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Abstract 

In recent years several computational systems and techniques for 
theorem proving by analogy have been developed. The obvious prac­
tical question, however, as to whether and when to use analogy has 
been neglected badly in these developments. This paper addresses this 
question, identifies situations where analogy is useful, and discusses 
the merits of theorem proving by analogy in these situations. The 
results can be generalized to other domains. 

Introduction 

Theorem proving by analogy, as sketched in Figure 1, finds a proof for a 
target theorem guided by a proof or proof plan of a given source theorem 
which is similar to the target theorem. Several attempts to implement the­
orem proving by analogy, e.g. [8, 18, 20, 9, 13], have been published. Most 
papers about analogy in theorem proving did refer to the well known use 
of analogy by mathematicians (e.g., [19]), but did not consider the actual 
tradeoff of automated theorem proving by analogy. On the contrary, for 
some approaches the storingt- retrieval, and analogical replay take more time 
than regular theorem proving1. 

*The work was supported by the HC&M grant CHBICT930806 and by a grant in the 
SFB378 

tThe work was supported by the HC&M grant CHBICT930806 and by a grant in the 
SFB378 

1Personal communication with Christoph Walther who is an author of one of the 
approaches 
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source theorem target theorem 

source proof 
- - - - - - --::> ? 

source (given) target 

Figure 1: Analogy in theorem proving 

An analysis of the merits of using analogy is absolutely necessary in multi­
strategy systems that are capable of both, theorem proving (without using 
analogy) and theorem proving by analogy. Therefore, we have to investigate 
how analogy pushes the problem solving horizon or improves the exploitation 
of the limited resources in order to evaluate the appropriateness of theorem 
proving by analogy. Such (limited) resources in computational theorem prov­
ing are 

•	 Number of user interactions: Actually, user-interaction is a precious 
resource for interactive theorem provers that, more often than not, is 
used extensively. 

•	 Run time and space: the main problem in automated theorem prov­
ing is the super-exponential search space that makes many problems 
intractable within limited time and space. Even some problems that 
appear to be easy to solve for humans who are able to structure a 
problem and to know good heuristics, cannot be proved automatically 
because of the size of the search space. 

•	 Knowledge: Whereas too many given axioms, definitions, and lemmata 
blow up the search space immensely, missing axioms etc. prevent an 
automated theorem prover from finding a proof at all. 
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Figure 1: Analogy in theorem proving

An  analysis of the merits of using analogy is absolutely necessary in  multi-
strategy systems that are capable of both, theorem proving (without using
analogy) and theorem proving by analogy. Therefore, we have to investigate
how analogy pushes the problem solving horizon or  improves the exploitation
of  the limited resources in order to  evaluate the appropriateness of  theorem
proving by  analogy. Such (limited) resources in  computational theorem prov-
ing are

e Number of user interactions: Actually, user-interaction is a precious
resource for interactive theorem provers that, more often than not, is
used extensively.

e Run time and space: the main problem in automated theorem prov-
ing is the super-exponential search space that makes many problems
intractable within limited time and space. Even some problems that
appear to  be easy to  solve for humans who are able to structure a
problem and to know good heuristics, cannot be proved automatically
because of  the size of  the search space.

e Knowledge: Whereas too many given axioms, definitions, and lemmata
blow up the search space immensely, missing axioms etc. prevent an
automated theorem prover from finding a proof at all.
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For problem solving in Newtonian physics, VanLehn and Jones [21] cog­
nitively analyzed and characterized situations in which humans use analogy. 
They report different results for poor and good problem solvers. Similarly, 
we found that a distinction of different types of theorem proving systems is 
necessary in assessing the tradeoff in theorem proving by analogy. 

Therefore, we discuss the advantages of augmenting three types of theo­
rem provers with analogy. In the following, we investigate when to employ 
analogy in interactive theorem proving systems, in extensively searching au­
tomated systems, and in automated systems with little average search. We 
explain which advantages can be expected from the use of analogy in each 
type of system. 

This is a paper about the experience with analogy facilities in different 
base systems that exhibits general principles. It is not a cognitive study, 
although the results resemble some findings of VanLehn and Jones as men­
tioned in the conclusion. 

