
/ana/qund/ap q
e

-tım
 sa n

a
n

sl//
d

ia
g

 A
M

A
A

AN
VIN

YH
D

NHEM
O

NYLUVVS 17099-d
M

ILVIN
H

O
AN

I H
O

IH
Y

H
IH

OV
I

SH
AN

VTH
VVS SH

A LV
LIS

H
IA

IN
A

2
]=oC$a

[a9=R
=+«©

N==[=]
1s]
8AD

O
=EAy

H
oday |M

IS
Lassaad Cheikhrouhou

SEKI Report SR-97-06

1

Planning Diagonalization Proofs

Lassaad Cheikhrouhou

Fachbereich Informatik

Universitiit des Saarlandes

D-66041 Saarbriicken, Germany

lassaad@cs.uni-sb.de

http://jswww.cs.uni-sb.de/-lassaad

May 30,1997

Abstract

This report is a first attempt of formalizing the diagonalization proof technique.
We give a strategy how to systematically construct diagonalization proofs: (i) finding
an indexing relation, (ii) constructing a diagonal element, and (iii) making the implicit
contradiction of the diagonal element explicit. We suggest a declarative representation
of the strategy and describe how it can be realized in a proof planning environment.

Introduction

In classical (automated) theorem proving the reasoning process is carried out at the object
level, Le. the level of the (first order) logic representation of the mathematical objects
under study. Searching for a proof means applying calculus inference rules to manipulate
the initial problem situation which at the beginning consists of the negated theorem to be
proven and the given assertions (definitions, axioms, and other theorems) in order to find
a final situation, for instance -'- in a resolution theorem prover. This guarantees that the
theorem is a logical consequence of the given assertions. Tactical theorem proving applies
tactics, Le. composition of calculus inference rules. The reasoning remains however at the
object level.

Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can be
applied to construct an object level proof. The used operators (methods) are specifications
of tactics represented in a meta-language. They state in this meta-Ianguage when a tactic
can be applied and what its effects are. Reasoning is therefore carried out at a meta level.
Two main aspects make this approach interesting, since they provide some guidance while
searching for a proof:

The first aspect of proof planning is that the search for a proof plan is often done in
the context of a well known mathematical proof technique such as induction. Such a proof
technique characterizes a whole proof schema which is then instantiated to a sequence of
planning steps (which in turn generate object level proofs). Similar to specifications of
basic tactics, e.g. methods which choose appropriate rewriting rules, these proof schemata
are called (proof) methods in the terminology of CLAM [BvHHS90]. As a mathematical
proof technique implicitly comprises instructions on how to globally perform the associated

1

Planning Diagonalization Proofs

Lassaad Cheikhrouhou
Fachbereich Informatik

Universität des Saarlandes
D-66041 Saarbrücken, Germany

l a ssaad@cs .un i - sb .de
http://jswww.cs.uni-sb.de/"lassaad

May 30, 1997

Abstract

This report is a first attempt of formalizing the diagonalization proof technique.
We give a strategy how to systematically construct diagonalization proofs: (i) finding
an indexing relation, (ii) constructing a diagonal element, and (iii) making the implicit
contradiction of the diagonal element explicit. We suggest a declarative representation
of the strategy and describe how it can be realized in a proof planning environment.

1 Introduction

In classical (automated) theorem proving the reasoning process is carried out at the object
level, i.e. the level of the (first order) logic representation of the mathematical objects
under study. Searching for a proof means applying calculus inference rules to manipulate
the initial problem situation which at the beginning consists of the negated theorem to be
proven and the given assertions (definitions, axioms, and other theorems) in order to find
a final situation, for instance L in a resolution theorem prover. This guarantees that the
theorem is a logical consequence of the given assertions. Tactical theorem proving applies
tactics, i.e. composition of calculus inference rules. The reasoning remains however at the
object level.

Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can be
applied to construct an object level proof. The used operators (methods) are specifications
of tactics represented in a meta-language. They state in this meta-language when a tactic
can be applied and what its effects are. Reasoning is therefore carried out at a meta level.
Two main aspects make this approach interesting, since they provide some guidance while
searching for a proof:

The first aspect of proof planning is that the search for a proof plan is often dene in
the context of a well known mathematical proof technique such as induction. Such a proof
technique characterizes a whole proof schema which is then instantiated to a sequence of
planning steps (which in turn generate object level proofs). Similar to specifications of
basic tactics, e.g. methods which choose appropriate rewriting rules, these proof schemata
are called (proof) methods in the terminology of CLAM [BvHHS90]. As a mathematical
proof technique implicitly comprises instructions on how to globally perform the associated

mailto:lassaad@cs.uni-sb.de

2

part of a proof, we want to extend the proof schema in the representation of a technique
with additional knowledge which expresses such instructions. In our approach we call these
structures for the representation of mathematical proof techniques proof strategies, whereas
specifications of basic tactics which correspond to ground proof plan steps are called proof
methods as in CLAM.

The second aspect of proof planning is the abstraction from mere logical manipulation
of formulae by calculus inference rules. For instance, the task of proving an induction
conclusion in CLAM is treated as reducing the syntactical differences to an induction
hypothesis by the rippling proof strategy with the intention of employing it to close the
proof path.

The point of proof planning is to analyze proof techniques in order to determine their
typical proof steps and to find a suitable control to perform these steps within the proof
planning process. This report is a first attempt of formalizing the diagonalization proof
technique. In the next section, we introduce the main idea of diagonalization by considering
a formal proof for the Cantor theorem. Thereafter, we give a strategy how to construct
systematically a diagonalization proof. This strategy is successfully applied by hand on
some examples that we studied in [Che96]. We suggest a declarative representation of the
strategy and describe how it can be realized in a proof planning environment.

Cantor Diagonalization

In order to show the main principles of proving by diagonalization, consider the Cantor
theorem. For its proof, the diagonalization technique was first invented and it is therefore
often called Cantor diagonalization [Kle43]. The theorem states that the power set of each
set m has greater cardinality than the set itself, which is equivalent to the conjecture that
there is no surjective function from a set into its power set:

'Vm. -,'3f. surj(f, m, pset(m))

To prove the above conjecture, we assume that there is a surjective function fo from
some set mo into its power set pset(mo) and deduce a contradiction by diagonalization. In
[DSW94] a proof by diagonalization is described as follows:

The diagonalization method turns on the demonstration of two assertions of
the following sort:

1.	 A certain set E can be enumerated in a suitable fashion.

2.	 It is possible, with the help of the enumeration, to define an object d that
is different from every object in the enumeration, i.e. d ~ E.

Below is the diagonalization part of the Cantor proof, where pset(mo) is the enumerated
set. This set can be enumerated with the help of the indexing relation fa and the set D
is the object which is defined with the help of the enumeration. It is different from every
object fo(x) in the enumeration:

The set D = {x E molx rf. fo(x)} belongs to pset(mo), there is also an element
Yo of mo which is the index of D in mo (D = fo(Yo) with Yo E mo). By the
definition of D Yo belongs to D iff Yo is in mo and does not belong to fo(Yo)·
This is obviously a contradiction to D = fo(Yo).

2

part of a proof, we want to extend the proof schema in the representation of a technique
with additional knowledge which expresses such instructions. In our approach we call these
structures for the representation of mathematical proof techniques proof strategies, whereas
specifications of basic tactics which correspond to ground proof plan steps are called proof
methods as in CLAM.

The second aspect of proof planning is the abstraction from mere logical manipulation
of formulae by calculus inference rules. For instance, the task of proving an induction
conclusion in CLAM is treated as reducing the syntactical differences to an induction
hypothesis by the rippling proof strategy with the intention of employing i t to close the
proof path.

