
4&k:p=!
5=

&$A
 

—
ins

g5 
Se

=} 
u

n
o

d
 

+

2 
S

= 
a

.

> 
53

$d =
+ 

x
@

 
[£2

a 
u

n

52=

uiainejsiasiey] £99/9-C
uigine|siasie)y] 1BU

SID
AIU

N
 

1
2

] 
O

d
d

 
a 

IM
S

MIZE W
IOJU[ YolL3Q

YIE





Flexible Re-enactment of Proofs* 

Matthias Fuchs
 
Center for Learning Systems and Applications (LSA)
 

Fachbereich Informatik
 
Universitat Kaiserslautern
 

Postfach 3049
 
67653 Kaiserslautern
 

Germany
 

E-mail: fuchs@informatik.uni-kl.de 

January 20, 1997 

Abstract 

We present a method for making use of past proof experience called flexible 
re-enactment (FR). FR is actually a search-guiding heuristic that uses past proof 
experience to create a search bias. Given a proof P of a problem solved previously 
that is assumed to be similar to the current problem A, FR searches for P and 
in the "neighborhood" of P in order to find a proof of A. 

This heuristic use of past experience has certain advantages that make FR 
quite profitable and give it a wide range of applicability. Experimental studies 
substantiate and illustrate this claim. 

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG). 

1 

Flexible Re-enactment of  Proofs*

Matthias Fuchs
Center for Learning Systems and Applications (LSA)

Fachbereich Informatik
Universität Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany
E-mail: fuchs@informatik.uni-kl.de

January 20, 1997

Abstract

We present a method for making use of past proof experience called flexible
re-enactment (FR). FR is actually a search-guiding heuristic that uses past proof
experience to  create a search bias. Given a proof  P of  a problem solved previously
that  is assumed to  be similar to  the current problem A ,  FR searches for P and
in  the “neighborhood” of P in  order to  find a proof of  A .

This heuristic use of past experience has certain advantages that make FR
quite profitable and give it a wide range of  applicability. Experimental studies
substantiate and illustrate this claim.

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

1

mailto:fuchs@informatik.uni-kl.de


2 

1 

1 INTRODUCTION 

Introduction 

Automated deduction is essentially a search problem that gives rise to potentially 
infinite search spaces because of general undecidability. Despite these unfavorable con­
ditions state-of-the-art theorem provers have gained a remarkable level of performance 
mainly due to (problem-specific) search-guiding heuristics and advanced implementa­
tion techniques. Nevertheless theorem provers can hardly rival a mathematician when 
it comes to proving "challenging" theorems. The main reason for this fact is also a ma­
jor shortcoming of theorem provers: Unlike humans, theorem provers lack the ability 
to learn. Learning, however, is a key ability in any form of human problem solving, in 
particular in theorem proving. 

The necessity to equip theorem provers with learning capabilities has been recognized 
quite early. But learning for theorem proving causes much more difficulties than learn­
ing in other areas of artificial intelligence because the premise that "small changes of the 
problem cause small changes of its solution" is not fulfilled at all. As a matter of fact, 
in theorem proving tiny variations of a problem specification can result in significant 
changes of the solution (proof). This circumstance complicates matters substantially. 

Learning methods based on analogous proof transformation (e.g., [3], [2], [12], [16]) 
basically attempt to transform a known proof (source proof) of a problem solved pre­
viously (source problem) into a proof (target proof) of a given problem to be solved 
(target problem). Mostly, the mainly deterministic transformation procedure centers 
on some kind of analogy mapping obtained by comparing source and target problem. 
The transformation may include abstraction and planning steps. Occasionally, a little 
search may be involved in order to patch failures of the deterministic transformation 
procedure (e.g., [2]). 

The prevailing determinism (and restricted forms of search if any) has the advantage 
that analogous proof transformation can be quite fast. The downside, however, is that 
source and target problem have to be very similar so that the source proof can be trans­
formed into a target proof mainly with deterministic actions. For this reason, methods 
based on analogous proof transformation are preferably applied to inductive theorem 
proving. There, the inherent proof structures (base case, hypotheses, induction step) 
provide a suitable platform for such methods. However, for general (deductive) theo­
rem proving in domains without any (recognizable) structure, these methods appear 
to be inappropriate. 

An alternative approach to learning for theorem proving is to incorporate past problem­
solving experience into the search-guiding heuristic (e.g., [18], [21], [7], [10], [6]). That 
is, when solving a target problem, the source problem is in some way exploited by the 
search-guiding heuristic. The theorem prover still conducts a search, but the heuristic 
is biased towards a certain area of the search space depending on the source proof 
and on the way the source proof is utilized by the heuristic. This approach has the 
advantage that the demands on similarity between source and target problem do not 
have to be as high as for methods based on proof transformation. Naturally we incur 
the usual overhead of search caused by exploring areas of the search space that do not 

2 1 INTRODUCTION

1 Introduct ion

Automated deduction is essentially a search problem that gives rise to  potentially
infinite search spaces because of general undecidability. Despite these unfavorable con-
ditions state-of-the-art theorem provers have gained a remarkable level of performance
mainly due to  (problem-specific) search-guiding heuristics and advanced implementa-
tion techniques. Nevertheless theorem provers can hardly rival a mathematician when
i t  comes to proving “challenging” theorems. The main reason for this fact is also a ma-
jor shortcoming of theorem provers: Unlike humans, theorem provers lack the ability
to  learn. Learning, however, is a key ability in any form of human problem solving, in
particular in theorem proving.

The necessity t o  equip theorem provers with  learning capabilities has been recognized
quite early. Bu t  learning for theorem proving causes much more difficulties than learn-
ing  in  other areas of artificial intelligence because the premise that “small changes of  the
problem cause small changes of  i ts solution” is not fulfilled at all. As a matter of fact,
in  theorem proving t iny variations of a problem specification can result in significant
changes of the solution (proof). This circumstance complicates matters substantially.

Learning methods based on analogous proof transformation (e.g., [3], [2], [12], [16])
basically attempt to  transform a known proof (source proof) of a problem solved pre-
viously (source problem) into a proof (target proof) of a given problem to be solved
(target problem). Mostly, the mainly deterministic transformation procedure centers
on some kind of analogy mapping obtained by comparing source and target problem.
The transformation may include abstraction and planning steps. Occasionally, a l i t t le
search may be involved in order to  patch failures of the deterministic transformation
procedure (e.g., [2]).

The prevailing determinism (and restricted forms of search if any) has the advantage
that analogous proof transformation can be quite fast. The downside, however, is that
source and target problem have to  be very similar so that the source proof can be trans-
formed into a target proof mainly with deterministic actions. For this reason, methods
based on analogous proof transformation are preferably applied to  inductive theorem
proving. There, the inherent proof structures (base case, hypotheses, induction step)
provide a suitable platform for such methods. However, for general (deductive) theo-
rem proving i n  domains without any (recognizable) structure, these methods appear
to be inappropriate.

An  alternative approach to  learning for theorem proving is to  incorporate past problem-
solving experience into the search-guiding heuristic (e.g., [18], [21], [7], [10], [6]). That
is, when solving a target problem, the source problem is in  some way exploited by the
search-guiding heuristic. The theorem prover sti l l  conducts a search, but the heuristic
is biased towards a certain area of the search space depending on the source proof
and on the way the source proof is utilized by the heuristic. This approach has the
advantage that the demands on similarity between source and target problem do not
have to  be as high as for methods based on proof transformation. Naturally we incur
the usual overhead of search caused by exploring areas of the search space that do not



3 

contribute to the proof eventually found. (A "suitable" choice of the source problem-a 
general difficulty for all learning approaches-and a suitable method for heuristically 
utilizing the respective source proof can of course reduce the overhead considerably.) 

In this report we investigate a method for incorporating past proof experience into a 
search-guiding heuristic called flexible re-enactment (FR). FR basically attempts to re­
enact the source proof via search, if possible. Flexibil.ity is achieved by also searching 
in the "neighborhood" of the source proof or by using some "standard" (non-learning) 
heuristic if the trace of the source proof is (temporarily) lost. Both re-enactment and 
flexibility are combined in a monolithic structure that allows for shifting smoothly 
between flexibility and re-enactment depending on the search space encountered. 

FR was first introduced in [10]. In this report we present a systematic experimental 
evaluation of FR that illustrates its performance and range of applicability. Further­
more, we counter a frequent and unjustified criticism of FR, namely to be a costly 
disguise for adding the source proof (in the form of lemmas) to the axiomatization of 
the target problem. But first, section 2 explains some basics of our view of automated 
theorem proving and introduces some concepts necessary for FR. Section 3 describes FR 

I 

and discusses some of its properties. Experimental studies are reported on in section 4. 
Finally, a discussion in section 5 concludes the report. 

2 Theorem Proving 

Theorem provers can attempt to accomplish a task in various ways. We focus here on 
theorem provers that may be referred to as saturation-based theorem provers. This type 
of theorem prover is very common and is employed by provers based on the resolution 
method (e.g., [4]) or the Knuth-Bendix completion procedure (e.g., [1]). The principle 
working method of such a prover is to infer facts by applying given rules of inference, 
starting with a given set Ax of axioms, until the goal Ac (the theorem to be proved) 
can be shown to be a logical consequence ofAx. A proof problem A is hence specified 
by A = (Ax, Ac). 

The prover maintains two sets of' facts, the set FA of active facts and the set FP of 
passive or potential facts. In the beginning, FA = 0 and FP -:- Ax. In the selection or 
activation step a fact A E FP is selected, removed from FP, and put into FA unless 
there is a fact A' E FA that subsumes A (in symbolsA' <l A) in which case Ais simply 
discarded. Note that A == A' (syntactic identity modulo renaming variables) implies 
A' <l A (and of course A <l A'). If A is indeed activated (put into FA), all (finitely 
many) inferences involving A are applied exhaustively, and inferred facts are added 
to FP. Facts in FP are so to speak known to be inferable (from FA), but are not yet 
considered to be actually inferred. 

The activation step is the only inherently indeterministic step in the proof procedure 
just sketched. Commonly, a heuristic H is employed to resolve the indeterminism at the 
(inevitable) expense of introducing search. H associates a natural number H(A) E IN 
(a weight) with each A E FP which is~alled "weighting A with H(A)". The fact with 

contribute to the proof eventually found. (A  “suitable” choice of the source problem—a
general difficulty for all learning approaches—and a suitable method for heuristically
utilizing the respective source proof can of course reduce the overhead considerably.)

I n  this report we investigate a method for incorporating past proof experience into a
search-guiding heuristic called flexible re-enactment (FR). FR basically attempts to re-
enact the source proof via search, if possible. Flexibility is achieved by also searching
in  the “neighborhood” of the source proof or by using some “standard” (non-learning)
heuristic i f  the trace of the source proof is (temporarily) lost. Both re-enactment and
flexibility are combined in  a monolithic structure that allows for shifting smoothly
between flexibility and re-enactment depending on the search space encountered.

