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Abstract

In this dissertation, we develop new techniques to construct variants of digital signatures,

speci�cally blind signatures, multi-signatures, and threshold signatures. Our constructions are

e�cient and achieve strong security notions based on well-studied non-interactive assump-

tions.

Blind Signatures. Constructions of blind signatures are ine�cient, insecure for many

concurrent signing interactions, or rely on non-standard assumptions, even in the random

oracle model. We design the �rst schemes based on conservative assumptions that are fully

secure and concretely e�cient.

Multi-Signatures. Existing two-round multi-signatures in the pairing-free setting and the

random oracle model rely on rewinding. Thus, the concrete security level backed up by their

analysis is low. We present the �rst constructions in this setting that avoid rewinding. For one

of our constructions, security tightly relates to the underlying assumption.

Threshold Signatures. Threshold signatures in the pairing-free setting have been proven

secure for static corruptions. The only exception due to Crites, Komlo, and Maller (Crypto

2023) relies on an interactive assumption and restricts the adversary to at most t/2 adaptive

corruptions for a signing threshold t. We construct a new scheme that allows for up to t
adaptive corruptions and builds on a conservative non-interactive assumption.
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Zusammenfassung

In dieser Dissertation werden Techniken entwickelt, um blinde Signaturen, Multisignaturen

und Thresholdsignaturen zu konstruieren. Die vorgestellten Konstruktionen sind e�zient,

erfüllen höchste Sicherheitsstandards und basieren auf konservativen kryptographischen

Annahmen.

Blinde Signaturen. Existierende blinde Signaturverfahren sind ine�zient, erfüllen nur eine

schwache Sicherheitseigenschaft oder basieren auf unkonventionellen Annahmen. In dieser

Dissertation werden basierend auf konservativen Annahmen e�ziente Verfahren entwickelt,

die starke Sicherheitskriterien erfüllen.

Multisignaturen. Analysen existierender Multisignaturen nutzen sogenanntes Rewinding,

was zu einem niedrigen konkreten Sicherheitslevel führt. In dieser Dissertation werden

Konstruktionen vorgestellt, die ohne Rewinding bewiesen werden.

Thresholdsignaturen. Die Analysen von Thresholdsignaturen gelten für einen statischen An-

greifer. Hierbei stellt das Verfahren von Crites, Komlo und Maller (Crypto 2023) eine Ausnahme

dar, beschränkt den Angreifer jedoch auf höchstens t/2 adaptive Korruptionen, wobei t der

Signing Threshold ist. Zudem basiert dessen Sicherheit auf einer interaktiven Annahme. In

dieser Dissertation wird basierend auf einer konservativen Annahme ein Verfahren konstruiert,

welches für bis zu t adaptive Korruptionen sicher ist.

v





Background of this Dissertation

This dissertation is based on the papers listed in the following. The individual chapters contain

further information about the relation of their content and the publications. More detailed

citations can be found in the Bibliography.

[CAHL
+

22a] PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance
Cut-and-Choose and More
Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya,

Benedikt Wagner

CRYPTO 2022, © IACR 2022

[HLW23a] Rai-Choo! Evolving Blind Signatures to the Next Level
Lucjan Hanzlik, Julian Loss, Benedikt Wagner

EUROCRYPT 2023, © IACR 2023

[PW23a] Chopsticks: Fork-Free Two-Round Multi-Signatures from Non-Interactive
Assumptions
Jiaxin Pan, Benedikt Wagner

EUROCRYPT 2023, © IACR 2023

[PW24] Toothpicks: More E�cient Fork-Free Two-Round Multi-Signatures
Jiaxin Pan, Benedikt Wagner

EUROCRYPT 2024, © IACR 2024

[BLT
+

24] Twinkle: Threshold Signatures from DDH with Full Adaptive Security
Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, Chenzhi Zhu

EUROCRYPT 2024, © IACR 2024

During my time as a PhD student, I also made major contributions to the following papers,

which are not included in the dissertation. The list does not include the papers resulting from

my Master’s thesis.

[HLW23b] Token meets Wallet: Formalizing Privacy and Revocation for FIDO2
Lucjan Hanzlik, Julian Loss, Benedikt Wagner

IEEE S&P 2023

[PWZ23a] Lattice-based Authenticated Key Exchange with Tight Security
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng

CRYPTO 2023

[PWZ23b] Tighter Security for Generic Authenticated Key Exchange in the QROM
Jiaxin Pan, Benedikt Wagner, Runzhi Zeng

ASIACRYPT 2023

[HLTW24] Sweep-UC: Swapping Coins Privately
Lucjan Hanzlik, Julian Loss, Sri AravindaKrishnan Thyagarajan, Benedikt Wagner

IEEE S&P 2024

[CLW24] A Holistic Security Analysis of Monero Transactions
Cas Cremers, Julian Loss, Benedikt Wagner

EUROCRYPT 2024

vii





Acknowledgments

It has been a long and exciting journey from learning multiplication in elementary school to

doing research in cryptography and writing this dissertation. On my way, I was lucky to meet

so many amazing people, without which I would have never gotten so far. I want to take this

opportunity to thank all of them, even though I will for sure not be able to mention everyone

by name.

First, I want to thank my advisor Julian Loss. Thank you for trusting me to be your �rst

Ph.D. student. Thank you for being a great mentor and thank you for every advice you gave

me, be it in cryptography or life. You have always invested time and dedication to create a

fruitful research environment and to guide me as a researcher. At the same time, you gave me

freedom, for example, to work on the topics I �nd most interesting or to collaborate freely

with others.

I want to thank Jiaxin Pan. You have taught me so many things about cryptography and

how to write a paper. During all of our projects, you have invested so many hours in our

meetings and beyond. It is always a pleasure to work with you. You also always had an open

ear for a chat about life in general, and I will always remember the great and productive time

we had during my visit to Norway.

Moreover, I want to express my gratitude to Mark Simkin for hosting an amazing internship

at the Ethereum Foundation and my visit in Aarhus. I also wish to thank the cryptographic

community, especially all of my coauthors, my colleagues at CISPA, and all the friends that I

have made during conferences and research visits. I want to thank Markus Bläser and Stefano

Tessaro for agreeing to review this dissertation, and Michael Reichle and Jesko Dujmovic

for helpful comments on early drafts of it. Moreover, I want to thank all the teachers and

professors I met on my way, who got me excited about music, maths, computer science, and

cryptography.

Ich möchte die Gelegenheit ergreifen, um auch meinem privaten Umfeld von ganzem Herzen

zu danken. Auch wenn es unmöglich ist, alles aufzulisten, was ich Euch verdanke, hier ein paar

Beispiele: Meine Freunde sorgen für gelungene und notwendige Ablenkungen von Studium

und Forschung. Meine Schwester hört sich immer meine Erklärungen zu Themen an, die mich

gerade begeistern. Meine Mutter erinnert mich an die wirklich wichtigen Dinge im Leben.

Meinem Vater verdanke ich die Begeisterung für Musik und Mathematik. Danke!

Meine letzte Danksagung gilt Dir, Lea. Danke für all Deine Liebe und Unterstützung. Danke,

dass Du immer für mich da bist!

ix





Contents

1 Introduction 1
1.1 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Variants of Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Multi-Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Threshold Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Other Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Results for Blind Signatures – Chapter 3 . . . . . . . . . . . . . . . . . 7

1.4.2 Results for Multi-Signatures – Chapter 4 . . . . . . . . . . . . . . . . . 7

1.4.3 Results for Threshold Signatures – Chapter 5 . . . . . . . . . . . . . . 8

1.5 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 General Preliminaries 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Cryptographic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Blind Signatures 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Background: Boosting via Cut-and-Choose . . . . . . . . . . . . . . . 21

3.1.2 Contribution: PI-Cut-Choo and Friends . . . . . . . . . . . . . . . . . 22

3.1.3 Contribution: PI-Cut-Choo evolves to Rai-Choo . . . . . . . . . . . . . 23

3.1.4 More on Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.5 Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 The Boosting Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 E�cient Boosting and PI-Cut-Choo . . . . . . . . . . . . . . . . . . . . 26

3.2.3 PI-Cut-Choo Evolves to Rai-Choo . . . . . . . . . . . . . . . . . . . . . 28

3.3 Preliminaries for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 PI-Cut-Choo Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Concrete Parameters and E�ciency . . . . . . . . . . . . . . . . . . . . 48

3.5 PI-Cut-Choo’s Friend from RSA . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



CONTENTS

3.5.1 The OGQ Linear Function . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 The Underlying Boosting Transform . . . . . . . . . . . . . . . . . . . 50

3.5.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.4 Concrete Parameters and E�ciency . . . . . . . . . . . . . . . . . . . . 60

3.6 Intermezzo: From Semi-Honest to Malicious Blindness . . . . . . . . . . . . . 61

3.7 Rai-Choo Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Basic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.2 Extension: Partial Blindness and Batching . . . . . . . . . . . . . . . . 73

3.7.3 Concrete Parameters and E�ciency . . . . . . . . . . . . . . . . . . . . 78

4 Multi-Signatures 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Contribution: Chopsticks . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Contribution: Toothpicks . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.3 More on Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.4 Subsequent and Concurrent Work . . . . . . . . . . . . . . . . . . . . 87

4.1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Fork-Free Two-Round Multi-Signatures . . . . . . . . . . . . . . . . . 88

4.2.2 Reducing the Price of Tightness . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Preliminaries for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Chopsticks: Fork-Free Two-Round Multi-Signatures . . . . . . . . . . . . . . . 96

4.4.1 Building Blocks: Linear Functions and Special Commitments . . . . . 97

4.4.2 Construction with Key Aggregation . . . . . . . . . . . . . . . . . . . 99

4.4.3 Tight Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.4 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Toothpicks: Reducing the Price of Tightness . . . . . . . . . . . . . . . . . . . 115

4.5.1 Building Blocks: Stronger Linear Functions and Weaker Commitments 115

4.5.2 Construction with Key Aggregation . . . . . . . . . . . . . . . . . . . 116

4.5.3 Tight Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.4 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Concrete Parameters and E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Threshold Signatures 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1.1 Contribution: Twinkle . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1.2 More on Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Preliminaries for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Abstract Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1 Building Block: Tagged Linear Function Families . . . . . . . . . . . . 140

5.4.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5.1 Instantiation from (Algebraic) One-More CDH . . . . . . . . . . . . . 154

xii



CONTENTS

5.5.2 Instantiation from DDH . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.6 Concrete Parameters and E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Final Remarks 161
6.1 Open Problems for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.1 Open Problems Related to Blind Signatures – Chapter 3 . . . . . . . . 163

6.1.2 Open Problems Related to Multi-Signatures – Chapter 4 . . . . . . . . 164

6.1.3 Open Problems Related to Threshold Signatures – Chapter 5 . . . . . . 165

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 166

A Additional Pseudocode 197

xiii





1
Introduction

1





1.1. DIGITAL SIGNATURES

1.1 Digital Signatures

Digital signatures [DH76] are among the most fundamental cryptographic building blocks.

They allow a user, holding a secret key sk, to sign a message by computing a signature σ.

Anyone can verify the signature σ using a corresponding public key pk. On the other hand, it

should not be possible to generate valid signatures for new messages just given the public key

pk and not sk, a property which is known as unforgeability. Signatures serve as an essential

tool to guarantee integrity and authenticity of modern communication: we make use of digital

signatures while securely browsing through the web, they can ensure authenticity of emails,

and more. In recent years, the use of signatures in digital payment systems gained a lot of

attention. Taking Bitcoin as an example, users may publish transactions that spend coins from

one public key pk to another one. Crucially, such a transaction is only considered to be valid if it

contains a valid signature with respect to pk. In this way, it is ensured that only the user holding

the secret key sk for pk can spend coins associated with pk: knowing sk means owning the coins

controlled by pk. Such modern applications have also motivated the de�nition and design of

digital signature variants with enhanced functionality and privacy features. And while standard

signatures are well-understood [Lam79, GMR88, NY89, Sch91, BLS01, Wat05, GPV08, Lyu12],

a lot of questions remain elusive for these variants of digital signatures. In this dissertation,

we develop new techniques for answering these questions.

1.2 Variants of Digital Signatures

With the advent of modern applications, such as cryptocurrencies, more expressive variants of

digital signatures are needed, enhancing both functionality and privacy. In this dissertation,

we study three variants, namely, blind signatures, multi-signatures, and threshold signatures.

1.2.1 Blind Signatures

In a blind signature scheme [Cha82], two parties interact to create a signature: a Signer holding

a secret key and a User holding the public key and a message m to be signed. After the signing

interaction, the User obtains a signature σ on the message. The scheme has to satisfy two

security properties [JLO97, PS00]. On the one hand, the Signer should not be able to link

the signing interaction to the pair (m, σ). In particular, the Signer does not learn anything

about m during the signing interaction. This property is referred to as blindness. On the other

hand, it is crucial that the User can not generate valid signatures without engaging with the

Signer. To be precise, we insist on one-more unforgeability, meaning that after ` interactions

with the Signer, the User can output signatures for at most ` messages. These two properties

make blind signatures a highly versatile tool for creating privacy-preserving protocols. To

name a few examples, blind signatures have found application in electronic cash [Cha82,

OO92] (their original motivation) as well as anonymous credentials [CG08, CL01], private

authentication [Goo], and electronic voting [GPZZ19]. More recently, blind signatures gained

renewed interest as they facilitate private payments over public ledgers [HBG16, HLTW24].
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CHAPTER 1. INTRODUCTION

1.2.2 Multi-Signatures

In a multi-signature scheme [IN83, BN06], we consider a group of signers that jointly signs

a message, potentially by running an interactive signing protocol. The signature can then

be veri�ed with respect to the list of their public keys, and it certi�es that all of the signers

signed the message. The emergence of cryptocurrencies has led to renewed interest in multi-

signatures [BDN18]. In this context, they can be used to create shared accounts: if multiple

parties collectively possess funds, then all of them are required to sign when spending the

coins. This application suggests a straightforward method for constructing multi-signatures:

each signer locally signs the message, and the signature is formed by concatenating these

individual signatures. The signature is considered valid if each individual signatures is valid.

While this construction serves as the blueprint in terms of security, it proves ine�cient as the

number of signers increases. This motivates an additional criterion: compactness. Signatures

should be much smaller than the concatenation of individual signatures. Ideally, the signature

size is independent of the number of signers.

1.2.3 Threshold Signatures

As explained above, a multi-signatures requires all n signers to participate in the signing

process, and less then n colluding signers should not be able to generate a signature that

veri�es with respect to the n public keys. In some scenarios, however, this requirement is

too strict, for example if some signers can be temporarily unavailable. Therefore, we may

relax the requirement and only ask for enough of the signers to participate in the signing

process. More precisely, we may �x a threshold t < n and allow any t+ 1 signers to generate

a signature, while no set of at most t colluding signers can. A scheme with this property is

called a threshold signature scheme [Des88, DF90, Ped91]. As for multi-signatures, (non-trivial)

threshold signatures should be compact, and the shared account application can be generalized

to rely on threshold signatures. In addition to that, threshold signatures have found use in

wallets [LN18], coin �ipping [CKS05], and in other scenarios where trust in a single party has

to be distributed [MOT
+

11, DOK
+

20].

1.2.4 Other Variants

For the interested reader, we give a non-exhaustive overview of other variants that have

been studied. The referenced works may serve as a starting point for further reading. Group

signatures [Cv91, Cam97, BMW03, BBS04] and (linkable) ring signatures [RST01, DKNS04,

BKM06, CGS07, BKP20] allow the signer to hide its identity among a group of potential signers:

anyone can verify that a member of the group signed a message, while the actual identity of

the signer remains hidden. Aggregate signatures [BGLS03, LMRS04, LOS
+

06, HKW15] are a

non-interactive version of multi-signatures allowing for potentially di�erent messages: given

triples of public keys, messages, and signatures, one can publicly, i.e., without knowing any

secret key, compress the signatures into one short signature. Adaptor signatures [AEE
+

21,

EFH
+

21] have found use in fair exchange protocols [TMM21, GMM
+

22, HLTW24]. Identity-

based signatures [Sha84, DKXY03, BNN09, PW21] and forward-secure signatures [BM99, IR01,

ABP13] focus on the way keys are managed and derived. Finally, one can consider combinations

of the aforementioned, e.g., threshold blind signatures [CKM
+

23b].

4



1.3. RESEARCH GOAL

1.3 Research Goal

The primary aim of this dissertation is to develop new techniques for constructing signature

variants that are both e�cient and secure. Subsequently, we shall expound upon the exact

meaning of this.

E�ciency. To �nd practical applicability, cryptographic constructions must be e�cient.

For signatures and their variants, our primary focus encompasses four metrics of e�ciency.

First, we aim to minimize the signature size in bits as in numerous applications, signatures

are subject to frequent transmission or storage. Given that the variants we study rely on

interactive protocols to compute signatures, we also optimize communication complexity, i.e.,

minimize the number of bits that need to be sent. We also target a low round complexity. That

is, each party should send a minimal number of messages during the protocol. This is because

rounds introduce delay and increase the complexity of the protocol: a protocol in which each

party only sends and receives one message is much simpler to implement and less error prone

than a scheme with multiple communication rounds. Finally, we seek computational e�ciency

in our constructions for minimal overhead in terms of running time. Concretely, the time to

generate and verify signatures should be minimal. As secondary e�ciency goals, we shall

keep key sizes within practical limits.

Expressive Security Notions. Before analyzing the security of cryptographic schemes, we

need a precise mathematical de�nition of security. This entails specifying both the adversary’s

goal and its assumed capabilities. To illustrate this, consider standard digital signatures. A

weak security notion would task the adversary to forge a signature just given the public

key. However, the de-facto standard is a more robust notion called existential unforgeability

under adaptive chosen-message attacks [GMR88]. It extends the adversary’s capabilities by

allowing it to see signatures for messages of its choice, with the goal of forging a signature

for a new message. For this dissertation, we aspire to achieve the strongest notion possible for

our constructions of signature variants. We exemplify this by examining blind signatures.

Here, we want to allow the adversary to engage with the Signer in the signing protocol. We

may require that the adversary completes interactions before starting new ones. While this

allows to construct e�cient schemes [BL13a, KLX22], enforcing such a sequential behavior is

infeasible in practice without opening the door to denial of service attacks. Instead, we should

aim for a stronger notion, in which the adversary can interact concurrently with the Signer,

interleaving signing interactions in an arbitrary manner.

Conservative Assumptions. Security proofs in modern cryptography have a common

structure: we assume the existence of an e�cient adversary breaking the cryptographic

scheme. Using this adversary as a subroutine, we construct an e�cient algorithm that solves

some computational problem Π. Under the assumption that Π is hard, security of the scheme

follows. Of course, one could just de�ne Π to be the problem of breaking the scheme, in which

case proving security would be trivial. However, we would not gain any con�dence in the

security of the scheme. Instead, we want to rely on more conservative assumptions. These

assumptions should possess two key characteristics: First, they should be easy to state and

non-interactive. This means that a solver for Π gets an input and produces an output without

any further interaction with the problem (e.g., no oracle is involved). Such assumptions are far

more straightforward to understand and study compared to complex interactive assumptions.

Second, the assumption should be well-studied, i.e., we have a good understanding of the

5



CHAPTER 1. INTRODUCTION

underlying mathematical structure and cryptanalysts failed to falsify the assumption despite

e�orts. The more conservative the underlying assumption, the greater con�dence we can

place in the security of our scheme. The well-known discrete logarithm and Di�e-Hellman

assumptions [DH76] are examples of such conservative assumptions.

One may hope that we can avoid making an assumption in the �rst place. Unfortunately,

it is well-known that for most cryptographic primitives, unconditional security would have

unexpected implications in computational complexity theory, such as solving the longstanding

P vs. NP problem [Gol01].

Concrete Security. When turning an adversary against the scheme into an algorithm solving

the hard problem Π, as explained earlier, we establish a security bound of the form ε ≤ L · εΠ.

Here, ε is the probability that the adversary breaks the security of the scheme, εΠ denotes

the probability of successfully solving Π, and L is the so-called security loss. The security

bound can be interpreted as a quantitative statement about the concrete security of the scheme.

Namely, assuming Π is a 128-bit hard problem, we achieve a security level of 128− log(L)
bits for the scheme. Conversely, if we target a 128-bit security level, we must set parameters,

such as the elliptic curve groups used in the scheme, to make Π at least 128 + log(L) bits hard,

according to current cryptanalytic knowledge. In both cases, our objective is to minimize L.

Ideally, the proof is tight: L is a small constant independent of any adversarial choices. A large

body of research is centered around the concept of tightness: tightness has been studied for

public-key encryption [BBM00, HJ12, BJLS16, GHKW16, Hof17], key exchange [BHJ
+

15, GJ18,

LLGW20, HJK
+

21, DG21], as well as for digital signatures [KW03, HJ12, AFLT12, BKKP15,

BJLS16, BL16, KMP16, DGJL21, PW22] and related primitives [CW13, BKP14, GHKP18, LP20].

Unfortunately, techniques used for minimizing L and achieving tightness often introduce

redundancy leading to a signi�cant e�ciency overhead. In this dissertation, it is our goal to

keep the security loss minimal without compromising e�ciency.

Minimal Idealizations. In addition to hardness assumptions, numerous cryptographic

proofs rely on idealizations. One prominent example is the random oracle model, �rst ex-

plicitly introduced by Bellare and Rogaway [BR93]. This model idealizes hash functions

in the following way: instead of permitting parties to evaluate the function locally, every

party has access to an oracle implementing a truly random function. Despite (contrived)

constructions demonstrating that the random oracle can not be instantiated by a real hash

function [CGH98, GK03, BBP04, BFM15], highlighting that it is not an assumption, the cryp-

tographic community widely accepts the random oracle model. Furthermore, all practical

constructions of digital signatures depend on it. Thus, we analyze our constructions in the

random oracle model, but we refrain from introducing additional idealizations, such as generic

or algebraic group models [Sho97, Mau05, FKL18].

1.4 Overview of Results

We introduce new construction techniques and advance the state-of-the-art in the realm of

blind signatures, multi-signatures, and threshold signatures. Below, we summarize our results.

In the following, we reuse parts of the abstracts of [CAHL
+
22a, HLW23a, PW23a, PW24, BLT

+
24].
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1.4. OVERVIEW OF RESULTS

1.4.1 Results for Blind Signatures – Chapter 3

We construct the �rst concretely e�cient blind signatures from conservative assumptions.

Background. In the random oracle model, known constructions of blind signature schemes are either

prohibitively ine�cient, rely on non-standard assumptions, or are only secure as long as a small number

of concurrent signing interactions are allowed. Addressing this issue, Katz, Loss, and Rosenberg [KLR21]

introduced a boosting transform based on a cut-and-choose technique. It converts a base scheme, secure

for logarithmically many (in the security parameter) concurrent signing interactions, into a fully secure

scheme, supporting any polynomial number of concurrent interactions. Unfortunately, instantiations of

this transform exhibit two drawbacks. Firstly, the Signer increases a counter in every signing interaction,

and the communication complexity of the resulting blind signing protocol grows linearly with this

counter. Secondly, the schemes inherit a very loose security bound from the base scheme and, as a

result, require impractical parameter sizes.

Contribution: PI-Cut-Choo and Friends. We eliminate these drawbacks by proposing two practical

blind signature schemes, based on the RSA and CDH assumption in the pairing-setting, respectively.

Their communication complexity only grows logarithmically with the number of interactions so far.

Our RSA-based scheme has signatures and communication of roughly 9 KB and 8 KB, respectively.

Conceptually, we apply a communication-e�cient variant of the boosting transform to the Okamoto-

Guillou-Quisquater blind signature scheme [Oka93, PS96, HKL19], accompanied by careful tweaks to

improve the concrete e�ciency.

For our CDH-based scheme, signatures and communication are roughly 3 KB and 120 KB, respec-

tively. Here, we use the BLS blind signature scheme [BLS01, Bol03] as a base scheme. Given that this

base scheme can not tolerate any signing interaction without relying on an interactive assumption, we

design a stronger variant of the boosting transform. In a nutshell, by repeating the cut-and-choose for

many independent keys in parallel, we can guarantee that there is one key for which the reduction

does not need to engage in any signing interaction. Exploiting aggregation features of blind BLS, we

avoid most of the overhead induced by this parallel repetition. See Chapter 3 for more details.

Contribution: Rai-Choo. Our schemes mentioned above still have limitations: the Signer must

maintain state, computation scales linearly with the number of signing interactions, and at least �ve

moves of interaction are required per signature. As our second result, we introduce a scheme that

eliminates all of the above drawbacks at the same time. Namely, we show a round-optimal, concretely

e�cient, concurrently secure, and stateless blind signature scheme in which communication and

computation are independent of the number of signing interactions. It also generalizes naturally to the

partially blind signature setting, where parts of the message are known to the Signer. Our scheme is

based on the CDH assumption in the asymmetric pairing setting and has signature and communication

sizes of 9 KB and 36 KB, respectively. To improve the (amortized) communication complexity of our

scheme even further, we show how to e�ciently batch the issuing of signatures for multiple messages.

For more details, see Chapter 3.

1.4.2 Results for Multi-Signatures – Chapter 4

For multi-signatures, our results outperform existing constructions in the pairing-free discrete logarithm

setting in terms of concrete security.

Background. Early constructions of multi-signatures in the pairing-free discrete logarithm setting

require three-round signing. Recent constructions have managed to reduce the round complexity to

two, i.e., to generate a signature, each signer has to send two messages. However, the security proofs of

these constructions come with a signi�cant security loss, resulting in low concrete security levels. The

reason for this loss is a (nested) use of so-called rewinding, where the reduction only succeeds if the

adversary succeeds in multiple dependent runs of the experiment.

Contribution: Chopsticks. We propose two e�cient two-round multi-signature schemes from the

(standard, non-interactive) DDH assumption in the pairing-free setting. Both schemes are proven
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secure in the random oracle model without rewinding. Our �rst scheme supports the aggregation of

keys but has a security loss linear in the number of signing queries. Our second scheme is the �rst

tightly secure construction.

Technically, we base our constructions on a new homomorphic dual-mode commitment scheme

for group elements. The commitment scheme allows to equivocate for messages of a speci�c structure.

The de�nition and e�cient construction of this commitment scheme is of independent interest. By

combining our commitment scheme with the lossy identi�cation technique [KW03, AFLT12, KMP16]

and a guessing argument, we obtain our �rst scheme. To eliminate the guessing argument and achieve

tight security, we introduce the pseudorandom matching technique. Here, signers hold two keys and

pseudorandomly match their keys to two possible commitment keys per message. See Chapter 4 for

more details.

Contribution: Toothpicks. While the Chopsticks schemes are an interesting �rst theoretical step,

they are much less e�cient than their non-tight counterparts. We close this gap by proposing a new

tightly secure two-round multi-signature scheme that is as e�cient as non-tight schemes. Our scheme

is again based on the DDH assumption without pairings. Compared to Chopsticks, we reduce the

signature size and communication complexity by more than a factor of 2, respectively. Similarly, we

improve the e�ciency of the non-tight scheme in Chopsticks.

To achieve this, we �rst, somewhat surprisingly, observe that the commitment scheme in Chopsticks

does not have to be fully binding. This allows us to construct a more e�cient commitment scheme.

Further, we develop a new pseudorandom path technique, eliminating redundancies caused by the

pseudorandom matching technique. Again, we refer to Chapter 4 for more details.

1.4.3 Results for Threshold Signatures – Chapter 5

In the realm of threshold signatures, we focus on security in the presence of adaptive corruptions.

Background. Known constructions of threshold signatures in the pairing-free discrete logarithm

setting are proven secure under static corruptions. That is, the adversary is assumed to announce the

set of corrupted parties ahead of time before learning any keys or signatures, and then controls these

parties throughout the security experiment. What matches reality more closely is the stronger notion

of security under adaptive corruptions. In this model, the adversary can corrupt parties throughout

the game depending on keys, signatures, and the results of previous corruptions. Recently, Crites,

Komlo, and Maller [CKM23a] have proposed Sparkle, which is the �rst threshold signature scheme in

the pairing-free discrete logarithm setting to be proven secure under adaptive corruptions. However,

without using the algebraic group model, Sparkle’s proof imposes an undesirable restriction on the

adversary. Namely, for a signing threshold t < n, the adversary is restricted to corrupt at most t/2
parties. In addition, Sparkle’s proof relies on a strong one-more assumption.

Contribution: Twinkle. We propose Twinkle, a new threshold signature scheme in the pairing-free

setting which overcomes these limitations. Twinkle is the �rst pairing-free scheme to have a security

proof for up to t adaptive corruptions without relying on the algebraic group model. It is also the �rst

such scheme with a security proof under adaptive corruptions from a well-studied non-interactive

assumption, namely, the DDH assumption.

We achieve our result in two steps. First, we design a generic scheme based on a linear function

that satis�es several abstract properties and prove its adaptive security under a suitable one-more

assumption related to this function. In the context of this proof, we also identify a gap in the security

proof of Sparkle and develop new techniques to overcome this issue. Second, we give a suitable

instantiation of the function for which the corresponding one-more assumption follows from DDH.

For more details, see Chapter 5.
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1.5. STRUCTURE OF THIS DISSERTATION

1.5 Structure of this Dissertation

In Chapter 2, we recall general cryptographic background that is needed for multiple chapters of

this dissertation. Then, in Chapters 3 to 5 we present our results. Each of these chapters is based on

one or two publications. Namely, in Chapter 3, we present our results on blind signatures based on

[CAHL
+

22a, HLW23a]. Chapter 4 contains our results on multi-signatures based on [PW23a, PW24].

Chapter 5 is based on [BLT
+

24] and contains our results on threshold signatures. Each of these three

chapters has the following structure: it starts with a short publication history, explaining how it relates

to the corresponding publications. Then, an introduction follows, motivating the problem, summarizing

the contributions of the chapter, comparing to related work and (if any) summarizing subsequent

works. After giving chapter-speci�c preliminaries, the main technical part with technical overviews

and all constructions and proofs follows. In Chapter 6, we motivate open problems for future work and

conclude.
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2.1. NOTATION

2.1 Notation

In the following, we introduce general notation and conventions that are used throughout the disserta-

tion. Many of these notations are common, see for example [KL14].

Sets. We denote the natural numbers (excluding 0) by N, the reals by R, and the integers by Z. We

denote the set of the �rst L natural numbers by [L] = {1, . . . , L} ⊆ N. By R≥0 we denote the set of

non-negative reals. For a number n ∈ N, the ring of integers modulo n is denoted by Zn = Z/nZ.

We naturally identify Zn with the canonical set of representatives {0, . . . , n − 1}. We denote by

Z∗n the group of units in the ring Zn. By {0, 1}∗, we denote the set of all �nite strings of bits, i.e.,

{0, 1}∗ =
⋃
i≥0 {0, 1}

i
. The cardinality of a set S is denoted by |S|.

Algebra. Given two numbers a, b ∈ N, we write gcd(a, b) to denote the greatest common divisor of a
and b. We may denote groups additively or multiplicatively, which should always be clear from the

context. To denote vectors and matrices we use bold letters. By default, vectors are column vectors.

For a sequences and vectors, we use subscripts to refer to speci�c coordinates, e.g., for x ∈ {0, 1}∗, xi
denotes the ith bit of x. |x| to denote the number of coordinates of x. Further, we use | · | to denote the

length of a sequence or vector, e.g., for x ∈ {0, 1}∗, |x| denotes the number of bits of x. For a matrix A,

the transpose of A is denoted by At
, and the coordinate in row i and column j is denoted by Ai,j .

Probability. For a �nite set S, we write x $← S to state that x is sampled uniformly at random from S.

For a distribution D, we use the notation x← D to indicate that x is sampled according to D. Let Exp
be a probabilistic experiment de�ning a probability space, Ev be an event, and X be a random variable

that is generated during Exp. We write PrExp [Ev] or Pr [Ev | Exp] to denote the probability of Ev in

the experiment Exp. We omit Exp if it is clear from the context and simply write Pr [Ev]. We write

{X | Exp} to denote the distribution of X in Exp. Similarly, we may write E [X], E [X | Exp], or

EExp [X] to denote the expectation of X . For two distributions D,D′, their statistical distance is given

as

∑
x |Pr [D = x]− Pr [D′ = x]| /2, where x ranges over all possible values that D and D′ can take.

Algorithms. Unless explicitly stated otherwise, we always assume algorithms to be probabilistic. Let

A be a (probabilistic) algorithm. By T(A), we denote the (upper bound) of A’s running time, which

is a implicitly a function of A’s input length. More precisely, this means that for any input x, A is

guaranteed to terminate in T(A)(|x|) steps. We say that A is PPT (probabilistic polynomial-time), if

T(A) is a polynomial in |x|. If A is deterministic, we write y := A(x) to state that A is run on input x
and y is assigned to the resulting output. For a probabilistic algorithm A, we instead write y := A(x; ρ)
if the random coins that A uses are ρ. When writing y ← A(x), we mean that the random coins ρ are

sampled uniformly at random. In other words, we treat A as a distribution. The notation y ∈ A(x)
states that there are some random coins ρ such that y = A(x; ρ), i.e., y is a possible output of A. A

cryptographic scheme is a tuple of algorithms. We may make the cryptographic scheme Sch to which

an algorithm A belongs explicit by writing Sch.A instead of A. For functions or algorithms O1, . . . ,Ok ,

we write AO1,...,Ok
to indicate that A gets oracle access to O1, . . . ,Ok . That is, A can submit an input x

to any Oi, and receives Oi(x) in return. We allow such oracles to share state.

Functions and Asymptotics. For a number t ∈ R \ {0}, log t denotes the base-2 logarithm of t. As

standard in theoretical computer science, we will sometimes use asymptotic notation like O,Θ,Ω, o,
and ω. By λ, we denote the security parameter, and assume that every algorithm implicitly gets λ
encoded in unary as 1λ as input. We say that a function f : N → R≥0 is negligble in its input λ, if

f ∈ λ−ω(1)
. That is, it vanishes faster than the inverse of any polynomial. A function f is said to be

overwhelming if 1− f is negligible. We denote by poly a non-further speci�ed polynomial function,

e.g., if we write L = poly(λ), we mean that L = L(λ) may depend on λ and there is a polynomial p
such that L ≤ p(λ).

Pseudocode and Games. We specify security notions through probabilistic experiments also known

as games. We denote the event that a security game G outputs 1 by G ⇒ 1. Algorithms, oracles,

and security games are speci�ed either verbally or using pseudocode. Our pseudocode uses standard

imperative programming constructs such as if and else statements and for loops, where we allow
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loops to run over sets, implicitly assuming a natural ordering. Our pseudocode is indentation-based.

Numerical values in pseudocode are implicitly initialized to 0, lists and sets to ∅, and maps initially

satisfy f [x] = ⊥ for all x. When an algorithm or an oracle terminates with an output x (which could

be ⊥), we write return x. In a game G, we may write abort if the entire execution of G stops

unsuccessfully. In this case, G ⇒ 1 does not hold. The notation parse a := b means that variable

b is parsed according to the structure of a, e.g., we write parse (pk, x) := b to denote that variable

b is parsed as a tuple (pk, x). Implicitly, this means that the algorithm or game aborts if parsing

fails, i.e., if b does not have this form. Multiple of these statements may be grouped together, e.g.,

parse a := b, c := d, which means that we parse b into a and d into c.

2.2 Methodology

In this dissertation, we de�ne security using game-based security notions, use the random oracle model,

and follow the asymptotic security paradigm while precisely stating security bounds. We provide more

details on this in the following paragraphs.

Game-Based Security. In this dissertation, all security notions will be game-based, as opposed to

simulation-based. This is the de-facto standard of modeling security for variants of digital signatures,

with a only few exceptions [Fis06, Lin22].

Random Oracle Model. We analyze our constructions in the random oracle model [BR93], which

idealizes hash functions as truly random functions that are given to algorithms as an oracle. More

concretely, when we say that H : X → Y is a random oracle, we mean the following: both in the scheme

as well as in all security games, every algorithm gets oracle access to H. In particular, the adversary gets

access to H. The random oracle is then implemented using a map h in the following lazy manner: on

input x ∈ X , the oracle �rst checks if h[x] = ⊥. If so, it samples a hash value h[x] $← Y uniformly at

random. In any case, it returns h[x] as the hash value. Further, in security proofs, reductions simulate

the random oracle for the adversary. Therefore, reductions can tamper with the way the random oracle

is implemented, as long as this is indistinguishable from the honest implementation. Let us �x some

conventions that we will use throughout the dissertation. First, we will generally assume that the

domain is X = {0, 1}∗, i.e., any string can be input into the random oracle. This simpli�es notation

and is in line with how actual hash functions work. At the same time, our proofs often assume that

inputs can be parsed, i.e., they have a certain structure. For example, we may assume a random oracle

H : {0, 1}∗ → Y but then interpret inputs as pairs (pk,m) of public keys and messages. This is justi�ed

by noticing that as long as the length (in binary representation) of the components is �xed
1
, parsing is

non-ambiguous, and any query that can not be parsed can be treated independently and is irrelevant

to the scheme. Second, to simplify notation, we generally assume multiple random oracles. This can

easily be implemented from one random oracle (i.e., one hash function in practice) by proper domain

separation.

Concrete and Asymptotic Security. Formally, we follow the asymptotic security paradigm. Namely,

as explained earlier, we assume that there is a security parameter λ and we generally treat a scheme as

secure if the respective advantage of any PPT adversary is negligible as a function of λ. At the same

time, we always precisely state our security bounds, e.g., dependent on the number of random oracle

queries. This makes it easy to interpret our results from the standpoint of concrete security, which is in

line with the research goals we speci�ed in Section 1.3. For a discussion on concrete vs. asymptotic

security, we refer the interested reader to [KL14].

1

For signature schemes and their variants, we can assume a �xed length for messages without loss of generality.
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2.3 Cryptographic Assumptions

In this section, we introduce relevant algebraic structures and computational hardness assumptions.

Assumptions in Pairing-Free Groups. In Chapters 4 and 5, we rely on assumptions in (families

of) cyclic groups. We de�ne our assumptions with respect to a PPT algorithm GGen generating these

groups. That is, GGen takes as input the security parameter λ in unary and outputs the description of

a group G of prime order p with generator g. The description de�nes how elements are represented

and how operations on the group are carried out. In general, we denote the group operation for

groups output by GGen multiplicatively. Only when groups are interpreted as abstract vector spaces,

which will be clear from the context, we prefer additive notation. Throughout, we make several natural

assumptions about e�ciency of operations in such groups. All of these assumptions hold true for groups

used in practice, e.g., based on elliptic curves, see [KL14] for a discussion. First, we assume that group

membership is always implicitly and e�ciently tested. That is, if we say a party or algorithm outputs

an element h ∈ G, then we require any implementation to verify that the bitstring representing h
indeed represents a valid group element. Second, we assume that the group operation, �nding inverses,

and testing equality is e�cient. We also assume that randomly sampling a group element h $← G is

e�cient. Third, we allow random oracles H : {0, 1}∗ → G with range G. Note that this means that

we implicitly assume that one can hash obliviously into the G. Especially, when computing a group

element h = H(s) for some s ∈ {0, 1}∗, one does not learn the discrete logarithm x ∈ Zp such that

h = gx. Subsequently, we de�ne the relevant cryptographic assumptions in such cyclic groups, namely

the discrete logarithm and Di�e-Hellman assumptions [DH76]. We start with the discrete logarithm

(DLOG) assumption, which states that for a random exponent x ∈ Zp it is hard to compute x given gx.

De�nition 2.1 (DLOG Assumption). We say that the DLOG assumption holds relative to GGen, if for
all PPT algorithms A, the following advantage is negligible:

AdvDLOG
A,GGen(λ) := Pr

[
A(G, p, g, gx) = x | (G, g, p)← GGen(1λ), x $← Zp

]
.

Next, we recall the Decisional Di�e-Hellman (DDH) assumption. It states that it is hard to

distinguish (g, h, u, v) ∈ G4
, where h, u, v ∈ G are uniform, from (g, h, ga, ha) ∈ G4

, where a ∈ Zp
is uniform.

De�nition 2.2 (DDH Assumption). We say that the DDH assumption holds relative to GGen, if for all
PPT algorithms A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣Pr
[
A(G, p, g, h, ga, ha) = 1

∣∣ (G, g, p)← GGen(1λ), h $← G, a $← Zp
]

−Pr
[
A(G, p, g, h, u, v) = 1

∣∣ (G, g, p)← GGen(1λ), h, u, v $← G
] ∣∣∣∣.

In Chapter 4, we will use two variants of DDH, namely, the multi-instance variant Q-DDH and

a variant we call uDDH3. Both are (tightly) equivalent to DDH. Namely, Q-DDH is tightly implied

by DDH using random self-reducibility [EHK
+

13]. Further, uDDH3 is the 2-fold U3,1-Matrix-DDH
(MDDH) assumption, with terminology as in [EHK

+
13]. By its random self-reducibility (Lemma 1 in

[EHK
+

13]), this 2-fold U3,1-Matrix-DDH (MDDH) assumption is tightly equivalent to the U3,1-MDDH
assumption. By Lemma 1 in [LP20], U3,1-MDDH is tightly equivalent to U1-MDDH, which is the DDH
assumption. Hence, the DDH and uDDH3 assumptions are tightly equivalent.

De�nition 2.3 (Q-DDH Assumption). We say that the Q-DDH assumption holds relative to GGen, if
for all PPT algorithms A, the following advantage is negligible:

AdvQ-DDH
A,GGen(λ) :=

∣∣∣∣Pr
[
A
(
G, p, g, h, (gai , hai)Qi=1

)
= 1
∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, ∀i ∈ [Q] : ai $← Zp

]
−Pr

[
A
(
G, p, g, h, (ui, vi)Qi=1

)
= 1
∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, ∀i ∈ [Q] : ui, vi $← G

] ∣∣∣∣.
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De�nition 2.4 (uDDH3 Assumption). We say that the uDDH3 assumption holds relative to GGen, if for
all PPT algorithms A, the following advantage is negligible:

AdvuDDH3
A,GGen(λ) :=

∣∣∣∣Pr

A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣∣∣∣∣∣∣
(G, g, p)← GGen(1λ),
a, b $← Zp, h1,1, h2,1, h3,1

$← G
h1,2 := ha1,1, h1,3 := hb1,1
h2,2 := ha2,1, h2,3 := hb2,1
h3,2 := ha3,1, h3,3 := hb3,1


−Pr

[
A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
∀(i, j) ∈ [3]× [3] : hi,j $← G

] ∣∣∣∣.
We also introduce AOMCDH, a new assumption (originally introduced in [BLT

+
23, BLT

+
24])

which can be understood as an algebraic one-more variant of the Computational Di�e-Hellman (CDH)

assumption [DH76]. Roughly, given t-time access to an algebraic DLOG oracle, one has to solve CDH
t+ 1 times. This assumption is the only interactive assumption that we use in this dissertation. We

will use it to instantiate our threshold signature scheme in Chapter 5. However, this instantiation will

only be a �rst step, and we also present a more sophisticated instantiation based on DDH, which is in

line with our goal of avoiding interactive assumptions, see Section 1.3. To gain con�dence in this new

assumption, we also sketch how it reduces to . Again, we highlight that this is not contradicting our

goals outlined in Section 1.3, as we will only use AOMCDH as a �rst step, and later replace it by DDH.

De�nition 2.5 (AOMCDH Assumption). We say that the t-AOMCDH assumption holds relative to

GGen, if for all PPT algorithms A, the following advantage is negligible:

Advt-AOMCDH
A,GGen (λ) := Pr

∀i ∈ {0} ∪ [t] : X ′i = hxi

∣∣∣∣∣∣∣∣
(G, g, p)← GGen(1λ),
h $← G, x0, . . . , xt

$← Zp,
∀i ∈ {0} ∪ [t] : Xi := gxi ,
(X ′i)ti=0 ← AInv(G, g, p, h, (Xi)ti=0)

 ,
where A can call Inv up to t times, and Inv(α0, . . . , αt) returns

∑t
i=0 αixi.

Note that AOMCDH is di�erent from the one-more variant introduced in [BFP21] in the sense that

the adversary has an algebraic DLOG oracle instead of a CDH oracle. Next, we sketch that AOMCDH
is implied by the algebraic one-more DLOG (AOMDL) assumption [NRS21] in the algebraic group

model (AGM) [FKL18]. Note that Bauer et al. [BFP21] gave a bound for one-more DLOG in the generic

group model (GGM) [Sho97]. As an immediate consequence, the advantage of any adversary against

AOMCDH is bounded by the same, namely, by Θ
(
(t2/(p− t2)) + (1/p)

)
.

Lemma 2.1 (Informal). The AOMCDH assumption is implied by the algebraic one-more DLOG assump-

tion in the algebraic group model.

Proof Sketch. We only sketch the proof. Recall the AOMCDH game for an algebraic adversary A:

1. The game generates group parameters (G, g, p) and samples h $← G and x = (xi)ti=0
$← Zt+1

p .

We let γ ∈ Zp be such that h = gγ .

2. The game de�nes Xi := gxi for all i and runs A on input G, g, p, h, (Xi)ti=0 with t-time access

to an oracle Inv which on input α0, . . . , αt outputs

∑t
i=0 αixi.

3. When A terminates, it outputs t+ 1 group elements (X ′i)ti=0 and wins the game if X ′i = hxi

for all i. As A is algebraic (i.e., we are in the algebraic group model), we can assume that it also

outputs elements a = (ai)i ∈ Zt+1
p , b = (bi)i ∈ Zt+1

p , and C = (Ci,j)i,j ∈ Z(t+1)×(t+1)
p such

that for all i we have

X ′i = gai · hbi ·
t∏

j=0
X
Ci,j
j .
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Reading these equations in the exponent of g and assuming that A wins, this means that

γx = a + γb + Cx.

We want to argue that A can not win the game. For that, we will distinguish two cases and bound the

probability of these using the AOMDL and the plain DLOG assumption, respectively.

First Case: b = x. In this case, it is clear that a reduction can solve AOMDL. Before we sketch the

reduction, we informally recall the AOMDL game, as present in recent works, e.g., [NRS21]. The game

is exactly
2

as the AOMCDH game, with two modi�cations: (1) there is no element h, and (2) the winning

condition asks the adversary to outputs the xi instead of group elements X ′i . Now, our reduction is

as follows. It gets as input (G, g, p) and (Xi)ti=0, it samples h $← G, and runs A on input G, g, p, h,
(Xi)ti=0. To answer A′s queries to Inv, it simply forwards them to its own oracle provided by the

AOMDL game. When A outputs (X ′i)ti=0 and a,b,C, the reduction simply outputs b as a solution to

the AOMDL game.

Second Case: b 6= x. In this case, we know that there is a position i∗ ∈ {0} ∪ {t} such that xi∗ 6= bi∗ .
Rearranging the i∗th equation we get

γ =
ai∗ +

∑t
j=0 ci∗,jxj

xi∗ − bi∗
,

where we used that xi∗ 6= bi∗ . With this, we can construct a reduction solving the plain DLOG
problem: it gets as input (G, g, p) and h = gγ , samples the xi and simulates the AOMCDH game for

A, simulating Inv honestly using the xi. When A outputs (X ′i)ti=0 and a,b,C, the reduction outputs

γ computed as above.

Assumptions in Pairing-Friendly Groups. In Chapter 3, we make use of assumptions in cyclic

groups that are equipped with a pairing. A pairing is a map e : G1 × G2 → GT , where G1,G2
are cyclic groups of prime order p with generators g1 ∈ G1 and g2 ∈ G2, respectively, and GT is

also a cyclic group of order p. The map is required to be bilinear, i.e., for every a, b ∈ Zp, we have

e
(
ga1 , g

b
2
)

= e (g1, g2)ab, and non-degenerate, i.e., gT := e (g1, g2) is a generator of GT . Throughout,

we let PGGen be an algorithm that takes as input the security parameter λ in unary and outputs the

description of such pairing-friendly groups, where we distinguish three settings following [GPS08]:

• Type-1. We have G1 = G2. In other words, PGGen outputs (G, g, p, e) where g generates G,

e : G×G→ GT , and GT is implicitly given by its generator gT = e (g, g).

• Type-2. We have G1 6= G2 and PGGen outputs (G1,G2, g1, g2, p, e), GT is implicitly given by its

generator gT = e (g1, g2), and there is an e�ciently computable homomorphism φ : G2 → G1.

• Type-3. We have G1 6= G2 and PGGen outputs (G1,G2, g1, g2, p, e), GT is implicitly given by its

generator gT = e (g1, g2), and there is no e�ciently computable homomorphism φ : G2 → G1.

Further, the type-1 setting is often called the symmetric setting, whereas the type-2 and type-3 setting

are referred to as the asymmetric setting. We assume that one can e�ciently identify, invert, and sample

elements, test elements for equality, hash into groups, and compute the group operation similar to our

assumptions in the pairing-free setting. In this dissertation, we primarily use the type-1 and type-3

setting, where we use the type-1 setting for ease of presentation and the type-3 setting as it is practically

the most relevant one. It will always be clear from the context which setting we consider. For a detailed

discussion on the di�erent caveats of these settings both in theory and practice, we refer to [GPS08].

In the following, we de�ne the Computational Di�e-Hellman (CDH) assumption [DH76] relative to

PGGen in type-1 and type-3 settings. In the type-1 setting, CDH is exactly as in the pairing-free setting,

namely, given gx and gy , CDH states that it is hard to compute gxy .

2

In the game as de�ned in [NRS21], the adversary gets its challenges Xi via an oracle, in which case our

reduction also works.
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De�nition 2.6 (CDH Assumption, Type-1 Setting). We say that the CDH assumption holds relative to

PGGen, if for all PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

[
z = xy

∣∣ (G, g, p, e)← PGGen(1λ), x, y $← Zp, gz ← A(G, g, p, e, gx, gy)
]
.

In the type-3 setting, CDH states that given gx1 , gy1 , and additionally gy2 , it is hard to compute gxy1 .

This assumption is sometimes called co-CDH [CHKM10].

De�nition 2.7 (CDH Assumption, Type-3 Setting). We say that the CDH assumption holds relative to

PGGen, if for all PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

z = xy

∣∣∣∣∣∣
(G1,G2, g1, g2, p, e)← PGGen(1λ),
x, y $← Zp, X1 := gx1 , X2 := gx2 , Y := gy1
gz1 ← A(G1,G2, g1, g2, p, e,X1, Y,X2)


Assumptions in the RSA Setting. In Chapter 3, we make use of the RSA assumption introduced by

Rivest, Shamir, and Adleman [RSA78]. Here, we again consider an algorithm that gets as input the

security parameter λ in unary and outputs parameters for the assumption. Namely, we let RSAGen be

an algorithm that outputs a quadruple (n, p, q, e), where p and q are distinct primes and n = pq, and

e ∈ N satis�es gcd(e, ϕ(n)) = 1. When describing algorithms and games in this setting, we assume

that operations are carried out modulo n. Given n, operations, inverses, equality, and sampling over

the groups Zn and Z∗n are e�cient. The RSA assumption informally states that it is hard to compute

eth roots in Z∗n.

De�nition 2.8 (RSA Assumption). We say that the RSA assumption holds relative to RSAGen, if for all
PPT algorithms A, the following advantage is negligible:

AdvRSA
A,RSAGen(λ) := Pr

[
xe = y

∣∣ (n, p, q, e)← RSAGen(1λ), x̄ $← Z∗n, y := x̄e, x← A(n, e, y)
]
.
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Publication History of This Chapter

This chapter is based on the two publications [CAHL
+

22a] and [HLW23a] and their respective full

versions [CAHL
+

22b] and [HLW22]. I contributed to [CAHL
+

22a] as one of two main authors, which

is due to a merge of the two papers [WHL22] and [CAL22], where I was the main author of [WHL22].

Consequently, only the parts of [CAHL
+

22a] for which I was responsible are included, namely, the

generic transform given in [CAHL
+

22a] that resulted from [CAL22] is not included. I am also the main

author of [HLW23a]. To obtain a consistent structure, the content of the original publications has been

reordered and partially merged. Additionally, minor notational changes have been made.
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3.1 Introduction

Blind signatures, introduced by David Chaum in 1982 [Cha82], are an interactive type of signature

scheme with special privacy features. Informally, in a blind signature scheme, a Signer, holding a secret

key sk, and a User, holding a corresponding public key pk and a message m, engage in a two-party

protocol. At the end of the interaction, the User obtains a signature σ on m that can be veri�ed using pk.

Informally, a blind signature scheme must satisfy two security requirements [JLO97, PS00]. Blindness

ensures that the Signer learns no information about m, speci�cally, the Signer can not link (m, σ) to the

signing interaction. On the other hand, one-more unforgeability guarantees that the User can not obtain

valid signatures without interacting with the Signer. These properties make blind signatures a useful

building block for privacy-sensitive applications, e.g., e-cash [Cha82, OO92], anonymous credentials

[CG08, CL01], e-voting [GPZZ19], and blockchain-based systems [HBG16].

Unfortunately, even in the random oracle model, existing constructions of blind signatures either

rely on non-standard assumptions [Bol03, BNPS03, FHS15], or have parameters (e.g., communication

and signature sizes) that grow linearly in the number of concurrent signing interactions [PS00, HKL19,

KLR21].

Our Goal. The main goal of this chapter is to construct blind signature schemes in the random oracle

model that do not su�er from any of the drawbacks mentioned above. More concretely, we will construct

the �rst practically e�cient and concurrently secure blind signature schemes from well-established

non-interactive assumptions.

3.1.1 Background: Boosting via Cut-and-Choose

A long line of work [PS00, AO00, Abe01, HKL19, HKLN20] has explored constructions of blind signatures

from witness indistinguishable linear identi�cation schemes such as the Okamoto-Schnorr and Okamoto-

Guillou-Quisquater schemes [Oka93]. The resulting schemes are proven secure under well-understood

assumptions, such as RSA or DLOG, as long as only a polylogarithmic number of concurrent signing

interactions is allowed. Some of these schemes even admit an e�cient attack [Sch01, Wag02, BLL
+

21]

if the number of concurrent singing interactions ever exceeds a polylogarithmic bound.

Inspired by an early work by Pointcheval [Poi98], Katz, Loss, and Rosenberg [KLR21] recently

introduced a boosting transform that uses cut-and-choose to turn such blind signature schemes into

fully secure ones, admitting a polynomial number of concurrent signing interactions. As a result, one

obtains schemes that rely on well-studied assumptions and have short signatures. Unfortunately, the

resulting communication and computational complexity renders them impractical. This is because in

the N th interaction between Signer and User, the communication and computation depend linearly on

N . A second drawback of the transform is the loose security bound resulting in impractical parameter

sizes. Indeed, for an adversary with advantage ε against the resulting blind signature scheme, the

number of times that the reduction invokes the underlying signing oracle behaves as ln(1/ε), which is

large for small ε. Therefore, the underlying scheme already has to support a large number of signatures

(if ε is small), requiring impractical parameter sizes. To highlight this, we computed the parameter

sizes for the instantiations of the boosting transform based on the discrete logarithm problem
1
. Our

calculations show that in order to support 230
signatures, the scheme requires a 12035 bit group. It is

apparent that this group size is impractical, and no standardized elliptic curve groups of this size exist.

We remark that Katz et al. [KLR21] also provide a parameter estimate, but this holds only for a very

speci�c choice of signing queries, random oracle queries, and advantage.

1

We used a Python script to compute these numbers, which can be found in https://github.com/b-
wagn/dissertation-efficiency-scripts.
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3.1.2 Contribution: PI-Cut-Choo and Friends

As our �rst contribution in this chapter, we propose two concrete blind signature schemes based on

RSA and CDH, respectively, for which the communication only grows logarithmically in N and with

concretely e�cient parameters. In a nutshell, we �rst develop new ideas to eliminate the linearly

growing communication of the boosting transform [KLR21] while still preserving all of its advantages.

Then, we develop several techniques that are speci�c to the assumption that is used and improve

concrete security bounds and e�ciency. We summarize the e�ciency of our schemes in Table 3.1.

Scheme Signatures |pk| |σ| a b Max

PI-Cut-Choo 220
10.81 3.16 3.05 26.50 87.50

PI-Cut-Choo 230
11.49 3.16 3.05 26.73 118.20

PI-Cut-Choo’s Friend 220
18.37 7.91 0.02 7.11 7.51

PI-Cut-Choo’s Friend 230
18.74 8.66 0.02 7.48 8.08

Table 3.1: Concrete e�iciency of our schemes supporting a given number of signatures and 128 bit

security. Here, communication complexity is given as a · log(N) + b, where N is the number of issued

signatures so far. Column Max shows the communication complexity for the maximum N . All sizes

are in kilobytes.

PI-Cut-Choo. Our scheme from CDH (in the type-1 pairing setting) is statistically blind against

malicious signers and builds on Boldyreva’s blind version of the BLS signature scheme [Bol03]. Using

only CDH (in contrast to a one-more variant of it), Boldyreva’s scheme does not support any invocation

of the signing oracle, i.e., it only provides key-only security. To account for that, we introduce a

stronger variant of the boosting transform. Namely, we observe that by running the transform for

several independent keys in parallel, a reduction to key-only security is possible. This also improves

the concrete security bound and makes it possible to use a standard sized group. To reduce the cost of

this parallel repetition, we use the aggregatability of the BLS scheme. Overall, our scheme from CDH

supports 230
signatures at a size of 3 KB and 120 KB communication per signature.

PI-Cut-Choo’s Friend. Our scheme from RSA follows our (single instance) communication-e�cient

boosting transform with the Okamoto-Guillou-Quisquater (OGQ) blind signature [Oka93, HKL19] as

a base scheme. It supports 230
signatures at a more balanced size of 9 KB per signature and 8 KB

communication per signature. To circumvent a loose security bound and maximize concrete e�ciency,

we use several tricks speci�c to the RSA setting, e.g., the existence of a trapdoor.

Semi-Honest Signer Blindness. In terms of blindness, previous works building on OGQ [HKL19,

KLR21] only show honest signer blindness, i.e., the Signer’s public key is generated honestly by the

experiment. We �rst observe that our RSA-based scheme satis�es an intermediate notion we call

semi-honest signer blindness, where the Signer provides the random coins to generate the public key

to the experiment. We then show that by having the Signer prove knowledge of the random coins,

we can transform any semi-honest signer blind scheme into a scheme that satis�es blindness against

malicious signers. In the case of our RSA-based scheme, we can get malicious signer blindness either

by relying on generic proof systems, or on more e�cient ones based on quadratic residuosity [GRSB19]

or discrete logarithms [CM99]. We emphasize, however, that using generic proofs may be su�ciently

e�cient in our context, as the proofs only have to be generated and veri�ed once upon registering the

Signer’s public key. Especially, they do not a�ect the complexity of the signing protocol or the size of

our signatures.

Limitations. We brie�y highlight the remaining drawbacks of our �rst two schemes. The idea of

the boosting transform fundamentally relies on a 1-of-N cut-and-choose where N , the number of

signing interactions, grows over time. This requires to execute N copies of the base scheme and has

the following implications:
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• The Signer is stateful, as it has to keep track of the current value of N .

• The computation grows linearly in N for both the Signer and the User. To issue N ≈ 230
signa-

tures, this would require prohibitive computational e�ort (roughly

∑230

i=1 i ≈ 259
operations).

• Issuing a signature requires �ve moves of interaction between Signer and User which is a far cry

from the theoretical one-round limit achieved by some schemes [Bol03].

Thus, even though our �rst two schemes signi�cantly improve over prior constructions, we aim to

eliminate those drawbacks.

3.1.3 Contribution: PI-Cut-Choo evolves to Rai-Choo

In our second contribution in this chapter, we eliminate all of the aforementioned drawbacks of our

�rst two schemes.

Rai-Choo. We construct a practical blind signature scheme using a new variant of the cut-and-choose

technique, that is polynomially secure and does not require the Signer to keep a state. This eliminates the

dependency on a counter N as in [KLR21, CAHL
+

22a] entirely, thereby also signi�cantly reducing the

computational complexity, see Table 3.2. Additionally, in contrast to schemes in [KLR21, CAHL
+

22a],

our scheme is round-optimal. Our scheme is statistically blind against malicious signers. We show

one-more unforgeability based on the (co)-CDH assumption in asymmetric type-3 pairing groups.

One-more unforgeability holds for any (a priori unbounded) polynomial number of signing interactions.

We obtain several parameter settings for our scheme, leading to a trade-o� between signature and

communication size, see Table 3.3. For example, we can instantiate parameters to obtain 9 KB signature

size and 36 KB communication complexity. To demonstrate that our scheme is computationally e�cient,

we have implemented a prototype over the BLS12–381 curve. Our experiments show that signing takes

less than 0.2 seconds, see Table 3.3.

[KLR21] PI-Cut-Choo’s Friend PI-Cut-Choo Rai-Choo

Moves 7 7 5 2
Communication Θ(λN) Θ(λ logN) Θ(λ logN + λ2) Θ(λ2)
Computation Θ(N) Θ(N logN) Θ(λN) Θ(λ)

Table 3.2: Comparison of number of moves, communication and computation for [KLR21] and our

work in the N th signing interaction. The security parameter is denoted by λ. Communication is given

in bits, and computation is given by treating pairings, group and field operations, and hash evaluations

as one unit.

Communication with Batch Size L Running Time

|pk| |σ| L = 1 L = 4 L = 16 L = 256 Sign Verify

(I) 0.14 13.98 33.20 16.98 12.92 11.65 163 54

(II) 0.14 9.41 36.21 20.11 16.08 14.82 169 36

(III) 0.14 5.71 72.79 43.97 36.77 34.52 333 22

Table 3.3: E�iciency of di�erent parameter se�ings of our scheme. Sizes and times are given in

kilobytes and milliseconds, respectively. Communication is amortized per message. Details can be

found in Section 3.7.3.

Partial Blindness and Batching. We show that our scheme naturally generalizes to the setting of

partially blind signatures. Additionally, we show how we can batch multiple signing interactions to

23



CHAPTER 3. BLIND SIGNATURES

improve communication complexity (see also Table 3.3), and provide the �rst formal model and analysis

for that. Batching has been used in many other contexts as well, e.g., in oblivious transfer [IKNP03,

BBDP22]. We believe that batching blind signatures has a lot of natural use-cases. As an example,

consider an e-cash scenario. Here, parties withdraw coins from a bank by getting blind signature for a

random message. Later, the coin can be deposited by presenting the message-signature pair. Blindness

ensures that the process of withdrawal is not linkable to the process of depositing. This approach

is also used to do enhance the anonymity in electronic payment systems [HBG16]. We remark that

it is crucial that all issued coins are of equal amount to guarantee a large anonymity set. Therefore,

any user that wants to retrieve more than one coin has to interact with the bank multiple times to

get multiple coins (i.e., signatures). Using batch blind signatures, these interactions can all happen in

parallel, leading to improved communication and computational e�ciency, as well as reduced overhead

to initiate interactions.

3.1.4 More on Related Work

We discuss related work in more detail.

Impossibility. There are several impossibility results about the construction of blind signatures in the

standard model [FS10, Pas11, BL13b]. Fischlin and Schröder showed that statistically blind three-move

schemes can not be constructed from non-interactive assumptions under certain conditions [FS10].

Pass showed that unique round-optimal blind signatures can not be based on a class of interactive

assumptions [Pas11]. Baldimtsi and Lysyanskaya showed that schemes with a unique secret key and a

speci�c structure can not be proven secure, even under interactive assumptions [BL13b].

Sequential vs. Concurrent Security. In terms of unforgeability, one distinguishes concurrent and

sequential security. For sequential security, the adversary has to �nish one interaction with the Signer

before initiating the following interaction. In contrast, concurrent security allows the adversary to

interact with the Signer in an arbitrarily interleaved way. In practice, restricting communication with

the Signer to sequential access opens a door for denial of service attacks. Therefore, concurrent security

is the widely accepted notion.

Generic Constructions. One can build blind signatures generically from standard signatures and

secure two-party computation (2PC), as shown by Juels, Luby and Ostrovsky [JLO97]. Fischlin [Fis06]

gave a (round-optimal) generic construction that is secure even in the universal composability frame-

work [Can00]. However, it turns out that instantiating these generic constructions e�ciently is highly

non-trivial. For example, instantiating Fischlin’s construction requires to prove statements in zero-

knowledge about a combination of commitment and signature scheme. If we instantiate the signature

scheme e�ciently in the random oracle model, we end up treating the random oracle as a circuit. This

leads to unclear implications in terms of security. The recent work by del Pino and Katsumata [dK22]

makes signi�cant progress in this direction. By carefully choosing building blocks and slightly tweaking

the construction, they give an instantiation of Fischlin’s paradigm in the lattice setting. However,

the communication complexity of their protocol is still far from being practical. In Section 3.1.5, we

mention more recent progress in this direction.

E�ciency from Strong Assumptions. In addition to the generic constructions mentioned above,

there are direct constructions of blind signatures. While some constructions make use of complex-

ity leveraging [GRS
+

11, GG14], others are proven secure under non-standard q-type or interactive

assumptions [Oka06, GRS
+

11, FHS15, Gha17]. Notably, there are e�cient and round-optimal schemes

based on the full-domain-hash paradigm [Bol03, BNPS03, AKSY21]. For example, Boldyreva [Bol03]

introduces a blinded version of the BLS signature scheme [BLS01]. To prove security, one relies on the

non-standard one-more variant of the underlying assumption (e.g., one-more CDH for BLS).

Idealized Models. In addition to the works in the standard and random oracle model mentioned before,

there are also constructions [FPS20, KLX22, TZ22] that are proven secure in more idealized models,
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such as the algebraic or generic group model [FKL18, Sho97]. While it leads to e�cient schemes, we

want to avoid using such a model.

3.1.5 Subsequent Work

Here, we discuss results on blind signatures that have been published subsequent to our work. Katsumata,

Reichle, and Sakai [KRS23] constructed a round-optimal and practical blind signature scheme in the

pairing setting. Their construction is a careful instantiation of Fischlin’s framework [Fis06]. Both

communication and signature size are smaller than in our work, at the cost of a decisional assumption

and the use of rewinding. In a more recent follow-up, Kastner, Nguyen, and Reichle [KNR23] again

instantiate Fischlin’s framework carefully using the strong RSA assumption to achieve e�cient blind

signatures without pairings.

Closely related to our work is the very recent achievement by Chairattana-Apirom, Tessaro, and

Zhu [CATZ23]. They manage to construct e�cient and secure pairing-free blind signatures in the

random oracle model, based on various interactive and non-interactive variants of CDH. Interestingly,

their construction from standard, non-interactive CDH builds on the ideas we introduced in our Rai-

Choo construction (Section 3.7). Asymptotically, the e�ciency of this pairing-free construction is

comparable with the e�ciency of Rai-Choo. In terms of concrete parameters, the avoidance of pairings

results in smaller group elements and therefore in smaller signatures and communication. On the

downside, their construction only achieves a weaker non-standard variant of one-more unforgeability,

which can still be useful in various applications. Extending this result to full one-more unforgeability is

an interesting open problem.

Two independent works [DHP23, KLR23] show attacks breaking concurrent security of blind

signatures based on parallel repetition of an underlying identi�cation scheme with small challenge

space. In particular, this applies to schemes in the post-quantum setting, e.g., CSI-Otter [KLLQ23].

3.1.6 Outline

The rest of this chapter is structured as follows. We �rst give a detailed technical overview in Section 3.2.

In Section 3.3, we give preliminaries that are only used in this chapter, including the de�nition of

blind signatures. In Sections 3.4 to 3.6, we formally present our results from [CAHL
+

22a], namely,

PI-Cut-Choo from CDH, the RSA-based construction, and a transformation from semi-honest signer

blindness to malicious signer blindness. Finally, in Section 3.7, we present our CDH-based construction

with stateless Signer from [HLW23a].

3.2 Technical Overview

In this section, we informally introduce the main ideas developed in this chapter. For that, we �rst

recall the main idea of the boosting transform [KLR21]. Then, we present the ideas behind our

results [CAHL
+

22a, HLW23a].

3.2.1 The Boosting Transform

We start this overview by recalling the boosting transform [KLR21]. Let BS be a blind signature scheme

which is secure against an adversary that queries the Signer for a small number of signatures, namely, a

logarithmic number in the security parameter. Speci�cally, Katz, Loss, and Rosenberg [KLR21] assume

that BS is a linear blind signature scheme [HKL19]. For such a scheme, the signing protocol consists

of three messages, namely, the commitment R, the challenge c, and the response s. The boosting

transform results in a new scheme which is secure for any number of signing interactions between

Signer and adversary. In the N th signing interaction, the User and the Signer behave as follows:
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1. The Signer sendsN . The User commits to its message m using randomness ϕj , j ∈ [N ], thereby

obtaining N commitments µj . It also samples random coins ρj , j ∈ [N ] for the user algorithm

of BS. Then, it commits to each pair (µj , ρj) using a random oracle, and sends the resulting

commitments comj to the Signer.

2. Signer and User run the underlying scheme BS N times in parallel. We refer to these N parallel

runs as sessions. More precisely, the Signer uses its secret key sk, and the User uses the public

key pk, µi as the message, and ρj as the random coins in the jth session, for j ∈ [N ].

