
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t
K

ai
se

rs
la

ut
er

n
D

-6
76

63
 K

ai
se

rs
la

ut
er

n
SE

KI
 -

R
EP

O
R

T

Using TEAMWORK for the Distribution
of Approximately Solving the

Traveling Salesman Problem with
Genetic Algorithms

Jörg Denzinger, Stephan Scholz
SEKI Report SR-97-04

Using TEAMWORK for the Distribution of

Approximately Solving the Traveling Salesman

Problem with Genetic Algorithms

Jorg Denzinger, Stephan Scholz

Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049

67653 Kaiserslautern

Germany

E-mail: {denzingelstscholz}@informatik.uni-kl.de

April 25, 1997

Abstract

We present a distributed system, DOTT, for approximately solving the Trav­
eling Salesman Problem (TSP) based on the TEAMWORK method. So-called
experts and specialists work independently and in parallel for given time pe­
riods. For TSP, specialists are tour construction algorithms and experts use
modified genetic algorithms in which after each application of a genetic operator
the resulting tour is locally optimized before it is added to the population. After
a given time period the work of each expert and specialist is judged by a referee.
A new start population, including selected individuals from each expert and spe­
cialist, is generated by the supervisor, based on the judgments of the referees.
Our system is able to find better tours than each of the experts or specialists
working alone. Also results comparable to those of single runs can be found much
faster by a team.

1

Using TEAMWORK for the Distribution of
Approximately Solving the Traveling Salesman

Problem with Genetic Algorithms

Jörg Denzinger, Stephan Scholz
Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany
E-mail: {denzinge[stscholz}@informatik.uni-kl.de

April 25, 1997

Abstract

We present a distributed system, DOTT, for approximately solving the Trav-
eling Salesman Problem (TSP) based on. the TEAMWORK method. So-called
experts and specialists work independently and in parallel for given time pe-
riods. For TSP, specialists are tour construction algorithms and experts use
modified genetic algorithms in which after each application of a genetic operator
the resulting tour is locally optimized before i t is added to the population. After
a given time period the work of each expert and specialist is judged by a referee.
A new start population, including selected individuals from each expert and spe-
cialist, is generated by the supervisor, based on the judgments of the referees.
Our system is able to find better tours than each of the experts or specialists
working alone. Also results comparable to those of single runs can be found much
faster by a team.

mailto:denzingelstscholz}@informatik.uni-kl.de

2

1

1 INTRODUCTION

Introduction

The Traveling Salesman Problem (TSP) is a well-known optimization problem. Given
a set of n cities, the TSP is finding the shortest round-trip, such that each city is
visited exactly once. Obviously the TSP can be interpreted easily in a geographical
way, but moreover in a theoretical way; a lot of problems can actually be transformed
into Traveling Salesman Problems.

Although the TSP is easily explained in its idea, it belongs to the set of NP-hard tasks.
It is often referred to as a standard example of NP-hard problems. Therefore one is
often satisfied with an approximate solution, i.e. a solution that is only a few parts
per thousand worse than the best solution, as long as this approximate solution can be
computed in an acceptable time.

Promising results for solving optimization problems in an approximate way have been
achieved with genetic algorithms. Similar to Darwin's principle of natural evolution,
a set of individuals, called population, is treated by two genetic operators: mutation
and crossover. While mutation stands for manipulating the genes of an individual,
crossover means combining the genes of two parents in order to create a new individual.
A fitness function determines the quality of an individual; the ones with the least fitness
are being removed from the population, in order to advance the whole evolution process
("survival of the fittest").

For the TSP, an individual is simply a tour, which can either be manipulated by
a mutation step or combined with another individual in order to create a new tour
(crossover). Though genetic algorithms have shown good results in experiments, they
still need quite some time until good individuals come up. In order to overcome this
problem, we tried an approach of applying a local optimization heuristic after each
genetic operation. This technique is quite similar to the normalization of new for­
mulas that is part of many theorem proving programs. In theorem proving for each
new generated formula subsumption tests are performed and other formulas are used
to simplify it before the formula is put into the datq. base of known formulas. In ge­
netic algorithms each new individual is locally optimized before it becomes part of the
population. Experiments, not only made by us, have shown that indeed this helps to
improve the power of genetic algorithms very much.

In this report we will present a distributed system for solving the TSP. Basis is our
TEAMWORK method for the distribution of search processes that are based on search
by extension and focus. Processes employing search by extension and focus use sets
of facts as representation of the search state and typically allow to each state a large
number of transitions to other states that extend the set of facts of the state by new
facts. In order to control such search processes, a good extension has to be selected,
which is the task of a so-called focus function. We will show that search using genetic
algorithms can be seen as such a search by extension and focus.

The main problems of such search processes are that there is a wide variety of focus
functiops but nevertheless there are problems that are not solved well by any of the
focus functions implemented in a search system. So a dynamical adaption of the search

2 1 INTRODUCTION

1 Introduction

The Traveling Salesman Problem (TSP) is a well-known optimization problem. Given
a set of n cities, the TSP is finding the shortest round-trip, such that each city is
visited exactly once. Obviously the TSP can be interpreted easily in a geographical
way, but moreover in a theoretical way; a lot of problems can actually be transformed
into Traveling Salesman Problems.
Although the TSP is easily explained in its idea, i t belongs to the set of NP-hard tasks.
I t is often referred to as a standard example of NP-hard problems. Therefore one is
often satisfied with an approximate solution, i.e. a solution that is only a few parts
per thousand worse than the best solution, as long as this approximate solution can be
computed in an acceptable time.
Promising results for solving optimization problems in an approximate way have been
achieved with genetic algorithms. Similar to Darwin’s principle of natural evolution,
a set of individuals, called population, is treated by two genetic operators: mutation
and crossover. While mutation stands for manipulating the genes of an individual,
crossover means combining the genes of two parents in order to create a new individual.
A fitness function determines the quality of an individual; the ones with the least fitness
are being removed from the population, in order to advance the whole evolution process
(“survival of the fittest”).
For the TSP, an individual is simply a tour, which can either be manipulated by
a mutation step or combined with another individual in order to create a new tour
(crossover). Though genetic algorithms have shown good results in experiments, they
still need quite some time until good individuals come up. In order to overcome this
problem, we tried an approach of applying a local optimization heuristic after each
genetic operation. This technique is quite similar to the normalization of new for-
mulas that is part of many theorem proving programs. In theorem proving for each
new generated formula subsumption tests are performed and other formulas are used
to simplify i t before the formula is put into the data base of known formulas. In ge-
netic algorithms each new individual is locally optimized before i t becomes part of the
population. Experiments, not only made by us, have shown that indeed this helps to
improve the power of genetic algorithms very much.
In this report we will present a distributed system for solving the TSP. Basis is our
TEAMWORK method for the distribution of search processes that are based on search
by extension and focus. Processes employing search by extension and focus use sets
of facts as representation of the search state and typically allow to each state a large
number of transitions to other states that extend the set of facts of the state by new
facts. In order to control such search processes, a good extension has to be selected,
which is the task of a so-called focus function. We will show that search using genetic
algorithms can be seen as such a search by extension and focus.

The main problems of such search processes are that there is a wide variety of focus
functions but nevertheless there are problems that are not solved well by any of the
focus functions implemented in a search system. So a dynamical adaption of the search

3

focus would be useful. But even if there is a well suited focus function implemented,
the problem of finding it remains.

Our TEAMWORK method solves these problems by a distribution concept that realizes
cooperation and competition of several focus functions in form of so-called experts. The
experts and perhaps some specialists work in parallel (on different computing nodes)
for a given period of time on solving the given problem. Experts employ search by
extension and focus, but they all use different focus functions, thus exploring different
parts of the search space. Specialists generate facts by other means or can compute
other necessary data.

After such a working period all experts and specialists are judged by referees that
compute a measure of success for the whole work accomplished by an expert/specialist
and select very good facts that promise to contribute to a solution of the given problem.
These results are communicated to the supervisor that generates a start state for a new
working period out of the search state of the expert with the best measure of success
and the selected good facts. The supervisor can also exchange experts and specialists
with bad measures of success and this way provides the system with planning and
self-adaption capabilities.

TEAMWORK has already been applied to several problems that can be solved by search
by extension and focus. Our systems for equational theorem proving, theorem proving
using condensed detachment, or solving time tabling problems showed that TEAM­

WORK allows for synergetic effects that result in a much faster generation of good
solutions and also in better solutions compared to sequential runs. In this paper we
will demonstrate that this is also the case for solving the TSP using genetic algorithms.
Again, our system DOTT finds solutions comparable to the best solutions of the single
genetic algorithms much faster and is also able to generate better solutions than all
the single experts are capable of.

This article is organized as follows: in section 2 we introduce the basic concepts of
genetic algorithms and the TEAMWORK method. In section 3 we define the TSP and
present a way of using the TEAMWORK method for solving it: the software system
DOTT. Section 4 gives the results of experiments that have been made in order to test
DOTT, to find out whether the promising ideas show good results in reality. Finally,
we give conclusions and possibilities of future work in section 5.

2 Genetic Algorithms and TEAMWORK

In this section, we give an introduction to genetic algorithms in general, especially in
relation to our definition of the search process called "search by extension and focus".
Furthermore we present an approach to distribute this search process, namely the
TEAMWORK method.

focus would be useful. But even if there is a well suited focus function implemented,
the problem of finding i t remains.

Our TEAMWORK method solves these problems by a distribution concept that realizes
cooperation and competition of several focus functions in form of so-called experts. The
experts and perhaps some specialists work in parallel (on different computing nodes)
for a given period of t ime on solving the given problem. Experts employ search by
extension and focus, but they all use different focus functions, thus exploring different
parts of the search space. Specialists generate facts by other means or can compute
other necessary data.
After such a working period all experts and specialists are judged by referees that
compute a measure of success for the whole work accomplished by an expert/specialist
and select very good facts that promise to contribute to a solution of the given problem.
These results are communicated to the supervisor that generates a start state for a new
working period out of the search state of the expert with the best measure of success
and the selected good facts. The supervisor can also exchange experts and specialists
with bad measures of success and this way provides the system with planning and
self-adaption capabilities.

TEAMWORK has already been applied to several problems that can be solved by search
by extension and focus. Our systems for equational theorem proving, theorem proving
using condensed detachment, or solving t ime tabling problems showed that TEAM-
WORK allows for synergetic effects that result in a much faster generation of good
solutions and also in better solutions compared to sequential runs. In this paper we
will demonstrate that this is also the case for solving the TSP using genetic algorithms.
Again, our system DOTT finds solutions comparable to the best solutions of the single
genetic algorithms much faster and is also able to generate better solutions than all
the single experts are capable of.
This article is organized as follows: in section 2 we introduce the basic concepts of
genetic algorithms and the TEAMWORK method. In section 3 we define the TSP and
present a way of using the TEAMWORK method for solving i t : the software system
DOTT. Section 4 gives the results of experiments that have been made in order to test
DoTT, to find out whether the promising ideas show good results in reality. Finally,
we give conclusions and possibilities of future work in section 5.

2 Genetic Algorithms and TEAMWORK

In this section, we give an introduction to genetic algorithms in general, especially in
relation to our definition of the search process called “search by extension and focus”.
Furthermore we present an approach to distribute this search process, namely the
TEAMWORK method.

4 2 GENETIC ALGORITHMS AND TEAMWORK

2.1 Genetic Algorithms

John H. Holland was the first one to try a new approach for solving optimization prob­
lems (see [Ho92]). The idea of natural evolution was the inspiration for these so-called
evolution strategies and genetic algorithms. A set of individuals, called population, is
manipulated by two main operators: mutation and crossover. A fitness function de­
cides, which of the individuals have a good resp. poor quality, and the best individuals
according to this fitness function are selected for the next generation. Obviously this
works in the same way as Darwin's principle of the survival of the fittest. Great empha­
sis is put on the non-determinism; a random number generator is used in the selection
of the individuals the genetic operators are applied to (but their fitness plays also a
role, again). Therefore a run of a genetic algorithm is generally not reproducible. We
will explain the two genetic operators in more detail. Individuals of the population
have certain attributes which are called genes. In a mutation step, some of the genes of
an individual are manipulated; in a crossover step, the genes of the parents are mixed
in the way that a new individual is created.

Crossover For a crossover step, two parent individuals have to be selected first. With
genetic algorithms, this happens in a probabilistic way; the individuals are ran­
domly chosen for performing a crossover step. However, a probabilistic distribu­
tion is used in order to prefer the fitter individuals.

Individual 1 Individual 2

(xl, x2, x3, x4, x5, x6) (y1, y2, y3, y4, y5, y6)

~roswve/
(xl, y2, y3, y4, x5, x6)

Child

Figure 1: An example of a crossover step

As can be seen in Figure 1, individuals in this example have six genes; the child is
created by combining the genes of the parents. As will be shown later, crossover
is not always as easy as in this example. In more complicated cases, one must
also make sure that the child is indeed a correct individual according to the
specification.

Mutation For a mutation step, one individual is selected from the population and
its genes are manipulated in a way that a new individual is created. Again it is
important that the choosing of the individual is done in a probabilistic way with
some preference to fitter individuals.

Fitness 'function The fitness function is one of the most important factors for genetic
algorithms. Because it determines the quality of each individual, it actually

4 2 GENETIC ALGORITHMS AND TEAMWORK

2.1 Genetic Algorithms

John H . Holland was the first one to try a new approach for solving optimization prob-
lems (see [Ho92]). The idea of natural evolutionwas the inspiration for these so-called
evolution strategies and genetic algorithms. A set of individuals, called population, is
manipulated by two main operators: mutation and crossover. A fitness function de-
cides, which of the individuals have a good resp. poor quality, and the best individuals
according to this fitness function are selected for the next generation. Obviously this
works i n the same way as Darwin’s principle of the survival of the fittest. Great empha-
sis i s put on the non-determinism; a random number generator is used in the select ion
of the individuals the genetic operators are applied to (but their fitness plays also a
role, again). Therefore a run of a genetic algorithm is generally not reproducible. We
will explain the two genetic operators in more detail. Individuals of the population
have certain attributes which are called genes. In a mutation step, some of the genes of
an individual are manipulated; in a crossover step, the genes of the parents are mixed
i n the way that a new individual is created.

Crossover For a crossover step, two parent individuals have to be selected first. With
genetic algorithms, this happens in a probabilistic way; the individuals are ran-
domly chosen for performing a crossover step. However, a probabilistic distribu-
tion is used in order to prefer the fitter individuals.

Individual 1 Individual 2
(x1, x2, x3, x4, x5, x6) (y l , y2, y3, y4, y5, yb)

TR

(x1, y2, y3, y4, x5, x6)
Child

Figure 1: An example of a crossover step

As can be seen in Figure 1, individuals in this example have six genes; the child is
created by combining the genes of the parents. As will be shown later, crossover
is not always as easy as in this example. In more complicated cases, one must
also make sure that the child is indeed a correct individual according to the
specification.

Mutation For a mutation step, one individual is selected from the population and
its genes are manipulated in a way that a new individual is created. Again i t is
important that the choosing of the individual i s done in a probabilistic way w i t h
some preference to fitter individuals.

Fitness function The fitness function is one of the most important factors for genetic
algorithms. Because i t determines the quality of each individual, i t actually

2.1 Genetic Algorithms 5

(xl, x2, x3, x4, x5, x6) Individual I

!Mutation

(xl', x2', x3', x4', x5', x6') Individual 2

Figure 2: An example of a mutation step

controls the whole optimization process. Optimization methods have a tendency
of entering local optima if the system moves close to one. This way it often
happens that a better solution than the locally best one cannot be found anymore.
Therefore it can make sense to select individuals that do not seem to be helpful
for the optimization process at once, but lead to new possibilities and ideas. In
that way, the system may escape a local optimum and reach the global optimum
afterwards. It is very hard to say which individuals actually carry the potential of
finding the best solution, i.e. the global optimum. Obviously the fitness function
depends on the given optimization problem and one has to put a lot of effort in
finding a good one in order to achieve satisfying results.

Both mutation and crossover operate on existing individuals. Therefore an initial
population has to be created. Mutation and crossover produce new individuals, i.e.
the population grows; the fitness function is responsible for the selection. It decides
which individuals are being removed from the population.

Figure 3 gives an overview of how genetic algorithms work. It has been shown in
experiments that genetic algorithms tend to be quite slow, because a lot ofthe produced
individuals have a poor quality. In order to speed up the process, one may improve
the newly created individuals by applying a (conventional) optimization step after each
genetic operation. For efficiency reasons, this optimization step has to be a local one,
i.e. a step that will generate an individual (to the newly created one) that is locally
optimal (see Figure 3). As can be seen in experiments, algorithms run much faster this
way.

In the classical approach of genetic algorithms, genes are simply binary numbers; ma­
nipulation of a gene therefore is accomplished easily by inverting the gene. This is very
close to the biological view (genes have four different states there). Crossover, on the
other hand, means somehow mixing the two gene sets of the parents in order to create
a new individual, for example randomly or by choosing a position in the sequence of
genes so that the new individual consists of the genes before the position of one parent
and after the position of the other one. It has been shown, however, that it is better
to have a more general view on genetic algorithms and to take advantage of the given
problem. Crossover and mutation are different for the specific problems then. The
main advantage of this approach is that a huge speed-up is achieved. One can use the
existing knowledge of a given problem for the definition of crossover and mutation.

2.1 Genetic Algorithms 5

(x1, x2, x3, x4, x5, x6) Individual 1

Mutation

(x1’, x2’, x3’, x4’, x5’, x6’) Individual 2

Figure 2: An example of a mutation step

controls the whole optimization process. Optimization methods have a tendency
of entering local optima if the system moves close to one. This way i t often
happens that a better solution than the locally best one cannot be found anymore.
Therefore i t can make sense to select individuals that do not seem to be helpful
for the optimization process at once, but lead to new possibilities and ideas. In
that way, the system may escape a local optimum and reach the global optimum
afterwards. I t is very hard to say which individuals actually carry the potential of
finding the best solution, i.e. the global optimum. Obviously the fitness function
depends on the given optimization problem and one has to put a lot of effort in
finding a good one in order to achieve satisfying results.