FR was first introduced in  [10]. In  this report we present a systematic experimental
evaluation of FR that illustrates its performance and range of applicability. Further-
more, we counter a frequent and unjustified criticism of FR, namely to  be a costly
disguise for adding the source proof ( in  the form of lemmas) to the axiomatization of
the target problem. But first, section 2 explains some basics of our view of automated
theorem proving and introduces some concepts necessary for FR. Section 3 describes FR
and discusses some of its properties. Experimental studies are reported on in  section 4.
Finally, a discussion in  section 5 concludes the report.

2 Theorem Proving

Theorem provers can at tempt t o  accomplish a task in  various ways. We focus here on
theorem provers that may be referred to  as saturation-based theorem provers. This type
of theorem prover is very common and is employed by provers based on the resolution
method (e.g., [4]) or the Knuth-Bendix completion procedure (e.g., [1]). The principle
working method of such a prover is to infer facts by applying given rules of inference,
starting with a given set Az of axioms, until the goal Ag (the theorem to be proved)
can be shown to be a logical consequence of Az. A proof problem A is hence specified
by A = (Az, Ag).

The prover maintains two sets of facts, the set F4  of active facts and the set FP  of
passive or potential facts. In  the beginning, FA  = @ and FP  = Az. In  the selection or
activation step a fact A € FP  is selected, removed from FF ,  and put into F4  unless
there is a fact X’ € F“  that subsumes A (in symbolsA’ < A) in  which case A is simply
discarded. Note that A = N’ (syntactic identity modulo renaming variables) implies
X <4 A (and of course A <4 X’). I f  A is indeed activated (put into F“), all (finitely
many) inferences involving A are applied exhaustively, and inferred facts are added
to FP.  Facts in FF  are so to speak known to be inferable (from F4 ) ,  but are not yet
considered to be actually inferred.

The activation step is the only inherently indeterministic step in  the proof procedure
just sketched. Commonly, a heuristic H is employed to  resolve the indeterminism at the
(inevitable) expense of introducing search. H associates a natural number H (A )  € IN
(a weight) wi th each A € FF  which is called “weighting A with H(A) ” .  The fact wi th



4 3 FLEXIBLE RE-ENACTMENT 

the smallest weight H(A) is next in line for activation. Ties are usually broken in 
compliance with the FIFO strategy. 

The search-guiding heuristic H is pivotal for efficiency. The quality of H can be mea­
sured in terms of redundant search effort. The sequence S == )'1; ... ; An of facts acti­
vated by H describes the search behavior of H. Assuming that such a search protocol S 
represents a successful search, the last fact An of S concluded the proof. By tracing 
back the application of inference rules starting with An we can identify all those facts 
that· actually contrJbuted to concluding the proof. These facts are called positive facts 
and are collected in the set P of positive facts. The remaining facts constitute the 
set N of negative facts and represent redundant search effort. 

The set P obtained when solving a source problem represents past proof experience. 
It is utilized by FR as described in the following section in order to reduce redundant 
search effort. 

3 Flexible Re-enactment 

Similarity between two proof problems A and B can occur in many vari.ations. One 
possible kind of similarity is that a considerable number of the facts that contribute to 
a proof of A are also useful for proving B (or vice versa). This means in our terminology 
that the associated sets of positive facts share many facts. FR attempts to exploit such 
a similarity. 

Assuming that a target problem AT and a source problem As are similar in the way 
just described, it is reasonable to concentrate on deducing facts when attempting to 
prove 'AT that also played a role in finding /the source proof of As, namely the set Ps 
of positive facts. When proving AT, FR prefers a A E FP (by giving it a relatively 
small weight FR(A)) if A "bears significant resemblance" with a fact in Ps. Such a A is 
called a focus fact. Depending on how strong the preference of focus facts is, FR will 
activate focus facts as soon as they appear in FP and give little attention to other facts 
while there are focus facts. (If all source axioms occur in the target axiomatization, 
this essentially means that FR will re-enact the source proof.) 

Although we assume the proofs of AT and As to share many positive facts, a few 
of the facts useful for proving As may lead to focus facts that do not contribute to 
the proof of AT eventually found. Besides the redundant search effort caused by these 
irrelevant focus facts, the crucial difficulty is tu find the (non-focus) facts not needed for 
proving As, but necessary for proving AT' These "missing" facts have to supplement 
the relevant focus facts, i.e., the focus facts that do contribute to the target proof. It 
is very likely that the missing facts are descendants1 of relevant focus facts considering 
that the relevant focus facts already established the core of a proof and that there are 
only a few steps needed to conclude the proof. It is reasonable to assume that "taking 
the reasoning process a few steps further in the direction given by the focus facts", 

1 When applying an inference rule to facts AI, ... , Am, thus producing a fact A, the facts AI, ... , Am 
are called the (immediate) ancestors of the (immediate) descendant A. 

4 3 FLEXIBLE RE-ENACTMENT

the smallest weight H(A) is next in line for activation. Ties are usually broken in
compliance with the FIFO strategy.
The search-guiding heuristic H is pivotal for efficiency. The quality of H can be mea-
sured in  terms of redundant search effort. The sequence S = ) ; . . . ;  A,  of facts acti-
vated by H describes the search behavior of H .  Assuming that such a search protocol S
represents a successful search, the last fact A, of S concluded the proof. By tracing
back the application of inference rules starting with A,  we can identify all those facts
that  actually contributed to concluding the proof. These facts are called positive facts
and are collected in the set P of positive facts. The remaining facts constitute the
set N of negative facts and represent redundant search effort.

The set P obtained when solving a source problem represents past proof experience.
I t  is utilized by FR as described in  the following section in order to reduce redundant
search effort.

3 Flexible Re-enactment

Similarity between two proof problems A and B can occur i n  many variations. One
possible kind of similarity is that a considerable number of the facts that contribute to
a proof of A are also useful for proving B (or vice versa). This means in  our terminology
that the associated sets of positive facts share many facts. FR attempts to  exploit such
a similarity.

Assuming that a target problem A r  and a source problem As  are similar i n  the way
just described, i t  is reasonable to  concentrate on deducing facts when attempting to
prove A r  that also played a role in  finding the source proof of As ,  namely the set Ps
of positive facts. When proving Ar, FR prefers a A € FF  (by giving i t  a relatively
small weight FR(A)) i f  A “bears significant resemblance” with a fact in  Ps. Such a A is
called a focus fact. Depending on how strong the preference of focus facts is, FR will
activate focus facts as soon as they appear in  F ”  and give l i t t le attention to other facts
while there are focus facts. (If all source axioms occur in the target axiomatization,
this essentially means that FR will re-enact the source proof.)
Although we assume the proofs o f .A r  and As  to share many positive facts, a few
of the facts useful for proving As  may lead to  focus facts that do not contribute to
the proof of A r  eventually found. Besides the redundant search effort caused by these
irrelevant focus facts, the crucial difficulty is to find the (non-focus) facts not needed for
proving As ,  but  necessary for proving Ar .  These “missing” facts have to  supplement
the relevant focus facts, i.e., the focus facts that do contribute to  the target proof. I t
is very likely that the missing facts are descendants’ of relevant focus facts considering
that the relevant focus facts already established the core of a proof and that there are
only a few steps needed to  conclude the proof. I t  is reasonable to  assume that “taking
the reasoning process a few steps further in the direction given by the focus facts”,

When applying an inference rule to  facts A ,  . . . ,  Am, thus producing a fact A, the facts Ay , . . . ,  Am
are called the (immediate) ancestors of the (immediate) descendant A.



3.1 Details of FR 5 

i.e., that also preferring their descendants will be profitable. Immediate descendants 
should be preferred the most. In the sequel we give a formal definition of FR. 

3.1 Details of FR 

For the definition of FR the notions 'difference' and 'distance' are pivotal. First, we 
define the difference diff between two facts A and X to formalize the notion 'focus 
fact'. 

). <I X 
diff (A, A') = { ~OO, otherwise. 

For the time being, we content ourselves with this simple definition ofdifference that 
centers on subsumption. Note that the values 0 and 100 are somewhat arbitrary but 
intuitive hints of percentages, denoting "perfect similarity" and "no similarity at all", 
respectively. As we shall see, the restriction of diff to IN 100 = {O, 1, ... , lOO} entails 
that all further computations will produce values from IN100 which makes computations 
more transparent. 

diff is used to find out whether a given fact A is a focus fact. We define 

V(A) = min ({ diff(A, X) I X E Ps}) . 

Hence, V( A) returns the minimal difference between a given fact A (target) and the 
positive facts (source). If V(A) = 0 then A is considered to be a focus fact, which 
complies with the ideas from above. 

Now recall that also descendants of focus facts are to be favored. The preference 
given to them should, however, decrease with their distance from focus facts. The 
distance d( A) of a given fact A measures distance, roughly said, in terms of the number 
of inference steps separating A from ancestors which are focus facts. It depends on 
the distance of the immediate ancestors of A from focus facts (if A is not an axiom) 
and V(A): 

if A is an axiom 

if Al is the (only) immediate ancestor of A 

if Al and A2 are the immediate ancestors of A. 

The first argument of 1/J represents the distance of the immediate ancestors. It is simply 
given as the distance of the immediate ancestor if there is just one immediate ancestor. 
If A is an axiom (i.e., there are no ancestors), this value is specified by a parameter 
q E lN100 . If A has two 'immediate ancestors, then r computes this value. (Note that 
d(A) is defined if A has zero, one, or two immediate ancestors which is sufficient for 
most deduction systems. If the number of immediate ancestors should be in excess of 
two, then a weighted average of the ancestors' distances can be employed, for instance.) 
We chose a parameterized r employing a parameter ql E [0; 1]. Depending on ql, the 

3.1 Details of  FR 5

i.e., that also preferring their descendants will be profitable. Immediate descendants
should be preferred the most. In  the sequel we give a formal definition of FR.

3 .1  Details o f  FR

For the definition of FR the notions ‘difference’ and ‘distance’ are pivotal. First, we
define the difference diff between two facts A and X’ to  formalize the notion ‘focus
fact’.

0, AN. Ndiff (A,X) = { 100, otherwise.

For the time being, we content ourselves with this simple definition of difference that
centers on subsumption. Note that the values 0 and 100 are somewhat arbitrary but
intuitive hints of percentages, denoting “perfect similarity” and “no similarity at al l”,
respectively. As we shall see, the restriction of diff to Nıoo = {0 ,1 , . . . ,100}  entails
that all further computations will  produce values from IN;¢o which makes computations
more transparent.

diff is used to  find out whether a given fact A is a focus fact. We define

D(A)  = min ({diff(A ,X)  | X' € Ps } ) .

Hence, D ( ) )  returns the minimal difference between a given fact A (target) and the
positive facts (source). If  D(A) = 0 then A is considered to be a focus fact, which
complies wi th  the ideas from above.

