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Abstract 

This report is a first attempt of formalizing the diagonalization proof technique. 
We give a strategy how to systematically construct diagonalization proofs: (i) finding 
an indexing relation, (ii) constructing a diagonal element, and (iii) making the implicit 
contradiction of the diagonal element explicit. We suggest a declarative representation 
of the strategy and describe how it can be realized in a proof planning environment. 

Introduction 

In classical (automated) theorem proving the reasoning process is carried out at the object 
level, Le. the level of the (first order) logic representation of the mathematical objects 
under study. Searching for a proof means applying calculus inference rules to manipulate 
the initial problem situation which at the beginning consists of the negated theorem to be 
proven and the given assertions (definitions, axioms, and other theorems) in order to find 
a final situation, for instance -'- in a resolution theorem prover. This guarantees that the 
theorem is a logical consequence of the given assertions. Tactical theorem proving applies 
tactics, Le. composition of calculus inference rules. The reasoning remains however at the 
object level. 

Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can be 
applied to construct an object level proof. The used operators (methods) are specifications 
of tactics represented in a meta-language. They state in this meta-Ianguage when a tactic 
can be applied and what its effects are. Reasoning is therefore carried out at a meta level. 
Two main aspects make this approach interesting, since they provide some guidance while 
searching for a proof: 

The first aspect of proof planning is that the search for a proof plan is often done in 
the context of a well known mathematical proof technique such as induction. Such a proof 
technique characterizes a whole proof schema which is then instantiated to a sequence of 
planning steps (which in turn generate object level proofs). Similar to specifications of 
basic tactics, e.g. methods which choose appropriate rewriting rules, these proof schemata 
are called (proof) methods in the terminology of CLAM [BvHHS90]. As a mathematical 
proof technique implicitly comprises instructions on how to globally perform the associated 
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Abstract

This report is a first attempt of formalizing the diagonalization proof technique.
We give a strategy how to systematically construct diagonalization proofs: (i) finding
an indexing relation, (ii) constructing a diagonal element, and (iii) making the implicit
contradiction of the diagonal element explicit. We suggest a declarative representation
of the strategy and describe how it can be realized in  a proof planning environment.

1 Introduction

In  classical (automated) theorem proving the reasoning process is carried out at the object
level, i.e. the level of  the (first order) logic representation of  the mathematical objects
under study. Searching for a proof means applying calculus inference rules to manipulate
the initial problem situation which at the beginning consists of the negated theorem to be
proven and the given assertions (definitions, axioms, and other theorems) in order to find
a final situation, for instance L in a resolution theorem prover. This guarantees that the
theorem is a logical consequence of the given assertions. Tactical theorem proving applies
tactics, i.e. composition of calculus inference rules. The reasoning remains however at the
object level.

Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can be
applied to construct an object level proof. The used operators (methods) are specifications
of  tactics represented in  a meta-language. They state in this meta-language when a tactic
can be applied and what its effects are. Reasoning is therefore carried out at a meta level.
Two main aspects make this approach interesting, since they provide some guidance while
searching for a proof:

The first aspect of proof planning is that the search for a proof plan is often dene in
the context of a well known mathematical proof technique such as induction. Such a proof
technique characterizes a whole proof schema which is then instantiated to a sequence of
planning steps (which in turn generate object level proofs). Similar to specifications of
basic tactics, e.g. methods which choose appropriate rewriting rules, these proof schemata
are called (proof) methods in the terminology of CLAM [BvHHS90]. As a mathematical
proof technique implicitly comprises instructions on  how to  globally perform the associated
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part of a proof, we want to extend the proof schema in the representation of a technique 
with additional knowledge which expresses such instructions. In our approach we call these 
structures for the representation of mathematical proof techniques proof strategies, whereas 
specifications of basic tactics which correspond to ground proof plan steps are called proof 
methods as in CLAM. 

The second aspect of proof planning is the abstraction from mere logical manipulation 
of formulae by calculus inference rules. For instance, the task of proving an induction 
conclusion in CLAM is treated as reducing the syntactical differences to an induction 
hypothesis by the rippling proof strategy with the intention of employing it to close the 
proof path. 

The point of proof planning is to analyze proof techniques in order to determine their 
typical proof steps and to find a suitable control to perform these steps within the proof 
planning process. This report is a first attempt of formalizing the diagonalization proof 
technique. In the next section, we introduce the main idea of diagonalization by considering 
a formal proof for the Cantor theorem. Thereafter, we give a strategy how to construct 
systematically a diagonalization proof. This strategy is successfully applied by hand on 
some examples that we studied in [Che96]. We suggest a declarative representation of the 
strategy and describe how it can be realized in a proof planning environment. 

Cantor Diagonalization 

In order to show the main principles of proving by diagonalization, consider the Cantor 
theorem. For its proof, the diagonalization technique was first invented and it is therefore 
often called Cantor diagonalization [Kle43]. The theorem states that the power set of each 
set m has greater cardinality than the set itself, which is equivalent to the conjecture that 
there is no surjective function from a set into its power set: 

'Vm. -,'3f. surj(f, m, pset(m)) 

To prove the above conjecture, we assume that there is a surjective function fo from 
some set mo into its power set pset(mo) and deduce a contradiction by diagonalization. In 
[DSW94] a proof by diagonalization is described as follows: 

The diagonalization method turns on the demonstration of two assertions of 
the following sort: 

1.	 A certain set E can be enumerated in a suitable fashion. 

2.	 It is possible, with the help of the enumeration, to define an object d that 
is different from every object in the enumeration, i.e. d ~ E. 