In this paper it is impossible to explain all details of these analogy facilities 
ANALOG, ABALONE, and internal analogy which are published in [13, 12, 
15], respectively. We rather present examples of what these analogy facilities 
achieve. 

Analogy in Interactive Theorem Provers: 
Omega 

Current interactive theorem provers, e.g. Nqthm [1], require laborious user 
interactions. For instance, Shankar's proof of Godel's theorem had 1741 
lemmata that were formulated interactively for Nqthm. Augmenting an in­
teractive system with an automated analogy facility naturally implies the 
advantage of reducing the number of user interactions and, thus, improve 
the efficient use of a limited resource. This applies in particular in long and 
complex proofs because they require many user interactions. 

Take, for instance, the interactive Omega system [5], where automated 
theorem provers and tactics/methods can be invoked and Natural Deduction­
rules can be applied. The analogy extension of its proof planner, as described 
in [13], works as a control strategy for the proof planner. The proof planner 
(interactively) produces a source plan that consists of methods (often sup­
plied by the user). The analogy procedure automatically reformulates the 
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Therefore, we discuss the advantages of augmenting three types of theo-
rem provers with analogy. In the following, we investigate when to employ
analogy in interactive theorem proving systems, in extensively searching au-
tomated systems, and in automated systems with little average search. We
explain which advantages can be expected from the use of analogy in each
type of  system.

This is a paper about the experience with analogy facilities in different
base systems that exhibits general principles. It is not a cognitive study,
although the results resemble some findings of VanLehn and Jones as men-
tioned in the conclusion.

In  this paper it is impossible to  explain all  details of these analogy facilities
ANALOG, ABALONE, and internal analogy which are published in [13, 12,
15], respectively. We rather present examples of  what these analogy facilities
achieve.

2 Analogy in Interactive Theorem Provers:
Omega

Current interactive theorem provers, e.g. Nqthm [1], require laborious user
interactions. For instance, Shankar’s proof of Godel’s theorem had 1741
lemmata that were formulated interactively for Nqthm. Augmenting an in-
teractive system with an automated analogy facility naturally implies the
advantage of reducing the number of user interactions and, thus, improve
the efficient use of a limited resource. This applies in  particular in  long and
complex proofs because they require many user interactions.

Take, for instance, the interactive Omega system [5], where automated
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(interactively) produces a source plan that consists of methods (often sup-
plied by the user). The analogy procedure automatically reformulates the



source proof plan and suggests decisions for the choice of a (reformulated) 
method in the target proof plan, guided by the decisions in the source proof 
plan. It tests whether the reasons for this choice in the source hold in the 
target as well. Thereby it avoids the user interactions needed in order to pro­
vide the methods the target proof plan is constructed from, and to choose 
the right method. 

In [14] we demonstrated how a user-supplied source proof plan for a Heine­
Borel theorem HB1 can be transferred to a proof plan for another Heine-Borel 
theorem HB2, thus solving an open problem suggested by Bledsoe. 

THEOREM: Heine-Borel-l (HB1) If a closed interval [a,b] of RI is covered 
by a family G of open sets (in RI), then there is a finite subfamily H of G 
which covers [a, b].2 • 

THEOREM: Heine-Borel-2 (HB2) If a closed rectangle [a,b,c,d] of R2 is cov­
ered by a family G of open sets (in R2), then there is a finite subfamily H of 
G which covers [a, b, c, d]. • 

In this example, the analogy procedure reduced the user interactions that 
provided subgoals to be proved by Natural Deduction inferences, by the au­
tomated theorem prover OTTER [11], or by a subplan from 32 to 1. Most of 
the HB1 proof plan was transferable by analogy as apparent from Figures 2 
and 3. All reformulated source methods but method-2 J, reformulated from 
method-2, are transferred. Only the submethod method-21' of the reformu­
lated method-2' was transferable to the target. This left the minor target 
subgoal g'5a to be proved by Omega. 

On one hand, the analogical replay reduced the number of interactions. 
On the other hand, an additional interaction is required to provide the anal­
ogous source problem to the current analogy procedure. 

: In systems that are designed as a proof assistance system, a totally dif­
ferent argument in favor of analogy, is that an analogy facility can be a 
feature of human-like problem solving that contributes to the system's user 
acceptance. 

