor
with a high heuristic weight which is not a criterion when employing 7./JB. Finally, we
have to remember that fixed numbers np and n.Af of good and bad facts, respectively,
are selected. In our experiments (see section 6) we used numbers np and nN that
were quite small in comparison with the number of facts a theorem prover activates
in a working phase. Thus, facts are usually not considered to be good as well as bad.
During our experiments in three different domains we could not observe inconsistency.

6 Experimental Results

In the following, we want to examine the potential of our cooperation concepts. In order
to do this we conducted our experimental studies in different domains of the well-known
problem library TPTP (see [SSY94]) version 1.2.1. We experimented on the one hand
with cooperating homogeneous provers, i.e. provers that are based on the same calculus
and differ from each other only in the heuristic they use for activating facts. On the
other hand, we let also heterogeneous provers employing different calculi cooperate.
The two central topics of our empirical examination are: Firstly, we want to evaluate
our two cooperation concepts separately and use either only positive information or
negative information. Secondly, we cope with the compatibility of our cooperation
concepts and let the provers cooperate by both the exchange of important lemmata
and bad facts. We start with the homogeneous case and conclude our examination
with the heterogeneous case.

2Note that we do not take care of the judgments of'l/Ju or 'l/JSG: These functions are either not
applied or they work on facts selected with 'l/Js and 'l/JH.

23

processing of bad facts avoids this. Thus, a lemma would be sent to the receiver that
i t will not be able to use (at least for a long period of time). Hence, we would waste
communication amount and computation time for the processing of the fact without
any gain.
Technically, this problem can be solved by discarding all facts A € PNA. This would
anyhow reduce the computation time for the processing. More desirable, however, is
that consistency is given without discarding, i.e. PNN = @ holds every time. This is
not only desirable due to efficiency reasons but also regarding our judgment functions:
It would not be sensible to assume that a fact is on the one hand a good lemma for
other provers and on the other hand a fact one should not work with. Therefore, we will
now briefly examine whether our judgment functions have this consistency property.

Because of the fact that we have only one judgment function %g for bad facts we
must investigate i f the judgments of ¥p and the judgments of the functions ws and
vy are different.? At first we compare ws and 1g: As one can see these functions
are rather contrarily defined, i.e. facts that are judged with a high value w.r.t. %s are
judged wi th a small value w.r.t. wg, and vice versa. wg and 1p will therefore with
a high probability not select the same facts. More problematic is that both %y and
YB, prefer facts having a small weight according to the heuristic of the receiver. But
note that the numerical bigger part of %g is (usually) not the heuristic part Py but
the local part Pr. Moreover, m takes into account whether a fact A has an ancestor
wi th a h igh heur ist ic weight which i s not a criterion when employing #5 . Finally, we
have to remember that fixed numbers np and ny of good and bad facts, respectively,
are selected. In our experiments (see section 6) we used numbers np and ny that
were quite small in comparison with the number of facts a theorem prover activates
in a working phase. Thus, facts are usually not considered to be good as well as bad.
During our experiments in three different domains we could not observe inconsistency.

6 Experimental Results

In the following, we want to examine the potential of our cooperation concepts. In order
to do this we conducted our experimental studies i n different domains of the well-known
problem library TPTP (see [SSY94]) version 1.2.1. We experimented on the one hand
with cooperating homogeneous provers, i.e. provers that are based on the same calculus
and differ from each other only in the heuristic they use for activating facts. On the
other hand, we let also heterogeneous provers employing different calculi cooperate.
The two central topics of our empirical examination are: Firstly, we want to evaluate
our two cooperation concepts separately and use either only positive information or
negative information. Secondly, we cope with the compatibility of our cooperation
concepts and let the provers cooperate by both the exchange of important lemmata
and bad facts. We start with the homogeneous case and conclude our examination
with the heterogeneous case.

2Note that we do not take care of the judgments of uy or ¥sg : These functions are either not
applied or they work on facts selected with ws and vg .

24 6 EXPERIMENTAL RESULTS

6.1 Cooperation of Homogeneous Provers

We examined cooperation of homogeneous provers by two case studies: In the area of
condensed detachment we coupled instances of the prover CODE ([FF97]), in the area
of superposition based theorem proving instances of the prover SPASS ([WGR96]).

6.1.1 Experiments with CODE

The test problems this examination is based on stem from experiments performed by
McCune and Wos (see [MW92]) with OTTER ([McC94]). The problems can also be
found in the TPTP library, version 1.2.1, namely in the LCL domain. We use the
names the problems have been given in the TPTP.

In order to exchange important lemmata we used the following settings: Since CODE
.is able to employ very powerful heuristics (see [Fuc96b]) based on learned knowledge it
is very probable that a lot of important lemmata are in the set of active facts of each
prover. Therefore it is-as already mentioned-not necessary to integrate very much
knowledge into the selection of facts, but it is possible to construe powerful referees that
are based only on local knowledge and knowledge about the heuristic of the receiver.
Thus, we decided to employ only the judgment functions 'l/Js and 'l/JH for selecting facts
at the sender site and performed no additional selection at the receiver site. Hence,
we could select facts very efficiently. We parameterized function 'l/Js in such a manner
that the number of contracting inferences was rated by the value 1, the number of
expanding inferences by -1. We selected in each cooperation phase the fixed number of
15 lemmata. Note that this number was much smaller than the number of facts each
prover could activate during a working phase.

In order to select bad facts we employed a filtering with PN and a selection with IPN
with the help of function 'l/JB. The filtering was performed mainly as described in
section 5, i.e. axioms and facts that were selected in an earlier cooperation phase were
not allowed to pass through the filter. Additionally, facts ,\ could not pass through
the filter if their number of deactivations exceeded the threshold 10 so as to preserve
completeness. 'l/JB was parameterized in such a way that all ratings (Yi were set to the
value 1. We selected in each cooperation phase 30 bad facts. Again, this number was
much smaller than the number of facts activated in a working phase.

Since we are interested in exploiting the potential of our two cooperation concepts we
compare for each problem our system of cooperating provers with the best heuristic
for the respective problem which we could find. It is to be emphasized, that these
heuristics are usually based on learned knowledge and are therefore very well-adapted
to the proof problems. In order to allow for a fair comparison one of the coupled
incarnations of CODE activated facts with the b~st heuristic for the problem. In our
experiments we coupled this heuristic with an incarnation of CODE using a "standard"
heuristic. Such a standard heuristic either orients itself on simple syntactic criteria­
e.g. it counts the number of function symbols and variables in a fact-or it is a slight
modification of goal oriented heuristics introduced in [DF94]. In general, we chose this
second heuristic in such a way that it had a rather "opposite behavior" in comparison

24 6 EXPERIMENTAL RESULTS

6 .1 Cooperation of Homogeneous Provers

We examined cooperation of homogeneous provers by two case studies: In the area of
condensed detachment we coupled instances of the prover CODE ([FF97]), in the area
of superposition based theorem proving instances of the prover SPASS ([WGR96)).