Below is the diagonalization part of the Cantor proof, where pset(mo) is the enumerated 
set. This set can be enumerated with the help of the indexing relation fa and the set D 
is the object which is defined with the help of the enumeration. It is different from every 
object fo(x) in the enumeration: 

The set D = {x E molx rf. fo(x)} belongs to pset(mo), there is also an element 
Yo of mo which is the index of D in mo (D = fo(Yo) with Yo E mo). By the 
definition of D Yo belongs to D iff Yo is in mo and does not belong to fo(Yo)· 
This is obviously a contradiction to D = fo(Yo). 
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part of  a proof, we want to extend the proof schema in the representation of  a technique
with  additional knowledge which expresses such instructions. In  our approach we call these
structures for the representation of mathematical proof techniques proof strategies, whereas
specifications of basic tactics which correspond to ground proof plan steps are called proof
methods as in  CLAM.

The second aspect of  proof planning is the abstraction from mere logical manipulation
of formulae by calculus inference rules. For instance, the task of  proving an induction
conclusion in CLAM is treated as reducing the syntactical differences to an induction
hypothesis by the rippling proof strategy with the intention of employing i t  to close the
proof path.

The point of proof planning is to analyze proof techniques in order to determine their
typical proof steps and to find a suitable control to perform these steps within the proof
planning process. This report is a first attempt of formalizing the diagonalization proof
technique. In  the next section, we introduce the main  idea of  diagonalization by  considering
a formal proof for the Cantor theorem. Thereafter, we give a strategy how to construct
systematically a diagonalization proof. This strategy is successfully applied by hand on
some examples that we studied in [Che96]. We suggest a declarative representation of the
strategy and describe how i t  can be realized in a proof planning environment.

2 Cantor Diagonalization

In order to show the main principles of proving by diagonalization, consider the Cantor
theorem. For its proof, the diagonalization technique was first invented and i t  is therefore
often called Cantor diagonalization [Kle43]. The theorem states that the power set of each
set m has greater cardinality than the set itself, which is equivalent to  the conjecture that
there is no surjective function from a set into its power set:

Vm. I f .  surj(f,  m ,  pset(m))

To prove the above conjecture, we assume that there is a surjective function fo from
some set my into its power set pset(mo) and deduce a contradiction by diagonalization. In
[DSW94] a proof by diagonalization is described as follows:

The diagonalization method turns on the demonstration of  two assertions of
the following sort:

1. A certain set E can be enumerated in a suitable fashion.
2. It is possible, with the help of  the enumeration, to define an object d that

is different from every object in the enumeration, i.e. d ¢ E .

Below is the diagonalization part of the Cantor proof, where pset(myg) is the enumerated
set. This set can be  enumerated with the help of  the indexing relation fa and the set D
is the object which is defined with the help of  the enumeration. It is different from every
object fo(z) in the enumeration:

The set D = {x € mo|z ¢ fo(z)} belongs to pset(my), there is also an element
yo of  mg which is the index of  D in mg (D = fo(yo) with yo € mo). By  the
definition of  D yo belongs to D iff yo is in my and does not belong to fo(yo)-
This is obviously a contradiction to D = fo(yo)-



TND 
=-Refl 
=-Equiv 
Surj-Def 

PSet-Def 
C-Def 

Vxo' x V-'X 

Vxo'x = x 
Vxo' Vyo' x = y -+ [x ++ y] 
Vf.--+(.--+o)' Va.--+ o• Vb(.--+o)--+o' surj(f, a, b) ++ 

VxHO' X E b -+ 3YL' yEa A x = f(y) 
Va.--+ o' Vx.--+ o' x E pset(a) ++ x ~ a 
Va.--+ o' Vb.--+ o' a C b ++ "Ix•• x E a -+ x E b 

Cantor Vm.--+o ' -.3f.--+(.--+0)' surj(f, m, pset(m)) 

Table 1: A formulation of the 'Cantor' theorem 

In order to formulate the characteristic proof steps of the above diagonalization proof, 
we consider the formal proof in Figure 1 of the Cantor theorem which was interactively 
constructed in the O-MKRP environment [HKK+94] using the problem description in Ta­
ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND) 
calculus, i.e. was generated by the application of ND rules [Gen35]. It is then abstracted 
to the so-called assertion level [Hua94], where assertions, in addition to ND rules, can be 
used as justifications. 

The key steps in the diagonalization part of the proof in Figure 1 are: 

•	 the property, that the function AZ. z E mo A -,z E fo(z) belongs to the power set, is 
stated in line 9, 

•	 the application of the definition of surjectivity ('Surj-Der) in line 10 to prove the 
existence of an index for the function AZ. z E mo 1\ -,z E fo (z), which is assumed to 
be Yo, is stated in line 11, 

•	 applying the function AZ. Z E mo 1\ -,z E fo(z) to the index Yo is done in line 14 to 
obtain an implicit contradiction in line 16, 

•	 the contradiction is made explicit by a case analysis in lines 17 .. 25. 

Analyzing the above key proof steps we now want to suggest a systematic way, how to 
search for a diagonalization proof: 

The central point of diagonalization is the construction of the diagonal element which is 
an element of the enumerated set that is different from every object in the enumeration. In 
Figure 1 the diagonal element is represented by a lambda expression that has the i:Q.dexing 
function fo as a sub-term (see line 9). It is therefore convenient to search for the indexing 
function first before trying to construct the diagonal element. 

In the Cantor proof, the function fo binds not only the diagonal element but also each 
element of the enumerated set pset(mo) to an element (its index) in moo This property 
follows from the surjectivity of the function fo from mo into pset(mo) and is represented 
by the formula: 

\:fxHO' X E pset(mo) -+ ?JYt' yE mo 1\ x = fo(Y) 

The indexing property provides important information for the specification of the diagonal 
element: its type (a functional type corresponding to the element type of pset(mo)), and 
its domain type (same type as the element type of mo). 

lThis example is taken from (HKC95]. 