2RI denotes the set of sets of real numbers and R2 denotes the set of sets of ordered 
pairs (x,y) of real numbers x and y. 
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Figure 2: The proof-plan of HBl 
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Figure 3: The proof-plan of HB2 
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Figure 3: The proof-plan of  HB2



3 Analogy in Systems with Little Average 
Search: CYM 

In this section, we record our experience with using analogy in the proof 
planner GYM. GYM, described in [3], has successfully been applied to in­
ductive theorem proving.3 As opposed to interactive systems, GYM is an 
automated proof planner. It constructs proof plans that consist of meth­
ods. Some of these predefined methods are INDUCTION, WAVE, EVAL-DEF, 

NORMAL, and EQUAL. INDUCTION, e.g., chooses induction variables and an 
appropriate induction scheme and EVAL-DEF symbolically evaluates a term in 
the current planning goal by applying an equational definition of a function. 

In GYM strong domain-specific search heuristics, such as rippling [6, 
2], restrict the search for methods. Rippling systematically uses rewrites 
to remove differences between the induction hypothesis and the induction 
conclusion in a very goal-directed way so the former can be used in the proof. 
Because of the strong domain-specific control heuristics and because of the 
common plan patterns of inductive proofs4 , GYM is a proof planner that, 
opposed to most planners, typically performs little search for methods. For 
a comprehensive introduction to GYM see [3]. Given this behavior, usually 
GYM succeeds quickly if it masters a theorem at all. 

Therefore, the derivational analogy5 facility, ABALONE, is invoked only 
if GYM does not succeed in a decent time limit (with the commonly loaded 
methods). Then the target planning process is guided by analogy to a source 
plan [12]. 

ABALONE's input is a source theorem, source rewrites, a source proof 
plan, a target theorem, and target rewrites. First, it incrementally produces 
mappings of the source and the target theorem and of the source and tar­
get rewrites as far as possible. These mappings of functions and relations 

3Induction is a generalization of Peano induction over the natural numbers' that has 
the induction scheme P(O),VkS~«;~~f(k+l)), where P(O) is proved in the base case and 
Vk(P(k) ~ P(k + 1» is proved in a step case. P(k) is called the induction hypothesis 
and P(k + 1) the induction conclusion. In this case, (k + 1) is the induction term. In the 
step case the induction conclusion is rewritten such that the induction hypothesis can be 
applied with a true result. 

4E.g.,these proofs always consist of induction, then base case, then step case. 
5Derivational analogy [4] guides the target solution by replaying decisions of the 

source problem solving process, and it uses information about reasons for the decisions 
(justifications) 
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In this section, we record our experience with using analogy in the proof
planner CIAM. CIAM, described in [3], has successfully been applied to in-
ductive theorem proving.® As opposed to  interactive systems, CIAM is an
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NORMAL, and EQUAL. INDUCTION, e.g., chooses induction variables and an
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to remove differences between the induction hypothesis and the induction
conclusion in  a very goal-directed way so the former can be used in  the proof.
Because of the strong domain-specific control heuristics and because of the
common plan patterns of inductive proofs?, CIAM is a proof planner that,
opposed to most planners, typically performs little search for methods. For
a comprehensive introduction to CIAM see [3]. Given this behavior, usually
CIAM succeeds quickly if  it masters a theorem at all.

Therefore, the derivational analogy® facility, ABALONE, is invoked only
if CIAM does not succeed in a decent time limit (with the commonly loaded
methods). Then the target planning process is guided by analogy to a source
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ABALONE'’s input is a source theorem, source rewrites, a source proof
plan, a target theorem, and target rewrites. First, it incrementally produces
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step case the induction conclusion is rewritten such that the induction hypothesis can be
applied with a true result.

4E.g.,these proofs always consist of induction, then base case, then step case.
SDerivational analogy [4] guides the target solution by replaying decisions of the

source problem solving process, and it uses information about reasons for the decisions
(justifications)



preserve certain abstract representations of the source theorem and source 
rewrites that heuristically determine the proof pattern. The mappings are 
followed by an analogical replay of the source proof plan that includes certain 
reformulations of the proof plan and a check of the justifications (reasons) 
for the choice of the methods in the source. If a legal justification is violated 
in the target, no replay of the method takes place. The replay transfers a 
method if the failed justification is marked as "heuristic" rather than "legal". 
For a detailed description see [12] which is available via www. In case no 
given target rewrite matches some source rewrite S, the analogical mapping 
can suggest a target rewrite by applying the mappings to S. 