Both mutation and crossover operate on existing individuals. Therefore an initial
population has to be created. Mutation and crossover produce new individuals, i.e.
the population grows; the fitness function is responsible for the selection. It decides
which individuals are being removed from the population.
Figure 3 gives an overview of how genetic algorithms work. It has been shown in
experiments that genetic algorithms tend to be quite slow, because a lot o f the produced
individuals have a poor quality. In order t o speed up the process, one may improve
the newly created individuals by applying a (conventional) optimization step after each
genetic operation. For efficiency reasons, this optimization step has to be a local one,
i.e. a step that will generate an individual (to the newly created one) that is locally
optimal (see Figure 3). As can be seen in experiments, algorithms run much faster this
way.
In the classical approach of genetic algorithms, genes are simply binary numbers; ma-
nipulat ion of a gene therefore i s accomplished easily by inverting the gene. This i s very
close to the biological view (genes have four different states there). Crossover, on the
other hand, means somehow mixing the two gene sets of the parents in order to create
a new individual, for example randomly or by choosing a position in the sequence of
genes so that the new individual consists of the genes before the position of one parent
and after the position of the other one. It has been shown, however, that i t is better
to have a more general view on genetic algorithms and to take advantage of the given
problem. Crossover and mutation are different for the specific problems then. The
main advantage of this approach is that a huge speed-up is achieved. One can use the
existing knowledge of a given problem for the definition of crossover and mutation.

6 2 GENETIC ALGORITHMS AND TEAMWORK

Creation of initial population

Selection

Mutation, Crossover

(possibly: local optimization)

No

End

Figure 3: Genetic algorithms in general

2.2 Search by Extension and Focus

Obviously genetic algorithms are used for search processes. We will now show how
genetic algorithms can be formally described by using search by extension and focus.

In literature search processes are described by states and transition rules between states.
A useful classification of search processes is based on the representation of states. There
are several groups of search processes, but for our purposes a distinction in only two
groups suffices. Members of the first group need explicit information about the history
of the process while members of the second one do not need to represent this information
explicitly.

Search processes of the first group are often based on such principles as dividing a
problem into subproblems and therefore use trees or directed graphs as representations
of the search state. Search processes of the second group use sets of "results" as
representations of the state. Note that there may be processes of both groups that can
be used to solve a given search problem. We will give in the following a formal definition
of the processes of the second group. We will also see that the search processes that
are defined by genetic algorithms belong to the second group: search by extension and
focus.

Definition 2.1 (Search by extension and focus)
Search by extension and focus is described by a 4-tuple (B,n,I,So). The set of possible
facts B defines the possible states S of the search by S E 28 . n is a predicate defined on
B and used to describe a legal state S of the search by n(s) is true for all s E S. I is a

6 2 GENETIC ALGORITHMS AND TEAMWORK

Creation of initial population
a lm .

r

Selection

Mutation, Crossover
(possibly: local optimization)

No

| Yes

End

Figure 3: Genetic algorithms in general

2.2 Search by Extension and Focus

Obviously genetic algorithms are used for search processes. We wil l now show how
genetic algorithms can be formally described by using search by extension and focus.
In literature search processes are described by states and transition rules between states.
A useful classification of search processes is based on the representation of states. There
are several groups of search processes, but for our purposes a distinction i n only two
groups suffices. Members of the first group need explicit information about the history
of the process while members of the second one do not need to represent this information
explicitly.

Search processes of the first group are often based on such principles as dividing a
problem into subproblems and therefore use trees or directed graphs as representations
of the search state. Search processes of the second group use sets of “results” as
representations of the state. Note that there may be processes of both groups that can
be used to solve a given search problem. We will give in the following a formal definition
of the processes of the second group. We will also see that the search processes that
are defined by genetic algorithms belong to the second group: search by extension and
focus.

Definition 2.1 (Search by extension and focus)
Search by extension and focus is described by a 4-tuple (B,Q0,Z,S,). The set of possible
facts B defines the possible states S of the search by S € 28. Q is a predicate defined on
B and used to describe a legal state S of the search by Ns) is true foral l s€ S .T is a

2.2 Search by Extension and Focus 7

set of extension rules A -+ B, A,B E 26 . So is called the start state of the search and
has to be a legal state. We write 5 f-y 5' for states 5 and 5', if there is a rule A -+ B
E 'I, such that A ~ 5 and 5' = (5/ A) U B. A sequence (50 ,Sl"",Sn) with Si-l f-y Si
for i=l, ... ,n, is called a search derivation.

In our special case of genetic algorithms, the possible facts B are all valid individuals
according to the specification. A state S of the search process is the set of individ­
uals that have been found up to this point, i.e. the population at this special time.
Obviously the state So is the initial population. The set of extension rules 'I contains
the actual genetic operations, i.e. crossover and mutation. The selection of the fittest
individuals is included in 'I as well. One way is to include it into the extension rules
to crossover and mutation by doing first such a genetic operation and then a selection
step, i.e. deleting some individuals. Another way is to include a special extension rule
"selection" that has an empty set B (i.e. an empty right side).

Typically, searching means applying a search process to an instance of the search
problem. In our formal definition the search process is represented by B and 'I, while
the actual instance determines So and n and also provides the goal of the search.

Definition 2.2 (Goal of a search)
Let (B ,n,'I,So) be a search by extension and focus and g E B with n (g) = true the goal
of the search. A state containing g is called a goal state. The goal is reachable, if there
is a search derivation (So,Sl, ... ,5n) such that 5n is a goal state.

Figure 4 shows a search derivation from the start state to a goal state. For each state
of the search process there are different opportunities of moving on to a new state, i.e.
there are different extensions. The main problem of a search is to find a (short) search
derivation to a state that includes the goal. Note that there may be different solutions
to a search problem that have the same quality. It is necessary to define the desired
attributes of the goal in order to decide whether it has been reached or not. Once
an individual with the desired characteristics is created, the search process is stopped
("the goal is reached").

There may be many possible extensions to a given state; for example in Figure 4,
from So the state 51 was chosen (instead of SI', SI" etc.). Consequently there has to
be a function that determines which extension should be chosen next, i.e. a funCtion
providing a focus. Typically, such a focus function associates with each pair (state,
extension rule) a weight that rates the extension step.

Definition 2.3 (Focus function)
Let (B,n ,'I,So) be a search by extension and focus and g its goal. An injective function
f:2 6 x 'I -+ 7L is called a focus function and the derivation (SO,Sl, ... ,Si, .. .j is produced
by f, if for the extension A -+ Bi that produced state Si we have j(Si-l,Ai -+ Bi) :::;
j(Si-l,A -+ B) for all A -+ B E 'I.

If one wants to allow only legal states in a search sequence, then the focus function
only has to rate pairs (Si-l,A -+ B) that produce a legal state. In practise, often the

2.2 Search by Extension and Focus 7

set of extension rules A — B, A,B € 28. So is called the start state of the search and
has to be a legal state. We write S t1 S ’ for states S and S’, if there is a rule A — B
€ Z, such that AC Sand S ’ = (§ / A) U B . A sequence (So,51,...,5.) with S;—; b1 Si
for i=1,...,n, is called a search derivation.

In our special case of genetic algorithms, the possible facts B are all valid individuals
according to the specification. A state S of the search process is the set of individ-
uals that have been found up to this point, i.e. the population at this special time.
Obviously the state Sp is the init ial population. The set of extension rules Z contains
the actual genetic operations, i.e. crossover and mutation. The selection of the fittest
individuals is included in Z as well. One way is to include i t into the extension rules
to crossover and mutation by doing first such a genetic operation and then a selection
step, i.e. deleting some individuals. Another way is t o include a special extension rule
“selection” that has an empty set B (i.e. an empty right side).
Typically, searching means applying a search process to an instance of the search
problem. In our formal definition the search process is represented by B and Z, while
the actual instance determines So and 9 and also provides the goal of the search.

Definition 2.2 (Goal of a search)
Let (B,Q2,Z,S,) be a search by extension and focus and g € B with N(g) = true the goal
of the search. A state containing g is called a goal state. The goal is reachable, if there
is a search derivation (So,Si,...,Sn) such that S, is a goal state.

Figure 4 shows a search derivation from the start state to a goal state. For each state .
of the search process there are different opportunities of moving on to a new state, i.e.
there are different extensions. The main problem of a search is to find a (short) search
derivation to a state that includes the goal. Note that there may be different solutions
to a search problem that have the same quality. I t is necessary to define the desired
attributes of the goal in order to decide whether it has been reached or not. Once
an individual with the desired characteristics is created, the search process is stopped
(“the goal is reached”).
There may be many possible extensions to a given state; for example in Figure 4,
from So the state S; was chosen (instead of Sy’, Si” etc.). Consequently there has to
be a function that determines which extension should be chosen next, i.e. a function
providing a focus. Typically, such a focus function associates with each pair (state,
extension rule) a weight that rates the extension step.

Definition 2.3 (Focus function)
Let (B,Q1,T,Sq) be a search by extension and focus and g its goal. An injective function
[28 x I — Z is called a focus function and the derivation (So,S54,...,5i,...) is produced
by f, if for the extension A; — B; that produced state S; we have f(S;_y,A; —& Bi) <
f(Si-1,A— B) foral l A— B € I .

If one wants to allow only legal states in a search sequence, then the focus function
only has to rate pairs (S;-1,A — B) that produce a legal state. In practise, often the

8 2 GENETIC ALGORITHMS AND TEAMWORK

initial population

~leofI

(:) goal state (including g)

Figure 4: Search derivation

condition "injective" function is dropped and the decision between extension steps with
equal f-value is made employing the FIFO-strategy. This way there are many focus
functions that can be used, often too many to allow an automated decision which one
to choose for a given problem instance. Another problem is that very often none of the
implemented focus functions are good enough to solve a given problem instance in an
acceptable time. These problems are solved by our TEAMWORK method.

For genetic algorithms, a focus function has to take into account two different aspects.
First the actual genetic operator (mutation or crossover). Second, the possible dele­
tion of individuals (selection). Both of these two tasks form an extension step, and
the fitness function is used for each of them. However, the genetic operators work in
a probabilistic way; the choosing of individuals for performing crossover resp. muta­
tion as well as the operations themselves are done with the use of a random number
generator (the selection, on Jthe other hand, works in a deterministic way). Therefore
the focus function reduces the set of possible extensions to a partial set (the set of
all possible individuals that can be created by the genetic operations with possible
selection afterwards). But which extension of this partial set will be actually used is
decided randomly.

2.3 TEAMWORK for Distributed Search

The TEAMWORK method is our approach to distribute search by extension and focus.
A system based on TEAMWORK has four types of components: experts, specialists,
referees and a supervisor. The interaction b"etween these components is organized as
a cycle with three phases. In the competition phase, also called working phase,
experts and specialists work independently on their tasks. In the judgment phase,
the first part of a team meeting, referees judge the work of the experts and specialists

8 2 GENETIC ALGORITHMS AND TEAMWORK

(so) init ial population

Ra rule of I ,

rule of I

rule of I

goal state (including g)

Figure 4: Search derivation

condition “injective” function is dropped and the decision between extension steps with
equal f-value is made employing the FIFO-strategy. This way there are many focus
functions that can be used, often too many to allow an automated decision which one
to choose for a given problem instance. Another problem is that very often none of the
implemented focus functions are good enough to solve a given problem instance in an
acceptable time. These problems are solved by our TEAMWORK method.

For genetic algorithms, a focus function has to take into account two different aspects.
First the actual genetic operator (mutation or crossover). Second, the possible dele-
tion of individuals (selection). Both of these two tasks form an extension step, and
the fitness function is used for each of them. However, the genetic operators work in
a probabilistic way; the choosing of individuals for performing crossover resp. muta-
t ion as well as the operations themselves are done with the use of a random number
generator (the selection, on the other hand, works in a deterministic way). Therefore
the focus function reduces the set of possible extensions to a partial set (the set of
all possible individuals that can be created by the genetic operations wi th possible
selection afterwards). But which extension of this partial set will be actually used is
decided randomly.

2 .3 TEAMWORK for Distr ibuted Search

The TEAMWORK method is our approach to distribute search by extension and focus.
A system based on TEAMWORK has four types of components: experts, specialists,
referees and a supervisor. The interaction between these components is organized as
a cycle with three phases. In the compet i t ion phase, also called working phase,
experts and specialists work independently on their tasks. In the judgment phase,
the first part of a team meeting, referees judge the work of the experts and specialists

2.3 TEAMWORK for Distributed Search 9

and select outstanding results and in the cooperation phase, the second part of a
team meeting, the supervisor generates a new start state f?r the further search.

Experts work on solving the given problem instance by using search by extension and
focus. Each expert uses a different focus function, thus generating different search
sequences.

Definition 2.4 (Expert)

An expert X is characterized by a focus function fx: 26

X I --+ 71... An expert starts

cycle i with start state Si. During cycle i an expert may be active, i. e. running on a

processor) or not. By Exp we denote the set of all experts.

For genetic algorithms, an expert takes a given population Si and uses mutation resp.
crossover along with selection to modify the individuals in order to achieve a new
population (which can be used by the supervisor to construct the start population
Si+l)' Therefore an expert only operates on a given set of individuals (the creation of
an initial population has to be done by a specialist). The difference between experts
can be achieved either by using different random number generators (this does not
influence the selection process) or by using different fitness functions (which influences
the whole search).

Specialists can also work on solving the problem instance, without being limited to
using search by extension and focus, or they can generate data that helps controlling
the search, or they can combine these two tasks.

Definition 2.5 (Specialist)
A specialist Sp is a function f sp: 26 --+ 26 x message-set. It starts cycle i with the set
Si of facts and returns a set Ressp of facts with H(s} = true for all s E Ressp and it
can also return a message out of a set of messages for the supervisor. During a cycle
a specialist may be active or not. By Spec we denote the set of all specialists.

Note that a specialist can produce its set Ressp by any correct means. The set of
possible messages message-set has to be defined by the user. Each message of message­
set has to be interpreted by the supervisor.

For genetic algorithms, it has to be considered that experts only operate on an existing
population. Therefore it is necessary to have at least one specialist that creates an
ini tial population (or part of it). In this case, the set Si is empty while ResSp is the
initial population. Moreover, specialists may be used for performing special tasks like
calculating useful information (e.g. a bound in order to decide whether the search
process should be stopped). In this case, the set Ressp is empty while the message-set
contains this information.

Referees have two tasks: computing a measure of success for experts and some special­
ists and selecting outsta,nding results of experts and specialists. The results of both
tasks are passed on to the supervisor. A referee of a specialist also reports the message
of the specialist (if there is any).

2.3 TEAMWORK for Distributed Search 9

and select outstanding results and i n the cooperat ion phase, the second part of a
team meeting, the supervisor generates a new start state for the further search.
Experts work on solving the given problem instance by using search by extension and
focus. Each expert uses a different focus function, thus generating different search
sequences.

Definition 2.4 (Expert)
An expert X is characterized by a focus function fx : 28 x I — Z . An expert starts
cycle 1 with start state S;. During cycle i an expert may be active, i.e. running on a
processor, or not. By Exp we denote the set of all experts.

For genetic algorithms, an expert takes a given population S; and uses mutation resp.
crossover along with selection to modify the individuals in order to achieve a new
population (which can be used by the supervisor to construct the start population
Si+1). Therefore an expert only operates on a given set of individuals (the creation of
an initial population has to be done by a specialist). The difference between experts
can be achieved either by using different random number generators (this does not
influence the selection process) or by using different fitness functions (which influences
the whole search).
Specialists can also work on solving the problem instance, without being limited to
using search by extension and focus, or they can generate data that helps controlling
the search, or they can combine these two tasks.

Definition 2.5 (Specialist)
A specialist Sp is a function fsp: 28 — 28 x message-set. It starts cycle i with the set
Si of facts and returns a set Ress, of facts with Q(s) = true for all s € Ress, and i t
can also return a message out of a set of messages for the supervisor. During a cycle
a specialist may be active or not. By Spec we denote the set of all specialists.

Note that a specialist can produce its set Ress, by any correct means. The set of
possible messages message-set has to be defined by the user. Each message of message-
set has to be interpreted by the supervisor.
For genetic algorithms, i t has to be considered that experts only operate on an existing
population. Therefore i t is necessary to have at least one specialist that creates an
initial population (or part of it). In this case, the set S; is empty while Ress, is the
initial population. Moreover, specialists may be used for performing special tasks like
calculating useful information (e.g. a bound in order to decide whether the search
process should be stopped). In this case, the set Resg, is empty while the message-set
contains this information.

Referees have two tasks: computing a measure of success for experts and some special-
ists and selecting outstanding results of experts and specialists. The results of both
tasks are passed on to the supervisor. A referee of a specialist also reports the message
of the specialist (if there is any).

10 2 GENETIC ALGORITHMS AND TEAMWORK

Definition 2.6 (Referee)
A referee R consists of two functions

measR: (2 B)* -+ 7l. and
selresR: 2B -+ B'5:. k ,

where (2B)* is a sequence of states and k the maximal number of results that may be
selected by the referee. By Ref we denote the set of all referees.

Generally, if a referee judges the success of an expert then it uses the whole search
sequence produced by it as basis for its judgment. Since specialists can use totally
different representations for their search states, the referee can only use the set Ressp.
This is also the set selresR chooses from, while a referee of an expert uses its last search
state as input for selresR.

For genetic algorithms, however, the function meaSR uses only the actual population
of the expert for calculating a measure, since the whole search derivation is normally
not stored. A simple meaSR function uses the fitness function and calculates the mean
fitness of the produced individuals in order to determine the quality of an expert's work.
The selresR function also uses the actual population and selects at most k individuals
for transmitting them to the supervisor. Note that this function may be used to avoid
a local optimum e.g. by selecting individuals that are very different from each other in
order to get a wide variety of individuals in the population.

The supervisor achieves the cooperation of experts and specialists by generating a new
start state for the next cycle out of their results. But it also compares the success
of the experts and specialists and selects the members of the team of the next cycle
using the measures of success of the experts and specialists in prior cycles and further
information provided by a long-term memory (see [DK94]). Also the messages of the
specialists are used. As third task the supervisor determines the length of the next
cycle using the same information.

Definition 2.7 (Supervisor)
The supervisor computes after a cycle i the following three functions:

Comp:(2B x B k X z)n -+ 2B

Seli:(£xp U Spec) x Ref -+ {O, 1}

Timei: 2B x ((£xp U Spec) x Ref)n -+ IN
where n is the number of available processors.