3 

TND V I  IV  ST

=-Refl Vigez=2x
=-Equiv VzaVysz=y  [ ze  y]
Surj-Def Vf,,(1-s0)= VA ,00Vb ( 0)  —>0=Surj(f, a,b) &

V2, oT  Eb-—+ I y yEaAzx=  f ( y )
PSet-Def Va , onVZ,0- = € pset(a) & x Ca
C-Def Va,s0eVbs0ea Cbd  Vz  €a—z€D
Cantor VM, 00  23  fies (1s0)e SULI(  f ,  m ,  pset(m))

Table 1: A formulation of  the ‘Cantor ’  theorem

In order to formulate the characteristic proof steps of the above diagonalization proof,
we consider the formal proof in Figure 1 of  the Cantor theorem which was interactively
constructed in the Q-mxrp environment [HKK*94] using the problem description in Ta-
ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND)
calculus, i.e. was generated by the application of ND  rules [Gen35]. It is then abstracted
to the so-called assertion level [Hua94], where assertions, in addition to ND  rules, can be
used as justifications.

The key steps in  the diagonalization part of the proof in  Figure 1 are:

e the property, that the function Az. z € mg A =z € fo(z) belongs to the power set, is
stated in line 9,

e the application of  the definition of  surjectivity (‘Surj-Def’) in line 10 t o  prove the
existence of  an  index for the function Az.z € mg  A =z  € fo(z),  which is assumed to
be  yo, is stated in  line 11,

e applying the function Az.z € mg Az  € fo(z) to the index yo is done in line 14 to
obtain an implicit contradiction in  line 16,

e the contradiction is made explicit by  a case analysis in  lines 17 . .  25.

Analyzing the above key proof steps we now want to suggest a systematic way, how to
search for a diagonalization proof:

The central point of diagonalization is the construction of the diagonal element which is
an  element of  the enumerated set that is different from every object in the enumeration. In
Figure 1 the diagonal element is represented by a lambda expression that has the indexing
function fo as a sub-term (see line 9). It is therefore convenient to search for the indexing
function first before trying to construct the diagonal element.

In  the Cantor proof, the function fo binds not only the diagonal element but also each
element of  the enumerated set pset(myg) to  an  element (its index) in mo. This property
follows from the surjectivity of  the function fo from mg into pset(mg) and is represented
by  the formula:

YZ,0.X € pset(mo) = yu  y € mo AT  = fo(y)

The indexing property provides important information for the specification of the diagonal
element: its type (a functional type corresponding to the element type of  pset(my)), and
its domain type (same type as the element type of  mo).

1This example is taken from [HKC95].



1. 1 I- 3f. surj(f, mo, pset(mo»	 (Hyp) 
2. 2 I- surj(fo, mo, pset(mo))	 (Hyp) 
3. 3 I- Xl E AZ. [z E mo 1\ ...,[z E fo(z)]]	 (Hyp) 
4. 3 I- [Xl E mo 1\ ""[XI E fO(XI)]]	 (LambdaE 3) 
5. 3 I- Xl E mo	 (AndEL 4) 
6. I- (Xl E AZ. (z E mo 1\ ...,[z E fo(z)]] -t Xl E mol (ImpI5) 
7. I- 'rIx. X E [AZ. [z E mo 1\ ...,(z E fo(z)]] -t X E mol (ForallI 6) 
8. I- AZ. (z E mo 1\ ...,(z E fo(z)]] ~ mo	 (~-Def 7) 
9.	 I- AZ. [z E mo 1\ ...,[z E fo(z)JJ E pset(mo) (Pset-Def 8) 

Proof of 16 
10. 2 I- 3y. [y E mo 1\ AZ. [z E mo 1\ ...,[z E fo(z)]] = fo(y)] (Surj-Def 2 9) 
11. 11 I- [YO E mo 1\ AZ. [z E mo 1\ ...,[z E fo(z)]] = fo(Yo)] (Hyp) 
12. 11 I- AZ. [z E mo 1\ ""[z E fo(z)]] = fo(yo) (AndER 11) 
13. I- yo E fo(yo) = yo E fo(Yo)	 (=-Refl.) 

14. 11 I- yo E AZ. [z E mo 1\ ""[z E fo(z»)) = yo E fo(yo) (=-Subst 12 13) 
15. 11 I- [yo E AZ. [z E mo 1\ ...,[z E fo(z»)) +-t Yo E fo(yo)] (=-Equiv 14) 
16.	 11 I- [[YO E mo 1\ ""[YO E fo(yo)]] +-t yo E fo(yo)] (LambdaE 15) 

CaseI 
17. 17 I- yo E fo(yo)	 (Hyp) 
18. 11,17 I- ""[YO E fo(yo)]	 (16 17) 
19. 1,2,11,17 I- ..L	 (NotE 18 17) 

Case 2 
20. 20 I- ""[YO E fo(Yo)]	 (Hyp) 
21. 11 I- yo E mo	 (AndEL 11) 
22. 1,2,11,20 I- yo E fo(yo)	 (16 21 20) 
23. 1,2,11,20 I- ..L	 (NotE 20 22) 
24. I- [YO E fo(yo) V""[YO E fo(yo)JJ	 (TND) 
25.	 1,2,11 f- ..L (OrE 24 19 23) 

End of Case Analysis 
26. 1,2 f- ..L	 (ExistsE 10 25) 
27. 1 I- ..L	 (ExistsE 1 26) 
28. f- ...,[3f. surj(J, mo, pset(mo))]	 (NotI27) 
29. I- 'rim. ""[3f. surj(f, m, pset(m))]	 (ForallI 28) 

Figure 1: A formal proof of the 'Cantor' theorem 

In addition to these type constraints, the diagonal element must be different from each 
element of the enumerated set pset(mo), Le. from each fo(z). In the Cantor proof this is 
achieved by enforcing that for each z the diagonal element differs from the element fo(z) 
in some property. We call this property the diagonal property which is a proposition that 
depends on the term fo(z)(z) which we call the diagonal term. In the Cantor proof, the 
diagonal property is represented by the conjecture z E fo(z) which is a syntactic sugar of 
the diagonal term itself. The diagonal element inverts this diagonal property (occurrence 
of -,z E fo(z) in the lambda expression representing the diagonal element in line 9). 

