
Erica Melis!
Analogy?

SEKI Report SR-96-03

>2N=Q
o

$
i

:
.

==4=)Fei
A©L

dgS
Jaan sand /ep- dqE-run’ 83° ennsf/ d

a
g

M

M
M

A
N

V
IN

H
A

D
NAMONYEHVVS Th099-0

M
ILV

IN
H

O
A

N
I H

O
IT

H
A

IH
O

V
A

SAANVTYVYVS SIA LV.LISH
TAIN

N

noday |M
IS

1

When to Prove Theorems by Analogy?

Erica Melist

Fachbereich Informatik, Universitat des Saarlandes

66041 Saarbriicken, Germany

Abstract

In recent years several computational systems and techniques for
theorem proving by analogy have been developed. The obvious prac­
tical question, however, as to whether and when to use analogy has
been neglected badly in these developments. This paper addresses this
question, identifies situations where analogy is useful, and discusses
the merits of theorem proving by analogy in these situations. The
results can be generalized to other domains.

Introduction

Theorem proving by analogy, as sketched in Figure 1, finds a proof for a
target theorem guided by a proof or proof plan of a given source theorem
which is similar to the target theorem. Several attempts to implement the­
orem proving by analogy, e.g. [8, 18, 20, 9, 13], have been published. Most
papers about analogy in theorem proving did refer to the well known use
of analogy by mathematicians (e.g., [19]), but did not consider the actual
tradeoff of automated theorem proving by analogy. On the contrary, for
some approaches the storingt- retrieval, and analogical replay take more time
than regular theorem proving1.

*The work was supported by the HC&M grant CHBICT930806 and by a grant in the
SFB378

tThe work was supported by the HC&M grant CHBICT930806 and by a grant in the
SFB378

1Personal communication with Christoph Walther who is an author of one of the
approaches

1

When to Prove Theorems by Analogy?

Erica Melisf
Fachbereich Informatik, Universitat des Saarlandes

66041 Saarbriicken, Germany

Abstract

In recent years several computational systems and techniques for
theorem proving by analogy have been developed. The obvious prac-
tical question, however, as to whether and when to use analogy has
been neglected badly in these developments. This paper addresses this
question, identifies situations where analogy is useful, and discusses
the merits of theorem proving by analogy in these situations. The
results can be generalized to other domains.

1 Introduction

Theorem proving by analogy, as sketched in Figure 1, finds a proof for a
target theorem guided by a proof or proof plan of a given source theorem
which is similar to the target theorem. Several attempts to implement the-
orem proving by analogy, e.g. [8, 18, 20, 9, 13], have been published. Most
papers about analogy in theorem proving did refer to the well known use
of analogy by mathematicians (e.g., [19]), but did not consider the actual
tradeoff of automated theorem proving by analogy . On the contrary, for
some approaches the storing, retrieval, and analogical replay take more time
than regular theorem proving?

*The work was supported by the HC&M grant CHBICT930806 and by a grant in the
SFB378

tThe work was supported by the HC&M grant CHBICT930806 and by a grant in the
SFB378

Personal communication with Christoph Walther who is an author of one of the
approaches

source theorem target theorem

source proof
- - - - - - --::> ?

source (given) target

Figure 1: Analogy in theorem proving

An analysis of the merits of using analogy is absolutely necessary in multi­
strategy systems that are capable of both, theorem proving (without using
analogy) and theorem proving by analogy. Therefore, we have to investigate
how analogy pushes the problem solving horizon or improves the exploitation
of the limited resources in order to evaluate the appropriateness of theorem
proving by analogy. Such (limited) resources in computational theorem prov­
ing are

•	 Number of user interactions: Actually, user-interaction is a precious
resource for interactive theorem provers that, more often than not, is
used extensively.

•	 Run time and space: the main problem in automated theorem prov­
ing is the super-exponential search space that makes many problems
intractable within limited time and space. Even some problems that
appear to be easy to solve for humans who are able to structure a
problem and to know good heuristics, cannot be proved automatically
because of the size of the search space.

•	 Knowledge: Whereas too many given axioms, definitions, and lemmata
blow up the search space immensely, missing axioms etc. prevent an
automated theorem prover from finding a proof at all.

2

source theorem | target theorem

source proof

| source (given) target

Figure 1: Analogy in theorem proving

An analysis of the merits of using analogy is absolutely necessary in multi-
strategy systems that are capable of both, theorem proving (without using
analogy) and theorem proving by analogy. Therefore, we have to investigate
how analogy pushes the problem solving horizon or improves the exploitation
of the limited resources in order to evaluate the appropriateness of theorem
proving by analogy. Such (limited) resources in computational theorem prov-
ing are

e Number of user interactions: Actually, user-interaction is a precious
resource for interactive theorem provers that, more often than not, is
used extensively.

e Run time and space: the main problem in automated theorem prov-
ing is the super-exponential search space that makes many problems
intractable within limited time and space. Even some problems that
appear to be easy to solve for humans who are able to structure a
problem and to know good heuristics, cannot be proved automatically
because of the size of the search space.

e Knowledge: Whereas too many given axioms, definitions, and lemmata
blow up the search space immensely, missing axioms etc. prevent an
automated theorem prover from finding a proof at all.

2

For problem solving in Newtonian physics, VanLehn and Jones [21] cog­
nitively analyzed and characterized situations in which humans use analogy.
They report different results for poor and good problem solvers. Similarly,
we found that a distinction of different types of theorem proving systems is
necessary in assessing the tradeoff in theorem proving by analogy.

Therefore, we discuss the advantages of augmenting three types of theo­
rem provers with analogy. In the following, we investigate when to employ
analogy in interactive theorem proving systems, in extensively searching au­
tomated systems, and in automated systems with little average search. We
explain which advantages can be expected from the use of analogy in each
type of system.

This is a paper about the experience with analogy facilities in different
base systems that exhibits general principles. It is not a cognitive study,
although the results resemble some findings of VanLehn and Jones as men­
tioned in the conclusion.

In this paper it is impossible to explain all details of these analogy facilities
ANALOG, ABALONE, and internal analogy which are published in [13, 12,
15], respectively. We rather present examples of what these analogy facilities
achieve.