While the function Comp that computes the new start state remains the same through­
out a whole distributed search run -it simply uses the state produced by the expert
with the best measure of success and adds the selected results of the other experts
and the specialists to generate the start state- the functions Sel and Time change
from cycle to cycle, indicated by index i, because they have to take the results of the
prior cycles and the messages of the specialists into account. Since there are only n
processors available, we demand L::xE£xpuSpec Se1i(x, _)= n, so that only n experts and
specialists (with their referees) are active in each cycle.

10 2 GENETIC ALGORITHMS AND TEAMWORK

Definition 2.6 (Referee)
A referee R consists of two functions

measp: (28) — Z and
selresp: 28 — Bst,

where (2B)* is a sequence of states and k the mazimal number of results that may be
selected by the referee. By Ref we denote the set of all referees.

Generally, i f a referee judges the success of an expert then i t uses the whole search
sequence produced by i t as basis for i ts judgment. Since specialists can use totally
different representations for their search states, the referee can only use the set Ressp.
This is also the set selresp chooses from, while a referee of an expert uses its last search
state as input for selresg.

For genetic algorithms, however, the function measg uses only the actual population
of the expert for calculating a measure, since the whole search derivation is normally
not stored. A simple measp function uses the fitness function and calculates the mean
fitness of the produced individuals in order to determine the quality of an expert’s work.
The selresp function also uses the actual population and selects at most k individuals
for transmitting them to the supervisor. Note that this function may be used to avoid
a local optimum e.g. by selecting individuals that are very different from each other in
order to get a wide variety of individuals in the population.
The supervisor achieves the cooperation of experts and specialists by generating a new
start state for the next cycle out of their results. But i t also compares the success
of the experts and specialists and selects the members of the team of the next cycle
using the measures of success of the experts and specialists in prior cycles and further
information provided by a long-term memory (see [DK94]). Also the messages of the
specialists are used. As third task the supervisor determines the length of the next
cycle using the same information.

Definition 2.7 (Supervisor)
The supervisor computes after a cycle i the following three functions:

Comp:(28 x BF x Z)» — 25
Sel;:(ExpU Spec) x Ref — {0,1}
Time;: 25 x ((EzpU Spec) x Ref)" + IN

where n is the number of available processors.

While the function Comp that computes the new start state remains the same through-
out a whole distributed search run -it simply uses the state produced by the expert
with the best measure of success and adds the selected results of the other experts
and the specialists to generate the start state- the functions Sel and Time change
from cycle to cycle, indicated by index i , because they have to take the results of the
prior cycles and the messages of the specialists into account. Since there are only n
processors available, we demand Y°,ce.puspec Sel;(x,-) = n , so that only n experts and
specialists (with their referees) are active in each cycle.

2.3 TEAMWORK for Distributed Search 11

In our case of genetic algorithms, the function Camp creates a new start population
for the next cycle based on the selected individuals (selresR) by the referees as well as
on all the results of the winner (they are entirely used for the new start population).

Cooperation phase

Competition phase

Judgment phase

Cooperation phase

Expert 1 Expert i Expert n

Figure 5: Overview of TEAMWORK

Figure 5 shows the whole distributed search process of TEAMWORK. Implementing
the control cycle and the communication between the components requires more than
knowledge about the search problem one wants to solve. It is possible to avoid some
inter-processor communication by allowing components of different types to share a
processor. Since an expert or specialist, a referee, or the supervisor never are active
during the same time, one can implement them as one process having different modes
(or an agent having different roles).

So, at the beginning of a distributed run, the process on one processor is in supervisor
mode, receiving the problem instance. After generating a search state, the process
sends this state to all other processors whose processes are in expert or specialist
mode. Until the next team meeting the work of the supervisor is done and this process
changes to expert or specialist mode.

When the end of a working phase is reached, each processor changes into referee mode.
This way the referees can access all data of their experts/specialists without expensive
communication. After the judgment phase the process that was in supervisor mode
at the end of the last meeting changes back into supervisor mode and receives the
measures of success of all experts and specialists (function measr). After the best

2.3 TEAMWORK for Distributed Search 11

In our case of genetic algorithms, the function Comp creates a new start population
for the next cycle based on the selected individuals (selresp) by the referees as well as
on all the results of the winner (they are entirely used for the new start population).

Cooperation phase . Supervisor

Competition phase| Expert1 | : - - Experti [+ - - Expert n

Judgment phase Referee 1 | : - + + - Refereei | * + - - - Referee n
Das Da

Cooperation phase Supervisor

Figure 5: Overview of TEAMWORK

Figure 5 shows the whole distributed search process of TEAMWORK. Implementing
the control cycle and the communication between the components requires more than
knowledge about the search problem one wants to solve. I t is possible to avoid some
interprocessor communication by allowing components of different types to share a
processor. Since an expert or specialist, a referee, or the supervisor never are active
during the same time, one can implement them as one process having different modes
(or an agent having different roles).
So, at the beginning of a distributed run, the process on one processor is in supervisor
mode, receiving the problem instance. After generating a search state, the process
sends this state to all other processors whose processes are in expert or specialist
mode. Until the next team meeting the work of the supervisor is done and this process
changes to expert or specialist mode.

When the end of a working phase is reached, each processor changes into referee mode.
This way the referees can access all data of their experts/specialists without expensive
communication. After the judgment phase the process that was in supervisor mode
at the end of the last meeting changes back into supervisor mode and receives the
measures of success of all experts and specialists (function meas,). After the best

12	 3 TSP AND TEAMWORK

expert is determined, its process changes to supervisor mode. This new supervisor
receives the full reports of the referees. The selected results of the other experts and
the specialists can be integrated directly into the actual search state of the process in
supervisor mode. After determining the members of the team in the next cycle the
new start state is transmitted to the other processes and a new cycle begins.

By carefully choosing point-to-point connections between processors or broadcasting to
all processors (when transmitting the new start state), one is able to achieve commu­
nication and control without much overhead. Our TWlib (see [DL96]) provides classes
and methods that achieve this. Then the following synergetic effects occur, that al­
Iowa team to be much more effective than single experts that employ only one focus
function.

•	 A focus function that is able to select many necessary extension steps on the way
to a goal may nevertheless rate some few necessary extension steps very bad. If
there is another focus function that rates the missing extensions good, then the
TEAMWORK method allows the experts of these focus functions to cooperate,
which results in infusing the missing results in the state of the first expert when
they are found by the second one. So, this effect is based on the cooperation
aspect of TEAMWORK.

•	 An expert may be able to generate a good search state, but then can not continue
towards the goal. Another expert can, starting with this good search state, con­
tinue towards the goal. This change of focus functions produces search sequences
that are much better than all sequences produced by one expert alone thus con­
stituting a kind of "hyper"-heuristic. This effect is based on the competition
aspect of TEAMWORK.

3 TSP and TEAMWORK

In this section we present our system DOTT (Distributed Optimization of the Traveling
Salesman Problem using TEAMWORK). Processes employing search by extension and
focus for solving the TSP but using different focus functions work together in a dis­
tributed environment using our TEAMWORK method. Several experts as well as ref­
erees have been written for DOTT, therefore we are able to combine many different
approaches in cooperation with each other. Figure 6 shows a typical team run when
using experts employing genetic algorithms only. The initial population is created by
specialists; afterwards the experts improve the population. The referees judge the work
of the experts and the supervisor sets up a new start population. The number of cycles
depends on the desired goal.

As can be seen in experiments (see section 4)' the genetic algorithms are the most
powerful ones we have found so far. Especially by using a local optimization step after
each genetic operation, the experts are able to find excellent solutions which are only
about 0.5 % longer than the best solution. Moreover, with the TEAMWORK method,
we can even find better solutions than any of the experts working alone.

12 3 TSP AND TEAMWORK

expert is determined, i ts process changes to supervisor mode. This new supervisor
receives the full reports of the referees. The selected results of the other experts and
the specialists can be integrated directly into the actual search state of the process in
supervisor mode. After determining the members of the team in the next cycle the
new start state is transmitted to the other processes and a new cycle begins.

By carefully choosing point-to-point connections between processors or broadcasting to
all processors (when transmitting the new start state), one is able to achieve commu-
nication and control without much overhead. Our TWIib (see [DL96]) provides classes
and methods that achieve this. Then the following synergetic effects occur, that al-
low a team to be much more effective than single experts that employ only one focus
function.

e A focus function that is able to select many necessary extension steps on the way
to a goal may nevertheless rate some few necessary extension steps very bad. If
there is another focus function that rates the missing extensions good, then the
TEAMWORK method allows the experts of these focus functions to cooperate,
which results in infusing the missing results in the state of the first expert when
they are found by the second one. So, this effect is based on the cooperation
aspect of TEAMWORK.

® An expert may be able to generate a good search state, but then can not continue
towards the goal. Another expert can, starting with this good search state, con-
tinue towards the goal. This change of focus functions produces search sequences
that are much better than all sequences produced by one expert alone thus con-
stituting a kind of “hyper”-heuristic. This effect is based on the competition
aspect of TEAMWORK.

3 TSP and TEAMWORK

In this section we present our system DOTT (Distributed Optimization of the Traveling
Salesman Problem using TEAMWORK). Processes employing search by extension and
focus for solving the TSP but using different focus functions work together in a dis-
tributed environment using our TEAMWORK method. Several experts as well as ref-
erees have been written for DOTT, therefore we are able to combine many different
approaches in cooperation with each other. Figure 6 shows a typical team run when
using experts employing genetic algorithms only. The initial population is created by
specialists; afterwards the experts improve the population. The referees judge the work
of the experts and the supervisor sets up a new start population. The number of cycles
depends on the desired goal.

As can be seen in experiments (see section 4), the genetic algorithms are the most
powerful ones we have found so far. Especially by using a local optimization step after
each genetic operation, the experts are able to find excellent solutions which are only
about 0.5 % longer than the best solution. Moreover, wi th the TEAMWORK method,
we can even find better solutions than any of the experts working alone.

3.1 The Traveling Salesman Problem 13

Cycle 0 Specialists create initial population

Experts work in parallel

Referees judge work of experts and select good results Cyclei

Supervisor creates new start population

No

Ready

Figure 6: A typical team run

In the following, we will first present the Traveling Salesman Problem that we want to
solve. After this we concentrate on the realizations of the different team components.
We will follow the ordering given in Figure 6 and start with specialists and continue
with experts, referees, and the supervisor.

3.1 The Traveling Salesman Problem

Given is a set of n cities along with their distances to each other. The Traveling
Salesman Problem is finding the shortest round-trip, such that each city is visited
exactly once. This problem can be seen in a geographical way, or more general from
a theoretical point of view; several optimization problems can be transformed into
Traveling Salesman Problems. We give in the following a more formal definition of the
TSP.

Definition 3.1 (Traveling Salesman Problem)
Let C = (Ci)), i,j E {1, ... ,n} be a cost matrix.

The problem of finding a permutation Ti of {1, ... ,n }such that

~?=1 C11"(i),11"((imodn)+l) is minimal

is called the Traveling Salesman Problem.

The cost matrix represents the distances of the different cities to each other (Cij is the
cost for traveling from city number i to city number j). Note that for the general TSP,

3.1 The Traveling Salesman Problem 13

Cycle 0 Specialists create initial population

<

Experts work in parallel
_ 1

Cycle i Referees judge work of experts and select good results
E!

Supervisor creates new start population

Ready

Figure 6: A typical team run

In the following, we will first present the Traveling Salesman Problem that we want to
solve. After this we concentrate on the realizations of the different team components.
We will follow the ordering given in Figure 6 and start with specialists and continue
with experts, referees, and the supervisor.

3.1 The Traveling Salesman Problem

Given is a set of n cities along with their distances to each other. The Traveling
Salesman Problem is finding the shortest round-trip, such that each city is visited
exactly once. This problem can be seen in a geographical way, or more general from
a theoretical point of view; several optimization problems can be transformed into
Traveling Salesman Problems. We give in the following a more formal definition of the
TSP.

Definition 3.1 (Traveling Salesman Problem)
Let C = (ci;), i , j € {1 , . . . ,n } be a cost matriz.
The problem of finding a permutation © of {1, . . . ,n}such that

Die Cn(i)m((imod n)+1) 85 minimal
is called the Traveling Salesman Problem.

The cost matrix represents the distances of the different cities to each other (ci; is the
cost for traveling from city number i to city number j). Note that for the general TSP,

14	 3 TSP AND TEAMWORK

it is not necessary that Cij = Cji for all i, j E {1, ... , n}. However, if this equation does
hold, we speak of the symmetric TSP. Since it is the most common variant of the TSP,
we consider only the symmetric TSP. For reference, see also [Re94] and [LLRS85].

3.2 Specialists

We will now explain the three most important specialists that are integrated in DOTT.

Specialists are necessary for performing special tasks. For example, experts that use
genetic algorithms need a specialist that creates an initial population (specialist FI).
Other experts need some special additional information (specialist SORT). Further­
more, specialists can be used to help the supervisor control the optimization process
and determine the end of a run (specialist LOWER).

3.2.1 Farthest Insertion

FI (Farthest Insertion) is a tour construction heuristic. All of the experts used in
DOTT are tour improvement heuristics. Therefore it is necessary to construct an initial
population of individuals first, using only the cost matrix as a basis. The actual
algorithm works as follows (as described in [Jo90]):

1.	 Take one city as starting point for a "tour" consisting only of this city.

2.	 Pick the city that has the longest distance from the so-far generated tour, i.e.
the city whose minimal distance to the cities of the tour is maximal. Add the
city to the tour in the way that the cost for the insertion is minimal.

3.	 Repeat the second step until all the cities of the TSP have been added to the
tour.

The idea of this algorithm is that by adding the farthest cities to the tour first, the
hardest part is included first thus creating a rough "skeleton" which develops into a
complete tour of a fairly good quality. The resulting tour differs, depending on which
city is chosen to be the start city. Consequently there can be at most as many different
tours as there are cities in the given TSP.

Farthest Insertion has shown to be a very good tour construction heuristic, especially
compared to related heuristics (Nearest Insertion, Cheapest Insertion, Arbitrary Inser­
tion, see [RSL74]). In experiments individuals created by FI were approximately 7 %
longer than the optimal tour.

3.2.2 SORT

SORT is a specialist that processes information that is needed by some of the experts,
e.g. the modified 3-0pt heuristic (see section 3.3.2). SORT creates sorted lists of
distances to neighbor cities of the given TSP. Such a list for one city consists of the

14 3 TSP AND TEAMWORK

i t is not necessary that ¢;; = ¢;; for all 4,5 € {1 , . . . ,n } . However, i f this equation does
hold, we speak of the symmetric TSP. Since i t is the most common variant of the TSP,
we consider only the symmetric TSP. For reference, see also [Re94] and [LLRS85].

3 .2 Specialists

We will now explain the three most important specialists that are integrated in DOTT.
Specialists are necessary for performing special tasks. For example, experts that use
genetic algorithms need a specialist that creates an init ial population (specialist F I) .
Other experts need some special additional information (specialist SORT). Further-
more, specialists can be used to help the supervisor control the optimization process
and determine the end of a run (specialist LOWER).

3 .2 .1 Farthest Insert ion

FI (Farthest Insertion) is a tour construction heuristic. Al l of the experts used in
DOTT are tour improvement heuristics. Therefore i t is necessary to construct an init ial
population of individuals first, using only the cost matrix as a basis. The actual
algorithm works as follows (as described in [Jo90]):

1. Take one city as starting point for a “tour” consisting only of this city.

2. Pick the city that has the longest distance from the so-far generated tour, i.e.
the city whose minimal distance to the cities of the tour is maximal. Add the
city to the tour in the way that the cost for the insertion is minimal.

3. Repeat the second step until all the cities of the TSP have been added to the
tour.

The idea of this algorithm is that by adding the farthest cities to the tour first, the
hardest part is included first thus creating a rough “skeleton” which develops into a
complete tour of a fairly good quality. The resulting tour differs, depending on which
city is chosen to be the start city. Consequently there can be at most as many different
tours as there are cities in the given TSP.

Farthest Insertion has shown to be a very good tour construction heuristic, especially
compared to related heuristics (Nearest Insertion, Cheapest Insertion, Arbitrary Inser-
tion, see [RSL74]). In experiments individuals created by F I were approximately 7 %
longer than the optimal tour.

3.2.2 SORT

SORT is a specialist that processes information that is needed by some of the experts,
e.g. the modified 3-Opt heuristic (see section 3.3.2). SORT creates sorted lists of
distances to neighbor cities of the given TSP. Such a list for one city consists of the

-3.3 Experts 15

indexes of the other cities of the TSP, sorted in ascending order. This way, it is easy
to know the shortest edges starting from a given city. Such an ordered list is computed
for each of the cities.

3.2.3 LOWER

LOWER calculates a lower bound of the TSP, i.e. a minimum length of the optimal
tour. The algorithm is explained in [HK70]. The calculated bound is helpful for
controlling the optimization process. It can be used to determine the quality of a tour;
if a tour is created of the length of the lower bound, then this tour is optimal.

3.3 Experts

After setting up an initial population, it is necessary to improve it using experts. Al­
though there are several different experts already integrated in DOTT, we achieved the
best results with those experts employing genetic algorithms and using local optimiza­
tion. Therefore we mainly concentrate on these experts. Nevertheless we would like to
give some details about some of the other experts in DOTT first, since the ideas used
in them will also be used in the experts of our experiments.

3.3.1 2-0pt

With this algorithm (see [Cr58]), two edges of a tour are chosen for a so-called 2-0pt­
step. The edges are being removed from the tour and the resulting two fragments are
rejoined in order to create a different, hopefully shorter tour. Note that for a 2-0pt­
step there is only one possibility to join the two parts to a new tour if one wants to
get a different one than the tour that was used for the optimization step in the first
place. Of course the 2-0pt-step is only applied if the resulting tour is shorter than the
original one. Figure 7 shows a 2-0pt step. The selected edges for performing 2-0pt
as well as the ones inserted into the tour are marked by a symbol (*). Since we only
deal with the symmetric TSP, the calculation of the new tour length is very easy by
simply adding resp. subtracting the costs of the four edges (for the symmetric TSP, a
reversed partial tour has the same cost as the original one).

If a tour cannot be optimized by any 2-0pt-step anymore, it is considered to be locally
optimal with respect to 2-0pt. The same holds for related optimization heuristics like
3-0pt.