In order to get a contradiction, the diagonal element is constructed in such a way, that 
it belongs to the enumerated set pset(mo) (occurrence of z E mo in the lambda expression 
representing the diagonal element in line 9). Consequently, the diagonal element has an 
index Yo and the diagonal property for this element of mo (yo E fo(Yo)) is contradicted 
according to the construction principle of the diagonal element. 

In [Che96], we studied other proofs by diagonalization which are somewhat different 
from the Cantor proof in Figure 1. We exploited these differences and suggested a Di­
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1 1 FE 3f.  surj(f,  mo, pset(mo)) (Hyp)
2. 2 + surj{ fo, mo, pset(mo)) (Hyp)
3. 3 kb 21  € Aza [2 € mo A [ 2  € fo(2)]] (Hyp)
4 .  3 + [21  € mo  A —[z1 € fo ( z1 ) ] ]  (LambdaE 3 )
5. 3 Fz  emp  (AndEL 4)
6. F [21 € Aza [2 € mo A =[z € fo(z)]] = 71  € mo] (Impl 5)
7. F Vzuw € [Aza [2 € mo A nz  € fo(z)]] — = € mo] (ForallI 6)
8. F Azz  € mo A nlz € fo(z)]] © mo (C-Def 7)
9. F Az  [2 € mo A =z  € fo(z)]] € pset(mo) (Pset-Def 8)

Proof of 16
10. 2 F Sys [y € mo Adza[z € mo A =[z € fo(2)]] = fo(y)] (Suxj-Def 2 9)
11. 11 F [yo € mo A Az  [z € mo A [ 2  € fo(2)]] = fo(yo)] (Hyp)
12. 11 F Aza [2 € mo Az  € fo(2)]] = fo(yo) (AndER 11)
13 F yo € fo(yo) = yo € fo(yo) (=-Refl)
14. 11 F yo € Aza[z € mo A [ 2  € fo(2)]] = yo € fo(yo) (=-Subst 12 13)
15. 11 F [yo € Aza [2 € mo Az  € fo(2)]] © yo € fo(yo)] (=-Equiv 14)
16. 11  F [yo € mo A [yo € fo(yo)]] yo € fo(yo)] (LambdaE 15)

Case 1
17. 17 F yo € fo(yo) (Hyp)
18. 11,17 Fk [yo € fo(yo)] ( 16  17)
19. 12,1117 + 1 (NotE 18 17)

Case 2
20. 20 F [yo € fo(yo)] (Hyp)
21. 11 F yo € mo (AndEL 11)
22. 1,2,11,20 + yo € fo(yo) (16  21 20)
23. 1,2,11,20 EL  (NotE 20 22)
24. F [yo € fo(yo) V =[yo € fo(yo)]] (TND)
25. 1,211 FL  (OrE 24 19 23)

End of Case Analysis
26. 1,2 FL  (ExistsE 10 25)
27. 1 FL  (ExistsE 1 26)
28. kb =[3f.surj(f, mo, pset(mo))] (NotI 27)
29. F Vm. =[3f.  surj(f, m ,  pset(m))] (Foralll 28)

Figure 1: A formal proof of the ‘Cantor’ theorem

In addition to these type constraints, the diagonal element must be different from each
element of the enumerated set pset(mg), i.e. from each fo(2). In the Cantor proof this is
achieved by enforcing that for each z the diagonal element differs from the element fo(z)
in some property. We call this property the diagonal property which is a proposition that
depends on  the term fo(z)(z) which we  call the diagonal term. In  the Cantor proof, the
diagonal property is represented by the conjecture z € fo(z) which is a syntactic sugar of
the diagonal term itself. The diagonal element inverts this diagonal property (occurrence
of =z  € fo(z) in the lambda expression representing the diagonal element in  line 9).

In  order to get a contradiction, the diagonal element is constructed in such a way, that
it belongs to the enumerated set pset(mg) (occurrence of z € mg in the lambda expression
representing the diagonal element in line 9). Consequently, the diagonal element has an
index yo and the diagonal property for this element of mo (yo € fo(yo)) is contradicted
according to the construction principle of the diagonal element.

In [Che96], we studied other proofs by diagonalization which are somewhat different
from the Cantor proof in Figure 1. We exploited these differences and suggested a Di-
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Goal 8 
Precondition NIL 

6, newconst(i, a), 
-< 11 dif fers(D, AX"," x) occurs(x, D(x))Postcondition 

dif fers(D(i), F(i)(i)) 5 
inverts(D, F(i)(i),IP) > 

l. 1 r- n(i) 1\ D = F(i) (Hyp) 
2. 1 r- n(i) (AndEL 1) 
3. 1 r- D = F(i) (AndER 1) 
4. 1 r- .1 (MEC(D,IP) 2

Proof 3)-Schema 5. r- E(D) (Open) 
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8. r- .1 (ExistsE 7 4) 

Figure 2: The Diag strategy 

agonalization proof strategy that can be applied to prove the examples in [Che96]. This 
strategy is described in the next section. 

3 A Diagonalization Proof Strategy 

In this section, we give a declarative representation of the diagonalization strategy and 
explain how it can be applied. 

3.1 The Representation of the Strategy 

To represent the diagonalization proof strategy, we use the declarative framework for the 
representation of proof methods in O-MKRP[HKRS94] with some extensions. To clarify the 
meaning of the strategy in Figure 2, we will give some explanations to the different slots 
and to the important aspects of the syntax. 

The proof schema consists of ND lines whose formulae are schematic, Le. are propo­
sitions with metavariables (free variables). We distinguish higher order (HOV) and first 
order (FOV) metavariables. HOVs are represented by capital letters and can be unified 
with lambda expressions (by higher order unification (HOU)), whereas FOVs can only be 
unified with constant symbols or FOVs. For instance, in Figure 2 the metavariable n can 
only be instantiated to a predicate symbol that denotes a sort. A metavariable can also oc­
cur in the strategy both over-lined and un-annotated. This notation should be interpreted 
as an additional constraint on the metavariables: an over-lined metavariable can be bound 
to an object term with free variables, Le. metavariables, and an un-annotated occurrence 
of a metavariable stands for a closed object term. 