3. Before the �nal messages sj , j ∈ [N ] are sent from the Signer to the User, the Signer selects a

random session J ∈ [N ]. The User now has to open all the commitments comj for j ∈ [N ]\{J}
by sending (µj , ρj). The Signer can now verify that the User behaved honestly for all but the

J th session. In case the User behaved dishonestly in one session, the Signer aborts.

4. The Signer completes the J th session by sending the �nal message sJ . Because of the structure

of BS, this is the only point where the Signer needs sk. Finally, the User derives a signature σJ
from that session as in BS, and outputs σ = (σJ , ϕJ) as its �nal signature.

Katz, Loss, and Rosenberg [KLR21] show that the above scheme is secure for polynomially many

signing interactions, given that the underlying scheme BS is secure for logarithmically many signing

interactions. In more detail, they provide a reduction that simulates a signer oracle for the new scheme,

given a logarithmic number of queries to the signer oracle for BS. Their reduction distinguishes the

following cases for the N th signing interaction:

1. If the adversary (i.e., the User) is dishonest in at least two sessions, then the adversary is caught.

Hence, no response has to be provided and no secret key is needed.

2. If the adversary is honest in all sessions, the reduction can extract all (µj , ρj) by inspecting

random oracle queries. Using a special property of the underlying scheme BS, this allows the

reduction to simulate the response by programming the random oracle.

3. If the adversary is dishonest in exactly one session j∗, then either J 6= j∗ and the adversary is

caught, or J = j∗, and the reduction has to use the signer oracle of BS to provide the response

sJ . In this case, we say that there is a successful cheat.

It is clear that the probability of a successful cheat is at most 1/N in the N th signing interaction.

Therefore, the expected number of successful cheats over q signing interactions is at most

∑q+1
N=2 1/N ≤

O(log q). Using an appropriate Cherno� bound, it therefore can be argued that the underlying signer

oracle for BS is called logarithmically many times. Unfortunately, the transform yields impractical

parameter sizes for the resulting signature scheme, which results from a relatively loose reduction to

BS. In addition, the communication and computation now scales linearly with N :

a) In the second message, the User sends N commitments comj .

b) In the third message, the Signer sends N commitments Rj .

c) In the fourth message, the User sends N challenges cj .

d) In the sixth message, the User opens N − 1 of the commitments comj .

Our �rst goal will be to eliminate these linear dependencies.

3.2.2 E�cient Boosting and PI-Cut-Choo

We now describe the main ideas of our �rst contribution [CAHL
+

22a].
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Communication-E�cient Boosting. We �rst describe how we can generically avoid the linear

dependencies a) to d) mentioned above
2
. First, we eliminate the linear dependency a) by replacing the

commitments comj by a single commitment com, which commits to (salted) hashes of all (µj , ρj) at

once. By sending all (µj , ρj) for j 6= J and the hash of (µJ , ρJ), the User can still open this commitment

without revealing (µJ , ρJ). Next, we focus on d). Here, we let the User generate the randomness

(ρj , ϕj) used for each session using the puncturable pseudorandom function [SW14]
3
. We also replace

the unstructured commitment with a commitment scheme that is homomorphic in its randomness.

This allows the User to derive the commitments µi as rerandomizations Com(m, ϕ0 +ϕj) of one single

commitment µ0 = Com(m, ϕ0) with randomness ϕj . The User would now initially send commitment

µ0 together with com. Later, the User can open the commitment com by sending only a punctured

key kJ . The Signer can now recompute all (ϕj , ρj) using kJ and derive all µi from µ0 using ϕj , for

j 6= J . Intuitively, this preserves blindness, as the punctured key does not reveal anything about the

randomness ρJ , ϕJ . Using similar tricks, we eliminate c). To tackle b) in the generic case, we compute

the N values Ri of the underlying linear scheme BS as subset sums of a logarithmic number of such

values. Then, only these basis values have to be sent.

We end up with a scheme with logarithmic communication complexity, for which the ideas that

underlie the original boosting transform still apply. However, the scheme still has two main drawbacks

that we will eliminate in our concrete constructions: �rst, we rely on the very loose security bound of

the underlying linear blind signature scheme BS. The transform requires that BS supports a logarithmic

but non-trivial number of signatures, which results in ine�cient parameter requirements. Second, due

to our solution of b), the logarithmic term of the communication complexity depends on computational

assumptions. Thus, the loose bound will have a signi�cant impact on communication complexity.

Parallel Instance Cut-And-Choose. Let us now explain how we solve this issues, �rst focusing on

our pairing-based construction from CDH. We observe that by letting the cut-and-choose parameter

grow slightly faster than before and scaling appropriately, the expected number of successful cheats

can be bounded to be less than 1. Unfortunately, we can not just use the Cherno� bound if we want to

argue that this also holds with overwhelming probability. We can, however, use the Cherno� bound

to show that a single cheat happens with some constant probability less than 1. Then, we play our

next card, which is parallel repetition. Namely, we run K independent instances of our scheme so

far, where each instance is relative to a separate key pair. We show that with high probability, in one

randomly chosen instance, there is no cheat at all. Using this observation, we can give a reduction from

the key-only security of the underlying blind signature scheme, i.e., the base scheme BS does not have

to support any signing query. We do not apply this overall strategy to a linear blind signature scheme,

but instead to the BLS blind signature scheme [Bol03]. We notice that the approach also works for this

scheme and observe additional bene�ts. First, the BLS scheme allows to aggregate signatures for a

signi�cant e�ciency improvement. Second, the scheme has two rounds and thus the logarithmic term

in the communication complexity is independent of computational assumptions, namely, dependency

b) disappears. We emphasize that the original BLS blind signature scheme is secure under a one-more

variant of the CDH assumption. Fortunately, we only need key-only security here, which is implied

by CDH. Also, the concrete security loss of our scheme is as for the standard BLS digital signature

scheme [BLS01], which means that it can be used over the same groups as BLS. To further improve

concrete e�ciency, we also introduce minor optimizations such as making the Signer commit to its

cut-and-choose indices in its �rst message. In this way, the reduction in the blindness proof can extract

these indices rather than guessing them. This leads to more e�cient statistical security parameters
4
.

Our Scheme from RSA. In the RSA regime, our construction is based on the Okamoto-Guillou-

2

The generic communication-e�cient boosting transform is part of [CAHL
+

22a] but not of this dissertation.

This is because [CAHL
+

22a] is a merge of [WHL22] and [CAL22] and the generic transform was originally only

present in [CAL22]. Still, most ideas of this generic transform are also present in our concrete schemes presented

here and resulting from [WHL22].

3

We instantiate the puncturable pseudorandom function e�ciently using random oracles [GGM84].

4

Note that without this optimization, the security loss would be exponential in K .
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Quisquater (OGQ) [Oka93] linear function. Using this function, one can instantiate the boosting

transform [KLR21] and our communication-e�cient variant. Roughly, the function is parameterized

by an RSA modulus n and a prime γ with gcd(n, γ) = gcd(ϕ(n), γ) = 1. As we can not aggregate

signatures e�ciently, we can not mimic theK-repetition technique from our CDH-based scheme. Hence,

we need to �nd an alternative way to avoid the loose security bound and improve the communication

complexity. For the former challenge, when increasing γ, which can be done independently from the

modulus n, we observe that the bound becomes acceptable. Although this improves the bound and thus

concrete parameters, we still have a rather large communication complexity, due to the logarithmic

number of Ri ∈ Z∗n that are sent in our generic transformation. Here, our solution is to send a short

random seed and derive the values Ri using a random oracle. Now, the Signer has to recover the

preimages of the Ri to continue the protocol. We show that the OGQ linear function admits a trapdoor,

that allows to sample preimages, solving this problem as well.

3.2.3 PI-Cut-Choo Evolves to Rai-Choo

Here, we give an informal overview of our second contribution [HLW23a] in the realm of blind

signatures. We assume familiarity with the previous parts of this technical overview. Re�ecting on

prior constructions [KLR21, CAHL
+

22a], observe the importance of growing the parameter N as a

function of the number of signing interactions over time: it allows to bound the expected number of

successful cheats. Thus, keeping N �xed presents several technical challenges that we discuss next.

Strawman One: Fixed Cut-and-Choose. As explained above, the key idea of PI-Cut-Choo is to

ensure that for one of the parallel instances i∗, the adversary never cheats in any of its interactions

with the Signer. This argument fails if we set N to be constant, e.g., N = 2. However, by keeping the

number of parallel instances K the same, we can still argue that with overwhelming probability in each

signing interaction, there is a non-cheating instance i∗. We highlight the reversed role of quanti�ers:

the non-cheating instance i∗ could now be di�erent for every signing interaction. Unfortunately,

the reduction approach presented in PI-Cut-Choo only allows to embed the target public key of the

underlying scheme BS in a �xed key among the keys pk1, . . . , pkK corresponding to the K parallel

instances. Once this key is �xed, the reduction fails if ever there is a successful cheat with respect to

this instance.

Strawman Two: Dynamic Key Structure (Naively). The above discussion shows that we have to

support a dynamic embedding of the target public key into one of the keys pk1, . . . , pkK . The �rst

naive idea would be to use a fresh set of public keys pk1, . . . , pkK and secret keys sk1, . . . , skK in each

interaction. In PI-Cut-Choo, the base scheme BS is a two-move scheme, in which the �rst message c
(challenge) sent from User to Signer does not depend on the public key. Thus, our reduction for the

resulting scheme can identify the non-cheating instance i∗ after seeing the User’s commitments and

challenges. Using this observation, we could let the Signer send the fresh public keys pk1, . . . , pkK
that will be used in the current signing interaction after receiving commitments and challenges. This

way, the reduction knows in which key pki∗ to embed the target public key in each signing interaction.

To do so, the reduction �rst identi�es the non-cheating instance i∗ ∈ [K], and then samples (pki, ski)
for i 6= i∗ honestly, while setting pki∗ to (a rerandomization of) the target public key. Finally, the

reduction can use ski to simulate all instances except i∗, while using random oracle programming in

the non-cheating instance i∗. We can use random-self reducibility of the underlying signature scheme

to ensure blindness of this construction. Namely, the User rerandomizes the keys and signatures it

receives from the Signer. Otherwise, it would be trivial to link signatures to signing interactions. The

�nal signature then contains the rerandomized set of keys and signatures. Fortunately, the BLS scheme

[Bol03], which serves as the basis of PI-Cut-Choo, has such a property.

However, the above scheme is insecure. Since a fresh set of keys pk1, . . . , pkK is used in every

interaction, there is nothing tying signatures to the Signer’s actual public and secret key. In particular,

there is no way from preventing the adversary from trivially creating a forgery containing a set of keys
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of its own choice. In the security proof, the reduction can not extract a forgery for BS with respect to

the target public key in this scenario.

Our Solution: PI-Cut-Choo evolves to Rai-Choo. To overcome the remaining issues of the above

strawman approach, we �x one public key pk and one secret key sk for our scheme. Instead of using

independent public keys pk1, . . . , pkK for each interaction, we instead use a sharing

(pk1, sk1), . . . , (pkK , skK) such that

∑
i

ski = sk and

∏
i

pki = pk.

By setting pk to be the target public key of the underlying scheme BS and carefully working out

the details, our reduction is now able to extract a forgery as required. It remains to sketch why the

simulation of the signing oracle is still possible with this new structure of the pk1, . . . , pkK . Note that

the reduction can de�ne the pk1, . . . , pkK in a way that allows it to know all but one ski. Concretely,

after identifying the non-cheating instance i∗ in an interaction with the adversary, the reduction �rst

samples (pki, ski) for all i ∈ [K] \ {i∗}, and then sets pki∗ := pk ·
∏
i 6=i∗ pk−1

i . This is identically

distributed to the real sharing.

In summary, we have successfully transformed a key-only secure scheme BS into a fully secure

one, while using a constant cut-and-choose parameter N . We can further optimize the scheme using

many minor tricks, some of them similar to [CAHL
+

22a]. In the process we also manage to reduce

the number of moves to two, which is optimal. This is because in our new scheme, we can make the

cut-and-choose step completely non-interactive using a random oracle, and the Signer does not need to

send N anymore, as it is �xed.

3.3 Preliminaries for this Chapter

In addition to the general preliminaries in Chapter 2, we introduce preliminaries that are only relevant

for this chapter. This includes, most importantly, the de�nition of blind signatures.

Cherno� Bound. In our proof, we make use of a speci�c Cherno� bound following [KLR21]. For

completeness, we state and prove this bound below.

Lemma 3.1. For a sum X of independent random variables over {0, 1} and any s > E [X], we have
Pr [X ≥ s] ≤ exp(3E [X]− s), where exp(x) := ex.

Proof. The proof is similar to [KLR21]. Recall the standard Cherno� bound for all δ > 0:

Pr [X ≥ (1 + δ) · E [X]] ≤ exp
(
−E [X] δ2

2 + δ

)
.

Using x2 > (x+ 2)(x− 2) for all x ≥ 0 we obtain

Pr [X ≥ s] = Pr
[
X ≥

(
1 +

(
s

E [X] − 1
))
· E [X]

]
≤ exp

(
−E [X] (s/E [X]− 1)2

2 + (s/E [X]− 1)

)
≤ exp

(
−E [X]

(
s

E [X] − 3
))

= exp (3E [X]− s) .

Puncturable Pseudorandom Functions. We recall the de�nition of puncturable pseudorandom

functions, following Sahai and Waters [SW14].
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De�nition 3.1 (Puncturable Pseudorandom Function). A puncturable pseudorandom function (PPRF) is

a triple of PPT algorithms PRF = (Gen,Puncture,Eval) with the following syntax:

• Gen(1λ, 1d(λ))→ k takes as input 1λ and an input length 1d(λ)
, and outputs a key k.

• Puncture(k,X)→ kX takes as input a key k and a polynomial size set ∅ 6= X ⊆ {0, 1}d(λ)
, and

outputs a punctured key kX .

• Eval(k, x) → r is deterministic, takes a key k and an element x ∈ D as input, and outputs an

element r ∈ {0, 1}r(λ)
.

Further, the following completeness and security properties should hold:

• Completeness of Puncturing. For any d(λ) = poly(λ), any X ⊆ {0, 1}d(λ)
, any k ∈

Gen(1λ, 1d(λ)), any kX ∈ Puncture(k,X), and any x′ /∈ X we have Eval(k, x′) = Eval(kX , x′).
• Pseudorandomness. For any d(λ) = poly(λ) and any PPT algorithm A the following advantage

is negligible:

Advpsrand
A,PRF,d(λ) :=

∣∣∣∣Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣∣∣
(X,St)← A(1λ),
k ← Gen(1λ, 1d(λ)),
kX ← Puncture(k,X),
rx := Eval(k, x) for x ∈ X



−Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣∣∣
(X,St)← A(1λ),
k ← Gen(1λ, 1d(λ)),
kX ← Puncture(k,X),
rx

$← {0, 1}r(λ)
for x ∈ X

 ∣∣∣∣.
Puncturable pseudorandom function can easily be constructed using random oracles. In the

following, we recall the well-known GGM construction [GGM84]. Let H : {0, 1}∗ → {0, 1}2λ
be a

random oracle. For simplicity, we write H(x) = (H0(x),H1(x)) for any x to split the output of H
into two λ-bit strings. Keys are random strings of length λ and for ` ∈ N, x ∈ {0, 1}`, k ∈ {0, 1}λ,

we de�ne GGM0,k() := k and recursively GGM`,k(b ‖ x) := GGM`−1,Hb(k)(x). Then, the evaluation

of the pseudorandom function with key k ∈ {0, 1}λ on input x ∈ {0, 1}d(λ)
is PRF.Eval(k, x) :=

GGMd(λ),k(x). We set Puncture0(k,X) := ∅ and de�ne an algorithm Puncture`(k,X) to puncture

keys at a set of points ∅ 6= X ⊆ {0, 1}` as follows:

• Set kX := ∅ and (k0, k1) := H(k).

• De�ne sets Xb := {x | (x1, x) ∈ X ∧ x1 = b} for b ∈ {0, 1}.
• If X0 = ∅, set kX := kX ∪ {k0}. Else set kX := kX ∪ {Puncture`−1(k0, X0)}.
• If X1 = ∅, set kX := kX ∪ {k1}. Else set kX := kX ∪ {Puncture`−1(k1, X1)}.
• Return kX .

This algorithm always terminates. We set PRF.Puncture(k,X) := Punctured(λ)(k,X). Note that a

punctured key contains all information needed to evaluate the pseudorandom function at inputs that

are not in X . Using induction over d(λ) and |X|, one can easily show that the number of elements in

kX is at most (d(λ)− 1)|X|+ 1. It remains to show pseudorandomness on punctured points.

Lemma 3.2. Let H : {0, 1}∗ → {0, 1}2λ
be a random oracle and consider the puncturable pseudorandom

function PRF as de�ned above. Let A be an algorithm that makes at most Q queries to H. Then, for any

d(λ) = poly(λ), we have Then the advantage of A in the pseudorandomness game for PRF is at most

Advpsrand
A,PRF,d(λ) ≤ (2d(λ)− 1)Q|X|

2λ ,

where X is the set of points that A outputs.
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Proof. A simple hybrid argument shows that we only have to argue that we have pseudorandomness for

keys which are punctured at one point. Then we can show the claim by induction over the input length

d = d(λ). In particular, we show that for any PPT algorithm making at most Q random oracle queries

the advantage can be bounded by (2d − 1)Q/2λ. We start with the case of d = 1. Let A be a PPT

algorithm and assume it outputsX ⊆ {0, 1}, |X| = 1. Let k $← {0, 1}λ be a random key. LetX = {x}.
Conditioned on kX = {H1−x(k)} the value PRF.Eval(k, x) = Hx(k) is uniformly random unless A
queries H(k). As k is sampled uniformly at random and A can only make a polynomial number of

random oracle queries, a union bound shows that the probability that this happens is negligible. In

more detail the distinguishing advantage can be upper bounded by Q/2λ. Now consider d > 1, let

k $← {0, 1}λ be a random key and let X = {x}, x ∈ {0, 1}d be A’s initial output. Let kX , r be the

values that A gets as input after outputting X . Write x = x1 ‖ x̄ for x1 ∈ {0, 1}, x̄ ∈ {0, 1}d−1
. We

show indistinguishability via a sequence of four games. In the �rst game, we let kX be the honestly

punctured key kX = {s1−x1 = H1−x1(k), k{x̄}} and r = Eval(k, x) be the real evaluation at input

x. In the second game, we set s1−x1
$← {0, 1}λ. Note that similarly to the argument for d = 1, the

adversary A can only distinguish between these two games, if it queries H(k), which happens with

probability at most Q/2λ. In the third game, we sample r $← {0, 1}λ. Note that any distinguisher

between the second and the third game can be turned into a distinguisher for input length d−1 with the

same advantage by a straight forward reduction. Hence, using the induction hypothesis, the advantage

of A in distinguishing the second and the third game can be upper bounded by (2(d− 1)− 1)Q/2λ.

Finally, we undo the change we did in the second game. That is, we set s1−x1 = H1−x1(k). Again, the

advantage of distinguishing between the third and fourth game is at most Q/2λ. In total, we obtain

that the advantage of A in distinguishing between the real value of the pseudorandom function at

input x and a random string is at most (2d− 1)Q/2λ.

Randomness Homomorphic Commitments. We de�ne a special type of perfectly hiding commit-

ment scheme in which the randomness can be rerandomized publicly.

De�nition 3.2 (Randomness Homomorphic Commitment Scheme). A randomness homomorphic com-

mitment scheme is a tuple of PPT algorithms CMT = (Gen,Com,Translate) with the following syntax:

• Gen(1λ) → ck takes as input the security parameter 1λ and outputs a commitment key ck. We

assume that ck implicitly de�nes a message spaceMck and a randomness spaceRck. Further, we
assume thatRck is a group with respect to an e�ciently computable group operation +.

• Com(ck, x; r) → µ takes as input a key ck, an element x ∈ Mck, a randomness r ∈ Rck and

outputs a commitment µ ∈ {0, 1}∗.

• Translate(ck, µ, r) → µ′ is deterministic, takes a key ck, a commitment µ ∈ {0, 1}∗, and a

randomness r ∈ Rck as input and outputs a commitment µ′.

Further, the following security and completeness properties should hold:

• Completeness of Translation. For any ck ∈ Gen(1λ), any x ∈ Mck, and any r, r
′ ∈ Rck, we

have

Translate(ck,Com(ck, x; r), r′) = Com(ck, x; r + r′).

• Perfectly Hiding. For any key ck and any x0, x1 ∈Mck, the following distributions are identical:{
(ck, x0, x1, µ)

∣∣∣∣ r $← Rck,
µ := Com(ck, x0; r)

}
and

{
(ck, x0, x1, µ)

∣∣∣∣ r $← Rck,
µ := Com(ck, x1; r)

}
.

• Computationally Binding. For any PPT algorithm A, the following advantage is negligible:

Advbind
A,CMT(λ) := Pr

[
Com(ck, x0; r0) = Com(ck, x1; r1)

∧ x0 6= x1

∣∣∣∣ ck← Gen(1λ),
(x0, r0, x1, r1)← A(ck)

]
.
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Randomness homomorphic commitment schemes can easily be obtained from standard assumptions,

such as RSA and DLOG. As a �rst example, a folklore RSA-based commitment scheme obtained from

the Guillou-Quisquater identi�cation scheme [GQ90] is randomness homomorphic. The commitment

key ck contains public RSA parameters (n, e) such that n = pq for two distinct large primes, e is prime,

and gcd(e, ϕ(n)) = 1. The key ck also contains y := xe mod n, where x $← Z∗n. Commitment and

translation algorithms for m ∈ Ze, r ∈ Z∗n, µ ∈ Z∗n are de�ned as

Com(ck,m; r) := reym mod n, Translate(ck, µ, r) := reµ mod n.

It is easy to observe that translation is complete and the commitment is perfectly hiding. To see that it

is computationally binding, note that given two pairs (m0, r0), (m1, r1) ∈ Ze × Z∗n with m0 6= m1 and

Com(ck,m0; r0) = Com(ck,m1; r1) we have re0y
m0 ≡ re1ym1 (mod n). Without loss of generality we

have m0 > m1 and as e is prime we have gcd(e,m0 −m1) = 1. Thus, we can apply Shamir’s trick to

(r−1
0 r1)e ≡ ym0−m1 (mod n) and derive an eth

root of y, solving RSA.

In the DLOG setting, the standard Pedersen commitment scheme [Ped92] is randomness homo-

morphic, where the commitment key is a pair of group elements g, h, where (G, g, p) ← GGen(1λ).

Commitment and translation algorithms for m ∈ Zp, r ∈ Zp, µ ∈ G are de�ned as

Com(ck,m; r) := grhm, Translate(ck, µ, r) := grµ.

It is well-known and easy to see that the scheme is perfectly hiding and computationally binding under

the DLOG assumption relative to GGen. Also, completeness of translation is easy to see.

Non-Interactive Proof Systems. For our generic transformation from semi-honest signer blindness

to malicious signer blindness, we need non-interactive proof systems. For simplicity of exposition,

we focus on online-extractable proof systems in the random oracle model as de�ned and constructed

in [Fis05]. However, any reasonable notion of non-interactive proof system with zero-knowledge

and proof-of-knowledge property is applicable in our context. LetR ⊆ {0, 1}∗ × {0, 1}∗ be a binary

relation. We de�ne the associated language LR ⊆ {0, 1}∗ to contain all x ∈ {0, 1}∗ such that there is

an w ∈ {0, 1}∗ with (x,w) ∈ R. Here, we call x the statement and w the witness. In the following, we

focus on NP relations, which means thatR is e�ciently decidable and the length of the witness w is

bounded by a polynomial in the length of the statement x. Relations are allowed to implicitly depend

on the security parameter, with the restriction that the length of statments is polynomially bounded in

the security parameter.

De�nition 3.3 (Non-Interactive Proofs). LetR be an NP relation and H be a random oracle. A non-

interactive zero-knowledge proof-of-knowledge (NIZKPOK) forR is a tuple PS = (PProve,PVer) of PPT
algorithms such that

• PProveH(x,w)→ π takes as input a statement x and a witness w, and outputs a proof π.

• PVerH(x, π)→ b is deterministic, takes as input x and a proof π, and outputs a bit b ∈ {0, 1}.

Further, the following completeness and security properties should hold:

• Completeness. For all (x,w) ∈ R and all π ∈ PProveH(x,w), we have PVerH(x, π) = 1.

• Zero-Knowledge. There exists a PPT algorithm Sim such that for any PPT algorithmD the following

advantage is negligible:

Advzk
D,PS,Sim(λ) :=

∣∣∣∣Pr
[
DH(St, π) = 1

∣∣∣∣ (St, x, w)← DH(1λ),
π ← PProveH(x,w)

]
−Pr

[
DH(St, π) = 1

∣∣∣∣ (Sts,H0)← Sim(1λ),
(St, x, w)← DH0(1λ), (H, π)← Sim(Sts, x)

] ∣∣∣∣.
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• Proof-of-Knowledge. There exists a PPT algorithm Ext such that for any algorithmA the following

advantage is negligible:

Advpok
A,PS,Ext(λ) := Pr

[
(x,w) /∈ R ∧ PVerH(x, π) = 1

∣∣∣∣ (x, π)← AH(1λ),
w ← Ext(x, π,Q)

]
,

where Q denotes the list of queries of A to oracle H and the respective hash values.

Blind Signatures. Blind signatures are the main primitive of interest for this chapter. In a blind

signature scheme, we consider a Signer that generates his key material, namely public key pk and

secret key sk using an algorithm Gen. The Signer can then interact with users to create signatures.

Precisely, the Signer holds the secret key sk and the User holds the public key pk and a message m to be

signed. To create a signature, they engage in an interactive protocol, formally speci�ed by interactive

algorithms S and U. When the protocol is completed, algorithm U outputs a signature σ, which can

then be veri�ed by an algorithm Ver with respect to the message m and the public key pk.

De�nition 3.4 (Blind Signature Scheme). A blind signature scheme is a quadruple of PPT algorithms

BS = (Gen, S,U,Ver) with the following syntax:

• Gen(1λ)→ (pk, sk) takes as input the security parameter 1λ and outputs a pair of keys (pk, sk).
We assume that the public key pk de�nes a message spaceM =Mpk implicitly.

• S and U are interactive algorithms, where S takes as input a secret key sk and U takes as input

a key pk and a message m ∈ M. After the execution, U returns a signature σ and we write

(⊥, σ)← 〈S(sk),U(pk,m)〉.
• Ver(pk,m, σ) → b is deterministic and takes as input public key pk, message m ∈ M, and a

signature σ, and returns b ∈ {0, 1}.
We require that BS is complete in the following sense. For all (pk, sk) ∈ Gen(1λ) and all m ∈ Mpk it

holds that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

One-more unforgeability intuitively guarantees that users need to interact with the Signer to obtain

signatures. In other words, if an adversary completes at most k− 1 interactions with the Signer, then it

should not be able to output signatures for k messages.

De�nition 3.5 (One-More Unforgeability). Let BS = (Gen, S,U,Ver) be a blind signature scheme and

` : N→ N. For an algorithm A, we consider the following game `-OMUFABS(λ):
1. Sample keys (pk, sk)← Gen(1λ).
2. Let O be an interactive oracle simulating S(sk). Run ((m1, σ1), . . . , (mk, σk))← AO(pk), where
A can query O in an arbitrarily interleaved way and complete at most ` = `(λ) of the interactions
with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1 interactions with O

and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.
We say that BS is `-one-more unforgeable (`-OMUF), if for every PPT algorithmA the following advantage

is negligible:

Adv`-OMUF
A,BS (λ) := Pr

[
`-OMUFABS(λ)⇒ 1

]
.

We say that BS is one-more unforgeable (OMUF), if it is `-OMUF for all polynomial `.

From a practical perspective, it is su�cient to focus on `-OMUF for some large but a priori bounded

`, e.g., ` = 230
, while full OMUF is more of theoretical interest. Blindness protects the privacy of the

User. Namely, it guarantees that the Signer can not link the pair (m, σ) to the signing interaction, and

especially, it can not learn anything about the message m during the interaction.
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De�nition 3.6 (Blindness). Consider a blind signature scheme BS = (Gen, S,U,Ver). For an algorithm

A and bit b ∈ {0, 1}, consider the following game BLINDAb,BS(λ):

1. Sample (pk, sk)← Gen(1λ) and run (m0,m1, St)← A(pk, sk).

2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive oracle simulating

U(pk,m1−b). RunA on input St with arbitrary interleaved one-time access to each of these oracles,

i.e., St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run b′ ←
A(St′,⊥,⊥). Else, obtain a bit b′ from A on input σ0, σ1, i.e., run b

′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satis�es honest signer blindness, if for every PPT algorithm A, the following advantage is
negligible:

Advblind
A,BS(λ) :=

∣∣∣Pr
[
BLINDA0,BS(λ)⇒ 1

]
− Pr

[
BLINDA1,BS(λ)⇒ 1

]∣∣∣ .
We also consider semi-honest and malicious signer blindness, where we modify the game in the following

way:

• For semi-honest signer blindness, (pk, sk) is not sampled by the game, but A outputs random coins

ρ in addition to m0,m1. Then, the game de�nes (pk, sk) via (pk, sk) := Gen(1λ; ρ).

• For malicious signer blindness, (pk, sk) is not sampled by the game, butA outputs pk in addition to

m0,m1.

Semi-honest signer blindness is a non-standard notion and lies inbetween honest and malicious

signer blindness. We will show that any semi-honest signer blind scheme can be transformed into

a malicious signer blind scheme while preserving one-more unforgeability. The high-level idea is to

append a non-interactive zero-knowledge proof-of-knowledge to the public key. This proof shows that

the Signer knows corresponding random coins that generate the key. The rest of the scheme does not

change, and thus the transformation is very e�cient.

Batched Partially Blind Signatures. We introduce a formal model for batched partially blind

signatures. To recall, a partially blind signature scheme [AF96, AO00] allows to sign messages with

respect to some public information string info, that the Signer knows. This string acts as a form of

domain separator. Namely, one-more unforgeability for partially blind signatures guarantees that the

User can output at most ` valid message signature pairs with respect to any public information string

info, for which it interacted at most ` times with the Signer oracle. In the batched setting, we assume

that the User holds multiple messages that should be signed in a single protocol run, which can reduce

the amortized communication complexity. Batching has been subject of study for other primitives, e.g.,

in oblivious transfer [IKNP03, BBDP22].

Let us now introduce the syntax of batched partially blind signatures. Recall that in partially blind

signatures, the Signer gets the public information string info, while the User gets info and the message

m. Here, we generalize the syntax of partially blind signatures to the setting, where both the User and

Signer get the batch size L as input, and multiple pairs (infol,ml) are signed. This models that the

batch size is not �xed, but instead it can be chosen dynamically.

De�nition 3.7 (Batched Partially Blind Signature Scheme). A batched partially blind signature scheme

is a quadruple of PPT algorithms BPBS = (Gen, S,U,Ver) with the following syntax:

• Gen(1λ)→ (pk, sk) takes as input the security parameter 1λ and outputs a pair of keys (pk, sk).
We assume that the public key pk de�nes a message spaceM =Mpk, and a public information

space I = Ipk implicitly.
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• S and U are interactive algorithms, where S takes as input a secret key sk, a batch size L ∈ N, and
L strings info1, . . . , infoL ∈ I , and U takes as input a key pk, a batch size L ∈ N, and L pairs

of messages m1, . . . ,mL ∈M and strings info1, . . . , infoL ∈ I . After the execution, U returns L
signatures σ1, . . . , σL and we write

(⊥, (σ1, . . . , σL))← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉.

• Ver(pk, info,m, σ)→ b is deterministic and takes as input public key pk, a string info ∈ I , message

m ∈M, and a signature σ, and returns b ∈ {0, 1}.

We require that BPBS is complete in the following sense. For all (pk, sk) ∈ Gen(1λ), all L = poly(λ), all
m1, . . . ,mL ∈Mpk, and all info1, . . . , infoL ∈ Ipk it holds that

Pr

∀l ∈ [L] : bl = 1

∣∣∣∣∣∣
(⊥, (σ1, . . . , σL))
← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉,
∀l ∈ [L] : bl := Ver(pk, infol,ml, σl)

 = 1.

In terms of security, we require the same security guarantees, as if we just run a normal (partially)

blind signature scheme L times in parallel. We let the adversary determine the batch size in each

interaction separately. This leads to a natural de�nition of batch one-more unforgeability.

De�nition 3.8 (Batch One-More Unforgeability). Let BPBS = (Gen, S,U,Ver) be a batched par-

tially blind signature scheme and ` : N → N. For an algorithm A, we consider the following game

`-OMUFABPBS(λ):

1. Sample keys (pk, sk)← Gen(1λ).

2. Let O be an interactive oracle, taking a batch size L ∈ N and L strings info1, . . . , infoL ∈ I as

input, and then simulating S(sk, L, (infol)l∈[L]). Run ((info1,m1, σ1), . . . , (infok,mk, σk)) ←
AO(pk), where A can query O in an arbitrarily interleaved way. Let C denote the list of all tuples
(i, L, (infol)l∈[L]) such that A submitted batch size L and strings (infol)l∈[L] in the ith completed

interaction with O. It is required to hold that

∑
(i,L,(infol)l∈[L])∈C L ≤ `.

3. For each info ∈ I , de�ne the sets completed interactions and outputs

Compl[info] := {(i, l0) | ∃(i, L, (infol)l∈[L]) ∈ C : infol0 = info}
Out[info] := {i ∈ [k] | infoi = info}.

Output 1 if and only if there is some info∗ ∈ I such that all mi, i ∈ Out[info∗] are distinct,
|Compl[info∗]| < |Out[info∗]|, and for each i ∈ Out[info∗] it holds that Ver(pk, infoi,mi, σi) = 1.

We say thatBPBS is `-batch-one-more unforgeable (`-BOMUF), if for every PPT algorithmA the following

advantage is negligible:

Adv`-BOMUF
A,BPBS (λ) := Pr

[
`-BOMUFABPBS(λ)⇒ 1

]
.

We say that BPBS is batch one-more unforgeable (BOMUF), if it is `-BOMUF for all polynomial `.

As for unforgeability, blindness should give the same guarantees as if we just run a normal (partially)

blind signature scheme L times in parallel. Especially, it should not be possible to tell if two signatures

result from the same interaction or not. In our security game, we let the malicious Signer choose two

batches of (potentially di�erent) sizes L0 and L1. The Signer also points to one element for each batch.

Then, the game either swaps these two elements, or not, and the Signer has to distinguish these two

cases. Via a hybrid argument, this implies that the Signer does not know which message is signed in

which interaction.
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De�nition 3.9 (Batch Partial Blindness). Consider a batch partially blind signature scheme BPBS =
(Gen, S,U,Ver). For an algorithmA and bit b ∈ {0, 1}, consider the following gameBBLINDAb,BPBS(λ):

1. Run

(
pk, (infol,0,ml,0)l∈[L0], (infol,1,ml,1)l∈[L1], l∗,0, l∗,1, St

)
← A(1λ). Then, if infol∗,0,0 6=

infol∗,1,1, then return 0.

2. If b = 1, then swap ml∗,0,0 and ml∗,1,1. That is, set m′ := ml∗,0,0,ml∗,0,0 := ml∗,1,1,ml∗,1,1 := m′.

3. Let O0 and O1 be interactive oracles simulating

U(pk, L0, (ml,0, infol,0)l∈[L0]) and U(pk, L1, (ml,1, infol,1)l∈[L1]),

respectively. Run A on input St with arbitrary interleaved one-time access to each of these oracles,

i.e., St′ ← AO0,O1(St).

4. Let

σ1,0, . . . , σl∗,0−1,0, σl∗,b,b, σl∗,0+1,0, . . . , σL0 and

σ1,1, . . . , σl∗,1−1,1, σl∗,1−b,1−b, σl∗,1+1,1, . . . , σL1

be the local outputs of O0,O1, respectively. If σi,0 = ⊥ or σi′,1 = ⊥ for some i ∈ [L0] or some

i′ ∈ [L1], then run b′ ← A(St′,⊥). Else, obtain a bit b′ from A on input (σl,0)l∈[L0], (σl,1)l∈[L1].

That is, run b′ ← A
(
St′, (σl,0)l∈[L0], (σl,1)l∈[L1]

)
.

5. Output b′.

We say that BPBS satis�es malicious signer batch partial blindness, if for every PPT algorithm A the

following advantage is negligible:

Advbblind
A,BPBS(λ) :=

∣∣∣Pr
[
BBLINDA0,BPBS(λ)⇒ 1

]
− Pr

[
BBLINDA1,BPBS(λ)⇒ 1

]∣∣∣ .
Observe that batched partially blind signatures imply partially blind signatures by �xing the batch

size L = 1. Further, the partial blindness can be lifted to standard blindness by �xing a default public

information string.

3.4 PI-Cut-Choo Blind Signatures

Here, we construct a concrete blind signature scheme BSCDH based on the CDH assumption in the

type-1 pairing setting. The scheme and its analysis can easily be adopted to the type-3 setting, which

is more relevant in practice. However, as we present a much more practical scheme from similar

assumptions in Section 3.7, we use the type-1 setting in this section for readability.

3.4.1 Construction

Let PGGen be a bilinear group generation algorithm that outputs a cyclic group G of prime order

p with generator g, and a pairing e : G × G → GT into some target group GT . We assume that

these system parameters are known to all algorithms. Formally, they should be part of the public

key, but as they are standardized and their correctness can be veri�ed e�ciently in practice, and for

readability, we omit them from the public key. Our scheme makes use of a randomness homomorphic

commitment scheme CMT with randomness space Rck and a puncturable pseudorandom function

PRF. As we have seen, we can instantiate PRF using random oracles and CMT tightly based on

the DLOG assumption. We also need random oracles H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}λ and

Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → Zp ×Rck ×{0, 1}λPRF
, where λPRF is a security parameter

used for PRF. Further, our scheme makes use of a parameter K ∈ N, which de�nes how many
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Alg Check(pk, N, µ0, comr, comc, seedJ, kJ, {ci,Ji}i, {ηi}i)
01 J = (H′(seedJ, 1), . . . ,H′(seedJ,K)) ∈ [N ]K
02 for i ∈ [K] :
03 for j ∈ [N ] \ {Ji} :
04 preri,j := PRF.Eval(kJ, (i, j)), ri,j := Hx(preri,j)
05 parse (αi,j , ϕi,j , γi,j) := ri,j , (αi,j , ϕi,j , γi,j) ∈ Zp ×Rck × {0, 1}λ
06 µi,j := Translate(ck, µ0, ϕi,j)
07 ci,j := H(pki, µi,j) · gαi,j
08 comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ji−1), ηi,Hr(ri,Ji+1), . . . ,Hr(ri,N ))
09 if comr 6= Hr(comr,1, . . . , comr,K) : return 0
10 if comc 6= Hc(c1,1, . . . , cK,N ) : return 0
11 return 1

Figure 3.1: Algorithm Check used in the issuing protocol of blind signature scheme BSCDH, where

H : {0, 1}∗ → G,H′ : {0, 1}∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → Zp ×Rck ×
{0, 1}λPRF

are random oracles.

instances of the underlying boosting transform are executed in parallel, and a function f : N → N
which determines how fast the cut-and-choose parameter N grows. In Section 3.4.2, we will discuss

how to set these parameters e�ciently.

Key Generation. To generate keys, algorithm BSCDH.Gen(1λ) does the following:

1. For each instance i ∈ [K], sample ski $← Zp and set pki := gski
.

2. Sample a commitment key ck← CMT.Gen(1λ).

3. Return public key pk := (pk1, . . . , pkK , ck) and secret key sk := (sk1, . . . , skK).

Signature Issuing. The algorithms S,U and their interaction are formally given in Figures 3.1 and 3.2.

Here, the Signer is stateful. Precisely, algorithm S keeps a state ctr, which is inititalized as ctr := 1 and

incremented in every interaction.

Veri�cation. The resulting signature σ = (σ̄, ϕ1, . . . , ϕK) for a message m is veri�ed by algorithm

BSCDH.Ver(pk,m, σ) as follows:

1. For each instance i ∈ [K], compute the commitment µi := Com(ck,m;ϕi).

2. Return 1 if and only if e (σ̄, g) =
∏K
i=1 e (H(pki, µi), pki) .

Analysis. Completeness of the scheme follows by inspection. We show blindness and one-more

unforgeability. For one-more unforgeability, we show qmax-OMUF, where qmax is a parameter that can

be set freely, e.g., qmax = 230
, and in�uences the function f . We note that making f grow quadratically,

one could show full OMUF using a similar proof. Before we show blindness, we �rst state and prove

a lemma that will be useful for our blindness proof.

Lemma 3.3. For any algorithm A, parameters par := (G, g, p, e) ← PGGen(1λ), and bit b ∈ {0, 1},
we consider the following game Gb:

1. Let H : {0, 1}∗ → G5
. Run ((pki,mi,0,mi,1)i∈[K], St)← AH(par).

2. Let Ob′ for b
′ ∈ {0, 1} be an interactive oracle. Upon termination, it locally outputs σb⊕b′ to the

game. The oracle is de�ned as follows:

5

We do not need to model H as a random oracle here.
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S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := f(ctr) k ← PRF.Gen(1λPRF , 1log(KN))

seedJ, salt $← {0, 1}λ ϕ0
$← Rck, µ0 := Com(ck,m;ϕ0)

comJ := H′(seedJ, salt) N, comJ for (i, j) ∈ [K]× [N ] :

preri,j := PRF.Eval(k, (i, j))
ri,j := Hx(preri,j)
parse (αi,j , ϕi,j , γi,j) := ri,j
µi,j := Translate(ck, µ0, ϕi,j)
ci,j := H(pki, µi,j) · gαi,j

for i ∈ [K] :
comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,N ))

comr := Hr(comr,1, . . . , comr,K)
µ0, comr, comc comc := Hc(c1,1, . . . , cK,N )

seedJ, salt if comJ 6= H′(seedJ, salt) : abort

for i ∈ [K] : for i ∈ [K] : Ji := H′(seedJ, i)
Ji := H′(seedJ, i) J = (J1, . . . ,JK)

J = (J1, . . . ,JK) J := {(i,Ji) | i ∈ [K]}
kJ ← PRF.Puncture(k,J )

if Check = 0 : abort kJ, {ci,Ji , ηi}i for i ∈ [K] : ηi := Hr(ri,Ji)

for i ∈ [K] : si,Ji := cski
i,Ji

s̄ :=
K∏
i=1

si,Ji
s̄ σ̄ := s̄ ·

K∏
i=1

pk−αi,Jii

if
K∏
i=1

e (H(pki, µi,Ji), pki) 6= e (σ̄, g) :

abort
for i ∈ [K] : ϕi := ϕ0 + ϕi,Ji

return σ := (σ̄, ϕ1, . . . , ϕK)

Figure 3.2: The signature issuing protocol of the blind signature scheme BSCDH, where H : {0, 1}∗ →
Zp,H′ : {0, 1}∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → Zp × Rck × {0, 1}λPRF

are random oracles. The algorithm Check is defined in Figure 3.1. The state ctr of S is incremented

atomically.
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(a) Upon a query from A, sample αi
$← Zp and set ci := H(pki,mi,b⊕b′) · gαi for all i ∈ [K].

Send c1, . . . , cK to A.
(b) Receive s̄ fromA and set σ̄ := s̄·

∏K
i=1 pk−αii . If e (σ̄, g) 6=

∏
i∈[K] e (H(pki,mi,b⊕b′), pki) ,

de�ne the local output of this oracle to be σb⊕b′ := ⊥. Otherwise, de�ne the local output of
this oracle to be σb⊕b′ := σ̄.

3. Run A on input St with arbitrary interleaved one-time access to each of these oracles, i.e., St′ ←
AO0,O1,H(St).

4. If σ0 = ⊥ or σ1 = ⊥, run b∗ ← A(St′,⊥,⊥). Else, run b∗ ← A(St′, σ0, σ1). Output b∗.

Then, for each algorithm A, we have Pr [G0 ⇒ 1] = Pr [G1 ⇒ 1].

Proof. We show the claim via a statistical argument. To this end, recall that the exponentiation map

Zp → G, x 7→ gx is a bijection. Thus, for each public key pki output by A, we can write pki = gski
.

For now, we denote the discrete logarithm of an element h ∈ G with respect to g by dlog(h). With this

notation, we have ski = dlog(pki) for all i ∈ [K]. After the adversary outputs (pki,mi,0,mi,1)i∈[K],
we consider the rest of the experiment in two phases. First, we consider the view ofA before it receives

σ0 and σ1. Here, it is clear that A’s view in Gb is the same for both b = 0 and b = 1. Indeed, in both

games,A obtains from both oracles K independent and uniform group elements ci, as the values αi act

as a one-time pad, hiding H(pki,mi,b⊕b′) and thus b. Next, we consider the view of A after it receives

σ0 and σ1. If σ0 = ⊥ or σ1 = ⊥, then A obtains no new information about b. On the other hand, if

σ0 6= ⊥ and σ1 6= ⊥ we know that, by de�nition of game Gb, we have

e (σj , g) =
∏
i∈[K]

e (H(pki,mi,j), pki)

⇐⇒ e (g, g)dlogg(σj) = e (g, g)
∑

i∈[K]
dlog(H(pki,mi,j))ski

⇐⇒ σj =
∏
i∈[K]

H(pki,mi,j)ski .

for each j ∈ {0, 1}, where the last equivalence follows from the non-degeneracy of the pairing. Thus,

for each j ∈ {0, 1}, the element σj is completely determined by (pki,mi,j)i∈[K]. This implies that after

learning σ0 and σ1, A obtains no additional information about bit b. Therefore, the claim follows.

Theorem 3.1. Let PRF be a puncturable pseudorandom function and CMT be a randomness homomorphic

commitment scheme. Let H′ : {0, 1}∗ → {0, 1}λ and Hr : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → Zp×Rck×
{0, 1}λPRF

be random oracles. Then BSCDH satis�es malicious signer blindness.

In particular, for any algorithm A that uses NL
and NR

as the counters in its interactions with

the User and queries H′,Hr,Hx at most QH′ , QHr , QHx times, respectively, there is an algorithm B with

T(B) ≈ T(A) and

Advblind
A,BSCDH

(λ) ≤ 4 · Advpsrand
B,PRF,d(λ) + Q2

H′

2λ−1 + QH′

2λ−2 + KQHx
2λPRF−2 + KQHr

2λPRF−2 ,

where B punctures atK points with input length d = max{log(NL), log(NR)}.

Proof. LetA be an adversary against malicious signer blindness of BS := BSCDH. We show the claimed

uppor bound on its advantage via a sequence of games, where all random oracles are simulated honestly

via lazy sampling unless otherwise speci�ed.

Game G0,b: Game G0,b is de�ned as the real blindness game BLINDAb,BS. Let us recall this game. First,

A outputs a public key pk and messages m0,m1. Then, the game provides two interactive oracles O0,O1
to A, which simulate the user algorithm U(pk,mb),U(pk,m1−b), respectively. Throughout the proof,
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we will reference to the variables used in these executions using superscripts L and R, respectively.

For example, comL
J refers to the commitment on the seed of the cut-and-choose index sent by A as

part of the �rst message in the interaction with oracle O0. If we omit the superscript, our description

applies to both oracles. According to this, NL
and NR

denote the cut-and-choose parameters sent by

A in the �rst message of the interaction with oracles O0,O1, respectively. It follows that

Advblind
A,BS(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: Game G1,b is exactly as game G0,b, but whenever there are queries H′(x) = H′(x′) for

x 6= x′, the game aborts. Clearly, the probability of such a collision is at most Q2
H′/2λ, which leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤ Q2
H′

2λ .

Game G2,b: Game G2,b is exactly as game G1,b, but we introduce another abort. Namely, the game

aborts if the adversary sends N, comJ as its �rst message, but at that point the game can not �nd a

query H′( ˆseedJ, ˆsalt) = comJ and later the user algorithm does not abort, i.e., A is able to successfully

open comJ by sending seedJ, salt. Note that there is at most one query that the game can �nd, as we

ruled out collisions for oracle H′ in the previous change. Clearly, the probability that the adversary can

successfully open a commitment for which the game can not �nd a query is at most QH′/2λ. A union

bound over oracles O0 and O1 shows that

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ QH′

2λ−1 .

Note that if the user oracle aborts, then the adversary gets (⊥,⊥) in the end of the game and learns

nothing about the bit b as CMT is perfectly hiding and no information about the randomness ϕ0 is ever

revealed to A. Thus, from now on, we can focus on the case where the user oracle does not abort. By

the change we introduced here, we can thus assume that the game is able to extract
ˆseedJ from comJ

and that later
ˆseedJ = seedJ. For the extracted seed

ˆseedJ, we also de�ne the cut-and-choose vector Ĵ
and the set Ĵ as

∀i ∈ [K] : Ĵi := H′( ˆseedJ, i), Ĵ = (Ĵ1, . . . , ĴK), Ĵ := {(i, Ĵi) | i ∈ [K]}.

As
ˆseedJ = seedJ, we also have Ĵ = J and Ĵ = J .

Game G3,b: Game G3,b is de�ned exactly as G2,b, except that we change the way the randomness seeds

preri,j are generated. We recall that in previous games, these values were generated as in the real

scheme, i.e.,

preri,j := PRF.Eval(k, (i, j)) for all (i, j) ∈ [K]× [N ].
Instead, we now generate these values using a punctured key kĴ for (i, j) ∈ [K] × [N ] \ Ĵ , and

as before for (i, j) ∈ Ĵ . Concretely, at the beginning of the interaction, the game samples k ←
PRF.Gen(1λPRF , 1log(KN)) as before, extracts

ˆseedJ and computes Ĵ as described in G2,b, and addition-

ally generates kĴ ← PRF.Puncture(k, Ĵ ). Then it sets

preri,Ĵi := PRF.Eval(k, (i, Ĵi)) for all i ∈ [K]

and

preri,j := PRF.Eval(kĴ, (i, j)) for all (i, j) ∈ [K]× [N ] \ Ĵ .
By the completeness of PRF this is only a syntactical change, and hence

Pr [G3,b ⇒ 1] = Pr [G2,b ⇒ 1].

Game G4,b: In game G4,b, we change the way we generate the randomness seeds prerL
i,ĴL

i

for i ∈ [K].

Concretely, we sample them at random from {0, 1}λPRF. We can bound the distinguishing advantage

between games G3,b and G4,b using a reduction B from the security of PRF. The reduction B is as

follows:
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• Run A to get a public key and messages, i.e., (pk,m0,m1, St)← A(1λ).

• Run A on input St with access to random oracles and interactive oracles O0,O1, i.e., St′ ←
AO0,O1(St). The oracle O1 is provided as in game G3,b and oracle O0 is provided as follows:

– When A sends NL, comL
J , extract ĴL, Ĵ L from comL

J as game G3,b does and output Ĵ L
to the PRF challenger. Obtain the punctured key kĴL and values {prerL

i,ĴL
i

}i∈[K].

– Use kĴL to sample prerLi,j for (i, j) ∈ [K] × [NL] \ Ĵ L as in G3,b. Continue the oracle

simulation as in G3,b. According to this, if the simulation does not abort, send the key kĴL
in the fourth message of the interaction.

• Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run

b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and output b′.

Note that if the values prerL
i,ĴL

i

are random, then B perfectly simulates G4,b, whereas if they are the

outputs of the pseudorandom function, B perfectly simulates G3,b. By the security of PRF with input

length log(KNL) we obtain

|Pr [G3,b ⇒ 1]− Pr [G4,b ⇒ 1]| ≤ Advpsrand
B,PRF,d(λ).

Game G5,b: In game G5,b, we change the way we generate the randomness seeds prerR
i,ĴR

i

for i ∈ [K].

Concretely, we sample them at random from {0, 1}λPRF. Anologously to the previous change, a reduction

from the security of PRF shows that

|Pr [G4,b ⇒ 1]− Pr [G5,b ⇒ 1]| ≤ Advpsrand
B,PRF,d(λ).

Game G6,b: In game G6,b, we change the way we compute the values ri,Ĵi for i ∈ [K]. Note that in

G5,b these were computed as ri,Ĵi := Hx(preri,Ĵi). Now, we sample them randomly as

ri,Ĵi = (αi,Ĵi , ϕi,Ĵi , γi,Ĵi)
$← Zp ×Rck × {0, 1}λPRF .

Note that A can only distinguish between games G5,b and G6,b if it queries Hx(preri,Ĵi) for some

i ∈ [K]. However, A obtains no information about preri,Ĵi , which is sampled uniformly at random. By

a union bound over all hash queries, i ∈ [K] and {L,R} we obtain

|Pr [G5,b ⇒ 1]− Pr [G6,b ⇒ 1]| ≤ 2KQHx
2λPRF

.

Game G7,b: Game G7,b is as G6,b, except that it computes the values comr,i, i ∈ [K] in a di�erent way.

Concretely, for all i ∈ [K], it samples ηi
$← {0, 1}λ and computes the comr,i as

comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ĵi−1), ηi,Hr(ri,Ĵi+1), . . . ,Hr(ri,N )).

Later it returns the ηi as part of its second message. Note that A can only see the di�erence between

G6,b and G7,b if it queries Hr(rX
i,ĴX

i

) for an i ∈ [K] and X ∈ {L,R}. It is clear that A obtains no

information about γi,Ĵi and γi,Ĵi is sampled uniformly at random. Thus, a union bound over all QHr

random oracle queries, i ∈ [K], and X ∈ {L,R} yields

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2KQHr

2λPRF
.

Game G8,b: In game G8,b we change the way the commitments µi,Ĵi , i ∈ [K] are generated. Recall

that before, these were generated as

µi,Ĵi := Translate(ck, µ0, ϕi,Ĵi) = Com(ck,m;ϕ0 + ϕi,Ĵi).
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Note that if the game does not stop, then especially Ĵ = J and ϕi = ϕ0 + ϕi,Ĵi . In game G8,b, we

sample ϕi
$← Rck and set µi,Ĵi := Com(ck,m;ϕi) for all i ∈ [K]. We claim that the view of A is

unchanged. This is because, due to the previous changes, A gets no information about ϕi,Ĵi . Thus, we

have to consider the distribution of the values ϕi = ϕ0 +ϕi,Ĵi conditioned on kĴ, (ϕ0 +ϕi,j)j 6=Ĵi and

ϕ0. This distribution is uniformly random as ϕi,Ĵi is uniformly random. Hence we have

Pr [G8,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G9,b: In game G9,b, we change the way µ0 is generated, using that CMT is perfectly hiding.

Concretely, we sample a random message m̄L
(resp. m̄R

) and set µ0 := Com(ck, m̄;ϕ0). Note that in

G9,b the value ϕ0 is only needed to compute µ0. Especially, it is not needed to compute the values ϕi
which are part of the �nal signatures due to the previous changes. It follows from the security of CMT
that Com(ck, m̄;ϕ0) and Com(ck,m;ϕ0) are identically distributed given ck. Therefore, the view of A
is not changed and we get

Pr [G9,b ⇒ 1] = Pr [G8,b ⇒ 1].

Let us take a closer look at game G9,b. Here, for each instance i ∈ [K], the only part that depends

on message m (and hence bit b) is the Jth
i session. All other sessions only depend on µ0, which does

not depend on m anymore. Now, our �nal claim is that we can bound the di�erence between G9,0
and G9,1 using the perfect blindness under maliciously generated keys of the well-known BLS blind

signatures scheme [Bol03]. Concretely, we can now apply a straight-forward reduction from the game

in Lemma 3.3 and obtain

Pr [G9,0 ⇒ 1] = Pr [G9,1 ⇒ 1].

In summary, we showed that G0,0 is close to G9,0, G9,0 is close to G9,1, and G9,1 is close to G0,1.

Thus, G0,0 is close to G0,1, which is what we had to show.

Theorem 3.2. Let CMT be a randomness homomorphic commitment scheme and PRF be a puncturable

pseudorandom function. Further, let H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ →
{0, 1}λ be random oracles. Also, assume that there is a ϑ > 0 and f is such that

f(ctr) = d3ϑ ln(qmax + 1) · ctre .

Then, BSCDH satis�es qmax-one-more unforgeability, under the CDH assumption relative to PGGen.
Speci�cally, let δ > 0 such that (1 − δ)ϑ > 1. Then, for any PPT algorithm A that makes at most

QHr , QHc , QH′ , QH queries to oracles Hr,Hc,H′,H, respectively, and starts at most q ≤ qmax interactions

with his signer oracle, there are PPT algorithms B and B′ with T(B) ≈ T(B′) ≈ T(A) and

Advqmax-OMUF
A,BSCDH

(λ)− e−δK ≤ Advbind
B′,CMT(λ) + K

p
+ 4qK · AdvCDH

B,PGGen(λ) + stat

where

stat =
Q2

Hr

2λ +
Q2

Hc
2λ + qQHr

2λ + qKQHr

2λ + qQHc
2λ + qQH′

2λ−1 .

Proof. Set BS := BSCDH. Let A be an adversary against the OMUF security of BS. We prove the

statement via a sequence of games.

Game G0: We start with game G0 := qmax-OMUFABS, which is the one-more unforgeability game.

We brie�y recall this game. A key pair (pk, sk)← Gen(1λ) is sampled, A is run with concurrent access

to an interactive oracle O simulating S(sk). Assume that A completes ` interactions with O. Further, A
gets access to random oracles H,H′,Hr and Hc, which are provided by the game in the standard lazy

42



3.4. PI-CUT-CHOO BLIND SIGNATURES

manner. When A �nishes its execution, it outputs tuples (m1, σ1), . . . , (mk, σk) and wins, if all mi are

distinct, k > ` and all signatures σi verify with respect to pk and mi.

Game G1: In game G1, we add an additional abort. The game aborts if in the end A’s output contains

two pairs (m(0), σ(0)), (m(1), σ(1)) such that m(0) 6= m(1)
but there exists i(0), i(1) ∈ [K] such that

Com(ck,m(0);ϕ(0)
i(0)) = Com(ck,m(1);ϕ(1)

i(1)).

As CMT is computationally binding, a straight-forward reduction B′ shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advbind
B′,CMT(λ).

Game G2: This game is as G1, but we rule out collisions for oracles Ht, t ∈ {r, c}. To be more precise,

we change the simulation of oracles Ht, t ∈ {r, c} in the following way. If A queries Ht(x) and this

value is not yet de�ned, the game samples an image y $← {0, 1}λ. However, if there exists an x′ 6= x
with Ht(x′) = y, the game returns ⊥. Otherwise it behaves as before. Note thatA can only distinguish

between G1 and G2 if such a collision happens, i.e., Ht returns ⊥. We can apply a union bound over all

Q2
Ht pairs of random oracle queries and obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
Q2

Hr

2λ +
Q2

Hc
2λ .

Note that the change in G2 implies that at each point of the execution of the game and for each image

y ∈ {0, 1}λ, there is at most one preimage H−1
t (y) under Ht. By looking at the random oracle queries

of A, the game can extract preimages of given images y, and we know that for each y at most one

preimage can be extracted. We will make use of such an extraction in the following games.

Game G3: We change the way the signer oracle is executed. In particular, whenA sends µ0, comr, comc

as its �rst message, the game tries to extract values ¯comr,i such that comr = Hr( ¯comr,1, . . . , ¯comr,K)
by searching through random oracle queries. If the game can not extract such a preimage, we write

¯comr,i = ⊥ for all i ∈ [K]. Then, the game aborts if it can not extract such a preimage , i.e., ¯comr,i = ⊥,

but later algorithm Check outputs 1. Recall that algorithm Check veri�es that

comr = Hr(comr,1, . . . , comr,K).

Thus, for every �xed interaction, we can bound the probability of such an abort by QHr/2λ. Indeed,

once comr is sent by A and thus �xed, and the game can not extract, we know that there is no bitstring

x such that Hr(x) = comr. Also, if algorithm Check outputs 1, we know that A was able to �nd a

preimage of comr after this was �xed. This can happen with probability at most 1/2λ for each random

oracle query. Using a union bound over all interactions we obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qQHr

2λ .

Game G4: We introduce another abort in the signer oracle. In this game, after the extraction of

( ¯comr,1, . . . , ¯comr,K) from comr we introduced before, the game extracts (̄ri,1, . . . , r̄i,N ) from ¯comr,i
for every i ∈ [K] for which ¯comr,i 6= ⊥, such that

¯comr,i = Hr(Hr(̄ri,1), . . . ,Hr (̄ri,N )).

Again, the game does this by looking at the random oracle queries of A and we write r̄i,j = ⊥ if the

game can not extract the value r̄i,j . If there is an instance i ∈ [K] and a session j ∈ [N ] such that

¯comr,i 6= ⊥ but r̄i,j = ⊥ and later in that execution Ji 6= j but algorithm Check outputs 1, the game

aborts.

To analyze the probability of this abort, �x an interaction and an instance i ∈ [K]. Assume that

¯comr,i 6= ⊥ and there is a session j ∈ [N ] such that r̄i,j = ⊥ and later in that interaction Ji 6= j. Then,

43



CHAPTER 3. BLIND SIGNATURES

after ¯comr,i is �xed, we consider two cases. In the �rst case, the game could not extract h1, . . . , hN
such that ¯comr,i = Hr(h1, . . . , hN ). Clearly, once ¯comr,i is �xed, the probability that one of the hash

queries of A evaluates to ¯comr,i is at most 1/2λ. Thus, the probability that Check outputs 1, i.e., A is

able to open ¯comr,i in this case, is at most QHr/2λ. Similarly, in the case where the game could extract

h1, . . . , hN , but could not extract r̄i,j such that Hr (̄ri,j) = hj , the probability that one of A’s hash

queries evaluates to hj is at most 1/2λ. Thus, the probability that Check outputs 1, i.e., A is able to

open hj in this case, is at most QHr/2λ. Note that here we needed that j 6= Ji, as the de�nition of

Check does not require A to open hJi . Applying a union bound over the interactions and instances we

get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qKQHr

2λ .

Game G5: We introduce another abort: whenever A sends µ0, comr, comc as its �rst message, the

game behaves as before, but additionally the game extracts values c̄1,1, . . . , c̄K,N from comc such that

comc = Hc(c̄1,1, . . . , c̄K,N ).

If the game can not extract, but later algorithm Check outputs 1, the game aborts. Note that algorithm

Check internally checks if

comc = Hc(c1,1, . . . , cK,N ).

Thus, for each �xed interaction it is possible to argue as in the previous games to bound the probability

of such an abort and hence we obtain

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ qQHc
2λ .

Game G6: In G6, the signer oracle sends a random comJ in the beginning of each interaction. Later,

before it has to send seedJ, salt, it samples salt $← {0, 1}λ and aborts if H′(seedJ, salt) is already

de�ned. If it is not yet de�ned, it de�nes it as H′(seedJ, salt) := comJ. The adversary A can only

distinguish between G5 and G6 if H′(seedJ, salt) is already de�ned. By a union bound over all QH′

hash queries and q interactions we obtain

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ qQH′

2λ .

Game G7: In G7, the game aborts if in some interaction there exists an i ∈ [K] such that H′(seedJ, i)
has already been queried before the signing oracle sends seedJ to A. Clearly, A obtains no information

about seedJ before the potential abort, see G6. Further, seedJ is sampled uniformly at random. A union

bound over all QH′ queries and q interactions shows that

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ qQH′

2λ .

Now, �x an interaction in G7 and assume that Check returns 1 and the game does not abort

due to any of the reasons we introduced so far. Note that this means that for all instances i ∈ [K]
the value ¯comr,i could be extracted. Furthermore, this means that if there exists i ∈ [K], j0 ∈ [N ]
such that r̄i,j0 = ⊥ then later Ji = j0. Also, note that if Check does not abort, then we have

¯comr,i = comr,i, r̄i,j = ri,j and c̄i,j = ci,j for all (i, j) ∈ [K]× [N ] for which these values are de�ned.

This is because we ruled out collisions for oracles Hr,Hc. Now, we de�ne an indicator random variable

cheati,ctr for the event that in the ctrth
interaction, the signer oracle does not abort and there exists

i ∈ [K], j ∈ [N ] such that r̄i,j = ⊥ or r̄i,j = (α,ϕ, γ) such that

ci,j 6= H(pki,Translate(ck, µ0, ϕ)) · gα.
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We say thatA successfully cheats in instance i ∈ [K] and interaction ctr if cheati,ctr = 1. We also de�ne

the number of interactions in which A successfully cheats in instance i as cheat∗i :=
∑q+1

ctr=2 cheati,ctr.
By the discussion above, we have that cheati,ctr = 1 implies that Ji = j0 and thus

Pr [cheati,ctr = 1] ≤ 1
N
.

Therefore, we can bound the expectation of cheat∗i using

E [cheat∗i ] ≤
1

3ϑ ln(qmax + 1)

q+1∑
ctr=2

1
ctr ≤

ln(q + 1)
3ϑ ln(qmax + 1) ≤

1
3ϑ.

Now, if we plugX := cheat∗i and s := 3E [cheat∗i ]+δ = 1/ϑ+δ into the Cherno� bound (Lemma 3.1),

we get that for all i ∈ [K]

Pr
[

cheat∗i ≥
1
ϑ

+ δ

]
≤ e−δ.

We note that the entire calculation of this probability also holds if we �x the random coins of the

adversary.

Game G8: Game G8 is de�ned as G7, but additionally aborts if for all i ∈ [K] we have cheat∗i ≥ δ+1/ϑ.

In particular, if G8 does not abort, then there is some instance i for whichA does not successfully cheat

at all, which follows from the assumption (1− δ)ϑ > 1.

We can now bound the distinguishing advantage of A between G7 and G8 as follows. We denote

the random coins of A by ρA and the random coins of the experiment (excluding ρA) by ρ. Let bad be

the event that for all i ∈ [K] we have cheat∗i ≥ δ + 1/ϑ. We note that the coins ρ that the experiment

uses for the K instances are independent. Thus we have

Pr
ρ,ρA

[bad] =
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · Pr
ρ,ρA

[bad | ρA = ρ̄A]

=
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] ·
∏
i∈[K]

Pr
ρ,ρA

[
cheat∗i ≥

1
ϑ

+ δ

∣∣∣∣ ρA = ρ̄A

]
≤
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · e−δK = e−δK ,

which implies

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ Pr
ρ,ρA

[bad] ≤ e−δK .

Game G9: In game G9, we sample a random instance i∗ $← [K] at the beginning of the game. In the

end, the game aborts if cheat∗i∗ ≥ δ + 1/ϑ. In particular, if this game does not abort, then A does not

successfully cheat in instance i∗ at all. As A’s view is independent from i∗, we have

Pr [G9 ⇒ 1] = Pr
[
G8 ⇒ 1 ∧ cheat∗i∗ <

1
ϑ

+ δ

]
= Pr [G8 ⇒ 1] · Pr

[
cheat∗i∗ <

1
ϑ

+ δ

∣∣∣∣ G8 ⇒ 1
]

≥ Pr [G8 ⇒ 1] · Pr
[

cheat∗i∗ <
1
ϑ

+ δ

∣∣∣∣ ∃i ∈ [K] : cheat∗i <
1
ϑ

+ δ

]
≥ Pr [G8 ⇒ 1] · 1

K
,
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where the �rst inequality follows from the fact that the event G8 ⇒ 1 implies the event ∃i ∈ [K] :
cheat∗i < δ+ 1/ϑ. We note that from now on, our proof follows the proof strategy of the BLS signature

scheme [BLS01].

Game G10: In game G10, we introduce an initially empty set L and a new abort. We highlight that we

treat L as a set and therefore every bitstring is in L only once. Recall that whenA sends µ0, comr, comc

to the signer oracle, the game tries to extract values r̄i,j for (i, j) ∈ [K]× [N ]. Then the game samples

seedJ and computes J accordingly. In particular, due to the changes in the previous games we know

that the game extracts r̄i∗,Ji∗ = (α,ϕ, γ) unless the experiment will abort anyways. Then, in game

G10, the game will insert Translate(ck, µ0, ϕ) into L as soon as it needs to compute si∗,Ji∗ . This means

that the list L contains at most as many entries as the number of completed interactions.

Fix the �rst pair (m, σ) in the adversary’s �nal output such that for σ = (σ̄, ϕ1, . . . , ϕK) and

µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. Such a pair must exists if A is successful, see game G1. Then

game G10 aborts if H(pki∗ , µ∗) is not de�ned yet. Note that A’s success probability in such a case can

be at most 1/p and hence

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ 1
p
.

Game G11: In game G11, we change how the random oracle H is simulated and add a new abort. For

every query of the form H(pki∗ , µ) the game independently samples a bit b[µ] ∈ {0, 1} such that the

probability that b[µ] = 1 is 1/(q + 1). Whenever the game adds a value µ to the set L, it aborts if

b[µ] = 1. Then, afterA returns its �nal output, the game determines µ∗ as in G10, adds arbitrary values

to L such that all values in L∪{µ∗} are distinct and |L| = q and aborts if b[µ∗] = 0 or there is a µ ∈ L
such that b[µ] = 1. Otherwise it continues as before. Note that unless the game aborts, A’s view does

not change. As all bits b[µ] are independent, we derive

Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀µ ∈ L : b[µ] = 0]

= Pr [G10 ⇒ 1] · 1
q + 1

(
1− 1

q + 1

)q
= Pr [G10 ⇒ 1] · 1

q

(
1− 1

q + 1

)q+1

≥ Pr [G10 ⇒ 1] · 1
4q ,

where the last inequality follows from (1− 1/x)x ≥ 1/4 for all x ≥ 2.