In order to reduce the complexity of the heuristic, we developed a slightly different
2-0pt heuristic. Our expert is able to reduce the number of optimization steps by
considering only a part of the edges of a tour for a 2-0pt step, namely those which
are very likely to bring an improvement of the tour. This way the run time of the
expert is improved while the quality of the results differ only a little bit compared to
the standard heuristic.

-3.3 Experts 15

indexes of the other cities of the TSP, sorted i n ascending order. This way, i t is easy
to know the shortest edges starting from a given city. Such an ordered list is computed
for each of the cities.

3.2.3 LOWER

LOWER calculates a lower bound of the TSP, i.e. a minimum length of the optimal
tour. The algorithm is explained in [HK70]. The calculated bound is helpful for
controlling the optimization process. I t can be used to determine the quality of a tour;
i f a tour is created of the length of the lower bound, then this tour is optimal.

3.3 Experts

After setting up an initial population, i t is necessary to improve i t using experts. Al-
though there are several different experts already integrated in DOTT, we achieved the
best results with those experts employing genetic algorithms and using local optimiza-
tion. Therefore we mainly concentrate on these experts. Nevertheless we would like to
give some details about some of the other experts i n DOTT first, since the ideas used
i n them will also be used in the experts of our experiments.

3.3.1 2 -Opt

With this algorithm (see [Cr58]), two edges of a tour are chosen for a so-called 2-Opt-
step. The edges are being removed from the tour and the resulting two fragments are
rejoined in order to create a different, hopefully shorter tour. Note that for a 2-Opt-
step there is only one possibility to join the two parts to a new tour i f one wants to
get a different one than the tour that was used for the optimization step in the first
place. Of course the 2-Opt-step is only applied i f the resulting tour is shorter than the
original one. Figure 7 shows a 2-Opt step. The selected edges for performing 2-Opt
as well as the ones inserted into the tour are marked by a symbol (*) . Since we only
deal with the symmetric TSP, the calculation of the new tour length is very easy by
simply adding resp. subtracting the costs of the four edges (for the symmetric TSP, a
reversed partial tour has the same cost as the original one).
If a tour cannot be optimized by any 2-Opt-step anymore, i t is considered to be locally
optimal with respect to 2-Opt. The same holds for related optimization heuristics like
3-Opt.

In order to reduce the complexity of the heuristic, we developed a slightly different
2-Opt heuristic. Our expert is able to reduce the number of optimization steps by
considering only a part of the edges of a tour for a 2-Opt step, namely those which
are very l ikely t o bring an improvement of the tour. This way the run t ime of the
expert is improved while the quality of the results differ only a l i t t le bit compared to
the standard heuristic.

16 3 TSP AND TEAMWORK

--.~ edge

.......~ partial tour

Figure 7: A 2-0pt step

There are two parameters for controlling this heuristic. First, the parameter maxn1lm
sets a maximum for the number of 2-0pt steps applied to one tour, in order to prevent
the system from operating only on a few tours while neglecting the others. Furthermore
the parameter depth reduces the number of considered edges for 2-0pt; the idea is that
not all of the edges are tested for rejoining the tour fragments, but only those that very
likely lead to an improvement of the tour. Since the resulting tour should be shorter
than the original one, it makes sense to add one of the shortest edges to the tour in a
2-0pt step. Let (ai, aj) be the shortest edge starting from city ai. This is determined
with the help of the sorted list of neighbor cities for city ai, as calculated by the
specialist SORT. If this edge is not already in the tour, there are only two possibilities
for applying a 2-0pt step if this new edge should be present in the resulting tour.
Consequently, two different tours can be generated this way. Figure 8 shows these two
possibilities. The chosen edges as well as the inserted ones are marked-by a symbol (*).

It has been shown in experiments, that by reducing the number of considered edges
for applying a 2-0pt step this way, 2-0pt runs much faster without losing much of the
quality of the generated tours.

3.3.2 3-0pt

Similar to 2-0pt, this heuristic breaks a tour in different parts and rejoins them in the
way that a different tour is created (see [Lin65]). With 3-0pt, three edges are chosen;
there are eight possibilities of rejoining the resulting three parts to a new tour. Again,
this is only done if a shorter tour is achieved this way. Note that the 2-0pt-heuristic
is included in 3-0pt; a 2-0pt step may be done by reusing one of the chosen edges in
a 3-0pt step. Figure 9 shows two possible 3-0pt steps.

3-0pt has a much higher complexity than 2-0pt. The resulting tours are in average
better than the ones generated by 2-0pt. It is necessary to decide whether it is more
important to get results of a good quality or a low processing time.

In DOTT, our expert uses a modified 3-0pt, which is the obvious progression of the
modified 2-0pt described in section 3.3.1. Again, only a part of the edges are taken
into consideration for applying 3-0pt steps (those that are very likely to lead to an

16 ' 3 TSP AND TEAMWORK

Figure 7: A 2-Opt step

There are two parameters for controlling this heuristic. First, the parameter maznum
sets a maximum for the number of 2-Opt steps applied to one tour, in order to prevent
the system from operating only on a few tours while neglecting the others. Furthermore
the parameter depth reduces the number of considered edges for 2-Opt; the idea is that
not all of the edges are tested for rejoining the tour fragments, but only those that very
likely lead to an improvement of the tour. Since the resulting tour should be shorter
than the original one, i t makes sense to add one of the shortest edges to the tour in a
2-Opt step. Let (a ; ,a;) be the shortest edge starting from city a;. This is determined
wi th the help of the sorted list of neighbor cities for city a;, as calculated by the
specialist SORT. If this edge is not already in the tour, there are only two possibilities
for applying a 2-Opt step i f this new edge should be present in the resulting tour.
Consequently, two different tours can be generated this way. Figure 8 shows these two
possibilities. The chosen edges as well as the inserted ones are markedby a symbol (*).
I t has been shown in experiments, that by reducing the number of considered edges
for applying a 2-Opt step this way, 2-Opt runs much faster without losing much of the
quality of the generated tours.

3.3.2 3-Opt

Similar to 2-Opt, this heuristic breaks a tour in different parts and rejoins them in the
way that a different tour is created (see [Lin65]). With 3-Opt, three edges are chosen;
there are eight possibilities of rejoining the resulting three parts to a new tour. Again,
this is only done i f a shorter tour is achieved this way. Note that the 2-Opt-heuristic
is included in 3-Opt; a 2-Opt step may be done by reusing one of the chosen edges in
a 3-Opt step. Figure 9 shows two possible 3-Opt steps.
3-Opt has a much higher complexity than 2-Opt. The resulting tours are in average
better than the ones generated by 2-Opt. I t is necessary to decide whether i t is more
important to get results of a good quality or a low processing time.
In DOTT, our expert uses a modified 3-Opt, which is the obvious progression of the
modified 2-Opt described in section 3.3.1. Again, only a part of the edges are taken
into consideration for applying 3-Opt steps (those that are very likely to lead to an

3.3 Experts 17

ai+l'1 aj-la'+l 2-0ptai a'J a·t

~t
 ----+­

ai-l
aj+l ai-l

ai+l

~1
aj-la'+l 2-0ptai a·J ai

----+­* .t aj+l
ai-l ai-l

--... edge

,,~ partial tour

Figure 8: Our modified 2-0pt

improvement of the tour). The idea is that if a new edge is used, it should be as short
as possible. Starting from city ai, this edge is determined with the help of the sorted
list of neighbor cities for ai. If the edge (ai, aj) resp. (a j, ai) should be found in the
resulting tour, there are two different possibilities (with several different values for k)
for performing a 3-0pt step (Figure 10).

With this modified 3-0pt heuristic, the run time improves very much, since not all of
the possible 3-0pt steps are actually applied, while the quality of the results is very
close to the one achieved by the original 3-0pt heuristic.

3.3.3 Edge Recombination Crossover

With this genetic algorithm (see [Mi92]), two parent individuals are chosen for per­
forming a crossover step. The parents are chosen with respect to the fitness function
and a random number generator. The essential idea of the heuristic is that those edges
should be found in the child that are in both of the parents or at least in one parent.
In order to make sure that the child is indeed a correct individual, i.e. a TSP tour, it.
is necessary to also use edges that are not found in any of the parents; if an edge of a
parent cannot be used without getting an incorrect individual, we have an edge failure.
An edge failure is treated by using a different edge not found in any of the parents.
Consequently, ER Crossover is not a simple crossover, but actually a combination of
crossover and mutation. Still, since it is the essential idea, it makes sense to call it
crossover. In more detail, the algorithm works as follows.

3.3 Experts 17

Aig pe r] a j a i t DS N | a j—1

| * 2-Opt | —
;

A 4 = «vee eee y a j a i t1 | AA a j -1

. *

— edge

r ene > partial tour

Figure 8: Our modified 2-Opt

improvement of the tour). The idea is that if a new edge is used, i t should be as short
as possible. Starting from city a;, this edge is determined with the help of the sorted
list of neighbor cities for a;. If the edge (a;,a;) resp. (aj, a;) should be found in the
resulting tour, there are two different possibilities (with several different values for k)
for performing a 3-Opt step (Figure 10).
With this modified 3-Opt heuristic, the run time improves very much, since not all of
the possible 3-Opt steps are actually applied, while the quality of the results is very
close to the one achieved by the original 3-Opt heuristic.

3.3.3 Edge Recombination Crossover

With this genetic algorithm (see [Mi92]), two parent individuals are chosen for per-
forming a crossover step. The parents are chosen with respect to the fitness function
and a random number generator. The essential idea of the heuristic is that those edges
should be found in the child that are in both of the parents or at least in one parent.
In order to make sure that the child is indeed a correct individual, i.e. a TSP tour, i t .
is necessary to also use edges that are not found in any of the parents; i f an edge of a
parent cannot be used without getting an incorrect individual, we have an edge failure.
An edge failure is treated by using a different edge not found in any of the parents.
Consequently, ER Crossover is not a simple crossover, but actually a combination of
crossover and mutation. Still, since i t is the essential idea, i t makes sense to call i t
crossover. In more detail, the algorithm works as follows.

18 3	 TSP AND TEAMWORK

......~~----~ ~ *
3-0pt

.....~ *~ -~ ~J 1.~ ...~~
......~

.....~...... * •.. ..~ ...~	~-----~
 *
3-0pt-

--~... edge

.......~ partial tour

Figure 9: Possible 3-0pt steps

1.	 Choose two parent tours for performing ER Crossover (this' is controlled by the
parameters p and peorr).

2.	 Pick a start city (controlled by the parameter v first)

3.	 Choose the next edge for inserting into the resulting tour. If it is possible to use
an edge (starting from the active city) which can be found in one of the parents,
choose it (controlled by parameter vnext). Else select a new edge which cannot
be found in any of the parents (controlled by parameter vnone).

4.	 If the resulting tour is not complete yet, go to step 3

For the selection of the parents, a random number generator is used, such that a
probability distribution is accomplished. In more detail, p is the probability that the
first tour (i.e. the shortest one) is chosen as parent; the probability for choosing the

2second tour (i.e. the second-shortest one) is p * peorr; for the third tour p * peorr
and so on. If the random number (adjusted to the interval [0,1]) is higher than the
actual probability, then the individual is chosen. Our expert is able to use different
probability distributions this way for the selection of the parents. For example one
may use primarily short tours by setting p:=50, peorr:=100.

If two parents have been selected, the crossover according to the algorithm can be
controlled by the following parameters.

vfirst This parameter determines the heuristic for choosing the start city. It may be
assigned the following values:

FIRST_RAND: Select a city with equal probability for each city.

FIRST_MIN-ALL: Select a city with equal probability only from the set of those
cities that have the most common edges in both parents.

18 3 TSP AND TEAMWORK

. . . . J r Pn oP

3 -Op t

. . . . 4 | Eh —.— > .

x
. a an GREER EEE 2 FUN -

3 -Op t hee

- _— HR *
[I Poe bos SE -

— edge

ee > partial tour

Figure 9: Possible 3-Opt steps

1. Choose two parent tours for performing ER Crossover (this'is controlled by the
parameters p and pcorr).

2. Pick a start city (controlled by the parameter v f i rst)

3. Choose the next edge for inserting into the resulting tour. If i t is possible to use
an edge (starting from the active city) which can be found in one of the parents,
choose i t (controlled by parameter vnez t) . Else select a new edge which cannot
be found i n any of the parents (controlled by parameter vnone).

4. If the resulting tour is not complete yet, go to step 3

For the selection of the parents, a random number generator is used, such that a
probability distribution is accomplished. In more detail, p is the probability that the
first tour (i.e. the shortest one) is chosen as parent; the probability for choosing the
second tour (i.e. the second-shortest one) is p * pcorr; for the third tour p * pcorr?
and so on. If the random number (adjusted to the interval [0,1]) is higher than the
actual probability, then the individual is chosen. Our expert is able to use different
probability distributions this way for the selection of the parents. For example one
may use primarily short tours by setting p:=50, peorr:=100.

If two parents have been selected, the crossover according to the algorithm can be
controlled by the following parameters.

v f i rst This parameter determines the heuristic for choosing the start city. I t may be
assigned the following values:
FIRST RAND: Select a city with equal probability for each city.
FIRST_MIN_ALL: Select a city with equal probability only from the set of those
cities that have the most common edges in both parents.

3.3 Experts 19

ak+l ak+l

::+l~*1
aj-l

a-J

3-0pt-
ai+l

ai

aj-l

a-J

ai-l
aj+l

ai-l
aj+l

ak+l

ak -ai+l ~~j
aj-l

a-
ai J

*

3-0pt-
ai+l

ai

ak+l

aj-l

a-J

aj+l aj+l
ai-l ai-l

--... edge~

----._.... partial tour

Figure 10: Our modified 3-0pt expert

FIRST..MIN_5: Randomly pick five different cities. Choose the city out of the
five picked ones that has the most edges in common for both parents' (if there is
more than one city of the same quality, choose the first one).

vnext This parameter determines the strategy for choosing the next city while con­
structing the child tour. It may have one of the following settings:

NEXT..RAND: Pick one of the maximal four_ possible edges of the parents with
equal probability. Leave out those edges that lead to cities that have already
been used for the child tour.

NEXTJ\1IN_USED: For each of the maximal four cities determine the number of
edges that have not been used so far. Out of those cities that lead to the minimal
number, choose one with equal probability.

vnone This parameter determines the strategy for choosing the next edge if it is not
possible to use an edge of the parents.

NONE..RAND: Pick a city with equal probability out of the set of those cities
that have not been used so far.

NONE_SORTED: Pick the nearest possible city.

3.3 Experts

A+ Ak+1

ag - .
A i t1 4 - G7 a Aj)

3-Opt
. ——

a ; aj
x *

Ce ee eee Gji41
a i -1

Qk+1

a j .
A i t1 4 - ed CA G j

* 3-Opt
a ; e —

*

Ce ee eee asi
a ; -1

— edge

RE > partial tour

19

Figure 10: Our modified 3-Opt expert

FIRST MIN_5: Randomly pick five different cities. Choose the city out of the
five picked ones that has the most edges in common for both parents(if there is
more than one city of the same quality, choose the first one).

vnext This parameter determines the strategy for choosing the next city while con-
structing the child tour. It may have one of the following settings:

NEXT_RAND: Pick one of the maximal four possible edges of the parents with
equal probability. Leave out those edges that lead to cities that have already
been used for the child tour.

NEXT MIN_USED: For each of the maximal four cities determine the number of
edges that have not been used so far. Out of those cities that lead to the minimal
number, choose one with equal probability.

vnone This parameter determines the strategy for choosing the next edge if i t is not
possible to use an edge of the parents.

NONE RAND: Pick a city with equal probability out of the set of those cities
that have not been used so far.

NONE_SORTED: Pick the nearest possible city.

20 3 TSP	 AND TEAMWORK

3.3.4	 Edge Recombination Crossover with Local Optimization 3-0pt
(ER..L03)

One of the main disadvantages of genetic algorithms is that they tend to be quite
slow. A different approach for an expert is the combination of genetic algorithms
with effective tour improvement heuristics (see section 2.1). In DOTT, there are four
different experts that use this approach (ER_L02, ER_L03, MUT4_L02, MUT4_L03).
As genetic operators we chose Edge Recombination Crossover and 4-0pt-Mutation, as
tour improvement heuristics we used 2-0pt and 3-0pt.

ER_L03 randomly chooses two individuals as parents, performs an Edge Recombi­
nation Crossover step on them and improves the resulting child with the (modified)
3-0pt-heuristic. The main cost for this expert lies in the 3-0pt optimization. There­
fore ER_L03 produces only few individuals compared to the experts that use 2-0pt as
local optimization. The experts that use 3-0pt approximately need the same running
time for producing a new tour; the same holds for the 2-0pt-experts.

ER_L03 uses the following parameters. First the parameters which can be found in the
ER Crossover expert p, pcorr, vfirst, vnext, vnone are present again. The parameters
for the 3-0pt optimization are maxnum and depth. Moreover, there can be more than
one generation for this expert; the permitted time for one generation is determined by
the parameter gentime. After this time, the expert substitutes the active generation
by those individuals that have been created. Note that our expert strictly separates
generations; this means that newly created individuals cannot be immediately used
for progressing in the search process. Moreover individuals (except for the best one)
are not taken over to the next generation, except if they are generated again by the
expert. The same holds for the other experts ER_L02, MUT4_L03 and MUT4_L02.
Consequently, we have an explicit selection rule that deletes the old individuals after
the generation time has elapsed.

Here is the algorithm in more detail.

For each generation do:

1.	 Randomly pick two parent tours from the population using the parameters p and
pcorr

2.	 Perform ER Crossover on these two tours (parameters vfirst, vnext, vnone)

3.	 Local optimization: use 3-0pt on the resulting tour (parameters maxnum, depth)

4. Add	 the resulting, optimized tour to the new generation

5.	 If the generation time is not over (parameter gentime), go to step 1

If the generation time is over, the best tour of the original population is added to the
new population, if it hasn't been created anyway. Then the next generation is used as
the new population while the old generation is erased.

In experiments, the best tours produced by this expert were in average 0.2 % longer
than the optimal tour.