Analogy in Interactive Theorem Provers:
Omega

Current interactive theorem provers, e.g. Nqthm [1], require laborious user
interactions. For instance, Shankar's proof of Godel's theorem had 1741
lemmata that were formulated interactively for Nqthm. Augmenting an in­
teractive system with an automated analogy facility naturally implies the
advantage of reducing the number of user interactions and, thus, improve
the efficient use of a limited resource. This applies in particular in long and
complex proofs because they require many user interactions.

Take, for instance, the interactive Omega system [5], where automated
theorem provers and tactics/methods can be invoked and Natural Deduction­
rules can be applied. The analogy extension of its proof planner, as described
in [13], works as a control strategy for the proof planner. The proof planner
(interactively) produces a source plan that consists of methods (often sup­
plied by the user). The analogy procedure automatically reformulates the

3

For problem solving in Newtonian physics, VanLehn and Jones [21] cog-
nitively analyzed and characterized situations in which humans use analogy.
They report different results for poor and good problem solvers. Similarly,
we found that a distinction of different types of theorem proving systems is
necessary in assessing the tradeoff in theorem proving by analogy.

Therefore, we discuss the advantages of augmenting three types of theo-
rem provers with analogy. In the following, we investigate when to employ
analogy in interactive theorem proving systems, in extensively searching au-
tomated systems, and in automated systems with little average search. We
explain which advantages can be expected from the use of analogy in each
type of system.

This is a paper about the experience with analogy facilities in different
base systems that exhibits general principles. It is not a cognitive study,
although the results resemble some findings of VanLehn and Jones as men-
tioned in the conclusion.

In this paper it is impossible to explain all details of these analogy facilities
ANALOG, ABALONE, and internal analogy which are published in [13, 12,
15], respectively. We rather present examples of what these analogy facilities
achieve.

2 Analogy in Interactive Theorem Provers:
Omega

Current interactive theorem provers, e.g. Nqthm [1], require laborious user
interactions. For instance, Shankar’s proof of Godel’s theorem had 1741
lemmata that were formulated interactively for Nqthm. Augmenting an in-
teractive system with an automated analogy facility naturally implies the
advantage of reducing the number of user interactions and, thus, improve
the efficient use of a limited resource. This applies in particular in long and
complex proofs because they require many user interactions.

Take, for instance, the interactive Omega system [5], where automated
theorem provers and tactics/methods can be invoked and Natural Deduction-
rules can be applied. The analogy extension of its proof planner, as described
in [13], works as a control strategy for the proof planner. The proof planner
(interactively) produces a source plan that consists of methods (often sup-
plied by the user). The analogy procedure automatically reformulates the

source proof plan and suggests decisions for the choice of a (reformulated)
method in the target proof plan, guided by the decisions in the source proof
plan. It tests whether the reasons for this choice in the source hold in the
target as well. Thereby it avoids the user interactions needed in order to pro­
vide the methods the target proof plan is constructed from, and to choose
the right method.

In [14] we demonstrated how a user-supplied source proof plan for a Heine­
Borel theorem HB1 can be transferred to a proof plan for another Heine-Borel
theorem HB2, thus solving an open problem suggested by Bledsoe.

THEOREM: Heine-Borel-l (HB1) If a closed interval [a,b] of RI is covered
by a family G of open sets (in RI), then there is a finite subfamily H of G
which covers [a, b].2 •

THEOREM: Heine-Borel-2 (HB2) If a closed rectangle [a,b,c,d] of R2 is cov­
ered by a family G of open sets (in R2), then there is a finite subfamily H of
G which covers [a, b, c, d]. •

In this example, the analogy procedure reduced the user interactions that
provided subgoals to be proved by Natural Deduction inferences, by the au­
tomated theorem prover OTTER [11], or by a subplan from 32 to 1. Most of
the HB1 proof plan was transferable by analogy as apparent from Figures 2
and 3. All reformulated source methods but method-2 J, reformulated from
method-2, are transferred. Only the submethod method-21' of the reformu­
lated method-2' was transferable to the target. This left the minor target
subgoal g'5a to be proved by Omega.

On one hand, the analogical replay reduced the number of interactions.
On the other hand, an additional interaction is required to provide the anal­
ogous source problem to the current analogy procedure.

: In systems that are designed as a proof assistance system, a totally dif­
ferent argument in favor of analogy, is that an analogy facility can be a
feature of human-like problem solving that contributes to the system's user
acceptance.

2RI denotes the set of sets of real numbers and R2 denotes the set of sets of ordered
pairs (x,y) of real numbers x and y.

4

source proof plan and suggests decisions for the choice of a (reformulated)
method in the target proof plan, guided by the decisions in the source proof
plan. It tests whether the reasons for this choice in the source hold in the
target as well. Thereby it avoids the user interactions needed in order to pro-
vide the methods the target proof plan is constructed from, and to choose
the right method.

In [14] we demonstrated how a user-supplied source proof plan for a Heine-
Borel theorem HB1 can be transferred to a proof plan for another Heine-Borel
theorem HB2, thus solving an open problem suggested by Bledsoe.

THEOREM: Heine-Borel-1 (HB1) If a closed interval [a,b] of R! is covered
by a family G of open sets (in R!), then there is a finite subfamily H of G
which covers [a,b].2 n

THEOREM: Heine-Borel-2 (HB2) If a closed rectangle [a,b,c,d] of R? is cov-
ered by a family G of open sets (in R?), then there is a finite subfamily H of
G which covers [a,b,c,d). m

In this example, the analogy procedure reduced the user interactions that
provided subgoals to be proved by Natural Deduction inferences, by the au-
tomated theorem prover OTTER [11], or by a subplan from 32 to 1. Most of
the HB1 proof plan was transferable by analogy as apparent from Figures 2
and 3. All reformulated source methods but method-2°’, reformulated from
method-2, are transferred. Only the submethod method-21’ of the reformu-
lated method-2’ was transferable to the target. This left the minor target
subgoal g’5a to be proved by Omega.

On one hand, the analogical replay reduced the number of interactions.
On the other hand, an additional interaction is required to provide the anal-
ogous source problem to the current analogy procedure.

- In systems that are designed as a proof assistance system, a totally dif-
ferent argument in favor of analogy, is that an analogy facility can be a
feature of human-like problem solving that contributes to the system’s user
acceptance. i

2R! denotes the set of sets of real numbers and R? denotes the set of sets of ordered
pairs (x,y) of real numbers x and y.