The point of proof planning is to analyze proof techniques in order to determine their
typical proof steps and to find a suitable control to perform these steps within the proof
planning process. This report is a first attempt of formalizing the diagonalization proof
technique. In the next section, we introduce the main idea of diagonalization by considering
a formal proof for the Cantor theorem. Thereafter, we give a strategy how to construct
systematically a diagonalization proof. This strategy is successfully applied by hand on
some examples that we studied in [Che96]. We suggest a declarative representation of the
strategy and describe how i t can be realized in a proof planning environment.

2 Cantor Diagonalization

In order to show the main principles of proving by diagonalization, consider the Cantor
theorem. For its proof, the diagonalization technique was first invented and i t is therefore
often called Cantor diagonalization [Kle43]. The theorem states that the power set of each
set m has greater cardinality than the set itself, which is equivalent to the conjecture that
there is no surjective function from a set into its power set:

Vm. I f . surj(f, m , pset(m))

To prove the above conjecture, we assume that there is a surjective function fo from
some set my into its power set pset(mo) and deduce a contradiction by diagonalization. In
[DSW94] a proof by diagonalization is described as follows:

The diagonalization method turns on the demonstration of two assertions of
the following sort:

1. A certain set E can be enumerated in a suitable fashion.
2. It is possible, with the help of the enumeration, to define an object d that

is different from every object in the enumeration, i.e. d ¢ E .

Below is the diagonalization part of the Cantor proof, where pset(myg) is the enumerated
set. This set can be enumerated with the help of the indexing relation fa and the set D
is the object which is defined with the help of the enumeration. It is different from every
object fo(z) in the enumeration:

The set D = {x € mo|z ¢ fo(z)} belongs to pset(my), there is also an element
yo of mg which is the index of D in mg (D = fo(yo) with yo € mo). By the
definition of D yo belongs to D iff yo is in my and does not belong to fo(yo)-
This is obviously a contradiction to D = fo(yo)-

TND
=-Refl
=-Equiv
Surj-Def

PSet-Def
C-Def

Vxo' x V-'X

Vxo'x = x
Vxo' Vyo' x = y -+ [x ++ y]
Vf.--+(.--+o)' Va.--+ o• Vb(.--+o)--+o' surj(f, a, b) ++

VxHO' X E b -+ 3YL' yEa A x = f(y)
Va.--+ o' Vx.--+ o' x E pset(a) ++ x ~ a
Va.--+ o' Vb.--+ o' a C b ++ "Ix•• x E a -+ x E b

Cantor Vm.--+o ' -.3f.--+(.--+0)' surj(f, m, pset(m))

Table 1: A formulation of the 'Cantor' theorem

In order to formulate the characteristic proof steps of the above diagonalization proof,
we consider the formal proof in Figure 1 of the Cantor theorem which was interactively
constructed in the O-MKRP environment [HKK+94] using the problem description in Ta­
ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND)
calculus, i.e. was generated by the application of ND rules [Gen35]. It is then abstracted
to the so-called assertion level [Hua94], where assertions, in addition to ND rules, can be
used as justifications.

The key steps in the diagonalization part of the proof in Figure 1 are:

•	 the property, that the function AZ. z E mo A -,z E fo(z) belongs to the power set, is
stated in line 9,

•	 the application of the definition of surjectivity ('Surj-Der) in line 10 to prove the
existence of an index for the function AZ. z E mo 1\ -,z E fo (z), which is assumed to
be Yo, is stated in line 11,

•	 applying the function AZ. Z E mo 1\ -,z E fo(z) to the index Yo is done in line 14 to
obtain an implicit contradiction in line 16,

•	 the contradiction is made explicit by a case analysis in lines 17 .. 25.

Analyzing the above key proof steps we now want to suggest a systematic way, how to
search for a diagonalization proof:

The central point of diagonalization is the construction of the diagonal element which is
an element of the enumerated set that is different from every object in the enumeration. In
Figure 1 the diagonal element is represented by a lambda expression that has the i:Q.dexing
function fo as a sub-term (see line 9). It is therefore convenient to search for the indexing
function first before trying to construct the diagonal element.

In the Cantor proof, the function fo binds not only the diagonal element but also each
element of the enumerated set pset(mo) to an element (its index) in moo This property
follows from the surjectivity of the function fo from mo into pset(mo) and is represented
by the formula:

\:fxHO' X E pset(mo) -+ ?JYt' yE mo 1\ x = fo(Y)

The indexing property provides important information for the specification of the diagonal
element: its type (a functional type corresponding to the element type of pset(mo)), and
its domain type (same type as the element type of mo).

lThis example is taken from (HKC95].

3

TND V I IV ST

=-Refl Vigez=2x
=-Equiv VzaVysz=y [ze y]
Surj-Def Vf,,(1-s0)= VA ,00Vb (0) —>0=Surj(f, a,b) &

V2, oT Eb-—+ I y yEaAzx= f (y)
PSet-Def Va , onVZ,0- = € pset(a) & x Ca
C-Def Va,s0eVbs0ea Cbd Vz €a—z€D
Cantor VM, 00 23 fies (1s0)e SULI(f , m , pset(m))

Table 1: A formulation of the ‘Cantor ’ theorem

In order to formulate the characteristic proof steps of the above diagonalization proof,
we consider the formal proof in Figure 1 of the Cantor theorem which was interactively
constructed in the Q-mxrp environment [HKK*94] using the problem description in Ta-
ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND)
calculus, i.e. was generated by the application of ND rules [Gen35]. It is then abstracted
to the so-called assertion level [Hua94], where assertions, in addition to ND rules, can be
used as justifications.

The key steps in the diagonalization part of the proof in Figure 1 are:

e the property, that the function Az. z € mg A =z € fo(z) belongs to the power set, is
stated in line 9,

e the application of the definition of surjectivity (‘Surj-Def’) in line 10 t o prove the
existence of an index for the function Az.z € mg A =z € fo(z), which is assumed to
be yo, is stated in line 11,

e applying the function Az.z € mg Az € fo(z) to the index yo is done in line 14 to
obtain an implicit contradiction in line 16,

e the contradiction is made explicit by a case analysis in lines 17 . . 25.

Analyzing the above key proof steps we now want to suggest a systematic way, how to
search for a diagonalization proof:

The central point of diagonalization is the construction of the diagonal element which is
an element of the enumerated set that is different from every object in the enumeration. In
Figure 1 the diagonal element is represented by a lambda expression that has the indexing
function fo as a sub-term (see line 9). It is therefore convenient to search for the indexing
function first before trying to construct the diagonal element.

In the Cantor proof, the function fo binds not only the diagonal element but also each
element of the enumerated set pset(myg) to an element (its index) in mo. This property
follows from the surjectivity of the function fo from mg into pset(mg) and is represented
by the formula:

YZ,0.X € pset(mo) = yu y € mo AT = fo(y)

The indexing property provides important information for the specification of the diagonal
element: its type (a functional type corresponding to the element type of pset(my)), and
its domain type (same type as the element type of mo).

1This example is taken from [HKC95].

1. 1 I- 3f. surj(f, mo, pset(mo»	 (Hyp)
2. 2 I- surj(fo, mo, pset(mo))	 (Hyp)
3. 3 I- Xl E AZ. [z E mo 1\ ...,[z E fo(z)]]	 (Hyp)
4. 3 I- [Xl E mo 1\ ""[XI E fO(XI)]]	 (LambdaE 3)
5. 3 I- Xl E mo	 (AndEL 4)
6. I- (Xl E AZ. (z E mo 1\ ...,[z E fo(z)]] -t Xl E mol (ImpI5)
7. I- 'rIx. X E [AZ. [z E mo 1\ ...,(z E fo(z)]] -t X E mol (ForallI 6)
8. I- AZ. (z E mo 1\ ...,(z E fo(z)]] ~ mo	 (~-Def 7)
9.	 I- AZ. [z E mo 1\ ...,[z E fo(z)JJ E pset(mo) (Pset-Def 8)

Proof of 16
10. 2 I- 3y. [y E mo 1\ AZ. [z E mo 1\ ...,[z E fo(z)]] = fo(y)] (Surj-Def 2 9)
11. 11 I- [YO E mo 1\ AZ. [z E mo 1\ ...,[z E fo(z)]] = fo(Yo)] (Hyp)
12. 11 I- AZ. [z E mo 1\ ""[z E fo(z)]] = fo(yo) (AndER 11)
13. I- yo E fo(yo) = yo E fo(Yo)	 (=-Refl.)