20 3 TSP AND TEAMWORK

3.3.4 Edge Recombination Crossover with Local Opt imizat ion 3-Opt
(ER _LO3)

One of the main disadvantages of genetic algorithms is that they tend to be quite
slow. A different approach for an expert is the combination of genetic algorithms
with effective tour improvement heuristics (see section 2.1). In DOTT, there are four
different experts that use this approach (ER_LO2, ER_LO3, MUT4_LO2, MUT4_LO3).
As genetic operators we chose Edge Recombination Crossover and 4-Opt-Mutation, as
tour improvement heuristics we used 2-Opt and 3-Opt.
ER_LO3 randomly chooses two individuals as parents, performs an Edge Recombi-
nation Crossover step on them and improves the resulting child with the (modified)
3-Opt-heuristic. The main cost for this expert lies in the 3-Opt optimization. There-
fore ER_LO3 produces only few individuals compared to the experts that use 2-Opt as
local optimization. The experts that use 3-Opt approximately need the same running
t ime for producing a new tour; the same holds for the 2-Opt-experts.

ER_LO3 uses the following parameters. First the parameters which can be found in the
ER Crossover expert p , pcorr, v f i rs t , vnert , vnone are present again. The parameters
for the 3-Opt optimization are maznum and depth. Moreover, there can be more than
one generation for this expert; the permitted time for one generation is determined by
the parameter gentime. After this time, the expert substitutes the active generation
by those individuals that have been created. Note that our expert strictly separates
generations; this means that newly created individuals cannot be immediately used
for progressing in the search process. Moreover individuals (except for the best one)
are not taken over to the next generation, except i f they are generated again by the
expert. The same holds for the other experts ER 1.02, MUT4_LO3 and MUT4_LO2.
Consequently, we have an explicit selection rule that deletes the old individuals after
the generation time has elapsed.
Here is the algorithm in more detail.
For each generation do:

1. Randomly pick two parent tours from the population using the parameters p and
peorr

2. Perform ER Crossover on these two tours (parameters v f i rst , vnext, vnone)

3. Local optimization: use 3-Opt on the resulting tour (parameters maznum, depth)

4. Add the resulting, optimized tour to the new generation

5. If the generation time is not over (parameter gentime), go to step 1

I f the generation time is over, the best tour of the original population is added to the
new population, i f i t hasn’t been created anyway. Then the next generation is used as
the new population while the old generation is erased.
In experiments, the best tours produced by this expert were in average 0.2 % longer
than the optimal tour.

3.3 Experts	 21

3.3.5	 Edge Recombination Crossover with Local Optimization 2-0pt
(ER..L02)

The only difference between this expert and ER_L03 is the local optimization method
used. Instead of 3-0pt, this expert uses 2-0pt. The main idea of this heuristic is that
this way much more individuals are created and therefore a larger variety of tours is
achieved in the population. Indeed, as can be seen in experiments, this expert is much
faster in producing new tours than the ones that use 3-0pt as local optimization; results
of a comparable quality can be found faster with it. The parameters for this expert are
the same as for ER_L03: p, pcorr, viirst, vnext, vnone, maxnum, depth and gentime.
The parameters maxnum and depth are used for the 2-0pt local optimization.

The best results we got from this expert in experiments were approximately 0.63 %
longer than the optimal tour.

3.3.6	 4-0pt-Mutation with Local Optimization 3-0pt (MUT4_L03)

A simple mutation of a TSP tour one can think of is exchanging two cities of the
tour. For this, four edges have to be substituted by four other ones. 4-0pt is a more
general heuristic for performing this; it is not a mutation in the first place, but the
next consequence of the tour improvement heuristics 2-0pt and 3-0pt. Four edges are
chosen for breaking an existing tour into four parts. Afterwards these four partial tours
are rejoined to a new tour. Normally, since we have a tour improvement heuristic, the
resulting tour should be shorter than the original one. With this expert, however, this
is not necessary. We only use one special 4-0pt step for a modification (mutation) of
the tour; afterwards the local optimization heuristic 3-0pt improves the resulting tour.
The algorithm is very close to a heuristic used in [Jo90], with the differences that we
use 3-0pt for local optimization instead of the Lin-Kernighan heuristic and we have a
population of tours and not only one.

After the four edges are (randomly) chosen for the mutation step, the aetua14-0pt-step
is deterministic; we used a special one instead of trying out all of the possibilities. In
Figure 11, the 4-0pt step that we used is illustrated.

Parameters for this expert are p, PCOT'T' (the selection of the tour for mutation is done
in the same way as for ER_L03), maxnum, depth (for the local optimization 3-0pt)
and gentime (for the generation time; see ER_L03).

The algorithm works as follows.

For each generation do:

1.	 Randomly choose one tour from the population using the parameters p and PCOT'T'

2.	 Perform the 4-0pt mutation step as illustrated i~ Figure 11 on this tour (the
edges are chosen randomly)

3.	 Local optimization: use 3-0pt on the resulting tour (parameters maxnum, depth)

3.3 Experts 21

3.3.5 Edge Recombination Crossover with Local Optimization 2-Opt
(ER _LO2)

The only difference between this expert and ER_LOS3 is the local optimization method
used. Instead of 3-Opt, this expert uses 2-Opt. The main idea of this heuristic is that
this way much more individuals are created and therefore a larger. variety of tours is
achieved i n the population. Indeed, as can be seen i n experiments, this expert is much
faster in producing new tours than the ones that use 3-Opt as local optimization; results
of a comparable quality can be found faster with i t . The parameters for this expert are
the same as for ER_LO3: p, pcorr, v f i rs t , vnezt, vnone, maznum, depth and gentime.
The parameters maznum and depth are used for the 2-Opt local optimization.
The best results we got from this expert in experiments were approximately 0.63 %
longer than the optimal tour.

3.3.6 4-Opt-Mutation with Local Optimization 3-Opt (MUT4_LO3)

A simple mutation of a TSP tour one can think of is exchanging two cities of the
tour. For this, four edges have to be substituted by four other ones. 4-Opt is a more
general heuristic for performing this; i t is not a mutation in the first place, but the
next consequence of the tour improvement heuristics 2-Opt and 3-Opt. Four edges are
chosen for breaking an existing tour into four parts. Afterwards these four partial tours
are rejoined to a new tour . Normally, since we have a tour improvement heuristic, the
resulting tour should be shorter than the original one. With this expert, however, this
is not necessary. We only use one special 4-Opt step for a modification (mutation) of
the tour; afterwards the local optimization heuristic 3-Opt improves the resulting tour.
The algorithm is very close to a heuristic used in [Jo90], with the differences that we
use 3-Opt for local optimization instead of the Lin-Kernighan heuristic and we have a
population of tours and not only one.

After the four edges are (randomly) chosen for the mutation step, the actual 4-Opt-step
is deterministic; we used a special one instead of trying out all of the possibilities. In
Figure 11, the 4-Opt step that we used is illustrated.

Parameters for this expert are p, pcorr (the selection of the tour for mutation is done
in the same way as for ER_.LO3), maznum, depth (for the local optimization 3-Opt)
and gentime (for the generation time; see ER-LO3).
The algorithm works as follows.
For each generation do:

1. Randomly choose one tour from the population using the parameters p and pcorr

2. Perform the 4-Opt mutation step as illustrated in Figure 11 on this tour (the
edges are chosen randomly)

3. Local optimization: use 3-Opt on the resulting tour (parameters maznum, depth)

22 3 TSP AND TEAMWORK

.r--..

14-0J;tt
'~'

.~

...
~.

--~ edge

...... '~ partial tour

Figure 11: The 4-0pt-step for our 4-0pt-mutation experts

4. Add the resulting, optimized tour to the new generation

5. If the generation time is not over (parameter gentime), go to step 1

The subs~itution of the generation, if the generation time is over, is done in the same
way as for ER_L03.

In experiments we found that the best results of this expert were about 0.28 %longer
than the optimal tour.

The time for generating a new tour of the expert is very similar to the one of ER_L03.
Therefore these two experts are easily able to work together in a team.

3.3.7 4-0pt-Mutation with Local Optimization 2-0pt (MUT4_L02)

This expert works in the same way as MUT4_L03. The only difference is that for lo;cal
optimization the 2-0pt heuristic is used instead of 3-0pt. The parameters for this
expert are the same ones as for MUT4_L03: p, pcorr, maxnum, depth and gentime
(generation time). It is obvious that this expert can be used very well together with
ER_L02, since they have comparable running times for producing new individuals.

In experiments, the best tours generated by this expert were approximately 0.33 %
longer than the optimal tour. Again this shows that it seems to be a successful approach
to use a local optimization heuristic of a lower complexity. Good results are found
much faster with MUT4_L02; moreover they are of about the same quality as the ones
generated by MUT4_L03 or ER_L03.

3.4 Referees

As described in section 2.3, referees in TEAMWORK have two different tasks: first the
judgment of the overall work of an expert (meas R); second the selection of good results
in order to send them to the supervisor (selresR)' In DOTT, there are several different

22 3 TSP AND TEAMWORK

— edge

r ee > partial tour

Figure 11: The 4-Opt-step for our 4-Opt-mutation experts

4. Add the resulting, optimized tour to the new generation

5. If the generation time is not over (parameter gentime), go to step 1

The substitution of the generation, if the generation time is over, is done in the same
way as for ER_LO3.
In experiments we found that the best results of this expert were about 0.28 % longer
than the optimal tour.
The time for generating a new tour of the expert is very similar to the one of ER_LO3.
Therefore these two experts are easily able to work together in a team.

3.3.7 4-Opt-Mutation with Local Optimization 2-Opt (MUT4_LO2)

This expert works in the same way as MUT4_LO3. The only difference is that for local
optimization the 2-Opt heuristic is used instead of 3-Opt. The parameters for this
expert are the same ones as for MUT4_LO3: p, pcorr, maznum, depth and gentime
(generation time). It is obvious that this expert can be used very well together with
ER_LO2, since they have comparable running times for producing new individuals.
In experiments, the best tours generated by this expert were approximately 0.33 %
longer than the optimal tour. Again this shows that i t seems to be a successful approach
to use a local optimization heuristic of a lower complexity. Good results are found
much faster with MUT4_LO2; moreover they are of about the same quality as the ones
generated by MUT4_LO3 or ER_LO3.

3 .4 | Referees

As described in section 2.3, referees in TEAMWORK have two different tasks: first the
judgment of the overall work of an expert (measg); second the selection of good results
in order to send them to the supervisor (selresg). In DOTT, there are several different

3.4 Referees 23

referees with different selresR and measR functions. We will describe one version of
each of the functions in more detail.

3.4.1 The selresR Function DIVERSITY

This function is used for selecting good results and sending them to the supervisor in
order to set up a new start population for the next cycle of TEAMWORK. It is not
easy to decide which of the tours have to be considered as "good", because it may be
necessary to select longer tours as well as short ones in order 1;0 achieve a large variety
of different tours. This is necessary for being able to escape local optima. Figure 12
gives an illustration of this problem. For example, a selresR function that only takes
into account the quality (i.e. the length) of a tour, will choose a tour which is located
at xl instead of one that is located at x2. During the further optimization process,
the tour located at xl will develop towards the local optimum at x3, while the other
tour could have developed towards x4 and afterwards towards the global optimum x5.
Therefore a ~imple function as described above may produce good progress in the first
part of the optimization process, but also has the tendency of entering local optima.
Our selresR function is able to cope with this problem by choosing individuals not
only according to their quality (length), but also according to their similarity towards
other tours (we compare it with the shortest tour of the population).

quality
global optimum

Figure 12: Avoiding local optima

It is not easy to define what "similarity" means for TSP tours; we decided the most
useful approach is to count the number of equivalent edges of two tours in order to
decide how similar they are to each other.

Our selresR function uses two different parameters:

Plength determines the importance of the length of a tour; the larger this parameter,
the more relevance is set on it.

Pdiversity, on the other hand, determines the importance of the similarity of a tour
compared to the shortest tour; the larger this parameter, the more relevance is set on
it.

x5

search space

3.4 Referees 23

referees w i th different se l resg and measg functions. We wil l describe one version of
each of the functions in more detail.

3 .4 .1 The selresgp Function DIVERSITY

This function is used for selecting good results and sending them to the supervisor in
order to set up a new start population for the next cycle of TEAMWORK. I t is not
easy to decide which of the tours have to be considered as “good”, because i t may be
necessary t o select longer tours as well as short ones in order to achieve a large variety
of different tours. This is necessary for being able to escape local optima. Figure 12
gives an illustration of this problem. For example, a selresg function that only takes
into account the quality (i.e. the length) of a tour, will choose a tour which is located
at x1 instead of one that is located at x2. During the further optimization process,
the tour located at x1 wi l l develop towards the local optimum at x3, while the other
tour could have developed towards x4 and afterwards towards the global optimum x5.
Therefore a simple function as described above may produce good progress in the first
part of the optimization process, but also has the tendency of entering local optima.
Our selresp function is able to cope with this problem by choosing individuals not
only according to their quality (length), but also according to their similarity towards
other tours (we compare i t with the shortest tour of the population).

quality

4
global optimum

local optimum

— search space

Figure 12: Avoiding local optima

It is not easy to define what “similarity” means for TSP tours; we decided the most
useful approach is to count the number of equivalent edges of two tours in order to
decide how similar they are to each other.

Our selresg function uses two different parameters:

Dleng th determines the importance of the length of a tour; the larger this parameter,
the more relevance is set on i t .
Pd ive rs i t y , ON the other hand, determines the importance of the similarity of a tour
compared to the shortest tour; the larger this parameter, the more relevance is set on
i t .

24 3 TSP AND TEAMWORK

For the two parameters, we suggest per cent or per thousand values. Each tour 1T" is
given a relevance value using the following formula:

relevance(1T") Plength * !Iength (1T") +Pdiversity * !diversity (1T")

with
length of the shortest tour

!Iength (1T")
length of 1T"

number of non common edges of 1T" with shortest tour
!diversity (1T")

number,of cities of the given TSP

Those tours that have the highest relevance values are selected for sending to the
supervisor. This way it is possible to select mainly short tours, or on the other hand
mostly those tours that are very different from the shortest one. The only exception is
the shortest generated tour; it will be sent to the supervisor in any case.

3.4.2 The meaSR Function LENGTH

For this function, the length as well as the number of the produced tours are taken
into account in order to judge the work of an expert. It can be controlled by a number
of parameters, which decide what aspects of the results should be primarily regarded.

num: this parameter gives the (maximum) number of relevant tours for the parameters
Pavg_shortest, Pavg_longest and Pavg_unsimilar

Pshortest: the larger this parameter, the more the length of the shortest generated tour
is taken into account

Pavg_all: the larger this parameter, the more the average length of all tours is taken
into account

Pavg_shortest: the larger this parameter, the more the average length of the num shortest
tours is taken into account

Pavg_longest: the larger this parameter, the more the average length of the num longest
tours is taken into account

Pavg_unsimilar: the larger this parameter, the more the average length of the num most
unsimilar tours (compared to the shortest tour) is taken into account

Pgen:	 the larger this parameter, the more the number of generated tours is taken into
account (quantity)

A measure for the work of the expert X is calculated with the following formula:

24 3 TSP AND TEAMWORK

For the two parameters, we suggest per cent or per thousand values. Each tour 7 is
given a relevance value using the following formula:

r e l evance (r) = Pieng th * f ilength (Tr) + Ddiversity * bid i ve rs i t y (T)
with

f (1) = length of the shortest tour
fength a length of =

number of non common edges of 7 with shortest tour
fdiversity (x) = numberof cities of the given TSP

Those tours that have the highest relevance values are selected for sending to the
supervisor. This way i t is possible to select mainly short tours, or on the other hand
mostly those tours that are very different from the shortest one. The only exception is
the shortest generated tour; i t will be sent to the supervisor i n any case.

3.4.2 The measp Function LENGTH

For this function, the length as well as the number of the produced tours are taken
into account in order to judge the work of an expert. It can be controlled by a number
of parameters, which decide what aspects of the results should be primarily regarded.

num: this parameter gives the (maximum) number of relevant tours for the parameters
Pavg_shor testy Pavg_longest and Povg_unsimi lar

Pshor tes t : the larger this parameter, the more the length of the shortest generated tour
is taken into account

Pavg_all! the larger this parameter, the more the average length of all tours is taken
into account

Pavg sho r tes t : the larger this parameter, the more the average length of the num shortest
tours is taken into account

Pavg_longest: the larger this parameter, the more the average length of the num longest
tours is taken into account

Pavg_uns im i le r : the larger this parameter, the more the average length of the num most
unsimilar tours (compared to the shortest tour) is taken into account

Pgen ’ the larger this parameter, the more the number of generated tours is taken into
account (quantity)

A measure for the work of the expert X is calculated with the following formula:

3.4 Referees 25

success(X) Pshortest * Jshortest(X) +Pavg_all * Javg...all(X) +
Pavg_shortest * Javg-shortest(X) + Pavg_longest * Javg_longest(X) +
Pavg_unsimilar * Javg_unsimilar(X) +Pgen * Jgen(X)

with
normalization

Jshortest (X)
length of the shortest tour of X

normalization
average length of all tours of X

normalization "

average length of the num shortest tours of X
normalization

Javg_longest (X)
average length of the num longest tours of X

normalization

av. length of num tours of X most unsimilar to shortest one
number of tours produced by X

number of cities of the TSP

The following unequationshold for the different factors:

o < Jshortest < 00, in general 1 :::; Jshortest < 1.1

o < Javg_all < 00, in general 1 < Javg_all < 1

o < Javg_shortest < 00, in general 1 < Javg-shortest < 1

o < Javg-!.ongest < 00, in general 1 < Javg...longest < 1

o < Javg_unsimilar < 00, in general 1 < Javg_unsimilar < 1

o < Jgen < 00, in general 1 ~ Jgen < 2

The parameters amplify these fact,ars, therefore reasonable settings for the parameters
are per cent or per thousand values.

For a normalization factor, we used the length of the shortest tour of the start popu­
lati.on (or the number of cities of the TSP, if the start population is empty). This way
we can compare the new results with the shortest tour as it was given to the expert.
If, for example, the expert generates a new shortest tour, then the value of Jshortest will
be higher than 1; the higher this value, the better the new generated shortest tour.
The other factors are to be read in the same way: the higher the values, the better the
work of the expert in regard to this attribute.

The larger the success value of an expert, the better its work is considered; consequently
the winner is the expert with the largest success value.