Finally, we construct a reduction B that solves CDH such that

Pr [G11 ⇒ 1] ≤ AdvCDH
B,PGGen(λ).

Then, the statement follows by an easy calculation. Reduction B works as follows:

• B gets as input bilinear group parameters G, g, p, e and group elements X = gx, Y = gy . The

goal of B is to compute gxy . First, B samples i∗ $← [K]. Then, it de�nes pki∗ := X (which

implicitly de�nes ski∗ := x) and ski $← Zp, pki := gski
for i ∈ [K] \ {i∗}.

• B runs adversary A on input G, g, p, e, pk := (pk1, . . . , pkK , ck) with oracle access to a signer

oracle and random oracles H,Hr,Hc,H′. To do so, it simulates oracles Hr,Hc,H′ exactly as in

G11. The other oracles are provided as follows:

– For a query of the form H(pki∗ , µ) for which the hash value is not yet de�ned, it samples

a bit b[µ] ∈ {0, 1} such that the probability that b[µ] = 1 is 1/(q+ 1). Then, it de�nes the

hash value as Y b[µ] · gt[i∗,µ]
for a randomly sampled t[i∗, µ] $← Zp. For a query of the form

H(pki, µ), i 6= i∗ for which the hash value is not yet de�ned it de�nes the hash value as

gt[i,µ]
for a randomly sampled t[i, µ] $← Zp. For all other queries it simulates H honestly.
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– When A starts an interaction with the signer oracle, B sends N to B as in the protocol.

When B sends its �rst message µ0, comr, comc as its �rst message, B behaves as G11. In

particular, it tries to extract r̄i,j , c̄i,j for (i, j) ∈ [K]× [N ]. It then sends seedJ to A.

– WhenA sends its second message kJ, {ci,Ji , ηi}i∈[K], B aborts under the same conditions

as G11 does. In particular, if B does not abort and the signer oracle does not abort then

r̄i∗,Ji∗ = (α,ϕ, γ) is de�ned and B for µ := Translate(ck, µ0, ϕ), B sets si∗,Ji∗ :=
Xt[i∗,µ]+α

. As de�ned in G11, B also inserts µ into the set L. It computes si,Ji for i 6= i∗

as game G11 does, which is possible as B holds the corresponding ski. Then, B sends

s̄ :=
∏K
i=1 si,Ji to A.

• When A returns its �nal output, B performs all veri�cation steps in G11. In particular, it

searches for the �rst pair (m, σ) in A’s �nal output such that for σ = (σ̄, ϕ1, . . . , ϕK) and

µ∗ := Com(ck,m;ϕi∗) we have µ∗ /∈ L. As de�ned in G11, B aborts if b[µ∗] = 0. Finally, B
de�nes µi := Com(ck,m;ϕi) and returns

Z := σ̄ ·X−t[i
∗,µ∗] · g−

∑
i∈[K]\{i∗}

t[i,µi]ski

to its challenger.

We �rst argue that B perfectly simulates G11 for A. To see that, note that as the t[i, µ] are sampled

uniformly at random, the random oracle is simulated perfectly. To see that si∗,Ji∗ is distributed correctly,

note that if the signing oracle and G11 do not abort, then we have

cski∗
i∗,Ji∗ = (H(pki∗ , µ) · gα)ski∗ =

(
Y b[µ] · gt[i

∗,µ] · gα
)x

= Xt[i∗,µ]+α,

where the last equality follows from b[µ] = 0, as otherwise G11 would have aborted.

It remains to show that if G11 outputs 1, then we have Z = gxy . This follows directly from the

veri�cation equation and b[µ∗] = 1. To see this, note that

K∏
i=1

e (H(pki, µi), pki) = e
(
Y b[µ

∗] · gt[i
∗,µ∗], X

)
·

∏
i∈[K]\{i∗}

e
(
gt[i,µi], gski

)
= e (g, g)xy+t[i∗,µ∗]x · e (g, g)

∑
i∈[K]\{i∗}

t[i,µi]ski
.

Using the veri�cation equation, this implies that

gxy = σ̄ · g
−
(
t[i∗,µ∗]x+

∑
i∈[K]\{i∗}

t[i,µi]ski
)

Concluded.

We note that instead of giving games G10,G11 and the reduction from CDH explicitly, one can also

directly reduce from the security of the BLS signature scheme to G9, leading to the very same bound in

total. This tells us that one can use (up to losing log(K) bits
6

of security) the same curves as for BLS.

We summarize this observation in the following lemma.

Lemma 3.4 (Informal). Under the same conditions as in Theorem 3.2, the scheme BSCDH satis�es qmax-
one-more unforgeability, if the BLS signature scheme [BLS01] is unforgeable under chosen message attacks

relative to PGGen, where the concrete security loss is (up to statistically negligible terms) given byK .

6

In our concrete instantiation, log(K) ≈ 6.5.
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3.4.2 Concrete Parameters and E�ciency

Let us now discuss concrete parameters for our scheme BSCDH based on the CDH assumption. Recall

that the scheme uses parameters K,ϑ, and p. Instantiating the commitment scheme CMT with a

Pedersen commitment we also have to set a value for the order p′ of the group that is used in this

commitment scheme. Say that we aim for κ bits of security. In particular, we want to �nd appropriate

values for K,ϑ, |p| and |p′|. Consider an adversary with running time t and advantage ε against the

OMUF security of the scheme. If ε/t < 2−κ, we are done. Otherwise, we have ε/t ≥ 2−κ and ε ≥ 2−κ,

as t ≥ 1. Now, we want to use Theorem 3.2 to end up with a contradiction. We assume κCDH bits of

security for the CDH instance and κCMT bits of security for the commitment scheme CMT. If we use

Theorem 3.2 with δ := − ln(ε/2)/K , then e−δK = ε/2 and the security bound becomes

ε ≤ 2
(

2−κCMT · t+ K

p
+ 4qK · 2−κCDH · t+ stat

)
.

We can now increase κCDH and κCMT (for a �xed combination of ε and t) until this inequality does not

hold anymore. Then the adversary could not have existed in the �rst place. Using κCDH and κCMT, we

can then determine an appropriate choice for |p| = 2κCDH + 1 and |p′| = 2κCMT + 1, see [Pol78].

However, note that we can only apply this approach, if (1− δ)ϑ > 1, due to Theorem 3.2. By our

choice of δ it is therefore su�cient to guarantee that

(
1− ln(2κ+1)/K

)
ϑ > 1. It is clear that for a

decreasing K , we have to increase ϑ to satisfy this constraint. Thus, our approach is as follows: For a

few choices of K , we determine the minimum ϑ > 0, such that the constraint holds. If there is no such

ϑ, we throw away this particular K . Then, we proceed as discussed above to �nd security levels for the

underlying instances and compute the signature sizes and key sizes
7
.

Next, we focus on blindness. For simplicity, assume that NL = NR =: N . We instantiate

PRF using a GGM construction with a random oracle HPRF (cf. Section 3.3) and know that εPRF ≤
(2 log(NK)− 1)KQHPRF/2λPRF

, where λPRF is the output length of the pseudorandom function. By

applying Theorem 3.1 we obtain the security bound

(2 log(N) + 2 log(K)− 1)KQHPRF

2λPRF−2 + Q2
H′

2λ−1 + QH′

2λ−2 + QHx
2λPRF−2 + KQHr

2λPRF−2 ,

where λPRF denotes the output length of PRF. Thus, we only have to increase λPRF until the security

bound guarantees κ bit of security.

We implemented the approach discussed above in Python script
8
. To simplify a bit, we made the

conservative assumption that the number of hash queries for each random oracle is equal to the running

time of the adversary and set NL
and NR

in the blindness bound to be equal to the maximum number

q of signatures interactions that the adversary starts. Results can be found in Table 3.1.

3.5 PI-Cut-Choo’s Friend from RSA

In this section, we present our blind signature scheme based on the RSA assumption. Before we

present the construction, we recall some background, namely, the Okamoto-Guillou-Quisquater [Oka93]

function, and the boosting transform from [KLR21] instantiated with this function.

3.5.1 The OGQ Linear Function

Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [Oka93] linear function. The function

is speci�ed by public parameters par = (n, a, γ) where p and q are distinct large primes and n = pq,

7

In practice, we would use an asymmetric type-3 pairing for e�ciency. This means that the public key has to

be given in both source groups G1 and G2. Our concrete parameter calculations take this into account.

8

The Python script can be found in https://github.com/b-wagn/dissertation-efficiency-scripts.
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a $← Z∗n is sampled uniformly at random, and γ is a prime with gcd(n, γ) = gcd(ϕ(n), γ) = 1. Further,

de�ne a trapdoor td := (p, q). Throughout this section, we assume that these parameters are output by

algorithm RSAGen. Let D := Zγ × Z∗n. It can be shown [HKL19] that D forms a group with respect to

the group operation

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod γ, y1 · y2 · ab

x1+x2
γ c mod n

)
.

We specify a linear function F as follows:

F : D → Z∗n, (x, y) 7→ axyγ mod n.

In addition, we specify a function

Ψ: Z∗n × Zγ × Zγ → D, (x, s, s′) 7→ (0, xb−
s+s′
γ c mod n).

These funcions satisfy

∀x, y ∈ D, s ∈ Zγ : F(xs ◦ y) = F(x)s · F(y),

∀y ∈ Z∗n, s, s′ ∈ Zγ : ys+s
′

= ys · ys
′
· F(Ψ(y, s, s′)).

The collision resistance and one-wayness of the function F is tightly implied by the RSA assumption.

For more details, see [HKL19]. We argue that the trapdoor can be used to sample uniform preimages

for F. To this end, we specify an algorithm Invert(td, z) for z ∈ Z∗n, which works as follows:

• Use p and q to compute ρ ∈ Z such that ργ mod ϕ(n) = 1.

• Sample x $← Zγ and set y := (za−x)ρ mod n. Return (x, y).

In the following, we argue that Invert outputs properly distributed preimages. It is clear that for

(x, y)← Invert(td, z), we have

F(x, y) = axyγ = ax(za−x)γρ mod ϕ(n) = z (mod n).

Thus, it remains to show that the distributions

D1 := {((x, y), z) | (x, y) $← Zγ × Z∗n, z := axyγ mod n}

and

D2 :=
{

((x, y), z)
∣∣ z $← Z∗n, x $← Zγ , y := (za−x)ρ mod n

}
are the same. Fix (x0, y0, z0) ∈ Zγ ×Z∗n ×Z∗n. As a is invertible and y 7→ yγ de�nes a permutation on

Z∗n, we have

Pr
(x,y,z)←D1

[z = z0] = 1
ϕ(n) = Pr

(x,y,z)←D2
[z = z0].

By conditioning on z = z0 we see that it remains to show that

Pr
(x,y,z)←D1

[(x, y) = (x0, y0) | z = z0] = Pr
(x,y,z)←D2

[(x, y) = (x0, y0) | z = z0].

Here, the left-hand side is equal to 1/γ if z0 = ax0yγ0 mod n and 0 otherwise. The right-hand side is

equal to 1/γ if y0 = (z0a
−x0)ρ mod n and 0 otherwise. As both conditions are equivalent, we can

conclude the analysis.
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S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := ctr N for j ∈ [N ] :

αj
$← D, βj $← Z∗n, γj $← {0, 1}λ

ϕj
$← {0, 1}λ, µj := Ĥ(m, ϕj)

ϕj
$← Rck, µj := Com(m;ϕj)

for j ∈ [N ] : com1, . . . , comN comj := Ĥ(αj , βj , µj , γj)

rj
$← D, Rj := F(rj) R1, . . . , RN for i ∈ [N ] :

R′j := Rj · F(αj) · pk′βj

J $← [N ] c1, . . . , cN c′j := H(µj , R′j), cj := c′j + βj

for j ∈ [N ] \ {J} : J

if comj 6= Ĥ(αj , βj , µj , γj) : {(αj , βj , µj , γj)}j 6=J

abort
R′j := Rj · F(αj) · pk′βj

if cj 6= H(µj , R′j) + βj :
abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ : abort

s′J := sJ ◦ αJ ◦Ψ(pk′, cJ ,−c′J)
return σ := (c′J , s′J , ϕJ)

Figure 3.3: The signature issuing protocol of the blind signature scheme obtained via the boosting

construction applied to the OGQ function. Here, H : {0, 1}∗ → Zγ , Ĥ : {0, 1}∗ → {0, 1}λ are random

oracles. The state ctr of S is atomically incremented at the beginning of every interaction. Instead

of generating the commitments µi via a random oracle, we can also generate it via a commitment

scheme (highlighted line). As long as it is binding, one can easily verify that the proof goes through.

3.5.2 The Underlying Boosting Transform

We revisit the boosting transform introduced in [KLR21] for the special case of the OGQ linear function.

The boosting transform de�nes a blind signature scheme CCBS as follows.

Key Generation. Algorithm CCBS.Gen(1λ) generates keys as:

1. Generate parameters par = (n, a, γ) as above.

2. Sample sk′ $← D, set pk′ := F(sk′).

3. Return the public key pk := (par, pk′) and the secret key sk := sk′.

Signature Issuing. The signature issuing protocol of the scheme is presented in Figure 3.3. Here, the

Signer is stateful and its state ctr is intitialized as ctr := 1.
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Veri�cation. A signature σ = (c′, s′, ϕ∗) is veri�ed with respect to a message m via algorithm

CCBS.Ver(pk = (par, pk′),m, σ), which is as follows:

1. Compute the commitment µ∗ := Ĥ(m, ϕ∗)

2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c
′
). Otherwise return 0.

We highlight that for the proof of one-more unforgeability in [KLR21] it is not important that the com-

mitments µi are computed using a random oracle. In fact, what it needed is only that this commitment

is binding. Indeed, it is easy to see that the proof goes through using any binding commitment scheme.

We denote this modi�ed scheme using a commitment scheme CMT by CCBS[CMT]. We summarize

the one-more unforgeability bounds of the scheme CCBS[CMT] in the following theorem. The concrete

bounds can easily be derived from [HKL19, KLR21].

Theorem 3.3. Let CMT be a randomness homomorphic commitment scheme. Further, let H : {0, 1}∗ →
Zγ and Ĥ : {0, 1}∗ → {0, 1}λ be random oracles. Then, BS := CCBS[CMT] satis�es one-more unforge-

ability, if the RSA assumption holds relative to RSAGen.
Precisely, for every L = poly(λ) and every PPT algorithm A that makes at most QH, QĤ queries to

oracles H, Ĥ, respectively, and starts at most p interactions with his signer oracle, there exist PPT algorithms

B, B′, B′′ with T(B) ≈ 2T(A), T(B′) ≈ T(B′′) ≈ T(A), and

AdvRSA
B,RSAGen(λ) ≥ 1

Q2
H`

3

(
AdvL-OMUF

A,BS (λ)
4 −

Advbind
B′′,CMT(λ) + p · AdvRSA

B′,RSAGen(λ)
2 − stat

2 − ex
γ

)3

,

where stat =
(
Q2

Ĥ + pQĤ + p4 + p2QH

)
/2λ, ex = (QH(p− `))`+1

, and

` = 3 ln(p+ 1) + ln
(

2/AdvL-OMUF
A,BS (λ)

)
.

3.5.3 Construction

Now, we are ready to present our blind signature scheme BSRSA, which makes use of a randomness

homomorphic commitment scheme CMT with randomness space Rck and a puncturable pseudo-

random function PRF. To recall, we can instantiate PRF using random oracles and CMT tightly

based on the RSA assumption. Furthermore, we need random oracles H : {0, 1}∗ → Zγ ,H′ : {0, 1}∗ →
Z∗n,H′′ : {0, 1}

∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → D×Zγ×Rck×{0, 1}λPRF
,

where λPRF is a security parameter used for PRF.

Key Generation. Algorithm BSRSA.Gen(1λ) generates keys as follows:

1. Generate parameters par = (n, a, γ) and a trapdoor td = (p, q) as above (see Section 3.5.1).

2. Sample sk′ $← D, set pk′ := F(sk′).

3. Generate a commitment key ck← CMT.Gen(1λ).

4. Set the state of S to ctr := 1.

5. Return the public key pk := (par, pk′, ck) and the secret key sk := (td, sk′).

Signature Issuing. The algorithms S,U of the signature issuing protocol are formally presented in

Figures 3.4 and 3.5. We note that S keeps a state ctr, which is inititalized as ctr := 1.

Veri�cation. A signature σ = (c′, s′, ϕ∗) is veri�ed with respect to a message m via algorithm

BSRSA.Ver(pk = (par, pk′, ck),m, σ), which is as follows:

1. Compute the commitment µ∗ := Com(ck,m;ϕ∗).

2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c
′
). Otherwise return 0.
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S(sk = (td, sk′)); state ctr U(pk = (par, pk′, ck),m)

ctr := ctr + 1, N := ctr k ← PRF.Gen(1λPRF , 1log(N))

J $← [N ], salt $← {0, 1}λ ϕ0
$← Rck

comJ := H′′(J, salt) N, comJ µ0 := Com(ck,m;ϕ0)

for j ∈ [N ] :
prerj := PRF.Eval(k, j)
rj := Hx(prerj)
parse (αj , βj , ϕj , γj) := rj

seed $← {0, 1}λ µj := Translate(ck, µ0, ϕj)
for j ∈ [N ] : comr := Hr(Hr(r1), . . . ,Hr(rN ))

Rj := H′(seed, j) comr, µ0

rj ← LF.Invert(td, Rj) seed for j ∈ [N ] :

Rj := H′(seed, j)
R′j := Rj · F(αj) · pk′βj

c′j := H(µj , R′j)
cj := c′j + βj

comc comc := Hc(c1, . . . , cN )

J, salt if comJ 6= H′′(J, salt) : abort

kJ ← PRF.Puncture(k, J)

kJ , cJ , η η := Hr(rJ)

if Check = 0 : abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ : abort

s′J := sJ ◦ αJ ◦Ψ(pk′, cJ ,−c′J)
ϕ∗ := ϕ0 + ϕJ

return σ := (c′J , s′J , ϕ∗)

Figure 3.4: The signature issuing protocol of the blind signature scheme BSRSA, where H : {0, 1}∗ →
Zγ ,H′ : {0, 1}∗ → Z∗n,H′′ : {0, 1}

∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → D ×
Zγ ×Rck × {0, 1}λPRF

are random oracles. The algorithm Check is defined in Figure 3.5. The state ctr
of S is atomically incremented at the beginning of every interaction.
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Alg Check(pk, N, seed, µ0, comr, comc, J, kJ , cJ , η)
01 for j ∈ [N ] \ {J} :
02 prerj := PRF.Eval(kJ , j), rj := Hx(prerj)
03 parse (αj , βj , ϕj , γj) := rj , (αj , βj , ϕj , γj) ∈ D × Zγ ×Rck × {0, 1}λPRF

04 Rj := H′(seed, j), µj := Translate(ck, µ0, ϕj), cj := H(µj , Rj · F(αj) · pk′βj ) + βj
05 if comr 6= Hr(Hr(r1), . . . ,Hr(rJ−1), η,Hr(rJ+1), . . . ,Hr(rN )) : return 0
06 if comc 6= Hc(c1, . . . , cN ) : return 0
07 return 1

Figure 3.5: Algorithm Check used in the issuing protocol of blind signature scheme BSRSA, where

H : {0, 1}∗ → Zγ ,H′ : {0, 1}∗ → Z∗n and Hr,Hc : {0, 1}∗ → {0, 1}λ,Hx : {0, 1}∗ → D×Zγ ×Rck×
{0, 1}λPRF

are random oracles.

Analysis. Completeness of the scheme can easily be veri�ed. We show blindness and one-more

unforgeability. For blindness, we will use the following lemma. Informally, it states that even with a

trapdoor, the linear blind signature scheme from the OGQ linear function satis�es blindness. The proof

is an easy extension of the proof in [HKL19]. For details, see Theorem B.3 in [CAHL
+

22b].

Lemma 3.5. For any algorithm A and bit b ∈ {0, 1}, we consider the following game Gb:

1. Let H : {0, 1}∗ → Zγ be a random oracle. Run (ρ,m0,m1, St)← AH(1λ). Use ρ as random coins

to compute n, p, q, γ, a, sk′, pk′ as in the key generation of BSRSA.

2. Let Ob′ for b
′ ∈ {0, 1} be an interactive oracle. Upon termination, it locally outputs σb⊕b′ to the

game. The oracle is de�ned as follows:

(a) ReceiveR fromA, sample (α, β) $← D×Zγ , setR′ := R·F(α)·pk′β . Set c′ := H(mb⊕b′ , R
′)

and c := c′ + β. Send c to A.
(b) Receive s from A. If F(s) 6= R · pk′c, de�ne the local output of this oracle to be σb⊕b′ := ⊥.

Otherwise, set s′ := s ◦ α ◦ Ψ(pk′, c,−c′) and de�ne the local output of this oracle to be

σb⊕b′ := (c′, s′).

3. Run A on input St with arbitrary interleaved one-time access to each of these oracles, i.e.,

St′ ← AO0,O1,H(St).

4. If σ0 = ⊥ or σ1 = ⊥, run b∗ ← A(St′,⊥,⊥). Else, run b∗ ← A(St′, σ0, σ1). Output b∗.
Then, for each algorithm A that makes at most QH many queries to H we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 4QH
|Z∗n|

.

Theorem 3.4. Let PRF be a puncturable pseudorandom function, CMT be a randomness homomorphic

commitment scheme. Further, let H : {0, 1}∗ → Zγ ,H′′ : {0, 1}∗ → {0, 1}λ and Hr : {0, 1}∗ → {0, 1}λ,
Hx : {0, 1}∗ → D× Zγ ×Rck × {0, 1}λPRF

be random oracles. Then, BSRSA satis�es semi-honest signer

blindness.

In particular, for any algorithm A that uses NL
and NR

as the counters in its interactions with the

User and queries H,Hr,Hx,H′′ at most QH, QHr , QHx , QH′′ times, respectively, there is an algorithm B
with T(B) ≈ T(A) and

Advblind
A,BSRSA

(λ) ≤ 4 · Advpsrand
B,PRF,d(λ) + Q2

H′′

2λ−1 + QH′′

2λ−2 + QHx
2λPRF−2 + QHr

2λPRF−2 + 4QH
|Z∗n|

,

where B punctures PRF at one point with input length d = max{log(NL), log(NR)}.
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Proof. Set BS := BSRSA. LetA be a PPT adversary against blindness. We will show the statement via a

sequence of games. Unless otherwise stated, random oracles are simulated honestly via lazy sampling.

Game G0,b: Game G0,b is de�ned as the real blindness game BLINDAb,BS. Recall that the game �rst

obtains random coins ρ and two messages m0,m1 from the adversary A. It computes a public key

pk as the output of Gen on random coins ρ. Afterwards, A will interact with two oracles O0 and O1,

simulating U(pk,mb) and U(pk,m1−b), respectively. We will reference to the variables used in these

executions using superscripts L and R, respectively. For example, JL refers to the index J sent by A
in the interaction with oracle O0. If we omit the superscript, we mean that our description applies to

both oracles. According to this, NL
and NR

denote the cut-and-choose parameters sent by A in the

�rst message of the interaction with oracles O0,O1, respectively. By de�nition, we have

Advblind
A,BSRSA

(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: Game G1,b is exactly as game G0,b, except that it aborts whenever there is a collision

for random oracle H′′. That is, whenever there are queries H′′(x) = H′′(x′) for x 6= x′. Clearly, the

distinguishing advantage between games G1,b and G0,b can be bounded by the probability of such a

collision, which leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤ Q2
H′′

2λ .

Game G2,b: Game G2,b is exactly as game G1,b, except that we introduce another abort. In this

game, whenever the adversary sends N, comJ as its �rst message, the game searches for a query

H′′(Ĵ , ˆsalt) = comJ . Note that the game can �nd at most one such query due to the previous change.

If the game does not �nd such a query, but later the User does not abort, as the adversary successfully

opens comJ by sending J, salt, the game aborts. It is easy to see that the probability of this event is at

most QH′′/2λ for �xed comJ and thus a union bound over {L,R} leads to

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ QH′′

2λ−1 .

Note that from now on, we can focus on the case where the game is able to �nd the query

H′′(Ĵ , ˆsalt) = comJ , as otherwise the user oracle does abort. In particular, this implies that Ĵ = J . If

the user oracle does abort, the adversary does not learn anything about the bit b as CMT is perfectly

hiding and no information about the randomness ϕ0 is ever revealed to A. For the rest of the proof, Ĵ
denotes the cut-and-choose index that is extracted by the game from the commitment comJ and J is

the cut-and-choose index that is later sent by A to open comJ . As said, we focus on the case where

these are equal.

Game G3,b: Game G3,b is de�ned exactly as G2,b, except that we change the way the randomness seeds

prerj are generated. Recall that before, these values were generated as in the real scheme, i.e.,

prerj := PRF.Eval(k, j) for all j ∈ [N ].

Instead, we now generate these values using a punctured key kĴ for j 6= Ĵ , and as before for j = Ĵ . To

be precise, at the beginning of the interaction, we sample k ← PRF.Gen(1λPRF , 1log(N)) as before, but

additionally generate kĴ ← PRF.Puncture(k, Ĵ). Then we sample

prerĴ := PRF.Eval(k, Ĵ)

and

prerj := PRF.Eval(kĴ , j) for all j ∈ [N ] \ {Ĵ}.

Clearly, by the completeness of PRF this is only a syntactical change, and hence

Pr [G3,b ⇒ 1] = Pr [G2,b ⇒ 1].
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Game G4,b: In game G4,b, we change the way we generate the values prerL
ĴL

. Namely, we sample

prerL
ĴL

$← {0, 1}λPRF. The di�erence between G3,b and G4,b can now be bounded using the security of

the puncturable pseudorandom function PRF. To be precise, we construct a reduction B as follows:

• Run (ρ,m0,m1, St)← A(1λ) and set (pk, sk) := Gen(1λ; ρ).

• Run A on input St with access to random oracles and interactive oracles O0,O1, i.e., St′ ←
AO0,O1(St). The oracle O1 is provided as in game G3,b and oracle O0 is provided as follows:

– WhenA sends NL, comL
J , extract ĴL from comL

J as game G3,b does and output ĴL to the

PRF challenger. Obtain the punctured key kĴL and value prerL
ĴL

.

– Use kĴL to sample prerLj for j ∈ [NL] \ {ĴL} as in G3,b. Continue the oracle simulation

as in G3,b. According to this, if the simulation does not abort, send the key kĴL in the

sixth message of the interaction.

• Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run

b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and output b′.

Note that if prerL
ĴL
i

is random, then B perfectly simulates G4,b, whereas if prerL
ĴL
i

= Eval(k, Ĵ), B
perfectly simulates G3,b. By the security of PRF with input length log(NL) we obtain

|Pr [G3,b ⇒ 1]− Pr [G4,b ⇒ 1]| ≤ Advpsrand
B,PRF,d(λ).

Game G5,b: In game G5,b, we change the way we generate prerR
ĴR

. Namely, we sample prerR
ĴR

$←
{0, 1}λPRF

. Note that we can repeat the argument we used from G3,b to G4,b and obtain

|Pr [G4,b ⇒ 1]− Pr [G5,b ⇒ 1]| ≤ Advpsrand
B,PRF,d(λ).

Game G6,b: In game G6,b, we change the way we compute rĴ . Note that in G5,b this was computed as

rĴ := Hx(prerĴ). Now, we sample it randomly as

rĴ = (αĴ , βĴ , ϕĴ , γĴ) $← D × Zγ ×Rck × {0, 1}λPRF .

Note that the adversary can only distinguish between games G5,b and G6,b if it queries Hx(prerĴ).

However, A obtains no information about prerĴ , which is sampled uniformly at random. By a union

bound over all hash queries and {L,R} we obtain

|Pr [G5,b ⇒ 1]− Pr [G6,b ⇒ 1]| ≤ 2QHx
2λPRF

.

Game G7,b: Game G7,b is as G6,b, except that it computes comr in a di�erent way. In detail, it samples

η $← {0, 1}λ and computes the comr as

comr := Hr(Hr(r1), . . . ,Hr(rĴ−1), η,Hr(rĴ+1), . . . ,Hr(rN ))

Later it returns η as part of its third message. Note thatA can only see the di�erence between G6,b and

G7,b if it queries Hr(rX
ĴX

) for an X ∈ {L,R}. Note that A obtains no information about γĴ and γĴ is

sampled uniformly at random. We can apply a union bound over all QHr random oracle queries and

X ∈ {L,R} and obtain

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2QHr

2λPRF
.

Game G8,b: In game G8,b we change the way the commitment µĴ is generated. Recall that in G7,b, this

is generated as

µĴ := Translate(ck, µ0, ϕĴ) = Com(ck,m;ϕ0 + ϕĴ).
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Note that if the game does not stop, then especially Ĵ = J and ϕ∗ = ϕ0 +ϕĴ . In game G8,b, we sample

ϕ∗ $← Rck and set µĴ := Com(ck,m;ϕ∗). We can argue that the view of A is unchanged as follows.

Note that due to the previous changes, A gets no information about ϕĴ . Thus, we have to consider the

distribution of the value ϕ∗ = ϕ0 + ϕĴ conditioned on kĴ , (ϕ0 + ϕj)j 6=Ĵ and ϕ0. This distribution is

uniformly random as ϕĴ is uniformly random. Hence we have

Pr [G8,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G9,b: In game G9,b, we change the way µ0 is generated. In particular, we sample a random

message m̄L
(resp. m̄R

) and set µ0 := Com(ck, m̄;ϕ0). Note that in G9,b the value ϕ0 is only needed

to compute µ0. Especially, it is not needed to compute the value ϕ∗ due to the previous changes. It

follows from the security of CMT that Com(ck, m̄;ϕ0) and Com(ck,m;ϕ0) are identically distributed

given ck. Therefore, the view of A is not a�ected by this change and we obtain

Pr [G9,b ⇒ 1] = Pr [G8,b ⇒ 1].

Note that in G9,b, the only part of the oracles O0,O1 that depends on bit b is the Ĵ th
session. Also,

note that each session by itself corresponds to the user algorithm of the linear blind signature scheme

from the OGQ linear function family, which is statistically blind. We show this in Lemma 3.5. Thus, we

can reduce from the games in Lemma 3.5 to bound A’s advantage in distinguishing between G9,0 and

G9,1. To do so, we construct a reduction B′ as follows:

• B′ runs A and gets random coins ρ and messages m0,m1, i.e., (ρ,m0,m1, St) ← A(1λ). B′
partitions these coins into ρck and ρ′, where ρck are the coins that determine ck and ρ′ are the

coins that determine the other parts of the key, i.e., par, pk′ and td, sk′. It computes these values

from the coins. Then, B′ samples ϕ∗0, ϕ
∗
1

$← Rck and sets

µ∗0 := Com(ck,m0;ϕ∗0), µ∗1 := Com(ck,m1;ϕ∗1).

It outputs ρ′, µ∗0, µ
∗
1 and its state to its challenger.

• B′ is executed with access to oracles O
′
0 and O

′
1. Also, B′ has access to a random oracle H. B′

simulates all random oracles except H′′ honestly forA, which involves appropriately forwarding

queries fromA to its challenger for oracle H. Oracle H′′ is simulated as in game G9,b, b ∈ {0, 1},
i.e., it is simulated honestly but the simulation is aborted whenever a collision occurs. It runs A
on input Stwith access to random oracles and interactive oracles O0,O1, i.e., St′ ← AO0,O1(St).
We describe the simulation of oracle O0. Oracle O1 is simulated analogously by using O

′
1 instead

of O
′
0:

– When A sends N, comJ , extract Ĵ from comJ as G9,b, b ∈ {0, 1} does. Sample keys

k ← PRF.Gen(1λPRF , 1log(N)), kĴ ← PRF.Puncture(k, Ĵ). Set prerj := PRF.Eval(kĴ , j)
and set rj := Hx(prerj) for all j ∈ [N ] \ {Ĵ}. Sample ϕ0

$← Rck and a random message m̄
and set µ0 := Com(ck, m̄;ϕ0). Set µj := Translate(ck, µ0, ϕj) for j ∈ [N ]\{Ĵ}. . Sample

η $← {0, 1}λ and compute comr := Hr(Hr(r1), . . . ,Hr(rĴ−1), η,Hr(rĴ+1), . . . ,Hr(rN )).
Send µ0 and comr to A.

– Obtain seed from adversary and compute all cj for j ∈ [N ] \ {Ĵ} as in the scheme using

the values µj . For session Ĵ , computeRĴ := H′(seed, Ĵ) and sendRĴ to oracle O
′
0. Obtain

a value cĴ and compute comc := Hc(c1, . . . , cN ). Send comc to A.

– Obtain J, salt fromA. If comJ 6= H′′(J, salt) abort the execution of this oracle. Otherwise

it must holds that Ĵ = J . Continue by sending kĴ , cĴ and η to A.

– Obtain sJ from A and forward it to oracle O
′
0.
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• B′ obtains signatures σ′0 = (c′0, s′0) and σ′1 = (c′1, s′1) from its challenger and sets

σ0 := (c′0, s′0, ϕ∗0), σ1 := (c′1, s′1, ϕ∗1).

It runs b′ ← A(St′, σ0, σ1) and returns b′ to the challenger.

It is easy to see that if B′ runs in game G0 from Lemma 3.5, then it perfectly simulates game G9,0 for

A, and if it runs in game G1 from Lemma 3.5 it perfectly simulates game G9,1 for A. Also, B′’s output

is the output of A and B′ makes as many random oracle queries as A does (with respect to random

oracle H). We know by Lemma 3.5 that B′ has advantage in distinguishing the games G0 and G1 at

most 4QH/|Z∗n|. Hence we have

|Pr [G9,0 ⇒ 1]− Pr [G9,1 ⇒ 1]| ≤ 4QH
|Z∗n|

.

The statement follows from an easy calculation.

Theorem 3.5. Let PRF be a puncturable pseudorandom function and CMT be a randomness homomorphic

commitment scheme. Further, let H′ : {0, 1}∗ → Z∗n,H′′ : {0, 1}
∗ → {0, 1}λ and Hr,Hc : {0, 1}∗ →

{0, 1}λ be random oracles. Then, BSRSA satis�es one-more unforgeability, assuming that CCBS[CMT]
(cf. Section 3.5.2) does.

Speci�cally, for any L = poly(λ), any PPT algorithmA that makes at mostQHr , QHc , QH′ , QH′′ , QH
queries to oracles Hr,Hc,H′,H′′,H, respectively, and starts at most p interactions with his signer oracle,

there exists a PPT algorithm B that makes at most QH queries to H, starts at most p interactions with his

signer oracle, makes at most p2
queries to his oracle Ĥ, such that T(B) ≈ T(A), and

AdvL-OMUF
A,BSRSA

(λ) ≤
Q2

Hr

2λ +
Q2

Hc
2λ + pQHr

2λ + pQHc
2λ + pQH′

2λ + pQH′′

2λ + AdvL-OMUF
B,CCBS[CMT](λ).

Proof. Set BS := BSRSA. Let A be an adversary against the OMUF security of BS. We prove the

statement via a sequence of games. Some parts of the proof are taken verbatim from the proof of

Theorem 3.2. Fix an arbitrary polynomial `.

Game G0: We start with game G0 := `-OMUFABS, which is the one-more unforgeability game. We

brie�y recall this game. First, a key pair (pk, sk)← Gen(1λ) is sampled and A is run with concurrent

access to an interactive oracle O simulating S(sk). We denote the number of completed interactions

betweenA and O afterA’s execution by `. As we consider the random oracle model,A also gets access

to random oracles, which are provided by the game in the standard lazy manner. When A �nishes

its execution, it outputs tuples (m1, σ1), . . . , (mk, σk) and wins, if all mi are distinct, k > ` and all

signatures σi verify with respect to pk and mi.

Game G1: This game is as G0, but we rule out collisions for oracles Ht, t ∈ {r, c}. To be more precise,

we change the simulation of oracles Ht, t ∈ {r, c} in the following way. If A queries Ht(x) and this

value is not yet de�ned, the game samples an image y $← {0, 1}λ. However, if there exists an x′ 6= x
with Ht(x′) = y, the game returns ⊥. Otherwise it behaves as before. Note thatA can only distinguish

between G0 and G1 if such a collision happens, i.e., Ht returns ⊥. We can apply a union bound over all

Q2
Ht pairs of random oracle queries and obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hr

2λ +
Q2

Hc
2λ .

In particular, the previous change implies that at each point of the execution of the game and for

each image y ∈ {0, 1}λ, there is at most one preimage H−1
t (y) under Ht. Thus, from a given image
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y ∈ {0, 1}λ, the game can extract at most one preimage x ∈ {0, 1}∗ such that Ht(x) = y. We will use

this in the following games.

Game G2: In game G2, we change the way the signing oracle is executed. WheneverA sends comr, µ0
as its �rst message, the game tries to extract the messages from this commitment. To do so, the game

goes through all the random oracle queries to Hr and tries to �nd a preimage of comr. Then, it parses

this bitstring as N hashes h1, . . . , hN and tries to �nd preimages of these in the same way. As a result

of this extraction, the game will end up with values r̄1, . . . , r̄N , where we write r̄j = ⊥ if the game was

not able to extract the jth
value. If there is a session j ∈ [N ] such that r̄j = ⊥, i.e., the game could

not extract the randomness for that session, and later in that execution J 6= j but algorithm Check
outputs 1, the game aborts. Denote this event by bad1. The probability of bad1 is an upper bound on

the distinguishing advantage of A between G1 and G2. For each �xed interaction, we can bound the

probability of this event (with respect to that interaction) by QHr/2λ. To see this, consider the case

where the game could not extract the values h1, . . . , hN . Then, once comr is �xed, the probability that

one of the hash queries of A evaluates to comr is at most 1/2λ. Similarly, in the case where the game

could extract hj but could not extract a value r̄j from hj for J 6= j, the probability that one of the hash

queries ofA evaluates to the �xed hj is at most 1/2λ. By a union bound over all interactions we obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [bad1] ≤ pQHr

2λ .

Game G3: Again, we change the signing oracle by introducing an additional abort. Namely, whenever

the adversary sends the commitment comc as its second message, the game extracts values c̄1, . . . , c̄N
such that Hc(c̄1, . . . , c̄N ) = comc by going through all random oracle queries of A. If the game is not

able to extract, but later algorithm Check outputs 1, the game aborts and we say that the event bad2
occurs. Note that algorithm Check internally checks if

comc 6= Hc(c1, . . . , cN ).

Thus, the probability of bad2 in a �xed interaction and hence the distinguishing advantage ofA between

G2 and G3 is bounded by QHc/2λ, using a similar argument as in the previous game. We obtain

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [bad2] ≤ pQHc
2λ .

Game G4: This game aborts whenever the following bad event occurs. The event is de�ned as follows:

The game samples seed after A sends its �rst message of an interaction with the signer oracle and at

this point there exists an index j ∈ [N ] such that H′(seed, j) is already de�ned. As seed is sampled

uniformly at random from {0, 1}λ and hidden from A until the point of the potential abort, a union

bound over all hash queries and interactions shows that

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ pQH′

2λ .

Game G5: In G5, the signer oracle sends a random comJ in the beginning of each interaction. Later,

before it has to send J, salt, it samples J $← [N ] and salt $← {0, 1}λ and aborts if H′′(J, salt) is

already de�ned. If it is not yet de�ned, it de�nes it as H′′(J, salt) := comJ . The adversary A can only

distinguish between G4 and G5 if H′′(J, salt) is already de�ned. By a union bound over all QH′′ hash

queries and p interactions we obtain

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ pQH′′

2λ .

Let us summarize what we have so far. We changed the game step by step and ruled out the

following types of bad events:
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1. The adversary sends some commitment for which the game can not extract some of the committed

values, but later the adversary can open it successfully.

2. The game samples a random seed such that the random oracle values of interest are already

de�ned for that seed.

In particular, from the �rst property we can derive that whenever the game does not abort, it could

successfully extract values all of the values c̄1, . . . , c̄N . Additionally, we know by the collision freeness

of Hc that we must have cj = c̄j for all j ∈ [N ]. A similar statement holds for the r̄j . Here, it can only

be the case that the game can not extract a single r̄j but later J = j. On the other hand, the second

property tells us that a potential reduction simulating G5 can program the random oracle before sending

the seed or the cut-and-choose index J to the adversary. We will use these properties to construct a

(tight) reduction B that breaks the one-more unforgeability of CCBS[CMT] whenever G5 outputs 1.

Reduction B works as follows:

• B gets as input pk = (par, pk′, ck) and oracle access to a signer oracle Ô and random oracles

H, Ĥ for blind signature scheme CCBS[CMT]. It runs A with input pk and oracle access to

random oracles H,H′,H′′,Hr and Hc and a signer oracle O. The oracles H′,H′′ are simulated

honestly by B and oracles Hr,Hc are simulated exactly as in game G5.

• When adversary A queries oracle O to start an interaction, the reduction B behaves as follows:

– It starts an interaction with oracle Ô and obtains a parameter N as the �rst message. It

forwards N, comJ to A, where comJ
$← {0, 1}λ.

– When A sends its �rst message comr, µ0, B extracts (̄r1, . . . , r̄N ) as in game G5 (cf. G2).

For each such j ∈ [N ] for which r̄j is de�ned, it parses r̄j = (ᾱj , β̄j , ϕ̄j , γ̄j) and sets

µ̄j := Translate(ck, µ0, ϕ̄j). Then it de�nes comj := Ĥ(ᾱj , β̄j , µ̄j , γ̄j). For the remaining

j, it samples comj
$← {0, 1}λ. Finally, it sends com1, . . . , comN to its oracle Ô.

– The oracle Ô returns R1, . . . , RN . Then, B samples seed $← {0, 1}λ. It aborts, if there

exists an index j ∈ [N ] such that H′(seed, j) is already de�ned. Otherwise, it programs

H′(seedR, j) := Rj for all j ∈ [N ] and sends seed to A.

– When A sends its second message comc, the game extracts values c̄i from comc. If this

extraction is successful, i.e., c̄j is de�ned, it sets c′j := c̄j . Otherwise, it sets c′j
$← S . It

sends c′1, . . . , c
′
N to Ô.

– The oracle Ô returns an index J ∈ [N ], whereupon reduction B samples salt $← {0, 1}λ
and aborts if H′′(J, salt) is already de�ned. Otherwise it sets H′′(J, salt) := comJ and

sends J, salt to A.

– When adversary sends its third message kJ , cJ , η, algorithm B runs algorithm Check.

If this algorithm returns 0, B aborts this interaction. If it outputs 1 it aborts the entire

execution if one of the following two conditions hold

∗ There is some index j ∈ [N ] such that cj = ⊥.

∗ There is some index j ∈ [N ] such that j 6= J and r̄j = ⊥.

Otherwise, B sends {(ᾱj , β̄j , µ̄j , γ̄j)}j 6=J to Ô. Note that these values are de�ned by the

second condition that has been checked before.

– The oracle Ô returns sJ and B forwards it to A.

• When A outputs (m1, σ1), . . . , (mk, σk), B outputs (m1, σ1), . . . , (mk, σk).

It is easy to see that the values R1, . . . , RN are distributed uniformly over Z∗n. This property of the

OGQ function is called smoothness in [HKL19]. Therefore, the programming of the random oracle H′
is done correctly. Further, we claim that whenever B does not abort during the interaction, the signing
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oracle Ô will also not abort. From this claim it follows that the simulation provided by B is perfect.

To see that the claim is true, note that Ô could abort the signing interaction for two reasons: First, it

may abort as there exists some j ∈ [N ] such that j 6= J and comj 6= Ĥ(ᾱj , β̄j , µ̄j , γ̄j). However, this

can not happen due to the way B de�nes comj . The second reason for an abort is that there exists

a j ∈ [N ] such that j 6= J and c′j 6= H(µ̄j , Rj · F(ᾱj) · pk′β̄j ) + β̄j . However, as we already noticed

above, if G6 does not abort, then we have c′j = cj , µ̄j = µj , ᾱj = αj and β̄j = βj and thus the B itself

would have aborted as Check returns 0. Finally, it is clear that B wins the one-more unforgeability

game whenever G6 outputs 1, as B outputs A’s output and completes as many interactions with oracle

Ô as A completes with O. The statement follows by an easy calculation.

3.5.4 Concrete Parameters and E�ciency

To derive concrete parameters for our scheme BSRSA based on the RSA assumption in a theoretically

sound way, we recall the concrete security bounds from Theorems 3.3 and 3.5. Let ε, t denote the

advantage and running time of an adversary against the one-more unforgeability of BSRSA initiating at

most p interactions with the signing oracle and querying the random oracle at most QH many times.

Then there is an adversary against the one-more unforgeability CCBS[CMT] with advantage εCCBS
and running time t. Also, there are three algorithms solving two instances of the RSA problem with

probability εRSA, εRSA′ , εRSA′′ and running time 2t, t, t, respectively. Here, the third adversary against

RSA comes from the binding property of the commitment scheme we use.

Concretely, by combining the concrete bounds given in Theorems 3.3 and 3.5 we obtain that

ε ≤ 2 3
√
Q2

H`
3εRSA + (QH(p− `))`+1

γ
+ 2εRSA′′ + 2pεRSA′ + 2T1 + T2,

where T1, T2 are statistically negligible terms and ` = 3 ln(p+ 1) + ln(2/εCCBS). To simplify further,

we assume κ bit of security for the instance related to εRSA and εRSA′ and κ′′ bit of security for the

instance related to εRSA′′ . By de�nition, this means that

εRSA < 2 · t · 2−κ, εRSA′ < t · 2−κ, εRSA′′ < t · 2−κ
′′
.

Next, we use

` = 3 ln(p+ 1) + ln
(

2
εCCBS

)
≤ 3 ln(p+ 1) + ln

(
2

ε− T2

)
=: `ε.

Plugging in, we get

ε ≤ 2 3
√
Q2

H`
3
ε · 2 · t · 2−κ + (QHp)`ε+1

γ
+ 2t · 2−κ

′′
+ 2pt · 2−κ + 2T1 + T2,

which must hold for any adversary with running time t and advantage ε and any γ we choose. Note

that we can set the bitlength of the prime γ independently of the RSA modulus length.

To get k bit of security for BSRSA, we consider any �xed choice of ε, t such that t/ε = 2k and

increase κ, κ′′ until the above inequality leads to a contradiction. Then, we choose the maximum values

for κ, κ′′. We note that we have to take this two-step approach and iterate over all combinations of ε, t,
as `ε depends on ε which leads to a non-linear inequality. Also, we note that we can set κ′′ to be much

less than κ as the relation between k and κ′′ is tight. Once the appropriate security levels κ and κ′′ are

found, we determine the modulus lengths len, len′′ following an estimation for the sub-exponential

complexity of the general number �eld sieve algorithm [CP06], which is similar to [HKL19]. Using the

modulus length and the bitlength of γ, we can compute the sizes of signatures and keys.
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Next, we consider blindness. For simplicity, assume that NL = NR =: N . Also, we can make the

assumption
9

that |Z∗n| ≥ 2λ. If we want to achieve blindness with k bits of security, we have to make

sure that the blindness advantage is at most 2−k · t. As for our CDH-based scheme, we instantiate PRF
using the GGM construction (cf. Section 3.3). Using Theorem 3.4, the blindness advantage can be upper

bounded by

(2 log(N)− 1)QHPRF

2λPRF−2 + Q2
H′′

2λ−1 + QH′′

2λ−2 + QHx
2λPRF−2 + QHr

2λPRF−2 + QH
2λ−2 .

Thus, we only have to choose λPRF large enough. We implemented the approach in a simple Python

script
10

. Example instantiations of our parameters can be found in Table 3.1.

3.6 Intermezzo: From Semi-Honest to Malicious Blindness

In this short intermezzo, we show how to transform any blind signature scheme with semi-honest

signer blindness into a scheme that satis�es malicious signer blindness. In summary, we show the

following lemma.

Lemma 3.6 (Informal). Let BS be a blind signature scheme that satis�es semi-honest signer blindness.

Then, using a non-interactive zero-knowledge proof-of-knowledge, BS can be transformed into a blind

signature scheme BS′ that satis�es malicious signer blindness. Furthermore, the schemes BS and BS′ are
identical except for public keys pk. Finally, for any ` : N→ N, it holds that if BS satis�es `-OMUF, then
BS′ satis�es `-OMUF and the security proofs of this transformation are tight.

Construction. Let BS = (Gen,S,U,Ver) be a blind signature scheme. Consider the relation of public

keys and random coins

R =
{

(pk, ρ)
∣∣ ∃ sk : (pk, sk) = Gen(1λ; ρ)

}
,

where pk is the statement and ρ is the witness. Further, let PS = (PProve,PVer) be a NIZKPOK

for relation R using random oracle H. We transform BS into a new blind signature scheme BS′ =
(Gen′, S,U′,Ver), where algorithms S and Ver stay the same. Algorithm Gen′ is as follows:

1. Sample random coins ρ for algorithm Gen.

2. Generate (pk0, sk)← Gen(1λ; ρ).

3. Compute a proof π ← PProveH(pk0, ρ) using pk0 as the statement and ρ as the witness.

4. Return the public key pk := (pk0, π) and the secret key sk.

Further, algorithm U′ �rst checks the correctness of pk. That is, U′ parses pk = (pk0, π) and runs

b := PVerH(pk0, π). Then, if b = 0, it aborts the interaction. If b = 1, it behaves as U does.

Analysis. Below, we show that the scheme BS′ is malicious signer blind, assuming BS is semi-

honest signer blind and PS has the proof-of-knowledge property. We also show that BS′ is one-more

unforgeable, if BS is one-more unforgeable and PS is zero-knowledge.

Lemma 3.7. Let BS be a blind signature scheme and PS be a NIZKPOK for the relationR using random

oracle H. Then, BS′ satis�es malicious signer blindness assuming that BS satis�es semi-honest signer

blindness.

9

This is without loss of generality, as we have to choose a security level larger than λ for the underlying RSA
levels.

10

The Python script can be found in https://github.com/b-wagn/dissertation-efficiency-scripts.
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Concretely, let Ext be the extractor algorithm given by the proof-of-knowledge property of PS. Then,
for any algorithm A against the malicious signer blindness of BS′, there exist an algorithm B against the

semi-honest signer blindness and an algorithm B′ with T(B) ≈ T(A) + T(Ext), T(B′) ≈ T(A), and

Advblind
A,BS′(λ) ≤ Advblind

B,BS(λ) + Advpok
B′,PS,Ext(λ).

Proof. Let A be an adversary against malicious signer blindness of BS′. First, we can assume that A
outputs a key pk = (pk0, π) such that PVerH(pk0, π) = 1. This is because otherwise, both user oracles

of scheme BS′ abort and leak no information about the message that is used.

With this assumption in mind, we build a reduction B against semi-honest signer blindness of

BS. The reduction uses A as a subroutine. It also makes use of the extractor Ext that exists due to the

proof-of-knowledge property of PS. Reduction B is as follows:

• B simulates the random oracle H for A, keeping track of the listQ of random oracle queries and

answers.

• B obtains a key pk and messages m0,m1 from A. It parses pk = (pk0, π) and runs ρ ←
Ext(x, π,Q). If (pk0, ρ) /∈ R, B sets bad = 1 and simulates random oracles O

′
0,O

′
1 to adversary

A by aborting each interaction. Later it returns σ0 = ⊥, σ1 = ⊥ toA. Otherwise, if (pk0, ρ) ∈ R,

B outputs the random coins ρ and the messages m0,m1 to its blindness game. Note that this

implies that its blindness game will use the public key pk0.

• B gets access to oracles O0,O1. It provides oracles O
′
0,O

′
1 to adversary A. By our assumption,

we have PVerH(pk0, π) = 1. Reduction B simulates O
′
0 as O

′
0 and O

′
1 as O

′
1.

• It runs A with one-time access to oracles O
′
0,O

′
1. Then, it obtains signatures σ0, σ1 from its

blindness game and forwards them to A.

• When A outputs a bit b′, B forwards this bit to its blindness game.

It is clear that the running time of B is dominated by the running time ofA and the running time of Ext.
Further, assuming that bad is never set to 1, B perfectly simulates the malicious signer blindness game

BLINDb,BS′ for A if it runs in semi-honest signer blindness game BLINDb,BS. Also, note that the

probability of bad = 1 is bounded by the proof-of-knowledge property of PS using another reduction

B′. Further, the probability of bad = 1 is independent of the bit b. To conclude the proof, we de�ne the

event Wb :=
(

BLINDAb,BS′(λ)⇒ 1
)
. We obtain

Advblind
A,BS(λ) = |Pr [W0]− Pr [W1]|

≤ |Pr [W0 | bad = 0] · Pr [bad = 0] + Pr [W0 | bad = 1] · Pr [bad = 1]
− Pr [W1 | bad = 0] · Pr [bad = 0] + Pr [W1 | bad = 1] · Pr [bad = 1]|

≤ |Pr [W0 | bad = 0]− Pr [W1 | bad = 0]| · Pr [bad = 0]
+ |Pr [W0 | bad = 1]− Pr [W1 | bad = 1]| · Pr [bad = 1]

≤ |Pr [W0 | bad = 0]− Pr [W1 | bad = 0]|+ Pr [bad = 1]

≤ Advblind
B,BS(λ) + Advpok

B′,PS,Ext(λ).

Lemma 3.8. Let BS be a blind signature scheme, PS be a NIZKPOK for the relation R using random

oracle H, and ` : N→ N be a function. Then, BS′ satis�es `-one-more unforgeability assuming that BS
satis�es `-one-more unforgeability.

Concretely, let Sim be the simulator algorithm given by the zero-knowledge property of PS. Then, for
any PPT algorithm A against the `-one-more unforgeability of BS′, there exist PPT algorithm B and B′
such that T(B) ≈ T(A) + T(Sim), T(B′) ≈ T(A), and

Adv`-OMUF
A,BS′ (λ) ≤ Adv`-OMUF

B,BS (λ) + Advzk
B′,PS,Sim(λ).
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Proof. Let A be an adversary against the `-OMUF security of BS′. We show the statement via a

reduction from the `-OMUF security of BS.

Game G0: We start with game G0 := `-OMUFABS′ , which is the one-more unforgeability game.

First, a key pair (pk, sk) is sampled by the game. Recall that pk is of the form pk = (pk0, π), where

π ← PProveH(pk0, ρ) and ρ are the random coins used to generate pk0. Then, A is executed with

input pk and oracle access to random oracle H and a signer oracle O
′
. In the end, A outputs pairs of

signatures and messages and the game outputs 1 if these are all valid, the messages are distinct and

there are more such pairs than the number of completed interactions with oracle O
′
. By de�nition, we

have

Adv`-OMUF
A,BS′ (λ) = Pr [G0 ⇒ 1].

Game G1: We change the way the proof π contained in pk is generated. Namely, we use the simulator

Sim that exists by the zero-knowledge property of PS to generate π. Note that this simulator may

program the random oracle H. Clearly, we can bound the di�erence between G0 and G1 by the

advantage of a reduction B′ against the zero-knowledge property of PS. Thus, we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advzk
B′,PS,Sim(λ).

We will now bound the probability that G1 outputs 1 by a reduction B from the `-OMUF security

of BS. We denote the advantage of B by εBS. The reduction is as follows:

• B gets as input a public key pk0 for scheme BS. Also, B gets oracle access to a signer oracle O

for scheme BS. It generates a proof π for the statement pk0 using the zero-knowledge simulator

Sim and de�nes pk := (pk0, π).

• B runs algorithm A on input pk by providing random oracle H and a signer oracle O
′
, which is

simulated using O.

• B forwards the outputs of A to its own game.

It is easy to see that the reduction perfectly simulates G1 for A. Also, as veri�cation for BS is the same

as for BS′, any valid forgery of A leads to a valid forgery of B. Thus, we have

Pr [G1 ⇒ 1] ≤ Adv`-OMUF
B,BS (λ).

Applicability. Let us discuss how to apply the transformation that we presented in this section to

our concrete scheme from RSA. We can use a generic zero-knowledge proof-of-knowledge for NP
to apply the transformation to any blind signature scheme that satis�es semi-honest signer blindness.

While this is an ine�cient solution in general, we argue that it is acceptable here. First, such proofs are

allowed to use random oracles in our setting. Second, the proof only needs to be generated once, and

veri�ed once by each user. Therefore, this will only induce a one-time overhead, which is independent

of the complexity of the actual signing protocol.

Taking into account the concrete structure of the schemes we construct, more e�cient solutions are

possible. For example, the relation between a public and a secret key (which is part of the random coins

used for key generation) in our scheme is given by a linear function. Therefore, simple Schnorr-style

Fiat-Shamir [FS87] proofs can be used. In an RSA-based setting, one also needs to prove knowledge

of the coins needed for the generation of parameters. Now, consider our speci�c RSA-based scheme

from the OGQ linear function family, as presented in Section 3.5. Here, the random coins used for key

generation are given by p, q, a, γ, sk′ and the random coins used to generate ck. First, one can show that

n is the product of two primes p, q using techniques from [GRSB19] or [CM99]. Here, one needs resort

to the quadratic residuosity assumption [GRSB19] or the discrete logarithm assumption [CM99]. Also,

using [GRSB19], one can show that gcd(ϕ(n), γ) = 1. We can then turn this into a proof-of-knowledge

by running a non-interactive version of the Fiat-Shamir identi�cation scheme [FS87] on random public

keys (e.g., sampled via the random oracle). This proves knowledge of the factorization of n, i.e., of p
and q. Similar techniques can be used to prove knowledge of the random coins used to generate ck.
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3.7 Rai-Choo Blind Signatures

In the �nal section of this chapter on blind signatures, we present our most practical construction,

namely, the Rai-Choo blind signature scheme [HLW23a]. It is based on the CDH assumption and we

present it in the type-3 pairing setting. We can view Rai-Choo as a signi�cant improvement over our

construction in Section 3.4. Namely, it no longer requires the Signer to keep a state, it is more e�cient

in terms of communication and computation, and it is round-optimal. In addition to our basic scheme,

we show how to batch multiple signing interactions and how to extend the construction to the partially

blind setting.

3.7.1 Basic Construction

Let PGGen be a bilinear group generation algorithm that outputs cyclic groups G1,G2 of prime order

p with generators g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G2 → GT into some target group GT .

As in Section 3.4, we assume that these system parameters are known to all algorithms, although

they should formally be part of the public key. As explained in Section 3.4, these parameters are

standardized and their correctness can be veri�ed e�ciently in practice, and for readability it is

preferable to omit them from the public key. Our scheme BSR = (Gen, S,U,Ver) is parameterized

by integers K = K(λ) and N(λ) ∈ N. Notably, these do not depend on the number of previous

interactions. We only need that N−K is negligible in λ. The scheme makes use of random oracles

Hr,Hµ : {0, 1}∗ → {0, 1}λ,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N ]K , and H : {0, 1}∗ → G1.

Key Rerandomization. Our scheme makes use of an algorithm ReRa, that takes as input tuples

(pki, hi)i∈[K] and an element σ̄ ∈ G1, where pki = (pki,1, pki,2) ∈ G1 × G2, and hi ∈ G1 for all

i ∈ [K]. The algorithm is as follows:

1. Choose r1, . . . , rK−1
$← Zp and set rK := −

∑K−1
i=1 ri.

2. For all i ∈ [K], set pk′i :=
(
pk′i,1, pk′i,2

)
:=
(
pki,1 · gri1 , pki,2 · gri2

)
.

3. Set σ̄′ := σ̄ ·
∏K
i=1 h

ri
i and return ((pk′i)i∈[K], σ̄

′).

It is easy to see that

∏
i∈K pki,j =

∏
i∈K pk′i,j for both j ∈ {1, 2}. Further, if we assume that the inputs

satisfy e (σ̄, g2) =
∏K
i=1 e

(
hi, pki,2

)
and e

(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K], then the outputs

satisfy e (σ̄′, g) =
∏K
i=1 e

(
hi, pk′i,2

)
and e

(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. Additionally, the

output does not reveal anything about the input, except what is already revealed by these properties.

We make this more formal in Lemma 3.9 when we analyze the blindness property of our scheme.

Key Generation. To generate keys, algorithm Gen(1λ) does the following:

1. Sample sk $← Zp, set pk1 := gsk
1 and pk2 := gsk

2 .

2. Return public key pk = (pk1, pk2) and secret key sk.

Signature Issuing. The algorithms S,U and their interaction are given in Figures 3.6 and 3.7.

Veri�cation. The resulting signature σ := ((pki, ϕi)K−1
i=1 ), ϕK , σ̄) for a message m is veri�ed by

algorithm Ver(pk,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].

2. Compute pkK,1 := pk1 ·
∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .

3. If there is an i ∈ [K] with e
(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).

5. Return 1 if and only if e (σ̄, g2) =
∏K
i=1 e

(
H(µi), pki,2

)
.
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S(sk) U(pk,m)
for i ∈ [K − 1] : for (i, j) ∈ [K]× [N ] :

ski $← Zp ϕi,j
$← {0, 1}λ, µi,j := Hµ(m, ϕi,j)

skK := sk−
K−1∑
i=1

ski γi,j
$← {0, 1}λ, αi,j := Hα(γi,j)

for i ∈ [K] : ri,j := (µi,j , γi,j), comi,j := Hr(ri,j)
pki,1 = gski

1 ci,j := H(µi,j) · g
αi,j
1

pki,2 = gski
2 com := (com1,1, . . . , comK,N )

pki := (pki,1, pki,2) c := (c1,1, . . . , cK,N ), J := Hcc(com, c)

if Check(open) = 0 : open open :=
(

J,
(

(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
abort

for i ∈ [K] : si := cski
i,Ji

s̄ :=
K∏
i=1

si (pki)K−1
i=1 , s̄ pkK,1 := pk1 ·

K−1∏
i=1

pk−1
i,1 , pkK,2 := pk2 ·

K−1∏
i=1

pk−1
i,2

pkK := (pkK,1, pkK,2)
for i ∈ [K] : if e

(
pki,1, g2

)
6= e

(
g1, pki,2

)
: abort

if e (s̄, g2) 6=
K∏
i=1

e
(
ci,Ji , pki,2

)
: abort

σ̄ := s̄ ·
K∏
i=1

pk−αi,Jii,1

((pk′i)i, σ̄′)← ReRa((pki,H(µi,Ji))i, σ̄)
return σ := ((pk′i, ϕi,Ji)K−1

i=1 , ϕK,JK , σ̄
′)

Figure 3.6: Signature issuing protocol of the blind signature scheme BSR, where algorithm Check is

defined in Figure 3.7.

Alg Check
(

open =
(

J,
(

(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N ] \ {Ji} :
03 parse (µi,j , γi,j) := ri,j , (µi,j , γi,j) ∈ {0, 1}λ × {0, 1}λ
04 αi,j := Hα(γi,j), ci,j := H(µi,j) · g

αi,j
1 , comi,j := Hr(ri,j)

05 com := (com1,1, . . . , comK,N ), c := (c1,1, . . . , cK,N )
06 if J 6= Hcc(com, c) : return 0
07 return 1

Figure 3.7: Algorithm Check used in the signature issuing protocol of blind signature scheme BSR.
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Analysis. Completeness of the scheme follows by inspection. We show blindness and one-more

unforgeability. Before we give the proof of blindness, we show a lemma that is needed. Intuitively, it

states that algorithm ReRa perfectly rerandomizes the key shares.

Lemma 3.9. For any pk1 ∈ G1 and pki,1 ∈ G1, i ∈ [K] such that

∏K
i=1 pki,1 = pk, the following

distributions D1 and D2 are identical:

D1 :=
{(

pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]
) ∣∣∣∣ r1, . . . , rK−1

$← Zp, rK := −
∑K−1
i=1 ri

∀i ∈ [K] : pk′i,1 := pki,1 · gri1

}
D2 :=

{(
pk1, (pki,1)i∈[K], (pk′i,1)i∈[K]

) ∣∣∣∣ ∀i ∈ [K] : pk′i,1 $← G
pk′K,1 := pk1 ·

∏K−1
i=1 pk′−1

i,1

}

Proof. It is su�cient to look at the distributions in terms of their exponents. To this end, let pk = gx1 ,

pki,1 = gxi1 , and pk′i,1 = g
x′i
1 for all i ∈ [K]. Consider the homomorphism f : ZKp → Zp with

f(y) := (1, . . . , 1) · y. Note that in distribution D2, the vector x′ = (x′1, . . . , x′K)t is distributed

uniformly over all vectors in f−1(x). Further, note that in distribution D1, the vector x′ is distributed

as x + r, where r is uniform in the kernel of f . This gives us the same distribution for x′. Therefore,

the distributions are the same.

Theorem 3.6. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ and Hα : {0, 1}∗ → Zp be random oracles. Then BSR
satis�es malicious signer blindness.

Concretely, for any algorithmA that makes at mostQHr , QHµ , QHα queries to Hr,Hµ,Hα respectively,

we have

Advblind
A,BS(λ) ≤

KNQHµ
2λ−2 + KQHr

2λ−2 + KQHα
2λ−2 .

Proof. We set BS := BSR and letA be an adversary against the blindness of BS. Our proof is presented

as a sequence of games Gi,b for i ∈ [8] and b ∈ {0, 1}. We set G0,b := BLINDAb,BS(λ). Then, our goal

is bound the distinguishing advantage

Advblind
A,BS(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

To do that, we will change our game to end up at a game G8,b for which we have

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: Game G0,b is de�ned as G0,b := BLINDAb,BS(λ). We recall this game to �x some notation.

First, A outputs a public key pk and two messages m0,m1. Second, A is run with access to two

interactive oracles O0 and O1. These simulate U(pk,mb) and U(pk,m1−b), respectively. To distinguish

variables used in the two oracles, we use superscripts L and R. That is, variables with superscript L
(resp. R) are part of the interaction between A and O0 (resp. O1). For example, JL := Hcc(comL, cL)
denotes the cut-and-choose vector that O0 computes, and openR denotes the �rst message that O1
sends to A. For descriptions with variables without a superscript, the reader should understand them

as applying to both oracles.

Game G1,b: This game is as G0,b, but we let the game abort on a certain event. Namely, the game

aborts if A ever makes a query of the form Hµ(·, ϕi,j) for some i ∈ [K] and j ∈ [N ] \ {Ji}. Note

that for these values (i, j), A obtains no information about ϕi,j throughout the entire game. Thus, the

probability that a query is of this form is at most 1/2λ. A union bound over all such (i, j), the two

oracles, and the random oracle queries leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤
KNQHµ

2λ−1 .
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Game G2,b: This game is as G1,b, but with another abort event. Concretely, the game aborts if A
ever makes a query Hr(ri,Ji), or a query Hα(γi,Ji) for some i ∈ [K]. Note that ri,Ji has the form

ri,Ji = (µi,Ji , γi,Ji), where γi,Ji is sampled uniformly at random from {0, 1}λ. Further, A obtains no

information about γi,Ji throughout the entire game. Therefore, taking a union bound over all instances

i ∈ [K], the two user oracles, and the random oracle queries for both random oracles Hr and Hα, we get

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ KQHr

2λ−1 + KQHα
2λ−1 .

Game G3,b: In this game, we change how the �nal signatures are computed. Speci�cally, suppose that

the user oracle does not abort due to the condition e (s̄, g2) 6=
∏K
i=1 e

(
ci,Ji , pki,2

)
and does not abort

due to condition e
(
pki,1, g2

)
6= e

(
g1, pki,2

)
for any i ∈ [K]. Then, in previous games, the user oracle

�rst computed σ̄, and then executed ((pk′i)i, σ̄′)← ReRa((pki,H(µi,Ji))i, σ̄). The value σ̄′ is part of

the �nal signature. In game G3,b, we instead let the user oracle run a brute-force search to compute the

unique σ̄′′ such that e (σ̄′′, g2) =
∏K
i=1 e

(
H(µi,Ji), pk′i,2

)
. Then, we include σ̄′′ in the �nal signature

instead of σ̄′. We claim that this does not change the view of A. To see this, �rst note that we did not

change any veri�cation or abort condition of the user oracles. Therefore, we can �rst consider the

case where one of the user oracles locally outputs ⊥. In this case, A gets ⊥,⊥ as its �nal input in both

G2,b and G3,b. It remains to analyze the case where both user oracles do not abort. We claim that σ̄′

and σ̄′′ are the same. To see this, assume e (s̄, g2) =
∏K
i=1 e

(
ci,Ji , pki,2

)
, and multiply both sides by∏K

i=1 e
(

pk−αi,Jii,1 , g2

)
. We obtain

e (s̄, g2) ·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
·
K∏
i=1

e
(

pk−αi,Jii,1 , g2

)
=⇒ e

(
s̄ ·

K∏
i=1

pk−αi,Jii,1 , g2

)
=

K∏
i=1

e
(
ci,Ji , pki,2

)
· e
(
g
−αi,Ji
1 , pki,2

)
=⇒ e (σ̄, g2) =

K∏
i=1

e
(
H(µi,Ji), pki,2

)
,

where we used e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K] on the right-hand side. Using the de�nition

of algorithm ReRa, it is easy to see that this implies

e (σ̄′, g2) =
K∏
i=1

e
(
H(µi,Ji), pk′i,2

)
.