ABALONE did improve CIJiM's performance: in a situation where a 
lemma needed for the target proof is not given a priori, where a method not 
loaded by default is needed for planning a target theorem, or where other 
reasons e.g. the default control, prevent CIJiM from finding a plan for the 
target theorem within reasonable time limits. In the following, we discuss 
these situations for theorem proving by analogy. The given examples are 
simple representatives for classes of problems that CIJiM itself cannot prove 
but for which CIfiM with ABALONE succeeds. 

•	 By overriding the control heuristics of the proof planner if justified by 
analogy, plans can be constructed which the proof planner would not 
find by itself. Example6: 

The source theorem div3: ""y = 0 -+ div(plus(y, x), y) = s(div(x, y)) 
has the proof plan 

NORMAL( ... ) then
 
EVAL_DEF(div) then
 

ELEMENTARY (. .. )
 

NORMAL places the antecedent (""y = 0) in the hypotheses list Hyp 
and then EVAL..DEF evaluates the definition of div. For the latter, a 
(heuristic) justification is that the antecedent C of the definition of 
div7 is in Hyp (expressed by trivial(Hyp ==> C)). This means that 

6In the remainder of the paper s denotes the successor function, div division, rev 
denotes the reversion of lists, length the length of lists, and app, cons denote the append 
and cons list functions. 

7which is ""y = 0 
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preserve certain abstract representations of the source theorem and source
rewrites that heuristically determine the proof pattern. The mappings are
followed by  an analogical replay of  the source proof  plan that includes certain
reformulations of the proof plan and a check of the justifications (reasons)
for the choice of the methods in the source. If a legal justification is violated
in the target, no replay of  the method takes place. The replay transfers a
method if  the failed justification is marked as “heuristic” rather than “legal”.
For a detailed description see [12] which is available via www. In case no
given target rewrite matches some source rewrite S, the analogical mapping
can suggest a target rewrite by applying the mappings to S.

ABALONE did improve CIAM’s performance: in a situation where a
lemma needed for the target proof is not given a priori, where a method not
loaded by default is needed for planning a target theorem, or where other
reasons e.g. the default control, prevent CIAM from finding a plan for the
target theorem within reasonable time limits. In the following, we discuss
these situations for theorem proving by analogy. The given examples are
simple representatives for classes of problems that CIAM itself cannot prove
but for which CIAM with ABALONE succeeds.

e By  overriding the control heuristics of the proof planner if  justified by
analogy, plans can be constructed which the proof planner would not
find by itself. Example®:
The source theorem div3: —y = 0 — div(plus(y, =),  y) = s(div(z, y))
has the proof plan

NORMAL( . . . )  then
EVAL_DEF(div) then

ELEMENTARY(...)

NORMAL places the antecedent (-y = 0) in the hypotheses list Hyp
and then EVAL_DEF evaluates the definition of  div. For the latter, a
(heuristic) justification is that the antecedent C of the definition of
div’ is in Hyp (expressed by tr iv ial  (Hyp ==> C)). This means that

In  the remainder of the paper s denotes the successor function, div division, rev
denotes the reversion of lists, length the length of  lists, and app, cons denote the append
and cons list functions.

Twhich is ~y  = 0



EVAL-DEF(div) is applied if (-.y = 0) is in Hyp only. ELEMENTARY
 
recognizes the truth of the output of EVAL-DEF.
 

The target theorem:
 

div3term: -.times(y, z) = 0 -+ div(plus(y, x), y) = s(div(x, y)) 

cannot be planned by GYM. The reason is that EVAL-DEF(div)'s 
justification trivial (Hyp ==> -'y = 0) is not satisfied after the ap­
plication of NORMAL. because now -.times(y, z) = 0 is in Hyp rather 
than -'y = O. div3term can, however, be planned by analogy to div3 
that justifies to override the heuristic justification to proveable (Hyp 
==> -'y = 0). Then the (correct) target proof plan is obtained 

NORMAL( ... ) then 
EVAL_DEF(div) then 

SUBPROOF(not(times(y,z)=O) => not(y = 0)) then 
ELEMENTARY (. .. ) 

•	 By suggesting the use of a method that is not commonly loaded, plans 
can be constructed which the proof planner would not find without 
user intervention. For instance, the method NORMAL is not loaded by 
default because it often misleads the planner. 