3.4 Referees 25

success(X) = Pshor tes t * Sshortest (X) + Davg_all * Javgan (X) +

Pavg_shortest * Javg_shortest(X) + Davg_longest * Savg longest (X) +

Pavg_unsimi lar * Savg_unsimilar (X) + Pgen * f en (X)

with
a r

Fshortest(X) = length ofah of X

Savgalt(X) = average a hom of X

favssho r tes t (X) = average length SfSu is A tours of X
fos t) = normalization

average length of the num longest tours of X
normalization

faug_unsimilar (X) = av. length of num tours of X most unsimilar to shortest one
number of tours produced by X

foen(X) = number of cities of the TSP

The following unequations hold for the different factors:

Sshortest < 00,in general 1 < fsportest < 1.1
favg_atl < 00,in general 1 < favg_all < 1
favg_shortest < 00,in general 1 < foyg shor tes t < 1
Savy longes t < 00,1n general 1 < fog jongest < 1
favg_unsimitar < 00,in general 1 < favg_unsimilar < 1
fgen < 00,1n general 1 < fren < 2o

o

o
o

o

o

IN
N

A

A
N

A

A
A

The parameters amplify these factors, therefore reasonable settings for the parameters
are per cent or per thousand values.

For a normalization factor, we used the length of the shortest tour of the start popu-
lation (or the number of cities of the TSP, i f the start population is empty). This way
we can compare the new results with the shortest tour as i t was given to the expert.
If, for example, the expert generates a new shortest tour, then the value of fineness Will
be higher than 1; the higher this value, the better the new generated shortest tour.
The other factors are to be read in the same way: the higher the values, the better the
work of the expert in regard to this attribute.

The larger the success value of an expert, the better its work is considered; consequently
the winner is the expert with the largest success value.

26 4 EXPERIMENTS

3.5 The Supervisor

The supervisor is the coordinator of the whole optimization process. It composes a new
start population for each new cycle based on the selection of good tours by the referees
(Comp). The actual team consisting of experts, specialists and referees is chosen by it
(Sel). Finally it decides how much time should be given to the experts resp. specialists
for the next computation cycle (Time). In DOTT, the selection of the right experts
and specialists as well as the time is achieved by a control file which is created before
an actual optimization run. The winning expert is <lppointed by the supervisor based
on the judgments of the referees. The composition of a new start state works in the
way that all the results of the winning expert are used. Additionally the best results of
the other experts are added to the new start population. To put it into a more formal
way, our supervisor is characterized by the following functions:

i::j:k

Xk U U Yi, if Zk = max{zj}
i=l, ... ,n

Seli(x, y) 1 iff x is expert or specialist and Y is referee

for cycle i +1 according to control file.

Timei(x, (Yl' zd,···, (Yn, zn)) = time read from control file for cycle i + 1

In addition to determining the length of the next working period the supervisor also
determines the end of a team run (which means that all future working periods have
length 0). In DOTT, a team run is stopped if either a given time limit is reached,
or a given number of cycles, or if the best tour found has a length which is a given
percentage higher than the result of specialist LOWER.

Even with this somewhat basic supervisor very good results could be achieved in ex­
periments, as can be seen in the following section.

4 Experiments

In this section we present results of experiments that have been made with the system
DOTT, in order to examine whether the ideas explained in the previous sections show
good results in reality. For this, we first take a look at experiments with experts (or
specialists) working alone; we call these single runs. Afterwards, we present results
of experiments in which experts (and specialists) work in cooperation with each other
using TEAMWORK, the so-called team runs.

DOTT is written in ANSI-C. It is compiled on the operating system SUN OS 4.1
using the GNU C compiler. All of the experiments have been made on one resp. two
SUN SPARCStations 10. For TSP instances, we used the Traveling Salesman Problem
library TSPLIB version 1.2 (see [Re91]). Since our experts use a random number
generator, it is generally not possible to reproduce a single run, or even a team run. A

26 4 EXPERIMENTS

3.5 The Supervisor

The supervisor is the coordinator of the whole optimization process. It composes a new
start population for each new cycle based on the selection of good tours by the referees
(Comp). The actual team consisting of experts, specialists and referees is chosen by i t
(Sel). Finally i t decides how much t ime should be given to the experts resp. specialists
for the next computation cycle (Time). In DOTT, the selection of the right experts
and specialists as well as the time is achieved by a control file which is created before
an actual optimization run. The winning expert is appointed by the supervisor based
on the judgments of the referees. The composition of a new star t state works in the
way that all the results of the winning expert are used. Additionally the best results of
the other experts are added to the new start population. To put i t into a more formal
way, our supervisor is characterized by the following functions:

i k

Comp((21 ,Y1 ,21)y - +3 (Try Yn, 2n)) = Tk U U Yi ,if zx = max{z}
t=1,...,n

Sel (z ,y) = 1iff x is expert or specialist and y is referee
for cycle 7 + 1 according to control file.

Time, (y1,21),---,(Yn, 2n)) = time read from control file for cycle ¢ +1

In addition to determining the length of the next working period the supervisor also
determines the end of a team run (which means that all future working periods have
length 0). In DOTT, a team run is stopped if either a given time limit is reached,
or a given number of cycles, or if the best tour found has a length which is a given
percentage higher than the result of specialist LOWER.
Even with this somewhat basic supervisor very good results could be achieved in ex-
periments, as can be seen in the following section.

4 Experiments

In this section we present results of experiments that have been made with the system
DOTT, in order to examine whether the ideas explained in the previous sections show
good results in reality. For this, we first take a look at experiments wi th experts (or
specialists) working alone; we call these single runs. Afterwards, we present results
of experiments in which experts (and specialists) work in cooperation with each other
using TEAMWORK, the so-called team runs.
DOTT is written in ANSI-C. I t is compiled on the operating system SUN OS 4.1
using the GNU C compiler. Al l of the experiments have been made on one resp. two
SUN SPARCStations 10. For TSP instances, we used the Traveling Salesman Problem
library TSPLIB version 1.2 (see [Re91]). Since our experts use a random number
generator, i t is generally not possible to reproduce a single run, or even a team run. A

4.1 Single Runs 27

run depends on the load of a machine and also of the communication network, since
we have a distributed system. Still, the experiments clearly show tendencies, since we
tested several different TSP instances as well as parameter combinations.

A test run, no matter if it is a single or a team run, is divided into two parts. The first
part is the creation of an initial population; we used the specialist FI (Farthest Inser­
tion) for this task. In the second part, experts improve the population; we achieved the
best results with the experts employing genetic algorithms and using local optimiza­
tion, namely ER_L03, ER_L02, MUT4_L03 and MUT4_L02. These four experts need
the lists of sorted neighbor cities; therefore it is necessary to use the specialist SORT
first. For the single runs, this is done immediately after the specialist FI is finished.
For the team runs, FI and SORT work in parallel.

The time values are written in the format hours minutes:seconds.centiseconds.
They indicate the time when first a tour of the indicated length was created. If the
tour is an optimal one, it is marked by an asterisk (*).

4.1 Single Runs

The attributes of our selected TSP instances as well as the results of the tour construc­
tion cycle are given in Table 1. The first column gives the name of the TSP instance;
the number included in the name indicates the number of cities of this· instance. Col­
umn 2 gives the optimal tour length of the instance as we know it from literature.
Columns 3 and 4 give the time we set for the tour construction cycle and the number
of generated tours by FI. Finally, the length of the best created tour by FI is given in
column 5 along with the information of how much longer it is than the optimal tour.
Note that the results for FI can differ, as explained before. However, the differences
are only very minor and have almost no influence on the further optimization process.

TSP I optimal length I time for FI I # tours gen. I shortest tour (quality) I
kroB100 22 141 1.20 91 22 693 (2.49%)

gr202 40160 10.00 197 41 875 (4.27%)
[in318 42029 1:00.00 304 44262 (5.31%)
pcb442 50778 2:30.00 375 55 373 (9.05%)
att532 27686 5:00.00 516 29 198 (5.46%)
ali535 203310 3:00.00 336 214 228 (5.89%)
d657 48 912 6:00.00 386 52211 (6.74%)
gr666 294358 11:40.00 614 318627 (8.24%)
u724 41 910 13:20.00 709 45 120 (7.66%)

rat783 8806 16:40.00 625 9 587 (8.87%)
dsj1000 18 659 688 33:20.00 816 20044307 (7.42%)
u1060 224094 17:00.00 391 243435 (8.63%)

Table 1: TSP instances with tour construction cycle (FI)

Obviously the best tours constructed by FI are approximately 6.67 % longer than the
optimal tour. Let us see next, which improvements can be achieved by our four experts

4.1 Single Runs 27

run depends on the load of a machine and also of the communication network, since
we have a distributed system. Still, the experiments clearly show tendencies, since we
tested several different TSP instances as well as parameter combinations.
A test run, no matter if i t is a single or a team run, is divided into two parts. The first
part is the creation of an initial population; we used the specialist FI (Farthest Inser-
tion) for this task. In the second part, experts improve the population; we achieved the
best results wi th the experts employing genetic algorithms and using local optimiza-
tion, namely ER_LO3, ER_.LO2, MUT4_.LO3 and MUT4_LO2. These four experts need
the lists of sorted neighbor cities; therefore i t is necessary to use the specialist SORT
first. For the single runs, this is done immediately after the specialist F I is finished.
For the team runs, F I and SORT work in parallel.

The time values are written in the format hours minutes:seconds.centiseconds.
They indicate the time when first a tour of the indicated length was created. If the
tour is an optimal one, i t is marked by an asterisk (*).

4.1 Single Runs

The attributes of our selected TSP instances as well as the results of the tour construc-
tion cycle are given in Table 1. The first column gives the name of the TSP instance;
the number included in the name indicates the number of cities of this instance. Col-
umn 2 gives the optimal tour length of the instance as we know it from literature.
Columns 3 and 4 give the time we set for the tour construction cycle and the number
of generated tours by F I . Finally, the length of the best created tour by FI is given in
column 5 along with the information of how much longer i t is than the optimal tour.
Note that the results for FI can differ, as explained before. However, the differences
are only very minor and have almost no influence on the further optimization process.

| TSP | optimal length | time for F I | # tours gen. | shortest tour (quality)|
kroB100 22 141 1.20 | 91 22 693 (2.49%)

gr202 40 160 10.00 197 41 875 (4.27%)
in318 42 029 1:00.00 304 44 262 (5.31%)
pcb442 50 778 2:30.00 375 55 373 (9.05%)
att532 27 686 5:00.00 516 29 198 (5.46%)
21535 203 310 3:00.00 336 214 228 (5.89%)
3657 48 912 6:00.00 386 52 211 (6.74%)
gr666 204 358 11:40.00 614 318 627 (8.24%)
u724 41 910 13:20.00 709 45 120 (7.66%)

rat783 8 806 16:40.00 625 9587 (8.87%)
dsj1000 | 18 659 688 33:20.00 816 20 044 307 (7.42%)
11060 224 094 17:00.00 391 243 435 (8.63%)

Table 1: TSP instances with tour construction cycle (FI)

Obviously the best tours constructed by F I are approximately 6.67 % longer than. the
optimal tour. Let us see next, which improvements can be achieved by our four experts

28 4 EXPERIMENTS

in single runs. Note that the confitruction cycle of the initial population is the same
for all our test runs.

Table 2 gives the results for the expert MUT4_L02. Column 1 gives the name of
the TSP instance, column 2 gives the the time applied for creating one generation
in seconds. The third column gives the length of the best found tour along with the
information of how much longer it is than the optimal tour; column 4 gives the creation
time of this tour. Finally, the last column gives the total time of the test run.

For the parameters, we tested several different values for the generation time gentime
as well as for depth. The table shows the results of the best found combination. By
setting p=50 and pcorr=100, we preferred the shortest tours in the selection. maxnum
is assigned a value which is normally not reached; we found out in experiments, that a
tour is locally optimal after just a few optimization steps. Therefore it is not necessary
to set a low: bound in this case. As for the parameter depth, in some cases a lower
value produced better results, in other cases it was the opposite way. We tried different
possibilities; the best result is given in the table.

To sum it up, the parameters were assigned the following values:

maxnum 200
depth 3 resp. 5

p 50
pcorr 100

gentime generation time; differs for different instances

TSP I gen. time I best result (quality) I time I maximum time I

kroB100 0.2 s *22 141 (0.00%) 2.46 21.30
gr202 0.5 s *40160 (0.00%) 20.46 1:50.20
lin318 1.5s 42 203 (0.41%) 2:24.83 2:27.78
pcb442 2.5 s 50 991 (0.42%) 5:20.53 15:01.00
att532 3 s 27731 (0.16%) 21:39.44 25:01.00
ali535 12 s 203011 (0.35%) 15:26.52 22:49.25
d657 16 s 49084 (0.35%) 31:02.50 39:05.48
gr666 4s ,295731 (0.47%) 31:26.12 45:01.50
u724 20 s 42 080 (0.41%) 1h 47:23.76 1h 47:23.76

rat783 20 s 8816 (0.11%) 1h 47:50.97 1h 57:44.88
dsj1000 24 s 18749543 (0.48%) 2h 33:37.87 2h 53:24.85
u1060 6 s 225995 (0.85%) 1h 11:49.14 1h 27:00.54

Table 2: MUT4_L02: results of single runs

As can be seen from table 2, the best results we found for MUT4_L02 are approximately

0.33 % longer than the optimal tour. This is an enormous improvement in comparison

28 4 EXPERIMENTS

i n single runs. Note that the construction cycle of the init ial population is the same
for all our test runs.

4.1.1 MUT4_LO2

Table 2 gives the results for the expert MUT4_LO2. Column 1 gives the name of
the TSP instance, column 2 gives the the time applied for creating one generation
in seconds. The third column gives the length of the best found tour along with the
information of how much longer i t i s than the optimal tour ; column 4 gives the creation
time of this tour. Finally, the last column gives the total time of the test run.
For the parameters, we tested several different values for the generation time gentime
as well as for depth. The table shows the results of the best found combination. By
setting p=50 and pcorr=100, we preferred the shortest tours in the selection. maznum
is assigned a value which is normally not reached; we found out in experiments, that a
tour is locally optimal after just a few optimization steps. Therefore i t is not necessary
to set a low bound in this case. As for the parameter depth, in some cases a lower
value produced better results, in other cases i t was the opposite way. We tried different
possibilities; the best result is given in the table.

To sum i t up, the parameters were assigned the following values:

maznum = 200
depth 3 resp. 5

p = 50
pcorr = 100

gentime generation time; differs for different instances

| TSP | gen. t ime| best result (quality)| time | maximum time |
kroB100 0.2s *22 141 (0.00%) 2.46 21.30

gr202 05s *20 160 (0.00%) 20.46 1:50.20
1in318 15s 42 203 (0.41%) 2:24.83 2:27.78
pch442 2.58 50 991 (0.42%) 5:20.53 15:01.00
att532 3s 27 731 (0.16%) 21:39.44 25:01.00
alib35 12s 203 011 (0.35%) 15:26.52 22:49.25
d657 16 s 49084 (0.35%) 31:02.50 39:05.48
gr666 4s . 295 731 (0.47%) 31:26.12 45:01.50
u724 20 s 42 080 (0.41%) | 1h 47:23.76 1h 47:23.76

rat783 20s 8 816 (0.11%) | l h 47:50.97 1h 57:44.88
dsj1000 24 s 18 749 543 (0.48%) | 2h 33:37.87 2h 53:24.85
u l060 6s 225 995 (0.85%) | 1h 11:49.14 1h 27:00.54

Table 2: MUT4_LO2: results of single runs

As can be seen from table 2, the best results we found for MUT4.LO2 are approximately
0.33 % longer than the optimal tour. This is an enormous improvement in comparison

4.1 Single Runs 29

to the results produced by FI. For two instances, even the optimal tour could be found;
the other results are all less than 1 % longer than the optimal tour. Although ~he run
time for the expert is less than 3 hours for a 1000 city problem, a very good solution
could be found with MUT4_L02 (instance dsjlOOO, only 0.48% longer than the optimal
tour).

The results for the expert MUT4_L03 can be found in Table 3. The parameters we
used for it are very similar to the ones for MUT4_L02; the generation time needs to be
much higher though, since the local optimization (3-0pt) is much more complex than
2-0pt used by MUT4_L02. We used the following settings:

maxnum '200

depth 3 resp. 5

p 50
pcorr 100

gentime generation time; differs for different instances

TSP I gen. time I be8t re8ult (quality) I time I maximum time I
kroB100 18 *22 141 (0.00%) 11.97 15.90

gr202 58 *40 160 (0.00%) 1:41.49 6:15.85
lin318 208 42 152 (0.29%) 7:48.50 8:38.29
pcb442 408 50814 (0.07%) 41:53.86 47:48.80
att532 758 27743 (0.21%) 45:38.73 1h 00:21.32
ali535 758 202529 (0.11%) 42:21.14 59:16.51
d657 240 s 48992 (0.16%) 1h 58:40.57 2h 42:02.11
gr666 4808 294831 (0.16%) 2h 21:00.76 2h 33:52.87
u724 2508 42001 (0.22%) 3h 19:20.56 3h 36:23.15

rat783 2508 8862 (0.64%) 3h 39:47.31 3h 45:03.26
dsj1000 1800 s 18857869 (1.06%) 6h 30:40.40 6h 33:26.99
u1060 450 s 225 194 (0.49%) 6h 16:16.86 6h 24:35.58

Table 3: MUT4_L03: results of single runs

As can be seen from Table 3, the best tours generated by MUT4_L03 are in average
0.28 % longer than the optimal tour. As expected, this eXBert produces better results
than MUT4_L02 due to its more powerful local optimization heuristic. For two in­
stances, the optimal tour could be found; most of the other results are less than 0.3 %
longer than the optimal solution. However, the run time for MUT4_L03 is much higher
than for MUT4_L02, again because of its more complex local optimization method (ap­
proximately about five times higher). Therefore, since the results are in average not

4.1 Single Runs | 29

to the results produced by FI. For two instances, even the optimal tour could be found;
the other results are all less than 1 % longer than the optimal tour. Although the run
time for the expert is less than 3 hours for a 1000 city problem, a very good solution
could be found with MUT4_LO2 (instance dsj1000, only 0.48% longer than the optimal
tour).