By de�nition, σ̄′′ satis�es the same equation. As their is a unique solution to this equation for given

pk′i,2 and µi,Ji , i ∈ [K], we see that σ̄′ = σ̄′′. We have

Pr [G2,b ⇒ 1] = Pr [G3,b ⇒ 1].

Game G4,b: We make another change to the computation of the �nal signatures. Again, suppose that

the user oracle does not abort. In this game G4,b, we no longer run algorithm ReRa in this case. Instead,

we compute the pk′i = (pk′i,1, pk′i,2) as a fresh sharing via

sk′i $← Zp, pk′i,1 := gski
1 , pk′i,2 := gski

2 for i ∈ [K − 1],

pk′K,1 := pk1 ·
K−1∏
i=1

pk′−1
i,1 , pk′K,2 := pk2 ·

K−1∏
i=1

pk′−1
i,2 .
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Note that the other output σ̄′ of algorithm ReRa is no longer needed due to the previous change.

To analyze this change, we �rst argue that the pk′i,2 are uniquely determined by the pk′i,1. Namely,

if the user oracle does not abort, we know that e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K], and

e (pk1, g2) = e (g1, pk2). It is easy to see that property is preserved by algorithm ReRa. That is,

we have e
(
pk′i,1, g2

)
= e

(
g1, pk′i,2

)
for all i ∈ [K]. One can verify that our new de�niton of the

pk′i,1, pk′i,2 also satis�es this. It remains to analyze the distribution of the pk′i,1. By Lemma 3.9 the

distribution of the pk′i,1 stays the same. This implies that

Pr [G3,b ⇒ 1] = Pr [G4,b ⇒ 1].

Game G5,b: In game G5,b, we �rst sample random vectors ĴL $← [N ]K and ĴR $← [N ]K . Then, we let

the game abort, if later we do not have ĴL = JL and ĴR = JR. As the view of A is independent of

ĴL, ĴR until a potential abort, we have

Pr [G5,b ⇒ 1] = 1
N2K · Pr [G4,b ⇒ 1].

Game G6,b: In game G6,b, we change how the values µi,j for i ∈ [K] and j ∈ [N ] \ {Ĵi} are computed.

Recall that before, they were computed as µi,j = Hµ(m, ϕi,j). In G6,b, we sample µi,j
$← {0, 1}λ

for i ∈ [K] and j ∈ [N ] \ {Ĵi} instead. We highlight that the game still samples the values ϕi,j to

determine when it has to abort according to G1,b. Due to the changes introduced in G1,b and G5,b, we

can assume that Ĵ = J and A never queries Hµ(m, ϕi,j), and therefore this change does not in�uence

the view of A. We have

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].

Game G7,b: In game G7,b, we change how the values αi,Ĵi and comi,Ĵi are computed for all i ∈ [K].
Concretely, in this game, αi,Ĵi is sampled uniformly at random as αi,Ĵi

$← Zp. Further, comi,Ĵi
$←

{0, 1}λ is sampled uniformly at random. Assuming that the game does not abort, we argue that the

view of A does not change. This follows directly from the changes in G5,b and G2,b. Namely, we can

assume that Ĵ = J and that A never makes a query Hr(ri,Ĵi). We have

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: In game G8,b, we change how the values ci,Ĵi for i ∈ [K] are computed. First, recall that

in the previous games, these are computed as ci,Ĵi = H(µi,Ĵi) · g
αi,Ĵi
1 . Now, we sample it at random

using ci,Ĵi
$← G1. We argue indistinguishability as follows. Due to the change introduced in G5,b, we

can assume that Ĵ = J. Then, we know that in this case αi,Ĵi is only used to de�ne ci,Ĵi and nowhere

else. In particular, it is not used to derive the �nal signatures from the interaction, due to the change

introduced in G3,b, and it is not used to de�ne comi,Ĵi due to the change in G7,b. As αi,Ĵi is sampled

uniformly at random due to the change in G7,b, we know that ci,Ĵi is distributed uniformly at random

in G7,b. This shows that

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Finally, it can be observed that the view of A does not depend on the bit b anymore. This is

because the messages m0,m1 are not used in the user oracles. Instead, the user oracles use random

µi,j , independent of the messages, for all opened sessions j 6= Ji, and the �nal signatures σ0, σ1 thatA
gets are computed using brute-force independent of the interactions, assuming that both interactions

accept. This shows that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].
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To conclude, we upper bound Advblind
A,BS(λ) = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| by

|Pr [G4,0 ⇒ 1]− Pr [G4,1 ⇒ 1]|+ 2
(
KNQHµ

2λ−1 + KQHr

2λ−1 + KQHα
2λ−1

)
= N2K |Pr [G5,0 ⇒ 1]− Pr [G5,1 ⇒ 1]|+

KNQHµ
2λ−2 + KQHr

2λ−2 + KQHα
2λ−2

= N2K |Pr [G8,0 ⇒ 1]− Pr [G8,1 ⇒ 1]|+
KNQHµ

2λ−2 + KQHr

2λ−2 + KQHα
2λ−2

=
KNQHµ

2λ−2 + KQHr

2λ−2 + KQHα
2λ−2 .

Theorem 3.7. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ, and Hcc : {0, 1}∗ → [N ]K , and H : {0, 1}∗ → G be

random oracles. If CDH assumption holds relative to PGGen, then BSR is one-more unforgeable.

Concretely, for any polynomial ` and any PPT algorithm A that makes at most QHcc , QHr , QHµ , QH
queries to Hcc,Hr,Hµ,H respectively, there is a PPT algorithm B with T(B) ≈ T(A) and

Adv`-OMUF
A,BSR (λ) ≤

Q2
Hµ +Q2

Hr
+QHrQHcc +QHQHµ

2λ + `

NK
+ 4` · AdvCDH

B,PGGen(λ).

Proof. We set BS := BSR and let A be an adversary against the one-more unforgeability of BS. We

show the statement by presenting a sequence of games. Before we go into detail, we explain the overall

strategy of the proof. In our �nal step, we give a reduction that breaks the CDH assumption. This

reduction works similar to the reduction for the BLS signature scheme [BLS01]. Namely, it embeds

one part of the CDH instance in the public key, and one part in some of the random oracle queries for

oracle H. In the �rst part of our proof, we prepare simulation of the signer oracle without using the

secret key. Here, the strategy is to extract the User’s randomness using the cut-and-choose technique.

With overwhelming probability, in a �xed interaction, we can extract the randomness for one of the

K instances, say instance i∗. Then, we compute the public key shares pki in a way that allows us to

know all corresponding secret keys except ski∗ . For instance i∗, we can simulate the signing oracle by

programming random oracle H. In the second part of our proof, we prepare the extraction of the CDH
solution from the forgery thatA returns. Here, it is essential that the scheme uses random oracle Hµ to

compute commitments µi,j . This allows us to embed the part of the CDH input in H in a consistent

way. We will now proceed more formally.

Game G0: Game G0 is the real one-more unforgeability game, i.e., G0 := `-OMUFABS. Let us recall

this game. First, the game samples (pk, sk) ← Gen(1λ). Then, A is executed on input pk, and gets

concurrent access to signer oracle O, simulating S(sk). Additionally, A gets access to random oracles

H,Hµ,Hr,Hcc. These are simulated by the game in the standard lazy way. Finally, A outputs pairs

(m1, σ1), . . . , (mk, σk). Denote the number of completed interactions (i.e., interactions in which O sent

s̄ to A) by `. If all mi are distinct, all σi are valid signatures for mi with respect to pk, and k > `, the

game outputs 1. By de�nition, we have

Adv`-OMUF
A,BS (λ) = Pr [G0 ⇒ 1].

Game G1: Game G1 is as G0, but it aborts if a collision for one of the random oracles Hr,Hµ occurs.

More precisely, let ∗ ∈ {r, µ} and consider a query H∗(x) for which the hash value is not yet de�ned.

The game samples H∗(x) as in game G0. Then, the game aborts if there is another x′ 6= x such that

H∗(x′) is already de�ned and H∗(x) = H∗(x′). As the outputs of H∗ are sampled uniformly from

{0, 1}λ, we can use a union bound over all pairs of queries and get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hµ
2λ +

Q2
Hr

2λ .
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Game G2: Game G2 is as game G1, but we introduce a bad event and let the game abort if this bad

event occurs. Concretely, consider any �xed query to oracle Hcc of the form Hcc(com, c) = J for

com = (com1,1, . . . , comK,N ) and c = (c1,1, . . . , cK,N ). For such queries and all (i, j) ∈ [K] × [N ],
the game now tries to extract values r̄i,j such that comi,j = Hr (̄ri,j). To do that, it searches through

the random oracle queries for random oracle Hr. For those (i, j) for which such a value can not be

extracted, we write r̄i,j = ⊥. Due to the change introduced in G1, there can be at most one extracted

value for each (i, j). The game now aborts, if in such a query, there is some (i, j) ∈ [K]× [N ] such

that r̄i,j = ⊥, but later oracle Hr is queried and returns comi,j . Clearly, for a �xed pair of queries to

Hcc and Hr, respectively, this bad event can only with probability 1/2λ. By a union bound we get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QHrQHcc
2λ .

Before we continue, we summarize what we established so far and introduce some terminology. For

that, we �x an interaction between A and the signer oracle O. Consider the �rst message

open =
(

J,
(

(ri,j)j 6=Ji , ci,Ji , comi,Ji

)
i∈[K]

)
that is sent byA. Recall that after receiving this message, algorithm Check uses open to compute values

com = (com1,1, . . . , comK,N ) and c = (c1,1, . . . , cK,N ). Then, it also checks if J = Hcc(com, c). Also,

consider the values r̄i,j related to the query Hcc(com, c), as de�ned in G2. Assuming Check outputs 1
(i.e., J = Hcc(com, c)), we make two observations for any instance i ∈ [K].

1. If for some j ∈ [N ] we have r̄i,j = ⊥, then j = Ji. This is due to the bad event introduced in

G2.

2. If for some j ∈ [N ] we have r̄i,j = (µ, γ) 6= ⊥ but ci,j 6= H(µ) · gα1 for α := Hα(γ), then Ji = j.
This is because we ruled out collisions for Hr in G1. Namely, as there are no collisions, we know

that r̄i,j = ri,j for all j 6= Ji. Therefore, ci,j = H(µ) · gα1 by de�nition of Check.

If one of these two events occurs for some i, we say that there is a successful cheat in instance i. Note that

the game can e�ciently check if there is a successful cheat in an instance once it received open. Also note

that the values r̄i,j are �xed in the moment A queries Hcc(com, c) for the �rst time. In particular, they

are �xed before A obtains any information about the uniformly random J = Hcc(com, c). Therefore,

using the two observations above, the probability of a successful cheat in instance i is at most 1/N .

Further, as the components of J are sampled independently, the probability that there is a successful

cheat in all K instances (in this �xed interaction) is at most 1/NK
.

Game G3: In game G3, we introduce another abort. Namely, the game aborts, if in some interaction

between A and the signer oracle O, there is a successful cheat in every instance i ∈ [K], and that

interaction is completed. By the discussion above, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ `

NK
.

Game G4: In game G4, we change the way the signer oracle computes the shares ski. Recall that before,

these were computed as

ski $← Zp for i ∈ [K − 1], skK := sk−
K−1∑
i=1

ski.

Then, the corresponding public key shares were computed as pki = (gski
1 , gski

2 ) for all i ∈ [K]. In game

G4, the game instead de�nes the ski after it received the �rst message open from A in the following

way. If Check outputs 0 or there is a successful cheat in every instance, the game behaves as before

70



3.7. RAI-CHOO BLIND SIGNATURES

(i.e., it aborts the interaction, or the entire execution). Otherwise, let i∗ ∈ [K] be the �rst instance in

which there is no successful cheat. Then, the game computes

ski $← Zp for i ∈ [K] \ {i∗}, ski∗ := sk−
∑

i∈[K]\{i∗}

ski.

The game de�nes pki for all i ∈ [K] as before. It is clear that this change is only conceptual, as a

uniformly random additive sharing of sk is computed in both G3 and G4. Therefore, we have

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: In game G5, we introduce an abort related to the random oracles H and Hµ. Namely, the

game aborts if the following occurs. The adversary A �rst queries H(µ) for some µ ∈ {0, 1}∗, and

after that a hash value Hµ(x) is de�ned for some x ∈ {0, 1}∗, and we have Hµ(x) = µ. Clearly, once

µ is �xed, the probability that a previously unde�ned hash value Hµ(x) is equal to µ is at most 1/2λ.

Therefore, we can use a union bound over the random oracle queries and get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤
QHQHµ

2λ .

Game G6: In this game, we introduce a purely conceptual change. To do that, we introduce maps b[·]
and b̂[·]. Then, on a query Hµ(m, ϕ) for which the hash value is not yet de�ned, the game samples

bit b̂[m] ∈ {0, 1} from a Bernoulli distribution, such that the probability that b̂[m] = 1 is 1/(` + 1).

Additionally, on a query H(µ) for which the hash value is not yet de�ned, the game �rst searches for a

previous query (mµ, ϕ) to Hµ such that Hµ(mµ, ϕ) = µ. Then, it sets b[µ] := b̂[mµ]. If no such query

can be found, it sets b[µ] := 0. Note that due to the change in G1, the game can �nd at most one such

query and mµ is well de�ned. The view of A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: In this game, we introduce an initially empty set L and an abort related to it. In each

interaction between A and the signer oracle O, the game simulates the oracle as in G6. Additionally, if

the game has to provide the �nal message (pki)K−1
i=1 , s̄, then we know that Check output 1 and the game

did not abort. Therefore, there is at least one instance i∗ ∈ [K] such that A did not cheat successfully

in instance i∗. Fix the �rst such instance. This means that the game could extract r̄i∗,Ji∗ = (µ, γ)
before (see the discussion after G2). In game G7, the game tries to extract mµ as de�ned in G6 from

µ using Hµ, and inserts (µ,mµ) into set L if it could extract. Also, the game aborts if b[µ] = 1.

Otherwise, it computes and sends (pki)K−1
i=1 , s̄ as before. We highlight that the size of L is at most

the number of completed interactions `. Next, consider the �nal output (m1, σ1), . . . , (mk, σk) of

A, write σr = ((pkr,i, ϕr,i)K−1
i=1 ), ϕr,K , σ̄r), and set µr,i := Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K]. If

A is successful, we know that k > `. Therefore, by the pigeonhole principle, there is at least one

(r̃, ĩ) ∈ [k] × [K] such that (µr̃,̃i,mr̃) /∈ L. Game G7 �nds the �rst such µr̃,̃i, sets µ∗ := µr̃,̃i and

aborts if b[µ∗] = 0. Note that we can assume that b[µ∗] is de�ned, as veri�cation ofA’s output involves

computing H(µ∗). For the sake of analysis, G7 also appends further entries of the form (µ,mµ) to L
such that |L| = ` and all entries in L ∪ {µ∗} have distinct components mµ. It queries H(µ) for all

(µ,mµ) ∈ L. Then, it aborts if for some (µ,mµ) ∈ L it holds that b[µ] = 1.

To analyze the change we introduced, note that G6 and G7 only di�er if b[µ∗] = 0 or b[µ] = 1 for

some (µ,mµ) ∈ L. This is because if the game could not extract mµ in some interaction, then due to

the changes in G5 and G6, we know that b[µ] = 0. The view of A is independent of these bits until a

potential abort occurs. This implies that

Pr [G7 ⇒ 1] = Pr [G6 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀(µ,mµ) ∈ L : b[µ] = 0].
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By de�nition of the bits b[·], and the change in G5, we can rewrite the latter term in the product as

Pr
[
b̂[mr̃] = 1 ∧ ∀(µ,mµ) ∈ L : b̂[mµ] = 0

]
= 1
`+ 1

(
1− 1

`+ 1

)`
= 1
`

(
1− 1

`+ 1

)`+1
≥ 1

4` ,

where we used the fact (1− 1/x)x ≥ 1/4 for all x ≥ 2, and that all bits b̂[·] are independent. Thus, we

have

Pr [G7 ⇒ 1] ≥ 1
4` · Pr [G6 ⇒ 1].

Game G8: In this game, we change how random oracle H is simulated. Namely, in the beginning of

the game, the game samples Y $← G1 and initiates a map t[·]. Then, on a query H(µ) for which the

hash value is not yet de�ned, the game �rst determines bit b[µ] as before. Then, it samples t[µ] $← Zp
and sets H(µ) := Y b[µ] · gt[µ]

1 . Clearly, all hash values are still uniformly random and independent.

Therefore, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: In this game, we change how the signing oracle computes public keys (pki)i and the values

si, i ∈ [K] used to compute the �nal message (pki)K−1
i=1 , s̄. Consider an interaction between A and the

signer oracle and recall the de�nition of the instance i∗ as in game G4. This is the �rst instance for

which there is no successful cheat in this interaction, i.e., r̄i∗,Ji∗ = (µ, γ) 6= ⊥ could be extracted and

ci∗,Ji∗ = H(µ) · gα1 for α := Hα(γ). In G9, the public keys pki = (pki,1, pki,2) are computed via

pki,1 = gski
1 for i ∈ [K] \ {i∗}, pki∗,1 := pk1 ·

∏
i∈[K]\{i∗}

pk−1
i,1 ,

pki,2 = gski
2 for i ∈ [K] \ {i∗}, pki∗,2 := pk2 ·

∏
i∈[K]\{i∗}

pk−1
i,2 .

Further, due to the aborts introduced in previous games, we know that the game only has to send

(pki)K−1
i=1 , s̄ if i∗ is de�ned and b[µ] = 0, where µ is as above. In this case, game G8 would compute

si∗ = cski∗
i∗,Ji∗ = H(µ)ski∗ · gα·ski∗1 =

(
Y b[µ] · gt[µ]

1

)ski∗
· pkαi∗,1 = pkα+t[µ]

i∗,1 .

Game G9 computes si∗ directly as pkα+t[µ]
i∗,1 , and all other si, i 6= i∗ as before using ski. Both changes

are only conceptual and allow the game to provide the signer oracle without using the secret key sk at

all. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Finally, we give a reduction B against the CDH assumption that is successful if G9 outputs 1. We argue

that

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(λ).

The reduction B is as follows.

• Reduction B gets as input g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets pk1 := X1, pk2 := X2
and uses Y as explained in G8.

• Reduction B simulates G9 for A. Note that it can do that e�ciently, as sk is not needed.

• When A terminates with its �nal output (m1, σ1), . . . , (mk, σk), the reduction B writes σr =
((pkr,i, ϕr,i)K−1

i=1 ), ϕr,K , σ̄r), pkr,i = (pkr,i,1, pkr,i,2), sets µr,i := Hµ(mr, ϕr,i) for all r ∈
[k], i ∈ [K] and pkr,K,1 := pk1 ·

∏K−1
i=1 pk−1

r,i,1 and pkr,K,2 := pk2 ·
∏K−1
i=1 pk−1

r,i,2 for all r ∈ [k].
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It performs all checks as in G9. If G9 outputs 1, we know that B de�ned µ∗ := µr̃,̃i as G9 does.

Then, B outputs

Z := σ̄r̃ ·
K∏
i=1

pk−t[µr̃,i]r̃,i,1 .

It is clear that B perfectly simulates G9 and the running time of B is dominated by the running time of

A. Thus, it remains to argue that if G9 outputs 1, the Z is a valid CDH solution. To this end, assume

that G9 outputs 1. It is su�cient to show that e (Y,X2) = e (Z, g2).

First, note that due to the abort that we introduced in G5, we know that for all i ∈ [K], the query

Hµ(mr̃, ϕr̃,i) was made before bit b[µr̃,i] was de�ned. Therefore, due to the change in G6, we obtain

for all i ∈ [K]
b[µr̃,i] = b̂[mr̃] = b[µr̃,r̃] = b[µ∗] = 1.

Second, we know that we have

∏K
i=1 pkr̃,i,2 = X2, and by de�nition of the veri�cation algorithm we

have

e (σ̄r̃, g2) =
K∏
i=1

e
(
H(µr,i), pkr̃,i,2

)
=

K∏
i=1

e
(
Y · gt[µr̃,i], pkr̃,i,2

)
=

K∏
i=1

e
(
Y, pkr̃,i,2

)
· e
(

pkt[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) · e

(
K∏
i=1

pkt[µr̃,i]r̃,i,1 , g2

)
.

In the third equation we used e
(
pkr̃,i,1, g2

)
= e

(
g1, pkr̃,i,2

)
for all i ∈ [K]. This implies that

e (Z, g2) = e

(
σ̄r̃ ·

K∏
i=1

pk−t[µr̃,i]r̃,i,1 , g2

)
= e (Y,X2) .

3.7.2 Extension: Partial Blindness and Batching

We present a batching technique for our blind signature scheme, which leads to a signi�cant e�ciency

improvement in terms of communication. At the same time, we show how to make our scheme

partially blind. As for BSR, we let PGGen be a bilinear group generation algorithm that outputs cyclic

groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2, and a non-degenerate pairing

e : G1×G2 → GT into some target groupGT . Our scheme BPBSR = (Gen, S,U,Ver) is parameterized

by integers K = K(λ) and N(λ) ∈ N, where we need that N−K is negligible in λ. We assume that

the space I of public information strings contains bitstrings of bounded length
11

. The scheme makes

use of random oracles Hr,Hµ : {0, 1}∗ → {0, 1}λ,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N ]K , and

H : {0, 1}∗ → G1. We verbally describe the signature issuing protocol (S,U) and veri�cation of

scheme BPBSR. Key generation (algorithm Gen) is exactly as in BSR.

Signature Issuing. The interactive signature issuing protocol between algorithms S(sk, L, (infol)l∈[L])
and U(pk, L, (ml, infol)l∈[L]) is given as follows.

1. User U does the following.

(a) Preparation. First, for each instance i ∈ [K] and session j ∈ [N ], U commits to all L
messages via

ϕi,j,l
$← {0, 1}λ, µi,j,l := Hµ(ml, ϕi,j,l) for all (i, j, l) ∈ [K]× [N ]× [L].

11

This is without loss of generality, using a collision-resistant hash function.
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(b) Commitments. Next, for each instance i ∈ [K] and session j ∈ [N ], U samples a seed

γi,j
$← {0, 1}λ. It then de�nes

ri,j := (γi,j , µi,j,1, . . . , µi,j,L) , comi,j := Hr(ri,j) for all (i, j) ∈ [K]× [N ].

Then, U sets com := (com1,1, . . . , comK,N ).

(c) Challenges. Now, U derives randomness αi,j,l and computes challenges ci,j,l via αi,j,l :=
Hα(γi,j , l) and ci,j,l := H(infol, µi,j,l) · g

αi,j,l
1 for all (i, j, l) ∈ [K]× [N ]× [L]. Then, U

sets c := (c1,1,1, . . . , cK,N,L).

(d) Cut-and-Choose. Next, U derives a cut-and-choose vector J ∈ [N ]K as J := Hcc(com, c).
It then de�nes an opening

open :=
(

J,
(

(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

)
.

Finally, U sends open to S.

2. Signer S does the following.

(a) Key Sharing. First, S samples ski $← Zp for i ∈ [K−1]. It computes skK := sk−
∑K−1
i=1 ski

and pki := (pki,1, pki,2) := (gski
1 , gski

2 ) for all i ∈ [K].
(b) Cut-and-Choose Veri�cation. To verify the opening, S runs Check(L, (infol)l∈[L], open)

(see Figure 3.8). If this algorithm returns 0, S aborts the interaction.

(c) Responses. For each instance i ∈ [K] and each l ∈ [L], S computes responses si,l := cski
i,Ji,l.

Then, it aggregates them for each l ∈ [L] by computing s̄l :=
∏K
i=1 si,l. Finally, S sends

(pki)K−1
i=1 , s̄1, . . . , s̄L to U.

3. User U does the following.

(a) Key Sharing Veri�cation. First, U recomputes key pkK as pkK := (pkK,1, pkK,2) for

pkK,1 := pk1 ·
∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 . Next, U checks validity of

the pki by checking if e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K]. If any of these equations

does not hold, U aborts the interaction.

(b) Response Veri�cation. Then, U veri�es the responses s̄l by checking

e (s̄l, g2) =
K∏
i=1

e
(
ci,Ji,l, pki,2

)
for all l ∈ [L].

If any of these equations does not hold, U aborts the interaction. Otherwise, it computes

σ̄l := s̄l ·
K∏
i=1

pk−αi,Ji,li,1 for all l ∈ [L].

(c) Key Rerandomization. Next, U computes rerandomized key sharings via

((pk′i,l)i, σ̄′l)← ReRa((pki,H(infol, µi,Ji,l))i, σ̄l) for all l ∈ [L].

It then de�nes signatures

σl := ((pk′i,l, ϕi,Ji,l)K−1
i=1 , ϕK,JK ,l, σ̄

′
l) for all l ∈ [L].

(d) Finally, U outputs the signatures σ1, . . . , σL.

74



3.7. RAI-CHOO BLIND SIGNATURES

Alg Check
(
L, (infol)l∈[L], open =

(
J,
(

(ri,j)j 6=Ji , (ci,Ji,l)l∈[L], comi,Ji

)
i∈[K]

))
01 for i ∈ [K] :
02 for j ∈ [N ] \ {Ji} :
03 comi,j := Hr(ri,j)
04 parse (γi,j , µi,j,1, . . . , µi,j,L) := ri,j , (γi,j , µi,j,1, . . . , µi,j,L) ∈ ({0, 1}λ)L+1

05 for l ∈ [L] : αi,j,l := Hα(γi,j , l), ci,j,l := H(infol, µi,j,l) · g
αi,j,l
1

06 com := (com1,1, . . . , comK,N ), c := (c1,1,1, . . . , cK,N,L)
07 if J 6= Hcc(com, c) : return 0
08 return 1

Figure 3.8: Algorithm Check used in the signature issuing protocol of batched blind signature scheme

BPBSR.

Veri�cation. The resulting signature σ := ((pki, ϕi)K−1
i=1 ), ϕK , σ̄) for a message m and string info is

veri�ed by algorithm Ver(pk, info,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].

2. Compute pkK,1 := pk1 ·
∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·
∏K−1
i=1 pk−1

i,2 .

3. If there is an i ∈ [K] with e
(
pki,1, g2

)
6= e

(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute µi := Hµ(m, ϕi).

5. Return 1 if and only if

e (σ̄, g2) =
K∏
i=1

e
(
H(info, µi), pki,2

)
.

Analysis. Completeness of the scheme follows by inspection. The proofs and concrete security bounds

for blindness and one-more unforgeability are almost identical to the proofs of the corresponding

theorems for the non-batched construction.

Theorem 3.8. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ and Hα : {0, 1}∗ → Zp be random oracles. Then BPBSR
satis�es malicious signer batch partial blindness.

Concretely, for any algorithmA that makes at mostQHr , QHµ , QHα queries to Hr,Hµ,Hα respectively,

we have

Advbblind
A,BPBSR(λ) ≤

KNQHµ
2λ−2 + KQHr

2λ−2 + KQHα
2λ−2 .

Proof. The proof is almost identical to the proof of Theorem 3.6, and we encourage the reader to read

the proof of Theorem 3.6 �rst. Here, we only sketch the di�erences. Set BPBS := BPBSR and let A be

an adversary against the batch partial blindness of BPBS. As in the proof of Theorem 3.6, we prove the

statement using games Gi,b for i ∈ [8] and b ∈ {0, 1} such that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: We set G0,b as G0,b := BBLINDAb,BPBS(λ). Recall that in this game, A outputs a public

key pk, lists (infoLl ,mL
l )l∈[LL] and (infoRl ,mR

l )l∈[LR], and indices lL∗ and lR∗ . The game outputs 0 if

infoLlL∗ 6= infoRlR∗ . For the rest of the proof, we can assume that infoLlL∗ = infoRlR∗ . Then, if b = 1, the

messages mL
lL∗

and mR
lR∗

are swapped. Adversary A gets access to oracles O0 and O1 simulating

U(pk, LL, (mL
l , infoLl )l∈[LL]) and U(pk, LR, (mR

l , infoRl )l∈[LR]),
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respectively. As in the proof of Theorem 3.6, we use superscripts L and R to distinguish variables used

in these oracles. If no superscript is given, the description refers to both oracles.

Game G1,b: Game G1,b is as G0,b, but we add an abort on a certain event. Namely, the game aborts if

A ever queries Hµ(·, ϕi,j,l∗) for some i ∈ [K] and j ∈ [N ] \ {Ji}. As A obtains no information about

ϕi,j,l∗ over the entire game, we have

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤
KNQHµ

2λ−1 .

Game G2,b: Game G2,b is as G1,b, but with another abort event. The game aborts, if A ever makes

a query Hr(ri,Ji), or a query Hα(γi,Ji , l∗) for some i ∈ [K]. As in the proof of Theorem 3.6, the

probability of such an abort is negligible due to the entropy of γi,Ji , and we get

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ KQHr

2λ−1 + KQHα
2λ−1 .

Games G3,b-G4,b: The changes we introduce in these games are exactly as in the proof of Theorem 3.6,

but it is su�cient to apply them to the �nal signatures for messages mL
lL∗

and mR
lR∗

. As in the proof of

Theorem 3.6, we have

Pr [G2,b ⇒ 1] = Pr [G4,b ⇒ 1].
Game G5,b: This change is exactly as in the proof of Theorem 3.6, i.e., we let the game sample random

vectors ĴL $← [N ]K and ĴR $← [N ]K , and later the game aborts if we do not have ĴL = JL and

ĴR = JR. We have

Pr [G5,b ⇒ 1] = 1
N2K · Pr [G4,b ⇒ 1].

Game G6,b: In this game, we change how the values µi,j,l∗ for i ∈ [K] and j ∈ [N ]\{Ĵi} are computed.

Namely, while they were de�ned as µi,j,l := Hµ(m, ϕi,j,l) before, we now sample them at random, i.e.,

µi,j,l
$← {0, 1}λ. We can argue using the change we introduced in G1,b, and similar to the proof of

Theorem 3.6, to get

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].
Game G7,b: We change how the values αi,Ĵi,l∗ and comi,Ĵi are computed for all i ∈ [K]. Namely we

sample αi,Ĵi,l∗
$← Zp and comi,Ĵi

$← {0, 1}λ. We can argue using the changes in G5,b and G2,b, and

similar to the proof of Theorem 3.6, to get

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: We change how the values ci,Ĵi,l∗ are computed. Namely, we now sample these at random,

i.e., ci,Ĵi,l∗
$← G1. We can argue as in the proof of Theorem 3.6, to get

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Finally, it can be observed that the view of A is independent of the bit b. The statement follows as

in the proof of Theorem 3.6.

Theorem 3.9. Let Hr,Hµ : {0, 1}∗ → {0, 1}λ, and Hcc : {0, 1}∗ → [N ]K , and H : {0, 1}∗ → G be

random oracles. If CDH assumption holds relative to PGGen, then BPBSR is batch one-more unforgeable.

Concretely, for any polynomial ` and any PPT algorithm A that makes at most QHcc , QHr , QHµ , QH
queries to Hcc,Hr,Hµ,H respectively, there is a PPT algorithm B with T(B) ≈ T(A) and

Adv`-BOMUF
A,BPBSR(λ) ≤

Q2
Hµ +Q2

Hr
+QHrQHcc +QHQHµ

2λ + `

NK
+ 4` · AdvCDH

B,PGGen(λ).
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Proof. The proof is a direct generalization of the proof of Theorem 3.7. The reader should read the

proof of Theorem 3.7 �rst. We only sketch the di�erences. Set BPBS := BPBSR and let A be an

adversary against the batch one-more unforgeability of BPBS. As in the proof of Theorem 3.7, we

prove the theorem using a sequence of games Gi, i ∈ [9].
Game G0: Game G0 is de�ned to be G0 := `-BOMUFABPBS. That is, �rst a pair of keys (pk, sk)←
Gen(1λ) is sampled. Then, A can access a signer oracle O. In each interaction this oracle takes as

input a batch size L ∈ N and L strings info1, . . . , infoL ∈ I , and then simulates S(sk, L, (infol)l∈[L]).

Further, C denotes the list of all tuples (i, L, (infol)l∈[L]) such thatA submitted batch size L and strings

(infol)l∈[L] in the ith completed interaction with O. We have

∑
(i,L,(infol)l∈[L])∈C L ≤ `. In the end, A

outputs tuples (info1,m1, σ1), . . . , (infok,mk, σk). Adversary A wins, if there is some info∗, such that,

considering only the tuples with �rst component info∗, all messages mi are distinct, all signatures σi
are valid, and there are more tuples of this form than completed interactions with this info∗. We have

Adv`-BOMUF
A,BPBS (λ) = Pr [G0 ⇒ 1].

Games G1-G5: These games are exactly as in the proof of Theorem 3.7. Namely, we rule out collisions

for random oracles Hµ,Hr, let the game extract values r̄i,j during queries to Hcc, and establish that there

is at least one instance i∗ per interaction, for which the adversary does not cheat successfully. Recall that

this means that the game can extract r̄i∗,Ji∗ = (γ, µ1, . . . , µL) 6= ⊥ and ci∗,Ji∗ ,l = H(infol, µl) · gαl1
for αl := Hα(γ, l) and all l ∈ [L]. Here, L and (infol)l∈[L] denote the batch size and the public strings

that the adversary submitted to oracle O in this interaction. Also, in this sequence of games we change

the way the secret keys ski are sampled, and introduce an abort related to the order of queries for H
and Hµ All of this is done exactly as in the proof of Theorem 3.7. We have

|Pr [G0 ⇒ 1]− Pr [G6 ⇒ 1]| ≤
Q2

Hµ
2λ +

Q2
Hr

2λ + QHrQHcc
2λ + `

NK
+
QHQHµ

2λ .

Game G6: Game G6 is as G5, but we introduce a conceptual change. Namely, the game now holds maps

b[·] and b̂[·]. On a query of the form H(info, µ), the game �rst searches for a previous query (mµ, ϕ)
to Hµ such that Hµ(mµ, ϕ) = µ. If no such query is found, the game sets b[info, µ] := 0. If such a

query (mµ, ϕ) is found, and b̂[info,mµ] is not yet de�ned, the game samples b̂[info,mµ] ∈ {0, 1} from

a Bernoulli distribution, such that the probability that b̂[info,mµ] = 1 is 1/(`+ 1). The game then sets

b[info, µ] := b̂[info,mµ]. Note that the game can �nd at most one mµ for a given µ, due to the change

introduced in G1. Clearly, the view of the adversary A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: As in the proof of Theorem 3.7, we introduce an initially empty set L in this game, and

add a new abort event. To this end, consider an interaction between the adversary A and the signer

oracle. In this interaction, we know that there is at least one instance i∗ for which the adversary does

not cheat successfully. That is, the game can extract r̄i∗,Ji∗ = (γ, µ1, . . . , µL) 6= ⊥ and ci∗,Ji∗ ,l =
H(infol, µl) · gαl1 for αl := Hα(γ, l) and all l ∈ [L]. Additionally, in G7, the game now tries to extract

queries (mµl , ϕl) for all l ∈ [L] such that µl = Hµ(mµl , ϕl). For those l ∈ [L] for which it can extract,

it inserts (infol, µl,mµl) into L. It is clear that the size of L is at most

∑
(i,L,(infol)l∈[L])∈C L ≤ `.

Additionally, if there is some l ∈ [L] such that b[infol, µl] = 1, the game aborts.

Further, consider the �nal output (info1,m1, σ1), . . . , (infok,mk, σk) of A. Write σr = ((pkr,i,
ϕr,i)K−1

i=1 ), ϕr,K , σ̄r), and set µr,i := Hµ(mr, ϕr,i) for all r ∈ [k], i ∈ [K]. If A is successful, we know

that there is some info∗ such that |Compl[info∗]| < |Out[info∗]|, where

Compl[info∗] := {(i, l0) | ∃(i, L, (infol)l∈[L]) ∈ C : infol0 = info∗}
Out[info∗] := {i ∈ [k] | infoi = info∗}.
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It is easy to see that |Compl[info∗]| is an upper bound for the number of tuples (info, µ,mµ) in L
with info = info∗. Therefore, by the pigeonhole principle, we know that there is at least one (r̃, ĩ) ∈
Out[info∗] × [K] such that (infor̃, µr̃,̃i,mr̃) /∈ L. Here we have infor̃ = info∗. Game G7 �nds the

�rst such (r̃, ĩ), sets µ∗ := µr̃,̃i and aborts if b[info∗, µ∗] = 0. As in the proof of Theorem 3.7, we can

assume that b[info∗, µ∗] is de�ned. Also, as in the proof of Theorem 3.7, the game adds further entries

(info, µ,mµ) to L such that |L| = `, and aborts if b[info, µ] = 1.

The analysis of this change is as in the proof of Theorem 3.7. Namely, we �rst see that G7 outputs

1 if G6 outputs 1 and

b[info∗, µ∗] = 1 ∧ ∀(info, µ,mµ) ∈ L : b[info, µ] = 0.

Then, we use the same calculation and arguments as in the proof of Theorem 3.7 to get

Pr [G7 ⇒ 1] ≥ 1
4` · Pr [G6 ⇒ 1].

Game G8: As in the proof of Theorem 3.7, we change how random oracle H is simulated. In the

beginning of the game, the game samples Y $← G1 and initiates an empty map t[·]. On a query

H(info, µ) for which the hash value is not yet de�ned, the game �rst determines b[info, µ] as explained

in G6. Then, it samples t[info, µ] $← Zp and sets H(µ) := Y b[info,µ] · gt[info,µ]
1 . This does not change the

view of the adversary. We have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: This change is as in the proof of Theorem 3.7. Namely, we change how the public key

sharing (pki)i∈[K] and the values si∗,l for all l ∈ [L] are computed in an interaction. The sharing

(pki)i∈[K] is computed exactly as in the proof of Theorem 3.7, and the values si∗,l are now computed

as si∗,l = pkαl+t[infol,µl]
i∗,1 , where αl := Hα(γ, l), and (γ, µ1, . . . , µL) has been extracted by the game.

Due to this change, sk is no longer needed. As in the proof of Theorem 3.7, we have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Finally, as in the proof of Theorem 3.7, we can give a reduction B against the CDH assumption that

is successful if G9 outputs 1. This reduction gets as input g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets

pk1 := X1, pk2 := X2 and uses Y as explained in G8. Then, it simulates G9 for A. Finally, it outputs

Z := σ̄r̃ ·
K∏
i=1

pk−t[info∗,µr̃,i]
r̃,i,1 .

Analysis of B is as in the proof of Theorem 3.7, and we conclude with

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(λ).

3.7.3 Concrete Parameters and E�ciency

In this section, we discuss concrete parameters and e�ciency of our scheme.

Instantiating Parameters. We instantiate our scheme over the BLS12-381 curve, using SHA-256 as

a hash function. It remains to determine appropriate choices for parameters K and N . To do that,

we �rst �x some choice of N and a security level κ = 128. Then, we assume a maximum number

of ` = 230
signing interactions with the same key. Following the security bound, we can now set

K := d(κ+ log `)/logNe+ 1. This approach leads to the instantiations

(I) K = 80, N = 4, (II) K = 54, N = 8, (III) K = 33, N = 32.
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For these, we compute the sizes of signatures and communication in a Python script
12

. Our results

are presented in Table 3.3. Let us brie�y discuss the results. Especially, we want to compare the

communication complexity of our scheme to the communication complexity of PI-Cut-Choo (Section 3.4).

For that, we use instantiation (I) of our scheme, which has roughly 33 KB of communication. For

PI-Cut-Choo, the communication is roughly 26 + 3 · log(N) KB. For N = 6, the communication size of

PI-Cut-Choo already exceeds the size of Rai-Choo. Thus, even assuming that N is exactly the number

of interactions, PI-Cut-Choo is only better in the �rst 5 interactions. This assumption does not even

hold, as N is not identical to the number of interactions, see function f in Theorem 3.2. In addition, we

remark that when setting parameters, one has to be very conservative about the number of signing

interactions. Especially, for PI-Cut-Choo, the Signer’s counter will increase quickly, because for each

(even non-malicious) timeout, the counter has to be increased. Such timeouts are even more likely

when the scheme requires multiple signing rounds, as PI-Cut-Choo does. An adversary can amplify

this, leading to a kind of DoS attack. Thus, Rai-Choo outperforms PI-Cut-Choo immediately in terms

of communication.

Implementation. To demonstrate computational practicality, we have implemented a prototype of

our scheme in C++ using above parameter settings. Our implementation uses the MCL library
13

and

can be found at

https://github.com/b-wagn/Raichoo

Although our scheme is highly parallelizable, we did not implement any parallelization. To evaluate the

e�ciency of our implementation, we determined the average running time over 100 runs of the signing

interaction (i.e., running U1, then S, then U2), and the veri�cation algorithm. For our tests, we used a

Intel Core i5-7200U processor @2,5 GHz with 4 cores and 8 GB of RAM, running Ubuntu 20.04.4 LTS

64-bit. Our results are presented in Table 3.3. In general, the table shows a tradeo� between signature

size, communication complexity, and computational e�ciency.

Other Pairing Settings. We could also instantiate our scheme in the type-2 or type-1 pairing setting.

To recall, in the type-2 setting, there is an e�cient isomorphism ψ from G2 to G1. In the type-1

setting, we have G1 = G2. In both cases, the public keys pki in our scheme only have to be sent in

G2. Type-1 pairing-friendly curves are usually constructed from supersingular curves over a �eld

with small characteristics (2 or 3). They were shown to be insecure [BGJT14]. The alternative are

supersingular curves over a larger �eld, but we only know how to construct them with an embedding

degree 3. Assuming the same target group size as for BLS12-381 (4572 bits), we get impractical group

element sizes of 1525 bits. For type-2 pairings, we can start with the BLS12-381 parameters, and replace

the curve G2 with a curve G′2 de�ned over a larger extension �eld [CM09]. The most e�cient way to

represent elements in G′2 is to represent them as an element of G1 ×G2. For more details, see [CM09].

Therefore, by sending all keys in G′2, we obtain the same communication and signature sizes as in

the type-3 setting. The security of such a variant of our scheme will solely rely on the computational

Di�e-Hellman assumption in the group G′2.

Concrete Bit Security. In contrast to what we did in Sections 3.4.2 and 3.5.4, we compute our

parameters using standardized curves and hash functions instead of estimating parameters based on the

security loss. The reason for this is that we want our numbers be consistent with our implementation

and therefore have to rely on standardized components. To discuss the e�ect of the security loss, we

now assume all components are roughly 128-bit secure. Then, the guaranteed security for our scheme

is roughly 128 − log ` = 98 bit. This is the same for PI-Cut-Choo and the standard BLS signature

scheme [BLS01].

12

The Python script can be found in https://github.com/b-wagn/dissertation-efficiency-scripts.
13

See https://github.com/herumi/mcl.
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Publication History of This Chapter

This chapter is based on the publication [PW23a] and its full version [PW23b] and the publication

[PW24] and its full version [PW23c]. I am the main author of both. To obtain a consistent structure,

the content of the original publications has been reordered and partially merged. Further, a minor

optimization (see Section 4.6), which was not present in [PW23a] but in [PW24], has been applied to

the schemes from [PW23a] for the e�ciency comparison. Additionally, minor notational changes have

been made.
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4.1. INTRODUCTION

4.1 Introduction

A multi-signature scheme [IN83, BN06] allows a group of signers to jointly sign a message. Naively,

every signer could sign the message locally, and we concatenate the resulting signatures. As the number

of signers grows large, this results in impractical signature sizes, and so we aim for a more clever

solution with compact signatures, potentially at the cost of introducing interaction. Early constructions

of multi-signatures have been presented and analyzed in a variety of models [MOR01, Bol03, LOS
+

06,

DEF
+

19, CKM21], mostly di�ering in how keys are generated, registered, and veri�ed. Nowadays, the

accepted de facto standard for multi-signatures is the plain public key model [BN06], where each signer

generates his key pair independently. In this chapter, we focus on constructions in the said model,

proven in the random oracle model [BR93] from assumptions over cyclic groups without pairings. We

look at this problem from the perspective of concrete security. As explained in Section 1.3, this means

we try to optimize the security bound without compromising e�ciency.

Three-Round Schemes. In the plain public key model, Bellare and Neven [BN06] have constructed a

three-round multi-signature scheme (BN) based on DLOG. Proving the security of this scheme relies

on rewinding and uses the Forking Lemma [BN06], which leads to a highly non-tight security bound.

To improve this, Bellare and Neven have also introduced a second three-round construction (BN+)

tightly based on DDH. Further works focus on key aggregation [MPSW19, BDN18, FH21]. This feature

allows to publicly compute a single aggregated key from a given list of public keys, which can later

be used for veri�cation. The key aggregation property saves bandwidth and is desirable in many

applications. Notably, the three-round scheme Musig [MPSW19, BDN18] can be seen as a variant of

BN that supports key aggregation. The scheme is based on DLOG and a double forking technique is

introduced for its analysis. This leads to a security bound which is meaningless in terms of concrete

security. Using DDH, a tightly secure variant Musig+ of Musig has been proposed in [FH21].

Two-Round Schemes. To further reduce round complexity, recent works have proposed two-round

constructions [NRS21, BD21, AB21, CKM21, DOTT21]. However, while achieving certain desirable

properties (e.g., deterministic signing [NRSW20]) the proposed schemes have their drawbacks in terms

of assumptions and concrete security. The scheme [NRSW20] makes use of heavy cryptographic

machinery and is not comparable with others in terms of e�ciency. Further, even using additional

idealizations such as the algebraic group model, security proofs of most two-round schemes rely on

non-standard interactive assumptions [NRS21, CKM21, AB21], the only exceptions being [DOTT21,

BD21, BTT22]. A second drawback is the apparent need for (double) forking in the random oracle

model [DEF
+

19, NRS21, DOTT21, BD21, BTT22]. While such security proofs show the absence of

major structural attacks, concrete parameters are not supported by cryptanalytic evidence.

Our Goal. Motivated by the state-of-the-art, we study whether rewinding techniques are necessary for

two-round multi-signatures. We want to rely on a well-studied non-interactive hardness assumption

and construct a scheme without rewinding, ideally with a tight security proof. In spirit of our overall

objectives (see Section 1.3), we want to achieve this without sacri�cing e�ciency.

4.1.1 Contribution: Chopsticks

As our �rst contribution in this chapter, we propose the �rst two multi-signature schemes that are

two-round from a non-interactive assumption without using the Forking Lemma. Both of our schemes

are proven secure in the random oracle model based on the DDH assumption:

1. Chopsticks I. A two-round multi-signature scheme with a security loss O(QS) and key aggrega-

tion, where QS is the number of signing queries.

2. Chopsticks II. The �rst two-round multi-signature scheme with a fully tight security proof.
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We compare our schemes with existing schemes in Table 4.1
1
. For roughly 128-bit security, Chopsticks II

can be instantiated with standardized 128-bit secure curves, in contrast to all previous two-round

schemes. For Chopsticks I, its proof is non-tight, but it does not rely on rewinding and has tighter

security based on standard, non-interactive assumptions than other non-tight schemes (such as HBMS
and Musig2). Hence, as long as the number of signing queries QS is less than 2192−128 = 264

, we

can implement our �rst scheme with a standardized 192-bit secure curve to achieve 128-bit security,

while this is not the case for HBMS and Musig2. As limitations, we note that our schemes do not

have some additional bene�cial properties (e.g., having Schnorr-compatible signatures or supporting

preprocessing) as in Musig2 [NRS21]. We leave achieving these properties without rewinding as an

interesting open problem.

A central building block of our construction is a special DDH-based commitment scheme without

pairings. Concretely, our commitment scheme has the following properties:

• It commits to pairs of group elements in a homomorphic way.

• It has a dual-mode property, i.e., indistinguishable commitment keys in statistically hiding and

statistically binding mode, with tight multi-key indistinguishability.

• The hiding mode o�ers a special form of equivocation trapdoor, which allows to open commit-

ments to group elements output by the Honest-Veri�er Zero-Knowledge (HVZK) simulator of

Schnorr-like identi�cation protocols.

Such a commitment scheme can be useful to construct other interactive signature variants, and we

believe that this is of independent interest. In this chapter, we construct the �rst commitment scheme

satisfying the above properties simultaneously without using pairings. Our commitment scheme can be

seen as an extension of the commitment scheme in [BCJ08]
2
. Contrary to our scheme, the commitment

scheme in [BCJ08] commits to single group elements and no statistically binding mode is shown. Other

previous commitment schemes either have no trapdoor property [GOS06, GS08], or homomorphically

commit to ring or �eld elements [GQ88, Ped92]. To the best of our knowledge, there is only a solution

using pairings [Gro09]. Combining this commitment scheme, lossy identi�cation [KW03, AFLT12,

KMP16], and a guessing argument, we obtain Chopsticks I. We then introduce the pseudorandom

matching technique, where each signer holds two secret keys and pseudorandomly matches its keys to

two possible commitment keys per message. Implemented carefully, this idea leads to our tight scheme

Chopsticks II.

4.1.2 Contribution: Toothpicks

For our constructions in Chopsticks, the price of tightness is high: signatures and communication

complexity in Chopsticks II are about 3 times as large as in one of the most e�cient non-tight two-

round scheme HBMS. As a second contribution of this chapter, we reduce this e�ciency penalty by

constructing a new two-round multi-signature scheme (Toothpicks II) that achieves the best of two

worlds:

• Tightness. Our scheme is tightly secure based on the DDH assumption. When instantiated

over a standardized 128-bit secure group, its security guarantee is 126-bit, which is formally

supported by our proofs. In contrast, non-tight schemes relying on rewinding do not guarantee

any meaningful security level.

1

We do not consider proofs in the (idealized) algebraic group model and do not list schemes that are not in

the plain public key model. Also, scheme TSSHO [TSS
+

23] has been proposed after our schemes have been

published [PW23a], and does not achieve tight security.

2

Drijvers et al. [DEF
+

19] showed a �aw in the proof of the multi-signature scheme presented in [BCJ08], but it

does not a�ect their commitment scheme.
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Scheme Rounds Key Aggregation Assumption Loss

BN [BN06] 3 7 DLOG Θ(QH/ε)
BN+ [BN06] 3 7 DDH Θ(1)
Musig [MPSW19, BDN18] 3 3 DLOG Θ(Q3

H/ε
3)

Musig+ [FH21] 3 3 DDH Θ(1)
Musig2 [NRS21] 2 3 AOMDL Θ(Q3

H/ε
3)

HBMS [BD21] 2 3 DLOG Θ(Q4
SQ

3
H/ε

3)
TZ [TZ23] 2 3 DLOG Θ(Q3

H/ε
3)

TSSHO [TSS
+

23] 2 3 DDH Θ(QS)

Chopsticks I 2 3 DDH Θ(QS)
Chopsticks II 2 7 DDH Θ(1)
Toothpicks I 2 3 DDH Θ(QS)
Toothpicks II 2 7 DDH Θ(1)

Table 4.1: Comparison of multi-signature schemes in the discrete logarithm se�ing without pairings

in the plain public key model. We compare the number of rounds, whether the schemes support

key aggregation, the assumption the schemes rely on, and the security loss, where QH , QS denote

the number of random oracle and signing queries, respectively, and ε denotes the advantage of an

adversary against the scheme. For the security loss, we do not consider proofs in the algebraic group

model. We do not list [NRSW20] as it is prohibitively ine�icient due to the use of heavy cryptographic

machinery.

• E�ciency. Our scheme is as e�cient as the state-of-the-art non-tight schemes. Concretely,

the communication complexity per signer for our scheme is comparable to HBMS [BD21] and

about 1.5 times smaller than TZ [TZ23] and Musig2 [NRS21]. The signature size is only about

1.5 times larger than for the non-tight schemes. Compared to Chopsticks II, this signi�cantly

reduces the e�ciency cost of tightness. Concretely, our scheme outperforms Chopsticks II by a

factor of more than 2 in terms of signature size and communication complexity, respectively.

In addition, our techniques allow us to improve the e�ciency of Chopsticks I, the non-tight scheme

with key aggregation, resulting in Toothpicks I. We compare our schemes with previous schemes in

terms of security (see Table 4.1) and asymptotic (see Table 4.2) and concrete (see Table 4.3) e�ciency.

From a technical perspective, our �rst contribution is a new pseudorandom path technique, as

opposed to the pseudorandom matching technique used in Chopsticks II. This new technique allows us

to reduce the size of signatures and communication by a factor of two. Our second technical insight is

that, somewhat surprisingly, we do not need a binding commitment. Instead, we can signi�cantly relax

the binding property of our commitment to hold up to cosets of a certain subspace. This enables more

e�cient instantiations, further improving the e�ciency of our schemes. To show that this relaxation

does not introduce problems in terms of security, we identify a strong soundness property many natural

lossy identi�cation schemes [KW03, AFLT12, KMP16] have.

4.1.3 More on Related Work

Here, we present more related work in the context of multi-signatures. This should serve as a starting

point for further reading rather than as an exhaustive overview.

Other Algebraic Structures. In this dissertation, we only consider multi-signatures over pairing-free

cyclic groups. Multi-signatures have also been considered over di�erent algebraic structures and

using di�erent hardness assumptions. Examples include multi-signatures from RSA [IN83, OO93,

HW18], from pairings [BGLS03, Bol03, LOS
+

06, BDN18, DGNW20], or from lattice-based assump-

tions [DOTT21, BTT22, FSZ22, Che23, FHSZ23].
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Scheme Rounds Public Key Communication Signature

BN [BN06] 3 1〈G〉 1〈G〉+ 1〈Zp〉+ 2λ 1〈G〉+ 1〈Zp〉
BN+ [BN06] 3 2〈G〉 2〈G〉+ 1〈Zp〉+ 2λ 2〈G〉+ 1〈Zp〉
Musig [MPSW19, BDN18] 3 1〈G〉 1〈G〉+ 1〈Zp〉+ 2λ 1〈G〉+ 1〈Zp〉
Musig+ [FH21] 3 2〈G〉 2〈G〉+ 1〈Zp〉+ 2λ 2〈Zp〉
Musig2 [NRS21] 2 1〈G〉 4〈G〉+ 1〈Zp〉 1〈G〉+ 1〈Zp〉
HBMS [BD21] 2 1〈G〉 1〈G〉+ 2〈Zp〉 1〈G〉+ 2〈Zp〉
TZ [TZ23] 2 1〈G〉 4〈G〉+ 2〈Zp〉 1〈G〉+ 2〈Zp〉
TSSHO [TSS

+
23] 2 2〈G〉 2〈G〉+ 2〈Zp〉 3〈Zp〉

Chopsticks I 2 2〈G〉 3〈G〉+ 1〈Zp〉+ λ 4〈Zp〉+ 2λ
Chopsticks II 2 4〈G〉 6〈G〉+ 2〈Zp〉+ λ+ 1 8〈Zp〉+ 4λ+N
Toothpicks I 2 2〈G〉 2〈G〉+ 1〈Zp〉+ λ 3〈Zp〉+ 2λ
Toothpicks II 2 4〈G〉 2〈G〉+ 1〈Zp〉+ λ+ 1 3〈Zp〉+ 2λ+N

Table 4.2: Asymptotic e�iciency comparison of multi-signature schemes in the discrete logarithm

se�ing without pairings in the plain public key model. We compare the number of rounds, the size

of public keys, the communication complexity per signer, and the signature size. We denote the size

of a group element by 〈G〉 and the size of a field element by 〈Zp〉. Here, λ is a statistical security

parameter, and N is the number of signers. Schemes below the line have two rounds and avoid

rewinding, see Table 4.1. We do not list [NRSW20] as it is prohibitively ine�icient due to the use of

heavy cryptographic machinery.

Scheme Security Public Key Communication Signature

Musig2 9 33 164 65

HBMS -11 33 97 97

TZ 8 33 196 97

TSSHO 106 66 130 96

Chopsticks I 106 66 147 160

Chopsticks II 126 132 278 336

Toothpicks I 106 66 114 128

Toothpicks II 125 132 114 144

Table 4.3: Concrete e�iciency and security comparison of two-round multi-signature schemes in the

discrete logarithm se�ing without pairings in the plain public key model. We compare the security level

guaranteed by the security bound in the random oracle model assuming the underlying assumption is

128-bit hard, the size of public keys, the communication complexity per signer, and the signature size.

Sizes are given in bytes and rounded. We do not list [NRSW20] as it is prohibitively ine�icient due to

the use of heavy cryptographic machinery.
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Aggregate Signatures. Aggregate signatures [BGLS03, LMRS04, LOS
+

06, HKW15] allow to publicly

aggregate a set of given signatures. More precisely, given the public keys, messages, and signatures,

one can compute one short aggregate signature that represents all signatures. In this sense, we can

think of aggregate signatures as non-interactive multi-signatures for di�erent messages. In fact, one

caveat of most aggregate signatures is that the messages necessarily have to be distinct.

Synchronized Multi-Signatures. Multi-signatures and aggregate signatures in the synchronized

setting have been considered [AGH10, HW18, FSZ22, FHSZ23]. In a nutshell, these constructions

assume that each signer only signs one message per time period and only signatures from the same time

period can be aggregated. This assumption is valid in several applications and enables more e�cient

and non-interactive constructions in various settings.

Threshold Signatures. Threshold signatures [Des88, DF90, Ped91] generalize multi-signatures in the

sense that not all signers have to participate to generate a signature. Precisely, in a threshold signature

scheme, a group of n signers is represented by one public key, and for a threshold t, a valid signature

with respect to this public key can only be computed when more than t signers participate. It is worth

highlighting the di�erence between multi-signatures and threshold signatures with threshold t = n−1:

in the multi-signature setting, we assume all signers generate their key independently and aggregation

of public keys may be possible, whereas in the threshold signature setting, we assume that the group of

n signers is �xed and secret keys can be generated in a correlated way. We discuss threshold signatures

extensively in Chapter 5.

4.1.4 Subsequent and Concurrent Work

In a concurrent work to our Chopsticks result [PW23a], Tessaro and Zhu [TZ23] also proposed a

two-round multi-signature scheme, among other contributions. Both our work and theirs focus on

avoiding interactive assumptions. However, while we additionally remove the security loss, Tessaro

and Zhu concentrate on having a partially non-interactive scheme. That is, the �rst round of the

signing protocol is independent of the message being signed. In a nutshell, they generalize Musig2 to

linear function families. Then, under a suitable instantiation, the interactive assumption for Musig2
can be avoided. Similar to Musig2, the resulting scheme is partially non-interactive. Subsequent to

our Chopsticks result [PW23a], but before our Toothpicks result [PW24], Takemure et al. [TSS
+

23]

proposed a two-round multi-signature scheme from DDH similar to our non-tight scheme Chopsticks I:
it supports key aggregation and has a security loss proportional to the number of signing queries.

Roughly, they combine the Katz-Wang signature scheme [KW03] with techniques inspired by HBMS
[BD21]. As shown in Table 4.3 their scheme is particularly e�cient in terms of signature size.

4.1.5 Outline

Following the introduction of this chapter, we give a detailed technical overview in Section 4.2, which

presents our techniques in an informal way. Then, in Section 4.3, we de�ne two-round multi-signatures.

The remaining two sections present our contributions formally. That is, Section 4.4 presents our

Chopsticks schemes from [PW23a], and Section 4.5 presents our Toothpick schemes from [PW24], for

which we also discuss concrete parameters and e�ciency.

4.2 Technical Overview

In this overview, we informally introduce the main ideas and techniques developed in this chapter. We

start with our Chopsticks construction from [PW23a], and then explain our Toothpicks construction

from [PW24]. To recall, the goal of Chopsticks is to develop techniques for constructing two-round

multi-signature schemes without using rewinding. The goal of Toothpicks is to reduce the e�ciency

penalty introduced by these techniques.

87



CHAPTER 4. MULTI-SIGNATURES

4.2.1 Fork-Free Two-Round Multi-Signatures

Our �rst contribution is to construct two-round multi-signatures without using rewinding. Here, we

present our techniques informally.

Schnorr-Based Multi-Signatures. We start by recalling the basic template for multi-signatures based

on the Schnorr identi�cation scheme [Sch91]. Let G be a group of prime order p with generator g. We

explain the template using the vector space homomorphism F : x 7→ gx mapping from Zp to G, and

write both domain and range additively. In a �rst approach to get a multi-signature scheme, we let each

signer iwith secret key ski and public key pki = F(ski) sample a random ri ∈ Zp, and sendRi := F(ri)
to all other signers. Then, an aggregated R is computed as R =

∑
iRi. From this R, signers derive

challenges ci using a random oracle. Then, each signer computes a response si = ciski + ri and sends

this response. Finally, the signature contains R and the aggregated response s =
∑
i si. Veri�cation is

very similar to the veri�cation of Schnorr signatures. As each signer in this simple two-round scheme

is almost identical to the prover algorithm of the Schnorr identi�cation scheme, one may hope that this

scheme is secure. However, early works already noted that it is not [BN06].

While there are concrete attacks against the scheme, for our purposes it is more important to

understand where the security proof fails. The proof fails when we try to simulate honest signer

without knowing its secret key sk1. Following Schnorr signatures and identi�cation, this would be

done by sampling R1 := F(s1)− c1pk1 for random c1 an s1, and then programming the random oracle

accordingly at position R. The problem in the multi-signature setting is that we �rst have to output R1,

and then the adversary can output the remaining Ri, such that he has full control over the aggregate R.

Thus, the random oracle may already be de�ned. Previous works [BN06, MPSW19, BDN18] solve this

issue by introducing an additional round in which all signers commit to their Ri using a random oracle.

This allows us to extract all Ri from these commitments in the reduction, and therefore R has enough

entropy to program the random oracle.

A second problem that we encounter in the above approach is the extraction of a solution from

the forgery. Namely, to extract a discrete logarithm of pk1, we need to rely on rewinding. Some of

the well-known schemes [MPSW19, BDN18] even use rewinding multiple times. This leads to security

bounds with essentially no useful quantitative guarantee for concrete security.

Towards A Scheme without Rewinding. To avoid rewinding, our �rst idea is to rely on a di�erent

homomorphism F. Namely, we borrow techniques from lossy identi�cation [KW03, AFLT12, KMP16]

and use F : x 7→ (gx, hx) for a second generator h ∈ G. We can then give a non-rewinding security

proof for the three-round schemes in [BN06, MPSW19, BDN18]. Concretely, we �rst switch pk1 from

the range of F to a random element in G2
, using the DDH assumption. Then, we can argue that a

forgery is hard to compute using a statistical argument known as lossy soundness. We note that this

idea is (implicitly) already present in [BN06, FH21]. As we will see, combining it with techniques to

avoid the extra round is challenging.

Towards Two-Round Schemes. To go from a three-round scheme as above to a two-round scheme,

our goal is to avoid the �rst round. Recall that this round was needed to simulate R1 using random

oracle programming. Our idea to tackle the simulation problem is a bit di�erent. Namely, going back

to the (insecure) two-round scheme, our goal is to send R1 after we learn c1. If we manage to do

that, we can simulate by setting it as R1 := F(s1) − c1pk1 for random s1. Of course, just sending

R1 after learning c1 should only be possible for the reduction. Following Damgård [Dam00], this

high-level strategy can be implemented using a trapdoor commitment scheme Com, and sending

com1 = Com(ck, R1) as the �rst message instead of R1. The challenges ci are then derived from an

aggregated commitment com using the random oracle. Later, the reduction can open this commitment

to F(s1)− c1pk1 using the trapdoor for commitment key ck. To support aggregation, the commitment

scheme should have homomorphic properties. Note that this approach has been used in the lattice

setting in a recent work [DOTT21]. However, implementing such a commitment scheme for (pairs of)

group elements is highly non-trivial, as we will see. Also, as already pointed out in [DOTT21], it is

hard to make this two-round approach work while avoiding rewinding at the same time. The reason is
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that a trapdoor commitment scheme can not be statistically binding. But if we want to make use of

lossy soundness discussed above, we need that R is �xed before the ci are sampled, which requires

statistical binding. With a computationally binding commitment scheme, we end up in a rewinding

reduction (to binding) again. Our �rst technique will help us to overcome this issue.

Chopstick One: Our Scheme Without Rewinding. Our idea to overcome the above problem is

to demand a dual-mode property from the commitment scheme Com. Namely, there should be an

indistinguishable second way to set up the commitment key ck, such that for such a key the scheme

is statistically binding. This does not solve the problem yet, because we require ck to be in trapdoor

mode for simulation, and in binding mode for the �nal forgery. The solution is to sample ck in a

message-dependent way using another random oracle, which is (for other reasons) already done in

earlier works [DEF
+

19, DOTT21]. In this way, we can embed a binding commitment key in some

randomly guessed random oracle queries, and a trapdoor key in others. Note that this requires a tight

multi-key indistinguishability of the commitment scheme. Assuming we have such a commitment

scheme, we end up with our �rst construction Chopsticks I. Of course, this strategy still has a security

loss linear in the number of signing queries due to the guessing argument, but it avoids rewinding. In

addition, we can implement the approach in a way that supports key aggregation.

Chopstick Two: Our Fully Tight Scheme. The security loss in our �rst scheme results from

partitioning random oracle queries into two classes, namely queries returning binding keys, and queries

returning trapdoor keys. To do such a partitioning in a tight way, we may try to use a Katz-Wang

random bit approach [GJKW07]. This simple approach can be used for standard digital signatures.

However, it turns out that it does not work for our case. To see this, recall that naively following this

approach, we would compute two message-dependent commitment keys

ck0 := H(0,m), ck1 := H(1,m).

Then, for each message, we would embed a binding key in one branch, and a trapdoor key in the other

branch, e.g., ck0 binding and ck1 with trapdoor. In the signing protocol, we would abort one of the

branches pseudorandomly based on the message. Then we could use the trapdoor branch in the signing,

and hope that the forgery uses the binding branch. However, this strategy crucially relies on the fact

that the aborting happens in a way that is pseudorandom to the adversary. Otherwise the adversary

could always choose the trapdoor branch for his forgery. While we can implement this in a signature

scheme, in our multi-signature scheme this fails, because all signers must use the same commitment key

to make aggregation possible. At the same time, the aborted branch must depend on secret data of the

simulated signer to remain pseudorandom.

To solve this problem, we observe that the above approach uses a pseudorandom “branch selection”

and aborts the other branch. Our solution can be phrased as a pseudorandom “branch-to-key matching”.

Namely, we give each signer two public keys (pki,0, pki,1). The signing protocol is run in two instances

in parallel. One instance uses ck0, and one uses ck1 as above. More precisely, we commit to R0 via

ck0 and to R1 via ck1. Then we aggregate and determine the challenges ci,0 and ci,1. However, before

sending the response si = (si,0, si,1), each signer separately determines which key to use in which

instance, i.e., it computes

si,0 = ci,0 · xi,bi + ri,0, si,1 = ci,1 · xi,1−bi + ri,1,

where bi is a pseudorandom bit that each signer i computes independently, and that will be included in

the �nal signature to make veri�cation possible. This decouples the public key that is used from the

commitment key that is used. Now, we are ready to discuss the implication of this change. Namely,

our reduction chooses pk1,0 honestly and pk1,1 as a lossy key, i.e., random instead of in the range of

F. Then, in each signing interaction, the reduction can match the honest public key with the binding

commitment key and the lossy public key with the trapdoor commitment key by setting b1 accordingly.

In this way, we can simulate one branch using the actual secret key, and the other branch using the

commitment trapdoor. For the forgery, we hope that the matching is the other way around, such that
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binding commitment key and lossy public key match, which makes the statistical argument from lossy

identi�cation possible. Overall, this approach leads to our fully tight scheme Chopsticks II.
The Challenge of Instantiating the Commitment. One may observe that we shifted a lot of the

challenges that we encountered into properties of the underlying commitment scheme. This naturally

raises the question if such a commitment scheme can be found. In fact, constructing this commitment

scheme can be understood as our second technical main contribution.

Let us �rst explain why it is non-trivial to construct such a scheme. The main barrier results

from the algebraic structure that we demand. Namely, we need to commit to group elements
3 R ∈ G.

A naive idea would be to use any trapdoor commitment scheme, e.g., Pedersen commitments, by

�rst encoding R in the appropriate message space. However, this would destroy all homomorphic

properties that we need, and we should not forget that we need a dual-mode property. This brings us to

Groth-Sahai commitments [GS08], which can commit to group elements. Indeed, these commitments

are homomorphic, and have (indistinguishable from) random keys, such that we can sample them

using a random oracle. They are also dual-mode based on DDH, which allows us to use the random

self-reducibility of DDH to show tight multi-key indistinguishability. However, the trapdoor property

turns out to be the main challenge. To see why this is problematic, note that the opening information

of these commitments typically contains elements from Zp that are somehow used as exponents. There

are exceptions to this rule, like [Gro09], but they use pairings and the DLIN assumption, which we aim

to avoid. This means that the trapdoor should allow us to sample exponents, given a group element R
to which we want to open the commitment. This naturally corresponds to having a trapdoor for the

discrete logarithm problem, which we do not have.