[:=IJ] method

c::> goal/assumption

Figure 2: The proof-plan of HBl

[=:=I method

c:::> sequent

A, -Th' 1- false

Figure 3: The proof-plan of HB2

5

TH method

CD goal/assumption

Figure 3: The proof-plan of HB2

3 Analogy in Systems with Little Average
Search: CYM

In this section, we record our experience with using analogy in the proof
planner GYM. GYM, described in [3], has successfully been applied to in­
ductive theorem proving.3 As opposed to interactive systems, GYM is an
automated proof planner. It constructs proof plans that consist of meth­
ods. Some of these predefined methods are INDUCTION, WAVE, EVAL-DEF,

NORMAL, and EQUAL. INDUCTION, e.g., chooses induction variables and an
appropriate induction scheme and EVAL-DEF symbolically evaluates a term in
the current planning goal by applying an equational definition of a function.

In GYM strong domain-specific search heuristics, such as rippling [6,
2], restrict the search for methods. Rippling systematically uses rewrites
to remove differences between the induction hypothesis and the induction
conclusion in a very goal-directed way so the former can be used in the proof.
Because of the strong domain-specific control heuristics and because of the
common plan patterns of inductive proofs4 , GYM is a proof planner that,
opposed to most planners, typically performs little search for methods. For
a comprehensive introduction to GYM see [3]. Given this behavior, usually
GYM succeeds quickly if it masters a theorem at all.

Therefore, the derivational analogy5 facility, ABALONE, is invoked only
if GYM does not succeed in a decent time limit (with the commonly loaded
methods). Then the target planning process is guided by analogy to a source
plan [12].

ABALONE's input is a source theorem, source rewrites, a source proof
plan, a target theorem, and target rewrites. First, it incrementally produces
mappings of the source and the target theorem and of the source and tar­
get rewrites as far as possible. These mappings of functions and relations

3Induction is a generalization of Peano induction over the natural numbers' that has
the induction scheme P(O),VkS~«;~~f(k+l)), where P(O) is proved in the base case and
Vk(P(k) ~ P(k + 1» is proved in a step case. P(k) is called the induction hypothesis
and P(k + 1) the induction conclusion. In this case, (k + 1) is the induction term. In the
step case the induction conclusion is rewritten such that the induction hypothesis can be
applied with a true result.

4E.g.,these proofs always consist of induction, then base case, then step case.
5Derivational analogy [4] guides the target solution by replaying decisions of the

source problem solving process, and it uses information about reasons for the decisions
(justifications)

6

3 Analogy in Systems with Litt le Average
Search: CAM

In this section, we record our experience with using analogy in the proof
planner CIAM. CIAM, described in [3], has successfully been applied to in-
ductive theorem proving.® As opposed to interactive systems, CIAM is an
automated proof planner. It constructs proof plans that consist of meth-
ods. Some of these predefined methods are INDUCTION, WAVE, EVAL_DEF,
NORMAL, and EQUAL. INDUCTION, e.g., chooses induction variables and an
appropriate induction scheme and EVAL_DEF symbolically evaluates a term in
the current planning goal by applying an equational definition of a function.

In CIAM strong domain-specific search heuristics, such as rippling [6,
2], restrict the search for methods. Rippling systematically uses rewrites
to remove differences between the induction hypothesis and the induction
conclusion in a very goal-directed way so the former can be used in the proof.
Because of the strong domain-specific control heuristics and because of the
common plan patterns of inductive proofs?, CIAM is a proof planner that,
opposed to most planners, typically performs little search for methods. For
a comprehensive introduction to CIAM see [3]. Given this behavior, usually
CIAM succeeds quickly if it masters a theorem at all.

Therefore, the derivational analogy® facility, ABALONE, is invoked only
if CIAM does not succeed in a decent time limit (with the commonly loaded
methods). Then the target planning process is guided by analogy to a source
plan [12].

ABALONE'’s input is a source theorem, source rewrites, a source proof
plan, a target theorem, and target rewrites. First, it incrementally produces
mappings of the source and the target theorem and of the source and tar-
get rewrites as far as possible. These mappings of functions and relations

3Induction is a generalization of Peano induction over the natural numbers that has
the induction scheme £C kat 2 =F k+1)) where P(0) is proved in the base case and
Vk(P(k) — P(k + 1)) is proved in a step case. P(k) is called the induction hypothesis
and P(k + 1) the induction conclusion. In this case, (k + 1) is the induction term. In the
step case the induction conclusion is rewritten such that the induction hypothesis can be
applied with a true result.

4E.g.,these proofs always consist of induction, then base case, then step case.
SDerivational analogy [4] guides the target solution by replaying decisions of the

source problem solving process, and it uses information about reasons for the decisions
(justifications)

preserve certain abstract representations of the source theorem and source
rewrites that heuristically determine the proof pattern. The mappings are
followed by an analogical replay of the source proof plan that includes certain
reformulations of the proof plan and a check of the justifications (reasons)
for the choice of the methods in the source. If a legal justification is violated
in the target, no replay of the method takes place. The replay transfers a
method if the failed justification is marked as "heuristic" rather than "legal".
For a detailed description see [12] which is available via www. In case no
given target rewrite matches some source rewrite S, the analogical mapping
can suggest a target rewrite by applying the mappings to S.

ABALONE did improve CIJiM's performance: in a situation where a
lemma needed for the target proof is not given a priori, where a method not
loaded by default is needed for planning a target theorem, or where other
reasons e.g. the default control, prevent CIJiM from finding a plan for the
target theorem within reasonable time limits. In the following, we discuss
these situations for theorem proving by analogy. The given examples are
simple representatives for classes of problems that CIJiM itself cannot prove
but for which CIfiM with ABALONE succeeds.

•	 By overriding the control heuristics of the proof planner if justified by
analogy, plans can be constructed which the proof planner would not
find by itself. Example6:

The source theorem div3: ""y = 0 -+ div(plus(y, x), y) = s(div(x, y))
has the proof plan

NORMAL(...) then

EVAL_DEF(div) then

ELEMENTARY (. ..)

NORMAL places the antecedent (""y = 0) in the hypotheses list Hyp
and then EVAL..DEF evaluates the definition of div. For the latter, a
(heuristic) justification is that the antecedent C of the definition of
div7 is in Hyp (expressed by trivial(Hyp ==> C)). This means that

6In the remainder of the paper s denotes the successor function, div division, rev
denotes the reversion of lists, length the length of lists, and app, cons denote the append
and cons list functions.