4.1.2 MUT4.LO3

The results for the expert MUT4_LO3 can be found in Table 3. The parameters we
used for i t are very similar to the ones for MUT4_LO2; the generation t ime needs to be
much higher though, since the local optimization (3-Opt) is much more complex than
2-Opt used by MUT4_LO2. We used the following settings:

maznum = 200

depth 3 resp. 5
p = 50

pcorr = 100
gentime = generation time; differs for different instances

[TSP | gen. t ime |best result (quality)| t ime | maximum t ime|
kroB100 I s *22 141 (0.00%) 11.07 15.90

gr202 5s 740 160 (0.00%) 1:41.29 6:15.85
lin318 20s 42 152 (0.29%) 7:48.50 8:38.29
pcbdd2 | 40s 50 814 (0.07%) | 41:53.86 47-48 80
att532 758 27 743 (0.21%) | 45:38.73 1h 00:21.32
ali535 | 75s 202 529 (0.11%) | 42:21.14 59:16.51
4657 240 s 48 992 (0.16%) | I h 58:40.57 2h 42:02.11
gr666 480 s 294 831 (0.16%) | 2h 21:00.76 2h 33:52.87
u724 250 s 42 001 (0.22%) | 3h 19:20.56 3h 36:23.15

Tat783 | 250s 8 862 (0.64%) | 3h 39:47.31 3h 45:03.26
dsj1000 | 1800s | 18 857 869 (1.06%) | 6h 30:40.40 6h 33:26.99
ul060 | 450s 225 194 (0.49%) | 6h 16:16.86 6h 24:35.58

Table 3: MUT4.LO3: results of single runs

As can be seen from Table 3, the best tours generated by MUT4_LO3 are in average
0.28 % longer than the optimal tour . As expected, th is expert produces bet ter results
than MUT4_LO2 due to its more powerful local optimization heuristic. For two in-
stances, the optimal tour could be found; most of the other results are less than 0.3 %
longer than the optimal solution. However, the run t ime for MUT4_LO3 is much higher
than for MUT4_LO2, again because of i ts more complex local optimization method (ap-
proximately about five times higher). Therefore, since the results are in average not

30 4 EXPERIMENTS

very much better than the ones obtained by MUT4_L02, the approach of using a less
complex local optimization method has proved to be successful. For some instances
(att532, rat783, dsjl000), MUT4...L02 even found a better tour than MUT4_L03.

We now examine if similar results can be found with our other two genetic experts,
ER_L03 and ER_L02.

4.1.3 ER-.L02

The values for the parameters for ER_L02 are very close to the ones used for MUT4_L02.
maxnum is set to 200; for different generation times gentime as well as for depth val­
ues we used the same combinations as for MUT4~L02, since they need similar time for
generating a new tour. Again the best results can be found in table 4.

The parameters are set to the following values:

maxnum 200

depth 3 resp. 5

vfirst FIRST-MIN_5

vnext =: NEXT-MIN_USED

vnone NONE_SORTED

p 50

pcorr 100

gentime generation time; differs for different instances

As can be seen from Table 4, the best found tours are approximately 0.63 % longer
than the optimal ones. The optimal tour could be found for one instance (gr202).
The results are slightly worse than the once obtained by MUT4_L02. Still, a better
tour could be f~und for instance ul060 by ER_L02. This shows, that indeed different
experts have different capabilities in regard to TSP instances. One expert may be
good on a particular instance, while it may be worse on another one. Our TEAMWORK

method helps to combine the advantages of these different capabilities.

4.1.4 ER-L03

For the last expert we tested, ER_L03, we used similar parameters to ER_L02. vfirst,
vnext and vnone are assigned the same values. The different generation times gentime
as well as the different values for depth are the same ones as for MUT4_L03.

Consequently the parameters for ER_L03 are assigned the following values:

maxnum 200

30 4 EXPERIMENTS

very much better than the ones obtained by MUT4_LO2, the approach of using a less
complex local optimization method has proved to be successful. For some instances
(att532, rat783, dsj1000), MUT4_LO2 even found a better tour than MUT4_LO3.
We now examine if similar results can be found with our other two genetic experts,
ER_LO3 and ER_LO2. ;

4.1.3 ER_LO2

The values for the parameters for ER_LO2 are very close to the ones used for MUT4_LO2.
maxnum is set to 200; for different generation times gentime as well as for depth val-
ues we used the same combinations as for MUT4_LO2, since they need similar time for
generating a new tour. Again the best results can be found in table 4.
The parameters are set to the following values:

maznum = 200
depth = 3 resp. 5

vfirst = FIRST MIN 5
vnext NEXT_MIN_USED
vnone = NONE_SORTED

I

p = 50
pcorr = 100

gentime = generation time; differs for different instances

As can be seen from Table 4, the best found tours are approximately 0.63 % longer
than the optimal ones. The optimal tour could be found for one instance (gr202).
The results are slightly worse than the once obtained by MUT4.LO2. Still, a better
tour could be found for instance ul060 by ER_LO2. This shows, that indeed different
experts have different capabilities in regard to TSP instances. One expert may be
good on a particular instance, while i t may be worse on another one. Our TEAMWORK
method helps to combine the advantages of these different capabilities.

4.1.4 ER_LO3

For the last expert we tested, ER_LO3, we used similar parameters to ER_LO2. v f i rs t ,
vnext and vnone are assigned the same values. The different generation times gentime
as well as the different values for depth are the same ones as for MUT4_LO3.

Consequently the parameters for ER_LO3 are assigned the following values:

maznum = 200

4.1 Single Runs 31

TSP I gen. time I best result (quality) I time \ maximum time I
kroBI00 0.6 s 22 199 (0.26%) 3.24 1:01.30

gr202 2s *40 160 (0.00%) 29.17 6:50.20
lin318 2s 42346 (0.75%) 2:12.71 2:24.67
pcb442 2.5 s 51 126 (0.69%) 7:07.25 15:01.00
att532 12 s 27 785 (0.36%) 17:48.02 45:01.00
ali535 12 s 204411 (1.04%) 5:25.36 23:01.21
d657 4s 49399 (1.00%) 7:18.31 39:18.05
gr666 16 s 296276 (0.65%) 35:36.48 Ih 18:21.50
u724 20 s 42227 (0.76%) 22:43.64 Ih53:23.61

rat783 20 s 8847 (0.47%) Ih 12:24.64 Ih 56:44.02
dsjl000 24 s 18803744 (0.77%) 2h 16:15.65 2h 53:26.05
ul060 12 s 225917 (0.81%) Ih 01:40.47 Ih 27:04.22

depth

vfirst

vnext

vnone

p

peorr

gentime

Table 4: ER_L02: results of single runs

3 resp. 5
FIRST-MIN _5
NEXT-MIN_USED

NONE-SORTED

50
100

generation time; differs for different instances

TSP I gen. time I best result (quality) I time I maximum time I
kroBI00 4s *22 141 (0.00%) 19.29 1:01.30

gr202 20 s *40 160 (0.00%) 1:52.83 8:30.20
lin318 10 s 42071 (0.10%) 2:35.06 9:01.09
pcb442 160 s 50 795 (0.03%) 1h 29:~8.14 1h 35:51.00
att532 75 s 27704 (0.07%) 41:40.81 Ih 01:16.00
ali535 150 s 202978 (0.33%) 18:22.35 58:01.77
d657 480 s 48975 (0.13%) 2h 23:30.94 2h 38:02.63
gr666 480 s 294700 (0.12%) 2h 38:57.04 2h 43:41.50
u724 250 s 42061 (0.36%) 3h 22:31.31 3h 36:32.96

rat783 250 s 8846 (0.45%) 2h 43:47.24 3h 40:15.22
dsjl000 450 s 18751 750 (0.49%) 6h 28:45.45 6h 33:25.70
ul060 450 s 224909 (0.36%) 6h 10:46.95 6h 24:36.06

Table 5: ER_L03: results of single runs

The best results of ER_L03, according to Table 5, are in average 0.2 % longer than
the optimal tour. Again the usage of a more powerful local optimization shows better
results than a less complex one. The optimal tour could be found for two different
instances (kroB100, gr202). Most of the other results are less than 0.37 % longer than

4.1 Single Runs

[TSP [| gen. t ime| best result (quality)| time | maximum time|
kroB100 06s 22 199 (0.26%) 3.24 1:01.30

gr202 2s #40 160 (0.00%) 20.17 6:50.20
l in318 2s 42 346 (0.75%) 2:12.71 2:24.67
pcb442 2 .5s 51 126 (0.69%) 7:07.25 15:01.00
att532 12s 27 785 (0.36%) 17:48.02 45:01.00
alib35 12s 204 411 (1.04%) 5:25.36 73:01.21
d657 4s 49 399 (1.00%) 7:18.31 39:18.05
gr666 16s 296 276 (0.65%) 35:36.48 1h 18:21.50
u724 20 s 42 227 (0.76%) 22:43.64 1h 53:23.61

rat783 20s 8 847 (0.47%) | 1h 12:24.64 1h 56:44.02
dsj1000 24 s 18 803 744 (0.77%) | 2h 16:15.65 2h 53:26.05
ul060 12s 225 917 (0.81%) | 1h 01:40.47 1h 27:04.22

Table 4: ER_LO2: results of single runs

depth 3 resp. 5
vf i rst = FIRST MIN.
vnext = NEXT.MIN_USED
vnone = NONE SORTED

peorr =
gentime = generation time; differs for different instances

[TSP [| gen. t ime| best result (quality)| t ime| maximum time |
kroB100 | 4s *29 141 (0.00%) 19.29 1 :01 .30|

gr202 20 5 *20 160 (0.00%) 1:52.83 8:30.20
lin318 10s 42 071 (0.10%) 2:35.06 9:01.09
pcb442 | 160s 50 795 (0.03%) | I h 20:38.14 1h 35:51.00
“att532 758 27 704 (0.07%) | 41:40.81 1h 01:16.00

alib35 150 5 202 978 (0.33%) 18:22.35 58:01.77
d657 480s 48 975 (0.13%) | 2h 23:30.94 2h 38:02.63
gr666 480 s 294 700 (0.12%) | 2h 38:57.04 2h 43:41.50
u724 250s 42 061 (0.36%) | 3h 22:31.31 3h 36:32.96

rat783 | 250s 8 846 (0.45%) | 2h 43:47.24 3h 40:15.22
351000 | 450s | 18 751 750 (0.49%) | 6h 28-4545 6h 33:25.70
ul060 450 s 224 909 (0.36%) | 6h 10:46.95 6h 24:36.06

Table 5: ER_LO3: results of single runs

31

The best results of ER_LO3, according to Table 5, are i n average 0.2 % longer than
the optimal tour. Again the usage of a more powerful local optimization shows better
results than a less complex one. The optimal tour could be found for two different
instances (kroB100, gr202). Most of the other results are less than 0.37 % longer than

32 4 EXPERIMENTS

the optimal solution. However, the run time for ER_L03 is much higher than for
ER_L02. It is necessary to choose between a better quality of the results and a lower
run time. Still the quality of the results of ER_L03 and ER_L02 are quite close to
each other, therefore the usage of a less complex local optimization method again has
proved to be successful.

Of our four different experts, the best results could be found with ER_L03 (0.2 % longer
than the optimal tour). MUT4_L03 produced results that are 0.28 % longer than the
optimal tour, for MUT4_L02 this value is 0.33 %. The worst results were found by
ER_L02, but even this expert achieved results of a rather good quality (0.63 %).

Since our four experts achieved results that are approximately 0.36 % longer than the
optimal tour, they are already very good working alone. The results are very close
to the optimal tour. Compared to our other- experts realized in DOTT, these experts
are by far the best ones. Therefore it is quite difficult to achieve even better results
by using a distributed environment. In the next' subsection, we examine the results
obtained by our two different teams.

4.2 Team Runs

Since the time for generating a new individual primarily depends on the local opti­
mization method used, it makes sense to let those experts cooperate in a team that
use the same local optimization heuristic. Therefore, we used two different fixed teams
in our test runs: MUT4_L02 & ER_L02 and MUT4_L03 & ER_L03. We present the
results obtained by the 2-0pt team first.

4.2.1 2-0pt Team

As parameter values for this team, we used the same ones as those of the most successful
single run of the two experts. Furthermore, we tested several different combinations of
parameter values for the referee. In experiments, we found a parameter setting that
shows good average results for almost all of the different TSP instances (see [Sch96]).
We now give these settings for the 2-0pt team (the referee consists of the functions
DIVERSITY and LENGTH).

DIVERSITY:

Pdiversity 75

Plength 25
LENGTH:

num about 10% of the number of generated tours

Pshortest o
o

Pavg _shortest o

32 4 EXPERIMENTS

the optimal solution. However, the run time for ER_LO3 is much higher than for
ER_LO2. I t is necessary to choose between a better quality of the results and a lower
run t ime. St i l l the quality of the results of ER_LO3 and ER_LO2 are qui te close to
each other, therefore the usage of a less complex local optimization method again has
proved to be successful.

Of our four different experts, the best results could be found with ER_LO3 (0.2 % longer
than the optimal tour). MUT4_LO3 produced results that are 0.28 % longer than the
optimal tour, for MUT4.LO2 this value is 0.33 %. The worst results were found by
ER_LO2, but even this expert achieved results of a rather good quality (0.63 %).

Since our four experts achieved results that are approximately 0.36 % longer than the
optimal tour, they are already very good working alone. The results are very close
t o the optimal tour. Compared to our other experts realized in DOTT, these experts .
are by far the best ones. Therefore i t is quite difficult to achieve even better results
by using a distributed environment. In the next-subsection, we examine the results
obtained by our two different teams.

4 .2 Team Runs

Since the time for generating a new individual primarily depends on the local opti-
mization method used, i t makes sense to let those experts cooperate in a team that
use the same local optimization heuristic. Therefore, we used two different fixed teams
in our test runs: MUT4_LO2 & ER_LO2 and MUT4_LO3 & ER.LO3. We present the
results obtained by the 2-Opt team first.

4.2.1 2-Opt Team

As parameter values for this team, we used the same ones as those of the most successful
single run of the two experts. Furthermore, we tested several different combinations of
parameter values for the referee. In experiments, we found a parameter setting that
shows good average results for almost all of the different TSP instances (see [Sch96]).
We now give these settings for the 2-Opt team (the referee consists of the functions
DIVERSITY and LENGTH).

DIVERSITY :
Pdiversity = 75

Plength = 25
LENGTH :

num = about 10% of the number of generated tours

Dshortest = 0
Pavgai = 0

Davg_shortest = 0

4.2 Team Runs 33

Pavg_longest 0

Pavg_unsimilar 0

Pgen 1000

Note that we obtained the best results by setting Pdiversity=75 and Plength=25. it can
be seen by this that the referee indeed helps to avoid local optima (see section 3.4.1),
because the similarity of tours to each other is taken into account.

The number of individuals which are selected by the referee for the non-winners is set
to approximately 10% of the number of generated tours (this depends on the given
instance as well as on the generation time).

Table 6 gives the results of the L02 team. Column 2 gives the length of the best tour of
the two concerned experts in the single runs; the creation time can be found in column
3. As for the team, the best generated tour can be found in column 4 along with the
creation time in' column 5. Column 6 gives the time in which the best tour of the single
runs was found by the team. If not exactly this tour was generated, but an even better
one, the creation time is given by "before than", indicated by a "<" symbol. Finally,
column 7 gives the total time of the team run.

TSP I single run I time I team run I time I camp. time I total time ,

kroBlOO *22 141 2.46 *22 141 5.28 5.28 1:20.22
gr202 *40 160 20.46 *40 160 21.98 21.98 6:59.75
lin318 42203 2:24.83 42203 1:39.82 1:39.82 2:22.67
pcb442 50991 5:20.53 *50778 22:05.34 < 5:38.41 34:35.15
att532 27731 21:39.44 27705 15:42.04 < 11:48.30 44:02.87
ali535 203011 15:26.52 202678 15:13.94 < 8:53.18 22:21.45
d657 49084 31:02.50 49000 23:34.00 < 19:26.19 39:05.53
gr666 295 731 31:26.12 294435 25:29.50 < 15:15.27 1h 17:41.13
u724 42080 1h 47:23.76 41 994 1h 34:17.40 < 28:31.28 1h 49:16.91

rat783 8816 1h 47:50.97 8829 1h 19:20.33 - 1h 54:43.88
dsj1000 18749543 2h 33:37.87 18740224 Ih 56:31.66 < 1h 11:11.90 2h 30:04.47
u1060 225 917 1h 01:40.47 224324 1h 24:11,64 < 38:05.48 1h 25:42.13

Table 6: MUT4_L02 & ER_L02: results of team

As can be seen in table 6, for all of the TSP instances (with one exception: rat783),
a better tour or at least an equal one is found by the team. For the instance pcb442,
the optimal tour could be found for the first time. The majority of team runs (eight
runs) show better results than the single ones. Moreover the best tours found by an
expert working alone could be found much faster by a team in most of the cases; for
example for the instance u724, this tour could be found almost four times faster than
by the best expert working alone.

4.2 Team Runs 33

Pavglongest = 0

Pavg_unsimilar = 0

Pgen = 1000

Note that we obtained the best results by setting pgiversity=75 and prengen=25. i t can
be seen by this that the referee indeed helps to avoid local optima (see section 3.4.1),
because the similarity of tours to each other is taken into account.

The number of individuals which are selected by the referee for the non-winners is set
to approximately 10% of the number of generated tours (this depends on the given
instance as well as on the generation time).
Table 6 gives the results of the LO2 team. Column 2 gives the length of the best tour of
the two concerned experts in the single runs; the creation time can be found i n column
3. As for the team, the best generated tour can be found in column 4 along with the
creation time in column 5. Column 6 gives the time in which the best tour of the single
runs was found by the team. If not exactly this tour was generated, but an even better
one, the creation time is given by “before than”, indicated by a “< ” symbol. Finally,
column 7 gives the total time of the team run.