6.1.1 Experiments with CODE

The test problems this examination is based on stem from experiments performed by
McCune and Wos (see [MW92]) with OTTER ([McC94]). The problems can also be
found in the TPTP library, version 1.2.1, namely i n the LCL domain. We use the
names the problems have been given in the TPTP.
In order to exchange important lemmata we used the following settings: Since CODE
is able to employ very powerful heuristics (see [Fuc96b]) based on learned knowledge i t
is very probable that a lot of important lemmata are in the set of active facts of each
prover. Therefore i t is—as already mentioned—not necessary to integrate very much
knowledge into the selection of facts, but i t is possible to construe powerful referees that
are based only on local knowledge and knowledge about the heuristic of the receiver.
Thus, we decided to employ only the judgment functions ws and gy for selecting facts
at the sender site and performed no additional selection at the receiver site. Hence,
we could select facts very efficiently. We parameterized function %s in such a manner
that the number of contracting inferences was rated by the value 1, the number of
expanding inferences by -1. We selected in each cooperation phase the fixed number of
15 lemmata. Note that this number was much smaller than the number of facts each
prover could activate during a working phase. ;

In order to select bad facts we employed a filtering with Py and a selection with v y
with the help of function t g . The filtering was performed mainly as described in
section 5, i.e. axioms and facts that were selected in an earlier cooperation phase were
not allowed to pass through the filter. Additionally, facts A could not pass through
the filter i f their number of deactivations exceeded the threshold 10 so as to preserve
completeness. wg was parameterized in such a way that all ratings a; were set t o the
value 1. We selected in each cooperation phase 30 bad facts. Again, this number was
much smaller than the number of facts activated in a working phase.
Since we are interested in exploiting the potential of our two cooperation concepts we
compare for each problem our system of cooperating provers with the best heuristic
for the respective problem which we could find. It is to be emphasized, that these
heuristics are usually based on learned knowledge and are therefore very well-adapted
to the proof problems. In order to allow for a fair comparison one of the coupled
incarnations of CODE activated facts with the best heuristic for the problem. In our
experiments we coupled this heuristic with an incarnation of CODE using a “standard”
heuristic. Such a standard heuristic either orients itself on simple syntactic criteria—
e.g. i t counts the number of function symbols and variables in a fact—or i t is a slight
modification of goal oriented heuristics introduced in [DF94]. In general, we chose this
second heuristic in such a way that i t had a rather “opposite behavior” in comparison

6.1 Cooperation of Homogeneous Provers 25

I problem I rv I best heuristic I pos I neg I pos/neg I OTTER I

LCLOO2-l - 58.5 21.7 39.7 16.3 516
LCLOO3-1 - 91.4 55.5 77.3 47.2 449
LCL017-1 51.3 51.3 42.7 47.3 38.7 281
LCL040-1 - 14.2 8.0 12.1 7.1 16
LCL054-1 - 34.7 19.3 30.5 17.2 -
LCL058-1 52.9 52.9 17.6 43.7 17.0 423
LCL060-1 56.1 36.9 6.5 34.1 6.7 447
LCL061-1 - 446.6 283.2 428.8 181.2 -

LCL071-1 - 29.1 4.8 29.0 4.3 511
LCL085-1 1200.5 110.3 110.6 39.4 42.1 2172
LCL097-1 44.0 40.5 8.8 40.5 9.2 2
LCL114-1 357.1 25.1 8.4 12.3 6.6 2035
LCL116-1 - 32.8 20.8 31.7 22.3 2041
LCL119-1 - 128.9 100.7 86.7 76.3 362

Table 1: Coupling incarnations of CODE by exchanging positive/negative information

with the first heuristic. This means that the second heuristic activated only a small
number of facts activated by the first heuristic, too.

Table 1 presents an excerpt from our results in the area of condensed detachment. It
displays in column 1 the name of the proof problem as it was given in the TPTP,
in columns 2 and 3 the run times of a standard heuristic rv-employing syntactic
criteria-and of the best heuristic, in columns 4-6 the results when coupling our two
heuristics by the exchange of important lemmata (entry 'pos'), bad facts ('neg'), or by
exchanging both kinds of information ('pos/neg'). All run times are given in seconds
and were measured on one or two SPARCstations ELC. In order to point out that
we are dealing with hard problems we note in column 7 the run times needed when
using OTTER which is perhaps the only serious competitor of CODE for such kinds of
problems (cf. [FF97]). Note that OTTER was not used in its autonomous mode but we
depicted here the results published in [MW92] that were achieved by utilizing one of up
to six different heuristics. The tests with OTTER were conducted on a SPARCstation
1+, a machine comparable to ours. An entry "-" in table 1 denotes that the respeet.ive
problem could not be solved within four hours.

If we take a closer look at the results we achieved when coupling two incarnations of
CODE we can recognize the following: By th'e exchange of positive facts we can achieve
satisfactory speed-ups: In a lot of cases the speed-ups are greater than 2, moreover
there are some examples where the speed-ups range in an interval from 3 to 6. If we
couple the provers by exchanging negative information the results are worse: The speed­
ups are lower in comparison with the exchange of positive facts and are generally lower
than 2. In nearly all cases, however, also the exchange of negative information increases
the power of the proof system. Moreover, there are examples (LCL085-1, LCL119-1)

6.1 Cooperation of Homogeneous Provers 25

| problem | @ | best heu r i s t i c| pos | neg | pos/neg | OTTER|

LCL002-1| - | . 585 21.7 | 39.7 | 16.3 516
LCLO03-1| - 91.4 55.5 | 71.3 | 47.2 449
LCLO17-1 | 51.3 51.3 27] 47.3 | 387 | . 281
LCL040-1 | - 142 | 80 | 121 | 7.1 16
LCLO54-1| - 34.7 19.3 | 30.5 | 17.2 =

LCL058-1 | 52.9 52.9 17.6 | 43.7 | 17.0 423
LCLO60-1 | 56.1 36.9 65 | 341 | 6.7 447
LCLO61-1 | = 446.6 283.2 | 428.8 | 181.2 =

LCLO71-1 | = 29.1 28 | 20.0 | 43 511
LCL085-1 | 1200.5 110.3 110.6 | 39.4 | 421 | 2172
LCL097-1 | 44.0 40.5 88 | 40.5 | 9.2 2
LCL114-1 | 357.1 25.1 84 | 12.3 | 6.6 2035
LCL116-1| -— 32.8 20.8 | 31.7 | 22.3 | 2041
LCL119-1| - 128.9 100.7 | 86.7 | 76.3 362

Table 1: Coupling incarnations of CODE by exchanging positive/negative information

with the first heuristic. This means that the second heuristic activated only a small
number of facts activated by the first heuristic, too.