7which is ""y = 0

7

preserve certain abstract representations of the source theorem and source
rewrites that heuristically determine the proof pattern. The mappings are
followed by an analogical replay of the source proof plan that includes certain
reformulations of the proof plan and a check of the justifications (reasons)
for the choice of the methods in the source. If a legal justification is violated
in the target, no replay of the method takes place. The replay transfers a
method if the failed justification is marked as “heuristic” rather than “legal”.
For a detailed description see [12] which is available via www. In case no
given target rewrite matches some source rewrite S, the analogical mapping
can suggest a target rewrite by applying the mappings to S.

ABALONE did improve CIAM’s performance: in a situation where a
lemma needed for the target proof is not given a priori, where a method not
loaded by default is needed for planning a target theorem, or where other
reasons e.g. the default control, prevent CIAM from finding a plan for the
target theorem within reasonable time limits. In the following, we discuss
these situations for theorem proving by analogy. The given examples are
simple representatives for classes of problems that CIAM itself cannot prove
but for which CIAM with ABALONE succeeds.

e By overriding the control heuristics of the proof planner if justified by
analogy, plans can be constructed which the proof planner would not
find by itself. Example®:
The source theorem div3: —y = 0 — div(plus(y, =), y) = s(div(z, y))
has the proof plan

NORMAL(. . .) then
EVAL_DEF(div) then

ELEMENTARY(...)

NORMAL places the antecedent (-y = 0) in the hypotheses list Hyp
and then EVAL_DEF evaluates the definition of div. For the latter, a
(heuristic) justification is that the antecedent C of the definition of
div’ is in Hyp (expressed by tr iv ial (Hyp ==> C)). This means that

In the remainder of the paper s denotes the successor function, div division, rev
denotes the reversion of lists, length the length of lists, and app, cons denote the append
and cons list functions.

Twhich is ~y = 0

EVAL-DEF(div) is applied if (-.y = 0) is in Hyp only. ELEMENTARY

recognizes the truth of the output of EVAL-DEF.

The target theorem:

div3term: -.times(y, z) = 0 -+ div(plus(y, x), y) = s(div(x, y))

cannot be planned by GYM. The reason is that EVAL-DEF(div)'s
justification trivial (Hyp ==> -'y = 0) is not satisfied after the ap­
plication of NORMAL. because now -.times(y, z) = 0 is in Hyp rather
than -'y = O. div3term can, however, be planned by analogy to div3
that justifies to override the heuristic justification to proveable (Hyp
==> -'y = 0). Then the (correct) target proof plan is obtained

NORMAL(...) then
EVAL_DEF(div) then

SUBPROOF(not(times(y,z)=O) => not(y = 0)) then
ELEMENTARY (. ..)

•	 By suggesting the use of a method that is not commonly loaded, plans
can be constructed which the proof planner would not find without
user intervention. For instance, the method NORMAL is not loaded by
default because it often misleads the planner.

Example: The source theorem zerotimesl: x = 0 -+ times(x, y) = 0
has the proof plan

NORMAL() then
EQUAL () then

EVAL_DEF(...) then
ELEMENTARY(...).

NORMAL first places t-he antecedent (x = 0) in the hypotheses list
and then EQUAL replaces 0 for x in the term times(x, y). This is
followed by EVAL-DEF that evaluates times(O, y) to 0 by the definition
times(O, X) = 0 and by ELEMENTARY that recognizes the truth of
(0=0).

Among others the analogical replay automatically transfers the NOR­
MAL method and the resulting target proof plan is

8

EVAL_DEF(div) is applied if (-y = 0) is in Hyp only. ELEMENTARY
recognizes the truth of the output of EVAL_DEF.

The target theorem:

div3term : —times(y, z) = 0 = div(plus(y, x) , y) = s(div(z, y))

cannot be planned by CIAM. The reason is that EVAL_DEF(div)’s
justification t r iv ia l (Hyp ==> -y = 0) is not satisfied after the ap-
plication of NORMAL. because now —times(y, z) = 0 is in Hyp rather
than —-y = 0. div3term can, however, be planned by analogy to div3
that justifies to override the heuristic justification to proveable (Hyp
==> —y = 0). Then the (correct) target proof plan is obtained

NORMAL(...) then
EVAL_DEF(div) then

SUBPROOF (not (t imes (y , z)=0) => no t (y = 0)) then
ELEMENTARY(...)

By suggesting the use of a method that is not commonly loaded, plans
can be constructed which the proof planner would not find without
user intervention. For instance, the method NORMAL is not loaded by
default because i t often misleads the planner.

Example: The source theorem zerotimesl: z = 0 — times(z,y) = 0
has the proof plan

NORMAL(...) then
EQUAL(...) then
EVAL_DEF(...) then

ELEMENTARY(...).

NORMAL first places the antecedent (z = 0) in the hypotheses list
and then EQUAL replaces 0 for x in the term times(z,y). This is
followed by EVAL_DEF that evaluates times(0,y) to 0 by the definition
times(0,X) = 0 and by ELEMENTARY that recognizes the truth of
(0=0).
Among others the analogical replay automatically transfers the NOR-
MAL method and the resulting target proof plan is

8

NORMAL() then
EQUAL () then

EVAL_DEF(...) then
ELEMENTARY(...).

•	 Induced by the mapping constraints, analogy can find generalizations
that make a success of GYM possible at all. An example is the gener­
alization of the target theorem

plus(x,plus(x, x)) = plus(plus(x, x), x)

to	 the source theorem

plus(x,plus(y, z)) = plus(plus (x, y), z).

This type of generalization is called "generalizing variables apart" and
belongs to those generalizations that are difficult to choose in inductive
theorem proving and, therefore, are not included into GYM.

•	 By suggesting lemmata that are needed for the target proof target the­
orems can be proved which GYM itself is not able to prove. Example:
Given the source theorem:

length(app(a, b)) = length(app(b, a))

the proof of which uses the source rewrite

length(app(a, cons(vo, b))) = s(length(app(a, b))).

While analogically replaying the source proof plan for the target theo­
rem:

half{plus(a, b)) = half(plus(b, a))

the analogy facility suggests the target lemma:

half(plus(a, s(s(b)))) = s(half(plus(a, b)))

by applying the mappings established between the source and the target
and other constraints.

9

NORMAL(...) then
EQUAL(...) then

EVAL_DEF(. . .) then
ELEMENTARY(...).

e Induced by the mapping constraints, analogy can find generalizations
that make a success of CIAM possible at all. An example is the gener-
alization of the target theorem

plus(z,plus(z, z)) = plus(plus(z, x), z)

to the source theorem

plus(z, plus(y, z)) = plus(plus(z,y), 2).