14. 11 I- yo E AZ. [z E mo 1\ ""[z E fo(z»)) = yo E fo(yo) (=-Subst 12 13)
15. 11 I- [yo E AZ. [z E mo 1\ ...,[z E fo(z»)) +-t Yo E fo(yo)] (=-Equiv 14)
16.	 11 I- [[YO E mo 1\ ""[YO E fo(yo)]] +-t yo E fo(yo)] (LambdaE 15)

CaseI
17. 17 I- yo E fo(yo)	 (Hyp)
18. 11,17 I- ""[YO E fo(yo)]	 (16 17)
19. 1,2,11,17 I- ..L	 (NotE 18 17)

Case 2
20. 20 I- ""[YO E fo(Yo)]	 (Hyp)
21. 11 I- yo E mo	 (AndEL 11)
22. 1,2,11,20 I- yo E fo(yo)	 (16 21 20)
23. 1,2,11,20 I- ..L	 (NotE 20 22)
24. I- [YO E fo(yo) V""[YO E fo(yo)JJ	 (TND)
25.	 1,2,11 f- ..L (OrE 24 19 23)

End of Case Analysis
26. 1,2 f- ..L	 (ExistsE 10 25)
27. 1 I- ..L	 (ExistsE 1 26)
28. f- ...,[3f. surj(J, mo, pset(mo))]	 (NotI27)
29. I- 'rim. ""[3f. surj(f, m, pset(m))]	 (ForallI 28)

Figure 1: A formal proof of the 'Cantor' theorem

In addition to these type constraints, the diagonal element must be different from each
element of the enumerated set pset(mo), Le. from each fo(z). In the Cantor proof this is
achieved by enforcing that for each z the diagonal element differs from the element fo(z)
in some property. We call this property the diagonal property which is a proposition that
depends on the term fo(z)(z) which we call the diagonal term. In the Cantor proof, the
diagonal property is represented by the conjecture z E fo(z) which is a syntactic sugar of
the diagonal term itself. The diagonal element inverts this diagonal property (occurrence
of -,z E fo(z) in the lambda expression representing the diagonal element in line 9).

In order to get a contradiction, the diagonal element is constructed in such a way, that
it belongs to the enumerated set pset(mo) (occurrence of z E mo in the lambda expression
representing the diagonal element in line 9). Consequently, the diagonal element has an
index Yo and the diagonal property for this element of mo (yo E fo(Yo)) is contradicted
according to the construction principle of the diagonal element.

In [Che96], we studied other proofs by diagonalization which are somewhat different
from the Cantor proof in Figure 1. We exploited these differences and suggested a Di­

4

1 1 FE 3f. surj(f, mo, pset(mo)) (Hyp)
2. 2 + surj{ fo, mo, pset(mo)) (Hyp)
3. 3 kb 21 € Aza [2 € mo A [2 € fo(2)]] (Hyp)
4 . 3 + [21 € mo A —[z1 € fo (z1)]] (LambdaE 3)
5. 3 Fz emp (AndEL 4)
6. F [21 € Aza [2 € mo A =[z € fo(z)]] = 71 € mo] (Impl 5)
7. F Vzuw € [Aza [2 € mo A nz € fo(z)]] — = € mo] (ForallI 6)
8. F Azz € mo A nlz € fo(z)]] © mo (C-Def 7)
9. F Az [2 € mo A =z € fo(z)]] € pset(mo) (Pset-Def 8)

Proof of 16
10. 2 F Sys [y € mo Adza[z € mo A =[z € fo(2)]] = fo(y)] (Suxj-Def 2 9)
11. 11 F [yo € mo A Az [z € mo A [2 € fo(2)]] = fo(yo)] (Hyp)
12. 11 F Aza [2 € mo Az € fo(2)]] = fo(yo) (AndER 11)
13 F yo € fo(yo) = yo € fo(yo) (=-Refl)
14. 11 F yo € Aza[z € mo A [2 € fo(2)]] = yo € fo(yo) (=-Subst 12 13)
15. 11 F [yo € Aza [2 € mo Az € fo(2)]] © yo € fo(yo)] (=-Equiv 14)
16. 11 F [yo € mo A [yo € fo(yo)]] yo € fo(yo)] (LambdaE 15)

Case 1
17. 17 F yo € fo(yo) (Hyp)
18. 11,17 Fk [yo € fo(yo)] (16 17)
19. 12,1117 + 1 (NotE 18 17)

Case 2
20. 20 F [yo € fo(yo)] (Hyp)
21. 11 F yo € mo (AndEL 11)
22. 1,2,11,20 + yo € fo(yo) (16 21 20)
23. 1,2,11,20 EL (NotE 20 22)
24. F [yo € fo(yo) V =[yo € fo(yo)]] (TND)
25. 1,211 FL (OrE 24 19 23)

End of Case Analysis
26. 1,2 FL (ExistsE 10 25)
27. 1 FL (ExistsE 1 26)
28. kb =[3f.surj(f, mo, pset(mo))] (NotI 27)
29. F Vm. =[3f. surj(f, m , pset(m))] (Foralll 28)

Figure 1: A formal proof of the ‘Cantor’ theorem

In addition to these type constraints, the diagonal element must be different from each
element of the enumerated set pset(mg), i.e. from each fo(2). In the Cantor proof this is
achieved by enforcing that for each z the diagonal element differs from the element fo(z)
in some property. We call this property the diagonal property which is a proposition that
depends on the term fo(z)(z) which we call the diagonal term. In the Cantor proof, the
diagonal property is represented by the conjecture z € fo(z) which is a syntactic sugar of
the diagonal term itself. The diagonal element inverts this diagonal property (occurrence
of =z € fo(z) in the lambda expression representing the diagonal element in line 9).

In order to get a contradiction, the diagonal element is constructed in such a way, that
it belongs to the enumerated set pset(mg) (occurrence of z € mg in the lambda expression
representing the diagonal element in line 9). Consequently, the diagonal element has an
index yo and the diagonal property for this element of mo (yo € fo(yo)) is contradicted
according to the construction principle of the diagonal element.

In [Che96], we studied other proofs by diagonalization which are somewhat different
from the Cantor proof in Figure 1. We exploited these differences and suggested a Di-

Strategy: Diag
Declarations -
Goal 8
Precondition NIL

6, newconst(i, a),
-< 11 dif fers(D, AX"," x) occurs(x, D(x))Postcondition

dif fers(D(i), F(i)(i)) 5
inverts(D, F(i)(i),IP) >

l. 1 r- n(i) 1\ D = F(i) (Hyp)
2. 1 r- n(i) (AndEL 1)
3. 1 r- D = F(i) (AndER 1)
4. 1 r- .1 (MEC(D,IP) 2

Proof 3)-Schema 5. r- E(D) (Open)
6. r- VXa_;jj" E(x) -+ 3Yii"" n(y) 1\ x = F(y) (Open)
7. r- 3y"," n(y) 1\ D = F(y) (6 5)
8. r- .1 (ExistsE 7 4)

Figure 2: The Diag strategy

agonalization proof strategy that can be applied to prove the examples in [Che96]. This
strategy is described in the next section.

3 A Diagonalization Proof Strategy

In this section, we give a declarative representation of the diagonalization strategy and
explain how it can be applied.