Table 1 presents an excerpt from our results in the area of condensed detachment. I t
displays in column 1 the name of the proof problem as i t was given in the TPTP,
in columns 2 and 3 the run times of a standard heuristic w—employing syntactic
criteria—and of the best heuristic, in columns 4-6 the results when coupling our two
heuristics by the exchange of important lemmata (entry ‘pos’), bad facts (‘neg’), or by
exchanging both kinds of information (‘pos/neg’). All run times are given in seconds
and were measured on one or two SPARCstations ELC. In order to point out that
we are dealing with hard problems we note in column 7 the run times needed when
using OTTER which is perhaps the only serious competitor of CODE for such kinds of
problems (cf. [FF97]). Note that OTTER was not used in its autonomous mode but we
depicted here the results published in [MW92] that were achieved by utilizing one of up
to six different heuristics. The tests with OTTER were conducted on a SPARCstation
1+ , a machine comparable to ours. An entry “~” in table 1 denotes that the respective
problem could not be solved within four hours.

If we take a closer look at the results we achieved when coupling two incarnations of
CoDE we can recognize the following: By the exchange of positive facts we can achieve
satisfactory speed-ups: In a lot of cases the speed-ups are greater thar 2, moreover
there are some examples where the speed-ups range in an interval from 3 to 6. I f we
couple the provers by exchanging negative information the results are worse: The speed-
ups are lower in comparison with the exchange of positive facts and are generally lower
than 2. In nearly all cases, however, also the exchange of negative information increases
the power of the proof system. Mareover, there are examples (LCL085-1, LCL119-1)

26 6 EXPERIMENTAL RESULTS

where we can gain efficiency whereas we cannot speed-up the prover by exchanging
lemmata. The results achieved by combining both exchanging of important lemmata
and bad facts, outperform significantly the respective results of the best heuristic.
Furthermore, for almost all problems the combination of both kinds of information is
better than using only one kind alone. For the remaining problems the run times are
only slightly longer than the run times of the "best" cooperation concept. Concluding,
we can say that cooperation by exchanging positive facts (important lemmata) is able
to significantly improve our condensed detachment prover CODE, and that even the
achieved good results can be improved when additionally combining this cooperation
technique with the use of negative information.

6.1.2 Experiments with SPASS

We performed experiments with SPASS in order to show that our cooperation con­
cept is not only able to improve very specialized theorem provers but that it is also
well-suited for provers that work in full first-order logic. As our test set we chose prob­
lems stemming from the CADE-13 ATP system competition ([8896]). Among these
problems we selected those from the categories "unit equality" and "mixed".

A minimal requirement in order to couple different incarnations of a prover is that it
has different heuristics at its disposal. Furthermore, it is desirable that these heuristics
differ from each other very much because this facilitates the cooperation by exchanging
lemmata. SPASS, however, does not employ different heuristics but uses only one
fixed strategy. Thus, we were forced to vary this fixed heuristic, that simply counts
a weighted sum of the number of variables and two times the number of function
symbols in a clause, in order to get different ones. More exactly, we allowed a weighting
individually set for each function symbol instead of weighting each occurrence of a
function symbol with the value 2. Therewith we can construe a lot of heuristics but
it is clear that they do not differ very much w.r.t. the facts that they activate. Thus,
it is necessary to select important lemmata very carefully and we decided hence to
integrate very much knowledge into the referees. We selected facts with a send-referee
and the help of the functions 'l/Js and 'l/JH at the sender site and performed an additional
selection at the receiver site with 'l/Ju and 'l/JSG. Concretely, 25 facts were selected from
the send-referee and from these facts 10 were selected at the receiver site. As one can
recognize these numbers are much smaller than before because SPASS-due to its
more complex inference system-does not activate so many facts in a working phase
as CODE.

In order to detect bad facts we used the filter predicate PA! and selection function <pA!

as described in the preceding section. Note that we did not allow non unit clauses to
pass through the filter. We selected in each cooperation phase 5 bad facts which was
the best value in our experimental studies.

In order to investigate the potential of our cooperation concepts we compare them with
the standard version of SPASS. Again, we let two heuristics cooperate. One of the
heuristics was the SPASS standard heuristic, the other was ~heuristic generated in
the following manner: Function symbols occurring in the axiomatization but not in the
conjecture clauses were weighted with the value 5, the other symbols with the value 2.

26 6 EXPERIMENTAL RESULTS

where we can gain efficiency whereas we cannot speed-up the prover by exchanging
lemmata. The results achieved by combining both exchanging of important lemmata
and bad facts, outperform significantly the respective results of the best heuristic.
Furthermore, for almost all problems the combination of both kinds of information is
better than using only one kind alone. For the remaining problems the run times are
only slightly longer than the run times of the “best” cooperation concept. Concluding,
we can say that cooperation by exchanging positive facts (important lemmata) is able
to significantly improve our condensed detachment prover CODE, and that even the
achieved good results can be improved when additionally combining this cooperation
technique with the use of negative information.

6.1.2 Experiments with SPASS

We performed experiments wi th SPASS in order to show that our cooperation con-
cept is not only able to improve very specialized theorem provers but that it is also
well-suited for provers that work in full first-order logic. As our test set we chose prob-
lems stemming from the CADE-13 ATP system competition ([SS96]). Among these
problems we selected those from the categories “unit equality” and “mixed”.
A minimal requirement i n order to couple different incarnations of a prover is that i t
has different heuristics at its disposal. Furthermore, i t is desirable that these heuristics
differ from each other very much because this facilitates the cooperation by exchanging
lemmata. SPASS, however, does not employ different heuristics but uses only one
fixed strategy. Thus, we were forced to vary this fixed heuristic, that simply counts
a weighted sum of the number of variables and two times the number of function
symbols in a clause, in order to get different ones. More exactly, we allowed a weighting
individually set for each function symbol instead of weighting each occurrence of a
function symbol with the value 2. Therewith we can construe a lot of heuristics but
i t is clear that they do not differ very much w.r.t. the facts that they activate. Thus,
i t is necessary to select important lemmata very carefully and we decided hence to
integrate very much knowledge into the referees. We selected facts with a send-referee
and the help of the functions ws and 1x at the sender site and performed an additional
selection at the receiver site with wy and sg. Concretely, 25 facts were selected from
the send-referee and from these facts 10 were selected at the receiver site. As one can
recognize these numbers are much smaller than before because SPASS—due to i ts
more complex inference system—does not activate so many facts in a working phase
as CODE.
In order to detect bad facts we used the filter predicate Py and selection function vw
as described in the preceding section. Note that we did not allow non unit clauses to
pass through the filter. We selected in each cooperation phase 5 bad facts which was
the best value in our experimental studies.
In order to investigate the potential of our cooperation concepts we compare them with
the standard version of SPASS. Again, we let two heuristics cooperate. One of the
heuristics was the SPASS standard heuristic, the other was a heurist ic generated i n
the following manner: Function symbols occurring in the axiomatization but not in the
conjecture clauses were weighted with the value 5, the other symbols with the value 2.