Now recall that also descendants of focus facts are to  be favored. The preference
given to them should, however, decrease with their distance from focus facts. The
distance d(A) of a given fact A measures distance, roughly said, in terms of the number
of inference steps separating A from ancestors which are focus facts. I t  depends on
the distance of the immediate ancestors of A from focus facts (if A is not an axiom)
and D(A):

PY q,D(A)), i f  A is an axiom
dA)  =< v d(A1), DV) ,  i f  A, is the (only) immediate ancestor of A

0 y(d(A1), d(X2)), DV ) ,  i f  A; and A; are the immediate ancestors of A.

The first argument of 9 represents the distance of the immediate ancestors. It  is simply
given as the distance of the immediate ancestor i f  there is just one immediate ancestor.
I f  A is an axiom (i.e., there are no ancestors), this value is specified by a parameter
q € Ngo .  I f  A has two immediate ancestors, then y computes this value. (Note that
d(A) is defined if A has zero, one, or two immediate ancestors which is sufficient for
most deduction systems. I f  the number of immediate ancestors should be in  excess of
two, then a weighted average of the ancestors’ distances can be employed, for instance.)
We chose a parameterized y employing a parameter ¢ ;  € [0; 1]. Depending on gı, the



6 3 FLEXIBLE RE-ENACTMENT 

result of { ranges between the minimum and the maximum of the distances of the 
immediate ancestors: 

{(x, y) = min(x, y) + Lql . (max(x, y) - min(x, y))J 

Using ql = 0 or ql = 1, { computes the minimum or maximum, respectively. With 
ql = 0.5, { computes the (integer part of the)2 average. 

The distance of immediate ancestors (or q) and V are combined by 'l/J yielding d( A). 
'l/J should-for obvious reasons-satisfy the following criteria: On the one hand, d(A) 
should be minimal (i.e., 0) if V(A) = 0, in which case A itself is a focus fact. On 
the other hand, the value produced by 'l/J should increase (reasonably) with the values 
obtained from { and V in order to reflect the (growing) remoteness of A from focus 
facts (and, in a way, from the source proof). As a matter of fact, { already satisfies 
the latter criterion. Therefore, 'l/J is in parts identical to {. It also uses a parameter 
q2 E [0; 1]. 

O· y=O 

'l/J(x, y) = { ~in(x, y) + Lq2 . (max(x, y) - min(x, y))J, otherwise. 

The remaining task consists in designing FR so that it offers a reasonable degree of spe­
cialization in (i.e., focus on) the source proof that is paired with an acceptable degree 
of flexibility, i.e., the ability to cope with a target problem with a proof that requires 
minor to moderate deviations from the source proof. The use of d already provides suf:.. 
ficient specialization by directing the search towards the source proof. Its rudimentary 
flexibility can be enhanced by combining it with some "standard" ("general purpose") 
heuristic H. 

Among several sensible alternatives we picked the following: 

FR(;\) = (d('\) + p) ·H(A), pE IN. 

The parameter p controls the effect of d('\) on the final weight FR(A). d('\) will be 
dominant if p = O. In this case, if d('\) = 0, FR(A) will also be 0 regardless of H(A). 
As p grows, H increasingly influences the final weight, thus mitigating the inflexibility 
of the underlying method, namely using d('\) alone as a measure for the suitability of 
a fact '\. For very large p, the influence of d(,\) becomes negligible, and FR basically 
degenerates into H. 

3.2 Range of Applicability 

FR is most suitable in situations where each source axiom is "covered" by a target 
axiom, i.e., for each source axiom N there is a target axiom A so that ,\ <J N. Then FR 
ean conduct a search guided by the source proof in the sense that FR can re-enact the 

2We restrict our computations to IN", because there is no gain in "high precision arithmetic" when 
dealing with weighting functions, but there would be a loss in efficiency w.r.t. computation time. 

6 3 FLEXIBLE RE-ENACTMENT

result of y ranges between the minimum and the maximum of the distances of the
immediate ancestors:

¥(z,y)  = min(z,  y) + |g  - (max(z,y) — min(z,y)) ]  .

Using ¢;  = 0 or ¢ ;  = 1, y computes the minimum or maximum, respectively. With
¢1 = 0.5, y computes the (integer part of the)? average.

The distance of immediate ancestors (or ¢) and D are combined by % yielding d(A).
ı% should—for obvious reasons—satisfy the following criteria: On the one hand, d(A)
should be minimal (i.e., 0) if  D(A) = 0, in which case A itself is a focus fact. On
the other hand, the value produced by % should increase (reasonably) with the values
obtained from y and D in order to reflect the (growing) remoteness of A from focus
facts (and, in a way, from the source proof). As a matter of fact, y already satisfies
the latter criterion. Therefore, 9 is in  parts identical to  y .  I t  also uses a parameter
Q2 € (0 ;  1 ) .

wen)  ={ 5 v=0’ min(z,y) + |gz - (max(z,y) — min(z,y))|, otherwise.

The remaining task consists in  designing FR so that  i t  offers a reasonable degree of spe-
cialization in  (i.e., focus on) the source proof that is paired with an acceptable degree
of flexibility, i.e., the ability to cope with a target problem with a proof that requires
minor to  moderate deviations from the source proof. The use of d already provides suf-
ficient specialization by directing the search towards the source proof. I ts  rudimentary
flexibility can be enhanced by combining i t  with some “standard” (“general purpose”)
heuristic H .

Among several sensible alternatives we picked the following:

FR(A) = (d(X) +p )  -H ( } ) ,  pe .

The parameter p controls the effect of d(A) on the final weight FR(A). d(A) will be
dominant i f  p = 0. I n  this case, i f  d(A) = 0, FR()) wi l l  also be 0 regardless of H(X).
As p grows, H increasingly influences the final weight, thus mitigating the inflexibility
of the underlying method, namely using d(A) alone as a measure for the suitability of
a fact A. For very large p,  the influence of d(A) becomes negligible, and FR basically
degenerates into H .

3.2 Range of  Applicability

FR is most suitable i n  situations where each source axiom is “covered” by a target
axiom, i.e., for each source axiom X’ there is a target axiom A so that A <1 N .  Then FR
can conduct a search guided by the source proof in  the sense that FR can re-enact the

2We restr ict our computat ions to  IN, because there is  no  gain in  “high precision ar i thmetic” when
dealing with weighting functions, but  there would be a loss i n  efficiency w.r.t.. computation time.



7 

source proof (or a more general proof) without search since, for each positive fact, there 
will be a focus fact subsuming it. The re-enacted source proof or, more precisely, the 
focus facts constituting the source proof, can serve as a basis for finding the target proof 
by searching in the "neighborhood" of the source proof, i.e., in particular by focusing 
on immediate descendants of focus facts (cp. subsection 4.2, case 1). (If additionally 
the source goal As subsumes the target goal AT then plain re-enactment will succeed.) 
Under these conditions it is also possible to add the positive facts as lemmas to the 
target axiomatization, because it is known that every logical consequence of the source 
axioms is also a logical consequence of the target axioms. Therefore, FR has often been 
mistaken for a costly disguise for adding lemmas. However, adding lemmas creates 
kind of a "flat" structure as opposed to a more hierarchical structure when using focus 
facts and the notion of distance. In other words, when simply adding lemmas we have 
an enlarged set of axioms on the one side and their descendants on the other side. 
FR, however, imposes a kind of ordering on descendants, essentially giving immediate 
descendants top priority. (See also subsection 4.2.) 

But FR is also useful in case source and target axiomatizations do not agree "obvi­
ously", i.e., agreement (logical equivalence) cannot be checked with simple (syntactic) 
subsumption criteria. Under these conditions it is not sound to add the positive facts of 
the source proof to the target axiomatization because it is not known whether they are 
logical consequences of the target axiomatization. In subsection 4.2 we shall see that 
FR performs quite well when target and source axiomatizations do not agree obviously, 
regardless of whether target and source goal agree (i.e., As <l AT) or not. 

SO, FR is very versatile and covers a wide range of applicability. Nevertheless we want 
to point out that FR does of course not prove useful if source and target problem are 
not "similar enough", i.e., the sets of positive facts do not share enough facts. In 
other words, there are too few relevant focus facts that do not suffice to supply the 
core of a target proof. In addition, too many irrelevant focus facts hamper the search. 
(Naturally, relevant and irrelevant focus facts can only be identified at the end of a 
successful search.) In this case focusing on the source proof will be counterproductive. 
Hence it is important to find a suitable source problem. This difficulty is not addressed 
in this report (see [11] or [5] instead). H'ere, we want to show that-when given 
a suitable source problem-FR allows for solving target problems that pose serious 
difficulties or cannot be handled at all without FR. 

Experiments 

We conducted our experimental studies with a theorem prover for problems of con­
densed detachment (CD). Subsection 4.1 explains the basics of CD and motivates this 
choice. We want to point out, however, that we have also successfully applied FR to 
equational reasoning (cp. [5]). The results of our experiments with CD are summarized 
in section 4.2. 

4 

source proof (or a more general proof) without search since, for each positive fact, there
will be a focus fact subsuming i t .  The re-enacted source proof or, more precisely, the
focus facts constituting the source proof, can serve as a basis for finding the target proof
by searching in the “neighborhood” of the source proof, i.e., in  particular by focusing
on immediate descendants of focus facts (cp. subsection 4.2, case 1). (If additionally
the source goal As subsumes the target goal Ar then plain re-enactment will succeed.)
Under these conditions i t  is also possible to  add the positive facts as lemmas to the
target axiomatization, because i t  is known that every logical consequence of the source
axioms is also a logical consequence of the target axioms. Therefore, FR has often been
mistaken for a costly disguise for adding lemmas. However, adding lemmas creates
kind of a “flat” structure as opposed to  a more hierarchical structure when using focus
facts and the notion of distance. In  other words, when simply adding lemmas we have
an enlarged set of axioms on the one side and their descendants on the other side.
FR, however, imposes a kind of ordering on descendants, essentially giving immediate
descendants top priority. (See also subsection 4.2.)

But FR is also useful in case source and target axiomatizations do not agree “obvi-
ously”, i.e., agreement (logical equivalence) cannot be checked with simple (syntactic)
subsumption criteria. Under these conditions i t  is not sound to  add the positive facts of
the source proof to  the target axiomatization because i t  is not known whether they are
logical consequences of the target axiomatization. In  subsection 4.2 we shall see that
FR performs quite well when target and source axiomatizations do not agree obviously,
regardless of whether target and source goal agree (i.e., As < Ar) or not.

So, FR is very versatile and covers a wide range of applicability. Nevertheless we want
to  point out that FR does of course not prove useful i f  source and target problem are
not “similar enough”, i.e., the sets of positive facts do not share enough facts. I n
other words, there are too few relevant focus facts that do not suffice to supply the
core of a target proof. In  addition, too many irrelevant focus facts hamper the search.
(Naturally, relevant and irrelevant focus facts can only be identified at the end of a
successful search.) In this case focusing on the source proof will  be counterproductive.
Hence i t  is important to  find a suitable source problem. This difficulty is not addressed
in this report (see [11] or [5] instead). Here, we want to  show that—when given
a suitable source problem—FR allows for solving target problems that pose serious
difficulties or cannot be handled at all without FR.