This type of generalization is called “generalizing variables apart” and
belongs to those generalizations that are difficult to choose in inductive
theorem proving and, therefore, are not included into CIAM.

e By suggesting lemmata that are needed for the target proof target the-
orems can be proved which CIAM itself is not able to prove. Example:
Given the source theorem:

length(app(a, b)) = length(app(b, a))

the proof of which uses the source rewrite

length(app(a, cons(vg, b))) = s(length(app(a, b))).

While analogically replaying the source proof plan for the target theo-
rem:

half(plus(a, b)) = half (plus(b, a))
the analogy facility suggests the target lemma:

half (plus(a, s(s(b)))) = s(half (plus(a,b)))

by applying the mappings established between the source and the target
and other constraints.

4 Analogy in Systems with Extensively Search­
ing Sub-routines: CYM3

When working on analogy in CIftM3, we identified another situation where
analogy did improve the system's performance. CIftM3 is a version of GIftM
that is extended by critics which are very search-intensive procedures that
help to continue the proof planning when CIftM itself gets stuck.

Critics [7] are an extension of proof planning that patch failed proof at­
tempts. For instance, it can happen that INDUCTION selects an inappropri­
ate induction scheme. Then planning using an incorrect scheme becomes
blocked. The induction revision critic patches an incorrect choice of the in­
duction scheme by introducing extra function variables into the induction
term so that rippling can continue and gradually instantiates the function
variables by higher-order matching with given rewrites. The instantiation re­
quires to go back to the INDUCTION node and to suggest a revised induction
term.

For instance, consider the conjecture

even(length(app(t, l))) = even(length(app(l, t))) (1)

INDUCTION originally suggests an induction on 1because of the existence
of a certain rewrite. This gives an induction conclusion of

even(length(app(t, cons(h, l))) = even(length(app(cons(h, l), t)))

Applications of rewrites eventually yield the subgoal

even(s(length(app(t, l)))) = even(s(length(app(l, t))))

No further rewrite is applicable, so the planning process is blocked. The way
the induction revision critic deals with this is to introduce function variables
into the induction term the instantiation of which yields a revised induction
term cons(h1 , (cons(h2 , l))) with which the planning succeeds.

It can happen that within the same proof, the induction rev.ision critic
is called a number of times. The internal analogy avoids such waste of
time. Internal analogy is a process that transfers experience from a com­
pleted (source) subgoal in the same problem to solve the current (target)
subgoal. That is, internal analogy works on similar subproblems of a single
problem.

10

4 Analogy in Systems with Extensively Search-
ing Sub-routines: CIAM3

When working on analogy in CIAM3, we identified another situation where
analogy did improve the system’s performance. CIAM3 is a version of CIAM
that is extended by critics which are very search-intensive procedures that
help to continue the proof planning when CIAM itself gets stuck.

Critics [7] are an extension of proof planning that patch failed proof at-
tempts. For instance, i t can happen that INDUCTION selects an inappropri-
ate induction scheme. Then planning using an incorrect scheme becomes
blocked. The induction revision critic patches an incorrect choice of the in-
duction scheme by introducing extra function variables into the induction
term so that rippling can continue and gradually instantiates the function
variables by higher-order matching with given rewrites. The instantiation re-
quires to go back to the INDUCTION node and to suggest a revised induction
term.

For instance, consider the conjecture

even(length(app(t,l))) = even(length(app(l,t))) (1)

INDUCTION originally suggests an induction on | because of the existence
of a certain rewrite. This gives an induction conclusion of

even(length(app(t, cons(h,l))) = even(length(app(cons(h,l),t)))

Applications of rewrites eventually yield the subgoal

even(s(length(app(t,l)))) = even(s(length(app(l, t))))

No further rewrite is applicable, so the planning process is blocked. The way
the induction revision critic deals with this is to introduce function variables
into the induction term the instantiation of which yields a revised induction
term cons(hy, (cons(hg,!))) with which the planning succeeds.

I t can happen that within the same proof, the induction revision critic
is called a number of times. The internal analogy avoids such waste of
time. Internal analogy is a process that transfers experience from a com-
pleted (source) subgoal in the same problem to solve the current (target)
subgoal. That is, internal analogy works on similar subproblems of a single
problem.

10

For instance, the planning of the conjecture

even(length(app(x, y))) = even(length(app(y, x)))

includes four induction revisions from a one-step list induction to a two-step
list induction. In this situation the internal analogy overrides the default
control of CYM3 at INDUCTION nodes in proof planning by overriding IN­

DUCTION'S default choice with an instantiation of the result of a prior ap­
plication of the induction revision critic. Note that the internal analogy has
been interleaved with regular proof planning.

On the one hand, the additional effort to store the relevant information is
small for the particular internal analogy. The information that an induction
revision took place, which subterm was affected by the critic application, and
the previously revised induction scheme is stored in the respective INDUCTION

nodes during the planning process. In addition, no or very simple mapping
is necessary. The previous INDUCTION nodes have to be checked for critic
applications in our procedure. On the other hand, by reducing the number
of critic calls, search can be reduced in the following ways:

•	 In ClJtM3, one of the most intensive sub-procedures is the search for the
induction scheme. The internal analogy facility suggests an induction
scheme so the search for these is eliminated.

•	 The effort needed to actually apply the induction revision critic again,
in particular the expensive higher-order matching, is eliminated.

•	 The critic is not applied until ClJtM3 has already chosen an incorrect
induction rule and continued to the point where further planning is
blocked. Internal analogy removes this backtracking altogether.

Hence, the savings by internal analogy outweigh the additional efforts needed.
What about the additional effort in cases where no use can be made of

analogy? In one kind of cases, different types of induction revision can occur
in the same proof. If there is no map available from the stored justification,
an incorrect induction· revision is not imposed, and a second critic has to
be applied as usual. Obviously, time is taken to look for a mapping from
the stored justification to the current goal, which is redundant because the
second revision has to be carried out anyway, but the computational cost is
low.

11

For instance, the planning of the conjecture

even(length(app(z,y))) = even(length(app(y, x)))

includes four induction revisions from a one-step list induction to a two-step
list induction. In this situation the internal analogy overrides the default
control of CIAM3 at INDUCTION nodes in proof planning by overriding IN-
DUCTION’s default choice with an instantiation of the result of a prior ap-
plication of the induction revision critic. Note that the internal analogy has
been interleaved with regular proof planning.