6.1 Cooperation of Homogeneous Provers 27

I problem I SPASS I HI I H 2 I pos I neg I pos/neg I OTTER I
LCL196-1 292.4 292.4 311.7 83.8 272.1 80.2 34.9
LCL163-1 10.0 10.0 11.9 7.5 9.8 7.0 -

GRP048-2 23.3 23.3 17.4 8.7 12.9 8.3 101.9
GRP148-1 951.2 307.9 253.1 184.7 97.4 91.1 70.3
GRP169-1 80.1 15.7 29.2 13.7 9.9 10.8 9.9
GRP169-2 56.1 56.1 26.2 9.7 14.7 12.8 9.5
GRP174-1 8.0 8.0 8.3 5.8 3.9 4.0 9.6
RNG018-6 639.9 639.9 199.7 152.3 87.1 79.1 0.5
NUMOO9-1 8.1 8.1 6.3 2.6 8.7 4.2 21.5

Table 2: Coupling incarnations of SPASS by exchanging positive/negative information

Only for examples GRP169-1 and GRP148-1 we deviated from this method. Because of
the fact that for these problems the standard heuristic has only a weak performance
we employed instead of the standard heuristic another heuristic that weighted certain
function symbols not occurring in the goal clauses with the value 5.

Table 2 displays an excerpt of our results. We list here only the results of such prob­
lems the standard heuristic of SPASS was able to solve. Moreover, we omitted prob­
lems SPASS could solve within 5 seconds (all run times were achieved on one or two
SPARCstations-20). Again, column 1 shows the name of the problem, column 2 the
run time needed when using the standard version of SPASS. Columns 3 and 4 display
the run times needed by the two coupled heuristics, columns 5-7 the results when em­
ploying our cooperation concepts. Finally, column 8 presents the results when using
OTTER. These results are not so interesting because SPASS and OTTER behave very
differently when solving certain examples. So, SPASS performs very well on certain
problems and OTTER poorly, and vice versa for other problems. Table 2 shows that
OTTER works mostly better than SPASS on our test set, but there is a problem OT­

TER is not able to solve within 1000 seconds. We noted the results of OTTER merely
in order to show that we do not deal with trivial problems. More important, however,
is the comparison of the single versions of SPASS with our cooperative provers.

The results reveal that cooperation by exchanging important lemmata allows also in
superposition based theorem proving for an obvious gain of efficiency in comparison
with the standard version of the prover. Also the speed-ups w.r.t. the average of
the coupled heuristics, i.e. the speed-ups we achieve if we compare our results with
a random choice of one of our heuristics, are satisfactory. Moreover, our cooperative
provers solve the most problems about two times faster compared with the best of
the coupled heuristics. It is to be emphasized that due to our inefficient implemen­
tation (exchange of facts via files) the results can further be improved. Coupling of
superposition provers by using negative information does not entail results as good as
before: we achieve on the average a speed-up of 1.6 compared with the best of the cou­
pled heuristics. But similarly to the area of condensed detachment there are difficult
examples (GRP148-1, RNG018-6) where the exchange of negative information leads to

6.1 Cooperation of Hömogeneous Provers 27

| problem | SPASS| H; | H,| pos | neg [| pos/neg | OTTER |
LCL196-1 292.4 1292.4 | 311.7 | 83.8 | 272.1 80.2 34.9
LCL163-1 10.0 | 10.0 | 11.9 7.5 9.8 7.0 -

GRP048-2 23.3 | 23.3 | 174 8.7 12.9 8.3 101.9
GRP148-1 951.2 | 307.9 | 253.1 | 184.7 | 97.4 91.1 70.3
GRP169-1 80.1 | 15.7 | 29.2 | 13.7 9.9 10.8 9.9
GRP169-2 56.1 | 56.1 | 26.2 9.7 | 14.7 12.8 9.5
GRP174-1 8.0 8.0 8.3 5.8 3.9 4.0 9.6
RNG018-6 639.9 | 639.9 | 199.7 | 152.3 | 87.1 79.1 0.5
NUM009-1 8.1 8.1 6.3 2.6 8.7 4.2 21.5

Table 2: Coupling incarnations of SPASS by exchanging positive/negative information

Only for examples GRP169-1 and GRP148-1 we deviated from this method. Because of
the fact that for these problems the standard heuristic has only a weak performance
we employed instead of the standard heuristic another heuristic that weighted certain
function symbols not occurring in the goal clauses with the value 5.
Table 2 displays an excerpt of our results. We list here only the results of such prob-
lems the standard heuristic of SPASS was able to solve. Moreover, we omitted prob-
lems SPASS could solve within 5 seconds (all run times were achieved on one or two
SPARCstations-20). Again, column 1 shows the name of the problem, column 2 the
run time needed when using the standard version of SPASS. Columns 3 and 4 display
the run times needed by the two coupled heuristics, columns 5-7 the results when em-
ploying our cooperation concepts. Finally, column 8 presents the results when using
OTTER. These results are not so interesting because SPASS and OTTER behave very
differently when solving certain examples. So, SPASS performs very well on certain
problems and OTTER poorly, and vice versa for other problems. Table 2 shows that
OTTER works mostly better than SPASS on our test set, but there is a problem OT-
TER is not able to solve within 1000 seconds. We noted the results of OTTER merely
in order to show that we do not deal with trivial problems. More important, however,
is the comparison of the single versions of SPASS with our cooperative provers.
The results reveal that cooperation by exchanging important lemmata allows also in
superposition based theorem proving for an obvious gain of efficiency i n comparison
with the standard version of the prover. Also the speed-ups w.r.t. the average of
the coupled heuristics, i.e. the speed-ups we achieve if we compare our results with
a random choice of one of our heuristics, are satisfactory. Moreover, our cooperative
provers solve the most problems about two times faster compared with the best of
the coupled heuristics. I t is to be emphasized that due to our inefficient implemen-
tation (exchange of facts via files) the results can further be improved. Coupling of
superposition provers by using negative information does not entail results as good as
before: we achieve on the average a speed-up of 1.6 compared with the best of the cou-
pled heuristics. But similarly to the area of condensed detachment there are difficult
examples (GRP148-1, RNG018-6) where the exchange of negative information leads to

28 6 EXPERIMENTAL RESULTS

much better results than the exchange of positive information. Employing both kinds
of information entails in the prevailing number of cases a further gain of efficiency.
The medium speed-up compared with the best of the coupled heuristics is greater than
2. Furthermore, particularly when tackling difficult problems (LCL196-1, GRP148-1,
RNG018-6) the results are very encouraging. This gives us hope that our concept is
especially well-suited when dealing with hard problems. All in all we can say that the
two cooperation concepts allows also in this application domain for a satisfactory gain
of efficiency. Furthermore, both concepts are compatible.

6.2 Cooperation of Heterogeneous Provers

We examine cooperation among heterogeneous provers by coupling SPASS and DIS­
COUNT. If we tackle problems specified in pure equational logic the situation does
not seem to be very different from the preceding section: SPASS and DISCOUNT
are complete in equational logic and perform principally the unfailing completion al­
gorithm. However, DISCOUNT is especially optimized for equational logic and can
perform inferences because of its simple fact representation faster than SPASS. More­
over, DISCOUNT has many goal oriented heuristics (see [DF94]) at its disposal which
make it particularly suited for problems specified in equationallogic. Therefore, when
coupling SPASS and DISCOUNT one can expect even in equational logic a different
behavior as when coupling two different incarnations of SPASS.
If we are interested in solving problems in full first order logic with equality we have
to take care of the problem that DISCOUNT can only cope with unit clauses.3 This
is not a problem during the proof run because facts DISCOUNT cannot work with are
not allowed to pass through the filter of SPASS. But, we must at least transform
the initial axiomatization. Our solution of this problem is following decomposition
of a proof problem, represented as a set of clauses C whose inconsistency should be
shown: Each positive equation P(tl'.'.' tn) = true or s = t of C is chosen as an
axiom for DISCOUNT, each negative equation acts as a proof goal. We only considered
examples where we could isolate enough positive equations such that the completion
of DISCOUNT did not stop. In the case that no negative equation was an element of
C DISCOUNT worked without a proof goal, i.e. in a completion mode. Obviously, by
this kind of problem decomposition DISCOUNT is in the most cases not able to solve
its proof problem. However, it is able to produce a lot of important lemmata or bad
facts from the part of the search space it can traverse.