4 Experiments

We conducted our experimental studies with a theorem prover for problems of con-
densed detachment (CD). Subsection 4.1 explains the basics of CD and motivates this
choice. We want to  point out, however, that we have also successfully applied FR to
equational reasoning (cp. [3]). The results of our experiments with CD are summarized
in section 4.2.



8 4 EXPERIMENTS
 

4.1 Condensed Detachment 

CD allows for studying logic calculi with automated deduction systems. (See [22] and 
[13] for motivation and a detailed theoretical background.) There is only one inference 
rule (also denoted by CD) that manipulates first-order terms which we shall also call 
facts. The set of terms (facts) Term(:F, V) is defined as usual, involving a finite set :F 
of function symbols and an enumerable set V of variables. 

CD (in its basic form) is defined for a distinguished binary function symbol 1 E :F. 
CD allows us to deduce (J(t) from two given facts l(s, t) and s' if (J is the most gen­
eral unifier of sand s'. A proof problem A = (Ax, Aa) hence consists in deducing 
Aa from Ax with continuous applications of CD. Subsumption is merely a matching 
problem, i.e., A <l X if (and only if) there is a match (J so that (J(A) == X. 

CD fits the theorem proving framework given in section 2. Despite the simplicity of CD 
the arising proof problems can be very hard, sometimes even exceeding the limits of 
state-of-the-art provers. Therefore, CD is widely acknowledged as a testing ground 
for new ideas. It has been (and still is) used for this purpose quite frequently (e.g., 
[17], [24], [14], [19], [25], [10]). Furthermore, CD offers problems of a varying degree of 
difficulty. almost continuously ranging from (nearly) trivial to (very) challenging. This 
constellation is important if we want to employ learning techniques (like FR). 

For the experiments we used the theorem prover 'CODE' that realizes CD based on 
the concepts introduced in section 2. CODE has a standard ("general purpose") 
heuristic W at its disposal that computes the weight W(A) of a fact .\ E FP as 
W(A) = Co • 6(A) + Cw . W(A), Co, Cw E IN. W(A) is equal to twice the number of 
function symbols occurring in A plus the number of variables in A. 6(A) is the level 
or depth of A: 6(A) = 0 if A is an axiom; otherwise 6(A) is the maximum of the levels 
of the immediate ancestors of A plus 1. Furthermore, we set W(A) = 0 if A <l Aa. 
Consequently, facts subsuming the goal and hence concluding the proof are activated 
immediately. (See [8] or [9] for details.) 

W is quite a successful heuristic in particular when taking into account the component 6 
reasonably (e.g., Co = 2, Cw = 1). We use W as the standard heuristic required by FR, 

i.e., FR(A) = (d(A) + p) . W(A). Here, we always set the coefficients Co = 0 and Cw = 1, 
thus ignoring the level for reasons explained in [8]. (Basically both d and 6 can be 
used to penalize depth which can lead to an undesirable and unprofitable "double 
penalty" .) Based on extensive experiments (cp. [8]) the remaining parameters of FR 

are set as follows: p = 20, ql = 0.75, q2 = 0.25, q = o. 

4.2 Experimental Results 

We examined FR in the light of problems LCL040-1 through LCL072-1 (problems 1-­
33 in [14]) and problems LCLi09-1 through LCLi16-1 (problems 55-62 in [14]). These 
problems have the property emphasized in the preceding subsection which is important 
for learning, namely to offer a varying degree of difficulty that ranges from rather simple 
to challenging. They are a part of the public TPTP problem library ([20]) version 1.2.1. 

8 4 EXPERIMENTS

4 .1  Condensed Detachment

CD allows for studying logic calculi with automated deduction systems. (See [22] and
[13] for motivation and a detailed theoretical background.) There is only one inference
rule (also denoted by CD) that manipulates first-order terms which we shall also call
facts. The set of terms (facts) Term(F,V) is defined as usual, involving a finite set F
of function symbols and an enumerable set V of variables.
CD (in its basic form) is defined for a distinguished binary function symbol f € F .
CD allows us to  deduce o(¢) from two given facts f ( s , t )  and s’ i f  ¢ is the most gen-
eral unifier of s and s’. A proof problem A = (Az, Ag) hence consists in deducing
A¢ from Az  with continuous applications of CD. Subsumption is merely a matching
problem, i.e., A < A’ i f  (and only i f )  there is a match o so that o(1) = N.

CD fits the theorem proving framework given in section 2. Despite the simplicity of CD
the arising proof problems can be very hard, sometimes even exceeding the limits of
state-of-the-art provers. Therefore, CD is widely acknowledged as a testing ground
for new ideas. It has been (and still is) used for this purpose quite frequently (e.g.,
(17), [24], [14], [19], [25], [10]). Furthermore, CD offers problems of a varying degree of
difficulty, almost continuously ranging from (nearly) trivial to (very) challenging. This
constellation is important i f  we want to  employ learning techniques (like FR).

For the experiments we used the theorem prover ‘CODE’ that realizes CD based on
the concepts introduced in section 2. CODE has a standard (“general purpose”)
heuristic W at i ts disposal that computes the weight W(X) of a fact A € FF  as
WA)  = cs :  6(A) + cw - w(A), cs, Cw € IN. w(A) is equal to twice the number of
function symbols occurring in A plus the number of variables in A. §() )  is the level
or depth of A: (A )  = 0 if A is an axiom; otherwise 6(A) is the maximum of the levels
of the immediate ancestors of A plus 1. Furthermore, we set W(X) = 0 i f  A 4 Aq.
Consequently, facts subsuming the goal and hence concluding the proof are activated
immediately. (See [8] or [9] for details.)
W is quite a successful heuristic in  particular when taking into account the component 6
reasonably (e.g., cs = 2, cw = 1). We use W as the standard heuristic required by FR,
i.e., FR(A) = (d(A) + p)  - W(X). Here, we always set the coefficients cs = 0 and cw = 1,
thus ignoring the level for reasons explained in [8]. (Basically both d and é can be
used to  penalize depth which can lead to  an undesirable and unprofitable “double
penalty”.) Based on extensive experiments (cp. [8]) the remaining parameters of FR
are set as follows: p = 20, qgı = 0.75, q2 = 0.25, ¢ = 0.

4.2 Experimental Results

We examined FR in the light of problems LCL040-1 through LCLO72-1 (problems 1 -
33 in [14]) and problems LCL109-1 through LCL116-1 (problems 55-62 in  [14]). These
problems have the property emphasized in  the preceding subsection which is important
for learning, namely to  offer a varying degree of difficulty that ranges from rather simple
to  challenging. They are a part of the public TPTP problem library ([20]) version 1.2.1.



4.2 Experimental Results 9 

Table 1: Case 1. 

Target Source FR FFU RFF lemmas lemmas* W 
058 060 23s (519) 89% 100% - 5s (362) 25s (710) 
060 058 8s (328) 95% 93% - 12s (533) 26s (733) 

071 
070 

072 

4s (235) 
7s (366) 

75% 
58% 

94% 
100% 

-

-

3s (230) 
3s (254) 

-

068 
067 

069 

4s (227) 
20s (629) 

72% 
77% 

95% 
100% 

2s (193) 
-

2s (225) 
-

68s (982) 

114 113 3s (234) 83% 91% 12s (513) 10s (482) -

116 113 5s (314) 78% 95% 14s (541) 10s (492) -

(Note that the problems in the TPTP are given in CNF, a form suitable for resolution­
based or tableaux-oriented theorem provers. The CNF "encoding" of problems of CD 
is not needed for CODE.) We consider here mainly those problems that pose some 
difficulties for CODE when using W to control the search. The performance of W with 
respect to the problems above (for various settings of the parameters Co and cw ) was 
thoroughly investigated in [8] (see also [9]) and compared with the performance of the 
renowned theorem prover OTTER ([15]) as reported in [14]. This comparison showed 
that W can control the search so well that CODE clearly outperforms OTTER even 
though CODE is inferior to OTTER in terms of inferences per second. Therefore, it is 
not easy at all for FR to improve on W. 

In the following we shall examine the three interesting cases regarding the axiomatiza­
tions and the goals oftarget and source problems AT = (AXT' AT) and As = (Axs, As): 

1.	 The same axiomatization (AXT = Axs), but different goals (As 11 AT, AT l1As); 

2.	 Different axiomatizations (AXT and Axs may share some axioms, but it is not the 
case that one axiomatization is part of the other), but the same goal (As <I AT); 

3.	 Different axiomatizations and different goals; 

(We omit the fourth case "the same axiomatization and the same goal" because then 
plain re-enactment suffices and always succeeds in a negligible period of time.) 

Note that only for case 1 it is sound to add positive facts of the source proof as lemmas 
to AXT' Therefore, we shall consider this possibility only for case 1. Table 1 displays our 
experiments concerning case 1. The first two columns list target and source problems, 
respectively. (The names are abbreviated, e.g., we write 058 instead of LCL058-1.) The 
source problems were chosen according to some simple, automatable criteria. (This is 
not a relevant issue in this report. See [11] instead.) Note that we employed source 
proofs found by W whenever possible in order to avoid creating particularly similar 
proofs with FR. For instance, we did not use the proof of LCL058-1 found by FR using 
a proof of LCL060-1 when proving LCL060-1 with FR (and source LCL058-1). 

4.2 Experimental Results

Table 1: Case 1 .

Target | Source FR FFU | RFF | lemmas | lemmas* W
058 | 060 | 23s (519) | 89% | 100% — 5s (362) || 25s (710)
060 | 058 | 8s (328) | 95% | 93% — 12s (533) || 26s (733)
071 | 070 | 4s (235) | 75% | 94% — 3s (230) a

072 | 7s (366) | 58% | 100% — 3s (254)
067 4s (227 72% | 95% 2s (193 2s (225 ;

968 | 969 a 77% | 100% 093) 20 229) gas (082)
114 | 113 || 3s (234) | 83% | 91% | 12s (513) | 10s (482) —
116 113 5s (314) | 78% | 95% || 14s (541) | 10s (492) —

(Note that the problems in  the TPTP are given in  CNF, a form suitable for resolution-
based or tableaux-oriented theorem provers. The CNF “encoding” of problems of CD
is not needed for CODE.) We consider here mainly those problems that pose some
difficulties for CODE when using W to control the search. The performance of W with
respect to  the problems above (for various settings of the parameters cs and ¢,,) was
thoroughly investigated in  [8] (see also [9]) and compared with the performance of the
renowned theorem prover OTTER ([15]) as reported in  [14]. This comparison showed
that W can control the search so well that CODE clearly outperforms OTTER even
though CODE is inferior to  OTTER in terms of inferences per second. Therefore, i t  is
not easy at all for FR to  improve on W.