3.1 The Representation of the Strategy

To represent the diagonalization proof strategy, we use the declarative framework for the
representation of proof methods in O-MKRP[HKRS94] with some extensions. To clarify the
meaning of the strategy in Figure 2, we will give some explanations to the different slots
and to the important aspects of the syntax.

The proof schema consists of ND lines whose formulae are schematic, Le. are propo­
sitions with metavariables (free variables). We distinguish higher order (HOV) and first
order (FOV) metavariables. HOVs are represented by capital letters and can be unified
with lambda expressions (by higher order unification (HOU)), whereas FOVs can only be
unified with constant symbols or FOVs. For instance, in Figure 2 the metavariable n can
only be instantiated to a predicate symbol that denotes a sort. A metavariable can also oc­
cur in the strategy both over-lined and un-annotated. This notation should be interpreted
as an additional constraint on the metavariables: an over-lined metavariable can be bound
to an object term with free variables, Le. metavariables, and an un-annotated occurrence
of a metavariable stands for a closed object term.

Each ND line has a justification which can be either open (annotated by Open) or closed.
A closed justification consists of a tactic, e.g. a ND rule, an argument list, and a list of

5

Strategy : Diag |
Declarations | —

|

Goal 8
Precondition NIL

6, newconst(i,a),
r s < || differs(D, Azan) occurs(z, D(z))Postcondition dif fers(DG),FG(@) 5

inverts(D, F(i)(i), IP) >

1 .1 + n@@)AD=F() (Hyp)
2.1 + nn) (AndEL 1)
3 .1 F D=F() (AndER 1)

Proof 4 .1 + 1 (MEC(D,IP) 2

Schema 5. + ED) (Open)
6. Fo Voge E(z) = Jys=7i(y) Ax = F(y) (Open)
7. FE yaen(y) AD =F (y) (6 5)
8. = HL (ExistsE 7 4)

Figure 2: The Diag strategy

agonalization proof strategy that can be applied to prove the examples in [Che96]. This
strategy is described in the next section.

3 A Diagonalization Proof Strategy

In this section, we give a declarative representation of the diagonalization strategy and
explain how it can be applied. ;

3.1 The Representation of the Strategy

To represent the diagonalization proof strategy, we use the declarative framework for the
representation of proof methods in Q-mxre[HKRS94] with some extensions. To clarify the
meaning of the strategy in Figure 2, we will give some explanations to the different slots
and to the important aspects of the syntax.

The proof schema consists of ND lines whose formulae are schematic, i.e. are propo-
sitions with metavariables (free variables). We distinguish higher order (HOV) and first
order (FOV) metavariables. HOVs are represented by capital letters and can be unified
with lambda expressions (by higher order unification (HOU)), whereas FOVs can only be
unified with constant symbols or FOVs. For instance, in Figure 2 the metavariable n can
only be instantiated to a predicate symbol that denotes a sort. A metavariable can also oc-
cur in the strategy both over-lined and un-annotated. This notation should be interpreted
as an additional constraint on the metavariables: an over-lined metavariable can be bound
to an object term with free variables, i.e. metavariables, and an un-annotated occurrence
of a metavariable stands for a closed object term.

Each ND line has a justification which can be either open (annotated by Open) or closed.
A closed justification consists of a tactic, e.g. a ND rule, an argument list, and a list of

ND lines (the premises). This means, the corresponding ND line can be proven from the
premises by applying the tactic with the given arguments.

The goal of a strategy should match an open ND line on the object level, which is to
be closed by the strategy. Before applying the strategy, its precondition must be fulfilled,
where a precondition consists of ND lines from the proof schema and constraints. The ND
lines have to match support ND lines of the goal and the constraints are evaluated. The
support lines of an open ND line consist of its hypotheses and their derived consequences.

The application of the strategy would reduce the goal to new subgoals to be closed and
some additional constraints to be satisfied. Both subgoals and constraints are given in the
postcondition list.

The occurrence of constraints together with ND lines in the precondition and the post­
condition list enables the representation of some control information, namely the order of
closing the goals and satisfying the constraints. The ND lines and the constraints should
be considered sequentially from the left to the right, if they are separated by commas in the
list, and simultaneously by grouping them in a list marked with 11. Moreover, it becomes
possible to interchange between goal and constraint satisfaction.

The goal of the diagonalization strategy is a contradiction, i.e. 1.. Its precondition
list is empty 2, it can directly be applied to prove a contradiction as described in the next
section. We are not concerned with the control problem, when to choose the diagonalization
strategy among other applicable methods. We assume that this choice can be done either
according to some control knowledge that depends on some aspects such as the theory of
the problem, or interactively by the user.

3.2 Application of the Strategy

The diagonalization strategy reduces the proof of a contradiction to the main tasks: the
search for an indexing relation, and the construction of a diagonal element.

3.2.1 The Search for an Indexing Relation

The indexing relation is determined by closing the subgoal 6, Le. stating that the formula
schema of the ND line 6 can be unified with a provable formula from the support lines.
This amounts to the general and complex task whether a formula schema unifies a provable
formula from some premises. It is difficult to obtain all provable formulae unifying the
schema. We suggest therefore to restrict this by finding formulae that do not only unify
the schema but also can be proven by assertion application from the premises. The methods
to be used for planning assertion applications should specify whether some premise can be
an assertion to prove a formula schema and should specify the resulted subgoals, i.e. the
premises of this assertion application.

For instance, in the Cantor theorem, the sole premise that asserts an indexing property
is the surjective definition Surj-Def. Its application to close the indexing schema delivers
the subgoal surj(F, ri, E) that can be unified with the hypothesis surj(fo, mo, pset(mo)) (see
line 2 in Figure 1). Thus, the metavariables F, n, and E are instantiated respectively to
fo, mo, and pset(mo).

2The postcondition 6 can be used as a precondition. This would restrict the application of the strategy
to goals with indexing property as support. In section 3.2, it becomes clear that such a strategy is less
general than the strategy in Figure 2.

6

ND lines (the premises). This means, the corresponding ND line can be proven from the
premises by applying the tactic with the given arguments.

The goal of a strategy should match an open ND line on the object level, which is to
be closed by the strategy. Before applying the strategy, i ts precondition must be fulfilled,
where a precondition consists of ND lines from the proof schema and constraints. The ND
lines have to match support ND lines of the goal and the constraints are evaluated. The
support lines of an open ND line consist of its hypotheses and their derived consequences.

The application of the strategy would reduce the goal to new subgoals to be closed and
some additional constraints to be satisfied. Both subgoals and constraints are given in the
postcondition l ist .

The occurrence of constraints together with ND lines in the precondition and the post-
condition list enables the representation of some control information, namely the order of
closing the goals and satisfying the constraints. The ND lines and the constraints should
be considered sequentially from the left to the right, i f they are separated by commas in the
list, and simultaneously by grouping them in a list marked with | . Moreover, i t becomes
possible to interchange between goal and constraint satisfaction.

The goal of the diagonalization strategy is a contradiction, i.e. 1 . Its precondition
list is empty 2, i t can directly be applied t o prove a contradiction as described in the next
section. We are not concerned with the control problem, when to choose the diagonalization
strategy among other applicable methods. We assume that this choice can be done either
according to some control knowledge that depends on some aspects such as the theory of
the problem, or interactively by the user.

3.2 Application of the Strategy

The diagonalization strategy reduces the proof of a contradiction to the main tasks: the
search for an indexing relation, and the construction of a diagonal element.

3.2.1 The Search for an Indexing Relation

The indexing relation is determined by closing the subgoal 6, i.e. stating that the formula
schema of the ND line 6 can be unified with a provable formula from the support lines.
This amounts to the general and complex task whether a formula schema unifies a provable
formula from some premises. I t is difficult to obtain all provable formulae unifying the
schema. We suggest therefore to restrict this by finding formulae that do not only unify
the schema but also can be proven by assertion application from the premises. The methods
to be used for planning assertion applications should specify whether some premise can be
an assertion to prove a formula schema and should specify the resulted subgoals, i.e. the
premises of this assertion application.