On the one hand, the additional effort to store the relevant information is
small for the particular internal analogy. The information that an induction
revision took place, which subterm was affected by the critic application, and
the previously revised induction scheme is stored in the respective INDUCTION
nodes during the planning process. In addition, no or very simple mapping
is necessary. The previous INDUCTION nodes have to be checked for critic
applications in our procedure. On the other hand, by reducing the number
of critic calls, search can be reduced in the following ways:

e In CIAM3, one of the most intensive sub-procedures is the search for the
induction scheme. The internal analogy facility suggests an induction
scheme so the search for these is eliminated.

e The effort needed to actually apply the induction revision critic again,
in particular the expensive higher-order matching, is eliminated.

e The critic is not applied until CIAM3 has already chosen an incorrect
induction rule and continued to the point where further planning is
blocked. Internal analogy removes this backtracking altogether.

Hence, the savings by internal analogy outweigh the additional efforts needed.
What about the additional effort in cases where no use can be made of

analogy? In one kind of cases, different types of induction revision can occur
in the same proof. If there is no map available from the stored justification,
an incorrect induction revision is not imposed, and a second critic has to
be applied as usual. Obviously, time is taken to look for a mapping from
the stored justification to the current goal, which is redundant because the
second revision has to be carried out anyway, but the computational cost is
low.

11

Conjecture T1 T2
even(length(app(x,y)))=even(length(app(y,x))) 708 567
half(length(app(x,y)))=half(length(app(y,x))) 329 295
even((plus(x,y))=even(plus(y,x)) 48 40
even(1ength(app(x,y)))=even(plus(length(y) ,length(x))) 107 96
half(plus(x,y))=half(plus(y,x)) 48 45
even(length(x))=even(length(rev(x))) 141 122
even(half(plus(x,y)))=even(half(plus(y,x))) 2961 2650
half(length(x))=half(length(rev(x))) 55 53
even(plus(z,length(app(x,y))))=even(plus(z,length(app(y,x)))) 3850 3502

T1 is the time CYM3 needs to plan the given theorem without using
internal analogy. T2 is the time it takes with internal analogy.

Table 1: Some examples run by our system

The same happens in those cases where no critic is needed for a subsequent
induction. Then no map from the stored justification will succeed, so the
induction is not altered.

In a third kind of cases it happens that once a revision has taken place,
a mapping from the justification to a future goal is successful, even though
INDUCTION would correctly choose the induction scheme. So even though
no critic application is avoided, the analogy can still be used to suggest an
induction scheme. Even though analogy is not needed in this case, it is
difficult to prevent analogy from being applied. This is not disadvantageous,
however, since there is still a saving in time here, because the need to search
for the induction variable and term is eliminated.

Some test results are given in Table 1. As expected, the costs associated
with the internal analogy - storing the justification, comparing the justifi­
cation with the subgoals at subsequent INDUCTION nodes, and suggesting
the induction schemes - turned out to be less than those associated with the
application of the induction -revision critics. As a result, the time taken to
prove the theorems given was reduced. As well as the gain in runtime, anal­
ogy makes the proof planning process clearer because the redundant part of
the original proof caused by incorrect selection of induction schemes can be
eliminated.

12

Conjecture TL |T2
even(length(app(x,y)))=even(length(app(y,x))) 708 | 567
half(length(app(x,y)))=half(length(app(y,x))) 329 | 295
even((plus(x,y))=even(plus(y,x)) 48 | 40
even(length(app(x,y)))=even(plus(length(y),length(x))) 107 | 96
half(plus(x,y))=half(plus(y,x)) 48 [45
even(length(x))=even(length(rev(x))) 141 | 122
even (half(plus(x,y)))=even(half(plus(y,x))) 2961 | 2650
half(length(x))=half(length(rev(x))) 55 | 53
even (plus(z,length(app(x,y))))=even(plus(z,length(app(y,x)))) | 3850 | 3502

T1 is the time CIAM8 needs to plan the given theorem without using
internal analogy. T2 is the time it takes with internal analogy.

Table 1: Some examples run by our system

The same happens in those cases where no critic is needed for a subsequent
induction. Then no map from the stored justification will succeed, so the
induction is not altered.

In a third kind of cases it happens that once a revision has taken place,
a mapping from the justification to a future goal is successful, even though
INDUCTION would correctly choose the induction scheme. So even though
no critic application is avoided, the analogy can still be used to suggest an
induction scheme. Even though analogy is not needed in this case, it is
difficult to prevent analogy from being applied. This is not disadvantageous,
however, since there is still a saving in time here, because the need to search
for the induction variable and term is eliminated.

Some test results are given in Table 1. As expected, the costs associated
with the internal analogy - storing the justification, comparing the justifi-
cation with the subgoals at subsequent INDUCTION nodes, and suggesting
the induction schemes - turned out to be less than those associated with the
application of the induction revision critics. As a result, the time taken to
prove the theorems given was reduced. As well as the gain in runtime, anal-
ogy makes the proof planning process clearer because the redundant part of
the original proof caused by incorrect selection of induction schemes can be
eliminated.

12

5 Conclusion

What can we learn from this experience? To make a long story very short,

•	 the use of analogy in interactive systems has several advantages;

• in systems that do little search, use analogy as a last resort to solve
problems that cannot be solved otherwise;

•	 use analogy if it can replace a search-intensive subroutine at low cost;

• only if none of the preceeding criteria applies, then an empirical or the­
oretical analysis might reveal conditions for an efficient use of analogy
for classes of problems.

To make a long story short and include related work,

1.	 For interactive systems

(a)	 some user interaction can be replaced by an automated effort for
the analogical transfer of a source proof or proof plan. With re­
spect to the resource "human interaction", the bias is always in
favor of analogy, in particular for long or complex solutions. This
is independent of the complexity of the analogy procedure.

Similarly, Reif and Stenzel [20] report substantial savings in soft­
ware verification when a reuse facility is integrated into their sys­
tem. This is because user interaction accounts for the lions share
of formal software verification.

(b) In assistance systems, analogy	 can be a feature of human-like
problem solving that contributes to the system's user acceptance.
Again, this argument in favor of analogy is orthogonal to any
complexity argument.