Each ND line has a justification which can be either open (annotated by Open) or closed. 
A closed justification consists of a tactic, e.g. a ND rule, an argument list, and a list of 
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Figure 2: The Diag strategy

agonalization proof strategy that can be  applied to prove the examples in [Che96]. This
strategy is described in the next section.

3 A Diagonalization Proof Strategy

In this section, we give a declarative representation of the diagonalization strategy and
explain how it can be applied. ;

3.1 The Representation of  the Strategy

To represent the diagonalization proof strategy, we use the declarative framework for the
representation of proof methods in Q-mxre[HKRS94] with some extensions. To clarify the
meaning of the strategy in  Figure 2, we will give some explanations to the different slots
and to  the important aspects of  the syntax.

The proof schema consists of  ND  lines whose formulae are schematic, i.e. are propo-
sitions with metavariables (free variables). We distinguish higher order (HOV) and first
order (FOV) metavariables. HOVs are represented by capital letters and can be unified
with lambda expressions (by higher order unification (HOU)), whereas FOVs can only be
unified with constant symbols or FOVs. For instance, in  Figure 2 the metavariable n can
only be instantiated to a predicate symbol that denotes a sort. A metavariable can also oc-
cur in the strategy both over-lined and un-annotated. This notation should be interpreted
as an additional constraint on the metavariables: an over-lined metavariable can be bound
to an  object term with free variables, i.e. metavariables, and an  un-annotated occurrence
of  a metavariable stands for a closed object term.

Each ND line has a justification which can be either open (annotated by Open) or closed.
A closed justification consists of a tactic, e.g. a ND  rule, an argument list, and a list of



ND lines (the premises). This means, the corresponding ND line can be proven from the 
premises by applying the tactic with the given arguments. 

The goal of a strategy should match an open ND line on the object level, which is to 
be closed by the strategy. Before applying the strategy, its precondition must be fulfilled, 
where a precondition consists of ND lines from the proof schema and constraints. The ND 
lines have to match support ND lines of the goal and the constraints are evaluated. The 
support lines of an open ND line consist of its hypotheses and their derived consequences. 

The application of the strategy would reduce the goal to new subgoals to be closed and 
some additional constraints to be satisfied. Both subgoals and constraints are given in the 
postcondition list. 

The occurrence of constraints together with ND lines in the precondition and the post­
condition list enables the representation of some control information, namely the order of 
closing the goals and satisfying the constraints. The ND lines and the constraints should 
be considered sequentially from the left to the right, if they are separated by commas in the 
list, and simultaneously by grouping them in a list marked with 11. Moreover, it becomes 
possible to interchange between goal and constraint satisfaction. 

The goal of the diagonalization strategy is a contradiction, i.e. 1.. Its precondition 
list is empty 2, it can directly be applied to prove a contradiction as described in the next 
section. We are not concerned with the control problem, when to choose the diagonalization 
strategy among other applicable methods. We assume that this choice can be done either 
according to some control knowledge that depends on some aspects such as the theory of 
the problem, or interactively by the user. 

3.2 Application of the Strategy 

The diagonalization strategy reduces the proof of a contradiction to the main tasks: the 
search for an indexing relation, and the construction of a diagonal element. 

3.2.1 The Search for an Indexing Relation 

The indexing relation is determined by closing the subgoal 6, Le. stating that the formula 
schema of the ND line 6 can be unified with a provable formula from the support lines. 
This amounts to the general and complex task whether a formula schema unifies a provable 
formula from some premises. It is difficult to obtain all provable formulae unifying the 
schema. We suggest therefore to restrict this by finding formulae that do not only unify 
the schema but also can be proven by assertion application from the premises. The methods 
to be used for planning assertion applications should specify whether some premise can be 
an assertion to prove a formula schema and should specify the resulted subgoals, i.e. the 
premises of this assertion application. 

For instance, in the Cantor theorem, the sole premise that asserts an indexing property 
is the surjective definition Surj-Def. Its application to close the indexing schema delivers 
the subgoal surj(F, ri, E) that can be unified with the hypothesis surj(fo, mo, pset(mo)) (see 
line 2 in Figure 1). Thus, the metavariables F, n, and E are instantiated respectively to 
fo, mo, and pset(mo). 

2The postcondition 6 can be used as a precondition. This would restrict the application of the strategy 
to goals with indexing property as support. In section 3.2, it becomes clear that such a strategy is less 
general than the strategy in Figure 2. 
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The indexing relation is determined by closing the subgoal 6, i.e. stating that the formula
schema of the ND  line 6 can be  unified with a provable formula from the support lines.
This amounts to the general and complex task whether a formula schema unifies a provable
formula from some premises. I t  is difficult to  obtain all provable formulae unifying the
schema. We suggest therefore to restrict this by finding formulae that do not only unify
the schema but also can be proven by assertion application from the premises. The methods
to  be used for planning assertion applications should specify whether some premise can be
an assertion to  prove a formula schema and should specify the resulted subgoals, i.e. the
premises of  this assertion application.

For instance, in the Cantor theorem, the sole premise that asserts an indexing property
is the surjective definition Surj-Def. Its application to close the indexing schema delivers
the subgoal surj(F,i , E)  that can be unified with  the hypothesis surj(fo, mo, pset(mg)) (see
line 2 in Figure 1). Thus, the metavariables F ,  n ,  and E are instantiated respectively to
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to goals with indexing property as support. In section 3.2, it becomes clear that such a strategy is less
general than the strategy in Figure 2.