For instance, in the Cantor theorem, the sole premise that asserts an indexing property
is the surjective definition Surj-Def. Its application to close the indexing schema delivers
the subgoal surj(F,i , E) that can be unified with the hypothesis surj(fo, mo, pset(mg)) (see
line 2 in Figure 1). Thus, the metavariables F , n , and E are instantiated respectively to
fo, mo, and pset(mg).

2The postcondition 6 can be used as a precondition. This would restrict the application of the strategy
to goals with indexing property as support. In section 3.2, it becomes clear that such a strategy is less
general than the strategy in Figure 2.

Assertion application alone is not enough to determine all possible indexing properties.
Sometimes, it is necessary to combine several assertions to get the right indexing property.
For instance, the following formulae can be combined to determine an indexing relation:

1.	 VXa.-+7J. E(x) -+ 3ya.. Sex, y)

2.	 VZa-+f3. Vua• S(z, u) -+ n(u) 1\ z = F(u)

The process of proving formula schemata by assertion applications must be extended to
manage such cases.

The next postcondition is the constraint newconst(z, a) whose evaluation binds the
metavariable i to a new constant with the type set up for the metavariable a. The rest of
the postcondition list should be evaluated simultaneously and leads to the construction of
the diagonal element.

3.2.2 The Construction of the Diagonal Element

The diagonal element D is a function that belongs to the enumerated set E and inverts
some property wrt. the diagonal term F(i)(i). The first property can be stated by closing
the subgoal 5. The second property can be fulfilled by some propositions which depend on
(3, the type of F(i)(i), and on the instantiation of D. This is the reason why we represent
the inverting property as a constraint. The satisfaction of the inverts constraint would
deliver the proofs I P to the propositions that guarantee the inverting property of D.

To prevent nonsense instantiations of D, we use some restriction constraints. The con­
straint occurs(x, D(x)) is evaluated, whenever the (partial) instantiation for the metavari­
able D is affected. The constraints dif fers(D, AXa • x) and dif fers(D(i), F(i)(i)) have only
to be evaluated, when the instantiation of D becomes closed, Le. contains no free variables.
If one of these constraints cannot be satisfied, we have to backtrack by considering the next
possible instantiation for D.

A vague specification of D can be given by its representation with the term schema
AXa• G(F(x), x), and by the inverting property U(G(F(i), i))) f-7 ...,U(P(i)(i)). These
schemata can be further instantiated by closing the subgoal 5 and the given inverting
property. However, some alternative instantiations of these schemata would make this
task easier, as they will provide more control. In the following, we consider the possible
instantiations of these schemata that we obtain by investigating the examples in [Che96] .

•	 When the diagonal term F(i)(i) denotes a proposition, Le. the metavariable (3 is
instantiated with the type of truth values 0, as in our formulation of the Cantor
theorem in section 2, then it is worth considering the formula schema ...,P(i) (i) f-7 D(i)
as inverting property.

•	 If the diagonal term does not denote a proposition, two important possible instanti­
ations of the metavariable are distinguished:

1.	 The value of D(x) can be defined according to some condition U(P (x), x). D(x)
equals Y(x), if U(F(x), x) holds, and it is Z(x) otherwise. Thus, D must be in­
stantiated by the schema AXa • if(U(F(x), x), Y(x), Z(x)), where the constraint
dif fers(Y(x), Z(x)) must hold.

7

Assertion application alone is not enough to determine all possible indexing properties.
Sometimes, i t is necessary to combine several assertions to get the right indexing property.
For instance, the following formulae can be combined to determine an indexing relation:

1. Vz53 E(z) — yz S(z,v)

2. VZarpı Vom S(z,u) = (u) Az = F(u)

The process of proving formula schemata by assertion applications must be extended to
manage such cases.

The next postcondition is the constraint newconst(i,a) whose evaluation binds the
metavariable i to a new constant with the type set up for the metavariable or. The rest of
the postcondition l ist should be evaluated simultaneously and leads to the construction of
the diagonal element.

3.2.2 The Construction o f the Diagonal Element

The diagonal element D is a function that belongs to the enumerated set E and inverts
some property wrt. the diagonal term F(i) (i) . The first property can be stated by closing
the subgoal 5. The second property can be fulfilled by some propositions which depend on
8, the type of F(:)(i), and on the instantiation of D . This is the reason why we represent
the inverting property as a constraint. The satisfaction of the inverts constraint would
deliver the proofs IP to the propositions that guarantee the inverting property of D .

To prevent nonsense instantiations of D , we use some restriction constraints. The con-
straint occurs(z, D(z)) is evaluated, whenever the (partial) instantiation for the metavari-
able D is affected. The constraints dif fers(D, Az. x) and dif fers(D(i), F(i)(z)) have only
to be evaluated, when the instantiation of D becomes closed, i.e. contains no free variables.
If one of these constraints cannot be satisfied, we have to backtrack by considering the next
possible instantiation for D .

A vague specification of D can be given by its representation with the term schema
AZo» G(F(z),z), and by the inverting property U(G(F(4),i))) & -U(F(i)(i)) . These
schemata can be further instantiated by closing the subgoal 5 and the given inverting
property. However, some alternative instantiations of these schemata would make this
task easier, as they will provide more control. In the following, we consider the possible
instantiations of these schemata that we obtain by investigating the examples in [Che96).

e When the diagonal term F(i)(i) denotes a proposition, i.e. the metavariable 3 is
instantiated with the type of truth values o, as in our formulation of the Cantor
theorem in section 2, then it is worth considering the formula schema = F(i)(i) ++ D(i)
as inverting property.

e I f the diagonal term does not denote a proposition, two important possible instanti-
ations of the metavariable are distinguished:

1. The value of D(z) can be defined according to some condition U(F(z),z). D(z)
equals Y (z), if U(F(z), z) holds, and i t is Z(z) otherwise. Thus, D must be in-
stantiated by the schema Az, i f (U(F(z),z),Y (z) , Z(z)) , where the constraint
dif fers(Y(x),Z(z)) must hold.

The inverting property of D would involve the arguments of the if-construct,
Le. the condition, the then-term, and the else-term. The inversion of the term
F(i)(i) is obtained, if the following subgoals can be proven:

When U(F (i), i) is instantiated to a proposition of the form Q(F (i) (i)) ,Le.
that depends on the term F(i)(i), then we consider the subgoals -,Q(Y(i)),
and Q(Z(i)). Otherwise, the condition term U(F(i), i) must be attributed to a
proposition that depends on the term F(i)(i). We consider therefore the sub­
goal U(F(i), i) ~ Q(F(i)(i)), where the connector ~ can be either a left-to-right
implication or an equivalence symbol. If ~ can be instantiated to an equiva­
lence symbol, then the subgoals -,Q(Y(i)), and Q(Z(i)) must be considered.
Otherwise, we consider the subgoals -,Q(Y(i)), -,U(F(i), i) -+ R(F(i)(i)), and
-'R(Z(i)).

2.	 After proving the subgoal 5, the metavariable D can be instantiated with the
function AXa • C(F(x), x) which is different from an if-construct. The invert­
ing property of D can be reached by closing one of the following subgoals:
the inequality C(F(i), i) i= F(i)(i) and the formula schema U(C(F(i), i)) H

-,U(F(i)(i)).

While closing subgoals represented by formula schemata, metavariables are progres­
sively instantiated. This is done by middle out reasoning (MaR) [KBB93].

3.3 Middle Out Reasoning

We are concerned here with subgoals represented by formula schemata. In general, propo­
sitions with rigid heads, Le. represented by an application P(tl, .. , tn) whose function P is
fully instantiated, are not problematic. They can be closed by assertion application or by
simplification tactics.