2.	 For automated systems with extensive search, time is a resource that
can be saved.

(a) Analogy can save search by analogically replaying a source proof
or proof plan. Veloso [22] compares run times of regular problem
solving vs. problem solving by analogy for domains or problems

13

5 Conclusion

What can we learn from this experience? To make a long story very short,

e the use of analogy in interactive systems has several advantages;

eo in systems that do little search, use analogy as a last resort to solve
problems that cannot be solved otherwise;

e use analogy if it can replace a search-intensive subroutine at low cost;

e only if none of the preceeding criteria applies, then an empirical or the-
oretical analysis might reveal conditions for an efficient use of analogy
for classes of problems.

To make a long story short and include related work,

1. For interactive systems

(a) some user interaction can be replaced by an automated effort for
the analogical transfer of a source proof or proof plan. With re-
spect to the resource “human interaction”, the bias is always in
favor of analogy, in particular for long or complex solutions. This
is independent of the complexity of the analogy procedure.
Similarly, Reif and Stenzel [20] report substantial savings in soft-
ware verification when a reuse facility is integrated into their sys-
tem. This is because user interaction accounts for the lions share
of formal software verification.

(b) In assistance systems, analogy can be a feature of human-like
problem solving that contributes to the system’s user acceptance.
Again, this argument in favor of analogy is orthogonal to any
complexity argument.

2. For automated systems with extensive search, time is a resource that
can be saved.

(a) Analogy can save search by analogically replaying a source proof
or proof plan. Veloso [22] compares run times of regular problem
solving vs. problem solving by analogy for domains or problems

13

for which the problem solving involves a lot of search. Presum­
ably, these results naturally transfer to theorem proving by anal­
ogy although no empirical tests have been conducted so far. For
practical purposes, a worst case complexity analysis as in [17] will
not do the job.

This situation compares to the empirical results of VanLehn and
Jones about poor physics problem solvers who display many episodes
of analogical problem solving and use analogy instead of regular
problem solving even when this is not most effective.

(b)	 For specific search-intensive procedures internal analogy can save
search at low costs, as explained in section 4. In case the internal
analogy does not hold, the additional costs are low.

3. For automated systems with little average search, an analogy procedure
is invoked when the base system is stuck (cannot prove the theorem
from the given assumptions in a decent time limit). This means that
analogy pushes the problem solving horizon of the base system. This
fact amounts to a bias in favor of analogy independently of any com­
plexity analysis. A system augmented by derivational analogy can solve
more problems than the base system itself

(a) by overriding the default control of the base system for the par­
ticular target or by replaying an uncommon system configuration.
Again, this "learning" of control knowledge compares to the em­
pirical results ofVanLehn and Jones for good problem solvers (who
have little average search) who learn search control by analogy.

(b) by providing originally missing knowledge (lemmata) needed to
solve the target problem. This also compares to empirical results
of VanLehn and Jones for good physics learners who use analogy
to fill knowledge gaps.

Apart from analogy, other learning techniques such as EBL [16]
and chunking [10] can provide control knowledge. We do not dis­
cuss them here.

14

for which the problem solving involves a lot of search. Presum-
ably, these results naturally transfer to theorem proving by anal-
ogy although no empirical tests have been conducted so far. For
practical purposes, a worst case complexity analysis as in [17] will
not do the job.
This situation compares to the empirical results of VanLehn and
Jones about poor physics problem solvers who display many episodes
of analogical problem solving and use analogy instead of regular
problem solving even when this is not most effective.

(b) For specific search-intensive procedures internal analogy can save
search at low costs, as explained in section 4. In case the internal
analogy does not hold, the additional costs are low.

3. For automated systems with little average search, an analogy procedure
is invoked when the base system is stuck (cannot prove the theorem
from the given assumptions in a decent time limit). This means that
analogy pushes the problem solving horizon of the base system. This
fact amounts to a bias in favor of analogy independently of any com-
plexity analysis. A system augmented by derivational analogy can solve
more problems than the base system itself

(a) by overriding the default control of the base system for the par-
ticular target or by replaying an uncommon system configuration.
Again, this “learning” of control knowledge compares to the em-
pirical results of VanLehn and Jones for good problem solvers (who
have little average search) who learn search control by analogy.

(b) by providing originally missing knowledge (lemmata) needed to
solve the target problem. This also compares to empirical results
of VanLehn and Jones for good physics learners who use analogy
to fill knowledge gaps.
Apart from analogy, other learning techniques such as EBL [16]
and chunking [10] can provide control knowledge. We do not dis-
cuss them here.

14

6 Acknowledgment

I would like to thank Alan Bundy who influenced my struggle with CYM
considerably by asking 'what does analogy buy?'. Thanks to J6rg Siekmann
and Wolf Schaarschmidt for reading drafts of this paper.

References

[:t]	 R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic
Press, San Diego, 1988.

[2]	 A. Bundy, Stevens A, F. Van Harmelen, A. Ireland, and A. Smaill. A
heuristic for guiding inductive proofs. Artificial Intelligence, 63:185-253,
1993.

[3]	 A. Bundy, F; van Harmelen, J. Hesketh, and A. Smaill. Experiments
with proof plans for induction. Journal of Automated Reasoning, 7:303­
324, 1991.

[4]	 J.G. Carbonell. Derivational analogy: A theory of reconstructive prob­
lem solving and expertise acquisition. In R.S. Michalsky, J.G. Carbonell,
and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, pages 371-392. Morgan Kaufmann Publ., Los Altos, 1986.

[5]	 X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and
J. Siekmann. Omega-MKRP: A Proof Development Environment. In
Proc. 12th International Conference on Automated Deduction (CA DE) ,
Nancy, 1994.

[6]	 D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proc. of
10th International Conference on Automated Deduction (CA DE), vol­
ume Lecture Notes in Artificial Intelligence 449. Springer, 1990.

[7]	 A. Ireland and A. Bundy. Productive use of failure in inductive proof.
Technical report, Department of AI Edinburgh, 1994. Available from
Edinburgh as DAI Research Paper 716.

[8]	 R.E. Kling. A paradigm for reasoning by analogy. Artificial Intelligence,
2:147-178, 1971.

15

6 Acknowledgment
I would like to thank Alan Bundy who influenced my struggle with CIAM
considerably by asking ‘what does analogy buy?’. Thanks to Jörg Sieckmann
and Wolf Schaarschmidt for reading drafts of this paper.

References

[1] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic
Press, San Diego, 1988.