Example: The source theorem zerotimesl: x = 0 -+ times(x, y) = 0 
has the proof plan 

NORMAL( ) then 
EQUAL ( ) then 

EVAL_DEF( ... ) then 
ELEMENTARY( ... ). 

NORMAL first places t-he antecedent (x = 0) in the hypotheses list 
and then EQUAL replaces 0 for x in the term times(x, y). This is 
followed by EVAL-DEF that evaluates times(O, y) to 0 by the definition 
times(O, X) = 0 and by ELEMENTARY that recognizes the truth of 
(0=0). 

Among others the analogical replay automatically transfers the NOR­
MAL method and the resulting target proof plan is 
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EVAL_DEF(div) is applied if ( -y  = 0) is in Hyp only. ELEMENTARY
recognizes the truth of  the output of  EVAL_DEF.

The target theorem:
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NORMAL( ) then 
EQUAL ( ) then 

EVAL_DEF( ... ) then 
ELEMENTARY( ... ). 

•	 Induced by the mapping constraints, analogy can find generalizations 
that make a success of GYM possible at all. An example is the gener­
alization of the target theorem 

plus(x,plus(x, x)) = plus(plus(x, x), x) 

to	 the source theorem 

plus(x,plus(y, z)) = plus(plus (x, y), z). 

This type of generalization is called "generalizing variables apart" and 
belongs to those generalizations that are difficult to choose in inductive 
theorem proving and, therefore, are not included into GYM. 

•	 By suggesting lemmata that are needed for the target proof target the­
orems can be proved which GYM itself is not able to prove. Example: 
Given the source theorem: 

length(app(a, b)) = length(app(b, a)) 

the proof of which uses the source rewrite 

length(app(a, cons(vo, b))) = s(length(app(a, b))). 

While analogically replaying the source proof plan for the target theo­
rem: 

half{plus(a, b)) = half(plus(b, a)) 

the analogy facility suggests the target lemma: 

half(plus(a, s(s(b)))) = s(half(plus(a, b))) 

by applying the mappings established between the source and the target 
and other constraints. 
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NORMAL(...) then
EQUAL(...) then

EVAL_DEF(. . . )  then
ELEMENTARY(...).

e Induced by the mapping constraints, analogy can find generalizations
that make a success of CIAM possible at all. An  example is the gener-
alization of the target theorem

plus(z,plus(z, z)) = plus(plus(z, x), z)

to the source theorem

plus(z,  plus(y,  z)) = plus(plus(z,y), 2).

This type of  generalization is called “generalizing variables apart” and
belongs to those generalizations that are difficult to choose in  inductive
theorem proving and, therefore, are not included into CIAM.

e By  suggesting lemmata that are needed for the target proof target the-
orems can be proved which CIAM itself is not able to prove. Example:
Given the source theorem:

length(app(a, b)) = length(app(b, a))

the proof of which uses the source rewrite

length(app(a, cons(vg, b))) = s(length(app(a, b))).

While analogically replaying the source proof plan for the target theo-
rem:

half(plus(a, b)) = half (plus(b, a))
the analogy facility suggests the target lemma:

half  (plus(a, s(s(b)))) = s(half (plus(a,b)))

by applying the mappings established between the source and the target
and other constraints.



4 Analogy in Systems with Extensively Search­
ing Sub-routines: CYM3 

When working on analogy in CIftM3, we identified another situation where 
analogy did improve the system's performance. CIftM3 is a version of GIftM 
that is extended by critics which are very search-intensive procedures that 
help to continue the proof planning when CIftM itself gets stuck. 