Our Solution: Weakly Equivocable Commitments. Our starting point is the commitment scheme

for group elements given in [GS08]. Namely, commitment keys correspond to matrices A = (Ai,j)i,j ∈
G2×2

, and to commit to a message R = gr ∈ G with randomness (α, β) ∈ Zp, one computes

com := (C0, C1)t :=
(
Aα1,1 ·A

β
1,2, R ·Aα2,1 ·A

β
2,2

)t
.

That is, setting E = (Ei,j)i,j ∈ Zp such that gEi,j = Ai,j , we can write the discrete logarithm of com
as (0, r)t + E · (α, β)t. In binding mode, matrix E is a matrix of rank 1, while E has full rank in hiding

mode. It is easy to see that this commitment scheme to group elements is homomorphic. However, we

stress that there is no simple solution to implement a trapdoor for equivocation. To see this, note that

if we want to open a commitment com to a message R′ ∈ G, we need to output a suitable tuple (α, β).

If we knew the discrete logarithm of com, then we still would need to know the discrete logarithm of

R′ to �nd such a tuple. The key insight of our trapdoor construction is that we do not need to be able

to open com to any message R′. Instead, it will be su�cient if we can open it to messages of the form

R′ = gs · pkc, where we do not know c when we �x the commitment com, but we know pk when setting

up A. To explain why this helps, assume we want to �nd a valid opening (α, β) in this case. Then we

need to satisfy

com =
(
C0
C1

)
=
(

0
gspkc

)
· gE·(α,β)t .

It seems like we did not make progress, because even if we know the discrete logarithms of C0, C1, the

term pkc is not known in the exponent. Now, our key idea to solve this is to write and generate A with

respect to basis pk in the second row. Namely, we generate A as

A =
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
gd1,1 gd1,2

pkd2,1 pkd2,2

)
.

3

In the actual construction, we need to commit to pairs of group elements, but we consider the simpler setting

of one group element in this overview.
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In this way, the equation that we need to satisfy becomes(
C0
C1

)
=
(

gd1,1α+d1,2β

gspkc+d2,1α+d2,2β

)
.

Next, we get rid of the term gs by shifting C1 accordingly. Namely, recall that we can sample s at

random long before we learn c. Setting C0 = gτ and C1 = gspkρ for random τ, ρ, we obtain the

equation (
gτ

pkρ
)

=
(

gd1,1α+d1,2β

pkc+d2,1α+d2,2β

)
.

Given the trapdoor D = (di,j)i,j , this can easily be solved for (α, β) by solving (τ, ρ−c)t = D ·(α, β)t.
We are con�dent that such a weak and structured equivocation property can be used in other applications

as well.

4.2.2 Reducing the Price of Tightness

The techniques discussed above lead to an e�ciency overhead that we want to avoid. In the second

part of this technical overview, we present our main ideas to do so. To help the reader, some ideas used

in the Chopsticks schemes that we already discussed above are recalled along the way.

Lossy Identi�cation and Commitments. To recall, the Chopsticks schemes use lossy identi�cation

schemes [KW03, AFLT12, KMP16]. In such an identi�cation scheme, there are two ways to set up

public keys pk. As usual, one can set up pk with a secret key sk. In the speci�c setting we consider,

this means pk = F(sk). Alternatively, one can set up pk in lossy mode. In this mode, not even an

unbounded prover can make the veri�er accept, which is called lossy soundness. To make use of this

primitive in the two-round multi-signature setting, recall that we have constructed and leveraged a

homomorphic dual-mode commitment. Concretely, such a commitment has two ways of setting up

commitment keys ck. In the hiding mode, ck is generated in combination with a (weak) equivocation

trapdoor. In the other mode, commitments are statistically binding. Given such a commitment and a

lossy identi�cation scheme, a Chopsticks signature for a message m contains transcripts of the lossy

identi�cation scheme, where some parts are given in a committed form. For these parts, the signature

also contains the respective opening information. Importantly, the commitment key is derived from m,

e.g., as ck := H(m), where H is a random oracle. Abstractly, we have identi�ed the following properties:

• Simulation via Secret Keys. A reduction can simulate the signing oracle using the secret key if pk
is in the normal mode. The mode of ck is not relevant.

• Simulation via Trapdoors. A reduction can simulate the signing oracle using the trapdoor if ck is

in the hiding mode. The mode of pk is not relevant.

• Forgery. To show security without rewinding, the adversary must output a forgery with respect

to a lossy pk and a binding ck.

The Chopsticks Approach: Pseudorandom Matching. In the proof of Chopsticks I, we use these

properties by sampling all commitment keys with a trapdoor, allowing us to simulate signing even if

the public key is lossy. Only for the forgery message the associated commitment key ck∗ is set up to be

binding. Then, the proof can be �nished without rewinding. On the downside, this approach requires

guessing the query de�ning ck∗, leading to a security loss.

A well-known trick to avoid such a guessing argument is the Katz-Wang approach [GJKW07]. Here,

each message would specify two commitment keys ck0 := H(0,m) and ck1 := H(1,m), and a signer

individually would pick a pseudorandom bit bm for each message and then use ckbm . As we have seen,

it turns out that this trick is not applicable here, as each signer has to use the same commitment key.
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Figure 4.1: Visualization of the pseudorandom matching technique from Chopsticks [PW23a] (top),

and our new pseudorandom path technique (bo�om). Here, b∗ is a random bit sampled by the game,

bm is the pseudorandom bit that the signer chooses for message m, normal edges indicate how keys

are paired in the scheme, and do�ed edges indicate how keys are set up in the proof.

To overcome this obstacle and construct Chopsticks II, recall that we have proposed the pseudo-

random matching technique. Namely, each signer has two public keys pk0, pk1, and both message-

dependent commitment keys ck0 and ck1 are used. That is, the protocol is run twice in parallel and

the signature now contains two transcripts instead of one. Importantly, each signer uses the pseudo-

random bit bm to decide which public key to match with which commitment key. We illustrate the

pseudorandom matching technique in Figure 4.1 (top). In the proof of Chopsticks II, one can set pk1
to lossy and always match it with the trapdoor commitment key ck1−bm for signing queries. In this

way, it is possible to simulate the (pk1, ck1−bm) side via the trapdoor, and the (pk0, ckbm) side via the

secret key. At the same time, with probability 1/2, the adversary will match the lossy pk1 with the

binding ckbm for the forgery, �nishing the proof. While this trick works well, it introduces a signi�cant

overhead for both signature size and communication complexity.

Our NewApproach: Pseudorandom Paths. We avoid this overhead by using our new pseudorandom

path technique, as illustrated in Figure 4.1 (bottom). Our �rst observation is that for the argument used

to �nish the proof of Chopsticks II, only one of the two paths, namely the (pk1, ckbm) path, is used.

Instead of simply omitting one of the paths, which leads to problems similar to the naive Katz-Wang

approach, let us see what happens if we go back to a solution in which there is only one commitment

key ck per message m. If we also reduce the number of keys per signer back to one, we end up with

the guessing-based solution again. So, we keep the two keys pk0, pk1 per signer, and let each signer

pseudorandomly decide which key pkbm to use in the signing interaction. In our proof, we can set up

ck with a trapdoor if the lossy key pk1 is used, and we can set it up in binding mode if the normal

key pk0 is used. Unfortunately, without additional tricks, this strategy is doomed: the adversary could

always use pk0 in its forgery, which is not lossy. In our �nal solution, we therefore pick a bit b∗ at

random at the beginning of our simulation. Then, we set pkb∗ to normal and pk1−b∗ to lossy. We

adapt the sampling of ck accordingly. By carrying out all arguments in the correct order, we can argue

that in one of four cases, the adversary used the lossy key pk1−b∗ with a binding commitment key in

its forgery. Let us explain the idea for that with our illustration (Figure 4.1, bottom) at hand. Every

signature corresponds to a pseudorandom path from the left to the right. The bits are set up in a way

that ensures the following:

• Simulation of Signing. If pkbm is used, the path connects the lossy vertex to the trapdoor vertex,

or the normal vertex to the binding vertex. In both cases, we can simulate.

• Forgery. The probability that the path associated with the forgery starts at the lossy vertex is

1/2 and conditioned on that, the probability that the path ends at the binding vertex is also 1/2.

With this technique, communication and signatures now only consist of one transcript of the lossy

identi�cation scheme, as opposed to two transcripts in the pseudorandom matching technique.

The Chopsticks Commitment. So far, we have reduced the size of signatures and communication of
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Chopsticks II by a factor of two. At this point, the size is mostly dominated by the size of commitments

com and openings ϕ. It is therefore instructive to recall the commitment instantiation from our

Chopsticks schemes and see if we can optimize it. In contrast to our simpli�ed overview we gave

before, we now consider the full scheme that allows to commit to pairs of group elements, instead of

just a single group element: in Chopsticks I and Chopsticks II, we commit to pairs of group elements

(R1, R2) ∈ G2
via the equation

com = (C0, C1, C2) ∈ G3, where

C0
C1
C2

 :=

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R2· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 .

Here, ϕ = (α, β, γ) ∈ Z3
p is the commitment randomness and the Ai,j ∈ G form the commitment key.

In terms of exponents, the commitment has the form

E ·

αβ
γ

+

 0
r1
r2


for a matrix E ∈ Z3×3

p that determines the commitment key. Now, one can prove that this is statistically

hiding if E has full rank, and it is statistically binding if E has rank 1. As we have seen (in a simpli�ed

form), there is a weak equivocation trapdoor for this commitment, i.e., a trapdoor that allows to open

commitments to messages (R1, R2) of a certain structure.

Strawman Commitment. In terms of e�ciency, note that the 3× 3 commitment key leads to three

group elements per commitment and three exponents per opening. To improve it, our naive idea is to

replace this 3× 3 structure with a 2× 2 structure, thereby saving one group element and exponent.

Concretely, we could try to drop the �rst row of the commitment equation, leading to

E ·
(
β
γ

)
+
(
r1
r2

)
for a matrix E ∈ Z2×2

p . Implemented carefully, this is still perfectly hiding with a weak equivocation

trapdoor if E has full rank. Unfortunately, we fail when analyzing the statistically binding mode
4

if E
has rank 1. Concretely, an (unbounded) adversary against binding could output (r1, r2) with opening

(β, γ) on the one hand, and (r1, r2) + (β, γ)Et
with opening (0, 0) on the other hand. The �rst row in

the 3× 3 scheme prevents this. To save our 2× 2 construction without reintroducing such a �rst row,

we thus need additional insights.

Coset Binding. As we have seen, our 2× 2 scheme is not (statistically) binding, and as such it is not

suitable to instantiate the multi-signature construction. However, we make the crucial observation

that the scheme is binding up to a di�erence in the span of E. In other words, if we interpret the

commitment as a commitment to cosets of the span of E, the scheme is binding. We call this property

coset binding. It is instructive to pinpoint where the overall multi-signature proof (of Chopsticks I,
Chopsticks II, and our new abstract scheme) fails if we relax binding to coset binding: In the proof of

our multi-signature construction, binding shows up in combination with lossy soundness in the very

last proof step. To recall, lossy soundness states that even an unbounded prover can not make a veri�er

of the lossy identi�cation scheme accept, given that pk is in lossy mode. An accepting transcript of the

identi�cation scheme has the form (R, c, s) and satis�es F(s)− c · pk = R for the linear function F5
.

4

Recall: if we only have a computationally binding mode, the resulting multi-signature scheme needs to rely on

rewinding. Therefore, we have to insist on a statistically binding mode.

5

To clarify, we use additive notation when talking about lossy identi�cation from such linear functions in

general, and multiplicative notation for the concrete instantiation of the linear function and commitment.
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Roughly, when constructing an unbounded reduction that breaks lossy soundness, we �rst guess
6

the

random oracle query associated with the forgery. On this query, assume now that the adversary sends

a commitment com for R with respect to a binding commitment key. In this case, the reduction would

non-e�ciently extract the committed pair of group elements R = (R1, R2) from com and output it

in the lossy soundness game. Further, it would appropriately embed the challenge c from the lossy

soundness game. Finally, if the guess was correct, the adversary’s forgery contains a valid response s,
which the reduction can output. Now, it is clear why coset binding is not enough: the adversary is not

bound to R = (R1, R2), and it can output a response s that is valid for R′ = (R′1, R′2) 6= R, which is

of no use for the reduction.

Coset Lossy Soundness to the Rescue. While coset binding seems to be insu�cient at �rst glance,

it still gives us a guarantee we may leverage. Namely, by coset binding, (R1 = gr1 , R2 = gr2) and

(R′1 = gr
′
1 , R′2 = gr

′
2) as above have to satisfy that (r1, r2)t − (r′1, r′2)t is in the span of E. We want to

understand the impact of this guarantee on the lossy soundness game. For that, imagine a modi�ed

lossy soundness game where the �nal equation F(s)− c · pk = R only has to hold up to a di�erence

in the span of E. We call this stronger notion of lossy soundness coset lossy soundness. In fact, if we

can argue that coset lossy soundness holds, then the reduction sketched above goes through assuming

coset binding. For that, our main idea is to set up the binding commitment keys such that the span of

E is always contained in the image of F. In this case, we observe that coset lossy soundness is implied

by the original lossy soundness notion. This is because, roughly, if F(s) − c · pk equals R up to a

di�erence in the span of E, it means that F(s)− c · pk = R+ F(δ) for some δ, and so one can just treat

s− δ as the new s. To summarize our optimized commitment construction, we have seen that lossy

soundness of the identi�cation scheme at hand is strong enough to compensate for the relaxed binding

notion. Applying this new commitment to the non-tight Chopsticks I, we obtain Toothpicks I, and in

combination with our pseudorandom path technique, we obtain Toothpicks II.

4.3 Preliminaries for this Chapter

In this section, we de�ne multi-signatures, precisely, two-round multi-signatures. We also de�ne key

aggregation for two-round multi-signatures.

Two-Round Multi-Signatures. We consider the plain public key model following [BN06]. In this

model, each party independently generates a pair of keys (pk, sk) using a key generation algorithm

Gen. Then, signers with public keys pk1, . . . , pkN can come together to sign a message m, using a

two-round signing protocol speci�ed by three algorithms Sig0, Sig1, Sig2. In this protocol, each signer

takes as input its own secret key, the set of public keys, and the message. Following previous works,

e.g., [CKM21, DOTT21], we assume the public keys participating in the signing protocol are given

by a set, as opposed to a multi-set or a list. We also assume that sets can be ordered canonically, e.g.,

lexicographically. With this assumption, we can uniquely encode sets P = {pk1, . . . , pkN}, and we

denote such an encoding by 〈P〉 throughout the chapter. We assume that in each round of the signing

protocol (algorithms Sig0,Sig1), each signer outputs a message to be sent to all other participating

signers. The �nal algorithm Sig2 outputs the signature. Signatures can be veri�ed using algorithm Ver
with respect to a set of public keys P and a message m. To summarize a signing interaction in our

syntax, we de�ne algorithm MS.Exec in Figure 4.2.

De�nition 4.1 (Multi-Signature Scheme). A (two-round) multi-signature scheme is a tuple of PPT

algorithms MS = (Setup,Gen, Sig,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters

par. We assume that par implicitly de�nes sets of public keys, secret keys, messages and signatures,

respectively. All algorithms related to MS take par at least implicitly as input.

6

Recall that lossy soundness is a statistical notion, and so guessing is not a problem in terms of tightness at this

point.
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Alg MS.Exec(P,S,m)
01 parse {pk1, . . . , pkN} := P, {sk1, . . . , skN} := S
02 for i ∈ [N ] : (pm1,i, St1,i)← Sig0(P, sk,m)
03 M1 := (pm1,1, . . . , pm1,N )
04 for i ∈ [N ] : (pm2,i, St2,i)← Sig1(St1,i,M1)
05 M2 := (pm2,1, . . . , pm2,N )
06 for i ∈ [N ] : σi ← Sig2(St2,i,M2)
07 if ∃i 6= j ∈ [N ] s.t. σi 6= σj : return ⊥
08 return σ := σ1

Figure 4.2: Algorithm MS.Exec for a multi-signature scheme MS = (Setup,Gen,Sig,Ver). The

algorithm specifies an honest execution of the signing protocol Sig among N signers with public keys

pk1, . . . , pkN and secret keys sk1, . . . , skN for a message m.

• Gen(par) → (pk, sk) takes as input system parameters par, and outputs a public key pk and a

secret key sk.
• Sig = (Sig0, Sig1, Sig2) is split into three algorithms:

– Sig0(P, sk,m) → (pm1, St1) takes as input a set P = {pk1, . . . , pkN} of public keys, a
secret key sk, and a message m, and outputs a protocol message pm1 and a state St1.

– Sig1(St1,M1) → (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . ,
pm1,N ) of protocol messages, and outputs a protocol message pm2 and a state St2.

– Sig2(St2,M2)→ σi takes as input a state St2 and a tupleM2 = (pm2,1, . . . , pm2,N ) of
protocol messages, and outputs a signature σ.

• Ver(P,m, σ) → b is deterministic, takes as input a set P = {pk1, . . . , pkN} of public keys, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

We require that MS is complete in the following sense. For all par ∈ Setup(1λ), all N = poly(λ), all
(pkj , skj) ∈ Gen(par) for j ∈ [N ], and all messages m, we have

Pr
[

Ver(P,m, σ) = 1
∣∣∣∣ P = {pk1, . . . , pkN},S = {sk1, . . . , skN},
σ ← MS.Exec(P,S,m)

]
= 1,

where algorithm MS.Exec is de�ned in Figure 4.2.

Our security de�nition is the standard unforgeability notion for multi-signatures and is in line

with previous works [BN06, DOTT21]. Namely, we assume that there is one honest signer with an

honestly generated public key. This signer is controlled by the game, whereas all other keys and signers

are controlled by the adversary. The adversary gets the public key and can interact with this honest

signer in signing interactions of its choice. As the adversary controls all other parties, this especially

means that we do not assume any broadcast channel. Throughout, we always assume that the honest

public key is the entry pk1 in a set P = {pk1, . . . , pkN} of participating keys. This is without loss

of generality and simpli�es presentation. Finally, the adversary has to output a forgery (P∗,m∗, σ∗).

The adversary wins if the honest public key has to be in P∗, σ∗ is a valid signature with respect to P∗
and message m∗, and the pair (P∗,m∗) is fresh, meaning that the adversary never started a signing

interaction for this pair.

De�nition 4.2 (MS-EUF-CMA Security). Let MS = (Setup,Gen,Sig,Ver) be a multi-signature scheme

and consider the game MS-EUF-CMA de�ned in Figure 4.3. We say that MS is MS-EUF-CMA secure,

if for all PPT adversaries A, the following advantage is negligible:

AdvMS-EUF-CMA
A,MS (λ) := Pr

[
MS-EUF-CMAAMS(λ)⇒ 1

]
.
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Game MS-EUF-CMAAMS(λ)
01 par← Setup(1λ)
02 (pk, sk)← Gen(par)
03 Sig := (Sig0, Sig1, Sig2)
04 (P∗,m∗, σ∗)← ASig(par, pk)
05 if pk /∈ P∗ : return 0
06 if (P∗,m∗) ∈ Queried : return 0
07 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
08 parse {pk1, . . . , pkN} := P
09 if pk1 6= pk : return ⊥
10 Queried := Queried ∪ {(P,m)}
11 ctr := ctr + 1, sid := ctr
12 round[sid] := 1
13 (pm1, St1)← Sig0(P, sk,m)
14 (pm1[sid], St1[sid]) := (pm1, St1)
15 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
16 if round[sid] 6= 1 : return ⊥
17 parse (pm1,1, . . . , pm1,N ) :=M1
18 if pm1[sid] 6= pm1,1 : return ⊥
19 round[sid] := round[sid] + 1
20 (pm2, St2)← Sig1(St1[sid],M1)
21 (pm2[sid], St2[sid]) := (pm2, St2)
22 return pm2[sid]

Oracle Sig2(sid,M2)
23 if round[sid] 6= 2 : return ⊥
24 parse (pm2,1, . . . , pm2,N ) :=M2
25 if pm2[sid] 6= pm2,1 : return ⊥
26 round[sid] := round[sid] + 1
27 σ ← Sig2(St2[sid],M2)
28 return σ

Figure 4.3: The game MS-EUF-CMA for a (two-round) multi-signature scheme MS and an adver-

sary A. To simplify the presentation, we assume that the canonical ordering of sets is chosen such

that pk is always at the first position if it is included.

Key Aggregation. An additional feature that multi-signatures can have is key aggregation. A scheme

supports key aggregation if one can compress a set of public keys into one short aggregated public

key that represents the set in a sense that signatures are veri�ed with respect to this aggregated public

key. One may expect that this also requires to change the security de�nition. However, as explained in

detail in [NRS21] (Appendix C in the eprint version [NRS20]), this is not the case.

De�nition 4.3 (Key Aggregation). A multi-signature scheme MS = (Setup,Gen, Sig,Ver) is said to

support key aggregation, if the algorithm Ver can be split into two deterministic polynomial time algorithms

Agg,VerAgg with the following syntax:

• Agg(P)→ p̃k takes as input a set P = {pk1, . . . , pkN} of public keys and outputs an aggregated

key p̃k.

• VerAgg(p̃k,m, σ)→ b is deterministic, takes as input an aggregated key p̃k, a message m, and a

signature σ, and outputs a bit b ∈ {0, 1}.

That is, algorithm Ver(P,m, σ) can be written as VerAgg(Agg(P),m, σ).

4.4 Chopsticks: Fork-Free Two-Round Multi-Signatures

In this section, we present our constructions of two-round multi-signatures from [PW23a]. The section

is structured in the following way: we �rst introduce two abstract building blocks, namely, linear

function families and a special kind of commitment scheme. Then, given a linear function family

LF and a commitment scheme CMT, we abstractly present and analyze two constructions of two-

round multi-signatures ChopsKA[LF,CMT] (with key aggregation) and Chops[LF,CMT] (with tight

security). We then show how to instantiate the building blocks, leading to our schemes Chopsticks I
and Chopsticks II, respectively.
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4.4.1 Building Blocks: Linear Functions and Special Commitments

Before we describe our constructions of two-round multi-signatures, we introduce two abstract building

blocks that we will use and later instantiate. Our �rst building block, known as linear function families,

has been used in previous works as an abstraction [HKL19, KLR21, CAHL
+

22a]. The properties that

we de�ne for linear function families are new and formalize under which condition a linear function

family induces a lossy identi�cation scheme [AFLT12]. Our second building block is a new kind of

dual-mode commitment scheme with a weak equivocation feature.

Linear Function Families. To present our constructions in a modular way, we make use of the

abstraction of linear function families. Our de�nition is close to previous de�nitions [HKL19, KLR21,

CAHL
+

22a]. As it is not needed for our instantiations, we restrict our setting to vector spaces instead

of pseudo modules.

De�nition 4.4 (Linear Function Family). A linear function family (LFF) is a tuple of PPT algorithms

LF = (Gen,F) with the following syntax:

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume

that par implicitly de�nes the following sets:

– A set of scalars Spar, which forms a �eld.

– A domain Dpar, which forms a vector space over Spar.

– A rangeRpar, which forms a vector space over Spar.

We omit the subscript par if it is clear from the context, and naturally denote the operations of these

�elds and vector spaces by + and ·. We assume that these operations can be evaluated e�ciently.

• F(par, x)→ X is deterministic, takes as input parameters par, an element x ∈ D, and outputs an
element X ∈ R. For all parameters par, F(par, ·) realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : F(par, s · x+ y) = s · F(par, x) + F(par, y).

We omit the input par if it is clear from the context.

We introduce the following de�nitions to formalize under which conditions a linear function

family can be used to construct lossy identi�cation [AFLT12]. Our constructions will rely on such

linear function families. In a nutshell, we require that elements in the image of the function are

indistinguishable from random elements in the range. Further, when turning the linear function into an

identi�cation scheme in a natural way, making the veri�er accept is statistically infeasible if the public

key is random. We also give a similar de�nition that captures this in the context of key aggregation.

De�nition 4.5 (Key Indistinguishability). Let LF = (Gen,F) be a linear function family. We say that

LF satis�es key indistinguishability, if for any PPT algorithm A, the following advantage is negligible:

Advkeydist
A,LF (λ) := |Pr

[
A(par, X) = 1

∣∣ par← Gen(1λ), x $← D, X := F(x)
]

−Pr
[
A(par, X) = 1

∣∣ par← Gen(1λ), X $← R
]
|.

De�nition 4.6 (Lossy Soundness). Let LF = (Gen,F) be a linear function family. We say that LF
satis�es εl-lossy soundness, if for any unbounded algorithm A, the following probability is at most εl:

Pr

F(s)− c ·X = R

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
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De�nition 4.7 (Aggregation Lossy Soundness). Let LF = (Gen,F) be a linear function family. We

say that LF satis�es εal-aggregation lossy soundness, if for any unbounded algorithm A, the following
probability is at most εal:

Pr

F(s)− c · X̃ = R

∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN ))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c), X̃ :=

∑N
i=1 aiXi

 .
Weakly Equivocable Commitments. As our second building block, we de�ne a special kind of

commitment scheme. We will make use of such a scheme in our constructions of multi-signatures.

Before we give the de�nition, we explain the desired properties at a high level. First of all, we want

to be able to commit to elements R ∈ R in the range of a given linear function family. Second, we

need the commitment scheme to be homomorphic in both messages and randomness, allowing us to

aggregate commitments during the signing protocol. Third, we need a certain dual mode property,

ensuring that we can set up keys either in a perfectly hiding or in a perfectly binding mode. This

will allow us to make the commitment key for the forgery binding, while associating a equivocation

trapdoor to the keys used to answer signing queries. Most importantly, we do not need a full-�edged

equivocation feature. This is because we already know the structure of messages to which we want to

open the commitment. Looking ahead, this is the reason we can instantiate the commitment in the

DDH setting.

Game Q-KEYDISTA0,CMT(λ)
01 par← LF.Gen(1λ), x $← D
02 if (par, x) /∈ Good : return 0
03 for i ∈ [Q] : cki ← BGen(par)
04 β ← A(par, x, (cki)i∈[Q])
05 return β

Game Q-KEYDISTA1,CMT(λ)
06 par← LF.Gen(1λ), x $← D
07 if (par, x) /∈ Good : return 0
08 for i ∈ [Q] : cki $← Kpar
09 β ← A(par, x, (cki)i∈[Q])
10 return β

Figure 4.4: The games KEYDIST0,KEYDIST1 for a weakly equivocable commitment scheme

CMT and an adversary A.

De�nition 4.8 (Weakly Equivocable Commitment Scheme). Let LF = (LF.Gen,F) be a linear function
family and G = {Gpar},H = {Hpar} be families of subsets of abelian groups with e�ciently computable

group operations ⊕ and ⊗, respectively. Let K = {Kpar} be a family of sets. An (εb, εg, εt)-weakly
equivocable commitment scheme for LF with key space K, randomness space G and commitment spaceH
is a tuple of PPT algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the following syntax:

• BGen(par)→ ck takes as input parameters par, and outputs a key ck ∈ Kpar.

• TGen(par, X)→ (ck, td) takes as input parameters par, and an element X ∈ R, and outputs a
key ck ∈ Kpar and a trapdoor td.

• Com(ck, R;ϕ)→ com takes as input a key ck, an element R ∈ R, and a randomness ϕ ∈ Gpar,
and outputs a commitment com ∈ Hpar.

• TCom(ck, td)→ (com, St) takes as input a key ck and a trapdoor td, and outputs a commitment

com ∈ Hpar and a state St.

• TCol(St, c)→ (ϕ,R, s) takes as input a state St, and an element c ∈ S , and outputs randomness

ϕ ∈ Gpar, and elements R ∈ R, s ∈ D.

We omit the subscript par if it is clear from the context. Further, the algorithms are required to satisfy the

following properties:
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• Homomorphism. For all par ∈ LF.Gen(1λ), ck ∈ Kpar, R0, R1 ∈ R and ϕ0, ϕ1 ∈ G, the
following holds:

Com(ck, R0;ϕ0)⊗ Com(ck, R1;ϕ1) = Com(ck, R0 +R1;ϕ0 ⊕ ϕ1).

• Good Parameters. There is a set Good, such that membership to Good can be decided in polynomial

time, and

Pr
[
(par, x) /∈ Good | par← LF.Gen(1λ), x $← D

]
≤ εg,

• Uniform Keys. For all (par, x) ∈ Good, the following distributions are identical:

{(par, x, ck) | ck $← Kpar} and {(par, x, ck) | (ck, td)← TGen(par,F(x))}.

• Weak Trapdoor Property. For all (par, x) ∈ Good, and all c ∈ S , the following distributions T0
and T1 have statistical distance at most εt:

T0 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
(com, St)← TCom(ck, td),
tr← TCol(St, c)


T1 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
r $← D, R := F(r), ϕ $← G,
com := Com(ck, R;ϕ),
s := c · x+ r, tr := (ϕ,R, s)


• Multi-Key Indistinguishability. For everyQ = poly(λ) and any PPT algorithmA, the following
advantage is negligible:

AdvQ-keydist
A,CMT (λ) :=

∣∣∣Pr
[
Q-KEYDISTA0,CMT(λ)⇒ 1

]
− Pr

[
Q-KEYDISTA1,CMT(λ)⇒ 1

]∣∣∣ ,
where games KEYDIST0,KEYDIST1 are de�ned in Figure 4.4.

• Statistically Binding. There exists some (unbounded) algorithm Ext, such that for every (un-

bounded) algorithm A the following probability is at most εb:

Pr

 Com(ck, R′;ϕ′) = com ∧R 6= R′

∣∣∣∣∣∣
par← LF.Gen(1λ),
ck← BGen(par), (com, St)← A(ck),
R← Ext(ck, com), (R′, ϕ′)← A(St)

 .

4.4.2 Construction with Key Aggregation

In this section, we construct a two-round multi-signature scheme with key aggregation. Although the

scheme will not be tight, the security proof will not use rewinding, leading to an acceptable security

loss. For our scheme, we need a linear function family LF = (LF.Gen,F). It should satisfy key indistin-

guishability and aggregation lossy soundness. Further, let CMT = (BGen,TGen,Com,TCom,TCol)
be an (εb, εg, εt)-weakly equivocable commitment scheme for LF with key space K randomness space

G and commitment spaceH. We make use of random oracles H : {0, 1}∗ → K, Ha : {0, 1}∗ → S , and

Hc : {0, 1}∗ → S . We give a verbal description of our scheme ChopsKA[LF,CMT]. Additionally, the

scheme is presented as pseudocode in Figure A.1.

Setup and Key Generation. The public parameters of the scheme are par ← LF.Gen(1λ) de�ning

the linear function F = F(par, ·). To generate a key (algorithm Gen), a signer samples sk := x $← D.

The public key is pk := X := F(x).
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Key Aggregation. For N signers with public keys P = {pk1, . . . , pkN}, the aggregated public key p̃k
is computed (by algorithm Agg) as

p̃k := X̃ :=
N∑
i=1

ai ·Xi,

where pki = Xi and ai := Ha(〈P〉, pki) for each i ∈ [N ].
Signing Protocol. Suppose N signers with public keys P = {pk1, . . . , pkN} want to sign a message

m ∈ {0, 1}∗. We describe the signing protocol (algorithms Sig0, Sig1,Sig2) from the perspective of the

�rst signer, which holds a secret key sk1 = x1 for public key pk1 = X1.

1. Commitment Phase. The signer derives the aggregated public key p̃k as described above. Then, it

derives a commitment key ck := H(p̃k,m) depending on the message. The signer samples an

element r1
$← D and sets R1 := F(r1). Next, it commits to R1 by sampling ϕ1

$← G and setting

com1 := Com(ck, R1;ϕ1). Finally, it sends pm1,1 := com1 to all signers.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output in the commitment

phase. Here, message pm1,i is sent by signer i and has the form pm1,i = comi. With this notation,

the signer aggregates the commitments via com :=
⊗

i∈[N ] comi. It computes the challenge

c and coe�cient a1 via c := Hc(p̃k, com,m) and a1 := Ha(〈P〉, pk1). Then, it computes the

response s1 as s1 := c · a1 · x1 + r1.

Finally, the signer sends pm2,1 := (s1, ϕ1) to all signers.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N ) be the list of messages output in the response

phase. Here, message pm2,i is sent by signer i and has the form pm2,i = (si, ϕi). To compute

the �nal signature, signers aggregate the responses and commitment randomness as follows:

s :=
∑
i∈[N ]

si, ϕ :=
⊕
i∈[N ]

ϕi.

They output the �nal signature σ := (com, s, ϕ).

Veri�cation. For veri�cation (algorithm Ver), let P = {pk1, . . . , pkN} be a set of public keys, m ∈
{0, 1}∗ be a message, and σ = (com, s, ϕ) be a signature. To verify σ, we determine the aggregated

public key p̃k = X̃ as above. We reconstruct the commitment key ck := H(p̃k,m), and the challenge

c := Hc(p̃k, com,m). Then, we output 1 if and only if the following equation holds:

com = Com
(
ck,F(s)− c · X̃;ϕ

)
.

Completeness easily follows from the homomorphic properties of CMT and F. For a similar calculation,

we refer to the proof of Lemma 4.2.

Lemma 4.1. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-weakly equivocable commitment

scheme for LF. Then ChopsKA[LF,CMT] is complete.

Theorem 4.1. Let LF be a linear function family that satis�es key indistinguishability and εal-aggregation
lossy soundness. Let CMT be a (εb, εg, εt)-weakly equivocable commitment scheme for LF. Further, let
H : {0, 1}∗ → K,Ha : {0, 1}∗ → S , and Hc : {0, 1}∗ → S be random oracles. Then ChopsKA[LF,CMT]
is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHa , QHc , QS queries to oracles

H,Ha,Hc, Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,ChopsKA[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHcεb

+ 4QS
|R|

+ 4QSQHaQHc
|S|

+ 4QSQHaQHcεal

+ 4QS
(

AdvQH-keydist
B,CMT (λ) + Advkeydist

B′,LF (λ)
)
.
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Proof. Set MS := ChopsKA[LF,CMT] and let A be a PPT algorithm. In the following, we present a

sequence of games G0-G8 proving the statement. The games are presented in Figures A.2 and A.3.

Game G0:GameG0 is de�ned asG0 := MS-EUF-CMAAMS. To �x notation, we recall this game. First,

the game samples par ← LF.Gen(1λ) and a pair (pk, sk) with sk := x1
$← D and pk := X1 := F(x).

Then, A gets par, pk as input, and access to oracles Sig0, Sig1. We omit signing oracle Sig2. As in the

proof of Theorem 4.2 this does not change the advantage ofA, as algorithm Sig2 does not make any use

of the secret key or a secret state and can be publicly run using the messages output in Sig0 and Sig1.

Further, A gets access to random oracles H,Ha,Hc, simulated by the game in a lazy manner, using

maps h, ha, hc, respectively. Finally, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only

if pk∗ ∈ P∗,(P∗,m∗) /∈ Queried, and Ver(P∗,m∗, σ∗) = 1. We assume that the public key pk∗ is equal

to pk1 for P∗ = {pk1, . . . , pkN}. We write σ∗ = (com∗, s∗, ϕ∗), and denote the aggregated key for

P∗ by p̃k := X̃ := Agg(P∗). By de�nition, we have

Pr [G0 ⇒ 1] = AdvMS-EUF-CMA
A,Chops[LF,CMT](λ).

Game G1: In this game G1, we add a bad event and let the game abort if it occurs. Concretely, consider

par, x1 sampled by the game as described above, and let Good be as in the de�nition of a weakly

equivocable commitment scheme. The game aborts if (par, x1) /∈ Good. By de�nition of the weakly

equivocable commitment scheme, we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G2: In this game G2, we introduce a map b, that maps inputs to random oracle H to bits. For

each new input (p̃k,m) to H, the bit b[p̃k,m] is sampled from a Bernoulli distribution with parameter

γ := 1/(QS + 1). Further, the game aborts if any of the follow occurs:

• For a signing query Sig0(P,m) and p̃k := Agg(P), it holds that b[p̃k,m] = 1, or

• for the forgery (P∗,m∗, σ∗) and p̃k := Agg(P∗), it holds that b[p̃k,m∗] = 0.

Note that the view of A is independent of the map b until an abort occurs. If the game does not abort,

it is exactly like G1. Therefore, we can use the fact (1− 1/z)z ≥ 1/4 for all z ≥ 2 and get

Pr [G2 ⇒ 1] = γ (1− γ)QS · Pr [G1 ⇒ 1] = 1
QS + 1

(
1− 1

QS + 1

)QS
· Pr [G1 ⇒ 1]

= 1
QS

(
1− 1

QS + 1

)QS+1
· Pr [G1 ⇒ 1]

≥ 1
4QS

· Pr [G1 ⇒ 1].

Game G3: In game G3, we change how random oracle H is executed. Consider a query H(p̃k,m) for

which the hash value is not yet de�ned. Recall that in this case, a bit b[p̃k,m] is sampled. Then, a

commitment key ck has to be returned. In previous games, ck was sampled uniformly via ck $← K.

Now, depending on this bit, we change how ck is computed. Namely, if b[p̃k,m] = 0, we sample

(ck, td) ← TGen(par, X1) and store the trapdoor td in another map tr[p̃k,m] := td. On the other

hand, if b[p̃k,m] = 1, we sample ck← BGen(par).

We argue that games G2 and G3 are indistinguishable as follows. First, note that for case b[p̃k,m] =
0, the distribution of ck stays the same, because we can assume (par, x1) ∈ Good due to previous

changes.

For the case b[p̃k,m] = 1, we use a reduction B against the multi-key indistinguishability of

CMT interpolating between G2 and G3. Precisely, B gets as input par, x1 and QH commitment keys
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ck1, . . . , ckQH . It simulates G2 forA with par while embedding the commitment keys in random oracle

responses for queries H(p̃k,m) with b[p̃k,m] = 1. In the end, it outputs whatever the game outputs.

Clearly, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G4: Game G4 is as G3, but we change the execution of oracles Sig0, Sig1. Concretely, after this

change, the secret key x1 is no longer needed. Consider a query Sig0(P,m). Recall that for previous

games, in such a query, a commitment key ck := H(p̃k,m) is computed. Then, values r1, ϕ1 are

sampled, and R1 := F(r1) and a commitment com1 := Com(ck, R1;ϕ1) is computed. Later, in Sig1,

s1 is computed as s1 := c · a1 · x1 + r1, where c and a1 are output by Hc and Ha as in the scheme.

Assuming that the game does not abort in this query, we can assume that b[p̃k,m] = 0, due to the

change in G2. This means that the entry td := tr[p̃k,m] is de�ned, and was sampled together with

ck using TGen(par, X1). We use this in game G4 as follows: The game no longer samples r1 and ϕ1.

Instead, the commitment com1 is computed via (com1, St)← TCom(ck, td). Later, in Sig1, s1 and ϕ1
are computed using (ϕ1, R1, s1) ← TCol(St, c · a1). Applying the weak trapdoor property of CMT
QS many times we obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ QSεt.

Game G5: In game G5, we revert the change we introduced in G1. Concretely, the game no longer

aborts if (par, x1) /∈ Good. As before, we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G6: In game G6, we change how the public key X1 is generated. Recall that it was generated as

F(x1) before, where x1
$← D. In this game, we sample X1

$← R instead. Note that due to the change in

G4, we do not need x1 anymore. We sketch a simple reduction B′ against the key indistinguishability

of the linear function family LF to show indistinguishability of G5 and G6. Namely, B′ gets par and X1
as input, and simulates G5 for A. In the end, it outputs whatever the game outputs. We have

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G7: In game G7, we want to use the binding property of CMT. To do that, we introduce

two changes. First, in oracle queries of the form Hc(p̃k, com,m) we �rst set ck := H(p̃k,m). Then, if

b[p̃k,m] = 0, we simulate Hc as before. If b[p̃k,m] = 1, we run the (unbounded) extraction algorithm Ext
that exists according to the statistical binding property of CMT. Concretely, we run R← Ext(ck, com)
and store r[p̃k, com,m] := R, where r is another map. Then, we continue the simulation of Hc as before.

Second, we change the winning condition of the game. Concretely, afterA outputs forgery (P∗,m∗, σ∗),

we parse σ∗ = (com∗, s∗, ϕ∗) and compute the aggregated key p̃k := X̃ := Agg(P∗) as before. In

addition to the veri�cation steps that we had before, we now also compute c∗ := Hc(p̃k, com∗,m∗) and

R∗ := F(s∗)− c∗ · X̃ , and check if R∗ = r[p̃k, com∗,m∗]. If this does not hold, the game outputs 0.

Intuitively, these changes accomplish the following. The game extracts the values R from every

commitment that is given byA via random oracle Hc, for which the commitment key ck was generated

using algorithm BGen (cf. game G3). Then, we force the adversary into using the extracted value for

its forgery.

Formally, we argue indistinguishability ofG6 andG7 using an unbounded reduction to the statistical

binding property of CMT. This reduction gets as input par and ck∗. It guesses iH
$← [QH] and

iHc
$← [QHc ]. The reduction simulates game G7 forA honestly, except for query iH to random oracle H

and query iHc to random oracle Hc. If it had to sample a ck← BGen(par) in the former query, it instead

responds with ck∗. If it had to run Ext in the latter query, it outputs com to the experiment. If query

iH was used to derive the commitment key used in the forgery and query iHc was used to derive the

challenge c∗ for the forgery, and R∗ 6= r[p̃k, com∗,m∗], then the reduction outputs R∗;ϕ∗. Otherwise,

it outputs ⊥. Clearly, if the reduction guesses the correct queries and the bad event separating G6 and
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G7 occurs, then it breaks the statistical binding property. The view of A is as in G7, and independent

of (iH, iHc). Therefore, we obtain

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ QHQHcεb.

Game G8: In game G8, we introduce another abort. Namely, the game aborts in a query Ha(〈P〉, pk),

for which pk = pk1 and the hash value is not yet de�ned, but for p̃k := Agg(P), there is some com,m
such that Hc(p̃k, com,m) is already de�ned. The probability of this bad event is easily bounded. First,

assume that pk1 = X1 is not the zero vector in R. The probability that X1 is the zero vector is at

most 1/|R|. Then, �x such a query Ha(〈P〉, pk = X1), and any previous query to oracle Hc. The bad

event can only occur if the input of the latter query starts with X̃ , where a1X1 =
∑N
i=2 aiXi − X̃ . As

X1 is not the zero vector, the value a1X1 is uniform over the span of X1. Further the values on the

right-hand side are �xed before a1 is sampled, assuming that the bad event occurs. Thus, the probability

of the bad event for this pair of queries is at most 1/|S|. We get

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ 1
|R|

+ QHaQHc
|S|

.

Note that this change ensured that for the forgery output by A, the query de�ning coe�cient a1
occurred before the query de�ning the challenge c∗.

To bound the probability that G8 outputs 1, we give an unbounded reduction from the aggregation

lossy soundness of LF.

• The reduction gets as input parameters par and an element X1. It samples îHc
$← [QHc ] and

îHa
$← [QHa ]. Then, it simulates G8 honestly until A outputs a forgery, except for queries îHc to

oracle Hc and îHa to oracle Ha.

• If the query îHc to oracle Hc occurs before the query îHa to oracle Ha, the reduction aborts its

execution.

• Consider the query îHa to oracle Ha. If the hash value is already de�ned, the reduction aborts

its execution. Else, let this query be Ha(〈P〉, pk). If pk 6= pk1, the reduction aborts. Otherwise,

it �rst parses P = {pk1, . . . , pkN} and queries ai := Ha(〈P〉, pki) for all 2 ≤ i ≤ N . Then it

outputs the pairs (pk2, a2), . . . , (pkN , aN ) to the aggregation lossy soundness experiment. It

gets as input a1, sets ha[〈P〉, pk] := a1, and continues the simulation as in G8.

• Consider the query îHc to oracle Hc. Let this query be Hc(p̃k, com,m). The reduction aborts its

execution, if the hash value for this query is already de�ned. Else, it queries ck := H(p̃k,m). If

b[p̃k,m] = 0, it aborts its execution. Otherwise, it runs R← Ext(ck, com) as in G8. It outputs

R to the aggregation lossy soundness experiment and obtains a value c in return. Then, it sets

hc[p̃k, com,m] := c and continues the simulation as in G8.

• When A outputs the forgery (P∗,m∗, σ∗), the reduction runs all the veri�cation steps in G8.

Additionally, it checks if the value Hc(p̃k, com∗,m∗) was de�ned during query îHc to Hc, and

the value Ha(〈P∗〉, pk1) was de�ned during îHa to oracle Ha. If this is not the case, it aborts its

execution. Otherwise, it returns s := s∗ to the aggregation lossy soundness experiment.

Clearly, unless the reduction aborts due to wrong guessing of the indices îHa , îHc , the view of A is

exactly as in G8. Before any such abort, A’s view is independent of the indices îHa , îHc . Also, it is

clear that if the reduction does not abort, it outputs a valid solution to the aggregation lossy soundness

experiment. Therefore, we get

Pr [G8 ⇒ 1] ≤ QHaQHcεal,

and the statement is proven.
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4.4.3 Tight Construction

In this section, we present a tightly secure two-round multi-signature scheme Chops[LF,CMT] =
(Setup,Gen, Sig,Ver). Let us �rst describe the building blocks that we need. We make use of a linear

function family LF = (LF.Gen,F), for which we assume it satis�es key indistinguishability and lossy

soundness. Also, let CMT = (BGen,TGen,Com,TCom,TCol) be an (εb, εg, εt)-weakly equivocable

commitment scheme for LF with key spaceK randomness space G and commitment spaceH. We make

use of random oracles H : {0, 1}∗ → K, Hb : {0, 1}∗ → {0, 1}, and Hc : {0, 1}∗ → S . We give a verbal

description of the scheme. In addition, we present the scheme as pseudocode in Figure A.4.

Setup and Key Generation. The public parameters of the scheme are par← LF.Gen(1λ). They de�ne

the linear function F = F(par, ·). To generate a key (algorithm Gen), a signer samples x0, x1
$← D and

a seed seed $← {0, 1}λ. Then, it sets

sk := (x0, x1, seed), pk := (X0, X1) := (F(x0),F(x1)).

Signing Protocol. Suppose N signers with public keys P = {pk1, . . . , pkN} want to sign a message

m ∈ {0, 1}∗. We describe the signing protocol (algorithms Sig0, Sig1,Sig2) from the perspective of the

�rst signer, which holds a secret key sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0, X1,1).

1. Commitment Phase. The signer derives commitment keys ck0 := H(0, 〈P〉,m) and ck1 :=
H(1, 〈P〉,m) depending on the message. Then, it computes a bit b1 := Hb(seed1, 〈P〉,m). It

samples two elements r1,0, r1,1
$← D and sets

R1,0 := F(r1,0), R1,1 := F(r1,1).

Next, it commits to the resulting elements by sampling ϕ1,0, ϕ1,1
$← G and setting

com1,0 := Com(ck0, R1,0;ϕ1,0), com1,1 := Com(ck1, R1,1;ϕ1,1).

Finally, it sends pm1,1 := (b1, com1,0, com1,1) to all signers.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output in the commitment

phase. Here, message pm1,i is sent by signer i and has the form pm1,i = (bi, comi,0, comi,1).

With this notation, the signer sets B := b1 . . . bN ∈ {0, 1}N . Then, it aggregates the commit-

ments via

com0 :=
⊗
i∈[N ]

comi,0, com1 :=
⊗
i∈[N ]

comi,1.

It computes signer speci�c challenges via

c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1),

and the responses as

s1,0 := c1,0 · x1,b1 + r1,0, s1,1 := c1,1 · x1,1−b1 + r1,1.

Observe that the bit b1 determines the link between the responses, challenges, and public keys.

Finally, the signer sends pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) to all signers.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N ) be the list of messages output in the response

phase. Here, message pm2,i is sent by signer i and has the form pm2,i = (si,0, si,1, ϕi,0, ϕi,1).

To compute the �nal signature, signers aggregate the responses and commitment randomness as

follows:

s0 :=
∑
i∈[N ]

si,0, s1 :=
∑
i∈[N ]

si,1, ϕ0 :=
⊕
i∈[N ]

ϕi,0, ϕ1 :=
⊕
i∈[N ]

ϕi,1.

They de�ne σ0 := (com0, ϕ0, s0), σ1 := (com1, ϕ1, s1) and output the �nal signature σ :=
(σ0, σ1, B).

104



4.4. CHOPSTICKS: FORK-FREE TWO-ROUND MULTI-SIGNATURES

Veri�cation. For veri�cation (algorithm Ver), let P = {pk1, . . . , pkN} be a set of public keys, m ∈
{0, 1}∗ be a message, and σ = (σ0, σ1, B) be a signature. To verify σ, we write B = b1 . . . bN , σ0 =
(com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1). Further, we write the public keys pki as pki = (Xi,0, Xi,1).

We reconstruct the commitment keys ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m), and the signer speci�c

challenges

ci,0 := Hc(pki, com0,m, 〈P〉, B, 0), ci,1 := Hc(pki, com1,m, 〈P〉, B, 1).

Then, we output 1 if and only if the following two equations hold:

com0 = Com
(

ck0,F(s0)−
N∑
i=1

ci,0 ·Xi,bi ;ϕ0

)

com1 = Com
(

ck1,F(s1)−
N∑
i=1

ci,1 ·Xi,1−bi ;ϕ1

)
.

Lemma 4.2. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special commitment scheme

for LF. Then Chops[LF,CMT] is complete.

Proof. Consider the variables given in veri�cation and an honest execution of the protocol. Concretely,

let P = {pk1, . . . , pkN} be a set of public keys, m ∈ {0, 1}∗ be a message, and σ = (σ0, σ1, B) be a

signature computed by an honest execution of the signing protocol speci�ed by algorithms Sig0, Sig1,
Sig2. Write B = b1 . . . bN , σ0 = (com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1). Write the public keys pki as

pki = (Xi,0, Xi,1). Then, we can use the homomorphic properties of F to obtain

F(s0)−
N∑
i=1

ci,0 ·Xi,bi = F
(

N∑
i=1

si,0

)
−

N∑
i=1

ci,0 ·Xi,bi

=
N∑
i=1

F(si,0)− ci,0 · F(xi,bi)

=
N∑
i=1

F(si,0 − ci,0 · xi,bi) =
N∑
i=1

F(ri,0) =
N∑
i=1

Ri,0.

Using this, the homomorphic properties of Com, and the de�nition of ϕ0, it follows that

Com
(

ck0,F(s0)−
N∑
i=1

ci,0 ·Xi,bi ;ϕ0

)
= Com

(
ck0,

N∑
i=1

Ri,0;
N⊕
i=1

ϕi,0

)

=
N⊗
i=1

Com (ck0, Ri,0;ϕi,0)

=
N⊗
i=1

comi,0 = com0.

This shows that the �rst veri�cation equation holds. The proof for the second equation is similar.

Theorem 4.2. Let LF be a linear function family that satis�es key indistinguishability and εl-lossy
soundness. Let CMT be a (εb, εg, εt)-weakly equivocable commitment scheme for LF. Further, let

H : {0, 1}∗ → K,Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random oracles. Then Chops[LF,CMT] is
MS-EUF-CMA secure.

105



CHAPTER 4. MULTI-SIGNATURES

Concretely, for any PPT algorithm A that makes at most QH, QHb , QHc , QS queries to oracles

H,Hb,Hc, Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,Chops[LF,CMT](λ) ≤ QHb

2λ + 4εg + 2QSεt + 2QHQHcεb + 2QHcεl

+ 2 · AdvQH-keydist
B,CMT (λ) + 2 · Advkeydist

B′,LF (λ).

Proof. Set MS := Chops[LF,CMT]. Let A be a PPT algorithm as in the statement. We prove the claim

via a sequence of games G0-G8. The games are formally presented in Figures A.5 to A.7, and we describe

and analyze them verbally.

Game G0: We de�ne G0 to be exactly as MS-EUF-CMAAMS, with the following modi�cation: The

adversary A does not get access to oracle Sig2. Note that in MS, algorithm Sig2 does not make any use

of the secret key or a secret state and can be publicly run using the messages output in Sig0 and Sig1.

Therefore, for any adversary in the original game, there is an adversary in game G0 that simulates

oracle Sig2 and has the same advantage.

Before we proceed, let us describe game G0 in more detail to �x some notation. In the beginning,

the game samples parameters par ← LF.Gen(1λ). It also samples a public key pk∗ = (X1,0, X1,1)
= (F(x1,0),F(x1,1)) for a secret key sk∗ = (x1,0, x1,1, seed1) with x1,0, x1,1

$← D, seed1
$← {0, 1}λ.

Then, it runs A on input par, pk∗ with access to the following oracles:

• Signing oracles Sig0, Sig1: The oracles simulate algorithms Sig0 and Sig1 on secret key sk∗,
respectively. Here,A can submit a query Sig0(P,m) to start a new interaction in which message

m is signed for public keys P = {pk1, . . . , pkN}. We assume that pk∗ = pk1, and the oracle

adds (P,m) to a list Queried.

• Random oracles H,Hb,Hc: The random oracles H,Hc are simulated honestly via lazy sampling.

To this end, the game holds maps h, hc that map the inputs of the respective random oracles to

their outputs. Random oracle Hb, however, is simulated by forwarding the query to an internal

oracle H̄b with the same interface. This oracle holds a similar map h̄b, is kept internally by

the game, and is not provided to the adversary. Looking ahead, this indirection allows us to

distinguish queries to Hb that some of the following games issue from the queries that the

adversary issues.

In the end, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only if pk∗ ∈ P∗, (P∗,m∗) /∈
Queried, and Ver(P∗,m∗, σ∗) = 1. Without loss of generality, we assume that the public key pk∗ is

equal to pk1 for P∗ = {pk1, . . . , pkN}. To �x notation, write σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b
∗
N and

σ∗0 = (com∗0, ϕ∗0, s∗0), σ∗1 = (com∗1, ϕ∗1, s∗1). Clearly, we have

Pr [G0 ⇒ 1] = AdvMS-EUF-CMA
A,Chops[LF,CMT](λ).

Game G1: In game G1, we add an abort. Namely, the game sets bad := 1, and aborts, if the adversary

makes a random oracle query Hb(seed1, ·). Note that this does not include the queries that are made by

the game itself, as these are done using oracle H̄b directly. As the only information about seed1 that

A gets are the values of Hb(seed1, ·), and seed1 is sampled uniformly at random from {0, 1}λ, we can

upper bound the probability of bad by QHb/2λ. Therefore, we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [bad] ≤ QHb
2λ .

Game G2: In game G2, we restrict the winning condition. Namely, the game outputs 0, if the forgery

(P∗,m∗, σ∗) output by A satis�es b∗1 6= 1 − H̄b(seed1, 〈P∗〉,m∗). Recall that b∗1 is the bit related to

pk1 = pk∗ that is included in the signature σ∗. Assuming G1 outputs 1, we know that (P∗,m∗) /∈
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Queried. Therefore, A can only get information about the bit H̄b(seed1, 〈P∗〉,m∗), if it queries the

wrapper random oracle Hb at this position. However, in this case G1 would set bad := 1 and abort.

Thus, the view of A is independent of bit H̄b(seed1, 〈P∗〉,m∗). We obtain

Pr [G2 ⇒ 1] = Pr [G2 ⇒ 1] = Pr
[
G1 ⇒ 1 ∧ b∗1 = 1− H̄b(seed1, 〈P∗〉,m∗)

]
= 1

2Pr [G1 ⇒ 1].

Game G3: In game G3, the game aborts if (par, x1,1) /∈ Good, where Good is as in the de�nition of a

weakly equivocable commitment scheme. It is clear that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G4: In gameG4, we change the behavior of random oracle H. Recall that before, to answer a query

H(b, 〈P〉,m) for which the hash value has not been de�ned, a key ck $← K was sampled and returned.

In this game, the oracle instead distinguishes two cases. In the �rst case, if b = 1− H̄b(seed1, 〈P〉,m),

the game samples (ck, td) ← TGen(par, X1,1). It also stores tr[〈P〉,m] := td, where tr is a map. In

the second case, if b = H̄b(seed1, 〈P〉,m), it samples ck← BGen(par). In both cases, ck is returned as

before. To see that G3 and G4 are indistinguishable, we �rst note that for the �rst case, the distribution

of ck stays the same. This is because we can assume (par, x1,1) ∈ Good due to the previous change.

The keys returned in the second case are indistinguishable by the multi-key indistinguishability of

CMT. More precisely, we give a reduction B against the multi-key indistinguishability of CMT that

interpolates between G3 and G4. The reduction gets as input par, x1,1 and QH commitment keys

ck1, . . . , ckQH . It simulates G3 forA with par while embedding the commitment keys in random oracle

responses for queries H(b, 〈P〉,m) with b = 1− H̄b(seed1, 〈P〉,m). In the end, it outputs whatever the

game outputs
7

. We have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In game G5, we change the signing oracles Sig0, Sig1. Our goal is to eliminate the use

of the secret key component x1,1. Recall that in previous games, oracle Sig0 derived a bit b1 :=
H̄b(seed1, 〈P〉,m) and sampled random r1,0, r1,1 and ϕ1,0, ϕ1,1. Then, these were used to compute

commitments com1,0, com1,1, which where then output together with b1. Then, in oracle Sig1 the

values s1,0, s1,1 were computed using the secret keys x1,b1 , x1,1−b1 , respectively.

In this game, we change how the commitment ϕ1,1−b1 and the value s1,1−b1 is computed to

eliminate the dependency on x1,1. Namely, in oracle Sig0, we do not compute r1,1−b1 , ϕ1,1−b1 and

R1,1−b1 anymore. Instead, we compute the commitment com1,1−b1 via

td := tr[〈P〉, ,m], (com1,1−b1 , St)← TCom(ck1−b1 , td).

Note that ck1−b1 = H(1− b1, 〈P〉,m), and therefore ck1−b1 and td were generated using algorithm

TGen(par, X1,1) due to the change in G4. Later, in oracle Sig1, we derive

(ϕ1,1−b1 , R1−b1 , s1,1−b1)← TCol(St, c1,1−b1).

Then, message pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) is output as before.

We can easily argue indistinguishability by using the weak trapdoor property of CMT QS0 many

times and get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ QSεt.

Game G6:Here we do not abort if (par, x1,1) /∈ Good anymore. That is, we revert the change introduced

in G3. It is clear that

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

7

Note that at this point, it was important that we introduced the oracle H̄b. This is because otherwise, if we

queried Hb(seed1, ·) in oracle H, game G3 would always output 0 and the games would not be indistinguishable.
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Game G7: In game G7, we change how the public key component X1,1 is computed. Recall that before,

X1,1 is computed as X1,1 := F(x1,1) for x1,1
$← D. Also, note that due to the previous changes,

the value x1,1 is not used anymore. In G7, we sample X1,1
$← R. A direct reduction B′ against

the key indistinguishability of the linear function family LF shows indistinguishability of G6 and G7.

Concretely, B′ gets par and X1,1 as input, and simulates G6 for A. In the end, it outputs whatever the

game outputs. We have

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G8: In game G8, we change how queries to random oracle Hc are answered. Concretely, consider

a query Hc(pk, com,m, 〈P〉, B, b) with pk = pk∗ and b = H̄b(seed1, 〈P〉,m). For these queries, the

game now runs R ← Ext(H(b, 〈P〉,m), com) and stores r[com,m, 〈P〉, B] := R, where r is another

map. Here, Ext is the (unbounded) extractor for the statistical binding property of CMT. The rest of

the oracle does not change. Note that for b of this form, the value ck = H(b, 〈P〉,m) is sampled as

ck ← BGen(par) (cf. G4). We also slightly change the winning condition of the game. Namely, in

G8, consider the forgery (P∗,m∗, σ∗) with σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b
∗
N , and let R∗0, R

∗
1 ∈ R

be the values that are computed during the execution of Ver(P∗,m∗, σ∗). The game returns 0 if

R∗1−b∗1
6= r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗].
We claim that indistinguishability of G7 and G8 can be argued using the statistical binding property

of CMT. To see this, assume that G7 outputs 1. Then, due to the change in G2, we know that 1− b∗1 =
H̄b(seed1, 〈P∗〉,m∗). Therefore, in the corresponding query Hc(pk1, com∗1−b∗1 ,m

∗, 〈P∗〉, B∗, 1− b∗1)
algorithm Ext was run and the value r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗] is de�ned. Next, by de�nition of Ver,
we have Com(ck1−b∗1 , R

∗
1−b∗1

;ϕ∗1−b∗1 ) = com∗1−b∗1 . Therefore, if R∗1−b∗1
6= r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗],
we have a contradiction to the statistical binding property of CMT. More precisely, we sketch an

(unbounded) reduction from the statistical binding property. Namely, this reduction gets as input par
and a commitment key ck∗. Then, the reduction guesses iH

$← [QH] and iHc
$← [QHc ]. It simulates

game G8 honestly, except for query iH to random oracle H and query iHc to random oracle Hc. If it

had to sample a ck ← BGen(par) in the former query, it instead responds with ck∗. Similarly, if it

had to run Ext in the latter query, it outputs com to the binding experiment. If these queries are the

queries of interest (i.e., query iH was used to derive ck1−b∗1 and query iHc was used to derive c∗1,1−b∗1
)

for the forgery, and R∗1−b∗1
6= r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗], then the reduction outputs R∗1−b∗1
;ϕ∗1−b∗1 .

Otherwise, it outputs ⊥. It is easy to see that if the reduction guesses the correct queries and the bad

event separating G7 and G8 occurs, then it breaks the statistical binding property. As the view of A is

as in G8, and independent of (iH, iHc), we obtain

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ QHQHcεb.

Finally, we use lossy soundness of LF to bound the probability that G8 outputs 1. To do that, we

give an unbounded reduction from the lossy soundness experiment, which is as follows.

• The reduction gets par, X1,1 as input. It samples î $← [QHc ]. Then, it simulates G8 honestly until

A outputs a forgery, except for query î to oracle Hc.
• Consider this query Hc(pk, com,m, 〈P〉, B, b). The reduction aborts its execution, if the hash

value for this query is already de�ned, or if pk 6= pk∗∨b 6= H̄b(seed1, 〈P〉,m). Otherwise, it runs

R̂← Ext(H(b, 〈P〉,m), com) as in G8. Then, it parses P = {pk1, . . . , pkN} and B = b1 . . . bN .

It parses pki = (Xi,0, Xi,1) for each i ∈ [N ], and it sets ci,b = Hc(pki, com,m, 〈P〉, B, b) for

each i ∈ [N ] \ {1}. Next, it de�nes

R := R̂+
N∑
i=2

ci,b ·Xi,b̂i
,

where b̂i := (b+ bi) mod 2. It outputs R to the lossy soundness game and obtains a value c in

return. Then, it sets hc[pk, com,m, 〈P〉, B, b] := c and continues the simulation as in G8.
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• When the reduction gets the forgery (P∗,m∗, σ∗) fromA, it runs all the veri�cation steps in G8.

Additionally, it checks if the value Hc(pk1, com∗1−b∗1 ,m
∗, 〈P∗〉, B∗, 1− b∗1) was de�ned during

query î to Hc. If this is not the case, it aborts its execution. Otherwise, it returns s := s∗1−b∗1
to

the lossy soundness game.

It is clear that the view of A is independent of the index î until a potential abort of the reduction. Also,

if the reduction does not abort its execution, it perfectly simulates game G8 for A. Thus, it remains to

show that if G8 outputs 1, then the values output by the reduction satisfy F(s)− c ·X1,1 = R. Once

we have shown this, it follows that

Pr [G8 ⇒ 1] ≤ QHcεl.

To show the desired property, assume that the reduction does not abort and G8 outputs 1. Then, de�ne

b̂∗i = (1− b∗1 + bi) mod 2 for all i ∈ [N ]. Note that b̂∗i = 1. Due to the change in G2, we have

b = 1− b∗1 = H̄b(seed1, 〈P∗〉,m∗).

As the reduction guessed the right query and does not abort, we have

c∗1,1−b∗1 = Hc(pk1, com∗1−b∗1 ,m
∗, 〈P∗〉, B∗, 1− b∗1) = c.

Due to the change in G8, we have

F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

= R∗1−b∗1 = R̂.

Therefore, we have

F(s)− c ·X1,1 = F(s∗1−b∗1 )− c∗1,1−b∗1 ·X1,1

= F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R̂+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R.

Concluded.

4.4.4 Instantiation

In this section, we show how to instantiate the building blocks that are needed for our constructions in

the previous section. Concretely, we give a linear function family and a commitment scheme based on

the DDH assumption.

Linear Function Family. We make use of the well-known [KW03, KMP16] linear function family

LFDDH = (Gen,F) based on the DDH assumption. Precisely, let GGen be an algorithm that on input

1λ outputs the description of a prime order group G of order p with generator g. Then, Gen runs GGen
and outputs

8 par := (g, h) ∈ G2
for h $← G. Then, the set of scalars, domain, range, and function

F(par, ·) are given as follows:

S := Zp, D := Zp, R := G×G, F(par, x) := (gx, hx).

It is easily veri�ed that this constitutes a linear function family. We show that it satis�es key indistin-

guishability, lossy soundness, and aggregation lossy soundness.

8

We omit the description of G from par to make the presentation concise.
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Lemma 4.3. Assuming that the DDH assumption holds relative to GGen, the linear function family

LFDDH satis�es key indistinguishability. Concretely, for any PPT algorithm A there is a PPT algorithm B
with T(B) ≈ T(A) and

Advkeydist
A,LFDDH

(λ) ≤ AdvDDH
B,GGen(λ).

Proof. The proof is trivial: key indistinguishability matches exactly the DDH assumption.

Lemma 4.4. The linear function family LFDDH satis�es εl-lossy soundness with εl ≤ 3/p.

Proof. We have to bound the probability

Pr

(gs ·X−c1 , hs ·X−c2 ) = (R1, R2)

∣∣∣∣∣∣
(g, h)← Gen(1λ), (X1, X2) $← G2,
(St, (R1, R2))← A((g, h), (X1, X2)),
c $← Zp, s← A(St, c)

 .
The probability that h = g0

is at most 1/p. Thus, we assume that h is a generator of G. Write

X1 = gx1
and X2 = hx2

. With probability at most 1/p we have x1 = x2. Assume that x1 6= x2. We

claim that with these assumptions, the probability that we have to bound is at most 1/p. To see this,

assume that there is some (R1, R2) such that there exist two di�erent c 6= c′ in Zp, such that there

exists a s, s′ ∈ Zp with(
gs ·X−c1 , hs ·X−c2

)
= (R1, R2) and

(
gs
′
·X−c

′

1 , hs
′
·X−c

′

2

)
= (R1, R2).

Then, we can combine both equations and rearrange terms to get(
g(s−s′)/(c−c′), h(s−s′)/(c−c′)

)
= (X1, X2),

contradicting our assumption that x1 6= x2. The claim follows.

Lemma 4.5. The linear function family LFDDH satis�es εal-aggregation lossy soundness with εal ≤ 4/p.

Proof. Let A be any unbounded algorithm. We have to bound the probability that(
gs · X̃−c1 , hs · X̃−c2

)
= (R1, R2),

where we consider the following experiment. First, (g, h)← Gen(1λ), (X1, X2) $← G2
is sampled and

g, h,X1, X2 are given toA. Then,A outputs pairs of group elements and exponents ((X2,1, X2,2), a2),
. . . , ((XN,1, XN,2), aN ). Next, exponent a1

$← Zp are sampled and X̃1, X̃2 are de�ned as

(
X̃1, X̃2

)
:=
(

N∏
i=1

Xai
i,1,

N∏
i=1

Xai
i,2

)
.

Then, A outputs (R1, R2) on input a1. A challenge c $← Zp is sampled and A outputs s on input c.
The probability that h = g0

is at most 1/p. Thus, we assume that h is a generator of G. Looking

at the proof of Lemma 4.4, we see that it is su�cient to argue that with high probability,

(
X̃1, X̃2

)
is

not of the form (gx̃, hx̃) for any x̃ ∈ Zp. In other words, we have to show that with high probability,

the pair

(
X̃1, X̃2

)
is not in the image of F. Conditioned on that, as in the proof of Lemma 4.4, the

probability above can be bounded by 1/p.

To show this, we �x the exponents xi,j ∈ Zp such that Xi,1 = gxi,1 and Xi,2 = hxi,2 . The

probability that x1,1 = x1,2 is at most 1/p. From now on, we condition on x1,1 6= x1,2. The pair(
X̃1, X̃2

)
is not in the image of F if and only if

N∑
i=1

aixi,1 =
N∑
i=1

aixi,2.
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This is equivalent to

a1 =
∑N
i=2 aixi,2 −

∑N
i=2 aixi,2

x1,1 − x1,2
.

As a1 is sampled uniformly over Zp after A choses the xi,j and ai, i > 2, the above holds with

probability at most 1/p, and the claim follows.