Nevertheless, we have noticed that it would often be desirable if DISCOUNT was able
to work with horn clauses. Thus, we allowed horn clauses to pass through the filter of
SPASS and integrated during a cooperation phase descendants of these clauses into
the active facts of DISCOUNT with the following simple method: We computed for
each horn clause Al, ... ,An -+ C the set hyper(Al, ... ,An -+ C,FA) of all positive
hyper-resolvents from the horn clause and DISCOUNT's actual system of facts. Note,
that this set contains only positive equations. Then, we discarded the horn clauses and
processed the set of generated equations analogously to received unit clauses.

3Note that unit literals P(ft, ... , tn) can easily be transformed into equations P(t 1 , ... , tn) = true.

28 6 EXPERIMENTAL RESULTS

much better results than the exchange of positive information. Employing both kinds
of information entails in the prevailing number of cases a further gain of efficiency.
The medium speed-up compared wi th the best of the coupled heuristics is greater than
2. Furthermore, particularly when tackling difficult problems (LCL196-1, GRP148-1,
RNG018-6) the results are very encouraging. This gives us hope that our concept is
especially well-suited when dealing with hard problems. All in all we can say that the
two cooperation concepts allows also in this application domain for a satisfactory gain
of efficiency. Furthermore, both concepts are compatible.

6.2 Cooperation of Heterogeneous Provers

We examine cooperation among heterogeneous provers by coupling SPASS and Dis-
COUNT. I f we tackle problems specified in pure equational logic the situation does
not seem to be very different from the preceding section: SPASS and DISCOUNT
are complete in equational logic and perform principally the unfailing completion al-
gorithm. However, DISCOUNT is especially optimized for equational logic and can
perform inferences because of its simple fact representation faster than SPASS. More-
over, DISCOUNT has many goal oriented heuristics (see [DF94]) at its disposal which
make i t particularly suited for problems specified in equational logic. Therefore, when
coupling SPASS and DISCOUNT one can expect even in equational logic a different
behavior as when coupling two different incarnations of SPASS.
If we are interested in solving problems in full first order logic with equality we have
to take care of the problem that DISCOUNT can only cope with unit clauses.®> This
is not a problem during the proof run because facts DISCOUNT cannot work with are
not allowed to pass through the filter of SPASS. But, we must at least transform
the initial axiomatization. Our solution of this problem is following decomposition
of a proof problem, represented as a set of clauses C whose inconsistency should be
shown: Each positive equation P (t y , . . . , t ,) = true or s = t of C is chosen as an
axiom for DISCOUNT, each negative equation acts as a proof goal. We only considered
examples where we could isolate enough positive equations such that the completion
of DISCOUNT did not stop. In the case that no negative equation was an element of
C DISCOUNT worked without a proof goal, i.e. in a completion mode. Obviously, by
this kind of problem decomposition DISCOUNT is in the most cases not able to solve
i ts proof problem. However, i t is able to produce a lot of important lemmata or bad
facts from the part of the search space it can traverse.
Nevertheless, we have noticed that i t would often be desirable if DISCOUNT was able
to work with horn clauses. Thus, we allowed horn clauses to pass through the filter of
SPASS and integrated during a cooperation phase descendants of these clauses into
the active facts of DISCOUNT with the following simple method: We computed for
each horn clause Azı,..., An — C the set hyper(A,,..., A, — C,F*) of all positive
hyper-resolvents from the horn clause and DISCOUNT’s actual system of facts. Note,
that this set contains only positive equations. Then, we discarded the horn clauses and
processed the set of generated equations analogously to received unit clauses.

3Note that unit literals P (y , . . . , t ,) can easily be transformed into equations P (t y , . . . , tn) = true.

6.2 Cooperation of Heterogeneous Provers 29

In order to select important lemmata we used methods similar to those when coupling
incarnations of SPASS: We selected 10 facts via 'l/Js and 'l/JH at the sender site, then
an additional selection using 'l/Ju and 'l/JSG took place at the receiver site. Finally, a
maximum of 5 facts was integrated into the systems of the provers during a cooperation
phase. The same number of bad facts was exchanged during each cooperation phase.

Generally,we let SPASS work in its standard mode. Only if SPASS was not able to
solve the problem (within 1000 seconds), we experimented with our spIf-implemented
heuristics in order to find a heuristic able to solve the respective problem. However, for
all problems presented here where we could not find a proof employing the standard
heuristic we could not find a proof with another heuristic, either. DISCOUNT activated
facts with a goal-oriented heuristic as described in [DF94]. In order to measure the
strength of our cooperation concepts we experimented in the light of various problems
taken from TPTP. We dealt particularly with the domains ROB and HEN and present
in table 3 a small excerpt from these experiments, enriched with some highlights taken
from other domains. Again, problem names can be found in column 1, the best results
of SPASS when working alone in column 2. Column 3 displays the run times when
using DISCOUNT. In general, the entry "-" denotes that the problem could not be
solved within 1000 seconds. Note that DISCOUNT is in a lot of cases not able to solve
the problem because it has only parts of the initial proof problem as input. Columns 4­
6 show the run times when employing one or both of our cooperation concepts, column
7 the run time when using OTTER. Again, we listed these times merely in order to
show that we do not deal with trivial problems. We do not believe that a comparison
with OTTER is really sensible due to its different behavior compared with SPASS and
DISCOUNT. More interesting is a comparison of the results of the sequential versions
of SPASS and DISCOUNT with the results they can achieve if they cooperate.

If we take a closer look at the results from table 3 we can observe that they are very
promising and much better than in the homogeneous case. By exchanging important
lemmata we are able to solve all of the listed problems, whereas SPASS is only able
to solve 64%, DISCOUNT 42%, and OTTER 64%. Even when we take into account the
fact that SPASS and DISCOUNT work as cooperative prover there are still problems
(GRP177-2, GRP179-1, LDA010-2) neither SPASS nor DISCOUNT can cope with, but
that can be solved if the provers cooperate. Moreover, we achieve at other problems
high speed-ups up to the value 20 (B00007-4). Nevertheless, there are problems where
we achieved only a small gain of efficiency (e.g. LCL163-1). However, at the most
difficult problems (run time greater than 100 seconds) the speed-ups are satisfactory.