Applying an assertion to a formula schema involves the use of HOD. However, this pro­
cess can deliver infinite number of solutions [Hue75]. We solve this problem by considering
only the n first solutions. Moreover, we use heuristics (similar say to the use of HO colored
unification in linguistic analysis [GK96]) to prevent nonsense solutions and to prefer the
promising ones. For instance, the projection solution AX. x of the problem Y(a) = a should
be considered before the imitation solution AX. a.

Moreover, there are conflict situations, where many assertions are applicable to close
a formula schema. To make the reasonable choice, we use control heuristics base~ on the
following preference criteria:

•	 the metavariable instantiations caused by the assertion application,

•	 the number of the new subgoals resulted from applying the assertion,

•	 and whether the assertion application involves new inserted hypotheses, Le. hypothe­
ses that do not belong to the original proof assumptions.

We prefer heuristically the assertion that inserts the least subgoals, instantiates the most
metavariables, and involves the most new inserted hypotheses.

Simplification tactics may not be applied to critical goals, where a goal is critical, iff
its splitting by a simplifiction tactic leads to a flexible subgoal and/or a flexible hypothesis,

8

The inverting property of D would involve the arguments of the if-construct,
i.e. the condition, the then-term, and the else-term. The inversion of the term
F(i) (i) is obtained, if the following subgoals can be proven:
When U(F(i) , i) is instantiated to a proposition of the form Q(F(i)(i)) ‚ ie.
that depends on the term F(i) (i) , then we consider the subgoals —Q(Y (3)),
and Q(Z(4)). Otherwise, the condition term U(F(3), i) must be attributed to a
proposition that depends on the term F(i)(i) . We consider therefore the sub-
goal U(F(i) , i) = Q(F(i)(i)), where the connector = can be either a left-to-right
implication or an equivalence symbol. If = can be instantiated to an equiva-
lence symbol, then the subgoals —Q(Y (i)), and Q(Z(i)) must be considered.
Otherwise, we consider the subgoals —Q(Y (i) , =U (F(¢),i) — R(F(i)(i)), and
-R(Z(7)).

2. After proving the subgoal 5, the metavariable D can be instantiated with the
function Azq. C(F(z),z) which is different from an if-construct. The invert-
ing property of D can be reached by closing one of the following subgoals:
the inequality C(F(i),7) # F(i) (i) and the formula schema U(C(F(i) , i)) +
U(F(i } (£)) .

While closing subgoals represented by formula schemata, metavariables are progres-
sively instantiated. This is done by middle out reasoning (MOR) [KBB93].

3.3 Middle Out Reasoning

We are concerned here with subgoals represented by formula schemata. In general, propo-
sitions with rigid heads, i.e. represented by an application P(t , ..,%,) whose function P is
fully instantiated, are not problematic. They can be closed by assertion application or by
simplification tactics.

Applying an assertion to a formula schema involves the use of HOU. However, this pro-
cess can deliver infinite number of solutions [Hue75]. We solve this problem by considering
only the n first solutions. Moreover, we use heuristics (similar say to the use of HO colored
unification in linguistic analysis [GK96]) to prevent nonsense solutions and to prefer the
promising ones. For instance, the projection solution Az. x of the problem Y (a) = a should
be considered before the imitation solution Az. a.

Moreover, there are conflict situations, where many assertions are applicable to close
a formula schema. To make the reasonable choice, we use control heuristics based on the
following preference criteria:

o the metavariable instantiations caused by the assertion application,

® the number of the new subgoals resulted from applying the assertion,

e and whether the assertion application involves new inserted hypotheses, i.e. hypothe-
ses that do not belong to the original proof assumptions.

We prefer heuristically the assertion that inserts the least subgoals, instantiates the most
metavariables, and involves the most new inserted hypotheses.

Simplification tactics may not be applied to critical goals, where a goal is critical, iff
its splitting by a simplifiction tactic leads t o a flexible subgoal and/or a flexible hypothesis,

i.e. a formula with a flexible head. A flexible hypothesis can assert every subgoal, and
a flexible subgoal follows from every hypothesis. For instance, the ND rule ImpI is not
allowed to be applied as a simplification tactic to the goal schema p -+ D(i), because this
would deliver the flexible subgoal D(i). A critical subgoal is suspended at first and we
consider simultaneous subgoals until the involving metavariable is instantiated.

In general, assertion application alone is not enough to prevent critical subgoals. It is
possible to obtain a proof plan with many suspended critical subgoals. To raise such a
blockade, we use techniques from [Ble77], where instantiations of set variables in higher
order theorems are suggested to obtain a first order theorem that can be proven by an
automated theorem prover. In this procedure, HOVs that occur as heads of atoms are
interpreted as sets. According to the position of the corresponding atom wrt. other sub­
formulae in the theorem, a HaV is associated to the maximal possible set. If this HaV
occurs several times as the head of an atom in the theorem, then it is instantiated with
the intersection of the sets resulted by considering each occurrence. For instance, if we
had the goal Vx(D(x) -+ mo(x)) /\ (-'fo(x)(x) -+ D(x)) then we would obtain for the first
occurrence the set {x: mo(x)} and for the second occurrence the set U, which denotes the
whole individual set. The intersection should be clearly the set {x : mo(x)}.

For each suspended critical subgoal, Bledsoe's procedure delivers the appropriate set
to the metavariable, that causes the blockade. Each of these metavariables is instantiated
to the intersection of the associated sets. After that, at least one subgoal will become
non-critical and the proof planning process can be continued.

In the Cantor example, the subgoal pset(mo)(D) can be reduced to the subgoal D(a) -+
mo(a) after applying first the power set definition PSet-Def, then the subset definition
<;;;;-Def, and finally the tactic ForallI. Since the resulted subgoal is critical, we consider
next the inverting property -'fo(i)(i) f-7 D(i). No support line can be found to deduce
a term of the form 'fo(i)(i) f-7 ., where. stands for any proposition. This subgoal is
therefore critical too. Bledsoe procedure computes the set {x: mo(x)} for the former critical
subgoal and the set {x: -'fo(x)(x)} for the latter subgoal. Now, we must conjunct the two
sets for instantiating D and check that the resulted instantiation AXL• mo(x) /\ -'fo(x)(x)
satisfies the two suspended subgoals. The first subgoal (mo(a) /\ -'fo(a)(a)) -+ mo(a) is
obviously satisfiable. The second subgoal 'fo(i)(i) f-7 (mo(i) /\ -,fo(i)(i)) can be closed
straightforward using the hypothesis mo (i).

In the specification of the diagonal element, we pretended that the HaV D can be
instantiated to an if-term, which is commonly used as the conditional expression in pro­
gramming languages. It is therefore convenient to use techniques of program synthesis
while considering subgoals, that involve the metavariable D. For instance, the subgoal
p -+ r(D) can be reduced, after unifying D with AX. if(p, Y(x), Z(x)), to r(Y).

While constructing the diagonal element D, there can be conflict situations, where both
simplification tactics and techniques of program synthesis can be applied. In such situa­
tions, we prefer the application of program synthesis techniques. We try first techniques of
program synthesis for instantiating D, then simplification tactics, thereafter assertion appli­
cation, and finally Bledsoe method. While searching for the indexing relation, we attempt
first assertion application, then simplification tactics, and at last the Bledsoe procedure.

9

ie. a formula with a flexible head. A flexible hypothesis can assert every subgoal, and
a flexible subgoal follows from every hypothesis. For instance, the ND rule ImpI is not
allowed to be applied as a simplification tactic to the goal schema p — D(i), because this
would deliver the flexible subgoal D(i) . A critical subgoal is suspended at first and we
consider simultaneous subgoals until the involving metavariable is instantiated.