Commitment Scheme. We give a weakly equivocable trapdoor commitment scheme CMTDDH =
(BGen,TGen,Com,TCom,TCol) for the linear function family LFDDH. For given parameters of LFDDH,

the commitment scheme has key space K := G3×3
and message space D = G×G. It has randomness

space G = Z3
p and commitment spaceH = G3

. Both are associated with the natural componentwise

group operations. We describe the algorithms of the scheme verbally.

• BGen(par)→ ck: Sample g1, g2, g3
$← G, and a, b $← Zp, and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

g1 ga1 gb1
g2 ga2 gb2
g3 ga3 gb3

 ∈ G3×3.

• TGen(par, X = (X1, X2))→ (ck, td): Sample di,j
$← Zp for all (i, j) ∈ [3]× [3] and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

 gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3.

Next, set

td := (D, X1, X2), for D :=

d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

 ∈ Z3×3
p .

• Com(ck, R = (R1, R2);ϕ)→ com: Let ϕ = (α, β, γ) ∈ Z3
p. Compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R2· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 .

• TCom(ck, td)→ (com, St): Sample τ, ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s) and compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 gτ

Xρ1
1 · gs

Xρ2
2 · hs

 .

• TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs ·X−c1 , hs ·X−c2

)
. Then, if D is not

invertible, return ⊥. Otherwise, compute

ϕ := (α, β, γ), for

αβ
γ

 = D−1 ·

 τ
ρ1 + c
ρ2 + c

 .

Theorem 4.3. If the DDH assumption holds relative to GGen, then CMTDDH is a (εb, εg, εt)-weakly
equivocable commitment scheme for LFDDH, with

εb ≤ 1/p, εg ≤ 2/p, εt ≤ 6/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.
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The homomorphism property is trivial to check. Next, we de�ne the set Good as in the de�nition of a

weakly equivocable commitment scheme. Namely, we de�ne

Good = {((g, h), x) ∈ G2 × Zp | (g, h) ∈ LFDDH.Gen(1λ) ∧ h 6= g0 ∧ x 6= 0}.

Clearly, for (g, h)← LFDDH.Gen(1λ) and x $← Zp, the probability that ((g, h), x) /∈ Good is at most

2/p. Therefore, εg ≤ 2/p. In the following we also need the following observation: If ((g, h), x) ∈ Good,

then the elements g, h, gx, hx are all generators of G. The rest of proof of the theorem is given in

separate lemmas.

Lemma 4.6. CMTDDH satis�es the uniform keys property of an (εb, εg, εt)-weakly equivocable commit-

ment scheme for LFDDH.

Proof. Let (par, x) ∈ Good for par = (g, h). Let (X1, X2) = F(x) = (gx, hx). Consider the distribu-

tion of ck for (ck, td)← TGen(par, (X1, X2)). Then ck has the form gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3

for uniformly random and independent exponents di,j ∈ Zp (i, j ∈ [3]). As g,X1, X2 are generators,

we see that ck is uniform over G3×3
, proving the claim.

Lemma 4.7. CMTDDH satis�es the weak trapdoor property of an (εb, εg, εt)-weakly equivocable com-

mitment scheme for LFDDH, where εt ≤ 6/p.

Proof. Let ((g, h), x) ∈ Good and c ∈ Zp. Set (X1, X2) := (gx, hx). We have to show that the

distributions T0 and T1 of tuples

((g, h),A,D, X1, X2, x, c, (C0, C1, C2), α, β, γ,R1, R2, s)

are identical. Here, we have (A,D, X1, X2)← TGen(par, (X1, X2)). The remaining components in

T0 are generated via

((C0, C1, C2), St)← TCom(ck, td), ((α, β, γ), (R1, R2), s)← TCol(St, c),

and in T1 via

r $← Zp, R1 := gr, R2 := hr, s := c · x+ r

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

First, we make the assumption that in both distributions, the matrix D has full rank. The probability

that this does not hold can easily be bounded by 3/p.

We can equivalently
9

write T1 as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

Using that D is full rank and g,X1, X2 are generators of G, we see that in this distribution, (C0, C1, C2)
is uniform over G3

. Therefore, this is identically distributed to the distribution that we get from

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

τ, ρ1, ρ2
$← Zp, (C0, C1, C2) := (gτ , Xρ1

1 gs, Xρ2
2 hs),

9

This corresponds to the HVZK property of linear identi�cation protocols.
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and then �nding the unique values (α, β, γ) that satisfy (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)).

We claim that this can be done using (α, β, γ)t := D−1(τ, ρ1 + c, ρ2 + c)t, which is equivalent to

distribution T0.

To see this, note that (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)) is equivalent toC0
C1
C2

 =

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R1· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 =

 gd1,1α · gd1,2β · gd1,3γ

gs ·X−c1 · X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

hs ·X−c2 · X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

 .

Using the way we generate (C0, C1, C2), we see that the gs and hs terms cancel out, and this is

equivalent to  gτ

Xρ1
1

Xρ2
2

 =

 gd1,1α · gd1,2β · gd1,3γ

X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

⇐⇒
 τ
ρ1 + c
ρ2 + c

 = D ·

αβ
γ

 .

This concludes the proof.

Lemma 4.8. CMTDDH satis�es the statistically binding property of an (εb, εg, εt)-weakly equivocable
commitment scheme for LFDDH, with εb ≤ 1/p.

Proof. We describe an unbounded algorithm Ext, that takes as input a commitment key ck = A =
(Ai,j)i,j ∈ G3×3

, and a commitment com = (C0, C1, C2) ∈ G3
, and outputs a tuple R = (R1, R2) ∈

G×G. It is given as follows:

1. Extract discrete logarithms c = (c0, c1, c2)t ∈ Z3
p and a = (a0, a1, a2)t ∈ Z3

p such thatC0
C1
C2

 =

gc0

gc1

gc2

 and

A1,1
A2,1
A3,1

 =

ga0

ga1

ga2

 .

2. If a0 = 0, return ⊥. Otherwise, let e2 = (0, 1, 0)t and e3 = (0, 0, 1)t. Note that a, e2, e3 form a

basis of Z3
p.

3. Write c as c = ta + r1e2 + r2e3 for t, r1, r2 ∈ Zp, and return (R1, R2) := (gr1 , gr2).

To �nish the proof, let A be any algorithm. We have to bound the probability

Pr

 Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2)
∧ (R1, R2) 6= (R′1, R′2)

∣∣∣∣∣∣∣∣∣∣
(g, h)← LF.Gen(1λ),
A← BGen(par),
((C0, C1, C2), St)← A(A),
(R1, R2)← Ext(A, (C0, C1, C2)),
(R1, R

′
2, ϕ
′)← A(St)

 .
Note that the probability that Ext outputs ⊥ in this experiment is 1/p, as A1,1 is uniform in G. We

assume that Ext does not output ⊥, and want to show that the above probability conditioned on this

event is zero. First, it is easy to see that we have Com(A, (R1, R2); (t, 0, 0)) = (C0, C1, C2). Further,

assume that A outputs (R′1, R′2) = (gr′1 , gr′2) and ϕ′ = (α, β, γ) such that

Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2) = Com(A, (R1, R2); (t, 0, 0)).

Using the de�nition of Com and BGen, we see that this implies the vector (0, r1− r′1, r2− r′2)t is in the

span of a. As a0 6= 0 this implies that it is the zero vector, showing that R1 = R′1 and R2 = R′2.
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Lemma 4.9. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.

Proof. Let A be a PPT algorithm and Q = poly(λ). We have to bound∣∣∣Pr
[
Q-KEYDISTA0,CMTDDH

(λ)⇒ 1
]
− Pr

[
Q-KEYDISTA1,CMTDDH

(λ)⇒ 1
]∣∣∣ .

Note that in game KEYDIST1,CMTDDH , all commitment keys Ai are sampled uniformly at random.

Therefore, looking at one �xed commitment key Ai, indistinguishability would directly follow from the

uDDH3 assumption. To give a tight reduction for anyQ = poly(λ), we use the random self-reducibility

of uDDH3. Our reduction B is as follows:

1. B gets as input G, p, g and group elements (hi,j)i,j∈[3].

2. B samples h $← G, sets par := (g, h), and samples x $← Zp.

3. If (par, x) /∈ Good, B returns 0, as game KEYDISTb,CMTDDH does.

4. Otherwise, B prepares commitment keys cki := Ai ∈ G3×3
for all i ∈ [Q] as follows:

(a) For simplicity of notation, write hi,j := gHi,j
, i.e., let H ∈ Z3×3

p denote the matrix of

exponents of hi,j . Partition H into H = [H0 | H1] for H0 ∈ Z3×1
p and H1 ∈ Z3×2

p .

(b) Reduction B samples Ti
$← Z3×3

p , and Si $← Z1×2
p . We de�ne

Di := TiH + [0 | TiH0Si].

(c) Reduction B computes Ai := gDi
, which should be understood componentwise. It is easy

to see that B can e�ciently compute Ai, given Ti, Si, and (hi,j)i,j∈[3].

5. B runs β ← A(par, x, (cki)i∈[Q]) and returns β.

Apart from the distribution of the commitment keys Ai, it is clear that B simulates the games perfectly

for A. We claim that if the hi,j are uniform and independent, then B provides a simulation statistically

close to KEYDIST1,CMTDDH , i.e., all Ai are uniform and independent. If on the other hand, there are

a, b such that hi,2 := hai,1, hi,3 := hbi,1 for all i ∈ [3], then B does the same for KEYDIST1,CMTDDH .

For the �rst claim, assume that the hi,j are uniform and independent, i.e., H is uniform over Z3×3
p .

Then with probability at least 1− 3/p it has full rank, i.e., is invertible. Assuming that it has full rank,

we see that even if we �x the matrix H, the matrix TiH is uniform over Z3×3
p . This implies that Di is

uniform, showing the �rst claim.

For the second claim, assume that there are a, b such that hi,2 := hai,1, hi,3 := hbi,1 for all i ∈ [3].
This is equivalent to writing H = [H0 | H0R], where R = [a, b] ∈ Z1×2

p . With probability at least

1− 1/p3
, the matrix H0 ∈ Z3×1

p is full rank. We see that

Di = TiH + [0 | TiH0Si] = [TiH0 | TiH0(R + S)].

If H0 has full rank, we see that (even for �xed H of this form) the key Ai is distributed exactly as a

commitment key in KEYDIST0,CMTDDH , which �nishes the proof.

114



4.5. TOOTHPICKS: REDUCING THE PRICE OF TIGHTNESS

4.5 Toothpicks: Reducing the Price of Tightness

The Chopsticks schemes presented in Section 4.4 are the �rst two-round multi-signature schemes in

the pairing-free discrete logarithm setting that do not rely on rewinding. However, the price we pay for

this improvement is a large signature and communication size. In this section, we formally present and

analyze our constructions of two-round multi-signatures from [PW24]: rewinding-free schemes without

such an e�ciency penalty. We follow the structure of the previous section. That is, we �rst de�ne

the abstract building blocks we need and then show two abstract constructions ToothKA[LF,CMT]
and Tooth[LF,CMT] using these building blocks. Finally, we instantiate LF and CMT, obtaining the

schemes Toothpicks I and Toothpicks II, respectively, and discuss minor optimizations and the concrete

e�ciency of our schemes.

4.5.1 Building Blocks: Stronger Linear Functions and Weaker Commitments

We introduce two building blocks we will use in our constructions. As in Section 4.4, we make use of

linear function families and a special kind of commitment scheme. However, compared to Section 4.4,

a crucial observation is that we can weaken the requirements for the commitment scheme, thereby

enabling a more e�cient instantiation. To compensate, we strengthen the requirements for the linear

function family in terms of soundness, which is for free in terms of e�ciency.

Stronger Linear Function Families. In Section 4.4.1, we have de�ned linear function families.

We have also de�ned key indistinguishability and lossy soundness to capture the set of properties

that makes linear function families amenable for the use in lossy identi�cation [AFLT12]. Here, we

will strengthen the de�nition of lossy soundness, which will allow us to weaken the properties for

commitments. Concretely, we relax the winning condition, such that it has to hold up to an arbitrary

shift in the image of the linear function, leading to coset lossy soundness. We also adapt the de�nition

of aggregation lossy soundness accordingly, leading to coset aggregation lossy soundness. Importantly,

we show in Lemmas 4.10 and 4.11 that the strengthened de�nitions come for free.

De�nition 4.9 (Coset Lossy Soundness). Let LF = (Gen,F) be a linear function family. We say that LF
satis�es εl-coset lossy soundness, if for any unbounded algorithm A, the following probability is at most εl:

Pr

F(s)− c ·X ∈ R+ F(D)

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
Lemma 4.10. Let LF be a linear function family, such that for any par ∈ Gen(1λ), the domain Dpar can
be enumerated. Then, if LF satis�es εl-lossy soundness, it also satis�es εl-coset lossy soundness.

Proof. To prove the claim, it is su�cient to describe an (unbounded) reduction B, that turns any

algorithm A running in the coset lossy soundness game into an algorithm in the lossy soundness game.

The reduction B gets as input parameters par and an element X ∈ R from the lossy soundness game.

It runs A on input par and X and gets an output R in return, which it passes to the lossy soundness

game. In return, it receives c ∈ S , and forwards it to A, which outputs s ∈ D. If A breaks coset lossy

soundness, i.e, F(s)− c ·X ∈ R+ F(D), then there is a δ ∈ D such that F(s)− c ·X = R+ F(δ). By

enumerating D, the reduction B �nds such a δ and returns s− δ to the lossy soundness game. As we

have F(s− δ)− c ·X = R, B breaks lossy soundness with the same probability asA breaks coset lossy

soundness, and the claim follows.

De�nition 4.10 (Coset Aggregation Lossy Soundness). Let LF = (Gen,F) be a linear function family.

We say that LF satis�es εal-coset aggregation lossy soundness, if for any unbounded algorithm A, the
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following probability is at most εal:

Pr

F(s)− c · X̃ ∈ R+ F(D)

∣∣∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN ))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c),
X̃ :=

∑N
i=1 aiXi

 .
Lemma 4.11. Let LF be a linear function family, such that for any par ∈ Gen(1λ), the domain Dpar can
be enumerated. Then, if LF satis�es εal-aggregation lossy soundness, it also satis�es εl-coset aggregation
lossy soundness.

Proof. The proof is almost identical to the proof of Lemma 4.10, and details are left to the reader.

Weaker Commitments. Next, we weaken the commitment de�nition given in Section 4.4.1. To recall, a

weakly equivocable commitment scheme as de�ned in Section 4.4.1 allows to homomorphically commit

to elements in the range of a linear function family. In addition to a statistically binding mode, there is

an indistinguishable way of generating commitment keys together with a weak equivocation trapdoor.

This trapdoor allows to open commitments to all messages of a certain structure. In comparison

to Section 4.4.1, we now weaken the binding property of the scheme. Concretely, in the binding mode,

we only require the commitment to be binding up to any shift in the image of the linear function.

De�nition 4.11 (Weakly Equivocable Coset Commitment Scheme). Let LF = (LF.Gen,F) be a linear
function family and G = {Gpar},H = {Hpar} be families of subsets of abelian groups with e�ciently com-

putable group operations⊕ and⊗, respectively. LetK = {Kpar} be a family of sets. An (εb, εg, εt)-weakly
equivocable coset commitment scheme for LF with key space K, randomness space G and commitment

spaceH is a tuple of PPT algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the same syntax as

a weakly equivocable commitment scheme according to De�nition 4.8. Further, the algorithms are required

to satisfy the following properties:

• Homomorphism. As in De�nition 4.8.

• Good Parameters. As in De�nition 4.8.

• Uniform Keys. As in De�nition 4.8.

• Weak Trapdoor Property. As in De�nition 4.8.

• Multi-Key Indistinguishability. As in De�nition 4.8.

• Statistical Coset Binding. There exists some (potentially unbounded) algorithm Ext, such that

for every (potentially unbounded) algorithm A the following probability is at most εb:

Pr

 Com(ck, R′;ϕ′) = com ∧R′ /∈ R+ F(D)

∣∣∣∣∣∣
par← LF.Gen(1λ),
ck← BGen(par), (com, St)← A(ck),
R← Ext(ck, com), (R′, ϕ′)← A(St)

 .
4.5.2 Construction with Key Aggregation

In Section 4.4.2, we have used a linear function family LF and a weakly equivocable commitment scheme

CMT to construct a multi-signature scheme ChopsKA[LF,CMT] supporting key aggregation. For the

security proof to work, LF has to satisfy aggregation lossy soundness. Here, we show that if CMT is

a weakly equivocable coset commitment scheme and LF satis�es coset aggregation lossy soundness,

then the very same construction is also secure, with the same security loss. To distinguish these two

ways of instantiating the scheme, we write ToothKA[LF,CMT] for the new scheme. For a description

of the scheme, the reader may consult Section 4.4.2 and Figure A.1. We now state completeness, which

is easy to verify, and prove security.
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Lemma 4.12. Let LF be a linear function family. Let CMT be an (εb, εg, εt)-weakly equivocable coset
commitment scheme for LF Then ToothKA[LF,CMT] is complete.

Theorem 4.4. Let LF be a linear function family that satis�es key indistinguishability and εal-coset
aggregation lossy soundness. Let CMT be an (εb, εg, εt)-weakly equivocable coset commitment scheme for

LF. Further, let H : {0, 1}∗ → K, Ha : {0, 1}∗ → S , and Hc : {0, 1}∗ → S be random oracles. Then, the

scheme ToothKA[LF,CMT] is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHa , QHc , QS queries to oracles

H,Ha,Hc, Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,ToothKA[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHcεb

+ 4QS
|R|

+ 4QSQHaQHc
|S|

+ 4QSQHaQHcεal

+ 4QS
(

AdvQH-keydist
B,CMT (λ) + Advkeydist

B′,LF (λ)
)
.

Proof. The proof is an adaptation of the proof of Theorem 4.1 to our new building blocks. Therefore, we

only sketch the proof informally. The proof is identical to the proof of Theorem 4.1 except for G7 and

the fact that the �nal reduction reduces to coset aggregation lossy soundness instead of aggregation

lossy soundness.

Game G0: This is the original security game MS-EUF-CMAAToothKA[LF,CMT]. As in the proof of

Theorem 4.1, we can omit signing oracle Sig2 without loss of generality. We have

AdvMS-EUF-CMA
A,ToothKA[LF,CMT](λ) = Pr [G0 ⇒ 1].

Game G1: We let the game abort if (par, x1) /∈ Good, where x1 is the secret key of the signer that is

simulated by the game. As in the proof of Theorem 4.1, we can argue that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.

Game G2: We introduce a map b mapping inputs (p̃k,m) to random oracle H to bits. For each such

input for which b[p̃k,m] is not yet de�ned, we set it to 1 with probability 1/(QS+1), and to 0 otherwise.

The game additionally aborts if b[p̃k,m] = 1 for a signing query or b[p̃k,m] = 0 for the forgery. We

can argue that

Pr [G2 ⇒ 1] ≥ 1
4QS

· Pr [G1 ⇒ 1].

Game G3: We change how commitment keys ck output by random oracle H on inputs (p̃k,m) are

sampled. Namely, if b[p̃k,m] = 0, then we sample ck with a trapdoor via (ck, td)← TGen(par, X1),

where X1 is the public key of the signer simulated by the game. Otherwise, if b[p̃k,m] = 1, we sample

ck in binding mode via ck← BGen(par). Indistinguishability can be argued using the uniform keys

property of CMT and the multi-key indistinguishability property of CMT. We get a reduction B with

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G4: In this game, we use the trapdoor td generated in random oracle H to simulate the signing

oracle. This works out because due to the changes in G2 and G3, the commitment key ck used in

signing queries has been sampled with a trapdoor. We can argue that

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ QSεt.

Game G5: We undo the change from G1 and no longer require that (par, x1) ∈ Good. As before, we

get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [(par, x1) /∈ Good] ≤ εg.
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Game G6: We change how public key X1 is generated. Before, it was generated by sampling the secret

key x1
$← D and setting X1 := F(x1). Now, we sample X1

$← R. Note that the secret key x1 is not

used anymore, due to the previous changes. Now, we can use the key indistinguishability of LF and get

a reduction B′ with

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G7: We use the statistical coset binding property of CMT as follows. For oracle queries of

the form Hc(p̃k, com,m), we set ck := H(p̃k,m), and extract from the commitment com using the

extractor Ext from the statistical coset binding property of CMT if ck has been sampled in binding

mode, i.e., if b[p̃k,m] = 1. Concretely, we run R ← Ext(ck, com) and store R in another map r as

r[p̃k, com,m] := R. We continue the simulation of Hc as before. Later, when A outputs its forgery

(P∗,m∗, σ∗) for a signature σ∗ = (com∗, s∗, ϕ∗), we compute the aggregated key p̃k := X̃ := Agg(P∗)
and c∗ := Hc(p̃k, com∗,m∗) and R∗ := F(s∗)− c∗ · X̃ as in the veri�cation algorithm. Then, the game

outputs 0 if R∗ /∈ r[p̃k, com∗,m∗] + F(D). Otherwise, it continues as before. Observe that compared

to G7 in the proof of Theorem 4.1, we weaken this new winning condition by allowing a di�erence in

the span of F. This is necessary as we only have statistical coset binding, and not statistical binding as

in Theorem 4.1. We will see that this is compensated by coset aggregation lossy soundness. Using a

reduction as given in G7 in the proof of Theorem 4.1, we can argue that

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ QHQHcεb.

Game G8: We ensure that Ha and Hc are always queried in the correct order. Namely, if there is a

query Ha(〈P〉, pk) for pk = X1 and the hash value is not yet de�ned, but for p̃k := Agg(P) the hash

value Hc(p̃k, com,m) is already de�ned for some com,m, then the game aborts. As in G8 in the proof

of Theorem 4.1, we get that

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ 1
|R|

+ QHaQHc
|S|

.

Finally, we reduce from coset aggregation lossy soundness to �nish the proof. In contrast to the

�nal reduction in the proof of Theorem 4.1, it is important to use coset aggregation lossy soundness

and not aggregation lossy soundness due to the modi�ed change in G7. We get

Pr [G8 ⇒ 1] ≤ QHaQHcεal.

4.5.3 Tight Construction

Here, we present our construction of a tightly secure two-round multi-signature scheme. In comparison

to our �rst tightly secure construction in Section 4.4.3, this construction is signi�cantly more e�cient.

Let LF = (LF.Gen,F) be a linear function family. Let CMT = (BGen,TGen,Com,TCom,TCol) be an

(εb, εg, εt)-weakly equivocable coset commitment scheme for LF with key space K, randomness space

G and commitment spaceH. Finally, let H : {0, 1}∗ → K, Hb : {0, 1}∗ → {0, 1}, and Hc : {0, 1}∗ → S
be random oracles. We give a verbal description of our scheme Tooth[LF,CMT] = (Setup,Gen, Sig,
Ver). In addition, we present it as pseudocode in Figure A.8.

Setup and Key Generation. Our scheme makes use of public parameters par← LF.Gen(1λ), which

de�ne the linear function F = F(par, ·). Keys are generated by sampling elements x0, x1
$← D and a

seed seed $← {0, 1}λ. Then, the keys are

sk := (x0, x1, seed), pk := (X0, X1) := (F(x0),F(x1)).

Signing Protocol. We consider the setting of a set of N signers with public keys P = {pk1, . . . , pkN}.
Let m ∈ {0, 1}∗ denote the message that should be signed. In the following, we describe the signing
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protocol, i.e., algorithms Sig0, Sig1, Sig2, from the perspective of the �rst signer. This signer holds a

secret key sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0, X1,1).

1. Commitment Phase. First, a commitment key ck := H(〈P〉,m) is derived from the set of public

keys and the message. Further, the signer computes a bit b1 := Hb(seed1, 〈P〉,m). The signer

computes

r1
$← D, R1 := F(r1).

Then, the signer commits to R1 using the commitment key ck, i.e., it computes

ϕ1
$← G, com1 := Com(ck, R1;ϕ1).

Finally, it sends pm1,1 := (b1, com1) as its �rst message of the protocol to all signers.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output by the signers

in the commitment phase. That is, the message pm1,i is sent by signer i and has the form

pm1,i = (bi, comi). The signer aggregates these messages by setting

B := b1 . . . bN ∈ {0, 1}N , com :=
⊗
i∈[N ]

comi.

Next, a signer speci�c challenge c1 is derived and a response s1 is computed. This is done via

c1 := Hc(pk1, com,m, 〈P〉, B), s1 := c1 · x1,b1 + r1.

Observe that the signer uses bit b1 to determine which part of the secret key is used. Finally, the

signer sends pm2,1 := (s1, ϕ1) as its second message of the protocol to all signers.

3. Aggregation Phase. LetM2 = (pm2,1, . . . , pm2,N ) be the list of messages output by the signers

in the response phase. That is, the message pm2,i is sent by signer i and has the form pm2,i =
(si, ϕi). The signers aggregate the responses and commitment randomness received in the

previous messages via

s :=
∑
i∈[N ]

si, ϕ :=
⊕
i∈[N ]

ϕi.

Finally, the signature is de�ned as σ := (com, ϕ, s, B).

Veri�cation. Assume we have a set of public keys P = {pk1, . . . , pkN}, a message m ∈ {0, 1}∗, and

a signature σ := (com, ϕ, s, B). To verify σ, write B = b1 . . . bN ∈ {0, 1}N and each public key pki
as pki = (Xi,0, Xi,1). Then, reconstruct the commitment key ck := H(〈P〉,m) and the signer speci�c

challenges ci := Hc(pki, com,m, 〈P〉, B) for each i ∈ [N ]. The signature is valid, i.e., the veri�cation

outputs 1, if and only if

com = Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
)
.

Lemma 4.13. Let LF be a linear function family. Let CMT be an (εb, εg, εt)-weakly equivocable coset
commitment scheme for LF. Then Tooth[LF,CMT] is complete.

Proof. To show completeness of Tooth[LF,CMT], consider N users and let P = {pk1, . . . , pkN} be

the set of their public keys, where pki = (Xi,0, Xi,1) = (F(xi,0),F(xi,1)) for each i ∈ [N ]. Let

m ∈ {0, 1}∗ be a message, and let σ = (com, ϕ, s, B) for B = b1 . . . bN ∈ {0, 1}N be a signature

computed honestly in the signing protocol. We have to show that veri�cation outputs 1 on input
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P,m, σ. For that, let ck = H(〈P〉,m) and ci = Hc(pki, com,m, 〈P〉, B) for each i ∈ [N ] be as in the

veri�cation algorithm. We have to show that

com = Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
)
.

Using de�nition of s and the Xi,bi , and linearity of F, we get

F(s)−
N∑
i=1

ci ·Xi,bi = F
(

N∑
i=1

si

)
−

N∑
i=1

ci · F(xi,bi) =
N∑
i=1

F(si − ci · xi,bi).

Now, we use the de�nition of the si as si = ci · xi,bi + ri, where ri ∈ D is the element that the ith
signer samples in the �rst step, and get

N∑
i=1

F(si − ci · xi,bi) =
N∑
i=1

F(ri) =
N∑
i=1

Ri,

where Ri = F(ri) is the element to which each signer commits in the �rst step. In combination, we get

Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
)

= Com

ck,
N∑
i=1

Ri;
⊕
i∈[N ]

ϕi

 ,

where we used the de�nition of ϕ. We can now apply the homomorphism property of the commitment

and get

Com

ck,
N∑
i=1

Ri;
⊕
i∈[N ]

ϕi

 =
N⊗
i=1

Com (ck, Ri;ϕi) =
N⊗
i=1

comi = com,

where the comi are what each signer sends in the �rst message. This proves the claim.

Theorem 4.5. Let LF be a linear function family that satis�es key indistinguishability and εl-coset lossy
soundness. Let CMT be an (εb, εg, εt)-weakly equivocable coset commitment scheme for LF. Further, let
H : {0, 1}∗ → K,Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random oracles. Then Tooth[LF,CMT] is
MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHb , QHc , QS queries to oracles

H,Hb,Hc, Sig0, respectively, there are PPT algorithms B,B′ with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,Tooth[LF,CMT](λ) ≤ QHb

2λ + 8εg + 4QSεt + 4QHQHcεb + 4QHcεl

+ 4 · AdvQH-keydist
B,CMT (λ) + 4 · Advkeydist

B′,LF (λ).

Proof. Let A be an adversary against the security of Tooth[LF,CMT]. To prove the statement, we give

a sequence of games G0, . . . ,G8. We present the games formally in Figures A.9 to A.11, and we verbally

describe and analyze them here.

Game G0: This is de�ned to be the original security game MS-EUF-CMAATooth[LF,CMT], but we omit

the oracle Sig2 from the game. Observe that this is without loss of generality for the scheme at hand, as

this oracle can be run publicly based on the outputs of the other oracles and does not make use of any

secret state or key. More concretely, for any adversary A that calls this oracle, we can build a wrapper

adversary that internally simulates the game including oracle Sig2 for A and forwards everything

else to G0. This wrapper adversary has the same advantage and running time as A. We now recall
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the game to �x notation. First, system parameters par← LF.Gen(1λ) are generated. In addition, the

secret and public key of an honest user are generated. Namely, the game samples seed1
$← {0, 1}λ and

x1,0, x1,1
$← D and sets X1,0 := F(x1,0) and X1,1 := F(x1,1). It sets pk∗ := (X1,0, X1,1) and runs A

on input par, pk∗, with access to the following oracles

• Signing oracles Sig0 and Sig1: The signing oracles simulate an honest signer in a signing

interaction. More precisely, if A queries Sig0(P,m), a new signing interaction for message m
with respect to P = {pk1, . . . , pkN} is started, where we assume that pk1 = pk∗. For that, �rst

(P,m) is added to list Queried. Then, the game runs algorithm Sig0 in the natural way and

outputs the result to the adversary. Similarly, when A calls Sig1, algorithm Sig1 is run.

• Random oracles H and Hc: The game simulates random oracles H and Hc for A by standard lazy

sampling. For that, it holds maps h and hc which map the inputs to their outputs. For example,

if A queries H(x), the game checks if h[x] is de�ned. If it is not yet de�ned, it is sampled at

random from the output domain of H, i.e., from K. Then, the game returns h[x].
• Random oracle Hb: For Hb, we additionally introduce a level of indirection. This will allow us

to distinguish queries to Hb that the game itself issues from the queries that A issues directly.

Concretely, when Hb is queried, the game forwards the query to a random oracle H̄b with the

same interface. Oracle H̄b is simulated using a map h̄b via lazy sampling. We emphasize that

this oracle H̄b is not provided to A. Further, the convention for all games will be that the game

itself only queries H̄b and not Hb, for example in oracle Sig0.

Finally, A outputs a forgery (P∗,m∗, σ∗). Write the set P∗ as P∗ = {pk1, . . . , pkN} and the signature

σ∗ as σ∗ = (com∗, ϕ∗, s∗, B∗). Further, write B∗ = b∗1 . . . b
∗
N ∈ {0, 1}

N
. Then, the game outputs 0 if

pk∗ /∈ P∗ or (P∗,m∗) ∈ Queried. Otherwise, we assume that pk∗ = pk1, and the game outputs 1 if

and only if Ver(P∗,m∗, σ∗) = 1. By de�nition, we have

AdvMS-EUF-CMA
A,Tooth[LF,CMT](λ) = Pr [G0 ⇒ 1].

Before we continue, we give an overview of the remaining games and our strategy. In our �rst step

(games G1 and G2), we ensure that for the forgery it holds that b∗1 = 1− b∗ and H̄b(seed1, 〈P∗〉,m∗) =
b∗, for a random bit b∗. Once this is established, we change how we simulate the signing oracles (games

G3 to G6). Namely, in the case H̄b(seed1, 〈P〉,m) = b∗, we embed a binding commitment key and

simulate signing for (P,m) honestly, whereas for the other case, we embed a commitment key with a

trapdoor and simulate signing by using the trapdoor. The result is that we no longer need x1,1−b∗ . Now,

we switch X1,1−b∗ to lossy mode and use the binding property to reduce to lossy soundness (games G7
and G8). This works, because the forgery is with respect to a lossy key and a binding commitment key.

Game G1: This game is the same as G0, but we introduce a bad event on which the game aborts.

Namely, the game sets bad := 1 if A queries Hb(seed1, x) for any x ∈ {0, 1}∗. Once A terminates,

the game outputs 0 if bad = 1. Otherwise, it behaves as G0. It is clear that games G0 and G1 only

di�er if A makes such a query. Further, the only information about seed1 that A gets are the values

of Hb(seed1, ·). As seed1 is sampled uniformly at random from {0, 1}λ, we can bound the probability

that a �xed query of A has the form Hb(seed1, x) by 1/2λ. With a union bound over the queries of A
we obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ QHb
2λ .

Game G2: In this game, we introduce a random bit b∗ $← {0, 1} that is sampled at the beginning of the

game. Further, we change the winning condition as follows. When A outputs the forgery, the game

outputs 0, if b∗1 = b∗ or H̄b(seed1, 〈P∗〉,m∗) = 1 − b∗. Otherwise, it continues as G1 does. In other

words, game G2 outputs 1 if G1 outputs 1 and the following event occurs:

• Event RightBits: This event occurs, if for A’s �nal output (P∗,m∗, σ∗) with P∗ = {pk1 =
pk∗, . . . , pkN}, σ∗ = (com∗, ϕ∗, s∗, B∗), and B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N
, it holds that b∗1 =

1− b∗ and H̄b(seed1, 〈P∗〉,m∗) = b∗.
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If we condition on G1 ⇒ 1, then we claim that b∗ and H̄b(seed1, 〈P∗〉,m∗) are uniformly random

and independent, and independent of A’s view. In particular, they are independent of b∗1. This is

because bit b∗ is hidden from A by construction, and H̄b(seed1, 〈P∗〉,m∗) is hidden from A due to

(P∗,m∗) /∈ Queried and the change introduced in G1. Therefore, we have

Pr [RightBits | G1 ⇒ 1] = Pr
b,b∗

$←{0,1}
[b∗1 = 1− b∗ ∧ b = b∗] = 1

4 .

With this, we obtain

Pr [G2 ⇒ 1] = Pr [RightBits ∧ G1 ⇒ 1]

= Pr [RightBits | G1 ⇒ 1] · Pr [G1 ⇒ 1] = 1
4 · Pr [G1 ⇒ 1].

Game G3: This game is the same as G2, but we add another abort. Namely, once the game sampled

par and x1,0, x1,1 at the beginning of the game, it returns 0 and terminates if (par, x1,1−b∗) /∈ Good,

where Good is as in the de�nition of the weakly equivocable coset commitment scheme. Otherwise, it

continues as in G2 does. By the good parameters property of CMT, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [(par, x1,1−b∗) /∈ Good] ≤ εg.

Game G4: In this game, we change how random oracle H is simulated. Recall that until now, when H is

queried on an input (〈P〉,m) and the output of H is not yet de�ned, it samples a random commitment

key ck $← K uniformly at random and de�nes the output to be this key. From now on, we sample ck
di�erently, distinguishing two cases depending on the bit b := H̄b(seed1, 〈P〉,m) and the bit b∗. Namely,

if b = 1− b∗, then ck is sampled in hiding mode with a trapdoor, i.e., (ck, td)← TGen(par, X1,1−b∗).

Further, the trapdoor td is stored in a map tr by setting tr[〈P〉,m] := td. On the other hand, if b = b∗,
then ck is sampled in binding mode, i.e., ck ← BGen(par). We now show indistinguishability of G3
and G4. First, note that keys sampled in the �rst case are distributed identically in G3 and G4. This

follows from the uniform keys property of CMT, which we can apply due to the previous change that

ensures that (par, x1,1−b∗) ∈ Good. Second, keys sampled in the second case are indistinguishable

by the multi-key indistinguishability property of CMT. More precisely, there is a reduction B that

gets as input par, x1,1−b∗ , and commitment keys ck1, . . . , ckQH . It then simulates game G4 for A, but

embedding the commitment keys cki whenever random oracle H needs to be simulated and b = b∗ as

above. In the end, B outputs whatever the game outputs. Clearly, B’s running time is determined by the

running time of A and it perfectly simulates G4 if the keys ck1, . . . , ckQH are generated via algorithm

BGen. Otherwise, if the keys are sampled uniformly at random, it perfectly simulates G3 for A. For

this, it was important that we introduced the indirection via oracle H̄b as otherwise the simulation

would not be perfect. Concretely, if B itself had queried Hb instead of H̄b, then the game would always

have output 0, see the change in G2. We have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In this game, we change the signing oracle. The result will be that we can simulate the

signing oracle without x1,1−b∗ , but using trapdoors for commitment keys instead. First, we explain

how we change oracle Sig0, which runs Sig0 in previous games. Recall from the de�nition of Sig0,

that this means that the oracle on input P and m samples r1
$← D, de�nes R1 := F(r1), computes a

bit b1 := Hb(seed1, 〈P〉,m) and a commitment key ck := H(〈P〉,m), and commits to R1 by sampling

ϕ1
$← G and setting com1 := Com(ck, R1;ϕ1). Now, if b1 = b∗, we don’t change anything and G5

behaves as previous games do. However, if b1 = 1 − b∗, the game computes com1 di�erently. It

computes it as (com1, St1) ← TCom(ck, tr[〈P〉,m]). Here, recall that if b1 = 1 − b∗, then ck has

been generated with a trapdoor that is stored in tr, see G4. Next, we explain how we change oracle

Sig1, which runs Sig1 in previous games. To recall, this means that �rst, a challenge c1 is computed
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using the random oracle Hc and all messages of the �rst round. Then, a response s1 := c1 · x1,b1 + r1
is computed, and s1 and ϕ1 is returned to A. Again, we only change the case where b1 = 1 − b∗.
Namely, in this case, the game runs (ϕ1, R1, s1)← TCol(St1, c1) to compute s1 and ϕ1 instead. Due

to the change introduced in G3, we know that (par, x1,1−b∗) ∈ Good, and thus we can apply the weak

trapdoor property of CMT for every signing query. We get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ QSεt.

Game G6: In this game, we undo the change fromG3, namely, we no longer require that (par, x1,1−b∗) ∈
Good. With a similar argument as in G3, we get

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ εg.

Game G7: In this game, we change how X1,1−b∗ is generated. Recall that until now, it is generated

by sampling x1,1−b∗
$← D and setting X1,1−b∗ := F(x1,1−b∗). From now on, we sample it in lossy

mode, i.e., as X1,1−b∗
$← R. Observe that x1,1−b∗ is used nowhere else during the game, due to our

previous changes. Therefore, we can easily bound the distinguishing advantage between G6 and G7 by

a reduction B′ that runs in the key indistinguishability game of LF and embeds its input in X1,1−b∗ .
We have

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ Advkeydist
B′,LF (λ).

Game G8: In game G8, we make use of the statistical coset binding property of CMT. Concretely, we

change oracle Hc and the winning condition. Recall that until now, a query Hc(pk, com,m, 〈P〉, B) is

answered in the standard way using lazy sampling. In game G8, this is still the case, but additionally

the extractor Ext for the statistical coset binding property of CMT is run in certain cases. Namely,

write P = {pk1, . . . , pkN} and B = b1 . . . bN . Further, set b := H̄b(seed1, 〈P〉,m). If pk∗ is part

of P , i.e., pk∗ = pk1, and b = b∗, then we know that the commitment key ck := H(〈P〉,m) is

generated in binding mode by algorithm BGen. This is due to the change in G4. Now, game G8
runs R ← Ext(H(〈P〉,m), com) and stores R in a map r[·] as r[com,m, 〈P〉, B] := R. Other than

that, the oracle Hc does not change. Next, we describe how the winning condition is changed. For

that, assume that A outputs a forgery A outputs a forgery (P∗,m∗, σ∗) with P∗ = {pk1, . . . , pkN},
σ∗ = (com∗, ϕ∗, s∗, B∗), and B∗ = b∗1 . . . b

∗
N ∈ {0, 1}

N
. Assume that game G7 does not return

0. Especially, we have pk1 = pk∗ and (P∗,m∗) /∈ Queried, and H̄b(seed1, 〈P∗〉,m∗) = b∗ (see

G2). Further, the game parses pki = (Xi,0, Xi,1) for every key pki in P∗ and de�nes challenges

c∗i := Hc(pki, com∗0,m∗, 〈P∗〉, B∗) for all i ∈ [N ] as the veri�cation algorithm does. In particular,

now we know, due to H̄b(seed1, 〈P∗〉,m∗) = b∗, that r[com∗,m∗, 〈P∗〉, B∗] is de�ned. Next, the game

de�nes R∗ := F(s∗) −
∑N
i=1 c

∗
i · Xi,b∗

i
as the veri�cation algorithm does. The game outputs 0 if

R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D). Otherwise, it behaves as G7 does. Note that if G7 outputs 1, but

G8 does not, then we know that com∗ = Com(ck, R∗;ϕ∗), where ck := H(〈P〉∗,m∗). In other words,

G7 and G8 only di�er, if for the forgery, the value r[com∗,m∗, 〈P∗〉, B∗] that the extractor extracted

from commitment com∗ is in a di�erent coset than the value to which A successfully opens com∗ in

its forgery. We can easily bound the probability of this using the statistical coset binding property

of CMT. For that, we sketch an (unbounded) reduction that gets as input the parameters par of the

linear function, and a commitment key ck ← BGen(par). Then, it �rst samples indices iH
$← [QH]

and iHc
$← [QHc ] uniformly at random, and then simulates the game G8 honestly for A, except the

iHth query to H and the iHc th query to Hc. In the iHth query to H, if it has to sample a binding key, it

embeds ck. Otherwise, it aborts. In the iHc th query to Hc, if it had to run Ext, it instead outputs the

commitment com and its state to the statistical coset binding game. Otherwise, it aborts. Finally, when

A outputs its forgery, and the iHth query to H and the iHc th query to Hc are the queries of interest, and

R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D), the reduction outputs R∗ and ϕ∗, thereby winning the statistical

coset binding game. It is easy to see that this shows

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ QHQHcεb.
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To �nish the proof, we bound the probability that G8 outputs 1 using coset lossy soundness of LF.

For that consider the following unbounded reduction:

• The reduction gets as input parameters par and an element X ∈ R.

• It picks a random index î $← [QHc ]. It then simulates game G8 for A until A outputs its forgery,

using parameters par and de�ningX1,1−b∗ := X instead of picking it randomly fromR. Further,

the reduction handles the îth query to Hc di�erently.

• Let Hc(pk, com,m, 〈P〉, B) be the îth query to Hc. If the hash value for this query is already

de�ned, the reduction continues as G8 would do. Otherwise, let P = {pk1, . . . , pkN}, B =
b1 . . . bN , and b := H̄b(seed1, 〈P〉,m). The reduction also continues as G8 would do if pk∗ is

not in P . Otherwise, assume that pk∗ = pk1 as usual. If pk 6= pk∗ or b 6= b∗, the reduction also

continues as G8 would do. In other words, the reduction only di�ers in the case in which G8
would run the extractor Ext. In this case, the reduction runs Ext as G8 would do, i.e., it runs

R̂ ← Ext(H(〈P〉,m), com) and sets r[com,m, 〈P〉, B] := R̂. In addition, the reduction sets

ci := Hc(pki, com,m, 〈P〉, B) for each i ∈ [N ] \ {1}, and computes

R := R̂+
N∑
i=2

ci ·Xi,bi .

Then, the reduction outputs R to the coset lossy soundness game, and in return it receives a

challenge c ∈ S . Finally, the reduction programs hc[pk, com,m, 〈P〉, B] := c and returns this

hash value.

• WhenA outputs its forgery (P∗,m∗, σ∗), the reduction does all the veri�cation checks as in G8.

Assuming all of these checks pass, write P∗ = {pk1 = pk∗, . . . , pkN}, σ∗ = (com∗, ϕ∗, s∗, B∗),

and B∗ = b∗1 . . . b
∗
N ∈ {0, 1}

N
. The reduction aborts if the value Hc(pk1, com∗,m∗, 〈P∗〉, B∗)

has not been de�ned during the îth query to Hc. Otherwise, the reduction returns s := s∗ to the

coset lossy soundness game.

One can easily see that the view of A is independent of the index î until a potential abort, and that,

assuming the reduction does not abort, the simulation of G8 is perfect. Now, we want to argue that the

reduction breaks coset lossy soundness if G8 outputs 1, and the index î is guessed correctly. Once this

is shown, we can conclude with

Pr [G8 ⇒ 1] ≤ QHcεl.

To show this claim, we assume that G8 outputs 1 and the index î is guessed correctly. Now, it follows

from the condition H̄b(seed1, 〈P∗〉,m∗) = b∗ introduced in G2 that the reduction output R as above to

the coset lossy soundness game, received c, and programmed Hc(pk1, com∗,m∗, 〈P∗〉, B∗) to be c. It

remains to argue that F(s)− c ·X ∈ R+ F(D). For that, �rst recall that the change introduced in G8
ensures that

F(s∗)−
N∑
i=1

c∗i ·Xi,b∗
i
∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D).

Using the assumption that the index î is guessed correctly, this implies

F(s∗)− c ·X1,b∗1 −
N∑
i=2

ci ·Xi,b∗
i
∈ R̂+ F(D).

Now, we rearrange terms and use the condition b∗1 = 1− b∗ introduced in G2, and get

F(s∗)− c ·X1,1−b∗ ∈ R̂+
N∑
i=2

ci ·Xi,b∗
i

+ F(D).

If we recall the de�nition of s∗ = s, X1,1−b∗ = X , and the de�nition of R, then this is exactly the

statement we want to show. Concluded.

124



4.5. TOOTHPICKS: REDUCING THE PRICE OF TIGHTNESS

4.5.4 Instantiation

We have presented abstract constructions of two-round multi-signatures, namely, ToothKA[LF,CMT]
in Section 4.5.2 and Tooth[LF,CMT] in Section 4.5.3. To obtain concrete constructions Toothpicks I
and Toothpicks II, we instantiate the linear function family LF and the commitment scheme CMT both

based on DDH. Our instantiation can be interpreted as an optimization of the one in Section 4.4.4. We

exploit the fact that the commitment scheme only has to be binding with respect to cosets.

Linear Function Family. We use the same linear function family LFDDH as in Section 4.4.4. To

recall, LFDDH = (Gen,F) is based on the DDH assumption. Algorithm Gen runs GGen to obtain the

description of a prime order group G of order p with generator g. It also samples an element h $← G
and outputs parameters par := (g, h) ∈ G2

. The description of G is also contained in par and left

implicit for the sake of a concise presentation. These parameters de�ne the set of scalars, domain,

range, and the function F(par, ·), which are as follows:

S := Zp, D := Zp, R := G×G, F(par, x) := (gx, hx).

One can easily verify that this is a linear function family. Further, we have shown in Section 4.4.4

that LFDDH satis�es key indistinguishability, lossy soundness, and aggregation lossy soundness. Using

Lemmas 4.10 and 4.11, we conclude that LFDDH satis�es coset lossy soundness and coset aggregation

lossy soundness. The following lemma summarizes this.

Lemma 4.14. Assuming that the DDH assumption holds relative to GGen, the linear function family

LFDDH satis�es key indistinguishability. Concretely, for any PPT algorithm A there is a PPT algorithm B
with T(B) ≈ T(A) and

Advkeydist
A,LFDDH

(λ) ≤ AdvDDH
B,GGen(λ).

Further, the linear function family LFDDH satis�es εl-coset lossy soundness and εal-coset aggregation lossy

soundness for

εl ≤ 3/p, εal ≤ 4/p.

Commitment Scheme. Next, we present our instantiation of the weakly equivocable coset com-

mitment scheme for the linear function family LFDDH introduced before. Our commitment scheme

shares similarities with the commitment scheme we have constructed in Section 4.4.4, which uses a

3× 3 matrix of group elements as a commitment key. Our crucial observation is that if we replace this

3× 3 structure with a more e�cient 2× 2 structure, we obtain a scheme that is still binding on cosets.

We now describe our commitment scheme CMTDDH = (BGen,TGen,Com,TCom,TCol) for LFDDH.

Assume parameters of LFDDH are given, specifying a group G. Then, the commitment scheme has key

space K := G2×2
, message space D = G × G, randomness space G = Z2

p, and commitment space

H = G2
. The spaces D,G, and H are associated with the natural componentwise group operations.

Next, we describe the algorithms of the commitment scheme verbally.

• BGen(par)→ ck: Parse par = (g, h). Sample a, b $← Zp and set

ck := A :=
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
ga gb

ha hb

)
∈ G2×2.

• TGen(par, X = (X1, X2))→ (ck, td): Sample exponents di,j
$← Zp for all (i, j) ∈ [2]× [2]. Set

ck := A :=
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
X
d1,1
1 X

d1,2
1

X
d2,1
2 X

d2,2
2

)
∈ G2×2.

Further, set td := (D, X1, X2) for

D :=
(
d1,1 d1,2
d2,1 d2,2

)
∈ Z2×2

p .
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• Com(ck, R = (R1, R2);ϕ)→ com: Let ϕ = (α, β) ∈ Z2
p. Compute com := (C1, C2) for(

C1
C2

)
:=
(
R1· Aα1,1 ·A

β
1,2

R2· Aα2,1 ·A
β
2,2

)
.

• TCom(ck, td) → (com, St): Sample ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s) and compute

com := (C1, C2) for (
C1
C2

)
:=
(
Xρ1

1 · gs
Xρ2

2 · hs
)
.

• TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs ·X−c1 , hs ·X−c2

)
. Then, if D is not

invertible, return ⊥. Otherwise, compute ϕ := (α, β) for(
α
β

)
= D−1 ·

(
ρ1 + c
ρ2 + c

)
.

Theorem 4.6. If the DDH assumption holds relative to GGen, then CMTDDH is an (εb, εg, εt)-weakly
equivocable coset commitment scheme for LFDDH, with

εb = 0, εg ≤ 2/p, εt ≤ 2/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ Adv2Q-DDH
A,GGen (λ)..

The proof of Theorem 4.6 is split into a sequence of lemmas, showing the required properties of a

weakly equivocable coset commitment scheme separately. The homomorphism property is easy to

verify. For the remaining properties, we �rst have to de�ne a set Good. We de�ne it as the set of

non-zero parameters and domain elements, i.e.,

Good =
{

((g, h), x) ∈ G2 × Zp
∣∣ (g, h) ∈ LFDDH.Gen(1λ) ∧ h 6= g0 ∧ x 6= 0

}
.

It is clear that membership in Good can be decided e�ciently. Further, for (g, h)← LFDDH.Gen(1λ)
and x $← Zp, the probability that ((g, h), x) /∈ Good is at most 2/p by a union bound over the two

events h = g0
and x = 0. This shows εg ≤ 2/p. We proceed by showing that the commitment scheme

satis�es the uniform keys property, the weak trapdoor property, multi-key indistinguishability, and is

statistically coset binding. The proofs of the uniform keys property and the weak trapdoor property

are similar to the proofs of the corresponding statement in Section 4.4.4.

Lemma 4.15. The scheme CMTDDH satis�es the uniform keys property of an (εb, εg, εt)-weakly equivo-

cable coset commitment scheme for LFDDH.

Proof. Let ((g, h), x) ∈ Good and de�ne (X1, X2) ∈ G2
to be the image of x under F, i.e., X1 = gx

and X2 = hx. We have to argue that the distribution of ((g, h), x,A) for a commitment key A as

output by algorithm TGen is the same as for a random A $← G2×2
. Recall that A output by TGen has

the form

A =
(
A1,1 A1,2
A2,1 A2,2

)
=
(
X
d1,1
1 X

d1,2
1

X
d2,1
2 X

d2,2
2

)
∈ G2×2,

where the di,j are sampled uniformly at random from Zp. As ((g, h), x) ∈ Good, we know that X1 and

X2 are generators of G, and therefore A is uniformly random over G2×2
.
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Lemma 4.16. The scheme CMTDDH satis�es the weak trapdoor property of an (εb, εg, εt)-weakly equiv-

ocable coset commitment scheme for LFDDH, where εt ≤ 2/p.

Proof. Fix parameters g, h ∈ G and x ∈ Zp and a challenge c ∈ Zp such that ((g, h), x) ∈ Good.

De�ne (X1, X2) ∈ G2
to be the image of x under F, i.e., X1 = gx and X2 = hx. According to the

de�nition of the weak trapdoor property, we have to consider two di�erent distributions T0 and T1 of

tuples

((g, h),A, (D, X1, X2), x, c, (C1, C2), ((α, β), (R1, R2), s))

Here, g, h, x, c,X1, X2 are �xed as above and A,D, X1, X2 are output by TGen in both distributions

T0 and T1. In distribution T1, the remaining components (C1, C2), ((α, β), (R1, R2), s are sampled via

((C1, C2), St)← TCom(ck, td), ((α, β), (R1, R2), s)← TCol(St, c).

In distribution T0, the remaining components (C1, C2), ((α, β), (R1, R2), s are sampled as

r $← Zp, R1 := gr, R2 := hr, s := c · x+ r,
α, β $← Zp, (C1, C2) := Com(A, (R1, R2); (α, β)).

We will now gradually change this distribution T0 until we arrive at the distribution T1. Before we

do that, we assume that in both distributions T0 and T1, the matrix D ∈ Z2×2
p has full rank. As D is

sampled uniformly at random over Z2×2
p , we know that it has full rank except with probability 1/p.

Thus, this assumption will add 2/p to our �nal bound.

In our �rst step, we remove the dependence on r and x. That is, we de�ne a new distribution, in

which the remaining components (C1, C2), ((α, β), (R1, R2), s are samples as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,
α, β $← Zp, (C1, C2) := Com(A, (R1, R2); (α, β)).

It is clear that T0 and this new distribution are identical
10

. Next, we want to make (C1, C2) independent

of (R1, R2). For that, we consider the mapping from (α, β) to (C1, C2) induced by Com, namely,

Ψ: Z2
p → G2, (α, β) 7→ (C1, C2) = (R1 ·Aα1,1 ·A

β
1,2, R2 ·Aα2,1 ·A

β
2,2).

Using the assumption that D has full rank, that g, h,X1, X2 are generators of G, and the de�nition of

the Ai,j , we see that Ψ is a bijection, and (C1, C2) is uniformly random over G2
. Therefore, we can

equivalently write the distribution as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,
ρ1, ρ2

$← Zp, (C1, C2) := (Xρ1
1 · gs, X

ρ2
2 · hs), (α, β) := Ψ−1(C1, C2).

We claim that this is exactly the distribution T1. For that, it is su�cient to argue that the way algorithm

TCol computes (α, β), i.e., as (α, β)t := D−1(ρ1 + c, ρ2 + c)t, is identical to Ψ−1
. By de�nition of Ψ,

the expression (α, β) = Ψ−1(C1, C2) is equivalent to(
C1
C2

)
=
(
R1· Aα1,1· Aβ1,2
R2· Aα2,1· Aβ2,2

)
.

Using our de�nition of A, C1, C2, and R1, R2, this is equivalent to(
Xρ1

1 · gs
Xρ2

2 · hs
)

=
(
gs ·X−c1 · X

d1,1α
1 · X

d1,2β
1

hs ·X−c2 · X
d2,1α
2 · X

d2,2β
2

)
.

10

Essentially, we used the special honest-veri�er zero-knowledge property of the Chaum-Pedersen identi�cation

scheme [CP93, KW03, KMP16] here.
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The gs and hs terms cancel out, and this is equivalent to(
ρ1 + c
ρ2 + c

)
= D ·

(
α
β

)
which concludes the proof.

Lemma 4.17. The scheme CMTDDH satis�es the statistical coset binding property of an (εb, εg, εt)-weakly
equivocable coset commitment scheme for LFDDH, where εb = 0.

Proof. To show that the scheme is statistically coset binding, we have to present an algorithm Ext
that outputs (R1, R2) on input A ∈ Z2×2

p and com = (C1, C2) ∈ G2
. Algorithm Ext just outputs

(R1, R2) := (C1, C2). It remainst to show that Ext satis�es the conditions of the statistical coset

binding property. Concretely, we have to consider the following experiment for any adversary A:

First, parameters par := (g, h)← LFDDH.Gen(1λ) and a commitment key ck := A← BGen(par) are

generated. Then, A gets par and ck and outputs a commitment com = (C1, C2) ∈ G2
. The extractor

Ext is run, outputting R1 = C1, R2 = C2. Finally, A outputs (R′1, R′2) ∈ G2
and (α′, β′) ∈ Z2

p. We

have to bound the probability of the event

Com(ck, (R′1, R′2); (α′, β′)) = com ∧ ∀δ ∈ Zp :
(
R′1
R′2

)
6=
(
R1 · gδ
R2 · hδ

)
.

Now, we rewrite the �rst condition according to the de�nition of Com, taking into account the de�nition

of A in algorithm BGen. Further, we use (R1, R2) = (C1, C2). Then, this is equivalent to(
R′1· ga·α

′ · gb·β′

R′2· ha·α
′ · hb·β′

)
=
(
R1
R2

)
∧ ∀δ ∈ Zp :

(
R′1
R′2

)
6=
(
R1 · gδ
R2 · hδ

)
.

Now, by taking δ = −(a · α′ + b · β′), it is easy to see that this can never hold, and therefore the event

we have to bound can never occur.

Lemma 4.18. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ Adv2Q-DDH
A,GGen (λ).

Proof. To prove multi-key indistinguishability based on the 2Q-DDH assumption, we assume the

existence of an adversary A against the multi-key indistinguishability of CMTDDH, and turn it into an

algorithm that breaks the 2Q-DDH assumption. That is, we construct a reduction B that simulates the

multi-key indistinguishability game for A and runs in the 2Q-DDH game. Reduction B is as follows:

1. B gets as input G, p, g, h and 2Q group elements (ui, vi)2Q
i=1.

2. B de�nes par := (g, h) and samples x $← Zp. If ((g, h), x) /∈ Good, B returns 0 and terminates.

3. Otherwise, B de�nes Q commitment keys ck1, . . . , ckQ ∈ G2×2
via

cki :=
(
u2i−1 u2i
v2i−1 v2i−1

)
for all i ∈ [Q].

4. B runs A on input par, x and (cki)i∈[Q]. It returns whatever A returns.

It is clear that the running time of B is dominated by the running time of A. Further, assume that B’s

input satis�es ui = gai , vi = gai for random ai ∈ Zp. In this case, the commitment keys are distributed

as if they are generated by BGen, and B perfectly simulates game Q-KEYDISTA0,CMT(λ) for A. On

the other hand, if ui, vi
$← G for all i ∈ [2Q], then the resulting commitment keys cki are distributed

uniformly over G2×2
, and B perfectly simulates game Q-KEYDISTA1,CMT(λ) for A. This shows the

claim.
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4.6 Concrete Parameters and E�ciency

We have presented four constructions of multi-signatures in this chapter, namely, Chopsticks I and

Chopsticks II in Section 4.4 and Toothpicks I and Toothpicks II in Section 4.5. Here, we discuss the

e�ciency of these schemes. We �rst explain minor optimizations that improve signature size and

communication complexity, and then discuss the asymptotic and concrete e�ciency of our schemes.

Further Optimizations. We describe the optimizations for our tight construction in Section 4.5.3, i.e.,

for Toothpicks II, but they directly translate to our other constructions as well. Our �rst optimization is

to reduce the communication complexity by deriving the commitment randomness ϕ, which consists of

two (resp. three) �eld elements, from a short seed of length λ bit using a random oracle H̄ : {0, 1}∗ → Z2
p.

Then, instead of sending ϕ in the second round, each signer sends its seed, and the signers locally

derive all ϕ’s and aggregate them. By the unpredictability of the random oracle, the scheme stays

secure. Our second optimization allows us to remove the commitment (resp. commitments) com,

which consists of two (resp. three) group elements, from the �nal signature. The idea is to replace

it by a hash of com of length 2λ using another random oracle Ĥ : {0, 1}∗ → {0, 1}2λ
. Concretely,

the signers �rst complete the signing protocol as before, but to de�ne signer speci�c challenges, they

compute ci := Hc(pki, h,m, 〈P〉, B) for all i ∈ [N ], where h := Ĥ(com). In the end, the signature is

σ := (h, ϕ, s,B). The signature is veri�ed by �rst recomputing the ci’s as before (using h instead of

com) and by checking the commitment after hashing, i.e., using the equation

h = Ĥ
(

Com
(

ck,F(s)−
N∑
i=1

ci ·Xi,bi ;ϕ
))

.

In a security proof, we would use the collision-resistance and observability of Ĥ to reduce this equation

to the original veri�cation equation.

Asymptotics. In Table 4.2, we compare the asymptotic sizes of public keys and signatures and the

communication complexity per signer for our schemes with previous schemes in the pairing-free setting.

We see that, as expected, Toothpicks I and Toothpicks II outperform Chopsticks I and Chopsticks II in

terms of e�ciency. Additionally, their communication complexity is smaller than for some non-tight

competitors such as Musig2, while the signature size is minimally larger. In general, the asymptotic

e�ciency of the Toothpicks schemes is comparable with most non-tight or three-round schemes.

Concrete Parameters. We compare the concrete e�ciency and security level of two-round multi-

signatures in the pairing-free setting in Table 4.3. The numbers are computed using a Python script
11

.

Our comparison assumes that all constructions are instantiated with the secp256k1 curve, and we

assume security parameter λ = 128. We compute the concrete security level based on the security

bounds (see Table 4.1) assuming the underlying assumption is 128 bit hard, and assuming QH = 230

hash queries and QS = 220
signing queries. The concrete results con�rm what we have seen in the

asymptotic comparison.

11

The Python script can be found in https://github.com/b-wagn/dissertation-efficiency-scripts.
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Publication History of This Chapter

This chapter is based on the publication [BLT
+

24] and its full version [BLT
+

23]. I am the main author

of it. To obtain a consistent structure, minor changes to the structure of the paper and minor notational

changes have been made.
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5.1. INTRODUCTION

5.1 Introduction

A threshold signature scheme [Des88, DF90, Ped91] enables a group of n signers to jointly sign a

message as long as more than t of them participate. To this end, each of the n signers holds a share

of the secret key associated with the public key of the group. When t + 1 of them come together

and run a signing protocol for a particular message, they obtain a compact signature (independent

in size of t and n) without revealing their secret key shares to each other. On the other hand, no

subset of at most t potentially malicious signers can generate a valid signature. Despite being a well-

studied cryptographic primitive, threshold signatures have experienced a renaissance due to their use

in cryptocurrencies [LN18] and other modern applications [DOK
+

20]. This new attention has also

led to ongoing standardization e�orts [BP22]. In this chapter, we study threshold signatures in the

pairing-free discrete logarithm setting. As noted in previous works [TZ22, TZ23, CKM
+

23b], pairings

are not supported in popular libraries and are substantially more expensive to compute, which makes

pairing-free solutions appealing.

Static vs. Adaptive Security. When de�ning security for threshold signatures, the adversary is

allowed to concurrently interact with honest signers in the signing protocol. Additionally, it may

corrupt up to t out of n parties, thereby learning their secret key material and internal state. Here, we

distinguish between static corruptions and adaptive corruptions. For static corruptions, the adversary

declares the set of corrupted parties ahead of time before any messages have been signed. For adaptive

corruptions, the adversary can corrupt parties dynamically, depending on previous signatures and

corruptions. Adaptive security is a far stronger notion than static security and matches reality more

closely. Unfortunately, proving adaptive security for threshold signatures is highly challenging and

previous works in the pairing-free setting rely on strong interactive assumptions to simulate the state

of adaptively corrupted parties [CKM23a]. This simulation strategy, however, is at odds with rewinding

the adversary as part of a security proof. Roughly, if the adversary is allowed to corrupt up to tc parties,

then in the two runs induced by rewinding, it may corrupt up to 2tc parties in total. Thus, for the

reduction to obtain meaningful information from the adversary’s forgery, it has to be restricted to

corrupt at most tc ≤ t/2 parties [CKM23a]. To bypass this unnatural restriction, prior work heavily

relies on the algebraic group model (AGM) [FKL18] in order to avoid rewinding
1
. In summary: to

support an arbitrary corruption threshold, one has to use the AGM or sacri�ce adaptive security.

Our Goal. Motivated by this unsatisfactory state of a�airs, we want to construct a threshold signature

scheme in the pairing-free discrete logarithm setting supporting up to t adaptive corruptions without

using the AGM.

5.1.1 Contribution: Twinkle

We construct Twinkle. It is the �rst threshold signature scheme in the pairing-free setting which

combines all of the following characteristics:

• Adaptive Security. We prove Twinkle secure under adaptive corruptions. Notably, we do not rely

on secure erasures of private state.

• Non-Interactive Assumptions. Our security proof relies on a non-interactive and well-studied

assumption, namely, the DDH assumption. As a slightly more e�cient alternative, we give an

instantiation based on a one-more variant of CDH.

• No AGM. We do not use the algebraic group model, but only the random oracle model.

• Arbitrary Threshold. Twinkle supports an arbitrary corruption threshold t < n for n parties.

Essentially, this is established by giving a proof without rewinding.

1

Other works resort to heavier machinery such as broadcast channels or non-committing encryption resulting

in ine�cient protocols.
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Scheme Rounds Adaptive Assumption Idealization Corruptions

GJKR [GJKR07]/StiStr [SS01] ≥ 4 7 DLOG ROM ≤ t < n/2
Lin-UC [Lin22] 3 7 DLOG ROM ≤ t
Frost [KG20] 2 7 DLOG Custom ≤ t
Frost [KG20, BTZ22, BCK

+
22] 2 7 AOMDL ROM ≤ t

Frost2 [CKM21, BTZ22, BCK
+

22] 2 7 AOMDL ROM ≤ t
Frost3 [RRJ

+
22]/Olaf [CGRS23] 2 7 AOMDL ROM ≤ t

TZ [TZ23] 2 7 DLOG ROM ≤ t
Sparkle [CKM23a] 3 7 DLOG ROM ≤ t
Sparkle [CKM23a] 3 3 AOMDL ROM ≤ t/2
Sparkle [CKM23a] 3 3 AOMDL ROM+AGM ≤ t

Twinkle (AOMCDH) 3 3 AOMCDH ROM ≤ t
Twinkle (DDH) 3 3 DDH ROM ≤ t

Table 5.1: Comparison of di�erent threshold signature schemes in the discrete logarithm se�ing

without pairings and the two instantiations of our Twinkle scheme. We compare whether the schemes

are proven secure under adaptive corruptions and under which assumption and idealized model they

are proven. We also compare the corruption thresholds that they support. For all schemes, we assume

that there is a trusted dealer distributing key shares securely. For GJKR [GJKR07]/StiStr [SS01],

broadcast channels are assumed, which adds rounds when implemented.

For a comparison of schemes in the pairing-free discrete logarithm setting, see Table 5.1. We also

emphasize that we achieve our goal without the use of heavy cryptographic techniques, and our scheme

is practical. For example, signatures of Twinkle (from DDH) are at most 3 times as large as regular

Schnorr signatures [Sch91], and Twinkle has three rounds. In the context of our proof, we also identify

a gap in the analysis of Sparkle [CKM23a] and develop new proof techniques to �x it in the context of

our scheme
2
.

Conceptually, the design of our threshold signature is inspired by �ve-move identi�cation schemes,

which already have found use in the construction of tightly secure signature schemes [Che05, GJKW07,

KLP17]. We achieve our result in two main steps:

1. We �rst phrase our scheme abstractly using (a variant of) linear function families [HKL19, KLR21,

CAHL
+

22a, PW23a, TZ23]. To prove security under adaptive corruptions, we de�ne a security

notion for linear functions resembling a one-more style CDH assumption. This is the step where

we identify the gap in the analysis of Sparkle [CKM23a].

2. We then instantiate the linear function family such that this one-more notion follows from

the (non-interactive) DDH assumption. Note that Tessaro and Zhu [TZ23] showed a related

statement, namely, that a suitable one-more variant of DLOG follows from DLOG. In this sense,

our work makes a further step in an agenda aimed at replacing interactive assumptions with

non-interactive ones. We are con�dent that this is interesting in its own right.

5.1.2 More on Related Work

We discuss further related work, including threshold signatures from other assumptions and related

cryptographic primitives.

Techniques for Adaptive Security. General techniques for achieving adaptive security have been

studied [CGJ
+

99, JL00, LP01]. Unfortunately, these techniques often rely on heavy cryptographic

machinery and assumptions, e.g., secure erasures or broadcast channels.

2

We communicated the gap and our solution to the authors of Sparkle. To be clear, we do not claim that Sparkle
is insecure, just that the proof in [CKM23a] has a gap.
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Other Algebraic Structures. In the pairing setting, a natural construction is the (non-interactive)

threshold version of the BLS signature scheme [BLS01, Bol03], which has been modi�ed to achieve

adaptive security in [LJY14]. Recently, Bacho and Loss [BL22] have proven adaptive security of

threshold BLS in the AGM. Das et al. have constructed weighted threshold signatures in the pairing-

setting [DCX
+

23], and Crites et al. have constructed structure-preserving threshold signatures in

the pairing-setting [CKP
+

23]. Threshold signatures have been constructed based on RSA [DDFY94,

Rab98, FMY98, Sho00, ADN06, GHKR08, TZ23]. Notably, adaptive security has been considered

in [ADN06]. A few works also have constructed threshold signatures from lattices [BKP13, BGG
+

18,

DOTT21, ASY22, GKS23]. Finally, several works have proposed threshold signing protocols for ECDSA

signatures [GGN16, LN18, GG18, DKLs19, DJN
+

20, GG20, CGG
+

20, CCL
+

20, GKSŚ20]. Except for

[CGG
+

20], these works focus on static corruptions. For an overview of this line of work, see [AHS20].