When coupling provers only by exchanging negative information the speed-ups are
lower but in almost all cases we could gain efficiency. Moreover, there are also some
examples (GRP169-1, ROB005-1, ROB008-1, ROB016-1, HEN009-5) where the speed-ups
are rather high. As we have already emphasized in the preceding experiments we can
find problems (ROB016-1, HEN009-5, LCL163-1) where the use of negative information
outperforms the use of positive information. Very hard problems, however, seem to be
out of reach if we restrict us to negative information: Problems neither SPASS nor
DISCOUNT were able to solve remain unsolved. Thus, we can again observe that the
potential of the exchange of positive information in order to improve coupled provers
appears to be higher.

6.2 Cooperation of Heterogeneous Provers 29

In order to select important lemmata we used methods similar to those when coupling
incarnations of SPASS: We selected 10 facts via ws and xy at the sender site, then
an additional selection using ¥y and sg took place at the receiver site. Finally, a
maximum of 5 facts was integrated into the systems of the provers during a cooperation
phase. The same number of bad facts was exchanged during each cooperation phase.
Generally,we let SPASS work in its standard mode. Only if SPASS was not able to
solve the problem (within 1000 seconds), we experimented with our self-implemented
heuristics in order to find a heuristic able to solve the respective problem. However, for
all problems presented here where we could not find a proof employing the standard
heuristic we could not find a proof with another heuristic, either. DISCOUNT activated
facts with a goal-oriented heuristic as described in [DF94]. In order to measure the
strength of our cooperation concepts we experimented in the light of various problems
taken from TPTP. We dealt particularly with the domains ROB and HEN and present
in table 3 a small excerpt from these experiments, enriched with some highlights taken
from other domains. Again, problem names can be found in column 1, the best results
of SPASS when working alone in column 2. Column 3 displays the run times when
using DISCOUNT. In general, the entry “-” denotes that the problem could not be
solved within 1000 seconds. Note that DISCOUNT is in a lot of cases not able to solve
the problem because i t has only parts of the init ial proof problem as input. Columns 4-
6 show the run t imes when employing one or both of our cooperation concepts, column
7 the run time when using OTTER. Again, we listed these times merely in order to
show that we do not deal with trivial problems. We do not believe that a comparison
with OTTER is really sensible due to its different behavior compared with SPASS and
DISCOUNT. More interesting is a comparison of the results of the sequential versions
of SPASS and DISCOUNT with the results they can achieve i f they cooperate.
If we take a closer look at the results from table 3 we can observe that they are very
promising and much better than in the homogeneous case. By exchanging important
lemmata we are able to solve all of the listed problems, whereas SPASS is only able
to solve 64%, DISCOUNT 42%, and OTTER 64%. Even when we take into account the
fact that SPASS and DISCOUNT work as cooperative prover there are sti l l problems
(GRP177-2, GRP179-1, LDA010-2) neither SPASS nor DISCOUNT can cope with, but
that can be solved if the provers cooperate. Moreover, we achieve at other problems
high speed-ups up to the value 20 (B00007-4). Nevertheless, there are problems where
we achieved only a small gain of efficiency (e.g. LCL163-1). However, at the most
difficult problems (run time greater than 100 seconds) the speed-ups are satisfactory.
When coupling provers only by exchanging negative information the speed-ups are
lower but in almost all cases we could gain efficiency. Moreover, there are also some
examples (GRP169-1, ROB005-1, ROB008-1, ROBO16~1, HEN009-5) where the speed-ups
are rather high. As we have already emphasized i n the preceding experiments we can
find problems (ROB016-1, HEN009~5, LCL163-1) where the use of negative information
outperforms the use of positive information. Very hard problems, however, seem to be
out of reach i f we restrict us to negative information: Problems neither SPASS nor
DISCOUNT were able to solve remain unsolved. Thus, we can again observe that the
potential of the exchange of positive information in order to improve coupled provers
appears to be higher.

7

30 7 CONCLUSION AND FUTURE WORK

I problem I SPASS I DISCOUNT I pos I neg I pos/neg I OTTER I
BOOO07-4 403.4 - 19.3 373.4 19.3 10.9
GRP169-1 80.1 - 41.9 50.5 40.3 9.1
GRP177-2 - - 58.3 - 58.3 -
GRP179-1 - - 80.7 - 80.7 -

LCL143-1 16.1 - 1.7 6.8 1.3 1.1
LCL163-1 10.0 12.0 7.7 7.4 6.3 -

ROB005-1 - 109.6 39.9 74.2 35.2 44.9
ROBOO8-1 - 98.8 33.3 58.4 17.0 0.4
ROBOl1-1 105.3 - 21.9 82.4 20.4 0.6
ROB016-1 9.8 - 4.6 3.8 3.4 0.7
ROB022-1 15.1 - 6.9 12.2 4.7 5.0
ROB023-1 204.6 - 4.4 204.8 4.1 2.2
LDA010-2 - - 682.7 - 682.7 -

HENOO9-5 309.9 - 105.9 99.4 109.3 119.7
HEN010-5 68.7 - 14.7 64.8 19.6 48.6
HENOl1-5 41.2 - 26.2 41.5 23.3 -

CIVOO1-1 24.9 - 12.6 20.4 12.6 7.4

Table 3: Coupling SPASS and DISCOUNT by exchanging positive/negative information

Combining both exchange of important lemmata and bad facts, is again the best way
for coupling theorem pravers. In the prevailing number of cases the results are better
than only using positive information. Indeed, the gain is often low but sometimes
conspicuous enhancements are possible (ROB008-1).
All in all we can ascertain that cooperation of heterogeneous pravers is a very en­
couraging method, particularly when dealing with hard problems. The use of positive
information leads to satisfactory results, the use of negative information should be
further enhanced. Employing both kinds of information is a very good approach for
establishing cooperation among different (saturation-based) theorem provers.

Conclusion and Future Work

We have presented two different cooperation techniques well-suited for coupling homo­
geneous and heterogeneous provers: On the one hand the exchange of positive infor­
mation realized by exchanging important lemmata. On the other hand the exchange
of negative information, i.e. certain "bad facts".

We examined these two cooperation concepts theoretically and could observe that the
completeness of a praver can get lost if we allow for an uncontrolled exchange and
processing of positive/negative information. Fortunately, we discovered weak condi­
tions on the heuristic of a prover and the processing of the received information that
are sufficient for completeness. Thus, in most cases our cooperation concepts do not

30 7 CONCLUSION AND FUTURE WORK

| problem | SPASS| DisCOUNT | pos | neg | pos/neg | OTTER|
B00007-4 403.4 — | 19.3 | 373.4 19.3 10.9
GRP169-1 80.1 — | 41.9 | 50.5 40.3 9.1
GRP177-2 - — | 58.3 - 58.3 —
GRP179-1 - - | 80.7 - 80.7 ~

LCL143-1 16.1 —- 1.7 6.8 1.3 1.1
LCL163-1 10.0 12.0 7.7 7.4 6.3 -
ROB0O05-1 - 109.6 | 39.9 | 74.2 35.2 44.9
ROB008-1 - 98.8 | 33.3 | 58.4 17.0 0.4
ROBO11-1 105.3 — | 21.9 | 824 20.4 0.6
ROB016-1 9.8 - 4.6 3.8 3.4 0.7
ROB022-1 15.1 - 6.9 | 12.2 4.7 5.0
ROB023-1 204.6 - 4.4 | 204.8 4.1 2.2
LDA010-2 — — | 682.7 - 682.7 -