In  the following we shall examine the three interesting cases regarding the axiomatiza-
tions and the goals of target and source problems A r  = (Azr ,  Ar) and As  = (Azs, As):

1. The same axiomatization (Azr  = Azs), but different goals (As A Ar, Ar 4 As);

2. Different axiomatizations (Azr  and Ars may share some axioms, but  i t  is not the
case that one axiomatization is part of the other), but the same goal (As <1 Ar);

3. Different axiomatizations and different goals;

(We omit the fourth case “the same axiomatization and the same goal” because then
plain re-enactment suffices and always succeeds in a negligible period of time.)

Note that only for case 1 i t  is sound to  add positive facts of the source proof as lemmas
to  Azp .  Therefore, we shall  consider this  possibility only for case 1. Table 1 displays our
experiments concerning case 1. The first two columns list target and source problems,
respectively. (The names are abbreviated, e.g., we write 058 instead of LCL058-1.) The
source problems were chosen according to  some simple, automatable criteria. (This is
not a relevant issue i n  this report. See [11] instead.) Note that we employed source
proofs found by W whenever possible in order to avoid creating particularly similar
proofs wi th  FR. For instance, we did not use the proof of LCL058-1 found by FR using
a proof of LCL060-1 when proving LCL060-1 with  FR (and source LCLO58-1).



10 4 EXPERIMENTS 

The results of FR are given in the correspondingly labeled column. The entries display 
run-time (approximate CPU time in seconds obtained on a SPARCstation 10) and the 
number of activation steps (i.e., the length ofthe search protocol) in parentheses. This 
number gives us a rough idea of the search effort. (The length of the search protocol 
usually does not correlate well with the length of the proof eventually found. This is 
also not an issue here since we are only interested in some proof, not necessarily a 
short one.) 

Column 'FFU' shows the "focus fact usage", i.e., the share (relevant) focus facts have 
of the target proof, given as an approximate percentage. Column 'RFF' shows the 
share which facts that account for relevant focus facts have of the source proof. This 
value hence gives us an idea of how many facts of the source proof proved useful for 
finding the target proof. Consider, for instance, target problem LCL071-1 and source 
problem LCL070-1. The target proof consists of 20 facts. 15 of the 20 facts are focus 
facts. Hence, FFU is 15/20 = 75%. These 15 relevant focus facts go back to 15 facts 
in the source proof. Since 16 facts constitute the source proof, RFF is 15/16 ;:::j 94%. 

The values of RFF listed in table 1 indicate that it is important that RFF is rather 
high. Given case 1 (equal source and target axiomatization) this is understandable 
considering that the share 100% - RFF of the source proof will definitely give rise to 
irrelevant focus facts that may disarrange the search. Large values of FFU indicate 
that a large part of the target proof goes back to re-enactment and hence could be 
found rather efficiently. 

When adding the positive facts of the source proof as lemmas to the axiomatization of 
the target problem, CODE employed W with Cb = 2 and Cw = 1 to guide the search. 
(This parameter setting turned out to be generally useful during the experiments re­
ported on in [8].) The results of utilizing lemmas in this manner are listed in column 
'lemmas'. The entries again show run-time and length of the search protocol. The 
entry '-' signifies that no proof was found in an "acceptable" period of time (one 
hour). 

A slight modification of lemma usage is to assign the weight 0 to all axioms (including 
added lemmas) so that they are immediately activated. Column 'lemmas*' shows 
that this modification is crucial in order to make adding lemmas competitive. The 
improvements are understandable because we can thus coerce re-enactment and hence 
simulate the obviously profitable re-enactment part of FR. Nonetheless, table 1 does 
not reveal any significant advantage of adding .lemmas compared to FR. As a matter of 
fact, adding lemmas can cause a failure when FR still succeeds (cp. target LCL068-1, 
source LCL069-1). An opposite observation (failure of FR, success of adding lemmas) 
has so far not been made. This leads us to conclude that the "hierarchical" search 
induced by the distance measure d is pivotal. (Note, however, that the component 8 
of W (switched off for FR) also allows for taking into account distance or depth, but in a 
much cruder way than d does. Basically, the ancestor with maximal depth determines 
the depth of a descendant. The depth of the other ancestor has no effect.) 

The last column of table 1 lists the results of W as a point of reference. The generally 
useful parameter setting (Cb = 2 and c,. = 1) fails for all target problems of table 1 

10 4 EXPERIMENTS -

The results of FR are given in the correspondingly labeled column. The entries display
run-time (approximate CPU time in seconds obtained on a SPARCstation 10) and the
number of activation steps (i.e., the length of the search protocol) in  parentheses. This
number gives us a rough idea of the search effort. (The length of the search protocol
usually does not correlate well with the length of the proof eventually found. This is
also not an issue here since we are only interested in  some proof, not necessarily a
short one.)

Column ‘FFU’ shows the “focus fact usage”, i.e., the share (relevant) focus facts have
of the target proof, given as an approximate percentage. Column ‘RFF’ shows the
share which facts that account for relevant focus facts have of the source proof. This
value hence gives us an idea of how many facts of the source proof proved useful for
finding the target proof. Consider, for instance, target problem LCLO71-1 and source
problem LCLO70-1. The target proof consists of 20 facts. 15 of the 20 facts are focus
facts. Hence, FFU is 15/20 = 75%. These 15 relevant focus facts go back to 15 facts
i n  the source proof. Since 16 facts constitute the source proof, RFF is 15/16 z 94%.

The values of RFF listed in table 1 indicate that i t  is important that RFF is rather
high. Given case 1 (equal source and target axiomatization) this is understandable
considering that the share 100% — RFF of the source proof will definitely give rise to
irrelevant focus facts that may disarrange the search. Large values of FFU indicate
that a large part of the target proof goes back to  re-enactment and hence could be
found rather efficiently.

When adding the positive facts of the source proof as lemmas to  the axiomatization of
the target problem, CODE employed W with cs = 2 and ¢,, = 1 to guide the search.
(This parameter setting turned out to  be generally useful during the experiments re-
ported on in  [8].) The results of utilizing lemmas in this manner are listed in column
‘lemmas’. The entries again show run-time and length of the search protocol. The
entry ‘—’  signifies that no proof was found i n  an “acceptable” period of time (one
hour).

A slight modification of lemma usage is to  assign the weight 0 to  all axioms (including
added lemmas) so that they are immediately activated. Column ‘lemmas*’ shows
that this modification is crucial in order to make adding lemmas competitive. The
improvements are understandable because we can thus coerce re-enactment and hence
simulate the obviously profitable re-enactment part of FR. Nonetheless, table 1 does
not reveal any significant advantage of adding lemmas compared to  FR. As a matter of
fact, adding lemmas can cause a failure when FR still succeeds (cp. target LCLO68-1,
source LCLO69-1). An opposite observation (failure of FR, success of adding lemmas)
has so far not been made. This leads us to conclude that the “hierarchical” search
induced by the distance measure d is pivotal. (Note, however, that the component 6
of W (switched off for FR) also allows for taking into account distance or depth, but  in  a
much cruder way than d does. Basically, the ancestor with maximal depth determines
the depth of a descendant. The depth of the other ancestor has no effect.)

The last column of table 1 lists the results of WW as a point of reference. The generally
useful parameter setting (cs = 2 and ¢ , .  = 1) fails for all target problems of table 1



4.2 Experimental Results 11 

* 1 1 i(x,i(y,x)) 

* 2 2 [ 1 , 1 ] i(x, i(y, i(z, y))) 

* 3 3 i(i(n(x), n(y)), i(y, x)) 

* 4 4 i(i(x, y), i(i(y, z), i(x, z))) 

* 5 5 [ 4 , 1 ] i(i(i(x, y), z), dy, z)) 

* 6 6 [ 5 , 3] i(n(x), i(x, y)) 

* 7 7 [ 4 , 6 ] i(i(i(x, y), z), i(n(x), z)) 

* 8 8 i(i(i(x, y), y), i(i(y, x), x)) 

* 9 9 [ 5 , 8 ] i(x,i(i(x,y),y)) 

* 10 10 [ 8 , 2 ] i(i(i(x, i(y, x)), z), z) 

* 12 11 [ 4 , 9 ] i(i(i(i(x, y), y), z), i(x, z)) 

* 15 12 [ 4 , 3 ] i(i(i(x, y), z), i(i(n(y), n(x)), z)) 

* 16 13 [ 12 , 10 ] i(i(n(x), n(i(y, i(z, y)))), x) 

* 17 14 [ 7 , 13 ] i(n(n(x)), x) 

* 18 15 [ 3 , 14 ] i(x, n(n(x))) 

* 19 16 [ 9 , ,3 ] i(i(i(i(n(x), n(y)), i(y, x)), z), z) 

* 21 17 [ 4 , 4] i(i(i(i(x, y), i(z, y)), u), i(i(z, x), u)) 

* 22 18 [ 11 , 17 ] i(i(x, y), i(i(z, x), i(z, y))) 

* 23 19 [ 18 , 15 ] i(i(x, y), i(x, n(n(y)))) 

* 24 20 [ 17 , 16 ] . i(i(x, i(n(y), n(z))), i(x, i(z, y))) 
58 21 [ 4 , 14 ] i(i(x, y), i(n(n(x)), y)) 

148 I 22 [ 20 , 21 ] i(i(x, n(y)), i(y, n(x))) 
233 23 [ 4 , 19 ] i(i(i(x, n(n(y))), z), i(i(x, y), z)) 
234 24 [ 23 , 22 ] i(i(x, y), i(n(y), n(x))) 

Figure 1: Proof of LCL114-1 found by FR when using source LCL113-1. 

(and also of tables 2 and 3). (Recall that the selected problems are the ones that 
cause difficulties for W.) The successful runs of W were obtained with Co = 0 and 
Cw = I-the setting that also FR employs. These experiments show that FR enables 
CODE to prove problems quite, fast which it could not handle with Wand one of 
the two mentioned parameter settings. (There are, however, two different and very 
problem-specific parameter settings for problems LCL068-1 and LCL071-1 that make 
it possible to prove these problems with W. See [8].) 