Assertion application alone is not enough to determine all possible indexing properties. 
Sometimes, it is necessary to combine several assertions to get the right indexing property. 
For instance, the following formulae can be combined to determine an indexing relation: 

1.	 VXa.-+7J. E(x) -+ 3ya.. Sex, y) 

2.	 VZa-+f3. Vua• S(z, u) -+ n(u) 1\ z = F(u) 

The process of proving formula schemata by assertion applications must be extended to 
manage such cases. 

The next postcondition is the constraint newconst(z, a) whose evaluation binds the 
metavariable i to a new constant with the type set up for the metavariable a. The rest of 
the postcondition list should be evaluated simultaneously and leads to the construction of 
the diagonal element. 

3.2.2 The Construction of the Diagonal Element 

The diagonal element D is a function that belongs to the enumerated set E and inverts 
some property wrt. the diagonal term F(i)(i). The first property can be stated by closing 
the subgoal 5. The second property can be fulfilled by some propositions which depend on 
(3, the type of F(i)(i), and on the instantiation of D. This is the reason why we represent 
the inverting property as a constraint. The satisfaction of the inverts constraint would 
deliver the proofs I P to the propositions that guarantee the inverting property of D. 

To prevent nonsense instantiations of D, we use some restriction constraints. The con­
straint occurs(x, D(x)) is evaluated, whenever the (partial) instantiation for the metavari­
able D is affected. The constraints dif fers(D, AXa • x) and dif fers(D(i), F(i)(i)) have only 
to be evaluated, when the instantiation of D becomes closed, Le. contains no free variables. 
If one of these constraints cannot be satisfied, we have to backtrack by considering the next 
possible instantiation for D. 

A vague specification of D can be given by its representation with the term schema 
AXa• G(F(x), x), and by the inverting property U(G(F(i), i))) f-7 ...,U(P(i)(i)). These 
schemata can be further instantiated by closing the subgoal 5 and the given inverting 
property. However, some alternative instantiations of these schemata would make this 
task easier, as they will provide more control. In the following, we consider the possible 
instantiations of these schemata that we obtain by investigating the examples in [Che96] . 

•	 When the diagonal term F(i)(i) denotes a proposition, Le. the metavariable (3 is 
instantiated with the type of truth values 0, as in our formulation of the Cantor 
theorem in section 2, then it is worth considering the formula schema ...,P(i) (i) f-7 D(i) 
as inverting property. 

•	 If the diagonal term does not denote a proposition, two important possible instanti­
ations of the metavariable are distinguished: 

1.	 The value of D(x) can be defined according to some condition U(P (x), x). D(x) 
equals Y(x), if U(F(x), x) holds, and it is Z(x) otherwise. Thus, D must be in­
stantiated by the schema AXa • if(U(F(x), x), Y(x), Z(x)), where the constraint 
dif fers(Y(x), Z(x)) must hold. 
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Assertion application alone is not enough to determine all possible indexing properties.
Sometimes, i t  is necessary to combine several assertions to get the right indexing property.
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A vague specification of D can be given by its representation with the term schema
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schemata can be further instantiated by closing the subgoal 5 and the given inverting
property. However, some alternative instantiations of these schemata would make this
task easier, as they will provide more control. In the following, we consider the possible
instantiations of these schemata that we obtain by investigating the examples in  [Che96).

e When the diagonal term F(i)( i)  denotes a proposition, i.e. the metavariable 3 is
instantiated with the type of truth values o, as in our formulation of the Cantor
theorem in  section 2, then it is worth considering the formula schema = F(i)(i) ++ D(i)
as inverting property.

e I f  the diagonal term does not denote a proposition, two important possible instanti-
ations of the metavariable are distinguished:

1. The value of D(z) can be defined according to some condition U(F(z),z). D(z)
equals Y (z), if  U(F(z),  z) holds, and i t  is Z(z) otherwise. Thus, D must be in-
stantiated by  the schema Az,  i f  (U(F(z),z),Y ( z ) ,  Z(z) ) ,  where the constraint
dif  fers(Y(x),Z(z)) must hold.



The inverting property of D would involve the arguments of the if-construct, 
Le. the condition, the then-term, and the else-term. The inversion of the term 
F(i)(i) is obtained, if the following subgoals can be proven: 

When U(F (i), i) is instantiated to a proposition of the form Q(F (i) (i)) ,Le. 
that depends on the term F(i)(i), then we consider the subgoals -,Q(Y(i)), 
and Q(Z(i)). Otherwise, the condition term U(F(i), i) must be attributed to a 
proposition that depends on the term F(i)(i). We consider therefore the sub­
goal U(F(i), i) ~ Q(F(i)(i)), where the connector ~ can be either a left-to-right 
implication or an equivalence symbol. If ~ can be instantiated to an equiva­
lence symbol, then the subgoals -,Q(Y(i)), and Q(Z(i)) must be considered. 
Otherwise, we consider the subgoals -,Q(Y(i)), -,U(F(i), i) -+ R(F(i)(i)), and 
-'R(Z(i)). 

2.	 After proving the subgoal 5, the metavariable D can be instantiated with the 
function AXa • C(F(x), x) which is different from an if-construct. The invert­
ing property of D can be reached by closing one of the following subgoals: 
the inequality C(F(i), i) i= F(i)(i) and the formula schema U(C(F(i), i)) H 

-,U(F(i)(i)). 

While closing subgoals represented by formula schemata, metavariables are progres­
sively instantiated. This is done by middle out reasoning (MaR) [KBB93]. 

3.3 Middle Out Reasoning 

We are concerned here with subgoals represented by formula schemata. In general, propo­
sitions with rigid heads, Le. represented by an application P(tl, .. , tn ) whose function P is 
fully instantiated, are not problematic. They can be closed by assertion application or by 
simplification tactics. 

Applying an assertion to a formula schema involves the use of HOD. However, this pro­
cess can deliver infinite number of solutions [Hue75]. We solve this problem by considering 
only the n first solutions. Moreover, we use heuristics (similar say to the use of HO colored 
unification in linguistic analysis [GK96]) to prevent nonsense solutions and to prefer the 
promising ones. For instance, the projection solution AX. x of the problem Y(a) = a should 
be considered before the imitation solution AX. a. 