HEN009-5 309.9 - 1105.9 | 99.4 109.3 119.7
HEN010-5 68.7 - | 14.7 | 64.8 19.6 48.6
HENO11-5 41.2 - | 26.2 | 41.5 23.3 -

CIV001-1 24.9 —| 12.6| 20.4 12.6 7.4

Table 3: Coupling SPASS and DISCOUNT by exchanging positive/negative information

Combining both exchange of important lemmata and bad facts, is again the best way
for coupling theorem provers. In the prevailing number of cases the results are better
than only using positive information. Indeed, the gain is often low but sometimes
conspicuous enhancements are possible (ROB008-1).
All in all we can ascertain that cooperation of heterogeneous provers is a very en-
couraging method, particularly when dealing with hard problems. The use of positive
information leads to satisfactory results, the use of negative information should be
further enhanced. Employing both kinds of information is a very good approach for
establishing cooperation among different (saturation-based) theorem provers.

7 Conclusion and Future Work

We have presented two different cooperation techniques well-suited for coupling homo-
geneous and heterogeneous provers: On the one hand the exchange of positive infor-
mation realized by exchanging important lemmata. On the other hand the exchange
of negative information, i.e. certain “bad facts”.
We examined these two cooperation concepts theoretically and could observe that the
completeness of a prover can get lost if we allow for an uncontrolled exchange and
processing of positive/negative information. Fortunately, we discovered weak condi-
tions on the heuristic of a prover and the processing of the received information that
are sufficient for completeness. Thus, in most cases our cooperation concepts do not

31

destroy completeness. Moreover, we pointed out practical ways to realize cooperative
provers and introduced some concrete techniques and heuristics. The experimental
results have shown that our methods indeed enabled the cooperative prover to clearly
outperform sequential provers. Particularly in the heterogeneous case the results were
very satisfactory because we were able to solve problems that none of the coupled
provers could solve when working alone.

It is clear that the experimental studies should be extended. Essentially, however, there
are two main aspects that should be further examined:

On the one hand it would be interesting to examine whether other positive or negative
information than good or bad facts might be used for coupling different provers. As
we have already mentioned it appears to be difficult to use, e.g., control information
in order to couple different provers. Nevertheless, it would be interesting to perform
further research to find out other different kinds of positive and negative information
one can employ. On the other hand it would be desirable to extend our presented
methods also to the case of analytic provers. Further research should hence deal with
the problem to find out if at least our abstract concepts of coupling theorem provers by
exchanging positive/negative information can be transformed to tableau-style provers.

31

destroy completeness. Moreover, we pointed out practical ways to realize cooperative
provers and introduced some concrete techniques and heuristics. The experimental
results have shown that our methods indeed enabled the cooperative prover to clearly
outperform sequential provers. Particularly in the heterogeneous case the results were
very satisfactory because we were able to solve problems that none of the coupled
provers could solve when working alone.
I t is clear that the experimental studies should be extended. Essentially, however, there
are two main aspects that should be further examined:
On the one hand i t would be interesting to examine whether other positive or negative
information than good or bad facts might be used for coupling different provers. As
we have already mentioned i t appears to be difficult to use, e.g., control information
in order to couple different provers. Nevertheless, i t would be interesting to perform
further research to find out other different kinds of positive and negative information
one can employ. On the other hand i t would be desirable to extend our presented
methods also to the case of analytic provers. Further research should hence deal wi th
the problem to find out if at least our abstract concepts of coupling theorem provers by
exchanging positive/negative information can be transformed to tableau-style provers.

32 REFERENCES

References

[AD93] J. Avenhaus and J. Denzinger. Distributing equational theorem proving. In
Proc. 5th RTA, pages 62-76, Montreal, 1993. LNCS 690.

[ADF95] J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: A System For Dis­
tributed Equational Deduction. In Proc. 6th RTA, pages 397-402, Kaisers­
lautern, 1995. LNCS 914.

[AS92] 0.1. Astrachan and M.E. Stickel. Caching and Lemmaizing in Model Elim­
ination Theorem Provers. In Proceedings of CADE-ll, pages 224-238,
Saratoga Springs, USA, 1992. Springer LNAI 607.

[Ave95] J. Avenhaus. Reduktionssysteme. Springer, 1995.

[BDP89] 1. Bachmair, N. Dershowitz,and D.A. Plaisted. Completion without Failure.
In Coll. on the Resolution of Equations in Algebraic Structures. Academic
Press, Austin, 1989.

[BG94] 1. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov­
ing with selection and simplification. Jo~rnal of Logic and Computation,
4(3):217-247, 1994.

[Dem68] A.P. Dempster. A generalization of bayesian inference. Journal of the Royal
Statist.ical Society, Series B, 30:205-247, 1968.

[Den95] J. Denzinger. Knowledge-based distributed search using teamwork. In Proc.
ICMAS-95, pages 81-88, San Francisco, 1995. AAAI-Press.

[Der90] N. Dershowitz. A maximal-literal unit strategy for horn clauses.
2nd CTRS, pages 14-25, Montr~al, 1990. LNCS 516.

In Proc.

[DF94] J. Denzinger and M. Fuchs. Goal oriented equational theorem proving.
Proc. 18th /(1-94, pages 343-354, Saarbriicken, 1994. LN AI 861.

In

[DF96] J. Denzinger and D. Fuchs. Referees for teamwork.
pages 454-458, Key West, 1996.

In Proc. FLAIRS '96,

[DS96] J. Denzinger and S. Schulz. Learning domain knowledge to improve theorem
proving. In Proc. CADE-13, pages 62-76, New Brunswick, 1996. LNAI 1104.

[FD97] D. Fuchs and J. Denzinger. Cooperation in theorem proving by loosely
coupled heuristics. Technical Report SR-97-03, University of Kaiserslautern,
Kaiserslautern, 1997.

. [FF97] D. Fuchs and M. Fuchs. CODE: A powerful prover for problems of condensed
detachment. In Proc. CADE-14, pages 260-263, Townsville, 1997. LNAI
1245.

32 REFERENCES

References

[AD93] J. Avenhaus and J. Denzinger. Distributing equational theorem proving. In
Proc. 5th RTA, pages 62-76, Montreal, 1993. LNCS 690.

[ADF95] J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: A System For Dis-
tributed Equational Deduction. In Proc. 6th RTA, pages 397-402, Kaisers-
lautern, 1995. LNCS 914.

[AS92] O.L. Astrachan and M.E. Stickel. Caching and Lemmaizing in Model Elim-
ination Theorem Provers. In Proceedings of CADE-11, pages 224-238,
Saratoga Springs, USA, 1992. Springer LNAI 607.

[Ave95] J. Avenhaus. Reduktionssysteme. Springer, 1995.