Figure 1 displays the proof of LCL114-1 found by FR using source LCL113-1 as a 
typical example of case 1. The proof listing shows (from left to right) the number of 
the activation step, the number of the proof step, the ancestors in brackets, given as 
numbers referring to previous proof steps (or a blank space for axioms), and the facts 
themselves. Focus facts are marked by '*'. The identical axiomatizations of target and 
source make it possible that a large initial part of the target proof (FFU = 20/24 ~ 

83%) consists of focus facts. This part also constitutes the main part of the source 
proof (RFF = 20/22 ~ 91%) and is found very efficiently with only four redundant 
activations. Three of the four (non-focus1 facts necessary to conclude the proof can 

4.2 Experimental Results 11

1 i ( z , i ( y ,1)
2 [ 1 ,  1 ]  iz i(y,i(29)))
3 i(i(n(z),  n(y)), i y ,
4 i ( i (z ,  y),  i ( i (y ,  2), i o  2
5 [ 4 ,  1 ]  i(i(i(z,y),2),ily,  z))
6 [ 5 ,  3 ]  i n (x ) , (x, y))
7 [ 4 ,  6 ]  i(i(i(z,y), z), n ( x ) , z))
8 i ( i ( i (z ,  9), y), i ( y ,  x), © )

i(z,  i(i(z,  y), y))

E
E

E
 

O
R

 
S

E
 

O
A

 
H

A
 

H
H

 H
H

 
**

—
 

—
©

 
N

N
 

e
e

C
T

 
C

e
©

 
©

 
0

0
 

J
O

 
U

ti
 

W
N

F
E

O
W

O
W

=
J

O
O

i 
W

i 
H

H
[ 5, 8 ]

10 [ 8 ,  2 ]  i ( : ( i ( z , i ( y ,x), 2), 2)
[ 4 ;  9 ]  i i i ) 0), 2).im,2)

15 [ 4 ;  3 ]  (iis), 2), Hölm(y), n(2)),2))
[ 12 ,10 ]  i ( i (n (@) ,n(i(3, (=v ) ,  2

17 [ 7 , 13 ]  i(n(n(z)),z)
18 [ 3 , 14 ]  i(z,n(n(z)))
19  | 9 ,  3 ]  i ( i ( i ( i ( n ( z ) ,  n(y)), i ( y ,  x ) ,  2), 2)
21 [ 4 ,  4 ]  G62  y), Uz, y)), u),i(i(2, x), u))
22 [ 11 ,17 ]  i ( i ( z , y ) , i ( i ( z ,x),  i(z, y)))
23 [ 18 ,15 ]  i ( i ( x ,y), (x,n(n(y))))
24 [ 17  , 16 | * i ( i(z,  i(n(y), n(2))), i(z,  i(z, y)))
58 21 [ 4 , 14 ]  i(i(z,y),1(n(n(z)),y))

148 + 22 [ 20 ,21 ]  ( i z ,  n(y)), i (y,  n(z)))
233 23 [ 4 , 19 ]  i( i ( i (z,  n(n(y))), 2), H i (x ,y), z))
234 24 [ 23 , 22 ] i ( i ( z , y ) , i ( n ( y  )s n ( z) ) )

Figure 1: Proof of LCL114-1 found by FR when using source LCL113-1.

(and also of tables 2 and 3). (Recall that the selected problems are the ones that
cause difficulties for W.) The successful runs of W were obtained with cs = 0 and
Cw = 1—the setting that also FR employs. These experiments show that FR enables
CoDE to  prove problems quite. fast which i t  could not handle with W and one of
the two mentioned parameter settings. (There are, however, two different and very
problem-specific parameter settings for problems LCL068-1 and LCLO71-1 that make
i t  possible to prove these problems with W. See [8].)

Figure 1 displays the proof of LCL114-1 found by FR using source LCL113-1 as a
typical example of case 1. The proof listing shows (from left to  right) the number of
the activation step, the number of the proof step, the ancestors in brackets, given as
numbers referring to previous proof steps (or a blank space for axioms), and the facts
themselves. Focus facts are marked by ‘x’. The identical axiomatizations of target and
source make it possible that a large initial part of the target proof (FFU = 20/24 ~
83%) consists of focus facts. This part also constitutes the main part of the source
proof (RFF = 20/22 = 91%) and is found very efficiently with only four redundant
activations. Three of the four (non-focus) facts necessary to conclude the proof can



12 4 EXPERIMENTS 

Table 2: Case 2. Table 3: Case 3. 

Target Source FR FFU RFF W 
054 042 118s 31% 79% -

058 045 4s 23% 82% 25s 
045 058 < Is 95% 51% -

042 054 < Is 84% 55% -

Target Source FR FFU RFF W 

042 
058 
060 

-

126s 

-

82% 

-

95% 
-

045 060 22s 76% 41% -

058 042 18s 20% 42% 25s 

060 
042 
045 

-

11s 
-

18% 
-

82% 
26s 

be considered to be "in the neighborhood" of the source proof since they have at least 
one ancestor that is a focus fact. The final proof step is no difficulty since a fact 
subsuming the goal is given the weight 0 and is therefore activated immediately (cf. 
subsection 4.1). 

Experiments regarding cases 2 and 3 are summarized by tables 2 and 3. These tables 
are organized like table 1 without the columns concerning lemmas since the soundness 
of adding lemmas is-as mentioned earlier-not guaranteed for cases 2 and 3. As a 
matter of fact, for case 2 adding lemmas is completely pointless since the goal itself 
would be added as a lemma. 

Considering tables 2 and 3 we can again observe that FR allows CODE to solve problems 
rather quickly which were out of reach when using W. The two bottom rows of table 2 
indicate that FR can also cope with situations where large parts of the target proof 
go back to quite a small part of the source proof (i.e., large FFU, but rather small 
RFF). Note that-due to different axiomatizations-it is not necessarily the case that 
the share 100% - RFF of the source proof entails irrelevant focus facts. The results 
concerning problems LCL042-1, LCL058-1, and LCL060-1 in different roles as source 
and target problems (cp. tables 1 and 2) reveal that (quite expectedly) FR is not 
"symmetric". That is, a proof of a problem A found by FR when using a source 
problem B does not guarantee to find a proof of B when using A as source. 

Figure 2 reveals that FR can ::iucceed even if the target proof contains relatively few 
focus facts (FFU = 15/49:::::: 31%). Nonetheless, the majority of facts constituting the 
source proof of LCL042-1 (RFF = 15/19 :::::: 79%) contribute to the proof of LCL054-1 
found by FR (thus keeping the number of irrelevant focus facts small). In situations 
like this, the search conducted by FR is at first :inainly guided by W as an integral 
part of FR. (Recall that different axiomatizations at the beginning usually only allow 
for re-enacting very small parts of the source proof. In figure 2 only two axioms are 
"re-enacted".) The "trace" of the source proof can be picked up (to a certain extent) 
later on when more and more focus facts appear. 

Figure 2 is a perfect example for the flexibility of FR stemming from the integration 
of W that here basically prepares the ground for re-enactment. This is kind of opposite 
to the sltuation in figure 1 where W together with the preference of descendants account 
for concluding the proof while the ground~ork is done by re-enactment. 

12 ; 4 EXPERIMENTS

Table 2: Case 2. Table 3: Case 3.

Target | Source | FR |FFU |RFF || W Target | Source || FR |FFU|RFF | W
054 | 042 [118s | 31% | 79% | — oag | 988 | | — | — | — | _
058 045 4s | 23% | 82%|| 25s 060 | 126s| 82% | 95%
045 058 | <  1s|95% | 51% | — 045 060 || 22s | 76% | 41% || —
042 054 | <  1s|84% | 55% | — 058 042 | 18s | 20% | 42%| 25s

042 — | — | —
060 045 | 11s | 18% | 82% 26s

be considered to  be “ in  the neighborhood” of the source proof since they have at least
one ancestor that is a focus fact. The final proof step is no difficulty since a fact
subsuming the goal is given the weight 0 and is therefore activated immediately (cf.
subsection 4.1).

Experiments regarding cases 2 and 3 are summarized by tables 2 and 3. These tables
are organized like table 1 without the columns concerning lemmas since the soundness
of adding lemmas is—as mentioned earlier—not guaranteed for cases 2 and 3. As a
matter of fact, for case 2 adding lemmas is completely pointless since the goal itself
would be added as a lemma.

Considering tables 2 and 3 we can again observe that FR allows CODE to solve problems
rather quickly which were out of reach when using W. The two bottom rows of table 2
indicate that FR can also cope with situations where large parts of the target proof
go back to  quite a small part of the source proof (i.e., large FFU, but rather small
RFF). Note that—due to different axiomatizations—it is not necessarily the case that
the share 100% — RFF of the source proof entails irrelevant focus facts. The results
concerning problems LCL042-1, LCL0O58-1, and LCLO60-1 in different roles as source
and target problems (cp. tables 1 and 2) reveal that (quite expectedly) FR is not
“symmetric”. That is, a proof of a problem A found by FR when using a source
problem B does not guarantee to  find a proof of B when using A as source.

Figure 2 reveals that FR can succeed even i f  the target proof contains relatively few
focus facts (FFU = 15/49 = 31%). Nonetheless, the majority of facts constituting the
source proof of LCL042-1 (RFF = 15/19 z 79%) contribute t o  the proof of LCL0O54-1
found by FR (thus keeping the number of irrelevant focus facts small). In situations
like this, the search conducted by FR is at first inainly guided by W as an integral
part of FR. (Recall that different axiomatizations at the beginning usually only allow
for re-enacting very small parts of the source proof. In figure 2 only two axioms are
“re-enacted”.) The “trace” of the source proof can be picked up (to a certain extent)
later on when more and more focus facts appear.

Figure 2 is a perfect example for the flexibility of FR stemming from the integration
of W that here basically prepares the ground for re-enactment. This is kind of opposite
to the situation in  figure 1 where W together with the preference of descendants account
for concluding the proof while the groundwork is done by re-enactment.



13 

5 

* 1 
* 2 

i(x,i(n(x),y)) 
i(i(x, y), i(i(y, z), i(x, z))) 

3 i(i(n(x),x),x) 26 [ 2,25] i(i(i(i(x,y),i(z,y)),u),i(x,u)) 
4 [ 2, :1.] i(i(i(n(x), y), z),i(x, z)) 27 [26,20] i(x, i(y, i(i(x, z), z))) 
5[ 4, 3]i(x,x) 28[20,27]i(x,i(y,i(i(y,z),z))) 
6[ 1, 5Ji(n(i(x,x)),y) 29[28,23]i(x,i(i(x,y),y)) 
7 [ 2, 3] i(i(x, y), i(i(n(x), x), y)) *30 [14,29] i(i(x, i(y, z)), i(y, i(x, z))) 
8 [ 2, 2] i(i(i(i(x, y), i(z, y)), u), i(i(z,x),u)) *31 [30, 1] i(n(x), i(x, y)) 
9 [ 8, 4] i(i(x,n(y)),i(y,i(x,z))) *32 [30,25] i(i(x,y),i(x,i(z,y))) 