Robustness. Recently, there has been renewed interest in robust (Schnorr) threshold signing pro-

tocols [RRJ
+

22, BHK
+

23, Sho23, GS23]. Such robust protocols additionally ensure that no malicious

party can prevent honest parties from signing. Notably, all of these protocols assume static corruptions.

Multi-Signatures. Multi-signatures [IN83, BN06] are threshold signatures with t = n − 1, i.e., all

n parties need to participate in the signing protocol, with the advantage that parties generate their

keys independently and come together to sign spontaneously without setting up a shared key. There

is a rich literature on multi-signatures, e.g., [Bol03, BDN18, MPSW19, NRSW20, NRS21, BD21, AB21,

BTT22, FSZ22, TZ23]. We refer to Chapter 4 for more details.

Distributed Key Generation. In principle, one can rely on generic secure multi-party computation to

set up key shares for a threshold signature scheme without using a trusted dealer. To get a more e�cient

solution, dedicated distributed key generation protocols have been studied [Ped92, CGJ
+

99, JL00,

GJKR07, KMS20, DYX
+

22, KGS23], with some of them being adaptively secure [CGJ
+

99, JL00, KMS20].

5.1.3 Outline

In Section 5.2, we give a technical overview. Then, in Section 5.3, we de�ne our formal model for

threshold signatures, including syntax and security. In Section 5.4, we construct our threshold signature

scheme generically from an abstract building block we call tagged linear function families. We present

two instantiations of this abstract construction in Section 5.5. Finally, in Section 5.6, we discuss the

e�ciency of the resulting schemes.

5.2 Technical Overview

In this section, we outline our techniques in an informal way. We keep the overview self-contained, but

some background on Schnorr signatures [Sch91, KMP16], �ve-move identi�cation [Che05, GJKW07,

KLP17], and Sparkle [CKM23a] is helpful.

Sparkle and The Problem with Rewinding. As our starting point, let us review the main ideas

behind Sparkle [CKM23a], and why the use of rewinding limits us to tolerating at most t/2 corruptions.

For that, we �x a group G with generator g and prime order p. Each signer i ∈ [n] holds a secret

key share ski ∈ Zp such that ski = f(i) for a polynomial f of degree t. Further, the public key is

pk = gf(0)
. To sign a message m, a set S ⊆ [n] of signers engage in the following interactive signing

protocol, omitting some details:

1. Each party i ∈ S samples a random ri
$← Zp and computes Ri = gri . It then sends a hash comi

of Ri, S, and m to the other signers to commit to Ri. We call Ri a preimage of comi. The hash

function is modeled as a random oracle.

2. Once a party has received all hashes from the �rst round, it sends Ri to the other signers to

open the commitment.
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3. If all commitments are correctly opened, each signer computes the combined nonce R =
∏
iRi.

Then, it derives a challenge c ∈ Zp from pk, R, and m using another random oracle. Each

signer i computes and sends its response share si := c · `i,S · ski + ri, where `i,S is a Lagrange

coe�cient. The signature is (c, s), where s =
∑
i si.

The overall proof strategy adopted in [CKM23a] follows a similar paradigm as that of proving Schnorr

signatures, with appropriate twists. Namely, one �rst takes care of simulating signing queries using

honest-veri�er zero-knowledge (HVZK) and by suitably programming the random oracle. We will

come back to this part of the proof later. Then, via rewinding, one can extract the secret key from a

forgery. To simulate adaptive corruption queries, the proof of Sparkle relies on a DLOG oracle on each

corruption query, i.e., security is proven under the one-more version of DLOG (OMDL). Speci�cally,

getting t+ 1 DLOG challenges from the OMDL assumption and t-time access to a DLOG oracle, the

reduction de�nes a degree t polynomial “in the exponent”, simulates the game as explained, and uses

rewinding to solve the �nal DLOG challenge. Note that if we allow the adversary to corrupt at most tc
parties throughout the experiment, it may corrupt up to 2tc parties over both runs, meaning that the

reduction has to query the DLOG oracle up to 2tc times. Therefore, we have to require that 2tc ≤ t.
How to Avoid Rewinding. Now it should be clear that the restriction on the corruption threshold is

induced by the use of rewinding. If we avoid rewinding, we can also remove the restriction. To do so, it

is natural to follow existing approaches from the literature on tightly-secure (and thus rewinding-free)

signatures. A common approach is to rely on lossy identi�cation [KW03, AFLT12, KMP16] that has

already been used in the closely-related multi-signature setting, see Chapter 4. We �nd this unsuitable

for two reasons. Namely, (a) these schemes rely on the DDH assumption, it is not clear at all what a

suitable one-more variant would look like, and (b) the core idea of this technique is to move to a hybrid

in which there is no secret key for pk at all. This seems hard to combine with adaptive corruptions.

Roughly, this is because if there is no secret key for pk, then at most t of the pki can have a secret

key, meaning that we would have to guess the set of corruptions. Instead, we take inspiration from

�ve-move identi�cation [Che05, GJKW07, KLP17], for which problems (a) and (b) do not show up.

Namely, (a) such schemes rely on the CDH assumption, and (b) there is always a secret key. To explain

the idea, we directly focus on our threshold signature scheme. For that, let h ∈ G be derived from the

message via a random oracle. Given h, our signing protocol is as follows:

1. Each signer i ∈ S samples ri
$← Zp and computes R

(1)
i = gri , R

(2)
i = hri , and pk(2)

i = hski
. It

then sends a hash of R
(1)
i , R

(2)
i , pk(2)

i to the other signers.

2. Once a party received all hashes from the �rst round, it sends R
(1)
i , R

(2)
i , pk(2)

i .

3. If all commitments are correctly opened, each signer computes the combined nonces R(k)
for

k ∈ {1, 2} and secondary public key pk(2)
in a natural way. Then, it derives a challenge c from

R(1), R(2), pk(2)
, and m and computes si := c · `i,S · ski + ri. The signature is (pk(2), c, s) with

s =
∑
i si.

Intuitively, the signers engage in two executions of Sparkle with generators g and h, respectively, using

the same randomness ri. To understand why we can avoid rewinding with this scheme, let us ignore

signing and corruption queries for a moment, and focus on how to turn a forgery (pk(2), c, s) into a

solution for a hard problem, concretely, CDH. For that, we consider two cases. First, if pk(2) = hf(0)
,

then pk(2)
is a CDH solution for pk = gf(0)

and h. Indeed, this is what should happen in an honest

execution. Second, we can bound the probability that the forgery is valid and pk(2) 6= hf(0)
using a

statistical argument. Roughly, (c, s) acts as a statistically sound proof for the statement pk(2) = hf(0)
.

To simulate adaptive corruptions, for now assume that we can rely on a one-more variant of the CDH
assumption, in which we have t-time access to a DLOG oracle. We come back to this later. What

remains is to simulate honest parties during the signing. For that, the �rst trick is to set up h (by

programming the random oracle) in a special way. Roughly, we want to be able to translate valid
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transcripts with respect to g into valid transcripts with respect to h. Once this is established, we can

focus on simulating the g-side of the protocol.

A Gap In the Proof of Sparkle. If we only focus on the g-side, our protocol is essentially Sparkle.

Therefore, it should be possible to simulate signing exactly as in Sparkle using HVZK. Unfortunately,

when looking at this part of Sparkle’s proof, we discovered that a certain adversarial behavior is

not covered. Namely, the proof does not correctly simulate the case in which the adversary sends

inconsistent sets of commitments to di�erent honest parties. It turns out that handling this requires

fundamentally new techniques. To understand the gap, it is instructive to consider Sparkle’s proof

for an example of three signers in a session sid, with two of them being honest, say Signer 1 and

2, and the third one being malicious. Let us assume that Signers 1 and 2 are already in the second

round of the protocol. That is, both already sent their commitments com1 and com2 and now expect a

list of commitmentsM = (com1, com2, com3) from the �rst round as input. In Sparkle’s proof, the

reduction sends random commitments com1 and com2 on behalf of the honest parties. Later, when

Signer 1 (resp. 2) getsM, it has to output its second message R1 (resp. R2) and program the random

oracle at R1 (resp. R2) to be com1 (resp. com2). The goal of the reduction is to set up R1 and R2 using

HVZK such that the responses s1 and s2 can be computed without using the secret key. To understand

how the reduction proceeds, assume that Signer 1 is asked (by the adversary) to reveal his nonce R1
�rst. When this happens, the reduction samples a challenge c and a response s1. It then de�nes R1

as R1 := gs1 pk−c`1,S
1 . Ideally, the reduction would now program the random oracle on the combined

nonce R = R1R2R3 to return c, and output R1 to the adversary. However, while the reduction can

extract R3 from com3 by observing the random oracle queries, R2 is not yet de�ned at that point. The

solution proposed in Sparkle’s proof is as follows. Before returning R1 to the adversary, the reduction

also samples s2 and de�nes R2 := gs2 pk−c`2,S
2 . Then, the reduction can compute the combined nonce

R = R1R2R3 and program the random oracle on input R to return c. Later, it can use s1 and s2 as

responses.

However, as we will argue now, this strategy is �awed
3
. Think about what happens if the �rst-round

messagesM′ that Signer 2 sees do not contain com3, but instead a di�erent
4

commitment com′3 to a

nonce R′3 6= R3. Then, with high probability, the combined nonce R′ that Signer 2 will compute is

di�erent from R, meaning that its challenge c′ will also be di�erent from c, and so s2 is not a valid

response. One naive idea to solve this is to program R2 := gs2 pk−c
′`2,S

2 for an independent c′ when

we reveal R1. In this case, however, the adversary may just choose to submitM′ =M to Signer 2,

making the simulation fail.

Equivalence Classes to the Rescue. The solution we present is very technical, and we sketch a

massively simpli�ed solution here. Abstractly speaking, we want to be able to identify whether two

queries q = (sid, i,M) and q′ = (sid′, i′,M′) will result in the same combined nonce before all

commitments comj inM andM′ have preimages Rj . To do so, we de�ne an equivalence relation ∼
on such queries for which we show two properties.

1. First, the equivalence relation is consistent over time, namely, (a) if q ∼ q′ at some point in time,

then q ∼ q′ at any later point, and (b) if q 6∼ q′ at some point in time, then q 6∼ q′ at any later

point.

2. Second, assume that all commitments inM andM′ have preimages. Then the resulting combined

nonces R and R′ are the same if and only if q ∼ q′.

The technical challenge is that ∼ has to stay consistent while also adapting to changes in the random

oracle over time. Assuming we have such a relation, we can make the simulation work. Namely, when

3

The problem has nothing to do with adaptive security and shows up for a static adversary as well.

4

Note that in Sparkle, no broadcast channel is assumed, and so this may happen. Also, note that in multi-

signatures that follow a similar strategy, e.g., [BN06], this problem does not show up as there is only one honest

signer.
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we have to reveal the nonce Ri of an honest signer i, we �rst de�ne c := C(q), where C is a random

oracle on equivalence classes and is only known to the reduction. That is, C is a random oracle with

the additional condition that C(q) = C(q′) if q ∼ q′. Then, we de�ne Ri := gsipk−c`i,Si . We do not

de�ne any other Ri′ of honest parties at that point, meaning that we also may not know the combined

nonce yet. Instead, we carefully delay the random oracle programming of the combined nonce until it

is completely known.

Cherry on Top: Non-Interactive Assumptions. While the scheme we have so far does its job, we

still rely on an interactive assumption, and we are eager to avoid it. For that, it is useful to write our

scheme abstractly, replacing every exponentiation with the function T(t, x) = tx. Note that for almost

every t ∈ G, the function T(t, ·) is a bijection. Our hope is that by instantiating our scheme with a

di�erent function with suitable properties, we can show that the corresponding one-more assumption

is implied by a non-interactive assumption. Indeed, Tessaro and Zhu [TZ23] recently used a similar

strategy to avoid OMDL in certain situations. To do so, they replace the bijective function with a

compressing function. In our case, the interactive assumption, written abstractly using T, asks an

adversary to win the following game:

• A random g and h are sampled, and random x0, . . . , xt are sampled. Then, g, h, and all Xi =
T(g, xi) for all 0 ≤ i ≤ t are given to the adversary.

• Roughly, the adversary gets t-time access to an algebraic oracle inverting T. More precisely, the

oracle outputs

∑t
i=0 αixi on input α0, . . . , αt.

• The adversary outputs X ′i for all 0 ≤ i ≤ t. It wins if all solutions are valid, meaning that there

is a zi such that T(g, zi) = Xi ∧ T(h, zi) = X ′i . Intuitively, the adversary has to “shift” the

images Xi from g to h.

Under a suitable instantiation of T and a well-studied non-interactive assumption, we want to show

that no adversary can win this game. Unfortunately, if we just use a compressing function as in the

case of [TZ23], it is not clear how to make use of the winning condition. Instead, our idea is to use a

function that can dynamically be switched between a bijective and a compressing mode. A bit more

precisely, a proof sketch works as follows:

1. We start with the game we introduced above. With overwhelming probability, the functions

Tg := T(g, ·) and Th := T(h, ·) should be bijective.

2. Assume that we can e�ciently invert Th using knowledge of h. Then, we can state our winning

condition equivalently by requiring that T−1
h (X ′i) = xi for all i. Roughly, this means that the

adversary has to �nd the xi to win.

3. We assume that we can indistinguishably switch g to a mode in which Tg is compressing.

4. Finally, we use a statistical argument to show that the adversary can not win. Intuitively, this is

because Tg is compressing and the inversion oracle does not leak too much about the xi’s.

It turns out that, choosing T carefully, we �nd a function that (1) has all the properties we need for our

scheme and (2) allows us to follow our proof sketch under the DDH assumption.

5.3 Preliminaries for this Chapter

In this section, we de�ne threshold signatures, the main object of study for this chapter.

Threshold Signatures. We de�ne threshold signatures assuming a trusted key generation, which can

be replaced by a distributed key generation in practice. Our syntax matches the three-round structure

of our protocol. Namely, a (t, n)-threshold signature scheme is a tuple of PPT algorithms TS = (Setup,
Gen, Sig,Ver), where Setup(1λ) outputs system parameters par, and Gen(par) outputs a public key pk
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and secret key shares sk1, . . . , skn. Further, Sig speci�es a signing protocol, formally split into four

algorithms (Sig0, Sig1, Sig2,Combine). Here, algorithm Sigj models how the signers locally compute

their (j + 1)st protocol message pmj+1 and advance their state, where Sig0(S, i, ski,m) takes as input

the signer set S, the index of the signer i ∈ [n], its secret key share ski, and the message m, and Sig1
(resp. Sig2) takes as input the current state of the signer and the listM1 (respM2) of all protocol

messages from the previous round. Finally, Combine(S,m,M1,M2,M3) can be used to publicly turn

the transcript into a signature σ, which can then be veri�ed using Ver(pk,m, σ). Roughly, we say that

the scheme is complete if for any such parameters and keys, a signature generated by a signing protocol

among t+ 1 parties outputs a signature for which Ver outputs 1.

De�nition 5.1 (Threshold Signature Scheme). Let t < n be natural numbers. A (t, n)-threshold signature
scheme is a tuple of PPT algorithms TS = (Setup,Gen,Sig,Ver) with the following syntax:

• Setup(1λ)→ par takes as input the security parameter 1λ and outputs global system parameters

par, where par implicitly de�nes sets of public keys, secret keys, messages and signatures, and all

algorithms related to TS implicitly take par as input.

• Gen(par)→ (pk, sk1, . . . , skn) takes as input system parameters par, and outputs a public key pk
and secret key shares sk1, . . . , skn.

• Sig = (Sig0, Sig1, Sig2,Combine) is split into four algorithms:

– Sig0(S, i, ski,m) → (pm1, St1) takes as input a signer set S ⊆ [n], an index i ∈ [n], a
secret key share ski, and a message m, and outputs a protocol message pm1 and a state St1.

– Sig1(St1,M1) → (pm2, St2) takes as input a state St1 and a tupleM1 = (pm1,1, . . . ,
pm1,l) of protocol messages, and outputs a protocol message pm2 and a state St2.

– Sig2(St2,M2)→ pm3 takes as input a state St2 and a tupleM2 = (pm2,1, . . . , pm2,l) of
protocol messages, and outputs a protocol message pm3.

– Combine(S,m,M1,M2,M3)→ σ takes as input a signer set S ⊆ [n], a message m, tuples

M1 = (pm1,1, . . . , pm1,l),M2 = (pm2,1, . . . , pm2,l), andM3 = (pm3,1, . . . , pm3,l) of
protocol messages, and outputs a signature σ.

• Ver(pk,m, σ)→ b is deterministic, takes as input a public key pk, a message m, and a signature σ,
and outputs a bit b ∈ {0, 1}.

We require that TS is complete in the following sense. For all par ∈ Setup(1λ), all (pk, sk1, . . . , skn) ∈
Gen(par), all messages m, and all S ⊆ [n] with |S| = t+ 1 we have

Pr
[
Ver(pk,m, σ) = 1

∣∣ σ ← TS.Exec(pk, sk1, . . . , skn, S,m)
]

= 1,

where algorithm TS.Exec is de�ned in Figure 5.1.

Our security game is in line with the established template and is presented in Figure 5.2. First,

the adversary gets an honestly generated public key as input. At any point in time, the adversary can

start a new signing session with signer set S and message m with session identi�er sid by calling an

oracle Next(sid, S,m). Additionally, the adversary may adaptively corrupt up to t users via an oracle

Corr. Thereby, it learns their secret key and private state in all currently open signing sessions. To

interact with honest users in signing sessions, the adversary has access to per-round signing oracles

Sig0, Sig1, Sig2. Roughly, each signing oracle can be called with respect to a speci�c honest user i and

a session identi�er sid, given that the user is already in the respective round for that session (modeled

by algorithm Allowed). Further, when calling such an oracle, the adversary inputs the vector of all

messages of the previous round. In particular, the adversary could send di�erent messages to two

di�erent honest parties within the same session, i.e., we assume no broadcast channels. Additionally,

this means that the adversary can arbitrarily decide which message to send to an honest party on behalf
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Alg TS.Exec(pk, sk1, . . . , skn, S,m)
01 if |S| 6= t+ 1 ∨ S 6⊆ [n] : return ⊥
02 parse {i1, . . . , it+1} := S s.t. i1 < i2 · · · it < it+1
03 for j ∈ [t+ 1] : (pm1,ij , St1,ij )← Sig0(S, ij , skij ,m)
04 M1 := (pm1,i1 , . . . , pm1,it+1)
05 for j ∈ [t+ 1] : (pm2,ij , St2,ij )← Sig1(St1,ij ,M1)
06 M2 := (pm2,i1 , . . . , pm2,it+1)
07 for j ∈ [t+ 1] : pm3,ij ← Sig2(St2,ij ,M2)
08 M3 := (pm3,i1 , . . . , pm3,it+1)
09 return σ ← Combine(S,m,M1,M2,M3)

Figure 5.1: Algorithm TS.Exec for a (t, n)-threshold signature scheme TS = (Setup,Gen, Sig,Ver).

The algorithm models an honest execution of the signing protocol Sig.

of another honest party, i.e., we assume no authenticated channels. Finally, the adversary outputs a

forgery (m∗, σ∗). It wins the security game, if it never started a signing session for message m∗ and the

signature σ∗ is valid. Therefore, our notion is (an interactive version of) TS-UF-0 using the terminology

of [BTZ22, BCK
+

22], which is similar to recent works [CKM23a, CGRS23].

No Erasures. In our pseudocode, the private state of signer i in session sid is stored in state[sid, i],
where state is a map. After each signing round, this state is updated. We choose to update the state

instead of adding a new state to avoid clutter, which is similar to earlier works [CKM23a]. On the

downside, this means that potentially, schemes that are secure in our model could rely on erasures, i.e.,

on safely deleting part of the state of an earlier round before a user gets corrupted. We emphasize that

in our scheme, any state in earlier rounds can be computed from the state in the current round and the

secret key. This means that our schemes do not rely on erasures.

De�nition 5.2 (TS-EUF-CMA Security). Let TS = (Setup,Gen, Sig,Ver) be a (t, n)-threshold signa-
ture scheme. Consider the game TS-EUF-CMA de�ned in Figure 5.2. We say that TS is TS-EUF-CMA
secure, if for all PPT adversaries A, the following advantage is negligible:

AdvTS-EUF-CMA
A,TS (λ) := Pr

[
TS-EUF-CMAATS(λ)⇒ 1

]
.

5.4 Abstract Construction

In this section, we present our threshold signature scheme in an abstract way. Namely, we �rst introduce

a building block we call tagged linear function families. Then, we show how to construct threshold

signatures from tagged linear function families.

5.4.1 Building Block: Tagged Linear Function Families

Similar to what is done in other works [HKL19, KLR21, TZ23] and Chapter 4, we use the abstraction

of linear function families to describe our scheme in a generic way. However, we slightly change the

notion by introducing tags to cover di�erent functions with the same set of parameters.

De�nition 5.3 (Tagged Linear Function Family). A tagged linear function family (TLFF) is a tuple of

PPT algorithms TLF = (Gen,T) with the following syntax:

• Gen(1λ)→ par takes as input the security parameter 1λ and outputs parameters par. We assume

that par implicitly de�nes the following sets: A set of scalars Spar, which forms a �eld; a set of tags

Tpar; a domain Dpar and a range Rpar, where each forms a vector space over Spar. If par is clear
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Game TS-EUF-CMAATS(λ)
01 par← Setup(1λ)
02 (pk, sk1, . . . , skn)← Gen(par)
03 Sig := (Next, Sig0, Sig1, Sig2)
04 (m∗, σ∗)← ASig,Corr(par, pk)
05 if m∗ ∈ Queried : return 0
06 return Ver(pk,m∗, σ∗)

Oracle Corr(i)
07 if |Corrupted| ≥ t : return ⊥
08 Corrupted := Corrupted ∪ {i}
09 return (ski, state[·, i])

Oracle Next(sid, S,m)
10 if |S| 6= t+ 1 ∨ S 6⊆ [n] : return ⊥
11 if sid ∈ Sessions : return ⊥
12 Sessions := Sessions ∪ {sid}
13 message[sid] := m, signers[sid] := S
14 Queried := Queried ∪ {m}
15 for i ∈ S : round[sid, i] := 0

Oracle Sig0(sid, i)
16 if Allowed(sid, i, 0,⊥) = 0 :
17 return ⊥
18 S := signers[sid]
19 (pm, St)← Sig0(S, i, ski,m)
20 pm1[sid, i] := pm, state[sid, i] := St
21 round[sid, i] := 1
22 return pm

Oracle Sig1(sid, i,M1)
23 if Allowed(sid, i, 1,M1) = 0 :
24 return ⊥
25 (pm, St)← Sig1(state[sid, i],M1)
26 pm2[sid, i] := pm, state[sid, i] := St
27 round[sid, i] := 2
28 return pm

Oracle Sig2(sid, i,M2)
29 if Allowed(sid, i, 2,M2) = 0 :
30 return ⊥
31 pm← Sig2(state[sid, i],M2)
32 round[sid, i] := 3
33 return pm

Alg Allowed(sid, i, r,M)
34 if sid /∈ Sessions : return 0
35 S := signers[sid], H := S \ Corrupted
36 if i /∈ H : return 0
37 if round[sid, i] 6= r : return 0
38 if r > 0 :
39 parse (pmi)i∈S :=M
40 if pmi 6= pmr[sid, i] : return 0
41 return 1

Figure 5.2: The game TS-EUF-CMA for a (three-round) (t, n)-threshold signature scheme TS =
(Setup,Gen, Sig,Ver) and an adversary A.

from the context, we omit the subscript par. We naturally denote the operations of these �elds and

vector spaces by + and ·, and assume that these operations can be evaluated e�ciently.

• T(par, g, x)→ X is deterministic, takes as input parameters par, a tag g ∈ T , a domain element

x ∈ D, and outputs a range element X ∈ R. For all parameters par, and for all tags g ∈ T , the
function T(par, g, ·) realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : T(par, g, s · x+ y) = s · T(par, g, x) + T(par, g, y).

For T, we also omit the input par if it is clear from the context.

For our construction, we require that images are uniformly distributed. More precisely, we say

that TLF is εr-regular, if there is a set Reg of pairs (par, g) such that random parameters par and tags

g are in Reg with probability at least 1− εr, and for each such pair in Reg, T(par, g, x) is uniformly

distributed over the range, assuming x $← D. We give the formal de�nition next.

De�nition 5.4 (Regular TLFF). Let TLF = (Gen,T) be a tagged linear function family. We say that

TLF is εr-regular, if there is a set Reg such that the following two properties hold:

• We have

Pr
[
(par, g) /∈ Reg | par← Gen(1λ), g $← T

]
≤ εr.
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• For any �xed (par, g) ∈ Reg, the following distributions are the same:

{(par, g,X) | X $← R} and {(par, g,X) | x $← D, X := T(par, g, x)} .

Next, we show that tagged linear function families satisfy a statistical property that turns out to be

useful. This property is implicitly present in other works as well, e.g., in [KW03, AFLT12, KLP17] or

Chapter 4, and can be interpreted in various ways, e.g., as the soundness of a natural proof system.

Lemma 5.1. Let TLF = (Gen,T) be a tagged linear function family. For every �xed parameters par and
tags g, h ∈ T , de�ne the set

Im(par, g, h) :=
{

(X1, X2) ∈ R2 ∣∣ ∃x ∈ D : T(g, x) = X1 ∧ T(h, x) = X2
}
.

Then, for any (even unbounded) algorithm A, we have

Pr

 (X1, X2) /∈ Im(par, g, h)
∧ T(g, s) = c ·X1 +R1
∧ T(h, s) = c ·X2 +R2

∣∣∣∣∣∣
par← Gen(1λ),
(St, g, h,X1, X2, R1, R2)← A(par),
c $← S, s← A(St, c)

 ≤ 1
|S|

.

Proof. We claim that for each �xed values par, g, h,X1, X2, R1, R2 such that (X1, X2) /∈ Im(par, g, h),

the following set contains at most one element:

BadC := {c ∈ S | ∃s ∈ D : T(g, s) = c ·X1 +R1 ∧ T(h, s) = c ·X2 +R2}.

The reader may observe that this is indeed su�cient to show the lemma. To show the claim, assume

towards contradiction that there are two distinct c 6= c′ in BadC and s, s′ ∈ D were the corresponding

witnesses with

T(g, s) = c ·X1 +R1, T(g, s′) = c′ ·X1 +R1

and T(h, s) = c ·X2 +R2, T(h, s′) = c′ ·X2 +R2.

We rearrange these equations and get

T(g, s)− c ·X1 = R1 = T(g, s′)− c′ ·X1

and T(h, s)− c ·X2 = R2 = T(h, s′)− c′ ·X2.

Rearranging again, using the linearity of T for any �xed tag, and solving for (X1, X2), we get

X1 = T
(
g,
s− s′

c− c′

)
and X2 = T

(
h,
s− s′

c− c′

)
.

Hence, (X1, X2) ∈ Im(par, t, h). With this contradiction, we conclude.

As another technical tool in our proof, we need our tagged linear function families to be translatable,

a notion we de�ne next. Informally, it means that we can rerandomize a given tag g into a tag h, such

that we can e�ciently compute T(h, x) from T(g, x) without knowing x.

De�nition 5.5 (Translatability). Let TLF = (Gen,T) be a tagged linear function family. We say that

TLF is εt-translatable, if there is a PPT algorithm Shift and a deterministic polynomial time algorithm

Translate, such that the following properties hold:

• Well Distributed Tags. The statistical distance between the following distributions X0 and X1 is

at most εt:

X0 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , h $← T

}
,

X1 :=
{

(par, g, h)
∣∣ par← Gen(1λ), g $← T , (h, td)← Shift(par, g)

}
.
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• Translation Completeness. For every par ∈ Gen(1λ), for any g ∈ T , any x ∈ D, and any

(h, td) ∈ Shift(par, g), we have

Translate(td,T(g, x)) = T(h, x) and InvTranslate(td,T(h, x)) = T(g, x).

Next, we de�ne the main security property that we will require for our construction. Intuitively,

it should not be possible for an adversary to translate T(g, x) into T(h, x) if g, h and x are chosen

randomly. Our actual notion is a one-more variant of this intuition.

De�nition 5.6 (Algebraic Translation Resistance). Let TLF = (Gen,T) be a tagged linear function

family, and t ∈ N be a number. Consider the game A-TRAN-RES de�ned in Figure 5.3. We say that

TLF is t-algebraic translation resistant, if for any PPT algorithm A, the following advantage is negligible:

Advt-A-TRAN-RES
A,TLF (λ) := Pr

[
t-A-TRAN-RESATLF(λ)⇒ 1

]
.

Game t-A-TRAN-RESATLF(λ)
01 par← Gen(1λ), g, h $← T , x0, . . . , xt

$← D
02 for i ∈ {0} ∪ [t] : Xi := T(g, xi)
03 (X ′i)ti=0 ← AInv(par, g, h, (Xi)ti=0)
04 if ∀i ∈ {0} ∪ [t] ∃z ∈ D

s.t. T(g, z) = Xi ∧ T(h, z) = X ′i : return 1
05 return 0

Oracle Inv(α0, . . . , αt)
06 if q ≥ t : return ⊥
07 q := q + 1
08 x :=

∑t
i=0 αixi

09 return x

Figure 5.3: The game A-TRAN-RES for a tagged linear function family TLF = (Gen,T) and an

algorithm A.

5.4.2 Construction

Let TLF = (Gen,T) be a tagged linear function family. Further, let H : {0, 1}∗ → T , Ĥ : {0, 1}∗ →
{0, 1}2λ

, H̄ : {0, 1}∗ → S be random oracles. We construct a (t, n)-treshold signature scheme

Twinkle[TLF] = (Setup,Gen,Sig,Ver). We assume that there is an implicit injection from [n] into S .

Further, let `i,S(x) :=
∏
j∈S\{i}(j − x)/(j − i) ∈ S denote the ith lagrange coe�cient for all i ∈ [n]

and S ⊆ [n], and let `i,S := `i,S(0). We describe our scheme verbally. For completeness, we provide

pseudocode in Figure A.12.

Setup and Key Generation. All parties have access to public parameters par← TLF.Gen(1λ) which

de�ne the function T, and sets S, T ,D, andR, and to a random tag g $← T . To generate keys, elements

aj
$← D for j ∈ {0} ∪ [t] are sampled. These elements form the coe�cients of a polynomial of degree

t. For each i ∈ [n], we de�ne the key pair (pki, ski) for the ith signer as

ski :=
t∑

j=0
aji

j , pki := T(g, ski).

The shared public key is de�ned as pk := pk0 := T(g, a0).

Signing Protocol. Let S ⊆ [n] be a set of signers of size t+ 1. We assume all signers are aware of the

set S and a message m ∈ {0, 1}∗ to be signed. First, they all compute h := H(m). Then, they run the

following protocol phases to compute the signature:

1. Commitment Phase. Each signer i ∈ S samples ri
$← D and computes

R
(1)
i := T(g, ri), R(2)

i := T(h, ri), pk(2)
i := T(h, ski).
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Then, each signer i ∈ S computes a commitment

comi := Ĥ(S, i, R(1)
i , R

(2)
i , pk(2)

i )

and sends comi to the other signers.

2. Opening Phase. Each signer i ∈ S sends R
(1)
i , R

(2)
i and pk(2)

i to all other signers.

3. Response Phase. Each signer i ∈ S checks that comj = Ĥ(S, j, R(1)
j , R

(2)
j , pk(2)

j ) holds for all

j ∈ S. If one of these equations does not hold, the signer aborts. Otherwise, the signer de�nes

R(1) :=
∑
j∈S

R
(1)
j , R(2) :=

∑
j∈S

R
(2)
j , pk(2) :=

∑
j∈S

`j,Spk(2)
j .

The signer computes c := H̄(pk, pk(2), R(1), R(2),m) and si := c · `i,S · ski + ri. It sends si to

all other signers.

The signature is σ := (pk(2), c, s) for s :=
∑
j∈S sj .

Veri�cation. Let pk be a public key, let m ∈ {0, 1}∗ be a message and let σ = (pk(2), c, s) be

a signature. To verify σ with respect to pk and m, one �rst computes h := H(m) and R(1) :=
T(g, s)− c · pk, R(2) := T(h, s)− c · pk(2)

. Then, one accepts the signature, i.e., outputs 1, if and only

if c = H̄(pk, pk(2), R(1), R(2),m).

Theorem 5.1. Let TLF = (Gen,T) be a tagged linear function family and let H : {0, 1}∗ → T ,
Ĥ : {0, 1}∗ → {0, 1}2λ

, H̄ : {0, 1}∗ → S be random oracles. Assume that TLF is εr-regular and
εt-translatable. Further, assume that TLF is t-algebraic translation resistant. Then, Twinkle[TLF] is
TS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QS queries in total to oracles Sig0, Sig1,
Sig2 and at most QH, QĤ, QH̄ queries to oracles H, Ĥ, H̄, respectively, there is a PPT algorithm B with

T(B) ≈ T(A) and

AdvTS-EUF-CMA
A,Twinkle[TLF](λ) ≤ 8QSQHεt + 8QSεr +

8Q2
SQĤ + 4Q3

S(QS + t)
|R|

+ 4QSQH̄
|S|

+
4Q3

S + 4QSQ2
Ĥ + 4QĤQ

2
S(t+ 1)

22λ + 4QS · Advt-A-TRAN-RES
B,TLF (λ).

Proof. Fix an adversary A against the security of TS := Twinkle[TLF]. We prove the statement by

presenting a sequence of games G0-G8. To accompany the verbal description, all games and associated

oracles and algorithms are presented as pseudocode in Figures A.13 to A.18.

Game G0: This game is the security game TS-EUF-CMAATS for threshold signatures. We recall the

game to �x some notation. First, the game samples parameters par′ for TLF and a tag g $← T . It also

samples random coe�cients a0, . . . , at
$← D and computes a public key pk := pk0 := T(g, a0) and

secret key shares ski :=
∑t
j=0 aji

j
for each i ∈ [n]. For convenience, denote the corresponding public

key shares by pki := T(g, ski). Then, the game runs A on input par := (par′, g) and pk with access to

signing oracles, corruption oracles, and random oracles. Concretely, it gets access to random oracles

H, Ĥ, and H̄, which are provided by the game in the standard lazy way using maps h[·], ĥ[·], and h̄[·],
respectively. The set of corrupted parties is denoted by Corrupted and the set of queried messages

is denoted by Queried. Finally, the adversary outputs a forgery (m∗, σ∗) and the game outputs 1 if

m∗ /∈ Queried, |Corrupted| ≤ t, and σ∗ is a valid signature for m∗. We make three purely conceptual

changes to the game. First, we will never keep the secret key share ski explicitly in the states state[sid, i]
for users i in a session sid, although the scheme description would require this. This is without loss of
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generality, as the adversary only gets to see the states when it corrupts a user, and in this case it also

gets ski. Second, we assume the adversary always queried H(m∗) before outputting its forgery. Third,

we assume that the adversary makes exactly t (distinct) corruption queries. These changes are without

loss of generality and do not change the advantage ofA. Formally, one could build a wrapper adversary

that internally runs A, but makes a query H(m∗) and enough corruption queries before terminating,

and on every corruption query includes ski in the states before passing the result back to A. Clearly,

we have

AdvTS-EUF-CMA
A,TS (λ) = Pr [G0 ⇒ 1].

The remainder of our proof is split into three parts. In the �rst part (G1-G3), we ensure that the

game no longer needs secret key shares ski to compute pk(2)
i in the signing oracle. Roughly, this is

done by embedding shifted tags (h, td) ← Shift(par′, g) into random oracle H for signing queries,

and keeping random tags h for the query related to the forgery. In the second part (G4-G11), we use

careful delayed random oracle programming, observability of the random oracle, and an honest-veri�er

zero-knowledge-style programming to simulate the remaining parts of the signing queries without ski.
As a result, ski is only needed when the adversary corrupts users. In the third part, we analyze G11.

This is done by distinguishing two cases. One of the cases is bounded using a statistical argument. The

other case is bounded using a reduction breaking the t-algebraic translation resistance of TLF. We now

proceed with the details.

Game G1: In this game, we introduce a map b[·] that maps messages m to bits b[m] ∈ {0, 1}. Concretely,

whenever a query H(m) is made for which the hash value is not yet de�ned, the game samples b[m] from

a Bernoulli distribution Bγ with parameter γ = 1/(QS + 1). That is, b[m] is set to 1 with probability

1/(QS + 1) and to 0 otherwise. The game aborts if b[m] = 1 for some message m for which the signing

oracle is called, or b[m∗] = 0 for the forgery message m∗. Clearly, if no abort occurs, games G0 and G1
are the same. Further the view of A is independent of the map b. We obtain

Pr [G1 ⇒ 1] = γ (1− γ)QS · Pr [G0 ⇒ 1]

Now, we can use the fact (1− 1/x)x ≥ 1/4 for all x ≥ 2 and get

γ (1− γ)QS = 1
QS + 1

(
1− 1

QS + 1

)QS
= 1
QS

(
1− 1

QS + 1

)QS+1
≥ 1

4QS
,

where the second equality follows from

1
QS

(
1− 1

QS + 1

)
= 1
QS
− 1
QS(QS + 1) = (QS + 1)− 1

QS(QS + 1) = QS
QS(QS + 1) = 1

QS + 1 .

In combination, we get

Pr [G1 ⇒ 1] ≥ 1
4QS

· Pr [G0 ⇒ 1].

Game G2: In game G2, we change the way queries to random oracle H are answered. Namely, for

a query H(m) for which the hash value h[m] is not yet de�ned, the game samples h[m] $← T as

a random tag exactly as the previous game did. However, now, if b[m] = 0, the game samples

(h, td)← Shift(par′, g) and sets h[m] := h. Further, it stores td in a map tr as tr[m] := td. Clearly, G1
and G2 are indistinguishable by the εt-translatability of TLF. Concretely, one can easily see that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QHεt.

Game G3: In this game, we change how the values pk(2)
i are computed by the signing oracle. To

recall, in the commitment phase of the signing protocol, the signing oracle for user i ∈ [n] in G2

would compute the value pk(2)
i := T(h, ski), where h = H(m) and m is the message to be signed.
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Also, the value pk(2)
i := T(h, ski) is recomputed in the opening phase of the signing protocol and

included in the output sent to the adversary. From G3 on, pk(2)
i is computed di�erently, namely, as

pk(2)
i := Translate(tr[m], pki). Observe that if the game did not abort, we know that b[m] = 0 (see G1)

and therefore h has been generated as (h, td)← Shift(par′, g) where tr[m] = td. Thus, it follows from

the translatability of TLF, or more concretely from the translation completeness, that the view of A is

not changed. We get

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1].

Game G4: In this game, we let the game abort if (par′, g) /∈ Reg, where Reg is the set from the

regularity de�nition of TLF. By regularity of TLF, we have

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ εr.

Game G5: In this game, we change the signing oracle again. Speci�cally, we change the commitment

and opening phase. Recall that until now, in the commitment phase for an honest party i in a signer set

S ⊆ [n] and message m, an element ri
$← D is sampled and the party sends a commitment comi :=

Ĥ(S, i, R(1)
i , R

(2)
i , pk(2)

i ) for R
(1)
i := T(g, ri), R(2)

i := T(h, ri), and pk(2)
i := Translate(tr[m], pki).

As before, h is de�ned as h := H(m). Later, in the opening phase, the party sends R
(1)
i , R

(2)
i , pk(2)

i .

Now, we change this as follows: The signing oracle computes pk(2)
i as in G4, but it does not compute

R
(1)
i , R

(2)
i and instead sends a random commitment comi

$← {0, 1}2λ
on behalf of party i. It also

inserts an entry (S, i, comi) into a list Sim that keeps track of these simulated commitments. If there

is already an (S′, i′) 6= (S, i) such that (S′, i′, comi) ∈ Sim, then the game aborts. Note that there

are two situations where the preimage of comi has to be revealed. Namely, R
(1)
i , R

(2)
i , pk(2)

i has to be

given to the adversary in the opening phase, and whenever party i is corrupted the game needs to

output ri. To handle this, consider the opening phase or the case where party i is corrupted before

it reaches the opening phase. Here, we let the game sample ri
$← D and de�ne R

(1)
i := T(g, ri) and

R
(2)
i := T(h, ri). Then, the game checks if ĥ[S, i, R(1)

i , R
(2)
i , pk(2)

i ] = ⊥. If it is not, the game aborts.

Otherwise, it programs ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i ] := comi and continues. That is, in the opening phase

it would output R
(1)
i , R

(2)
i , pk(2)

i , and during a corruption, it would output ri as part of its state. If a

corruption occurs after the opening phase, then ri has already been de�ned, and corruption is handled

as before. Clearly, the view of A is only a�ected by this change if R
(1)
i , R

(2)
i , pk(2)

i matches a previous

query of A or the same commitment has been sampled by the game twice. The latter event occurs only

with probability Q2
S/22λ

by a union bound over all pairs of queries. To bound the former event, we use

the regularity of TLF, which implies that R
(1)
i is uniform over the rangeR. Now, for each �xed pair

of signing query and random oracle query, the random oracle query matches R
(1)
i , R

(2)
i , pk(2)

i with

probability at most 1/|R|. Thus, the event occurs only with probability QSQĤ/22λ
. We get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤
QSQĤ
|R|

+ Q2
S

22λ .

Game G6: In this game, we rule out collisions for random oracle Ĥ. Namely, the game aborts if there

are x 6= x′ such that ĥ[x] = ĥ[x′] 6= ⊥. Clearly, we have

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤
Q2

Ĥ
22λ .

Subsequent games will internally make use of an algorithm Ĥ−1
. On input y the algorithm searches for

an x such that ĥ[x] = y. If no such x is found, or if multiple x are found, then the algorithm returns

⊥. Otherwise, it returns x. Note that in the latter case the game would abort anyways, and so we can

assume that if there is a preimage of y, then this preimage is uniquely determined by y.
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Game G7: In this game, we introduce a list Pending and associated algorithms UpdatePending and

AddToPending to manage this list. The algorithms are presented as pseudocode in Figure A.18. Intu-

itively, the list keeps track of honest users i and signing sessions sid for which the game can not yet

extract preimages of all commitments sent in the commitment phase. More precisely, the list contains a

tuple (sid, i,M1) if and only if the following two conditions hold:

• The opening phase oracle Sig1(sid, i,M1) has been called with valid inputs, i.e., for this query

the game did not output⊥ due to Allowed(sid, i, 1,M1) = 0, and at that point the following was

true: For every commitment comj inM1 such that (S, j, comj) /∈ Sim, we have Ĥ−1(comj) 6= ⊥
and with (S′, k, R(1), R(2), pk(2)) := Ĥ−1(comj) we have S′ = S and k = j, where S is the

signer set associated with sid.

• There is a commitment comj inM1 such that Ĥ−1(comj) = ⊥.

To ensure that the list satis�es this invariant, we add a triple (sid, i,M1) to Pending when the �rst con-

dition holds. This is done by algorithm AddToPending. Concretely, wheneverA calls Sig1(sid, i,M1),

the oracle returns ⊥ in case Allowed(sid, i, 1,M1) = 0. If Allowed(sid, i, 1,M1) = 1, the game

immediately calls AddToPending(sid, i, 1,M1), which checks the �rst condition of the invariant and

inserts the tripe (sid, i, 1,M1) into Pending if it holds. Then, the game continues the simulation of

Sig1 as before. Further, we invoke algorithm UpdatePending whenever the map ĥ is changed, i.e.,

during queries to Ĥ, and in corruption and signing oracles (see G5). On every invocation, the algorithm

does the following:

1. Initialize an empty list New.

2. Iterate trough all entries (sid, i,M1) in Pending, and do the following:

(a) Check if the entry has to be removed because it is violating the invariant. That is, check if

for all j in the signer set S associated with session sid, we have Ĥ−1(comj) 6= ⊥, where

M1 = (comj)j∈S . If this is not the case, skip this entry and keep it in Pending.

(b) We know that for all indices j ∈ S, the value (S′j , kj , R
(1)
j , R

(2)
j , pk(2)

j ) = Ĥ−1(comj)
exists. Further, it must hold that S′j = S and kj = j, as otherwise this entry would

not have been added to Pending in the �rst place. Remove the entry from Pending, and

determine the combined nonces and secondary public key

R(1) =
∑
j∈S

R
(1)
j , R(2) =

∑
j∈S

R
(2)
j , pk(2) =

∑
j∈S

`j,Spk(2)
j .

(c) Let m be the message associated with the session sid.

(d) If (R(1), R(2), pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] 6= ⊥, abort the execution

of the entire game (see bad event Defined below).

(e) Otherwise, sample h̄[pk, pk(2), R(1), R(2),m] $← S and insert (R(1), R(2), pk(2),m) into

New.

To summarize, this algorithm removes all entries violating the invariant from the list Pending. For each

such entry that is removed, the algorithm computes the combined nonces R(1), R(2)
and secondary

public key pk(2)
. Roughly, it aborts the execution, if random oracle H̄ for these inputs is already

de�ned. List New ensures that the abort is not triggered if the algorithm itself programmed h̄ in a

previous iteration within the same invocation. In addition to algorithm UpdatePending, we introduce

the following events, on which the game aborts its execution:

• Event BadQuery: This event occurs, if for a random oracle query to Ĥ for which the hash value

is not yet de�ned and freshly sampled as com $← {0, 1}2λ
, there is an entry (sid, i,M1) in

Pending such that com is inM1.
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• Event Defined: This event occurs, if the execution is aborted during algorithm UpdatePending.

For shorthand notation, we set Bad := BadQuery ∨ Defined. The probability of BadQuery can be

bounded as follows: Fix a random oracle query to Ĥ for which the hash value is not yet de�ned. Fix

an entry (sid, i,M1). Note that over the entire game, there are at most QS of these entries. Further,

�x an index j ∈ [t+ 1]. The probability that com collides with the jth entry ofM1 is clearly at most

1/22λ
. With a union bound over all triples of queries, entries, and indices, we get that the probability of

BadQuery is at mostQĤQS(t+1)/22λ
. Next, we bound the probability of Defined assuming BadQuery

does not occur. Under this assumption, one can easily observe that when an entry is removed from

list Pending and R(1) =
∑
j∈S R

(1)
j is the combined �rst nonce, then there is an j∗ ∈ S such that

the game sampled R
(1)
j∗ just before invoking algorithm UpdatePending. Precisely, it must have set

R
(1)
j∗ := T(g, r) for some random r $← D. By regularity of TLF, this means R

(1)
j∗ is uniform over R,

and this means that the combined �rst nonce R(1)
is also uniform. Thus for any �xed entry of in

Pending, the probability that h̄[pk, pk(2), R(1), R(2),m] is already de�ned when the entry is removed,

is at most QĤ/|R|. With a union bound over all entries we can now bound the probability of Defined
by QĤQS/|R|. In combination, we get

Pr [Bad] ≤ Pr [BadQuery] + Pr [Defined | ¬BadQuery] ≤
QĤQS(t+ 1)

22λ +
QĤQS
|R|

.

and thus

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ Pr [Bad] ≤
QĤQS(t+ 1)

22λ +
QĤQS
|R|

.

Game G8: In this game, we change algorithm UpdatePending. Speci�cally, we change what we insert

into list New. Recall from the previous game that when we removed an entry (sid, i,M1) from

Pending, we aborted the game if (R(1), R(2), pk(2),m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] 6= ⊥.

Otherwise, we inserted tuples (R(1), R(2), pk(2),m). Now, we instead abort if (S,R(1), R(2), pk(2),

m) /∈ New but h̄[pk, pk(2), R(1), R(2),m] 6= ⊥, and otherwise insert (S,R(1), R(2), pk(2),m), where

S is the signer set associated with session sid. One can see that the two games can only di�er if for

two entries (sid, i,M1) and (sid′, i′,M′1) that are removed from Pending in the same invocation

of UpdatePending, the signer sets S and S′ di�er but the respective tuples (R(1), R(2), pk(2),m) and

(R′(1), R
′(2), pk

′(2),m′) are the same and h̄[pk, pk(2), R(1), R(2),m] 6= ⊥. In this case, game G8 would

abort, but game G7 would not. We argue that this can not happen: Assume that two entries (sid, i,M1)
and (sid′, i′,M′1) with associated signer sets S and S′ are removed from Pending. Then, we know

that algorithm UpdatePending has been invoked because the game programmed ĥ at some point, say

ĥ[S∗, j∗, R(1)
∗ , R

(2)
∗ , pk(2)

∗ ] := com∗, such that com∗ is in bothM1 andM′1. Thus, the algorithm only

removes the entry (sid, i,M1) from the list if the �rst component of Ĥ−1(com∗) is S, i.e., if S∗ = S.

Similarly, it only removes the entry (sid′, i′,M′1) if the �rst the �rst component of Ĥ−1(com∗) is S′,
i.e., if S∗ = S′. Thus, it only removes both if S = S∗ = S′. With that, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: We introduce two more algorithms, presented as pseudocode in Figure A.18. Intuitively,

these allow us to group tuples of the form (sid, i,M1) that have been inserted into list Pending into

equivalence classes. To be clear, the relation is de�ned on all triples in Pending and on all triples that

already have been removed from Pending, but not on any other entries. The intuition, roughly, is that

such triples lead to the same combined nonces if and only if they are in the same equivalence class.

The e�ect of this is will be that we know the challenge just from the tuple (sid, i,M1). We now turn

to the details. We introduce an algorithm Equivalent that takes as input two triples (sid, i,M1) and

(sid′, i′,M′1) and decides whether they are equivalent as follows:
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1. Let S, S′ and m,m′ be the signer sets and messages associated with sessions sid and sid′,
respectively. If S 6= S′ or m 6= m′, the triples are not equivalent.

2. Thus, assume S = S′ and write M1 = (comj)j∈S and M′1 = (com′j)j∈S . Let F ⊆ S

(resp. F ′ ⊆ S′) be the set of indices j ∈ S (resp j ∈ S′) such that Ĥ−1(comj) = ⊥ (resp.

Ĥ−1(com′j) = ⊥). If (comj)j∈F 6= (com′j)j∈F ′ , then the triples are not equivalent.

3. De�ne F̄ := S \ F and F̄ ′ := S \ F ′. For each j ∈ F̄ , we know that the value (S̃j , kj , R′j
(1)
,

R′j
(2)
, pk′j

(2)) = Ĥ−1(com′j) exists. Similarly, for each j ∈ F̄ ′, we know that the value (S̃′j , k′j ,
R′j

(1)
, R′j

(2)
, pk′j

(2)) = Ĥ−1(com′j) exists. With these, we can de�ne partially combined nonces

and secondary keys

R̄(1) :=
∑
j∈F̄ R

(1)
j , R̄(2) :=

∑
j∈F̄ R

(2)
j p̄k(2) :=

∑
j∈F̄ `j,Spk(2)

j

R̄
′(1) :=

∑
j∈F̄ ′ Rj

′(1), R̄
′(2) :=

∑
j∈F̄ ′ Rj

′(2) p̄k
′(2) :=

∑
j∈F̄ ′ `j,Spkj

′(2).

The triples are not equivalent, if (R̄(1), R̄(2), p̄k(2)) 6= (R̄′(1), R̄
′(2), p̄k

′(2)). Otherwise, they are

equivalent.

In summary, two triples are equivalent if their signer sets, messages, partially combined nonces and

secondary public keys, and remaining commitments match. It is clear that at any �xed point in time

during the experiment, this is indeed an equivalence relation. In the following two claims, we argue

that this relation is preserved over time. For that, we �rst make some preliminary observations, using

notation as in the de�nition of equivalence above:

1. The equivalence relation can potentially only change when oracle Ĥ is updated during queries to

Sig1 (i.e., the opening phase) or during corruption queries, which may make the sets F and F ′

change. This is because triples are only inserted into Pending if the only commitments without

preimages are simulated, and the preimages of these are only set in such calls (see G7).

2. The sets F and F ′ can only get smaller over time, as we assume that no collisions occur.

3. When the oracle is programmed during such calls, say by setting ĥ[S∗, j∗, R(1)
∗ , R

(2)
∗ , pk(2)

∗ ] :=
com∗, then it must hold that (S∗, j∗, com∗) ∈ Sim. In particular, if in this case some j is removed

from F (or F ′) because comj (or com′j ) now has a preimage, then it must hold that com∗ = comj

and j∗ = j. This is because otherwise, if j 6= j∗, then we would have (S̃, j, com∗) ∈ Sim for

some S̃ (because the entry was added to Pending) and (S∗, j∗, com∗) ∈ Sim, and such a collision

was ruled out in G5.

4. Again, assume that the oracle is programmed during such calls as ĥ[S∗, j∗, R(1)
∗ , R

(2)
∗ , pk(2)

∗ ]
:= com∗. Now, assume that both F and F ′ change. Then, we know (because of the previous

observation), that the same j = j∗ is removed from both F and F ′, and comj = com∗ = com′j
is removed from both (comj)j∈F and (com′j)j∈F ′ . Thus, these lists are the same before the

update if and only if they are the same after the update.

5. In the setting of the previous observation, denote the point in time before the update as t0, and

the point in time after the update as t1. Further, denote the associated partially combined nonces

and secondary public keys at time tb for b ∈ {0, 1} by

R̄
(1)
b , R̄

(2)
b , p̄k(2)

b , and R̄
′(1)
b , R̄

′(2)
b , p̄k

′(2)
b .

Now, we observe that

R̄
(1)
1 = R̄

(1)
0 +R

(1)
∗ , R̄

(2)
1 = R̄

(2)
0 +R

(2)
∗ , p̄k(2)

1 = p̄k(2)
0 + `j∗,S∗pk(2)

∗ .
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The same holds for R̄
′(1)
b , R̄

′(2)
b , and p̄k

′(2)
b . Therefore, we see that

(R̄(1)
0 , R̄

(2)
0 , p̄k(2)

0 ) = (R̄
′(1)
0 , R̄

′(2)
0 , p̄k

′(2)
0 )

if and only if (R̄(1)
1 , R̄

(2)
1 , p̄k(2)

1 ) = (R̄
′(1)
1 , R̄

′(2)
1 , p̄k

′(2)
1 ).

Now, we show that the equivalence relation does not change over time, using our notation from above

and the observations we made.

Equivalence Claim 1. If two triples (sid, i,M1) and (sid′, i′,M′1) are equivalent at some point in time,

then they stay equivalent for the rest of the game.

Proof of Equivalence Claim 1. Both signer set and message do not change over time. For the other

components that determine whether the triples are equivalent, we consider two cases: Either, on an

update of Ĥ, both do not change. In this case the triples trivially stay equivalent. In the other case, both

of them change, as the lists (comj)j∈F and (com′j)j∈F ′ are the same before the update. Now, it easily

follows from our last observation above that the triples stay equivalent.

Equivalence Claim 2. If two triples (sid, i,M1) and (sid′, i′,M′1) are not equivalent at some point in

time, then the probability that they become equivalent later is negligible. Concretely, if Converge is the

event that any two non-equivalent triples become equivalent at some point in time, then

Pr [Converge] ≤ Q2
S(QS + t)
|R|

.

Proof of Equivalence Claim 2. Clearly, if m 6= m′ orS 6= S′, then the triples will stay non-equivalent. Now,

consider an update of Ĥ that is caused by a query to Sig1 or the corruption oracle and will potentially

change the equivalence relation. We consider two cases: In the �rst case, the lists (comj)j∈F and

(com′j)j∈F ′ are the same before the update. In this case, they either do not change, in which case

the triples trivially stay non-equivalent, or they both change, in which case it follows from our last

observation above that they stay non-equivalent. In the second case, the lists (comj)j∈F and (com′j)j∈F ′
are di�erent before the update. If they stay di�erent after the update, the triples stay non-equivalent.

If they become the same after the update, this means that an entry was removed from only one of

them, say j = j∗ from F and thus comj = com∗ from (comj)j∈F . For this case, use notation R̄
(1)
b

and R̄
′(1)
b as in the last last observation above and notice that R̄

′(1)
1 = R̄

′(1)
0 because (com′j)j∈F ′ is

not changed during the update. On the other hand, (comj)j∈F is changed by the update and we have

R̄
(1)
1 = R̄

(1)
0 +R

(1)
∗ . Thus, if the triples become equivalent, we must have

R̄
′(1)
0 = R̄

′(1)
1 = R̄

(1)
1 = R̄

(1)
0 +R

(1)
∗ .

Notice that R
(1)
∗ is sampled in the signing or corruption oracle by sampling some r∗

$← D and setting

R
(1)
∗ = T(g, r∗). Thus, R

(1)
∗ is uniformly distributed overR by the regularity of TLF and independent

of R̄
′(1)
0 and R̄

(1)
0 , which means that this equation holds with probability at most 1/|R|. Taking a union

bound over all pairs of triples and all queries to the signing oracle and the corruption oracle, the claim

follows.

With our equivalence relation at hand, we introduce an algorithm GetChallenge that behaves as

a random oracle on equivalence classes. That is, it assigns each class a random challenge c $← S in

a lazy manner. More precisely, it gets as input a triple (sid, i,M1) and checks if a triple in the same

equivalence class
5

is already assigned a challenge c. This is done using algorithm Equivalent. If so, it

returns this challenge c. If not, it assigns a random challenge c $← S to the triple (sid, i,M1).

5

It is essential for this algorithm that we have shown that equivalence classes are preserved over time. Otherwise,

the behavior of this algorithm would be ambiguous.
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These two new algorithms are used in the following way: Recall that in previous games, algorithm

UpdatePending would program h̄[pk, pk(2), R(1), R(2),m] $← S whenever an entry (sid, i,M1) is

removed from Pending and no abort occurs, where pk(2), R(1), R(2),m are the corresponding secondary

public keys, combined nonces, and messages. Now, instead of sampling h̄[pk, pk(2), R(1), R(2),m] at

random, the algorithm sets h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1). We need to argue

that this way of programming the random oracle does not change the view of the adversary. Concretely,

all we need to argue is that two di�erent inputs x 6= x′ to random oracle H̄ get independently sampled

outputs. Clearly, it is su�cient to consider inputs of the form

x = (pk, pk(2), R(1), R(2),m), x′ = (pk, pk
′(2), R

′(1), R
′(2),m′),

which both are covered by the newly introduced programming in algorithm UpdatePending. Let

(sid, i,M1) be the entry removed from Pending associated with x and (sid′, i′,M′1) be the entry

removed from Pending associated with x′. Consider the point in time where the second entry, say

(sid′, i′,M′1) has been removed. One can see that the outputs H̄(x) and H̄(x′) are independent, unless at

this point in time (sid, i,M1) and (sid′, i′,M′1) were equivalent. However, by de�nition of equivalence

(algorithm Equivalent), them being equivalent would mean that m = m′ and (pk(2), R(1), R(2)) =
(pk

′(2), R
′(1), R

′(2)), as the sets F and F ′ are both empty because both entries have been removed

from Pending. Thus, we would have x = x′. This shows that the distribution of random oracle outputs

does not change, and so we have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Game G10: In this game, we change the signing oracle and corruption oracle. Roughly, we use an

honest-veri�er zero-knowledge-style simulation to simulate signing without secret keys. Intuitively,

we can do that, because now we know the challenge already in the opening phase before �xing nonces.

More precisely, recall that until now, signers in the opening phase, i.e., on a query Sig1(sid, i,M1),

sampled a random ri
$← D and set R

(1)
i := T(g, ri) and R

(2)
i := T(h, ri). Later, in the response phase,

the signer sent si := c · `i,S · ski + ri where c := H̄(pk, pk(2), R(1), R(2),m) and pk(2), R(1), R(2)
are

the combined secondary public key and nonces. Additionally, when the signer is corrupted, it has to

send ri as part of its state. We change this as follows: In the opening phase, consider two cases: First, if

(sid, i,M1) has not been added to the list Pending, then the signer sets c := 0. Observe that in this

case, we can assume that the signer never reaches the response phase for this session due to our changes

in G6 and G7. Otherwise, it sets c̃ := GetChallenge(sid, i,M1). In both cases, the signer samples

si
$← D and sets R

(1)
i := T(g, si)− c̃ · `i,S · pki and R

(2)
i := T(h, si)− c̃ · `i,S · pk(2)

i . Later, when the

signer has to output something in the response phase, it outputs the si that it sampled in the opening

phase. Further, when the signer is corrupted after the opening phase, it sets ri := si − c̃ · `i,S · ski. To

argue indistinguishability, we need to show that c̃ and c = H̄(pk, pk(2), R(1), R(2),m) are the same.

This is established as follows:

1. When the signer is queried in the response phase and does not return ⊥, we know that the entry

(sid, i,M1) has been removed from Pending.

2. When it was removed from the list, the combined nonce and secondary public key that have

been computed are exactly R(1), R(2), and pk(2)
.

3. Therefore, in the invocation of UpdatePending in which the entry was removed from the list,

one of two events happened:

(a) Either h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1);

(b) Or, h̄ has been programmed as h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid′, i′,M′1)
for some triple (sid′, i′,M′1) with the same associated signer set S (see G8) and message
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m. In this case, we know that (sid′, i′,M′1) is equivalent to (sid, i,M1) and therefore

GetChallenge(sid′, i′,M′1) returned the same as what the query GetChallenge(sid, i,M1)
would have returned at that point.

4. Thus, we only need to argue that the output of GetChallenge(sid, i,M1) did not change over

time. This follows from our claims about the stability of equivalence classes over time, assuming

event Converge does not occur.

We get

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ Pr [Converge] ≤ Q2
S(QS + t)
|R|

.

Game G11: We change the game by no longer assuming that (par′, g) ∈ Reg. Clearly, we have

|Pr [G10 ⇒ 1]− Pr [G11 ⇒ 1]| ≤ εr.

It remains to bound the probability that game G11 outputs 1. Before turning to that, we emphasize

the main property we have established via our changes: We do not longer need secret key shares ski to

simulate the signer oracle. We only need them on corruption queries. Now, we bound the probability

that game G11 outputs 1 by considering two events, depending on the �nal forgery (m∗, σ∗) with

σ∗ = (pk∗(2), c∗, s∗):

• Event Orthogonal: This event occurs, if G11 outputs 1, and there is no x0 ∈ D such that

T(g, x0) = pk and T(h∗, x0) = pk∗(2)
, where h∗ = H(m∗).

• Event Parallel: This event occurs, if G11 outputs 1, and there is a x0 ∈ D such that T(g, x0) = pk
and T(h∗, x0) = pk∗(2)

, where h∗ = H(m∗).

Clearly, we have

Pr [G11 ⇒ 1] ≤ Pr [Orthogonal] + Pr [Parallel].

We bound the probability of these events separately. For event Orthogonal, we make use of Lemma 5.1.

Concretely, we sketch a reduction that runs in the game speci�ed in Lemma 5.1, such that the event

bounded in Lemma 5.1 occurs if event Orthogonal occurs and some guesses of the reduction were correct.

Namely, the reduction gets as input parameters par′ for TLF. It samples i∗ $← [QH̄] and simulates

G11 for A except for the i∗th random oracle query to H̄. Let that query be H̄(pk, pk(2), R(1), R(2),m).

The reduction aborts if the hash value is already de�ned. Otherwise, the reduction outputs its state,

g, h := H(m), X1 := pk, X2 := pk(2), R(1), R(2)
to the game from Lemma 5.1, receiving a challenge

c ∈ S in return. It programs H̄(pk, pk(2), R(1), R(2),m) := c and continues the simulation. Later,

when A outputs its forgery, the reduction aborts if the query de�ning c∗ was not the i∗th query to H̄.

Otherwise, it outputs s∗ to the game from Lemma 5.1. Note that one of the random oracle queries to

H̄ (possibly the one made by the game during veri�cation) has to be the one de�ning c∗. Especially,

the random oracle is not reprogrammed at that position because A is not allowed to make a signing

query for m∗. Also, it is clear that if Orthogonal occurs and the guess was correct, then the event in

Lemma 5.1 occurs. As the view of A is independent of i∗ until it terminates, we have

Pr [Orthogonal] ≤ QH̄
|S|

.

Next, we bound the probability of event Parallel. For that, we describe a reduction B against the

t-algebraic translation resistance of TLF:

1. B gets as input parameters par′ for TLF, tags g, h, and images X0, . . . , Xt ∈ R.

2. B simulates game G11 for A, with the following changes
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• B sets up the key in a di�erent way: Namely, it sets pk := pk0 := X0, and it sets pki := Xi

for each i ∈ [t]. Further, let S0 := {0} ∪ [t]. B sets pki :=
∑
j∈S0

`j,S0(i)pkj for each

i ∈ [n] \ S0. This means that B is not aware of the associated secret keys ski. Note that

the public keys are distributed exactly as in G11.

• B provides all random oracles as inG11, except for random oracle H. Namely, for this oracle,

instead of sampling h[m] at random when b[m] = 1, B samples (h′, td)← Shift(par′, h)
and sets h[m] := h′ and tr[m] := td.

• B provides the signing oracles as in G11. Observe that B does not need any secret keys for

that.

• Whenever A queries the corruption oracle to corrupt user i, the reduction B queries

xi := Inv(`0,S0(i), . . . , `t,S0(i)). Then, it sets ski := xi and continues the simulation of

the corruption as in G11. It is clear that ski is correctly distributed. Further, B queries its

oracle exactly t times because A corrupts exactly t parties (see G0).

3. Finally, when A outputs its forgery (m∗, σ∗) with σ∗ = (pk∗(2), c∗, s∗) and G11 outputs 1
(which can be e�ciently checked by B), the reduction B retrieves td∗ := tr′[m∗]. This entry

exists because of the change in G1. Then, it computes X ′0 := InvTranslate(td∗, pk∗(2)) for

h∗ := H(m∗).

4. To recall, Corrupted ⊆ [n] is the set of parties i ∈ [n] such that A corrupted party i. By our

assumption from G0, we know that |Corrupted| = t. The reduction sets S∗ := Corrupted ∪ {0},
which has size t + 1. Further, it sets X ′i := T(h, xi) for each i ∈ Corrupted and X ′i :=∑

j∈S∗ `j,S∗(i)X ′j for each i ∈ [n]\Corrupted. It outputsX ′0, . . . , X
′
t to the algebraic translation

resistance game.

Clearly, the running time of B is dominated by the running time of A. Further the only di�erence

between the view of A in game G11 and in the simulation provided by B is the distribution of random

oracle H. It follows from the εt-translatability of TLF and a union bound over all queries that this

changes the probability of event Parallel by at most QHεt. Now, it remains to argue that if event

Parallel occurs, then B breaks algebraic translation resistance. So, assume that Parallel occurs. We

have to argue that for each i ∈ {0} ∪ [t], there is a zi such that T(g, zi) = Xi and T(h, zi) = X ′i .
First, for all i ∈ Corrupted this holds by construction. For i = 0, we know (because Parallel) that

there is an x0 such that T(g, x0) = pk and T(h∗, x0) = pk∗(2)
for h∗ = H(m∗). Now, we know that

X ′0 = InvTranslate(td∗, pk∗(2)) = T(h, x0), by translation completeness. Thus, it remains to show

that the property holds for all i ∈ [t] with i /∈ Corrupted. For these, we have

X ′i =
∑
j∈S∗

`j,S∗(i)X ′j =
∑
j∈S∗

`j,S∗(i)T(h, xi) = T

h, ∑
j∈S∗

`j,S∗(i)xi

 .

Further, we have

T

g, ∑
j∈S∗

`j,S∗(i)xi

 =
∑
j∈S∗

`j,S∗(i)T(g, xi) =
∑
j∈S∗

`j,S∗(i)pk′i = X ′i,

by construction. With this, we showed that

Pr [Parallel] ≤ QHεt + Advt-A-TRAN-RES
B,TLF (λ).

This �nishes the proof.

153



CHAPTER 5. THRESHOLD SIGNATURES

5.5 Instantiations

We instantiate our threshold signature scheme by providing concrete tagged linear function families. Our

�rst instantiation is based on a one-more variant of the CDH assumption, and our second instantiation

is based on DDH. The advantage of the latter instantiation is avoiding an interactive assumption, while

the former is slightly more e�cient.

5.5.1 Instantiation from (Algebraic) One-More CDH

We can instantiate the tagged linear function family by mapping a tag h ∈ G and a domain element

x ∈ Zp to hx ∈ G. Regularity and translatability are easy to show, and algebraic translation resistance

follows from an algebraic one-more variant of CDH, namely, from AOMCDH as de�ned in Section 2.3.

More formally, to de�ne the tagged linear function family TLFAOMCDH = (GenAOMCDH,TAOMCDH)
based on the AOMCDH assumption, we assume a group generation algorithm GGen. To recall, such an

algorithm takes as input 1λ and outputs the description of a group G of prime order p with generator

g ∈ G. Algorithm GenAOMCDH runs GGen and outputs parameters par = (G, g, p). These parameters

de�ne the following sets of scalars, tags, and the domain and range, respectively:

S := Zp, T := G, D := Zp, R := G.