[BDP89] L.Bachmair, N. Dershowitz,and D.A. Plaisted. Completion without Failure.
In Coll. on the Resolution of Equations in Algebraic Structures. Academic
Press, Austin, 1989.

[BG94] L . Bachmair and H. Ganzinger. Reiwrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217-247, 1994.

[Dem68] A.P. Dempster. A generalization of bayesian inference. Journal of the Royal
Statistical Society, Series B, 30:205-247, 1968.

[Den95] J. Denzinger. Knowledge-based distributed search using teamwork. In Proc.
ICMAS-95, pages 81-88, San Francisco, 1995. AAAI-Press.

[Der90] N. Dershowitz. A maximal-literal unit strategy for horn clauses. In Proc.
2nd CTRS, pages 14-25, Montreal, 1990. LNCS 516.

[DF94] J. Denzinger and M. Fuchs. Goal oriented equational theorem proving. In
Proc. 18th KI-9/4, pages 343-354, Saarbrücken, 1994. LNAI 861.

[DF96] J. Denzinger and D. Fuchs. Referees for teamwork. In Proc. FLAIRS ’96,
pages 454-458, Key West, 1996.

[DS96] J. Denzinger and S. Schulz. Learning domain knowledge to improve theorem
proving. In Proc. CADE-13, pages 62-76, New Brunswick, 1996. LNAI 1104.

[FD97] D . Fuchs and J. Denzinger. Cooperation in theorem proving by loosely
coupled heuristics. Technical Report SR-97-03, University of Kaiserslautern,
Kaiserslautern, 1997.

[FF97] D. Fuchs and M . Fuchs. CODE: A powerful prover for problems of condensed
detachment. In Proc. CADE-14, pages 260-263, Townsville, 1997. LNAI
1245.

33 REFERENCES

[Fuc96a]	 D. Fuchs. Inference rights for controlling search in generating theorem
provers. Technical Report SR-96-12, University of Kaiserslautern, Kaisers­
lautern, 1996.

[Fuc96b]	 M. Fuchs. Experiments in the heuristic use of past proof experience. In
Proc. CADE-13, pages 523-537, New Brunswick, 1996. LNAI 1104.

[Fucar]	 D. Fuchs. Inference Rights for Controlling Search in Generating Theorem
Provers. In Proc. EPfA '97, Coimbra, 1997, to appear.

[HBF96]	 T. Hillenbrand, A. Buch, and R. Fettig. On Gaining Efficiency in
Completion-Based Theorem Proving. In Proc. RTA-96, pages 432-435.
Springer LNCS 1103, 1996.

[Luk70]	 J. Lukasiewicz. Selected Works. 1. Borkowski (ed.), North-Holland, 1970.

[McC94]	 W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL­
94/6, Argonne National Laboratory, Argonne, 1994.

[NUL+97]	 M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. special
issue of the Journal of Automated Reasoning, 1997.

[MW92] W. McCune and 1. Wos. Experiments in Automated Deduction with Con­
densed Detachment. In Proc. CADE 11, pages 209-223, Saratoga Springs,
1992. LNAI 607.

[Pet76] G. J. Peterson. An automatic theorem prover for substitution and detach­
ment systems. Notre Dame Journal of Formal Logic, 19(1):119-122, 1976.

[Sha76] G. Shafer. Mathematical Theory of Evidence.
Princeton, 1976.

Princeton University Press,

[Sla93] J. Slaney. Scott: A model-guided theorem prover. In Proc. fJCAf '93, pages
109-114, Chambery, 1993.

[SS96] G. Sutcliffe and C. Suttner. ATP System Competition held on August 1
in conjunction with the Conference on Automated Deduction (CADE-13).
New Brunswick, 1996. Competition results available via WWW at the URL
http://wwwjessen.informatik.tu-muenchen.de/-tptp/CASC-13.

[SSY94] G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. In
CADE-12, pages 252-266, Nancy, 1994. LNAI 814.

[Sut92] G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS'92
Workshop W3, 1992.

[Tar56] A. Tarski.
1956.

Logic, Semantics, Metamathematics. Oxford University Press,

REFERENCES 33

[Fuc96a]

[Fuc96b]

[Fucar]

[HBF96]

[Luk70]

[McC94]

[MIL+97]

[MW92]

[Pet 76]

[Sha76]

[Sla93]

[SS96]

[SSY94]

[Sut92]

[Tar56)

D. Fuchs. Inference rights for controlling search in generating theorem
provers. Technical Report SR-96-12, University of Kaiserslautern, Kaisers-
lautern, 1996.

M . Fuchs. Experiments in the heuristic use of past proof experience. In
Proc. CADE-13, pages 523-537, New Brunswick, 1996. LNAI 1104.

D. Fuchs. Inference Rights for Controlling Search in Generating Theorem
Provers. In Proc. EPIA ’97, Coimbra, 1997, to appear.

T. Hillenbrand, A. Buch, and R. Fettig. On Gaining Efficiency in
Completion-Based Theorem Proving. In Proc. RTA-96, pages 432-435.
Springer LNCS 1103, 1996.

J. Lukasiewicz. Selected Works. L. Borkowski (ed.), North-Holland, 1970.

W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-
94/6, Argonne National Laboratory, Argonne, 1994.

M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K . Mayr. The Model Elimination Provers SETHEO and E-SETHEOQ. special
issue of the Journal of Automated Reasoning, 1997.

W. McCune and L. Wos. Experiments in Automated Deduction with Con-
densed Detachment. In Proc. CADE 11, pages 209-223, Saratoga Springs,
1992. LNAI 607.

G. J. Peterson. An automatic theorem prover for substitution and detach-
ment systems. Notre Dame Journal of Formal Logic, 19(1):119-122, 1976.

G. Shafer. Mathematical Theory of Evidence. Princeton University Press,
Princeton, 1976.

J. Slaney. Scott: A model-guided theorem prover. In Proc. IJCAI ’93, pages
109-114, Chambery, 1993.

G. Sutcliffe and C. Suttner. ATP System Competition held on August 1
i n conjunction wi th the Conference on Automated Deduction (CADE-13).
New Brunswick, 1996. Competition results available via WWW at the URL
http://wwwjessen.informatik.tu-muenchen.de/~tptp/CASC-13.

G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. In
CADE-12, pages 252-266, Nancy, 1994. LNAI 814.

G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS’92
Workshop W3, 1992.

A. Tarski. Logic, Semantics, Metamathematics. Oxford University Press,
1956.

34 REFERENCES

[Wei93]	 C. Weidenbach. Extending the resolution method with sorts. In Proc. IJ­
CAl '93, pages 60-65, Chambery, 1993.

[WGR96]	 C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI 1104.

[Wos95]	 1. Wos. Searching for circles of pure proofs. Journal of Automated Reasoning,
15:279-315, 1995.

34 REFERENCES

[Wei93] C. Weidenbach. Extending the resolution method with sorts. In Proc. 1J-
CAI ’93, pages 60-65, Chambery, 1993.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI 1104.

[Wos95] L.Wos. Searching for circles of pure proofs. Journal of Automated Reasoning,
15:279-315, 1995.

	UR_0010.jpg