[2] A . Bundy, Stevens A, F . Van Harmelen, A. Ireland, and A. Smaill. A
heuristic for guiding inductive proofs. Artificial Intelligence, 63:185-253,
1993.

[3] A . Bundy, F : van Harmelen, J. Hesketh, and A. Smaill. Experiments
with proof plans for induction. Journal of Automated Reasoning, 7:303—
324, 1991.

[4] J.G. Carbonell. Derivational analogy: A theory of reconstructive prob-
lem solving and expertise acquisition. In R.S. Michalsky, J.G. Carbonell,
and T .M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, pages 371-392. Morgan Kaufmann Publ., Los Altos, 1986.

[5] X . Huang, M . Kerber, M . Kohlhase, E. Melis, D . Nesmith, J. Richts, and
J. Siekmann. Omega-MKRP: A Proof Development Environment. In
Proc. 12th International Conference on Automated Deduction (CADE),
Nancy, 1994.

[6] D . Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proc. of
10th International Conference on Automated Deduction (CADE), vol-
ume Lecture Notes in Artificial Intelligence 449. Springer, 1990.

[7] A. Ireland and A. Bundy. Productive use of failure in inductive proof.
Technical report, Department of AI Edinburgh, 1994. Available from

. Edinburgh as DAI Research Paper 716.

[8] R.E. Kling. A paradigm for reasoning by analogy. Artificial Intelligence,
2:147-178, 1971.

15

[9]	 Th. Kolbe and Ch. Walther. Reusing proofs. In Proceedings of ECAI-94,
Amsterdam, 1994.

[10]	 J Laird, A. Newell, and P. Rosenbloom. SOAR:an architecture for gen­
eral intelligence. Artificial Intelligence, 33(1):1-64, 1987.

[11]	 W.W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9,
Argonne National Laboratory, Maths and CS Division, Argonne, Illinois,
1990.

[12]	 E. Melis. Analogy in CLAM. Technical Report DAI Research Paper No
766, University of Edinburgh, AI Dept, Dept. of Artificial Intelligence,
Edinburgh, 1995. available from http://jswww.cs.uni-sb.de/.

[13]	 E. Melis. A model of analogy-driven proof-plan construction. In Proceed­
ings of the 14th International Joint Conference on Artificial Intelligence,
pages 182-189, Montreal, 1995.

[14]	 E. Melis. Theorem proving by analogy - a compelling example. In
C.Pinto-Ferreira and N.J. Mamede, editors, Progress in Artificial Intel­
ligence, 7th Portuguese Conference on Artificial Intelligence, EPIA '95,
Lecture Notes in Artificial Intelligence, 990, pages 261-272, Madeira,
1995. Springer.

[15]	 E. Melis and J. Whittle. Internal analogy in inductive theorem proving.
In, editor, Proceedings of the 13th Conference on Automated Deduction,
number - in LNAI, pages -, Berlin, New York, 1996. Springer.

[16]	 T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1:47-80, 1986.

[17]	 B. Nebel and J. Koehler. Plan reuse versus plan generation. a theoretical
and empirical analysis. Artificial Intelligence, 1995. Special Issue on
Planning and Scheduling.

[18]	 S. Owen. Analogy for Automated Reasoning. Academic Press, 1990.

[19]	 G. Polya. How to Solve it. 2nd ed. Doubleday, New York, 1957.

[20]	 W. Reif and K. Stenzel. Reuse of proofs in software verification. In
R.K. Shyamasundar, editor, Proc. 13th Conference on Foundations of

16

[9] Th. Kolbe and Ch. Walther. Reusing proofs. In Proceedings of ECAI-94,
Amsterdam, 1994.

[10] J Laird, A . Newell, and P. Rosenbloom. SOAR:an architecture for gen-
eral intelligence. Artificial Intelligence, 33(1):1-64, 1987.

[11] W.W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9,
Argonne National Laboratory, Maths and CS Division, Argonne, Illinois,
1990.

[12] E . Melis. Analogy in CLAM. Technical Report DAI Research Paper No
766, University of Edinburgh, AI Dept, Dept. of Artificial Intelligence,
Edinburgh, 1995. available from http://jswww.cs.uni-sb.de/.

[13] E . Melis. A model of analogy-driven proof-plan construction. In Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence,
pages 182-189, Montreal, 1995.

[14] E. Melis. Theorem proving by analogy — a compelling example. In
C.Pinto-Ferreira and N.J. Mamede, editors, Progress in Artificial Intel-
ligence, 7th Portuguese Conference on Artificial Intelligence, EPIA’95,
Lecture Notes in Artificial Intelligence, 990, pages 261-272, Madeira,
1995. Springer.

[15] E. Melis and J. Whittle. Internal analogy in inductive theorem proving.
I n , editor, Proceedings of the 13th Conference on Automated Deduction,
number - in LNAI, pages —, Berlin, New York, 1996. Springer.

[16] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learning, 1:47-80, 1986.

[17] B . Nebel and J. Koehler. Plan reuse versus plan generation. a theoretical
and empirical analysis. Artificial Intelligence, 1995. Special Issue on
Planning and Scheduling.

[18] S. Owen. Analogy for Automated Reasoning. Academic Press, 1990.

[19] G. Polya. How to Solve it. 2nd ed. Doubleday, New York, 1957.

[20] W. Reif and K. Stenzel. Reuse of proofs in software verification. In
R.K. Shyamasundar, editor, Proc. 13th Conference on Foundations of

16

Software Technology and Theoretical Computer Science, volume 761 of
LNCS. Springer, 1993.

[21]	 K. VanLehn and R.M. Jones. Better learners use analogical problem
solving sparingly. In Proceedings of the Tenth International Confer­
ence on Machine Learning, pages 338-345, Amherst, MA, 1993. Morgan
Kaufmann.

[22]	 M.M. Veloso. Planning and Learning by Analogical Reasoning. Springer,
Berlin, New York, 1994.

17

Software Technology and Theoretical Computer Science, volume 761 of
LNCS. Springer, 1993.

[21] K . VanLehn and R.M. Jones. Better learners use analogical problem
solving sparingly. In Proceedings of the Tenth International Confer-
ence on Machine Learning, pages 338-345, Amherst, MA, 1993. Morgan
Kaufmann.

[22] M.M. Veloso. Planning and Learning by Analogical Reasoning. Springer,
Berlin, New York, 1994.

17

	BB_0001.jpg