[TSP | single run| time| team run| t ime | comp. t ime | total t ime |
kroB100 *22 141 2.46 *22 141 5.28 5.28 1:20.22

gr202 *40 160 20.46 *40 160 21.98 21.98 6:59.75
lin318 42 203 2:24.83 42 203 1:39.82 1:39.82 2:22.67
pcb442 50 991 5:20.53 *50 778 22:05.34 < 5:38.41 34:35.15
att532 27 731 21:39.44 27 705 15:42.04 < 11:48.30 44:02.87
ali535 203 011 15:26.52 202 678 15:13.94 < 8:53.18 22:21.45
d657 49 084 31:02.50 49 000 23:34.00 < 19:26.19 39:05.53
gr666 295 731 31:26.12 294 435 25:29.50 < 15:15.27 | 1h 17:41.13
u724 42 080 | 1h 47:23.76 41 994 | 1h 34:17.40 < 28:31.28 | 1h 49:16.91

rat783 8 816 | 1h 47:50.97 8 829 | 1h 19:20.33 - | 1h 54:43.88
dsj1000 | 18 749 543 | 2h 33:37.87 | 18 740 224 | 1h 56:31.66 | < 1h 11:11.90 | 2h 30:04.47
ul060 225 917 | 1h 01:40.47 224 324 | 1h 24:11.64 < 38:05.48 | 1h 25:42.13

Table 6: MUT4_LO2 & ER_LO2: results of team

As can be seen in table 6, for all of the TSP instances (with one exception: rat783),
a better tour or at least an equal one is found by the team. For the instance pcb442,
the optimal tour could be found for the first time. The majority of team runs (eight
runs) show better results than the single ones. Moreover the best tours found by an
expert working alone could be found much faster by a team in most of the cases; for
example for the instance u724, this tour could be found almost four times faster than
by the best expert working alone.

34 4 EXPERIMENTS

4.2.2 3-0pt Team

In the 3-0pt team we used the following parameters (the parameters for the experts

are the same ones as in the best single runs). The referee consists of the functions
DIVERSITY and LENGTH; we used the following parameters:

DIVERSITY:

Pdiversity 75

Plength 25
LENGTH:

num about 10% of the number of generated tours

Pshortest o
o

Pavg_shortest o
Pavg_Iongest o

Pavg_unsimilar 1000

Pgen o

Similar to the 2-0pt team, the given settings of the parameters Pdiversity and Plength

showed the best results. Moreover, for this team, preferring the average length of the
most unsimilar tours (compared to the shortest one) with the parameter punsimilar gave
the best results. It can be seen that the referee helps to avoid local optima; TEAMWORK

controls the whole optimization process in a way much better than a simple parallel
method (with no referees) could do.

The number of selected individuals of the non-winners is set to approximately 10% of
the number of created tours in a generation; this depends on the given TSP instance
and on the generation time.

The results of the 3-0pt team can be found in Table 7.

Again (with one exception: dsj1000), the team produced better tours or at least tours
of the same quality as the experts working alone. For several instances, the best tour
of the single runs could be found faster, for example about three times faster for the
instance pcb442. But the speed-ups are definitely not as good as in case of the 2-0pt
team. The optimal tour could be found for the instance lin318, which none of the
experts working alone could achieve. Again, this shows that indeed TEAMWORK helps
the experts working together in cooperation with each other.

4.3 Analysis of the Results

The first important observation from our experiments is that for most of the examples
(exception: rat783) th~re is a team that finds a better solution than all the single

34 © 4 EXPERIMENTS

4.2.2 3-Opt Team

In the 3-Opt team we used the following parameters (the parameters for the experts
are the same ones as in the best single runs). The referee consists of the functions
DIVERSITY and LENGTH; we used the following parameters:

DIVERSITY :
Pdivers i ty = 75

Dlength = 25
LENGTH :

num = about 10% of the number of generated tours
Dshortest = 0

Pavgal l = 0

Pavg_shortest = 0

Pavg longest = 0

Pavg_unsimi lar = 1000
Pgen = 0

Similar to the 2-Opt team, the given settings of the parameters Daiversity and Prength

showed the best results. Moreover, for this team, preferring the average length of the
most unsimilar tours (compared to the shortest one) with the parameter punsimitar gave
the best results. I t can be seen that the referee helps to avoid local optima; TEAMWORK
controls the whole optimization process in a way much better than a simple parallel
method (with no referees) could do.
The number of selected individuals of the non-winners is set to approximately 10% of
the number of created tours in a generation; this depends on the given TSP instance
and on the generation time.
The results of the 3-Opt team can be found in Table 7.
Again (with one exception: dsj1000), the team produced better tours or at least tours
of the same quality as the experts working alone. For several instances, the best tour
of the single runs could be found faster, for example about three times faster for the
instance pcb442. But the speed-ups are definitely not as good as in case of the 2-Opt
team. The optimal tour could be found for the instance 1in318, which none of the
experts working alone could achieve. Again, this shows that indeed TEAMWORK helps
the experts working together in cooperation with each other.

4.3 Analysis of the Results

The first important observation from our experiments is that for most of the examples
(exception: rat783) there is a team that finds a better solution than all the single

35

TSP I single run I time I team run I time I camp. time I total time I
kroB100 *22 141 11.97 *22 141 5.89 5.89 1:05.19

gr202 *40 160 1:41.49 *40 160 1: 11.40 1:11.40 10:13.44
lin318 42071 2:35.06 *42029 10:08.26 < 4:05.07 11:30.10
pcb442 50795 Ih 29:38.14 50785 Ih 08:20.87 < 29:44.08 Ih 36:09.49
att532 27704 41:40.81 27703 2h 11:25.30 2h 11:25.30 2h 34:37.75
ali535 202529 42:21.14 202506 45:15.39 < 45:15.39 1h 03:56.25
d657 48975 2h 23:30.94 48927 2h 23:44.06 < 2h 06:45.13 3h 06:48.15
gr666 294700 2h 38:57.04 294522 2h 55:56.31 < 2h 27:07.48 2h 58:17.28
u724 42001 3h 19:20.56 41956 3h 17:55.61 < 2h 44:00.87 3h 34:23.1£

rat783 8846 2h 43:47.24 8836 3h 26:18.32 < 3h 08:50.82 3h 38:02.02
dsj1000 18 751 750 6h 28:45.45 18 768 891 6h 22:30.42 - 6h 35:07.54
u1060 224909 6h 10:46.95 224464 5h 58:08.07 < 4h 03:37.92 6h 33:44.48

Table 7: MUT4_L03 & ER_L03: results of team

experts (or at least the same one, if it is the optimal solution). Also, again with one
exception, the teams find better solutions than the experts that were members of the
team. The improvements may be small, but this had to be expected, because the
solutions found by the single experts are so near to the optimum.

If we look at the run times for solutions comparable to the best ones found by the
single experts then the results of the 2-0pt team are quite impressive. For the hard
problems (with the one exception) all speed-ups are greater than 2 with a peak of
4 (using only two processors). The results of the 3-0pt team are not as good. The
reasons for this are first that the single experts using 3-0pt as local optimization are
not as good as the 2-0pt ones (with respect to run time) and second that the number
of new individuals produced in the working periods was significantly smaller for the
3-0pt team. This way, not enough general diversity was provided, so that much smaller
regions of the search space were explored. Naturally, this results in less opportunities
for cross-fertilization between the experts and so in fewer synergetic effects.

In this context we want to emphasize the importance of the referees. By selecting tours
that differ very much from each other (with fitness being only an additional criterion),
we are able to have populatlons that have much more potential than populations that
are produced by a single expert alone. Note that this is not easy to integrate into
fitness functions or into the general scheme of genetic algorithms. As already stated,
using referees that did not put enough interest into diversity, the teams did not behave
as good as the ones reported here.

Conclusion and Future Work

In this paper, we reported about the application of our TEAMWORK method on solving
the Traveling Salesman Problem using genetic algorithms. The resulting distributed
system DOTT achieved synergetic speed-ups in generating solutions comparable to
those found by single sequential genetic algorithms, even if those algorithms were aug­

5

35

| TSP | single run | t ime | team run| t ime | comp. time | total t ime|

kroB100 | *22 141 11.97] *22 141 5.89 5.89 | 1:05.19
gr202 *40 160 1:41.49 *40 160 1:11.40 1:11.40 10:13.44
lin318 42 071 2:35.06 *42 029 10:08.26 < 4:05.07 11:30.10
pcb442 50 795 | 1h 29:38.14 50 785 | 1h 08:20.87 < 29:44.08 | 1h 36:09.49
atth32 27 704 41:40.81 | . 27703 | 2h 11:25.30 2h 11:25.30 | 2h 34:37.75
alib35 202 529 42:21.14 202 506 45:15.39 < 45:15.39 | 1h 03:56.25
d657 48 975 | 2h 23:30.94 48 927 | 2h 23:44.06 | < 2h 06:45.13 | 3h 06:48.15

| gr666 294 700 | 2h 38:57.04 294 522 | 2h 55:56.31 | < 2h 27:07.48 | 2h 58:17.28
| uT24 | 42 001 | 3h 19:20.56 41 956 | 3h 17 :55 .61| < 2h 44:00.87 | 3h 34:23.16

rat783 8 846 | 2h 43:47.24| 8 836 | 3h 26:18.32| < 3h 08:50.82 | 3h 38:02.02
dsj1000 | 18 751 750 | 6h 28:45.45| 18 768 891 | 6h 22:30.42 - | 6h 35:07.54
ul060 224 909 | 6h 10:46.95| 224 464 | 5h 58:08.07 | < 4h 03:37.92 | 6h 33:44.48

Table 7: MUT4_LO3 & ER_LO3: results of team

experts (or at least the same one, i f i t is the optimal solution). Also, again with one
exception, the teams find better solutions than the experts that were members of the
team. The improvements may be small, but this had to be expected, because the
solutions found by the single experts are so near to the optimum.
If we look at the run times for solutions comparable to the best ones found by the
single experts then the results of the 2-Opt team are quite impressive. For the hard
problems (with the one exception) all speed-ups are greater than 2 with a peak of
4 (using only two processors). The results of the 3-Opt team are not as good. The
reasons for this are first that the single experts using 3-Opt as local optimization are
not as good as the 2-Opt ones (with respect to run time) and second that the number
of new individuals produced in the working periods was significantly smaller for the
3-Opt team. This way, not enough general diversity was provided, so that much smaller
regions of the search space were explored. Naturally, this results i n less opportunities
for cross-fertilization between the experts and so i n fewer synergetic effects.

In this context we want to emphasize the importance of the referees. By selecting tours
that differ very much from each other (with fitness being only an additional criterion),
we are able to have populations that have much more potential than populations that
are produced by a single expert alone. Note that this is not easy to integrate into
fitness functions or into the general scheme of genetic algorithms. As already stated,
using referees that did not put enough interest into diversity, the teams did not behave
as good as the ones reported here.

5 Conclusion and Future Work

In this paper, we reported about the application of our TEAMWORK method on solving
the Traveling Salesman Problem using genetic algorithms. The resulting distributed
system DOTT achieved synergetic speed-ups i n generating solutions comparable to
those found by single sequential genetic algorithms, even i f those algorithms were aug-

36 REFERENCES

II1ented by local optimization techniques. If one is only interested in the quality of the
fo.und solutions, then DOTT was also superior to the single algorithms in most cases.

Our experiments showed that one important reason for the success of TEAMWORK

was the referee concept that led to populations with much more diversity than those
generated by single genetic algorithms. A selection (by referees) based only on fitness
was not as successful as a selection that mainly used diversity. Very likely this will
also be the case if one is interested in solving other search problems using genetic
algorithms.

Future work will focus on two directions: as already stated, TEAMWORK is a distri­
bution method for search by extension and focus of which genetic algorithms is one
instance. Therefore we will apply TEAMWORK to other systems that use genetic algo­
rithms as problem solving method. In addition, TEAMWORK offers very good possibil­
ities to include other search processes than genetic algorithms into such systems. Such
an integration of genetic algorithms and other search paradigms is of high interest in
many applications. TEAMWORK also allows to use more and other knowledge than in
conventional genetic algorithms. As already stated, aspects like diversity can be easily
integrated without destroying the necessary balance between randomness, knowledge
and success orientation that is required by evolutionary approaches.

With respect to DOTT there remains some work to do. Firstly, the realization of
the supervisor is not satisfying. With more experts, specialists and referees, planning
capabilities and self-adaptation to the given problem are necessary and have to be
provided by the supervisor. Then it will be possible to combine the 2-0pt and 3-0pt
teams by starting with experts of the 2-0pt team and switching to the 3-0pt team
from time to time later. Also experts that only employ local optimizations can be used
towards the end of a team run. More experts will also allow to use more processors in
team runs.

References

[Cr58]	 Croes, A.: A Method for Solving Traveling-Salesman Problems,
Oper.Res. 6, 1958, pp. 791-812.

[De95]	 Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork,
Proc ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[DK94]	 Denzinger, J. ; Kronenburg, M.: Planning for distributed theorem prov­
ing: The team work approach, Proc. KI-96, Dresden, LNAI 1137, 1996,
pp. 43-56.

[DL96]	 Denzinger, J. ; Lind, J.: TWlib - a Library for Distributed Search Ap­
plications, Proc. ICS'96AI, Kaohsiung, 1996, pp. 101-108.

36 REFERENCES

mented by local optimization techniques. If one is only interested in the quality of the
found solutions, then DOTT was also superior to the single algorithms in most cases.
Our experiments showed that one important reason for the success of TEAMWORK
was the referee concept that led to populations with much more diversity than those
generated by single genetic algorithms. A selection (by referees) based only on fitness
was not as successful as a selection that mainly used diversity. Very likely this will
also be the case if one is interested in solving other search problems using genetic
algorithms.
Future work will focus on two directions: as already stated, TEAMWORK is a distri-
bution method for search by extension and focus of which genetic algorithms is one
instance. Therefore we will apply TEAMWORK to other systems that use genetic algo-
rithms as problem solving method. In addition, TEAMWORK offers very good possibil-
ities to include other search processes than genetic algorithms into such systems. Such
an integration of genetic algorithms and other search paradigms i s o f high interest i n
many applications. TEAMWORK also allows to use more and other knowledge than in
conventional genetic algorithms. As already stated, aspects like diversity can be easily
integrated without destroying the necessary balance between randomness, knowledge
and success orientation that is required by evolutionary approaches.

With respect to DOTT there remains some work to do. Firstly, the realization of
the supervisor is not satisfying. With more experts, specialists and referees, planning
capabilities and self-adaptation to the given problem are necessary and have to be
provided by the supervisor. Then i t will be possible to combine the 2-Opt and 3-Opt
teams by starting with experts of the 2-Opt team and switching to the 3-Opt team
from t ime to t ime later. Also experts that only employ local optimizations can be used
towards the end of a team run. More experts will also allow to use more processors in
team runs.

References

[Cr58] Croes, A. : A Method for Solving Traveling-Salesman Problems,
Oper.Res. 6, 1958, pp. 791-812.

[De95] Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork,
Proc. ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[DK94] Denzinger, J . ; Kronenburg, M . : Planning for distributed theorem prov-
ing: The team work approach, Proc. KI-96, Dresden, LNAI 1137, 1996,
pp. 43-56.

[DL96] Denzinger, J . ; L ind, J.: TWlib - a Library for Distributed Search Ap-
plications, Proc. ICS’96AI, Kaohsiung, 1996, pp. 101-108.

37 REFERENCES

[FM96] Freisleben, B.; Merz, P.: New Genetic Local Search Operators for
the Traveling Salesman Problem, Parallel Problem Solving from Nature ­
PPSN IV, September 1996, Springer, pp. 890-899.

[Ho92] John H. Holland: Adaption in natural and artificial systems, Ann Arbor:
University of Michigan Press, 2nd edition 1992.

[HK70] Held, M.; Karp, R.M.: The traveling-salesman problem and minimum
spanning trees, Oper.Res. 18, 1970, pp. 1138-1162

[Jo90] Johnson, D.S.: Local Optimization and the Traveling Salesman Problem,
Proc. ALP, LNCS 443, 1990, pp. 446-461.

[Leo95] Leopold, T.: Verteilte Losung des Travelling Salesman Problems durch
Teamwork, Master Thesis, University of Kaiserslautern, 1995.

[Lin65] Lin, S.: Computer solutions of the traveling salesman problem, Bell Syst.
Tech. J. 44, 1965, pp. 2245-2269.

[LLRS85] Lawyer, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Shmoys, D.B.:
The Traveling Salesman Problem, ~ohn Wiley & Sons, Chichester, 1985.

[Mi92] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro­
grams, Springer Artificial Intelligence 1992.

[Re91] Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library, ORSA
Journal on Computing 3, 1991, pp. 376-384.

[Re94] Reinelt, G.: The Traveling Salesman Problem. Computational Solutions
for TSP Applications., Springer 1994.

[RSL74] Rosenkrantz, D.; Stearns, R.; Lewis, P.: Approximate Algorithms for
the Traveling Salesperson Problem, Proc. 15th Annual IEEE 'Symposium of
Switching and Automata Theory, 1974, pp 33-42.

[Sch96] Scholz, Stephan: Experten und Gutachter fur DOTT, Project Thesis,
University of Kaiserslautern, 1996.

REFERENCES 37

[FM96]

[Ho92]

[HK70]

[Jo90]

[Leo95]

[Lin65]

[LLRS85)

[Mi92]

[Re91]

[Re94]

[RSL74]

[Sch96]

Freisleben, B . ; Merz, P.: New Genetic Local Search Operators for
the Traveling Salesman Problem, Parallel Problem Solving from Nature -
PPSN IV, September 1996, Springer, pp. 890-899.

John H. Holland: Adaption in natural and artificial systems, Ann Arbor:
University of Michigan Press, 2nd edition 1992.

Held, M . ; Karp, R.M. : The traveling-salesman problem and minimum
spanning trees, Oper.Res. 18, 1970, pp. 1138-1162

Johnson, D.S.: Local Optimization and the Traveling Salesman Problem,
Proc. ALP, LNCS 443, 1990, pp. 446-461.

Leopold, T . : Verteilte Lösung des Travelling Salesman Problems durch
Teamwork, Master Thesis, University of Kaiserslautern, 1995.

Lin, S.: Computer solutions of the traveling salesman problem, Bell Syst.
Tech. J. 44, 1965, pp. 2245-2269.

Lawyer, E .L . ; Lenstra, J .K . ; R innooy Kan, A .H .G . ; Shmoys, D.B.:
The Traveling Salesman Problem, John Wiley & Sons, Chichester, 1985.

Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer Artificial Intelligence 1992.

Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library, ORSA
Journal on Computing 3, 1991, pp. 376-384.

Reinelt , G.: The Traveling Salesman Problem. Computational Solutions
for TSP Applications., Springer 1994.

Rosenkrantz, D . ; Stearns, R . ; Lewis, P. : Approzimate Algorithms for
the Traveling Salesperson Problem, Proc. 15th Annual IEEE Symposium of
Switching and Automata Theory, 1974, pp 33-42.

Scholz, Stephan: FEzperten und Gutachter für DOTT, Project Thesis,
University of Kaiserslautern, 1996.

	UR_0007.jpg