10 [ 4, 9] i(x, i(y, i(n(x), z))) *33 [ 2,31] i(i(i(x, y), z),i(n(x), z)) 
11 [ 9, 6] i(x, i(n(i(y, y)), z)) *34 [30, 2] i(i(x, y), i(i(z,x), i(z, y))) 
12 [ 2, 10J i(i(i(x, i(n(y), z)),u), i(y, u)) *35 [33,34] i(n(x), i(i(y, x), i(y, z))) 
13 [ 2, 7] i(i(i(i(n(x),x), y), z), i(i(x, y), z)) *36 [ 2,32] i(i(i(x, i(y, z)), u), i(i(x, z),u)) 
14 [ 8, 8] i(i(x, i(y, z)), i(i(u, y), i(x, i(u, z)))) *37 [34,30] i(i(x, i(y, i(z, u))), i(x, i(z, i(y, u)))) 
15 [ 2,11] i(i(i(n(i(x,x)),y),z),i(u,z)) 38 [30,35] i(i(x,y),i(n(y),i(x,z))) 
16 [15, 3] i(x,i(y,y)) 39 [34, 3] i(i(x,i(n(y),y)),i(x,y)) 
17 [ 2,16] i(i(i(x,x), y), i(z, y)) 40 [ 2,30J i(i(i(x, i(y, z)), u), i(i(y, i(x, z)), u)) 
18 [17, 7J i(x,i(i(n(y),y),y)) 41 [ 8,39J i(i(n(x),y),i(i(y,x),x)) 
19 [ 2,18] i(i(i(i(n(x), x), x), y), i(z, y)) 42 [37,36] i(i(i(x, i(y, z)), i(u,v)), i(u, i(i(x, z), v))) 
20 [ 8, 19J i(i(x,i(n(y),y)),i(z,i(x,y))) 43[ 2,38] i(i(i(n(x),i(y, z)),u),i(i(y,x),u)) 
21 [12,20] i(x,i(y,i(z,x))) 44 [43,41] i(i(x,y),i(i(i(x,z),y),y)) 
22 [20,21] i(x, i(y, i(z, y))) 45 [30,44J i(i(i(x, y), z), i(i(x, z), z)) 

*23 [22,22J i(x,i(y,x)) *46 [13,45J i(i(x,y),i(i(n(x),y),y)) 
24 [ 2 ,23] i(i(i(x, y), z), i(y, z)) *47 [42,46J i(i(n(x), i(y, z)), i(i(x, z), i(y, z))) 
25 [24, 2] i(x, i(i(x, y), i(z, y))) *48 [47,35] i(i(x, i(y, z)), i(i(y, x), i(y, z))) 

*49 [40,48] i(i(x, i(y, z)), i(i(x, y), i(x, z))) 

Figure 2: Proof of LCL054-1 found by FR using source LCL042-1. Activation step 
numbers are omitted here. (1146 activation steps were needed.) 

Discussion 

We presented a method called flexible re-enactment (FR) that exploits past proof ex­
perience with heuristic means. When searching for the (target) proof of a given proof 
problem, FR attempts to re-enact a given source proof essentially by searching for the 
facts that constitute the source proof. Flexibility is achieved by also searching in: the 
"neighborhood" of the source proof, i.e., ,by also preferring descendants of the facts con­
stituting the source proof. Experiments have demonstrated that FR allows for solving 
problems that could not be handled before. 

The similarity between the source and target proof required so that FR or in other words 
a "flexible, search-based re-enactment of the source proof" can succeed is basically 
reflected by the number (or percentage) of facts constituting the source proof that are 
also useful for a target proof: the more, the better. But such a kind of similarity can 
only be assessed a posteriori. Hence, a priori similarity can only be estimated with 
"heuristic indicators" such as, for instance, the percentage of source axioms that are 
also present in the target axiomatization. Simple, easy to check criteria like this can 
already produce remarkable results (cp. [11]) which supports our belief that selecting 
an appropriate source problem can be automated reasonably (see also [5]). Naturally, 

13

* 1 i(z,i(n(z),y))
* 2 i( i (z,  y), ( i (y,  2), i (z,  2)))

3 i ( i ( n ( z ) ,x),x) 26 2,25] i ( i ( i ( i (z ,  Wits, v)),  u),  i z ,  u))
4 [  2, 1] i(i(i(n(z),  9), 2), i z ,  2)) Area  bo  i(y,1(i(z, 2), 2)))
5 [  4 ,  3 ] i ( z , x )  28 [ 20 ,27 ] i(=,1(y,i(i(y, 2 ) ,2)))
6 [  1,  5] i(n(i(z,  x)), y) 29 [28,23] i z .  is(z,9),9))
7 [  2, 3 ] i ( i ( z , y ) , i ( n ( z ) ,  2), y)) *30 [14 ,29 ]i(i(zx NAN (z,2)))
8[ 2, 2] i(ili(i(x,y),i(z, y)), u), i(i(z, x),u)) x31[30, 1]i(n(z) A
9 [  8, 4] i( i(z,  n(y)), i ( y , (2, 2))) +32 [30,25] i ( i ( z , y ) ,(x,  i(2,y)))

10[ 4 ,  9] i ( x ,  i(y, i(n(x), z))) +33] 2 ,31 ]i( i( i(z, y), 2), i (n(z),  2))
11[ 9 ,  6] i (z,  i(n(i(y,y));  2)) *34 [30, AN De  i( i(z,  x),  i z ,  y)))
12[ 2,10] i ( i ( i (z ,  i (n(y), z)), «), 4(y, «)) *35 [ 33 ,34 ]i ( n ( z ) , i ( i ( y ,2),i(y, 2)))
13] 2, 7 ] i ( i ( i ( in (2) ,  x), 1), 2), i ( x , 9), 2)) *36[  2 ,32 ]  i ( i ( i= Wy, 2)), w), i ( i (<,  2), u))
14] 8, 8] i ( i (z,  i(y, 2)),i(i(u,u ) ,  =,  (u,  2)))) «37 [34,30] i ( i (z,  i ( y ,i(z,v))),i(=, i (z,i(y,  u))))
15[ 2 ,11 ] i(i(i(n(i(x, x)), y), 2), i(u, 2)) 38 [30,35] i(i(x,  y ) ,n(y), i(z,  2)))
16 [15, 3] i(z,i(y,y)) 39[34, 3 ] i ( iGC (n (y ) ,  y)), i z ,  y))
17[ 2 ,16 ] i(i(i(z, x) ,  y),  ( 2 , 9 )  40[ 2,30] i ( i ( i (z ,  i (y ,  2)), u ) ,i(i(y, i (z,  2)), u))
18[17, 7] i(z,i(i(n(y),y),  4 )  41[ 8 ,39 ]i(i(n(x), y), (#(y, x), z))
19[ 2 o f  i ne x), x ) ,x), y), i(z,y)) 42 [37,36] i(i(i(z,ı ( y , z)), (uw, v)), (u,  i(i(z, z), v)))
20[ 8 ,19 ]i{i(z, ı(n(y), y)), We: i(z,y))) 43  2 ,38 ]i(2(i(n(x),i(y, 2)), u),2(i(y,x), u)
21 [ 12 ,20 ] i(z,i ( y , i ( z ,  z))) 44 [43/41] i(i(z,y ) ,  i582,  2), y), 0 )
22 [20,21] i (x,  i(y, i(z, y))) 45 [30 ,44 ]i(i(i(x,y), z), i(i(z, 2), z))

+23 [22,22] ( 2 ,  i ( y ,  2)) +46 [13 45] i ( i (z ,  y), i ( i (m(2) ,y), y))
24[ 2,23] i ( i ( i ( x , y ) ,2),i(y, 2)) *47 [42,46] i ( i (n(z),(y,  2)),i(i(z, z), Hy, 2)))
25 (24. 2] i(z, i( i(z,y),  ( 2 , 9 )  +48 [47,35] i(3(z, i(y, 2)),19 , 2). (u, 2)))

+49 [ 40 ,48 ]i( i(z,  i (y,  2)), i ( i (z ,  u),  i ( z ,  2)))

Figure 2: Proof of LCLO54-1 found by FR using source LCLO42-1. Activation step
numbers are omitted here. (1146 activation steps were needed.)

5 Discussion

We. presented a method called flexible re-enactment (FR) that exploits past proof ex-
perience with heuristic means. When searching for the (target) proof of a given proof
problem, FR attempts to  re-enact a given source proof essentially by searching for the
facts that constitute the source proof. Flexibility is achieved by also searching in the
“neighborhood” of the source proof, i.e., by  also preferring descendants of the facts con-
stituting the source proof. Experiments have demonstrated that FR allows for solving
problems that could not be handled before.

The similarity between the source and target proof required so that FR or in  other words
a “flexible, search-based re-enactment of the source proof” can succeed is basically
reflected by the number (or percentage) of facts constituting the source proof that are
also useful for a target proof: the more, the better. But  such a kind of similarity can
only be assessed a posteriori. Hence, a priori similarity can only be estimated with
“heuristic indicators” such as, for instance, the percentage o f  source axioms that are
also present in the target axiomatization. Simple, easy to  check criteria like this can
already produce remarkable results (cp. [11]) which supports our belief that selecting
an appropriate source problem can be automated reasonably (see also [5}). Naturally,



14 5 DISCUSSION 

in order to be independent of symbol names, methods for finding a suitable renaming of 
symbols must be available (cf. [5]). Thus, for FR similarity is kind of a "loosely" defined 
notion that perforce cannot and does not play as important a role as it does, e.g., in 
[12]. There, similarity is a clearly defined central notion, but-probably a common 
trade-off-restricts applicability. 

FR is not limited to the use of just one source proof. The design of FR allows us to 
exploit an arbitrary number of source proofs. But the usefulness of more than one 
source proof is questionable ("a jack of all trades, but master of none"). Redundant 
search effort might become a problem that outweighs possible advantages like having 
available more focus facts which undoubtedly increases the chance of having the "right" 
ones. Nonetheless, exploiting a pool of proof experience rather than one piece also has 
certain advantages (cp. [6] where sophisticated abstraction techniques are used). 

Finally, FR can of course also be employed for proof checking and proof completion. 
Proof checking essentially corresponds to plain re-enactment. Proof completion means 
that the given positive facts represent the "skeleton" of a source proof with a few 
intermediate steps missing. Under these conditions the positive facts will give rise only 
to relevant focus facts. Thus, FR can search for the missing intermediate steps without 
being confused and possibly misguided by irrelevant focus facts which makes things 
easier than in general applications of FR. 

In [23] the hints strategy (HS) has been investigated as to its usefulness for proof check­
ing, proof completion, and also for proof finding. Hints basically are the counterparts 
of the positive facts of a source proof. HS and FR have commonalities, but also have 
different features and design concepts. In order to search for (or complete) a proof 
with certain properties, HS also allows for avoiding (instead of focusing on) hints-a 
feature that was not an objective when designing FR. But when it comes to searching 
for a (target) proof without such constraints, FR subsumes HS in particular because of 
its ability to deal sensibly with non-focus facts that are descendants of focus facts, thus 
exploiting a source proof beyond mere re-enactment-a concept not present in HS. 

14 5 DISCUSSION

in  order to be independent of symbol names, methods for finding a suitable renaming of
symbols must be available (cf. [5]). Thus, for FR similarity is kind of a “loosely” defined
notion that perforce cannot and does not play as important a role as i t  does, e.g., in
[12]. There, similarity is a clearly defined central notion, but—probably a common
trade-off—restricts applicability.