Critics [7] are an extension of proof planning that patch failed proof at­
tempts. For instance, it can happen that INDUCTION selects an inappropri­
ate induction scheme. Then planning using an incorrect scheme becomes 
blocked. The induction revision critic patches an incorrect choice of the in­
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term so that rippling can continue and gradually instantiates the function 
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subgoal. That is, internal analogy works on similar subproblems of a single 
problem. 
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For instance, the planning of the conjecture 

even(length(app(x, y))) = even(length(app(y, x))) 

includes four induction revisions from a one-step list induction to a two-step 
list induction. In this situation the internal analogy overrides the default 
control of CYM3 at INDUCTION nodes in proof planning by overriding IN­

DUCTION'S default choice with an instantiation of the result of a prior ap­
plication of the induction revision critic. Note that the internal analogy has 
been interleaved with regular proof planning. 

On the one hand, the additional effort to store the relevant information is 
small for the particular internal analogy. The information that an induction 
revision took place, which subterm was affected by the critic application, and 
the previously revised induction scheme is stored in the respective INDUCTION 

nodes during the planning process. In addition, no or very simple mapping 
is necessary. The previous INDUCTION nodes have to be checked for critic 
applications in our procedure. On the other hand, by reducing the number 
of critic calls, search can be reduced in the following ways: 

•	 In ClJtM3, one of the most intensive sub-procedures is the search for the 
induction scheme. The internal analogy facility suggests an induction 
scheme so the search for these is eliminated. 

•	 The effort needed to actually apply the induction revision critic again, 
in particular the expensive higher-order matching, is eliminated. 

•	 The critic is not applied until ClJtM3 has already chosen an incorrect 
induction rule and continued to the point where further planning is 
blocked. Internal analogy removes this backtracking altogether. 

Hence, the savings by internal analogy outweigh the additional efforts needed. 
What about the additional effort in cases where no use can be made of 

analogy? In one kind of cases, different types of induction revision can occur 
in the same proof. If there is no map available from the stored justification, 
an incorrect induction· revision is not imposed, and a second critic has to 
be applied as usual. Obviously, time is taken to look for a mapping from 
the stored justification to the current goal, which is redundant because the 
second revision has to be carried out anyway, but the computational cost is 
low. 
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Conjecture T1 T2 
even(length(app(x,y)) )=even(length(app(y,x))) 708 567 
half(length(app(x,y)) )=half(length(app(y,x))) 329 295 
even((plus(x,y) )=even(plus(y,x)) 48 40 
even(1ength(app(x,y)) )=even(plus(length(y) ,length(x) )) 107 96 
half(plus(x,y) )=half(plus(y,x)) 48 45 
even(length(x) )=even(length(rev(x))) 141 122 
even(half(plus(x,y)) )=even(half(plus(y,x) )) 2961 2650 
half(length(x) )=half(length(rev(x))) 55 53 
even(plus(z,length(app(x,y))) )=even(plus(z,length(app(y,x)))) 3850 3502 

T1 is the time CYM3 needs to plan the given theorem without using 
internal analogy. T2 is the time it takes with internal analogy. 

Table 1: Some examples run by our system 

The same happens in those cases where no critic is needed for a subsequent 
induction. Then no map from the stored justification will succeed, so the 
induction is not altered. 

In a third kind of cases it happens that once a revision has taken place, 
a mapping from the justification to a future goal is successful, even though 
INDUCTION would correctly choose the induction scheme. So even though 
no critic application is avoided, the analogy can still be used to suggest an 
induction scheme. Even though analogy is not needed in this case, it is 
difficult to prevent analogy from being applied. This is not disadvantageous, 
however, since there is still a saving in time here, because the need to search 
for the induction variable and term is eliminated. 

Some test results are given in Table 1. As expected, the costs associated 
with the internal analogy - storing the justification, comparing the justifi­
cation with the subgoals at subsequent INDUCTION nodes, and suggesting 
the induction schemes - turned out to be less than those associated with the 
application of the induction -revision critics. As a result, the time taken to 
prove the theorems given was reduced. As well as the gain in runtime, anal­
ogy makes the proof planning process clearer because the redundant part of 
the original proof caused by incorrect selection of induction schemes can be 
eliminated. 
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5 Conclusion 

What can we learn from this experience? To make a long story very short, 

•	 the use of analogy in interactive systems has several advantages; 

• in systems that do little search, use analogy as a last resort to solve 
problems that cannot be solved otherwise; 

•	 use analogy if it can replace a search-intensive subroutine at low cost; 

• only if none of the preceeding criteria applies, then an empirical or the­
oretical analysis might reveal conditions for an efficient use of analogy 
for classes of problems. 