Moreover, there are conflict situations, where many assertions are applicable to close 
a formula schema. To make the reasonable choice, we use control heuristics base~ on the 
following preference criteria: 

•	 the metavariable instantiations caused by the assertion application, 

•	 the number of the new subgoals resulted from applying the assertion, 

•	 and whether the assertion application involves new inserted hypotheses, Le. hypothe­
ses that do not belong to the original proof assumptions. 

We prefer heuristically the assertion that inserts the least subgoals, instantiates the most 
metavariables, and involves the most new inserted hypotheses. 

Simplification tactics may not be applied to critical goals, where a goal is critical, iff 
its splitting by a simplifiction tactic leads to a flexible subgoal and/or a flexible hypothesis, 
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i.e. a formula with a flexible head. A flexible hypothesis can assert every subgoal, and 
a flexible subgoal follows from every hypothesis. For instance, the ND rule ImpI is not 
allowed to be applied as a simplification tactic to the goal schema p -+ D(i), because this 
would deliver the flexible subgoal D(i). A critical subgoal is suspended at first and we 
consider simultaneous subgoals until the involving metavariable is instantiated. 

In general, assertion application alone is not enough to prevent critical subgoals. It is 
possible to obtain a proof plan with many suspended critical subgoals. To raise such a 
blockade, we use techniques from [Ble77], where instantiations of set variables in higher 
order theorems are suggested to obtain a first order theorem that can be proven by an 
automated theorem prover. In this procedure, HOVs that occur as heads of atoms are 
interpreted as sets. According to the position of the corresponding atom wrt. other sub­
formulae in the theorem, a HaV is associated to the maximal possible set. If this HaV 
occurs several times as the head of an atom in the theorem, then it is instantiated with 
the intersection of the sets resulted by considering each occurrence. For instance, if we 
had the goal Vx(D(x) -+ mo(x)) /\ (-'fo(x)(x) -+ D(x)) then we would obtain for the first 
occurrence the set {x: mo(x)} and for the second occurrence the set U, which denotes the 
whole individual set. The intersection should be clearly the set {x : mo(x)}. 

For each suspended critical subgoal, Bledsoe's procedure delivers the appropriate set 
to the metavariable, that causes the blockade. Each of these metavariables is instantiated 
to the intersection of the associated sets. After that, at least one subgoal will become 
non-critical and the proof planning process can be continued. 

In the Cantor example, the subgoal pset(mo)(D) can be reduced to the subgoal D(a) -+ 
mo(a) after applying first the power set definition PSet-Def, then the subset definition 
<;;;;-Def, and finally the tactic ForallI. Since the resulted subgoal is critical, we consider 
next the inverting property -'fo(i)(i) f-7 D(i). No support line can be found to deduce 
a term of the form 'fo(i)(i) f-7 ., where. stands for any proposition. This subgoal is 
therefore critical too. Bledsoe procedure computes the set {x: mo(x)} for the former critical 
subgoal and the set {x: -'fo(x)(x)} for the latter subgoal. Now, we must conjunct the two 
sets for instantiating D and check that the resulted instantiation AXL• mo(x) /\ -'fo(x)(x) 
satisfies the two suspended subgoals. The first subgoal (mo(a) /\ -'fo(a)(a)) -+ mo(a) is 
obviously satisfiable. The second subgoal 'fo(i)(i) f-7 (mo(i) /\ -,fo(i)(i)) can be closed 
straightforward using the hypothesis mo (i). 

In the specification of the diagonal element, we pretended that the HaV D can be 
instantiated to an if-term, which is commonly used as the conditional expression in pro­
gramming languages. It is therefore convenient to use techniques of program synthesis 
while considering subgoals, that involve the metavariable D. For instance, the subgoal 
p -+ r(D) can be reduced, after unifying D with AX. if(p, Y(x), Z(x)), to r(Y). 

While constructing the diagonal element D, there can be conflict situations, where both 
simplification tactics and techniques of program synthesis can be applied. In such situa­
tions, we prefer the application of program synthesis techniques. We try first techniques of 
program synthesis for instantiating D, then simplification tactics, thereafter assertion appli­
cation, and finally Bledsoe method. While searching for the indexing relation, we attempt 
first assertion application, then simplification tactics, and at last the Bledsoe procedure. 
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instantiated to an if-term, which is commonly used as the conditional expression in  pro-
gramming languages. I t  is therefore convenient to use techniques of program synthesis
while considering subgoals, that involve the metavariable D .  For instance, the subgoal
p — r(D) can be reduced, after unifying D with Az.if(p,Y ( x ) ,  Z(x)), to r(Y).

While constructing the diagonal element D ,  there can be conflict situations, where both
simplification tactics and techniques of program synthesis can be applied. In such situa-
tions, we prefer the application of  program synthesis techniques. We try first techniques of
program synthesis for instantiating D ,  then simplification tactics, thereafter assertion appli-
cation, and finally Bledsoe method. While searching for the indexing relation, we attempt
first assertion application, then simplification tactics, and at last the Bledsoe procedure.



4 

3.4 The Execution of the Strategy 

If the application of the strategy succeeds, i.e. its postcondition is satisfied, we can execute 
it. This means the corresponding instantiated proof schema is inserted into the ND proof. 
Lines of the proof schema, that are not justified by ND rules, can further be expanded by 
applying their justification tactics. The expansion of the line number 4 in the proof schema 
of the diagonalization strategy is interesting. This corresponds to making the implicit 
contradiction of the diagonal element explicit. The tactic MEC generates a contradiction 
proof on ND level according to the instantiation of the diagonal element and of the proven 
properties that guarantee the inversion of the diagonal term F(i)(i). 