FR is not l imited to  the use of just one source proof. The design of FR allows us to
exploit an arbitrary number of source proofs. But  the usefulness of more than one
source proof is questionable ( “a  jack of all trades, but master of none”). Redundant
search effort might become a problem that outweighs possible advantages like having
available more focus facts which undoubtedly increases the chance of having the “right”
ones. Nonetheless, exploiting a pool of proof experience rather than one piece also has
certain advantages (cp. [6] where sophisticated abstraction techniques are used).
Finally, FR can of course also be employed for proof checking and proof completion.
Proof checking essentially corresponds to  plain re-enactment. Proof completion means
that the given positive facts represent the “skeleton” of a source proof with a few
intermediate steps missing. Under these conditions the positive facts will  give rise only
to relevant focus facts. Thus, FR can search for the missing intermediate steps without
being confused and possibly misguided by irrelevant focus facts which makes things
easier than in general applications of FR.

In  [23] the hints strategy (HS) has been investigated asto its usefulness for proof check-
ing, proof completion, and also for proof finding. Hints basically are the counterparts
of the positive facts of a source proof. HS and FR have commonalities, but also have
different features and design concepts. In  order to  search for (or complete) a proof
with certain properties, HS also allows for avoiding (instead of focusing on) hints—a
feature that was not an objective when designing FR. But  when i t  comes to  searching
for a (target) proof without such constraints, FR subsumes HS in particular because of
its ability to deal sensibly with non-focus facts that are descendants of focus facts, thus
exploiting a source proof beyond mere re-enactment—a concept not present in  HS.



15 REFERENCES 

References 

[1]	 Bachmair, L.; Dershowitz, N.; Plaisted, D.: Completion without Failure, 
Coll. on the Resolution of Equations in Algebraic Structures, Austin, TX, USA 
(1987), Academic Press, 1989. 

[2]	 Brock, B.; Cooper, S.; Pierce, W.: Analogical Reasoning and Proof Discovery, 
Proc. CADE-9, Argonne, IL, USA, 1988, LNCS 310, pp. 454-468. 

[3]	 Bundy, A.: The Use of Explicit Plans to Cui,de Inductive Proofs, Proc. CADE-9, 
Argonne, IL, USA, 1988, LNCS 310, pp. 111-120. 

[4]	 Chang, C.L.; Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving, 
Academic Press, 1973. 

[5]	 Denzinger, J.; Fuchs, Matt.; Fuchs, Marc: High Performance ATP Systems 
by Combining Several AI Methods, SEKI Report SR-96-09, University of Kaisers­
lautern, 1996, http://www.uni-kl.de/AG-AvenhausMadlener/fuchs. html. 

[6]	 Denzinger, J.; Schulz, S.: Learning Domain Knowledge to Improve Theorem 
Proving, Proc. CADE-13, New Brunswick, NJ, USA, 1996, LNAI 1104, pp. 62-76. 

[7]	 Fuchs, Matt.: Learning Proof Heuristics by Adapting Parameters, Proc. 12th 

ICML, Tahoe City, CA, USA, 1995, pp. 235-243. 

[8]	 Fuchs, Matt.: Experiments in the Heuristic Use of Past Proof Experience, SEKI 
Report SR-95-1O, University of Kaiserslautern, 1996, obtainable via WWW at 
http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html. 

[9]	 Fuchs, Matt.: Powerful Search Heuristics Based on Weighted Symbols, Level, 
and Features, Proc. FLAIRS-96, Key West, FL, USA, 1996, pp. 449-453. 

[10]	 Fuchs, Matt.: Experiments in the Heuristic Use of Past Proof Experience, Proc. 
CADE-13, New Brunswick, NJ, USA, 1996, LNAI 1104, pp. 523-537. 

[11]	 Fuchs, Matt.: Towards Full Automation of Deduction: A Case Study, SEKI 
Report SR-96-07, University of Kaiserslautern, 1996, obtainable via WWW at 
http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html. 

[12]	 Kolbe, T.; WaIther , C.: Reusing Proofs, Proc. 11th ECAI '94, Amsterdam, 
HOL, 1994, pp. 80-84. 

[13]	 Lukasiewicz, J.: Selected Works, L. Borkowski (ed.), North-Holland, 1970. 

[14]	 McCune, W.; Wos, L.: Experiments in Automated Deduction with Condensed 
Detachment, Proc. CADE-11, Saratoga Springs, NY, USA, 1992, LNAI 607, pp. 
209-223. 

[1.5]	 McCune, W.: OTTER 3.0 reference manual and guide, Techn. report ANL-94/6, 
Argonne Natl. Laboratory, 1994. 

REFERENCES 15

References

[1] Bachmair, L . ;  Dershowitz, N . ;  Plaisted, D . :  Completion without Failure,
Coll. on the Resolution of Equations i n  Algebraic Structures, Austin, TX,  USA
(1987), Academic Press, 1989.

[2] Brock,  B . ;  Cooper, S.; Pierce,  W . :  Analogical Reasoning and Proof Discovery,
Proc. CADE-9, Argonne, IL ,  USA, 1988, LNCS 310, pp. 454-468.

[3] Bundy, A. :  The Use of Explicit Plans to Guide Inductive Proofs, Proc. CADE-9,
Argonne, I L ,  USA, 1988, LNCS 310, pp. 111-120.

[4] Chang, C.L.; Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

[5] Denzinger, J . ;  Fuchs, Matt.; Fuchs, Marc: High Performance ATP Systems
by Combining Several A I  Methods, SEKI Report SR-96-09, University of Kaisers-
lautern, 1996, h t t p :  //www.uni-k1l.de/AG-AvenhausMadlener/fuchs.html.

[6] Denzinger, J . ;  Schulz, S.: Learning Domain Knowledge to Improve Theorem
Proving, Proc. CADE-13, New Brunswick, NJ,  USA, 1996, LNAI  1104, pp. 62-76.

[7] Fuchs, Matt.: Learning Proof Heuristics by Adapting Parameters, Proc. 12 ”
ICML,  Tahoe City, CA, USA, 1995, pp. 235-243.

[8] Fuchs, Matt.: Experiments in the Heuristic Use of Past Proof Experience, SEKI
Report SR-95-10, University of Kaiserslautern, 1996, obtainable via WWW at
http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html.

[9] Fuchs, Matt . :  Powerful Search Heuristics Based on Weighted Symbols, Level,
and Features, Proc. FLAIRS-96, Key West, FL,  USA, 1996, pp. 449-453.

[10] Fuchs, Matt.: Ezperiments in the Heuristic Use of Past Proof Experience, Proc.
CADE-13, New Brunswick, NJ,  USA, 1996, LNAI  1104, pp. 523-537.

[11] Fuchs, Matt . :  Towards Full Automation of Deduction: A Case Study, SEKI
Report SR-96-07, University of Kaiserslautern, 1996, obtainable via WWW at
http://www.uni-kl.de/AG-AvenhausMadlener/fuchs.html.

[12] Kolbe, T . ;  Walther, C.: Reusing Proofs, Proc. 11”  ECAI '94, Amsterdam,
HOL, 1994, pp. 80-84.

[13] Lukasiewicz, J . :  Selected Works, L .  Borkowski (ed.), North-Holland, 1970.

[14] McCune,  W. ;  Wos, L . :  Experiments in Automated Deduction with Condensed
Detachment, Proc. CADE-11, Saratoga Springs, NY, USA, 1992, LNAI 607, pp.
209-223. '

[15] McCune,  W. :  OTTER 3.0  reference manual  and  guide, Techn. report  ANL-94/6 ,
Argonne Natl. Laboratory, 1994.



16 REFERENCES 

[16]	 Melis, E.: A Model of Analogy-driven Proof-plan Construction, Proc. 14th IJCAI, 
Montreal, CAN, AAAI Press, 1995, pp. 182-189. 

[17]	 Peterson, G.J.: A n A utornatic Theorem Pmver for Substitution and Detachment 
Systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1, January 1976, 
pp. 119-122. 

[18]	 Slagle, J.R.; Farrell, C.D.: Experiments in Automatic Learning of a Multipur­
pose Heuristic Program, Comm. of the ACM, Vol. 14, No. 2, 1971, pp. 91-99. 

[19]	 Slaney, J.: SCOTT: A Model-guided Theorem Prover, Proc. IJCAI '93, Cham­
bery, FRA, 1993, pp. 109-114. 

[20]	 Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library, Proc. 
CADE-12, Nancy, FRA, 1994, LNAI 814, pp. 252-266. 

[21]	 Suttner, C.; Ertel, W.: Automatic Acquisition of Search-guiding Heuristics, 
Proc. CADE-10, Kaiserslautern, FRG, 1990, LNAI 449, pp. 470-484. 

[22]	 Tarski, A.: Logic, Semantics, Metamathematics, Oxford University Press, 1956. 

[23]	 Veroff, R.:, Using Hints to Increase the Effectiveness of an Automated Reasoning 
Program: Case Studies, JAR 16:223-239, 1996. 

[24]	 Wos, L.: Meeting the Challenge of Fifty Years of Logic, JAR 6:213-232, 1990. 

[25]	 Wos, L.: Searching for Circles of Pure Proofs, JAR 15:279-315, 1995. 

16 REFERENCES

[16] Melis, E . :  A Model of Analogy-driven Proof-plan Construction, Proc. 14*  IJCAI,
Montreal, CAN, AAAI Press, 1995, pp. 182-189.

[17] Peterson,  G .J . :  An  Automat ic Theorem Prover for Substitution and  Detachment
Systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1, January 1976,
pp- 119-122.

[18] Slagle, J.R.; Farrell, C .D . :  Ezperiments in Automatic Learning of a Multipur-
pose Heuristic Program, Comm. of the ACM, Vol. 14, No. 2, 1971, pp. 91-99.

[19] Slaney, J.: SCOTT: A Model-guided Theorem Prover, Proc. IJCAI ’93, Cham-
bery, FRA,  1993, pp- 109-114.

[20] Sutcliffe, G. ;  Suttner, C.; Yemenis, T . :  The TPTP Problem Library, Proc.
CADE-12, Nancy, FRA,  1994, LNAI 814, pp. 252-266.

[21] Suttner, C . ;  Ertel, W . :  Automatic Acquisition of Search-guiding Heuristics,
Proc. CADE-10, Kaiserslautern, FRG, 1990, LNAI 449, pp. 470-484.

[22] Tarski, A. :  Logic, Semantics, Metamathematics, Oxford University Press, 1956.

[23] Veroff, R . : ,  Using Hints to Increase the Effectiveness of  an Automated Reasoning
Program: Case Studies, JAR  16:223-239, 1996.

[24] Wos, L . :  Meeting the Challenge of Fifty Years of Logic, JAR 6:213-232, 1990.

[25] Wos, L . :  Searching for Circles of Pure Proofs, JAR 15:279-315, 1995.


	UR_0003.jpg