To make a long story short and include related work, 

1.	 For interactive systems 

(a)	 some user interaction can be replaced by an automated effort for 
the analogical transfer of a source proof or proof plan. With re­
spect to the resource "human interaction", the bias is always in 
favor of analogy, in particular for long or complex solutions. This 
is independent of the complexity of the analogy procedure. 

Similarly, Reif and Stenzel [20] report substantial savings in soft­
ware verification when a reuse facility is integrated into their sys­
tem. This is because user interaction accounts for the lions share 
of formal software verification. 

(b) In assistance systems, analogy	 can be a feature of human-like 
problem solving that contributes to the system's user acceptance. 
Again, this argument in favor of analogy is orthogonal to any 
complexity argument. 

2.	 For automated systems with extensive search, time is a resource that 
can be saved. 

(a) Analogy can save search by analogically replaying a source proof 
or proof plan. Veloso [22] compares run times of regular problem 
solving vs. problem solving by analogy for domains or problems 

13 

5 Conclusion

What can we learn from this experience? To make a long story very short,

e the use of analogy in interactive systems has several advantages;

eo in systems that do little search, use analogy as a last resort to solve
problems that cannot be solved otherwise;

e use analogy if it can replace a search-intensive subroutine at low cost;

e only if  none of  the preceeding criteria applies, then an empirical or the-
oretical analysis might reveal conditions for an  efficient use of  analogy
for classes of problems.

To make a long story short and include related work,

1. For interactive systems

(a) some user interaction can be replaced by an automated effort for
the analogical transfer of a source proof or  proof plan. With re-
spect to the resource “human interaction”, the bias is always in
favor of analogy, in  particular for long or complex solutions. This
is independent of the complexity of the analogy procedure.
Similarly, Reif and Stenzel [20] report substantial savings in soft-
ware verification when a reuse facility is integrated into their sys-
tem. This is because user interaction accounts for the lions share
of  formal software verification.

(b) In assistance systems, analogy can be a feature of human-like
problem solving that contributes to the system’s user acceptance.
Again, this argument in favor of analogy is orthogonal to any
complexity argument.

2. For automated systems with extensive search, time is a resource that
can be saved.

(a) Analogy can save search by analogically replaying a source proof
or proof plan. Veloso [22] compares run times of regular problem
solving vs. problem solving by analogy for domains or problems

13



for which the problem solving involves a lot of search. Presum­
ably, these results naturally transfer to theorem proving by anal­
ogy although no empirical tests have been conducted so far. For 
practical purposes, a worst case complexity analysis as in [17] will 
not do the job. 

This situation compares to the empirical results of VanLehn and 
Jones about poor physics problem solvers who display many episodes 
of analogical problem solving and use analogy instead of regular 
problem solving even when this is not most effective. 

(b)	 For specific search-intensive procedures internal analogy can save 
search at low costs, as explained in section 4. In case the internal 
analogy does not hold, the additional costs are low. 

3. For automated systems with little average search, an analogy procedure 
is invoked when the base system is stuck (cannot prove the theorem 
from the given assumptions in a decent time limit). This means that 
analogy pushes the problem solving horizon of the base system. This 
fact amounts to a bias in favor of analogy independently of any com­
plexity analysis. A system augmented by derivational analogy can solve 
more problems than the base system itself 

(a) by overriding the default control of the base system for the par­
ticular target or by replaying an uncommon system configuration. 
Again, this "learning" of control knowledge compares to the em­
pirical results ofVanLehn and Jones for good problem solvers (who 
have little average search) who learn search control by analogy. 

(b) by providing originally missing knowledge (lemmata) needed to 
solve the target problem. This also compares to empirical results 
of VanLehn and Jones for good physics learners who use analogy 
to fill knowledge gaps. 

Apart from analogy, other learning techniques such as EBL [16] 
and chunking [10] can provide control knowledge. We do not dis­
cuss them here. 
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