For instance, in the Cantor theorem, D is instantiated to the lambda term AX£. mo(x) 1\ 

'fo(x)(x) and the inverting property corresponds to the proposition .fo(i)(i) H (mo(i) 1\ 

.fo(i)(i)). In such situation, the tactic MEC uses the conjectures mo(i) and Ax.mo(x) 1\ 

'fo(x)(x) = fo(i), i.e. the instantiated formulae ofline 2 and line 3 in Figure 2, to deliver 
the following expansion of line 4: 

4 A,l I­ ..L (OrE Ll L2 L3) 
L l I­ fo(i)(i) V -,fo(i)(i) (TND) 
Cl Cl I­ fo(i)(i) (Hyp) 
L 2 A,l,Cl I­ ..1 (NotE L 4 Cd 
L4 A,1,C1 I­ -,fo(i)(i) (=Subst 3 L 5 ) 

L 5 A,l,Cl I­ -,p.x. mo(x) A -'fo(x)(x»(i) (LambdaI L6) 
L6 A,l,Cl I­ -,(mo(i) A -,fo(i)(i» (NotPop L7) 
L7 A,l,Cl I­ -,mo(i) V fo(i)(i) (OdR Cl) 
C2 C2 I­ -,fo(i)(i) (Hyp) 
L3 A,1,C2 I­ ..1 (NotE C2 L 8 ) 

L 8 A,1,C2 I­ fo(i)(i) (=Subst 3 £9) 
L 9 A,1,C2 I­ (..\x. mo(x) A -'fo(x)(x»(i) (Lambda! LlD) 
LlD A,1,C2 I­ mo(i) f\ -'fo(i)(i) (And! 2 C2) 

In other instantiations of D, e.g. an if-term, the tactic MEC uses the proofs IP for the 
inverting propositions, that are closed during the satisfaction of the constraint inverts, in 
the expansion of line 4. 

Conclusion and Future Work 

In this report, we suggest a systematic way for constructing diagonalization proof~. We 
propose some extensions of the declarative environment for method representation pre­
sented in [HKRS94] to capture the main steps in a diagonalization proof schema and allow 
planning partial instantiated goals. The success of the diagonalization proof strategy de­
pends mainly on two tasks: the existence of an indexing property and the existence of a 
function (the diagonal element) that satisfies an inverting property relative to the diagonal 
term F(i)(i) ( i is the index of the diagonal element.) and belongs to the enumerated set 
E. We describe how to achieve each of these tasks. 

The suggested proof strategy can be applied successfully by hand to the examples 
in [Che96]. Next, we want to extend the proof planning framework in n-MKRP to implement 
this strategy. Moreover, the process of assertion application to prove the indexing property 
and that of middle out reasoning to construct the diagonal element have to be further 
specified and implemented. 
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i t .  This means the corresponding instantiated proof  schema is inserted into the ND  proof.
Lines of  the proof schema, that are not justified by ND  rules, can further be expanded by
applying their justification tactics. The expansion o f  the line number 4 in  the proof  schema
of the diagonalization strategy is interesting. This corresponds to making the implicit
contradiction of the diagonal element explicit. The tactic MEC generates a contradiction
proof on  ND  level according to the instantiation of  the diagonal element and of  the proven
properties that guarantee the inversion of the diagonal term F(i)(£).

For instance, in  the Cantor theorem, D is instantiated to the lambda term Az,. mgo(z) A
=fo(z)(z) and the inverting property corresponds to the proposition =fo(i)(i) & (mo(i) A
—fo(i)(i)). In such situation, the tactic MEC uses the conjectures mo(i) and Az.mg(z) A
=fo(z)(z) = foli),  i-e. the instantiated formulae of line 2 and line 3 in  Figure 2, to deliver
the following expansion of  line 4:

4 A l  FL  (OrE L ı  La  Ls)

Ci Ci  Fo fo(i)(i) (Hyp)
Ls  ALC FL  (NotE L4  C i )
La AL ,  CL FO —folÖli) (=Subst 3 Ls)
Lg ALC FF =(Azemo(z) A =fo(z) (2) )(3) (Lambdal Le)
Le ALCL  FB (mol)  A fo(i)  (5) (NotPop Lz)
Lr  AL ,  C0 | mod)  V fo(i)(E) (OrIR Ci)
Cz: Cr I 1010) (Hyp)
Ls A1L ,C  FOL  (NotE C2 Lg )
Lg A1 ,C  k* fo( i ) ( )  =Subst 3 Lg)
Ly A1 ,C  FF (Azemg(z) A =fo(z)(2))(3) (Lambdal Ly )
L io  A ,1 ,C2  FF mo( i )  fo( i ) ( i )  (AndI2 Cs)

In other instantiations of  D ,  e.g. an if-term, the tactic MEC uses the proofs IP  for the
inverting propositions, that are closed during the satisfaction of the constraint inverts, in
the expansion of  line 4.

4 Conclusion and Future Work

In this report, we suggest a systematic way for constructing diagonalization proofs. We
propose some extensions of the declarative environment for method representation pre-
sented in  [HKRS94] to capture the main steps in  a diagonalization proof schema and allow
planning partial instantiated goals. The success of the diagonalization proof strategy de-
pends mainly on two tasks: the existence of  an  indexing property and the existence of  a
function (the diagonal element) that satisfies an inverting property relative to the diagonal
term F(2)(i) ( 4 is the index of  the diagonal element.) and belongs to  the enumerated set
E. We describe how to achieve each of these tasks.

The suggested proof strategy can be applied successfully by  hand to  the examples
in [Che96]. Next, we want to  extend the proof planning framework in  Q-mxrp to  implement
this strategy. Moreover, the process of assertion application to prove the indexing property
and that of middle out reasoning to construct the diagonal element have to be further
specified and implemented.
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Central questions that need to be answered are whether an indexing property could 
be formulated using other proof schemata and whether there is another specification for 
diagonal elements. To answer these questions, more examples and especially other problem 
descriptions should be empirically examined. 
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