Clearly, D and R are vector spaces over the �eld S . Given a tag
6 u ∈ G and an input x ∈ Zp, the

tagged linear function TAOMCDH is de�ned as follows

TAOMCDH(u, x) := ux ∈ G.

Clearly, TAOMCDH can be computed e�ciently and is a homomorphism. It remains to argue regularity,

translatability and algebraic translation resistance.

Lemma 5.2. The tagged linear function family TLFAOMCDH is εr-regular, where εr ≤ 1/p.

Proof. We de�ne the set Reg from the regularity de�nition to be the set of group parameters and tags

u ∈ G such that u is a generator of G. Clearly, for parameters par← GenAOMCDH(1λ) and a random

tag u $← G, the probability that (par, u) /∈ Reg, i.e., that u is not a generator, is 1/p. Further, it is

clear that if u is a generator, then TAOMCDH(u, ·) is a bijection from Zp to G, and therefore images of

uniformly random elements are uniformly random.

Lemma 5.3. The tagged linear function family TLFAOMCDH is εt-translatable, where εt ≤ 2/p.

Proof. Algorithm Shift takes as input parameters par and a tag u ∈ G. It samples r $← Z∗p and outputs

a tag h := ur and a trapdoor td := r. Algorithm Translate takes as input the trapdoor td = r and an

element X ∈ G. It outputs Xr
. Algorithm InvTranslate get the same input and outputs X1/r

. With

that, it is clear that the distributions X0 and X1 from the de�nition of translatability are the same

conditioning on u and h being generators. Thus, the statistical distance between X0 and X1 is at most

2/p. Further, we have

Translate(td,TAOMCDH(u, x)) = (ux)r = (ur)x = TAOMCDH(h, x)

for (h, td = r) ∈ Shift(par, u). The inverse direction follows similarly.

Lemma 5.4. Let t ∈ N be a number polynomial in λ. If the AOMCDH assumption holds relative to

GGen, then TLFAOMCDH is t-algebraic translation resistant. Concretely, for any PPT algorithm A there is

a PPT algorithm B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFAOMCDH

(λ) ≤ AdvAOMCDH
B,GGen (λ) + 1

p
.

6

In this section, we do not use the symbol g for arbitrary tags, as it is reserved for the �xed group generator.
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Proof. The proof is trivial, as the game for the AOMCDH assumption is almost exactly the game for

t-algebraic translation resistance of TLFAOMCDH. Note that the only di�erence is that in the t-algebraic

translation resistance game for TLFAOMCDH, the inputs have the form Xi = uxi for a random u $← G,

whereas in the AOMCDH game, the inputs have the form gxi , where g is the �xed generator of G. We

can easily build a reduction that resolves this discrepancy: Namely, the reduction gets as input the

values gxi from the AOMCDH assumption. It samples α $← Zp and sets u := gα and de�nes the inputs

Xi as Xi = (gxi)α = uxi . Oracle queries to Inv and the �nal output of A are simply forwarded by the

reduction. Clearly, the reduction perfectly simulates the t-algebraic translation resistance game. Also,

assuming α 6= 0 and that A breaks t-algebraic translation resistance, we see that the reduction breaks

AOMCDH.

5.5.2 Instantiation from DDH

Here, we present our construction TLFDDH = (GenDDH,TDDH) of a tagged linear function family based

on the DDH assumption. For that, let GGen be a group generation algorithm that takes as input 1λ
and outputs the description of a group G of prime order p, along with some generator g ∈ G. Recall

that the DDH assumption (formally de�ned in Section 2.3) states that it is hard to distinguish tuples

(G, p, g, h, ga, ha) from tuples (G, p, g, h, u, v), where G is a cyclic group with generator g and prime

order p, h, u, v are random group elements, and a ∈ Zp is a random exponent. Algorithm GenDDH
simply runs GGen and outputs the description of G, p, and g as parameters par. We make use of the

implicit notation for group elements from [EHK
+

13]. That is, we write [A] ∈ Gr×l for the matrix of

group elements with exponents given by the matrix A ∈ Zr×lp . Precisely, if A = (Ai,j)i∈[r],j∈[l], then

[A] := (gAi,j )i∈[r],j∈[l]. With this notation, observe that one can e�ciently compute [AB] for any

matrices A ∈ Zr×lp , B ∈ Zl×sp with matching dimensions from either [A] and B or from A and [B].
For our tagged linear function family, we de�ne the following sets of scalars, tags, and the domain and

range, respectively:

S := Zp, T := G2×2, D := Z2
p, R := G2.

Clearly, D and R are vector spaces over S . For a tag [G] ∈ G2×2
and an input x ∈ Z2

p, the tagged

linear function TDDH is de�ned as

TDDH([G],x) := [Gx] ∈ G2.

We emphasize that the tag [G] is given in the group, and the domain element x is given over the �eld.

It is clear that TDDH can be computed e�ciently and that it is a homomorphism. What remains is to

show regularity, translatability and algebraic translation resistance.

Lemma 5.5. The tagged linear function family TLFDDH is εr-regular, where εr ≤ (p+ 1)/p2
.

Proof. We de�ne the set Reg from the regularity de�nition as the set of group parameters and matrices

[T] ∈ G2×2
such that T ∈ Z2×2

p is invertible. Then, the probability that a random tag is not in the set is

at most 1/p+ 1/p2 = (p+ 1)/p2
. This is because for a uniform 2× 2 matrix over Zp, the probability of

not being invertible can easily be upper bounded by 1/p2
, accounting for the chance that the �rst row

is zero, plus 1/p, accounting for the chance that the second row is a multiple of the �rst row. Given that

the tag is invertible, the distribution of the image of a uniform inputs x $← Z2
p is clearly uniform.

Lemma 5.6. The tagged linear function family TLFDDH is εt-translatable, where εt ≤ (3 + 3p)/p2
.

Proof. To prove the claim, we �rst have to describe a PPT algorithm Shift and a deterministic polynomial

time algorithm Translate. Algorithm Shift takes as input parameters par specifying G, p, g and a tag

[G] ∈ G2×2
. With this input, it is de�ned as follows:
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1. Let GL2(Zp) be the set of invertible 2 × 2 matrices over Zp. Sample a matrix R $← GL2(Zp)
uniformly at random from that set.

2. Return the tag [H] := [RG] ∈ G2×2
and the trapdoor td := R.

Algorithm Translate gets as input the trapdoor td = R and an element [y] ∈ G2
in the range. It

simply outputs [Ry] ∈ G2
. Similarly, algorithm InvTranslate gets as input the trapdoor td = R and an

element [y] ∈ G2
in the range and outputs [R−1y] ∈ G2

. With this, translation completeness follow

easily. For example, we have

Translate(R,TDDH([G],x)) = Translate(R, [Gx])
= [RGx] = [Hx] = TDDH([H],x).

It remains to show the well distributed tags property. For that, it is su�cient to bound the statistical

distance between

T0 :=
{

(par,G,H)
∣∣ par← GGen(1λ), G,H $← Z2×2

p

}
and

T1 :=
{

(par,G,H)
∣∣ par← GGen(1λ), G $← Z2×2

p , R $← GL2(Zp), H := RG
}
.

For b ∈ {0, 1}, let T ∗b denote the distribution Tb except that all matrices (G,H in T0 and G,R in T1)

are sampled uniformly at random from the set GL2(Zp). We make three observations, �nishing the

proof:

1. The statistical distance between T0 and T ∗0 is at most 2
(
1/p+ 1/p2)

, because the distributions

only di�er if at least one of the two random matrices G,H is not invertible.

2. The statistical distance between T1 and T ∗1 is at most 1/p+ 1/p2
, because the distributions only

di�er if G is not invertible.

3. The distributions T ∗0 and T ∗1 are the same. This is because the set of invertible 2× 2 matrices

over Zp forms a group with respect to multiplication.

Lemma 5.7. Let t ∈ N be a number polynomial in λ. If the DDH assumption holds relative to GGen, then
TLFDDH is t-algebraic translation resistant. Concretely, for any PPT algorithm A there is a PPT algorithm

B with T(B) ≈ T(A) and

Advt-A-TRAN-RES
A,TLFDDH

(λ) ≤ 2
p2 + 4

p
+ AdvDDH

B,GGen(λ).

Proof. Assume that there is an e�cient algorithm A breaking algebraic translation resistance. That

is, A gets as input random tags [G], [H] $← G2×2
and images [yi] := TDDH([G],xi) with xi $← Z2

p

for i ∈ {0, . . . , t}. It gets access to the oracle Inv and �nally outputs [y′i] ∈ G2
for all i ∈ {0, . . . , t}.

We assume without loss of generality, that A makes exactly t queries to Inv. It wins the game if

for all i ∈ {0, . . . , t} there is a zi ∈ Z2
p such that TDDH([G], zi) = [yi] and TDDH([H], zi) = [y′i].

The intuition for our proof is that the function TDDH([G], ·) for a random tag [G] is bijective, so

zi = xi and the adversary will output TDDH([H],xi). At the same time, based on DDH, the function

is indistinguishable from being a compressing function. With an argument similar to what is done

in [TZ23], we can then show that zi 6= xi, a contradiction. We now make this intuition formal by

providing a sequence of games.

Game G0: Game G0 is the algebraic translation resistance game for TLFDDH as explained above. By

de�nition, we have

AdvA-TRAN-RES
A,TLFDDH

(λ) = Pr [G0 ⇒ 1].
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Game G1: This game is exactly as G0, but we let the game output 0 if the function de�ned by the tag

[H] ∈ G2×2
is not bijective. Otherwise, the game behaves as the previous game. More precisely, the

game no longer samples [H] $← G2×2
but instead samples H $← Z2×2

p and checks if H is invertible.

If it is not, the game outputs 0. Otherwise, the game continues as in G0 using tag [H]. Clearly, the

distribution of [H] did not change. The probability of the matrix not being invertible can easily be

upper bounded by 1/p2
, accounting for the chance that the �rst row is zero, plus 1/p, accounting for

the chance that the second row is a multiple of the �rst row. We get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 1
p2 + 1

p
.

Game G2: In this game, we change the winning condition. Recall that until now, the game outputs

1 if for all i ∈ {0, . . . , t} there is a zi ∈ Z2
p such that TDDH([G], zi) = [yi] and TDDH([H], zi) = [y′i].

Now, we replace this condition as follows: For each i ∈ {0, . . . , t}, the game �rst computes

[wi] := [H−1y′i] ∈ G2.

Observe that H−1
exists and the game holds it due to the previous change, and thus the game can

e�ciently compute [wi] over the group. Further, observe that TDDH([H],wi) = [y′i]. Given these [wi],
the game then accepts if and only if for all i ∈ {0, . . . , t}, we have [wi] = [xi]. In other words, the

game checks that wi = xi, which it can do e�ciently in the exponent. We argue that, except with

negligible probability, the winning condition is equivalent to the winning condition in the previous

game. Namely, except with probability 1/p2 + 1/p, the function TDDH([G], ·) is a bijection. This can

be seen with arguments similar to the previous game. Assuming that it is a bijection, we now argue

that the two winning conditions are equivalent:

• If the new winning condition in G2 holds, we can set zi = wi = xi for all i ∈ {0, . . . , t}, which

shows that the old winning condition in G1 holds.

• If the old winning condition in G1 holds, then we know that for all i ∈ {0, . . . , t}, we have

TDDH([H], zi) = [y′i] = TDDH([H],wi).

As TDDH([H], ·) is a bijection, this means that zi = wi. Thus, we have

TDDH([G],wi) = TDDH([G], zi) = [yi] = TDDH([G],xi),

where the last equality follows from the old winning condition. As we assume that TDDH([G], ·)
is a bijection, this implies wi = xi, showing that the new winning condition holds.

With that, we obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ 1
p2 + 1

p
.

Game G3:This game is exactly asG2, but we change the way the tag G ∈ G2×2
is generated. Intuitively,

while G induced a bijection (except with negligible probability) before, we now make sure that it induces

a compressing function. Namely, instead of sampling [G] uniformly at random, we generate it as

[G] :=
(
gβ h
gαβ hα

)
for h $← G, α, β $← Zp.

We can bound the distinguishing advantage between games G2 and G3 using a straight-forward

reduction B against the DDH assumption.

1. The reduction B gets as input parameters de�ning the group G with a generator g, a random

element h ∈ G and group elements u, v ∈ G, which are either both random or of the form

u = gα, v = hα.
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2. The reduction B sets up the tag [H] and the vectors xi as in G2. Then, it samples β $← Zp and

de�nes

[G] :=
(
gβ h
uβ v

)
.

With this, it computes [yi] := TDDH([G],xi) as in G2 and runs A, simulating the oracle Inv for

A as in G2.

3. When A terminates and outputs [y′i] ∈ G2
for all i ∈ {0, . . . , t}, the reduction checks the

winning condition as in G2. Recall that this can be done e�ciently, due to the change in G2. It

outputs whatever G2 would output.

Clearly, the running time of B is dominated by the running time of A. Further, if B’s input is random,

B perfectly simulates G2 for A unless β = 0, which happens with probability 1/p. On the other hand,

if the input is of the form u = gα, v = hα, then B perfectly simulates G3 for A. We get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ AdvDDH
B,GGen(λ) + 1

p
.

What remains is to show that the probability that G3 outputs 1 is negligible. The intuition is that now

G has low rank, and A does not obtain enough information about x0, . . . ,xt. To turn this intuition

into a formal argument, we �rst introduce more notation.

Notation. We set X ∈ Z2×(t+1)
p to be the matrix with columns xi, Y := GX to be the matrix with

columns yi, and Y′ ∈ Z2×(t+1)
p be the matrix with columns y′i. The winning condition introduced in

G2 can now be written as H−1Y′ = X.

Claim. We claim that for all �xed parameters par, each �xed X, and for �xed random coins ρ for A,

there is a matrix K ∈ Z2×(t+1)
p \ {0} such that the view of A in G3 is independent of ϑ ∈ Zp if we

replace X with X + ϑK. Assuming this claim holds, it is clear that

Pr [G3 ⇒ 1] ≤ 1
p
.

Proof of Claim. It remains to show the claim. Fix parameters par, a matrix X, and random coins

ρ. Observe that with that, all t queries of A to Inv are de�ned. Let the jth query to this oracle

be Inv(α(j)
0 , . . . , α

(j)
t ). The queries de�ne a matrix A ∈ Z(t+1)×t

p where the jth column of A is

(α(j)
0 , . . . , α

(j)
t ). With this in mind, it is clear that the view of A in game G3 is given by

H, G, GX, XA.

Therefore, it is su�cient to show that there is a matrix K ∈ Z2×(t+1)
p \ {0} such that

GK = 0 and KA = 0.

By the way we sample G in game G3, there exists a vector g⊥ ∈ Z2
p \ {0} such that Gg⊥ = 0. Also,

there is a vector a⊥ ∈ Zt+1
p \ {0} such that at⊥A = 0, which follows from the dimensions of A. Now,

we can set

K := g⊥at⊥ ∈ Z2×(t+1)
p \ {0}.
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5.6 Concrete Parameters and E�ciency

In the �nal section of this chapter, we brie�y discuss the concrete e�ciency of our threshold sig-

nature schemes. We compare our constructions to Frost [KG20, BTZ22, BCK
+

22], TZ [TZ23], and

Sparkle [CKM23a]. For our comparison, we assume that all constructions are instantiated with the

secp256k1 curve and SHA-256 as a hash function. We calculate key sizes, communication complexity

per signer, and signature sizes. Also, for all schemes, we assume challenges ci are sampled uniformly

from Zp, i.e., have size 256 bit, whereas some implementations may use challenges of size 128 bit. Our

results have been computed using a simple Python script
7

and are summarized in Table 5.2. We see that

Scheme Public Key Communication Signature

Frost 33 98 64

TZ 33 130 97

Sparkle 33 97 64

Twinkle (AOMCDH) 33 163 97

Twinkle (DDH) 66 294 162

Table 5.2: Concrete e�iciency of threshold signature schemes in the discrete logarithm se�ing without

pairings. We compare the size of public keys, the communication complexity per signer, and the

signature size. Sizes are given in bytes.

the sizes of our constructions are practical, but slightly less e�cient compared to previous schemes.

In terms of computation, consider a run of the signing protocol in which K signers participate. Here,

a signer in both of our schemes has to evaluate K + 2 hashes, whereas it would have to evaluate

K + 1 hashes in Sparkle, which is a minimal di�erence as K grows. A signer in Sparkle would have to

compute 2 group operations (counting multi-scalar multiplications as one operation), whereas a signer

in our AOMCDH-based (resp. DDH-based) scheme would have to do 6 (resp. 12) such operations. For

veri�cation, the number of operations compared to Sparkle increases by a factor of 2 for the hashes, and

a factor of 2 (resp. 4) for the multi-scalar multiplications for our AOMCDH-based (resp. DDH-based)

scheme.

To sum up, our schemes are slightly less e�cient than previous schemes, but they are still in

a highly practical regime. Given the strong properties that our schemes achieve from conservative

assumptions without the algebraic group model, it is natural to pay such a small price in terms of

e�ciency.

7

The Python script can be found in https://github.com/b-wagn/dissertation-efficiency-scripts.

159

https://github.com/b-wagn/dissertation-efficiency-scripts




6
Final Remarks

161





6.1. OPEN PROBLEMS FOR FUTURE WORK

6.1 Open Problems for Future Work

At the end of this dissertation, we motivate and state some open problems pertaining our results. This

may serve as a point of reference for future research endeavors.

6.1.1 Open Problems Related to Blind Signatures – Chapter 3

Re�ecting on our constructions of blind signatures in Chapter 3, one way to interpret the cut-and-choose

technique is the following: we let the User and the Signer run the underlying base protocol, e.g., blind

BLS [Bol03], and make the User prove to the Signer that it behaved honestly. In other words, the cut-

and-choose informally served as a zero-knowledge proof. Crucially, utilizing generic zero-knowledge

proofs is impractical in this scenario. The relation to be proven is de�ned by a random oracle, and

employing generic proofs would necessitate treating the random oracle as a circuit, a non-standard

approach with unclear security implications. Motivated by this observation, one may try to apply

the cut-and-choose technique in other contexts where proofs about such random oracle relations are

needed. On a broader scale, we would hope to de�ne an abstract framework for proofs concerning such

relations and then construct a general-purpose proof using cut-and-choose. This yields the following

open problem.

Open Problem 1. Use the (parallel instance) cut-and-choose technique developed in Chapter 3 to construct
generic proofs about relations de�ned with respect to a random oracle.

Our most e�cient construction of blind signatures presented in Chapter 3 is heavily reliant on

pairings. However, as discussed in Chapter 5, there is a compelling motivation to explore constructions

in pairing-free cyclic groups: operations in pairing-free groups are more e�cient, assumptions in

this setting are weaker, and there is broader library support available. As explained in Chapter 3,

instantiating single instance cut-and-choose with the pairing-free base schemes such as Schnorr blind

signatures [Sch91, CP93, Bra94] or Okamoto-Schnorr blind signatures [Oka93, PS00, HKL19] would

require impractical parameters. On the other hand, parallel instance cut-and-choose fails to be e�cient

due to suboptimal aggregation features of these base schemes. In our work, the construction that

comes closest to the goal of e�cient pairing-free blind signatures is our RSA-based construction. This

construction is pairing-free but operates outside the realm of cyclic groups and has a stateful signer.

Additionally, a recent construction by Chairattana-Apirom, Tessaro, and Zhu [CATZ23] builds on our

ideas from Chapter 3 to construct e�cient pairing-free blind signatures from CDH. However, it only

achieves a weaker variant of one-more unforgeability.

Open Problem 2. Construct an e�cient and fully secure blind signature scheme from well-studied

non-interactive assumptions in the pairing-free discrete logarithm setting.

In certain scenarios, the signature veri�cation algorithm is predetermined and we need to design

a blind signing protocol that generates these signatures. Consider, for instance, the issuance of blind

signatures on Bitcoin transactions. Here, the signatures should be Schnorr signatures [Sch91], as

the consensus rules on the blockchain do not allow for a custom signature veri�cation algorithm.

Such Schnorr-compatible signing protocols have been studied extensively for other signature vari-

ants, e.g., [KG20, BDN18, MPSW19, NRSW20, NRS21, BCK
+

22, RRJ
+

22], but no such protocol with

concurrent security for blind signatures is known
1
. As explained earlier, instantiating the (parallel

instance) cut-and-choose technique from Chapter 3 with Schnorr blind signatures leads to an ine�cient

scheme. In addition, the resulting signatures are not Schnorr-compatible: for example, they contain the

commitment randomness of the unopened sessions.

1

The only exception seems to be the work by Fuchsbauer and Wolf [FW22], which uses generic zero-knowledge

proofs and assumes that Schnorr signatures are secure for a �xed non-random oracle hash function.
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Open Problem 3. Construct an e�cient and fully secure blind signature scheme from well-studied

non-interactive assumptions, such that veri�cation is the same as in widely-deployed signature schemes,

e.g., BLS [BLS01] or Schnorr [Sch91].

6.1.2 Open Problems Related to Multi-Signatures – Chapter 4

In Chapter 4, we developed techniques to construct pairing-free two-round multi-signatures that do not

rely on rewinding. This led to two �avors of constructions: one with tight security and one with key

aggregation, but with a linear security loss in the number of signing queries. Naturally, the question

whether we can have the best of the two worlds arises: we wish for a scheme with both key aggregation

and a tight security proof. To understand the intricacy of this challenge, assume that we want to

aggregate keys for the tightly secure construction in Toothpicks. In this setting, recall that each signer

is endowed with two keys and selects the key to use for each message pseudorandomly. Consequently,

for N signers, there are 2N possible combinations of keys, and one of them is chosen pseudorandomly

during the signing process. Thus, we would have to include all 2N keys in the aggregate key, which is

much larger than just storing the N individual keys.

Open Problem 4. Construct a tightly-secure two-round multi-signature scheme in the pairing-free discrete

logarithm setting that supports key aggregation.

Our constructions in Chapter 4 rely on a variant of the lossy identi�cation technique [KW03,

AFLT12, KMP16] and thus on a decisional assumption, namely, DDH. A natural avenue for exploration

is whether we can design a scheme with comparable guarantees from a weaker search assumption,

e.g., CDH. Even though the techniques in Chapters 4 and 5 both rely on the DDH assumption, we

envision that combining them is a good start. Namely, recall that the established security model for

multi-signatures also used in Chapter 4 assumes that there is one �xed honest party that is controlled

by the game. The adversary controls all other parties and has to forge a signature with respect to a set

of parties including the honest party. For multi-signatures and standard signatures, this model of static

corruptions generically implies security under adaptive corruptions via a simple guessing argument,

which is in contrast to threshold signatures. Our security analysis for threshold signatures in Chapter 5

initially employed a one-more search assumption, calling an oracle for each corruption query, and

subsequently utilized DDH to simulate this assumption. However, for multi-signatures, where we do

not need an adaptive corruption oracle, the use of a one-more assumption and, consequently, DDH
may be avoidable. This would ideally result in a three-move scheme based on CDH. We can then try to

use techniques from Chapter 4 to achieve tightness and reduce the number of rounds.

Open Problem 5. Construct a tightly-secure two-round multi-signature scheme in the pairing-free discrete

logarithm setting based on a non-interactive search assumption, e.g., CDH, potentially combining some of

the techniques from Chapters 4 and 5.

As already explained above, adaptive security for multi-signatures and standard signatures is

generically implied by static security. Namely, a reduction can guess which of the initially honest

parties remains uncorrupted for the forgery. From the concrete security perspective, however, achieving

adaptive security directly would be more desirable, as the guessing argument used to prove the

implication incurs a security loss. The loss is linear in the number of initially honest parties which

can be corrupted adaptively. Consequently, we want an e�cient scheme that is tightly secure in the

adaptive setting. Analogous questions have been explored for standard digital signatures [BHJ
+

15,

GJ18, HJK
+

21, DGJL21, PW22] but not for multi-signatures. Combining our techniques from Chapters 4

and 5 seems again promising in this regard: we supported adaptive corruptions in Chapter 5 and we

achieved tightness in Chapter 4. Also, the avoidance of rewinding in both constructions aligns with the

objective of tight security.

Open Problem 6. Construct a multi-signature scheme that is tightly secure in presence of adaptive

corruptions, potentially combining some of the techniques from Chapters 4 and 5.
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6.1.3 Open Problems Related to Threshold Signatures – Chapter 5

In the preceding section, we presented potential applications of merging techniques introduced in

Chapters 4 and 5 in the realm of multi-signatures. Indeed, these techniques seem to exhibit su�cient

structural compatibility for that. Turning our attention to the threshold setting, a natural next step is

reducing the number of rounds from three to two. In our threshold signature scheme in Chapter 5, an

initial round of random oracle commitments to the nonces precedes the actual protocol. Interestingly,

in Chapter 4 we successfully used homomorphic trapdoor commitments to eliminate the need for such

an extra round. Thus, we may try to adopt our commitment construction from Chapter 4 to align with

our threshold signature scheme in Chapter 5. Similarly, avoiding the guessing argument in the proof in

Chapter 5 to get a tight proof is desirable. For that, the pseudorandom path technique from Chapter 4

can serve as a starting point.

Open Problem 7. Construct a two-round pairing-free threshold signature scheme for up to t adaptive
corruptions, potentially combining some of the techniques from Chapters 4 and 5.

Open Problem 8. Construct a threshold signature scheme that is tightly secure in presence of up to t
adaptive corruptions, potentially combining some of the techniques from Chapters 4 and 5.

As for multi-signatures, an interesting direction to explore is whether we can further weaken

the hardness assumptions used in our threshold signature scheme. Again, a construction based on a

non-interactive search assumption such as CDH would be desirable. Note, however, that this problem

seems much more intricate than the respective problem for multi-signatures because we have to

simulate adaptive corruptions in the threshold setting. Achieving this without leveraging interactive or

decisional assumptions requires fundamentally new insights.

Open Problem 9. Construct a pairing-free threshold signature scheme for up to t adaptive corruptions
from a non-interactive search assumption, e.g., CDH.

We have made a signi�cant contribution by constructing the �rst threshold signature scheme in

the pairing-free setting tolerating up to t adaptive corruptions without the algebraic group model.

Re�ecting on our security model, we have disallowed the adversary from initiating any signing session

concerning the forgery message. As outlined in Chapter 5, this restriction is common for interactive

threshold signatures. However, following the overarching theme of this dissertation, we may try to

further strengthen the model by allowing the adversary to start such signing sessions to some extent.

For example, for non-interactive threshold signatures, e.g., [Bol03, BL22], the adversary is allowed to see

up to t signature shares for the forgery message. De�ning a signature share in the realm of interactive

threshold signatures poses challenges. We may, for example, allow the adversary to communicate with

all signers in a signing session for the forgery message, as long as the �nal message of at most t signers

is given to the adversary. An even more robust notion would permit the adversary to do this in multiple

di�erent signing sessions. For our construction in Chapter 5, we are con�dent that we can allow the

adversary to learn up to t messages during the second signing round. We decided not to de�ne and

prove such an intermediate notion and instead opted for a clean model. Designing a scheme with

analogous properties, e.g., pairing-free, adaptive corruptions, that supports even more communication

for the forgery message is an interesting direction. Such a scheme would inherently be more resilient

in practical applications.

Open Problem 10. Construct a pairing-free threshold signature scheme for up to t adaptive corruptions
and for which the adversary is allowed to interact with honest signers for the forgery message.
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6.2 Conclusion

In this dissertation, we have directed our attention towards modern variants of digital signatures,

speci�cally blind signatures, multi-signatures, and threshold signatures. We have developed new

techniques to obtain constructions that are both e�cient and secure.

Our achievements for blind signatures build on a variant of the cut-and-choose technique. This

technique allows us to turn a base scheme with a weak security property into a fully secure scheme.

Intuitively, it forces a malicious user to follow the protocol, up to a small number of successful cheats. By

incorporating several enhancements, we have made an exponential improvement to the communication

complexity of this transformation, and have been able to start from an even weaker security property.

Exploiting the structure of the base scheme, coupled with several other optimizations, we have ensured

that our scheme is not only asymptotically, but also concretely e�cient. In a second result, we have

then made the Signer stateless and the scheme both round-optimal and computationally e�cient.

With regards to two-round multi-signatures, we have circumvented the need for rewinding in the

security proof, resulting in a substantial improvement of the concrete security bound. At the same time,

we have managed to prove our schemes from a non-interactive assumption. Our main technique was a

novel homomorphic commitment scheme with a relaxed equivocation property in combination with a

lossy identi�cation scheme. Building on this �rst result for multi-signatures, we have then mitigated

the e�ciency overhead of our constructions, for example by also relaxing the binding property of the

commitment scheme.

In the realm of threshold signatures with adaptive security, we have replicated our success in

avoiding rewinding in the security proof and eliminating the reliance on interactive assumptions.

Notably, while these technical goals parallel those of multi-signatures, the motivations and techniques

employed di�er signi�cantly. Namely, the main motivation for avoiding rewinding when constructing

threshold signatures was to overcome an unnatural constraint on the number of adaptive corruptions as

present in previous works. In terms of techniques, we have found that the lossy identi�cation technique

is not applicable when handling adaptive corruptions. Instead, our threshold signature scheme builds on

�ve-move identi�cation. Also, while we have directly avoided interactive assumptions using our special

commitment in the case of multi-signatures, we have followed a more indirect yet structured approach

for threshold signatures: after designing our scheme abstractly based on an interactive assumption,

we have developed an instantiation for which this interactive assumption is implied by a well-studied

non-interactive assumption.

The techniques developed in this dissertation and summarized above have resulted in notable

advancements surpassing the current state-of-the-art in blind signatures, multi-signatures, and threshold

signatures. In addition, they may lay a foundation for future research, for example in addressing the

challenges listed in the open problems section. I am also con�dent that the techniques possess a

versatility that extends beyond the speci�c domains of blind signatures, multi-signatures, and threshold

signatures. They have the potential to be adapted and applied for di�erent signature variants or even

broader cryptographic contexts. Concluded.
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APPENDIX A. ADDITIONAL PSEUDOCODE

Pseudocode for Section 4.4

Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 sk := x $← D, pk := X := F(x)
03 return (pk, sk)

Alg Agg(P)
04 parse {pk1, . . . , pkN} := P
05 for i ∈ [N ] : parse Xi := pki
06 for i ∈ [N ] : ai := Ha(〈P〉, pki)
07 return p̃k := X̃ :=

∑N
i=1 ai ·Xi

Alg VerAgg(p̃k,m, σ)
08 parse X̃ := p̃k, (com, s, ϕ) := σ
09 c := Hc(p̃k, com,m)
10 R := F(s)− c · X̃
11 ck := H(p̃k,m)
12 if com 6= Com(ck, R;ϕ) : return 0
13 return 1

Alg Ver(P,m, σ)
14 p̃k := Agg(P)
15 return VerAgg(p̃k,m, σ)

Alg Sig0(P, sk1,m)
16 parse x1 := sk1
17 p̃k := Agg(P), ck := H(p̃k,m)
18 r1

$← D, R1 := F(r1), ϕ1
$← G

19 pm1,1 := com1 := Com(ck, R1;ϕ1)
20 St1 := (p̃k, x1, r1, ϕ1,m)
21 return (pm1,1, St1)

Alg Sig1(St1,M1)
22 parse (pm1,1, . . . , pm1,N ) :=M1

23 parse (p̃k, x1, r1, ϕ1,m) := St1
24 for i ∈ [N ] : parse comi := pm1,i
25 com :=

⊗
i∈[N ] comi

26 c := Hc(p̃k, com,m)
27 a1 := Ha(〈P〉, pk1)
28 s1 := c · a1 · x1 + r1
29 pm2,1 := (s1, ϕ1)
30 return (pm2,1, St2 := com)

Alg Sig2(St2,M2)
31 parse com := St2 = com
32 parse (pm2,1, . . . , pm2,N ) :=M2
33 for i ∈ [N ] : parse (si, ϕi) := pm2,i

34 s :=
∑N
i=1 si, ϕ :=

⊕N
i=1 ϕi

35 return σ := (com, s, ϕ)

Figure A.1: The multi-signature scheme ChopsKA[LF,CMT] = (Setup,Gen, Sig,Ver) with key aggre-

gation for a linear function family LF = (LF.Gen,F) and a weakly equivocable commitment scheme

CMT = (BGen,TGen,Com,TCom,TCol). Scheme ToothKA[LF,CMT] (Section 4.5.2) is the same,

but CMT is assumed to be a weakly equivocable coset commitment scheme.
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Game G0-G8
01 par← LF.Gen(1λ)
02 sk := x1

$← D, pk := X1 := F(x) // G0-G5

03 pk1 := X1
$← R // G6-G8

04 if (par, x1) /∈ Good : abort // G1-G4

05 (P∗,m∗, σ∗)← ASig0,Sig1,H,Ha,Hc(par, pk1)
06 if pk /∈ P∗ ∨ (P∗,m∗) ∈ Queried : return 0
07 p̃k := Agg(P∗) // G2-G8

08 if b[p̃k,m∗] = 0 : return 0 // G2-G8

09 parse X̃ := p̃k, (com∗, s∗, ϕ∗) := σ∗ // G7-G8

10 c∗ := Hc(p̃k, com∗,m∗), R∗ := F(s∗)− c∗ · X̃ // G7-G8

11 if R∗ 6= r[p̃k, com∗,m∗] : return 0 // G7-G8

12 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
13 parse {pk1, . . . , pkN} := P
14 if pk1 6= pk : return ⊥
15 Queried := Queried ∪ {(P,m)}, ctr := ctr + 1, sid := ctr, round[sid] := 1
16 p̃k := Agg(P), ck := H(p̃k,m)
17 if b[p̃k,m] = 1 : abort // G2-G8

18 r1
$← D, R1 := F(r1), ϕ1

$← G // G0-G3

19 com1 := Com(ck, R1;ϕ1) // G0-G3

20 St1 := (p̃k, x1, r1, ϕ1) // G0-G3

21 (com1, St)← TCom(ck, tr[p̃k,m]) // G4-G8

22 St1 := St // G4-G8

23 (pm1[sid], St1[sid]) := (pm1,1 := com1, St1)
24 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
25 if round[sid] 6= 1 : return ⊥
26 parse (pm1,1, . . . , pm1,N ) :=M1
27 if pm1[sid] 6= pm1,1 : return ⊥
28 round[sid] := round[sid] + 1
29 parse (x1, r1, ϕ1) := St1 // G0-G3

30 parse St := St1 // G4-G8

31 for i ∈ [N ] : parse comi := pm1,i
32 com :=

⊗
i∈[N ] comi, c := Hc(p̃k, com,m), a1 := Ha(〈P〉, pk1)

33 s1 := c · a1 · x1 + r1 // G0-G3

34 (ϕ1, R1, s1)← TCol(St, c · a1) // G4-G8

35 (pm2[sid], St2[sid]) := (pm2,1 := (s1, ϕ1), St2 := com)
36 return pm2[sid]

Figure A.2: The games G0-G8 used in the proof of Theorem 4.1. Lines with highlighted comments are

only executed in the respective games. The random oracles are defined in Figure A.3.
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Oracle H(p̃k,m) // G0-G2

01 if h[p̃k,m] = ⊥ :
02 b[p̃k,m]← Bγ // G2

03 h[p̃k,m] $← K
04 return h[p̃k,m]

Oracle H(p̃k,m) // G3-G8

05 if h[p̃k,m] = ⊥ :
06 b[p̃k,m]← Bγ
07 if b[p̃k,m] = 0 :
08 (ck, td)← TGen(par, X1)
09 tr[p̃k,m] := td
10 if b[p̃k,m] = 1 :
11 ck← BGen(par)
12 h[p̃k,m] := ck
13 return h[p̃k,m]

Oracle Hc(p̃k, com,m)
14 if hc[p̃k, com,m] = ⊥ :
15 ck := H(p̃k,m) // G7-G8

16 if b[p̃k,m] = 1 : // G7-G8

17 R← Ext(ck, com) // G7-G8

18 r[p̃k, com,m] := R // G7-G8

19 hc[p̃k, com,m] $← S
20 return hc[p̃k, com,m]

Oracle Ha(〈P〉, pk)
21 if ha[〈P〉, pk] = ⊥ :
22 ha[〈P〉, pk] $← S
23 if pk = pk1 :
24 p̃k := Agg(P) // G8

25 if ∃(com,m) s.t. // G8

hc[p̃k, com,m] 6= ⊥ : abort // G8

26 return ha[〈P〉, pk]

Figure A.3: The random oracles that are used in the proof of Theorem 4.1. Lines with highlighted

comments are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for

the statistical binding property of CMT.

200



Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 x0, x1

$← D, seed $← {0, 1}λ
03 X0 := F(x0), X1 := F(x1)
04 pk := (X0, X1), sk := (x0, x1, seed)
05 return (pk, sk)

Alg Ver(P,m, σ)
06 parse {pk1, . . . , pkN} := P
07 parse (σ0, σ1, B) := σ
08 parse (com0, s0, ϕ0) := σ0
09 parse (com1, s1, ϕ1) := σ1
10 parse b1 . . . bN := B ∈ {0, 1}N
11 for i ∈ [N ] :
12 parse (Xi,0, Xi,1) := pki
13 ci,0 := Hc(pki, com0,m, 〈P〉, B, 0)
14 ci,1 := Hc(pki, com1,m, 〈P〉, B, 1)
15 R0 := F(s0)−

∑N
i=1 ci,0 ·Xi,bi

16 R1 := F(s1)−
∑N
i=1 ci,1 ·Xi,1−bi

17 ck0 := H(0, 〈P〉,m)
18 ck1 := H(1, 〈P〉,m)
19 if com0 6= Com(ck0, R0;ϕ0) :
20 return 0
21 if com1 6= Com(ck1, R1;ϕ1) :
22 return 0
23 return 1

Alg Sig0(P, sk1,m)
24 parse (x1,0, x1,1, seed1) := sk1
25 ck0 := H(0, 〈P〉,m)
26 ck1 := H(1, 〈P〉,m)
27 b1 := Hb(seed1, 〈P〉,m)
28 r1,0, r1,1

$← D, ϕ1,0, ϕ1,1
$← G

29 R1,0 := F(r1,0), R1,1 := F(r1,1)
30 com1,0 := Com(ck0, R1,0;ϕ1,0)
31 com1,1 := Com(ck1, R1,1;ϕ1,1)
32 pm1,1 := (b1, com1,0, com1,1)
33 St1 := (sk1, r1,0, r1,1, ϕ1,0, ϕ1,1)
34 return (pm1,1, St1)

Alg Sig1(St1,M1)
35 parse (pm1,1, . . . , pm1,N ) :=M1
36 parse (sk1, r1,0, r1,1, ϕ1,0, ϕ1,1) := St1
37 for i ∈ [N ] :
38 parse (bi, comi,0, comi,1) := pm1,i

39 B := b1 . . . bN ∈ {0, 1}N
40 com0 :=

⊗
i∈[N ] comi,0

41 com1 :=
⊗

i∈[N ] comi,1
42 c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0)
43 c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1)
44 s1,0 := c1,0 · x1,b1 + r1,0
45 s1,1 := c1,1 · x1,1−b1 + r1,1
46 pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1)
47 St2 := (com0, com1)
48 return (pm2,1, St2)

Alg Sig2(St2,M2)
49 parse (com0, com1) := St2
50 parse (pm2,1, . . . , pm2,N ) :=M2
51 for i ∈ [N ] :
52 parse (si,0, si,1, ϕi,0, ϕi,1) := pm2,i

53 s0 :=
∑N
i=1 si,0, ϕ0 :=

⊕N
i=1 ϕi,0

54 s1 :=
∑N
i=1 si,1, ϕ1 :=

⊕N
i=1 ϕi,1

55 σ0 := (com0, ϕ0, s0)
56 σ1 := (com1, ϕ1, s1)
57 σ := (σ0, σ1, B)
58 return σ

Figure A.4: The multi-signature scheme Chops[LF,CMT] = (Setup,Gen, Sig,Ver) for a linear func-

tion family LF = (LF.Gen,F) and a weakly equivocable commitment scheme CMT = (TGen,Com,
TCom,TCol).
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Game G0-G8

01 par← LF.Gen(1λ), x1,0, x1,1
$← D, seed1

$← {0, 1}λ, X1,0 := F(x1,0)
02 if (par, x1,1) /∈ Good : abort // G3-G5

03 X1,1 := F(x1,1) // G0-G6

04 X1,1
$← R // G7-G8

05 pk∗ := (X1,0, X1,1)
06 (P∗,m∗, σ∗)← AH,Hb,Hc,Sig0,Sig1(par, pk∗)
07 if pk∗ /∈ P∗ ∨ (P∗,m∗) ∈ Queried : return 0
08 parse (σ∗0 , σ∗1 , B∗) := σ∗, b∗1 . . . b

∗
N := B∗ ∈ {0, 1}N

09 parse (com∗0, ϕ∗0, s∗0) := σ∗0 , (com∗1, ϕ∗1, s∗1) := σ∗1
10 if bad = 1 : return 0 // G1-G8

11 if b∗1 6= 1− H̄b(seed1, 〈P∗〉,m∗) : return 0 // G2-G8

12 parse {pk1 = pk∗, . . . , pkN} := P∗ // G8

13 for i ∈ [N ] : // G8

14 parse (Xi,0, Xi,1) := pki // G8

15 c∗i,0 := Hc(pki, com∗0,m∗, 〈P∗〉, B∗, 0) // G8

16 c∗i,1 := Hc(pki, com∗1,m∗, 〈P∗〉, B∗, 1) // G8

17 R∗0 := F(s∗0)−
∑N
i=1 c

∗
i,0 ·Xi,b∗

i
, R∗1 := F(s∗1)−

∑N
i=1 c

∗
i,1 ·Xi,1−b∗

i
// G8

18 if R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗] : return 0 // G8

19 return Ver(P∗,m∗, σ∗)

Figure A.5: The games G0-G8 used in the proof of Theorem 4.2. Lines with highlighted comments are

only executed in the respective games. The signing oracles are defined in Figure A.6, and the random

oracles are defined in Figure A.7.
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Oracle Sig0(P,m)
01 parse {pk1, . . . , pkN} := P
02 if pk1 6= pk∗ : return ⊥
03 Queried := Queried ∪ {(P,m)}, ctr := ctr + 1, sid := ctr, round[sid] := 1
04 ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m)
05 b1 := H̄b(seed1, 〈P〉,m)
06 r1,b1

$← D, ϕ1,b1
$← G, R1,b1 := F(r1,b1)

07 com1,b1 := Com(ckb1 , R1,b1 ;ϕ1,b1)
08 r1,1−b1

$← D, ϕ1,1−b1
$← G, R1,1−b1 := F(r1,1−b1) // G0-G4

09 com1,1−b1 := Com(ck1−b1 , R1,1−b1 ;ϕ1,1−b1) // G0-G4

10 St1 := (r1,0, r1,1, ϕ1,0, ϕ1,1) // G0-G4

11 (com1,1−b1 , St)← TCom(ck1−b1 , tr[〈P〉,m]) // G5-G8

12 St1 := (r1,b1 , ϕ1,b1 , St) // G5-G8

13 (pm1[sid], St1[sid]) := (pm1,1 := (b1, com1,0, com1,1), St1)
14 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
15 if round[sid] 6= 1 : return ⊥
16 parse (pm1,1, . . . , pm1,N ) :=M1
17 if pm1[sid] 6= pm1,1 : return ⊥
18 round[sid] := round[sid] + 1, St1 := St1[sid]
19 parse (r1,0, r1,1, ϕ1,0, ϕ1,1) := St1 // G0-G4

20 parse (r1,b1 , ϕ1,b1 , St) := St1 // G5-G8

21 for i ∈ [N ] : parse (bi, comi,0, comi,1) := pm1,i

22 B := b1 . . . bN ∈ {0, 1}N
23 com0 :=

⊗
i∈[N ] comi,0, com1 :=

⊗
i∈[N ] comi,1

24 c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1)
25 s1,b1 := c1,b1 · x1,0 + r1,b1

26 s1,1−b1 := c1,1−b1 · x1,1 + r1,1−b1 // G0-G4

27 (ϕ1,1−b1 , R1−b1 , s1,1−b1)← TCol(St, c1,1−b1) // G5-G8

28 St2 := (com0, com1)
29 (pm2[sid], St2[sid]) := (pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1), St2)
30 return pm2[sid]

Figure A.6: The signing oracles that are used in the proof of Theorem 4.2. Lines with highlighted

comments are only executed in the respective games.
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Oracle H(b, 〈P〉,m) // G0-G3

01 if h[b, 〈P〉,m] = ⊥ :
02 h[b, 〈P〉,m] $← K
03 return h[b, 〈P〉,m]

Oracle H(b, 〈P〉,m) // G4-G8

04 if h[b, 〈P〉,m] = ⊥ :
05 if b = 1− H̄b(seed1, 〈P〉,m) :
06 (ck, td)← TGen(par, X1,1)
07 tr[〈P〉,m] := td
08 if b = H̄b(seed1, 〈P〉,m) :
09 ck← BGen(par)
10 h[b, 〈P〉,m] := ck
11 return h[b, 〈P〉,m]

Oracle H̄b(seed, 〈P〉,m)
12 if h̄b[seed, 〈P〉,m] = ⊥ :
13 h̄b[seed, 〈P〉,m] $← {0, 1}
14 return h̄b[seed, 〈P〉,m]

Oracle Hc(pk, com,m, 〈P〉, B, b) // G0-G7

15 if hc[pk, com,m, 〈P〉, B, b] = ⊥ :
16 hc[pk, com,m, 〈P〉, B, b] $← S
17 return hc[pk, com,m, 〈P〉, B, b]

Oracle Hc(pk, com,m, 〈P〉, B, b) // G8

18 if hc[pk, com,m, 〈P〉, B, b] = ⊥ :
19 if pk = pk∗ ∧ b = H̄b(seed1, 〈P〉,m) :
20 R← Ext(H(b, 〈P〉,m), com)
21 r[com,m, 〈P〉, B] := R
22 hc[pk, com,m, 〈P〉, B, b] $← S
23 return hc[pk, com,m, 〈P〉, B, b]

Oracle Hb(seed, 〈P〉,m)
24 if seed = seed1 : bad := 1 // G1-G8

25 return H̄b(seed, 〈P〉,m)

Figure A.7: The random oracles that are used in the proof of Theorem 4.2. Lines with highlighted

comments are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for

the statistical binding property of CMT.
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Pseudocode for Section 4.5

Alg Setup(1λ)
01 return par← LF.Gen(1λ)

Alg Gen(par)
02 x0, x1

$← D, seed $← {0, 1}λ
03 X0 := F(x0), X1 := F(x1)
04 pk := (X0, X1), sk := (x0, x1, seed)
05 return (pk, sk)

Alg Ver(P,m, σ)
06 parse {pk1, . . . , pkN} := P
07 parse (com, ϕ, s, B) := σ

08 parse b1 . . . bN := B ∈ {0, 1}N
09 for i ∈ [N ] :
10 parse (Xi,0, Xi,1) := pki
11 ci := Hc(pki, com,m, 〈P〉, B)
12 R := F(s)−

∑N
i=1 ci ·Xi,bi

13 ck := H(〈P〉,m)
14 if com 6= Com(ck, R;ϕ) : return 0
15 return 1

Alg Sig0(P, sk1,m)
16 parse (x1,0, x1,1, seed1) := sk1
17 ck := H(〈P〉,m)
18 b1 := Hb(seed1, 〈P〉,m)
19 r1

$← D, ϕ1
$← G, R1 := F(r1)

20 com1 := Com(ck, R1;ϕ1)
21 pm1,1 := (b1, com1)
22 St1 := (sk1, r1, ϕ1)
23 return (pm1,1, St1)

Alg Sig1(St1,M1)
24 parse (pm1,1, . . . , pm1,N ) :=M1
25 parse (sk1, r1, ϕ1) := St1
26 for i ∈ [N ] :
27 parse (bi, comi) := pm1,i

28 B := b1 . . . bN ∈ {0, 1}N
29 com :=

⊗
i∈[N ] comi

30 c1 := Hc(pk1, com,m, 〈P〉, B)
31 s1 := c1 · x1,b1 + r1
32 pm2,1 := (s1, ϕ1)
33 St2 := com
34 return (pm2,1, St2)

Alg Sig2(St2,M2)
35 parse com := St2
36 parse (pm2,1, . . . , pm2,N ) :=M2
37 for i ∈ [N ] : parse (si, ϕi) := pm2,i

38 s :=
∑N
i=1 si, ϕ :=

⊕N
i=1 ϕi

39 return σ := (com, ϕ, s, B)

Figure A.8: The multi-signature scheme Tooth[LF,CMT] = (Setup,Gen, Sig,Ver) for a linear func-

tion family LF = (LF.Gen,F) and a weakly equivocable coset commitment scheme CMT = (TGen,
Com,TCom,TCol).
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Game G0-G8
01 b∗ $← {0, 1} // G2-G8

02 par← LF.Gen(1λ)
03 seed1

$← {0, 1}λ
04 x1,0, x1,1

$← D, X1,0 := F(x1,0), X1,1 := F(x1,1) // G0-G6

05 x1,b∗
$← D, X1,b∗ := F(x1,b∗), X1,1−b∗

$← R // G7-G8

06 if (par, x1,1−b∗) /∈ Good : return 0 // G3-G5

07 pk∗ := (X1,0, X1,1)
08 (P∗,m∗, σ∗)← AH,Hb,Hc,Sig0,Sig1(par, pk∗)
09 if pk∗ /∈ P∗ ∨ (P∗,m∗) ∈ Queried : return 0
10 parse (com∗, ϕ∗, s∗, B∗) := σ∗, b∗1 . . . b

∗
N := B∗ ∈ {0, 1}N

11 if bad = 1 : return 0 // G1-G8

12 if b∗ = b∗1 ∨ H̄b(seed1, 〈P∗〉,m∗) = 1− b∗ : return 0 // G2-G8

13 parse {pk1 = pk∗, . . . , pkN} := P∗ // G8

14 for i ∈ [N ] : // G8

15 parse (Xi,0, Xi,1) := pki // G8

16 c∗i := Hc(pki, com∗0,m∗, 〈P∗〉, B∗) // G8

17 R∗ := F(s∗)−
∑N
i=1 c

∗
i ·Xi,b∗

i
// G8

18 if R∗ /∈ r[com∗,m∗, 〈P∗〉, B∗] + F(D) : return 0 // G8

19 return Ver(P∗,m∗, σ∗)

Figure A.9: The games G0-G8 used in the proof of Theorem 4.5. Lines with highlighted comments are

only executed in the respective games. The signing oracles are defined in Figure A.10, and the random

oracles are defined in Figure A.11.
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Oracle Sig0(P,m)
01 parse {pk1, . . . , pkN} := P
02 if pk1 6= pk∗ : return ⊥
03 Queried := Queried ∪ {(P,m)}, ctr := ctr + 1, sid := ctr, round[sid] := 1
04 ck := H(〈P〉,m)
05 b1 := H̄b(seed1, 〈P〉,m)
06 r1

$← D, ϕ1
$← G, R1 := F(r1,b1)

07 com1 := Com(ck, R1;ϕ1)
08 St1 := (r1, ϕ1)
09 if b1 = 1− b∗ : (com1, St1)← TCom(ck, tr[〈P〉,m]) // G5-G8

10 (pm1[sid], St1[sid]) := (pm1,1 := (b1, com1), St1)
11 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
12 if round[sid] 6= 1 : return ⊥
13 parse (pm1,1, . . . , pm1,N ) :=M1
14 if pm1[sid] 6= pm1,1 : return ⊥
15 round[sid] := round[sid] + 1, St1 := St1[sid]
16 parse (r1, ϕ1) := St1 // G0-G4

17 for i ∈ [N ] : parse (bi, comi) := pm1,i

18 B := b1 . . . bN ∈ {0, 1}N
19 com :=

⊗
i∈[N ] comi

20 c1 := Hc(pk1, com,m, 〈P〉, B)
21 s1 := c1 · x1,b1 + r1 // G0-G4

22 if b1 = 1− b∗ : (ϕ1, R1, s1)← TCol(St1, c1) // G5-G8

23 if b1 = b∗ : s1 := c1 · x1,b1 + r1 // G5-G8

24 St2 := com
25 (pm2[sid], St2[sid]) := (pm2,1 := (s1, ϕ1), St2)
26 return pm2[sid]

Figure A.10: The signing oracles that are used in the proof of Theorem 4.5. Lines with highlighted

comments are only executed in the respective games.
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Oracle H(〈P〉,m) // G0-G3

01 if h[〈P〉,m] = ⊥ :
02 h[〈P〉,m] $← K
03 return h[〈P〉,m]

Oracle H(〈P〉,m) // G4-G8

04 if h[〈P〉,m] = ⊥ :
05 b := H̄b(seed1, 〈P〉,m)
06 if b = 1− b∗ :
07 (ck, td)← TGen(par, X1,1−b∗)
08 tr[〈P〉,m] := td
09 if b = b∗ :
10 ck← BGen(par)
11 h[〈P〉,m] := ck
12 return h[〈P〉,m]

Oracle H̄b(seed, 〈P〉,m)
13 if h̄b[seed, 〈P〉,m] = ⊥ :
14 h̄b[seed, 〈P〉,m] $← {0, 1}
15 return h̄b[seed, 〈P〉,m]

Oracle Hc(pk, com,m, 〈P〉, B) // G0-G7

16 if hc[pk, com,m, 〈P〉, B] = ⊥ :
17 hc[pk, com,m, 〈P〉, B] $← S
18 return hc[pk, com,m, 〈P〉, B]

Oracle Hc(pk, com,m, 〈P〉, B) // G8

19 if hc[pk, com,m, 〈P〉, B] = ⊥ :
20 parse {pk1, . . . , pkN} := P
21 parse b1 . . . bN := B
22 b := H̄b(seed1, 〈P〉,m)
23 if pk = pk∗ = pk1 ∧ b = b∗ :
24 R← Ext(H(〈P〉,m), com)
25 r[com,m, 〈P〉, B] := R
26 hc[pk, com,m, 〈P〉, B] $← S
27 return hc[pk, com,m, 〈P〉, B]

Oracle Hb(seed, 〈P〉,m)
28 if seed = seed1 : bad := 1 // G1-G8

29 return H̄b(seed, 〈P〉,m)

Figure A.11: The random oracles that are used in the proof of Theorem 4.5. Lines with highlighted

comments are only executed in the respective games. Algorithm Ext is the (unbounded) extractor for

the statistical coset binding property of CMT.
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Pseudocode for Section 5.4

Alg Setup(1λ)
01 par′ ← TLF.Gen(1λ), g $← T
02 return par := (par, g)

Alg Gen(par)
03 a0, . . . , at

$← D
04 for i ∈ [n] : ski :=

∑t
j=0 aji

j

05 pk := pk0 := T(g, a0)
06 return (pk, sk1, . . . , skn)

Alg Sig0(S, i, ski,m)
07 h := H(m)
08 ri

$← D
09 R

(1)
i := T(g, ri), R(2)

i := T(h, ri)
10 pk(2)

i := T(h, ski)
11 comi := Ĥ(S, i, R(1)

i , R
(2)
i , pk(2)

i )
12 pm1 := comi

13 St1 := (i, S, ski, h,m, ri)
14 return (pm1, St1)

Alg Sig1(St1,M1)
15 parse (i, S, ski, h,m, ri) := St1
16 pk(2)

i := T(h, ski)
17 R

(1)
i := T(g, ri), R(2)

i := T(h, ri)
18 pm2 := (R(1)

i , R
(2)
i , pk(2)

i )
19 return (pm2, St2 := (M1, St1))

Alg Sig2(St2,M2)
20 parse (M1, (i, S, ski, h,m, ri)) := St2
21 parse (comj)j∈S :=M1

22 parse ((R(1)
j , R

(2)
j , pk(2)

j ))j∈S :=M2
23 for j ∈ S :
24 if Ĥ(S, j, R(1)

j , R
(2)
j , pk(2)

j ) 6= comj :
25 return ⊥
26 R(1) :=

∑
j∈S R

(1)
j

27 R(2) :=
∑
j∈S R

(2)
j

28 pk(2) :=
∑
j∈S `j,Spk(2)

j

29 c := H̄(pk, pk(2), R(1), R(2),m)
30 return pm3 := si := c · `i,S · ski + ri

Alg Combine(S,m,M1,M2,M3)
31 parse (comj)j∈S :=M1

32 parse ((R(1)
j , R

(2)
j , pk(2)

j ))j∈S :=M2
33 parse (sj)j∈S :=M3

34 R(1) :=
∑
j∈S R

(1)
j

35 R(2) :=
∑
j∈S R

(2)
j

36 pk(2) :=
∑
j∈S `j,Spk(2)

i

37 c := H̄(pk, pk(2), R(1), R(2),m)
38 s :=

∑
j∈S sj

39 return σ := (pk(2), c, s)

Alg Ver(pk,m, σ = (pk(2), c, s))
40 h := H(m), R(1) := T(g, s)− c · pk, R(2) := T(h, s)− c · pk(2)

41 if c = H̄(pk, pk(2), R(1), R(2),m) : return 1
42 return 0

Figure A.12: The (t, n)-threshold signature scheme Twinkle[TLF] = (Setup,Gen, Sig,Ver) for a

tagged linear function family TLF.
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APPENDIX A. ADDITIONAL PSEUDOCODE

Game G0-G11
01 Pending := ∅ // G7-G11

02 Reps := ∅ // G9-G11

03 par′ ← TLF.Gen(1λ), g $← T , par := (par′, g)
04 if (par′, g) /∈ Reg : abort // G4-G10

05 a0, . . . , at
$← D

06 for i ∈ [n] : ski :=
∑t
j=0 aji

j

07 for i ∈ [n] : pki := T(g, ski)
08 pk := pk0 := T(g, a0)
09 Sig := (Next, Sig0, Sig1, Sig2)
10 (m∗, σ∗)← ASig,Corr,H,Ĥ,H̄(par, pk)
11 if b[m∗] = 0 : return 0 // G1-G11

12 if ∃x 6= x′ s.t. ĥ[x] = ĥ[x′] 6= ⊥ : return 0 // G6-G11

13 if m∗ ∈ Queried : return 0
14 return Ver(pk,m∗, σ∗)

Oracle Corr(i)
15 if |Corrupted| ≥ t : return ⊥
16 Corrupted := Corrupted ∪ {i}
17 for sid ∈ Sessions s.t. round[sid, i] = 1 : // G5-G11

18 parse (i, S, h,m, comi) := state[sid, i] // G5-G11

19 pk(2)
i := Translate(tr[m], pki) // G5-G11

20 ri
$← D, R(1)

i := T(g, ri), R(2)
i := T(h, ri) // G5-G11

21 if ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i ] 6= ⊥ : abort // G5-G11

22 ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i ] := comi // G5-G11

23 state[sid, i] := (i, S, h,m, ri) // G5-G11

24 for sid ∈ Sessions s.t. round[sid, i] ≥ 2 : // G10-G11

25 parse (M1, (i, S, h,m, si, c)) := state[sid, i] // G10-G11

26 ri := si − c · `i,S · ski // G10-G11

27 state[sid, i] := (M1, (i, S, h,m, ri)) // G10-G11

28 UpdatePending() // G7-G11

29 return (ski, state[·, i])

Figure A.13: Games G0-G11 in the proof of Theorem 5.1. Lines with highlighted are only executed in

the respective games. Signing oracles are given in Figures A.14 to A.16. Random oracles are given in

Figure A.17. Algorithm UpdatePending is given in Figure A.18. Oracle Next is as in Figure 5.2.
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Oracle Sig0(sid, i)
01 if Allowed(sid, i, 0,⊥) = 0 :
02 return ⊥
03 h := H(m), S := signers[sid]
04 if b[m] = 1 : abort // G1-G11

05 pk(2)
i := T(h, ski) // G0-G2

06 pk(2)
i := Translate(tr[m], pki) // G3-G11

07 ri
$← D // G0-G4

08 R
(1)
i := T(g, ri), R(2)

i := T(h, ri) // G0-G4

09 comi := Ĥ(S, i, R(1)
i , R

(2)
i , pk(2)

i ) // G0-G4

10 state[sid, i] := (i, S, h,m, ri) // G0-G4

11 comi
$← {0, 1}2λ

// G5-G11

12 if ∃(S′, i′) 6= (S, i) s.t. (S′, i′, comi) ∈ Sim : abort // G5-G11

13 Sim := Sim ∪ {(S, i, comi)} // G5-G11

14 state[sid, i] := (i, S, h,m, comi) // G5-G11

15 round[sid, i] := 1
16 return pm1[sid, i] := comi

Figure A.14: Signing Oracle Sig0 in the proof of Theorem 5.1. Lines with highlighted are only executed

in the respective games. Algorithm Allowed is as in Figure 5.2.

Oracle Sig1(sid, i,M1)
01 if Allowed(sid, i, 1,M1) = 0 :
02 return ⊥
03 m := message[sid], S := signers[sid], H := S \ Corrupted
04 added := AddToPending(sid, i,M1) // G7-G11

05 parse (i, S, h,m, ri) := state[sid, i] // G0-G4

06 parse (i, S, h,m, comi) := state[sid, i] // G5-G11

07 pk(2)
i := T(h, ski) // G0-G2

08 pk(2)
i := Translate(tr[m], pki) // G3-G11

09 ri
$← D // G5-G9

10 R
(1)
i := T(g, ri), R(2)

i := T(h, ri) // G0-G9

11 if added = 1 : c := GetChallenge(sid, i,M1) // G10-G11

12 if added = 0 : c := 0 // G10-G11

13 si
$← D // G10-G11

14 R
(1)
i := T(g, si)− c · `i,S · pki, R

(2)
i := T(h, si)− c · `i,S · pk(2)

i // G10-G11

15 if ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i ] 6= ⊥ : abort // G5-G11

16 ĥ[S, i, R(1)
i , R

(2)
i , pk(2)

i ] := comi // G5-G11

17 pm2[sid, i] := (R(1)
i , R

(2)
i , pk(2)

i )
18 state[sid, i] := (M1, (i, S, h,m, ri)) // G0-G9

19 state[sid, i] := (M1, (i, S, h,m, si, c)) // G10-G11

20 round[sid, i] := 2
21 UpdatePending() // G7-G11

22 return pm2[sid, i]

Figure A.15: Signing Oracle Sig1 in the proof of Theorem 5.1. Lines with highlighted are only executed

in the respective games. Algorithm Allowed is as in Figure 5.2.
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APPENDIX A. ADDITIONAL PSEUDOCODE

Oracle Sig2(sid, i,M2)
01 if Allowed(sid, i, 2,M2) = 0 : return ⊥
02 parse (M1, (i, S, h,m, ri)) := state[sid, i] // G0-G9

03 parse (M1, (i, S, h,m, si, c)) := state[sid, i] // G10-G11

04 parse (comi)i∈S :=M1

05 parse ((R(1)
i , R

(2)
i , pk(2)

i ))i∈S :=M2

06 for j ∈ S : if Ĥ(S, j, R(1)
j , R

(2)
j , pk(2)

j ) 6= comj : return ⊥
07 R(1) :=

∑
j∈S R

(1)
j , R(2) :=

∑
j∈S R

(2)
j

08 pk(2) :=
∑
j∈S `j,Spk(2)

j

09 c := H̄(pk, pk(2), R(1), R(2),m)
10 round[sid, i] := 3
11 si := c · `i,S · ski + ri // G0-G9

12 return pm3 := si

Figure A.16: Signing Oracle Sig2 in the proof of Theorem 5.1. Lines with highlighted are only executed

in the respective games. Algorithm Allowed is as in Figure 5.2.

Oracle H(m)
01 if h[m] = ⊥ :
02 h[m] $← T
03 b[m]← Bγ // G1-G11

04 if b[m] = 0 : // G2-G11

05 (h, td)← Shift(par′, g) // G2-G11

06 h[m] := h, tr[m] := td // G2-G11

07 return h[m]

Oracle Ĥ(S, j, R(1), R(2), pk(2))
08 if ĥ[S, j, R(1), R(2), pk(2)] = ⊥ :
09 com $← {0, 1}2λ

10 ĥ[S, j, R(1), R(2), pk(2)] := com
11 if ∃(sid, i,M1) ∈ Pending

s.t. com ∈M1 : // G7-G11

12 abort // G7-G11

13 UpdatePending() // G7-G11

14 return ĥ[S, j, R(1), R(2), pk(2)]

Oracle H̄(pk, pk(2), R(1), R(2),m)
15 if h̄[pk, pk(2), R(1), R(2),m] = ⊥ :
16 h̄[pk, pk(2), R(1), R(2),m] $← S
17 return h̄[pk, pk(2), R(1), R(2),m]

Alg Ĥ−1(y)
18 P := {x ∈ {0, 1}∗ | ĥ[x] = y}
19 if |P | 6= 1 : return ⊥
20 parse {x} = P
21 return x

Figure A.17: Random oracles H, Ĥ, , H̄ and algorithm Ĥ−1
in the proof of Theorem 5.1. Lines with

highlighted are only executed in the respective games. Here, Bγ denotes a Bernoulli distribution with

parameter γ = 1/(QS + 1).
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Alg AddToPending(sid, i,M1)
01 S := signers[sid], NotSim := {j ∈ S | (S, j, comj) /∈ Sim}
02 parse (comj)j∈S :=M1
03 if ∃j ∈ NotSim s.t. Ĥ−1(comj) = ⊥ : return 0
04 for j ∈ NotSim : (S′j , kj , R

(1)
j , R

(2)
j , pk(2)

j ) := Ĥ−1(comj)
05 if ∃j ∈ NotSim s.t. S′j 6= S ∨ kj 6= j : return 0
06 Pending := Pending ∪ {(sid, i,M1)}
07 return 1

Alg UpdatePending()
08 New := ∅
09 for (sid, i,M1) ∈ Pending :
10 S := signers[sid], m := message[sid]
11 parse (comj)j∈S :=M1
12 if ∀j ∈ S : Ĥ−1(comj) 6= ⊥ :
13 for j ∈ S : (S′j , kj , R

(1)
j , R

(2)
j , pk(2)

j ) := Ĥ−1(comj)
14 if ∃j ∈ S s.t. S′j 6= S ∨ kj 6= j : continue
15 Pending := Pending \ {(sid, i,M1)}
16 R(1) :=

∑
j∈S R

(1)
j , R(2) :=

∑
j∈S R

(2)
j , pk(2) :=

∑
j∈S `j,Spk(2)

j

17 if (R(1), R(2), pk(2),m) /∈ New : // G7

18 if (S,R(1), R(2), pk(2),m) /∈ New : // G8-G11

19 if h̄[pk, pk(2), R(1), R(2),m] 6= ⊥ : abort
20 h̄[pk, pk(2), R(1), R(2),m] $← S
21 h̄[pk, pk(2), R(1), R(2),m] := GetChallenge(sid, i,M1) // G9-G11

22 New := New ∪ {(R(1), R(2), pk(2),m)} // G7

23 New := New ∪ {(S,R(1), R(2), pk(2),m)} // G8-G11

Alg Equivalent ((sid, i,M1), (sid′, i′,M′1))
24 m := message[sid], m′ := message[sid′], S := signers[sid], S′ := signers[sid′]
25 if S 6= S′ ∨m 6= m′ : return 0
26 parse (comj)j∈S :=M1, (com′j)j∈S :=M′1
27 F := {j ∈ S | Ĥ−1(comj) = ⊥}, F̄ := S \ F
28 F ′ := {j ∈ S | Ĥ−1(com′j) = ⊥}, F̄ ′ := S \ F ′

29 for j ∈ F̄ : (S̃j , kj , R(1)
j , R

(2)
j , pk(2)

j ) := Ĥ−1(comj)
30 for j ∈ F̄ ′ : (S̃′j , kj , R′j

(1)
, R′j

(2)
, pk′j

(2)) := Ĥ−1(com′j)
31 R̄(1) :=

∑
j∈F̄ R

(1)
j , R̄(2) :=

∑
j∈F̄ R

(2)
j , p̄k(2) :=

∑
j∈F̄ `j,Spk(2)

j

32 R̄
′(1) :=

∑
j∈F̄ ′ Rj

′(1), R̄
′(2) :=

∑
j∈F̄ ′ Rj

′(2), p̄k
′(2) :=

∑
j∈F̄ ′ `j,Spkj

′(2)

33 if (R̄(1), R̄(2), p̄k(2)) 6= (R̄′(1), R̄
′(2), p̄k

′(2)) ∨ (comj)j∈F 6= (com′j)j∈F ′ : return 0
34 return 1

Alg GetChallenge(sid, i,M1)
35 for rep ∈ Reps : if Equivalent ((sid, i,M1), rep) = 1 : return C[rep]
36 Reps := Reps ∪ {(sid, i,M1)}, C[(sid, i,M1)] $← S
37 return C[(sid, i,M1)]

Figure A.18: Algorithms AddToPending, ,UpdatePending managing list Pending, and algorithms

Equivalent,GetChallenge to implement a random oracle on equivalence classes in the proof of Theo-

rem 5.1. Lines with highlighted comments are only executed in the respective games.
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