In general, assertion application alone is not enough to prevent critical subgoals. It is
possible to obtain a proof plan with many suspended critical subgoals. To raise such a
blockade, we use techniques from [Ble77], where instantiations of set variables in higher
order theorems are suggested to obtain a first order theorem that can be proven by an
automated theorem prover. In this procedure, HOVs that occur as heads of atoms are
interpreted as sets. According to the position of the corresponding atom wrt. other sub-
formulae in the theorem, a HOV is associated to the maximal possible set. I f this HOV
occurs several times as the head of an atom in the theorem, then i t is instantiated with
the intersection of the sets resulted by considering each occurrence. For instance, if we
had the goal Vz(D(z) — mo(z)) A (=fo(z)(z) + D(z)) then we would obtain for the first
occurrence the set {x : mo(z)} and for the second occurrence the set U , which denotes the
whole individual set. The intersection should be clearly the set {z : mg(z)}.

For each suspended critical subgoal, Bledsoe’s procedure delivers the appropriate set
to the metavariable, that causes the blockade. Each of these metavariables is instantiated
to the intersection of the associated sets. After that, at least one subgoal will become
non-critical and the proof planning process can be continued.

In the Cantor example, the subgoal pset(mg)(D) can be reduced to the subgoal D(a) —
mg(a) after applying first the power set definition PSet-Def, then the subset definition
C-Def, and finally the tactic Foral l I . Since the resulted subgoal is critical, we consider
next the inverting property —fo(i)(i) & D(i) . No support line can be found to deduce
a term of the form - fy (i) (i) ++ eo, where e stands for any proposition. This subgoal is
therefore critical too. Bledsoe procedure computes the set { x : mg(z)} for the former critical
subgoal and the set {x : ~fo(z)(z)} for the latter subgoal. Now, we must conjunct the two
sets for instantiating D and check that the resulted instantiation Az,. mo(x) A ~fo(z)(z)
satisfies the two suspended subgoals. The first subgoal (mg(a) A =fo(a)(a)) = mo(a) is
obviously satisfiable. The second subgoal —fo(i)(i) <> (mo(i) A —fo(i)(£)) can be closed
straightforward using the hypothesis mg(z).

In the specification of the diagonal element, we pretended that the HOV D can be
instantiated to an if-term, which is commonly used as the conditional expression in pro-
gramming languages. I t is therefore convenient to use techniques of program synthesis
while considering subgoals, that involve the metavariable D . For instance, the subgoal
p — r(D) can be reduced, after unifying D with Az.if(p,Y (x) , Z(x)), to r(Y).

While constructing the diagonal element D , there can be conflict situations, where both
simplification tactics and techniques of program synthesis can be applied. In such situa-
tions, we prefer the application of program synthesis techniques. We try first techniques of
program synthesis for instantiating D , then simplification tactics, thereafter assertion appli-
cation, and finally Bledsoe method. While searching for the indexing relation, we attempt
first assertion application, then simplification tactics, and at last the Bledsoe procedure.

4

3.4 The Execution of the Strategy

If the application of the strategy succeeds, i.e. its postcondition is satisfied, we can execute
it. This means the corresponding instantiated proof schema is inserted into the ND proof.
Lines of the proof schema, that are not justified by ND rules, can further be expanded by
applying their justification tactics. The expansion of the line number 4 in the proof schema
of the diagonalization strategy is interesting. This corresponds to making the implicit
contradiction of the diagonal element explicit. The tactic MEC generates a contradiction
proof on ND level according to the instantiation of the diagonal element and of the proven
properties that guarantee the inversion of the diagonal term F(i)(i).

For instance, in the Cantor theorem, D is instantiated to the lambda term AX£. mo(x) 1\

'fo(x)(x) and the inverting property corresponds to the proposition .fo(i)(i) H (mo(i) 1\

.fo(i)(i)). In such situation, the tactic MEC uses the conjectures mo(i) and Ax.mo(x) 1\

'fo(x)(x) = fo(i), i.e. the instantiated formulae ofline 2 and line 3 in Figure 2, to deliver
the following expansion of line 4:

4 A,l I­ ..L (OrE Ll L2 L3)
L l I­ fo(i)(i) V -,fo(i)(i) (TND)
Cl Cl I­ fo(i)(i) (Hyp)
L 2 A,l,Cl I­ ..1 (NotE L 4 Cd
L4 A,1,C1 I­ -,fo(i)(i) (=Subst 3 L 5)

L 5 A,l,Cl I­ -,p.x. mo(x) A -'fo(x)(x»(i) (LambdaI L6)
L6 A,l,Cl I­ -,(mo(i) A -,fo(i)(i» (NotPop L7)
L7 A,l,Cl I­ -,mo(i) V fo(i)(i) (OdR Cl)
C2 C2 I­ -,fo(i)(i) (Hyp)
L3 A,1,C2 I­ ..1 (NotE C2 L 8)

L 8 A,1,C2 I­ fo(i)(i) (=Subst 3 £9)
L 9 A,1,C2 I­ (..\x. mo(x) A -'fo(x)(x»(i) (Lambda! LlD)
LlD A,1,C2 I­ mo(i) f\ -'fo(i)(i) (And! 2 C2)

In other instantiations of D, e.g. an if-term, the tactic MEC uses the proofs IP for the
inverting propositions, that are closed during the satisfaction of the constraint inverts, in
the expansion of line 4.

Conclusion and Future Work

In this report, we suggest a systematic way for constructing diagonalization proof~. We
propose some extensions of the declarative environment for method representation pre­
sented in [HKRS94] to capture the main steps in a diagonalization proof schema and allow
planning partial instantiated goals. The success of the diagonalization proof strategy de­
pends mainly on two tasks: the existence of an indexing property and the existence of a
function (the diagonal element) that satisfies an inverting property relative to the diagonal
term F(i)(i) (i is the index of the diagonal element.) and belongs to the enumerated set
E. We describe how to achieve each of these tasks.

The suggested proof strategy can be applied successfully by hand to the examples
in [Che96]. Next, we want to extend the proof planning framework in n-MKRP to implement
this strategy. Moreover, the process of assertion application to prove the indexing property
and that of middle out reasoning to construct the diagonal element have to be further
specified and implemented.

10

3.4 The Execution of the Strategy
I f the application of the strategy succeeds, i.e. i ts postcondition is satisfied, we can execute
i t . This means the corresponding instantiated proof schema is inserted into the ND proof.
Lines of the proof schema, that are not justified by ND rules, can further be expanded by
applying their justification tactics. The expansion o f the line number 4 in the proof schema
of the diagonalization strategy is interesting. This corresponds to making the implicit
contradiction of the diagonal element explicit. The tactic MEC generates a contradiction
proof on ND level according to the instantiation of the diagonal element and of the proven
properties that guarantee the inversion of the diagonal term F(i)(£).

For instance, in the Cantor theorem, D is instantiated to the lambda term Az,. mgo(z) A
=fo(z)(z) and the inverting property corresponds to the proposition =fo(i)(i) & (mo(i) A
—fo(i)(i)). In such situation, the tactic MEC uses the conjectures mo(i) and Az.mg(z) A
=fo(z)(z) = foli), i-e. the instantiated formulae of line 2 and line 3 in Figure 2, to deliver
the following expansion of line 4:

4 A l FL (OrE L ı La Ls)

Ci Ci Fo fo(i)(i) (Hyp)
Ls ALC FL (NotE L4 C i)
La AL , CL FO —folÖli) (=Subst 3 Ls)
Lg ALC FF =(Azemo(z) A =fo(z) (2))(3) (Lambdal Le)
Le ALCL FB (mol) A fo(i) (5) (NotPop Lz)
Lr AL , C0 | mod) V fo(i)(E) (OrIR Ci)
Cz: Cr I 1010) (Hyp)
Ls A1L ,C FOL (NotE C2 Lg)
Lg A1 ,C k* fo(i) () =Subst 3 Lg)
Ly A1 ,C FF (Azemg(z) A =fo(z)(2))(3) (Lambdal Ly)
L io A ,1 ,C2 FF mo(i) fo(i) (i) (AndI2 Cs)

In other instantiations of D , e.g. an if-term, the tactic MEC uses the proofs IP for the
inverting propositions, that are closed during the satisfaction of the constraint inverts, in
the expansion of line 4.

4 Conclusion and Future Work

In this report, we suggest a systematic way for constructing diagonalization proofs. We
propose some extensions of the declarative environment for method representation pre-
sented in [HKRS94] to capture the main steps in a diagonalization proof schema and allow
planning partial instantiated goals. The success of the diagonalization proof strategy de-
pends mainly on two tasks: the existence of an indexing property and the existence of a
function (the diagonal element) that satisfies an inverting property relative to the diagonal
term F(2)(i) (4 is the index of the diagonal element.) and belongs to the enumerated set
E. We describe how to achieve each of these tasks.

The suggested proof strategy can be applied successfully by hand to the examples
in [Che96]. Next, we want to extend the proof planning framework in Q-mxrp to implement
this strategy. Moreover, the process of assertion application to prove the indexing property
and that of middle out reasoning to construct the diagonal element have to be further
specified and implemented.

10

Central questions that need to be answered are whether an indexing property could
be formulated using other proof schemata and whether there is another specification for
diagonal elements. To answer these questions, more examples and especially other problem
descriptions should be empirically examined.

References

[Ble77] W. W. Bledsoe. A Maximal Method for Set Variables in Automatic Theorem
Proving. Memo ATP-33, Math. Dept., Univ. of Texas, Februar 1977.

[Bun91] Alan Bundy. A Science of Reasoning. In Computational Logic: Essays in honor
of Alan Robinson. MIT Press, 1991. also presented at the 10th CADE 1990 as
extended abstract.

[BvHHS90]	 Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The
OYS'IER-CI#A system. In Mark E. Stickel, editor, Proceedings of the 10th
CADE, pages 647-648, Kaiserslautern, Germany, 1990. Springer Verlag, Berlin,
Germany, LNAI 449.

[Che96]	 Lassaad Cheikhrouhou. The Mechanization of the Diagonalization Proof Strat­
egy. SEKI Report SR-96-14, Fachbereich Informatik, Universitat des Saarlan­
des, lm Stadtwald, Saarbriicken, Germany, 1996.

[DSW94]	 Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complex­
ity, and Languages: Fundamentals of Theoretical Computer Science. Academic
Press, second edition, 1994.

[Gen35]	 Gerhard Gentzen. Untersuchungen iiber das logische SchlieJ3en 1. Mathematis­
che Zeitschrijt, 39:176-210, 1935.

[GK96]	 Claire Gardent and Michael Kohlhase. Higher-Order Coloured Unification and
Natural Language Semantics. In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics. ACL, Santa Cruz, 1996.

[HKC95]	 Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adapta­
tion of Dec1aratively Represented Methods in Proof Planning. SEKI Report
SR-95-12, Fachbereich Informatik, Universitat des Saarlandes, Im Stadtwald,
Saarbriicken, Germany, 1995.

[HKK+94]	 Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne­
smith, Jorn Richts, and Jorg Siekmann. O-MKRP: A Proof Development Envi­
ronment. In Alan Bundy, editor, Proceedings of the 12th CADE, pages 788-792,
Nancy, 1994. Springer Verlag, Berlin, Germany, LNAI 814.

[HKRS94]	 Xiaorong Huang, Manfred Kerber, Jorn Richts, and Arthur Sehn. Planning
Mathematical Proofs with Methods. Journal of Information Processing and
Cybernetics, ElK, 30(5-6):277-291, 1994.

[Hua94]	 Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In Alan Bundy,
editor, Proceedings of the 12th CA DE, pages 738-752, Nancy, France, 1994.
Springer Verlag, Berlin, Germany, LNAI 814.

11

Central questions that need to be answered are whether an indexing property could
be formulated using other proof schemata and whether there is another specification for
diagonal elements. To answer these questions, more examples and especially other problem
descriptions should be empirically examined.

References

[Ble77]

[Bun91]

[BvHHS90]

[Che96]

[DSW94]

[Gen35]

[GK96]

[HKC95]

[HKK*94]

[HKRS94]

[Hua94]

W. W. Bledsoe. A Maximal Method for Set Variables in Automatic Theorem
Proving. Memo ATP-33, Math. Dept., Univ. of Texas, Februar 1977.

Alan Bundy. A Science of Reasoning. In Computational Logic: Essays in honor
of Alan Robinson. MIT Press, 1991. also presented at the 10th CADE 1990 as
extended abstract.

Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The
OYSTER-CIAM system. In Mark E. Stickel, editor, Proceedings of the 10th
CADE, pages 647-648, Kaiserslautern, Germany, 1990. Springer Verlag, Berlin,
Germany, LNAT 449.

Lassaad Cheikhrouhou. The Mechanization of the Diagonalization Proof Strat-
egy. SEKI Report SR-96-14, Fachbereich Informatik, Universitat des Saarlan-
des, Im Stadtwald, Saarbriicken, Germany, 1996.

Martin D . Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complez-
ity, and Languages: Fundamentals of Theoretical Computer Science. Academic
Press, second edition, 1994.

Gerhard Gentzen. Untersuchungen über das logische Schließen I . Mathematis-
che Zeitschrift, 39:176-210, 1935.

Claire Gardent and Michael Kohlhase. Higher-Order Coloured Unification and
Natural Language Semantics. In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics. ACL, Santa Cruz, 1996.

Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adapta-
tion of Declaratively Represented Methods in Proof Planning. SEKI Report
SR-95-12, Fachbereich Informatik, Universitit des Saarlandes, Im Stadtwald,
Saarbriicken, Germany, 1995. .

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-
smith, Jörn Richts, and Jorg Siekmann. §2-mxrp: A Proof Development Envi-
ronment. In Alan Bundy, editor, Proceedings of the 12th CADE, pages 788-792,
Nancy, 1994. Springer Verlag, Berlin, Germany, LNAI 814.

Xiaorong Huang, Manfred Kerber, Jorn Richts, and Arthur Sehn. Planning
Mathematical Proofs with Methods. Journal of Information Processing and
Cybernetics, EIK, 30(5-6):277-291, 1994.

Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In Alan Bundy,
editor, Proceedings of the 12th CADE, pages 738-752, Nancy, France, 1994.
Springer Verlag, Berlin, Germany, LNAI 814.

11

[Hue75] Gerard Huet. A Unification Algorithm for the Typed A-Calculus.
Computer Science, 1:27-57, 1975.

Theoretical

[KBB93] 1. Kraan, D. Basin, and A. Bundy. Middle-Out Reasoning for Program Syn­
thesis. In P. Szeredi, editor, Proceedings of the 10-th International Conference
on Logic Programming. MIT Press, 1993.

[Kle43] Stephen C. Kleene. Recursive Predicates and Quantifiers. In Martin Davis, ed­
itor, The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable
Problems And Computable Functions, pages 254-287. Raven Press, Hewlett,
New York, 1965, 1943.

12

[Hue75)

[KBBY3]

[Kled3]

Gérard Huet. A Unification Algorithm for the Typed A-Calculus. Theoretical
Computer Science, 1:27-57, 1975.

I . Kraan, D . Basin, and A. Bundy. Middle-Out Reasoning for Program Syn-
thesis. In P. Szeredi, editor, Proceedings of the 10-th International Conference
on Logic Programming. MIT Press, 1993.

Stephen C. Kleene. Recursive Predicates and Quantifiers. In Martin Davis, ed-
i tor, The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable
Problems And Computable Functions, pages 254-287. Raven Press, Hewlett,
New York, 1965, 1943.

12

	UR_0009.jpg

